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Abstract

A review has been performed of the NMR software landscape that determines ideal

qNMR software to be local, frequency-domain based and as automated as feasible.

Within this landscape, reference deconvolution corrects lineshape distortions using

a time-domain local/global technique and thus is a technique that has been singled

out for improvement. A novel algorithm was created based on theoretical knowl-

edge of magnetic resonance inhomogeneity as a summation of scaled, shifted, central

peaks. This algorithm produced sufficient accuracy when applied to simulated (0.067-

0.232%), and experimentally obtained data (0.025-18.04%), is robust to reasonable

changes in initial peak parameters, and outperforms reference deconvolution by 0.85-

25.7%. Overall, this algorithm is an effective solution for the correction of lineshape

distortions produced by magnetic resonance inhomogeneity that operates entirely in

the frequency domain and implements a global consensus fit, allowing for distinct

improvement over reference deconvolution.
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Chapter 1

Introduction

Nuclear Magnetic Resonance (NMR) is an important analytical tool that is widely

used to determine the presence of certain organic compounds (characterisation), and

calculation of relative concentrations (quantification) of those compounds within solu-

tions or mixtures [1, 2]. As a tool for characterisation, NMR is used in organic chem-

istry [3, 4], structural biology [5–7], drug discovery [8], and recently with larger, more

complex datasets in metabolomic profiling [9–14]. There are also other wide ranging

applications of NMR detailed in literature [15–17]. Quantitative NMR (qNMR) is

especially important in biological analysis as it allows for the determination of con-

centrations of compounds within biological systems, and can allow for studies of how

the concentration of these compounds change over time [18, 19], however there are

also applications for qNMR in pharmaceuticals [20], law enforcement [21], and organic

chemistry [22]. Each of these fields require a precise and accurate determination of

peak area and as such need to have processing software with the capacity to deal with

a variety of errors that impact the lineshape and peak area.

This breadth of applications of NMR spectroscopy coupled with differences in com-

plexity of datasets requires software that is effective, efficient, and robust in its ability

to characterise the compounds present and quantify the concentration of those com-

pounds. Software approaches vary, and some techniques are better suited to analyse

certain datasets than others. It is important to consider these fundamental differ-

ences when creating NMR data processing software. For example, samples with

many atoms, such as biological or metabolomic mixtures, often experience spectrally

overlapping peaks, decreasing the ability of NMR to characterise and quantify the

atoms present. NMR also has limited applicability to non-organic compounds, as the

atoms elucidated by this technique are limited to those with specific spin properties

(1H, 13C, 2H, 3He, 15N, 19F, etc). Likewise, it is important to understand that each

1
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NMR experiment requires relatively large amounts of sample compared to GCMS or

other analytical techniques [23], thus increasing the cost of each sample run. Fur-

ther, NMR machines are expensive and thus it is desirable that each sample is run

as few times as possible. It should be noted, however, that low-cost low field NMR

spectrometers exist, although these suffer from greater magnetic field inhomogeneity

which causes a greater degree of lineshape error [24]. NMR spectrometers also require

skilled technicians to operate and resolve errors and thus it is desirable to limit the

amount of time each sample takes to run and analyse. These constraints suggest

that software should be automated, fast, accurate and capable of quantifying areas

without a large number of samples run.

A class of errors that NMR technicians are expected to understand and account for

are shim errors. These errors cause distortion in the lineshape peaks and are caused

by inhomogeneity in the NMR magnetic field. Fitting NMR data with this peak

distortion is especially challenging in crowded NMR spectra as overlapping peaks can

become indistinguishable. Traditionally, a set of small magnetic coils termed shim

coils are added to the NMR spectrometer, and the technician varies the strength of

these coils prior to the experimental run in order to minimise the field inhomogeneity.

Extensive effort has been made to design and optimise these coils [25, 26], and software

exists that can correct for a certain amount of this class of error [27], however these

approaches currently still require a technician determining the presence of shim error

and making manual adjustments prior to the NMR experiment being run.



Chapter 2

Objectives and Approach

NMR spectroscopy data processing techniques employ a variety of approaches to

refine and process experimental data. These approaches include techniques applied

to time domain data, transformation techniques to convert time domain data to fre-

quency domain data, and processing approaches that focus solely on frequency domain

data. Each approach has advantages and disadvantages. In this thesis a detailed lit-

erature review of these different software techniques is presented and discussed, and

each technique is catalogued according to a pipeline approach of NMR data process-

ing. This review serves to highlight the strengths and deficiencies of each approach

in order to identify weaknesses or gaps in current NMR data processing tools. In

addition, it creates a conceptual framework for researchers to classify and compare

their techniques relative to similar approaches at each step in the data processing

pipeline.

An analysis of the results of this literature review revealed several potential areas of

NMR data processing where improvements could be made. It was determined that a

significant bottleneck in data processing is the correction of a class of lineshape errors

introduced by magnetic resonance inhomogeneity, including what is commonly termed

“shim error”. This step in the pipeline has been singled out and a novel technique

developed in order to correct for this class of errors. The method developed and

applied herein implements a correction technique that accounts specifically for the

presence of lineshape distortions due to magnetic resonance inhomogeneity in NMR

spectra and creates a model lineshape to represent this error as a summation of scaled,

shifted central peaks. These peaks are then optimised to determine correction factors

for a single peak. Further, this algorithm expands the technique to multiple peaks by

implementing a consensus fit across multiple NMR peaks in the same spectrum and

determines a common set of shim correction factors that can be applied to each peak

3



4

and optimised across all peaks. This algorithm is implemented in the R programming

language.

Entirely automated methods for the correction of lineshape distortions due to mag-

netic resonance inhomogeneity have previously been proposed and implemented as

part of a “catch-all” approach termed reference deconvolution [27, 28]. This approach

determines a reference signal in the NMR spectrum, preferably a well-resolved singlet,

and then compares the experimental peak to the ideal theoretical peak. The differ-

ence in lineshape is then applied to the other peaks in the spectrum. A key benefit

of reference deconvolution is that it corrects for a wide variety of hardware errors

that are applied equally to each peak, such as shifts in peak position, radio-frequency

pulse phase error, and shim error [29]. This is a well established technique, however it

is not targeted at magnetic resonance inhomogeneities specifically, and does not take

into account any knowledge of the theoretical basis of this class of error. Further, ref-

erence deconvolution uses one well-resolved peak to calculate errors and applies these

across every peak. Thus, any lineshape modification that corrects for an error that

is not actually uniform across every peak will nevertheless be applied to each peak.

These undesirable properties have been corrected for in the proposed technique.

The overall goal of this thesis is to further the field of NMR spectroscopy data

processing by researching current approaches in the field, assigning those techniques

to a logical framework, and improving a weak link in this pipeline by developing a

targeted algorithm to correct for lineshape distortions caused by magnetic resonance

inhomogeneity in the frequency domain using a global consensus fit method. This

novel technique has been validated using both simulated and experimental data and

the results are presented and discussed. Within this thesis is presented the following:

1. A literature review of qNMR spectroscopy data processing- focusing on the

processes applied to the spectrum at each stage and classifying each process in

a pipeline of steps

2. A detailed review of magnetic resonance errors and the theory underpinning the

proposed algorithm
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3. A broad overview of the proposed method and the algorithm, and the testing

methodology used to validate the algorithm

4. The results of algorithm testing and a discussion of its effectiveness



Chapter 3

Literature Review

3.1 Background

As detailed previously, NMR spectroscopy can either be used to qualitatively deter-

mine whether certain compounds are present in a sample, or quantitatively determine

the concentration of specific compounds in a sample. qNMR is more challenging as it

requires a greater level of accuracy in the NMR spectrum in order to achieve accurate

results. Within NMR spectroscopy, quantification refers to obtaining an accurate

calculation of the concentration of each component within the organic molecule stud-

ied. There are two primary domains that NMR data may be used in; the time or

frequency domain. Raw data from the NMR spectrometer is an exponentially de-

caying sinusoid in the time domain called a free induction decay (FID) which may

then be transformed into a spectral plot of the different frequencies present in the

FID (the frequency domain). These two typical domains are shown in Fig. 3.1. In

the frequency domain, relative areas of each peak can be compared to one another

to determine the relative concentrations of each element, or a reference compound

with known concentration can be included in the sample [30]. The area of each peak

can then be compared to this reference peak and used for absolute concentration

quantification. Quantification can also occur in the time domain by determining the

parameters and type of lineshape and then calculating the area based on knowledge

of the shape of the lineshape. An overview of possible processing steps in qNMR

analysis follows:

A. FID collection: An NMR spectrometer creates a discrete, complex valued plot of

sinusoidal intensity decaying as a function of time (FID). This data is input to

the data processing software program

B. The FID input from the spectrometer is manipulated in a way to enhance resolu-

tion and return an FID output. These techniques include zero-filling, apodisation,

6
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Figure 3.1: NMR data visualised as an FID in the time domain (top) and a set of
peaks in the frequency domain (bottom).
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etc and are discussed in section 3.2.1. This step is commonly referred to as pre-

processing

C. The FID can at this stage be mathematically decomposed using linear algebra

based methods like SVD or LP and a set of lineshape parameters (peak height,

width etc) returned. The area of the peak, and thus the relative concentration is

then easily calculated using these peak parameters. These techniques are discussed

in detail in section 3.2.2

D. Alternatively, the FID may be decomposed using the Fourier Transform, returning

a dataset corresponding to the varying sinusoids with their respective intensities.

See section 3.2.3 for more details

E. The frequency domain input can be manipulated in a similar way to the FID

inputs in B. This generally consists of creating a model lineshape, baseline, shim,

or phase correction, and returns a modified set of intensities. See section 3.3.1 for

more details

F. Similarly to the FID, it is possible to use SVD, statistical methods, or machine

learning to determine the peak parameters directly from the frequency plot. These

approaches are discussed in section 3.3.2

G. Alternatively, it is possible to directly compute the area of the frequency inputs

using simple integration or binning, as is shown in section 3.3.4

Each of these steps may be conceptually considered as a process performed on a

type of data input in order to produce a modified data output. For example, given

the raw FID from the NMR spectrometer, it is possible to manipulate the FID data to

produce a new FID dataset with improved characteristics. The NMR analyst chooses

whether to include this process or not, and then which technique to apply to the

data (zero-filling, apodisation, etc). Once the analyst has chosen which processes to

include, data flows through this ’pipeline’ in order to produce an accurate area. This

approach is shown graphically in Fig. 3.2. It should also be noted that since each

step in this process represents a possible data processing step, there are thus a variety

of ways one can determine the area of the lineshape peak. For example, one can work
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Figure 3.2: NMR data processing steps visualised as a pipeline of analysis techniques.

solely with FIDs (time domain) and perform only steps B and C. Or the analyst may

wish to work almost exclusively with frequency domain datasets and go from A to D

to E or G. These steps are thus building blocks that represent a variety of different

pipelines that can be used to analyse NMR data.

When considering different NMR data processing approaches, it should be noted

that this review is a sampling of common techniques and is not a comprehensive

review of every technique or method. Those interested in particular approaches should

conduct further research using the references herein. Further, there are a number

of excellent reviews that focus on some of these techniques and packages, such as

those by Vanhamme [31], Mierisova [32], and Poullet [33]. Those reviews focus on

techniques and approaches, and there are also many reviews describing and comparing

complete packages that implement these techniques, such as those by Izquierdo-Garcia

[34], and Spicer [35]. These reviews are more suited to those researchers looking for

comprehensive packages already created rather than those who wish to implement

their own package consisting of a desired pipeline of techniques.
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3.2 FID Inputs

This section focuses on techniques that may be applied to FID data. There are three

broad groups of techniques. The first focuses on applying techniques to FID data and

producing another set of improved FID datapoints. The vast majority of techniques

used to resolve or improve the FID are based on the principle of linear prediction.

This class of algorithms was introduced to NMR by Barkhuijsen et al in 1985 [36].

The second group of techniques transforms FID data into a set of peak parameters

using algebraic decomposition or statistical methods, and the third produces a set of

intensity datapoints using the FID data, generally through application of the Fourier

Transform (FT).

3.2.1 FID to FID

Zero-Filling

A common data processing technique to improve the digital resolution of FIDs is

zero-filling. It is desirable to collect as long of an FID as possible to ensure a high res-

olution dataset, however, since the signal decays over time any increase in the amount

of time that the FID is recorded will rapidly decrease the signal-to-noise ratio and

result in a poor quality spectrum. This challenge can be overcome by appending

zeroes to the end of the FID. This approach is non-ideal as it introduces discontinuity

when the lineshape data abruptly changes from non-zero to zero value. These discon-

tinuities introduce error in calculating areas in future steps and are termed leakage

errors [37]. An effective approach to mitigate this class of errors is to multiply the

FID with an apodisation or weighting function that emphasises the initial data points

and decays to zero. For example, an exponentially decaying function, or a linear func-

tion that begins at a non-zero intensity value and gradually decays to a zero value

across the length of the FID. Zero filling using these approaches is an effective way

to improve resolution of NMR spectra, and by minimising the latter parts of the FID

serves to also increase the signal to noise ratio of the data.
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Maximum Likelihood Reconstruction

An alternative to zero-filling is to replace the latter part of the FID with an extrap-

olation of data points based on the trend of decaying signal observed in the earlier

parts of the FID. This can improve the signal to noise ratio, and avoids the loss of

data that zero-filling the latter part of the signal includes. The downsides to this

approach are that estimating the latter part of the FID can be challenging and must

be performed as accurately as possible to ensure an improvement in resolution. This

approach is often implemented using Burg maximum entropy, or maximum entropy

extrapolation and has been applied in various packages [37, 38]. It is important

to note that nomenclature is not consistent, and there are many maximum entropy

methods that instead use model lineshapes to determine the peak parameters [39].

See 3.2.2 for a more in depth discussion of these methods.

In a broader sense, rather than just appending values to the end of the FID that

fit the earlier data points it is possible to add values to any sparsely sampled point

within the FID. Maximum likelihood reconstruction is a technique to add points

in between any sampled points in order to improve the resolution of FIDs. This

technique estimates where a point (or multiple points) should be placed in between

already sampled points, and is used to more accurately and easily quantify the spectral

peaks. It is based on the principle that sparsely sampled time domain data produces

a low resolution spectrum, and that the resolution can be improved by inserting

calculated data points into the sparse regions. This is especially important in 2D NMR

and can greatly improve multidimensional NMR data analysis. Maximum likelihood

reconstruction is also easier to implement than reconstructing the latter part of the

FID as simple linear or low order interpolation models can be more accurately used

to calculate the points.

3.2.2 FID to Parameters

Model Functions

An important technique in time domain NMR data processing is to convert the

FID into a set of mathematical parameters based on an understanding of the FID as
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a decaying exponential function. A common approach to accomplish this is to create

a model lineshape of an exponentially decaying sinusoid and minimise the squared

difference between the data and the model lineshape. This is typically accomplished

using nonlinear least squares (NLLS) optimisation, however other techniques to min-

imise the difference and obtain the maximum likelihood estimate have been explored.

As detailed rigorously in Vanhamme’s review [31] and the references therein, these

include minimising variable projection functions, using global procedures such as sim-

ulated annealing or genetic algorithms, and expectation-maximisation (EM) methods.

These model lineshape techniques are similar to the maximum likelihood reconstruc-

tion techniques described in 3.2.1 and differ mainly in application. MLR is used to

improve the FID resolution whereas creating model lineshapes is intended to deter-

mine the parameters of the FID and thus quantify the peak area. Further, creating a

model lineshape requires estimating the mathematical function behind the data and

reconstituting the entire lineshape, whereas MLR only interpolates sample points

within the FID or extrapolates the FID to future points.

The first method for reconstructing time domain data was linear prediction (LP)

[36]. A large number of reconstruction methods build on this fundamental approach

and include those techniques by Chen, Stern, Mobli, Qu, and Hyberts [38–46]. Re-

construction techniques specifically applied to multidimensional NMR spectra also

include those by Orekhov and Bostock [47, 48]. Often in multidimensional NMR, 1D

spectra are obtained for preliminary characterisation before performing the multidi-

mensional scan. Packages that use these guide-FIDs to improve the accuracy of their

model lineshape reconstruction include those by Orekhov, Bodart, and Ueda [47, 49,

50].

To improve model lineshape linear prediction and total least squares techniques.

Zhu et al. [51] also introduced an iterative quadratic maximum likelihood method.

This method is more accurate than LP or TLS methods, however it requires the

computation of a root of a polynomial. Similarly to LP this may generate numerical

issues. Another approach to improve MLR is the FMLR (fast maximum likelihood

reconstruction) algorithm. This is an iterative spectral deconvolution approach for

1D and 2D NMR spectra for the purpose of accurate signal quantification [52]. The
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algorithm is a complete package for peak determination based on fitting a model func-

tion and is a hybrid time-frequency approach. It demonstrates greater accuracy than

peak height analysis and peak integral analysis with greatly reduced operator inter-

vention. FMLR considers well-dispersed, partially dispersed, or overlapped peaks, for

treatment of overlapping peaks using regions of interest for the analysis of 1D and

2D NMR spectra.

A major limitation of model lineshapes and MLR is that each technique assumes

that the obtained data is of high enough sensitivity that predictive models of recon-

struction will be beneficial [53]. If the data points obtained are too sparse, or the

signal has a very low signal to noise ratio (SNR) then these techniques will not benefit

the analysis and quantification. Additionally, in the time domain, peaks are harder to

distinguish from the background noise and thus require techniques to accommodate

these background signals when creating and optimising the model lineshape [54].

Singular Value Decomposition

A class of statistical techniques have been proposed that assume the experimental

NMR spectrum is formed from multiple exponentially decaying sinusoids. These

methods use estimation techniques to determine the parameters of these sinusoids by

solving singular value decomposition problems. An introduction to SVD theory as

applied to NMR is given by James [37]. These algorithms include linear prediction

SVD [36], or Hankel matrix decomposition SVD [55], and provide a fast and accurate

method for processing a single spectrum. These methods are ideal for single, non

overlapping peaks, and become less reliable when there is a low SNR, or multiple

peaks overlap. Limitations of SVD methods include cases where the signal intensity

is significantly large (rapidly decaying signals). SVD methods generally fit the original

data to Lorentzian models and thus are inferior to methods that have the flexibility

to fit the data to Gaussian/Voigt lineshapes in addition to Lorentzian.

There are a variety of different SVD techniques, including early efforts, such as that

of Millhauser [56], which are effective at obtaining necessary peak parameters, how-

ever due to the lack of prior knowledge can result in infeasible results. The AMARES
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algorithm [57] was developed to address this issue by extending the VARPRO [58]

peak-fitting method to allow for a greater level of prior knowledge. AQSES [59] im-

proves on the early SVD approaches by using a combination of time domain fitting

and splines to model the baseline and uses the variable projection method to estimate

the amplitudes of the metabolite basis set, thus reducing the number of model pa-

rameters. Similarly, a variant of the package Totally Automatic Robust Quantitation

in NMR (TARQUIN) eliminates baseline errors and models the resultant signal with

a parameterised basis set using least squares projection to estimate signal amplitudes

[60].

Bayesian Methods

Bayesian methods are a prior knowledge based approach that uses statistical meth-

ods to determine the probability distribution of the parameters, assuming that the

parameters are random variables [61, 62]. In the time domain, Bayesian or other

prior knowledge based approaches can improve methods based on linear prediction or

state-space theory. Early attempts were only capable of using Lorentzian peaks (an

NMR signal with intensity conforming to a Lorentzian distribution), however meth-

ods have been introduced, such as that by Belkic et al. [63] that is based on the Padé

transform. This method can extract the correct number of resonances from the time

domain signal, however it requires a similar level of prior knowledge as SVD based

methods. The Padé approximation groups single components even when they may

have contributions from more than one biochemical source. Additionally, it struggles

with resonance amplitudes with a low SNR [64].

A significant limitation of methods based on linear prediction is that they require

an estimation of the number of signals, and thus are less suited for automated signal

processing. A different approach includes defining a model lineshape that can be

improved using statistical methods such as Maximum Likelihood (ML) or Bayesian

analysis as in section 3.2.2 and either minimising the likelihood that the signal is

incorrect (ML), or maximising the likelihood that the model is correct (Bayesian).

These two approaches have been described in detail in the review by Mobli [42] and
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these methods have been applied in various packages, for example in the ChiFit pro-

gram of Chylla and Markley [65]. An approach that incorporates Bayesian methods

in FID parameter estimation using model lineshapes is given by Matviychuk et al

[66]. Their approach produces resulting parameter estimates that are robust to both

sample noise and field inhomogeneity.

3.2.3 FID to Frequency Domain

FID to frequency is a processing step that transforms the exponentially decaying

sinusoidal FID into a frequency domain function. The Fourier Transform is used

almost exclusively to accomplish this in NMR and decomposes the FID into a set of

points that displays the intensity of each sinusoid as a function of its frequency. It is

the most common software approach in NMR as it allows for users to visualise the

atoms present as a spectra of lines. This is easier to visualise than a set of decaying

sinusoids superimposed on one another. As the FID is a set of discrete points, the

Fourier Transform is implemented using a fast Discrete Fourier Transform (DFT)

algorithm. Due to subtle mathematical differences between the DFT and FT the

frequency domain plot will need pre-processing (such as normalising the height of the

spectrum) in order to determine peak parameters or area [37].

Challenges are encountered by the DFT when the FID sample spacing is irregular.

A large amount of peak data is included in the earlier parts of the FID, and thus

it is preferable to increase the number of samples taken in the early stages of the

signal decay, then lower the frequency of sampling as the signal decays further. This

is known as non-uniform sampling. The main disadvantage of non-uniform sampling

is that it decreases the speed of the FFT. Matsuki’s technique [67] incorporates MLR

in a unique way in order to improve the speed of the FFT when using non-uniformly

sampled data. This is accomplished by using MLR to predict the values in the latter

portion of the FID and then Fourier Transforming the spectrum. This is applied in

the Spectroscopy with Integration of Frequency and Time domain (SIFT) package.

A similar technique has been applied to multidimensional NMR by Mayzel [68].
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3.3 Frequency Inputs

The second class of processes discussed in this review deals with inputs in the fre-

quency domain after transformation of the FID. Similarly to the time domain it is

possible to manipulate the data in the frequency domain in order to obtain an im-

proved frequency domain plot. For example by creating a model lineshape or through

baseline or phase error correction. It is also possible to obtain peak parameters from

the frequency data through SVD, machine learning, or other statistical techniques.

Finally, it is possible to directly calculate the area from the frequency data by inte-

grating or binning the lineshape over the desired peaks.

3.3.1 Frequency to Frequency

Creating Model Lineshapes

It is possible to create another frequency domain spectrum using a model line-

shape that fits the experimentally observed data. Creating model lineshapes using

frequency inputs is similar to the time domain methods using FID inputs as discussed

in section 3.2.2. This is a fundamental technique in NMR data processing that many

packages use in addition to the other techniques described herein (i.e the packages

created by Hao, Sokolenko, and Heinecke [69–71]). It is entirely possible, and com-

mon, for example, to create a model lineshape that matches the frequency domain

experimental data and then integrate this function to determine the concentrations

in lieu of integrating the experimental data directly. It is also possible to use the

Bayesian statistics of section 3.3.2 to incorporate prior knowledge and improve the

lineshape model before calculating the peak area. Model lineshapes are commonly

used in conjunction with SVD methods and PCA, and these techniques are necessary

in order to determine the parameters of the model lineshape.

An ideal NMR signal has a Lorentzian lineshape. Due to a variety of errors and

noise, the real portion of the frequency domain spectrum can be viewed as a sum of

either Lorentzian, Gaussian, or a mixture (Voigt) of these two lineshapes with specific

signal dependent parameters, or factors that account for the shape and non-ideality

of the peak. Thus, a model lineshape can be created that is based on one of these
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mathematical forms and then fit to the experimental NMR data. Creating these

lineshapes requires the estimation and optimisation of parameters such as lineshape

width, height, and how close the peak is to an ideal Lorentzian. Many techniques

focus on solving these parameters to create the model lineshape. After parameter

estimation, the fit is then compared to the experimental data, often with a least

squares approach [72]. A common tool to minimise the non linear sum of squares

using local optimisation is by using the Levenberg-Marquardt algorithm [73, 74].

The process is then iterated until the difference between the model lineshape and

experimental data is within acceptable bounds and the concentrations are calculated.

Creating a model lineshape is often a suitable approach because it makes the tech-

niques less susceptible to noise and often improves the quantification results [57, 59,

75], however, in the frequency domain, methods based on model functions have the

additional wrinkle that for a non Lorentzian FID a simple, exact analytical expres-

sion of Voigt and Gaussian lineshapes in the frequency domain are often not available,

although numerical approximations abound [76, 77]. Voigt lineshapes have been ap-

proximated, and the model function has been fit using the Levenberg-Marquardt

algorithm in papers by Gillies and Marshall [77, 78]. The complexity of these model

functions in the frequency domain mean they are more computationally intensive,

and thus the less parameters required, the better the results will be [79].

When creating the spectral lineshape, it is important that the algorithm used is ca-

pable of efficiently determining how many components should be included. Whether

that is choosing which metabolite profiles to use, as is the case in AQSES or QUEST,

or how many peaks to allow, as in VARPRO or AMARES. The use of a variable

projection method (as in VARPRO and AQSES, but not AMARES or QUEST) has

been beneficial when using model functions [80] as it encounters fewer problems when

experimental peak amplitudes are very small [59]. Thus, variable projection algo-

rithms are preferred particularly when there is uncertainty about which components

are present in the data. Iterative quantification methods that are not based on vari-

able projection (such as AMARES) are thus less beneficial for use with complex NMR

signals.
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The number of components in a spectrum impacts the computational efficiency

of every quantification approach, however some methods are particularly sensitive

to the number of components. In order to mitigate this weakness, techniques have

been proposed that create model lineshapes using maximum likelihood principles,

which divide the problem into independent optimisations equivalent to the number of

components in the signal [65, 81, 82]. These techniques are very similar to the time

domain parameter estimation methods described in section 3.2.2.

A continuous wavelet transform is detailed in research by Serrai [83] that iteratively

extracts each resonance from the experimental data. This approach accommodates

viewing NMR spectral peaks as either the Lorentzian and Gaussian lineshapes and

picks the lineshape that gives the best fit. The choice of lineshape can impact the

metabolite peak areas, and thus Voigt lineshapes are preferred when creating model

functions as they are a combination of Lorentzian and Gaussian peaks and thus are

able to more flexibly model the experimental data accurately [84]. Algorithms such

as KNOB-TLS [85] provide parameter estimates which can then be used as starting

values in other techniques. Metropolis Frequency-Selective (MeFreS) is a technique

based on rank minimisation of a Hankel matrix [86]. This algorithm does not do any

preprocessing, however the signal model function is directly fitted. This techniques

is compared to AMARESW and VARPRO in the package by Romano [86].

Other Frequency Domain Manipulation Techniques

Other techniques which manipulate the frequency domain data and return a modi-

fied frequency spectrum are only discussed briefly herein. For a more detailed review

of frequency domain methods the reader is directed to the review article by Mierisova

and Ala-Korpela [32]. Briefly, these techniques include correcting any discontinuities

or distortions in the baseline of the frequency spectrum. These distortions can be

introduced due to phase errors in recording the FID, or the presence of noise arte-

facts. Baseline errors can be corrected by fitting the baseline either as a linear or

low order polynomial function and normalising the spectrum using this fit. Further

errors include lineshape distortion due to magnetic resonance inhomogeneity which

are introduced due to magnetic field inhomogeneity in the NMR magnet. These will
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be discussed in more detail in chapter 4. A final class of errors often accounted for

include resolving the presence of large solvent peaks, which can block out other peaks

and are often cancelled using baseline fitting and interpolation across the peak in

question.

3.3.2 Frequency to Parameters

Frequency Domain SVD

SVD techniques in the frequency domain are similar to those in the time domain.

LCModel(TM) [74] incorporates metabolite basis sets into the fitting model. It is

effective at short echo time data and works in the frequency domain using a linear

combination of signals combined with a smoothing spline to account for baseline sig-

nals. It requires appropriate phasing and that the spectrum is in absorption mode.

Methods have also been proposed that use complex SVD to analyse spectral data de-

spite the existence of phase errors in the NMR spectrum [87, 88]. A recently developed

SVD tool incorporating both automated (SVD) and prior knowledge components used

with lineshape fitting is described in the package by Bazgir [89], and SVD techniques

as applied to solid state NMR are described in the article by Andrade [90].

Five advanced SVD techniques that are applied to specific spectral regions in the

frequency domain are described in the review by Sandgren [91]. These techniques

include filter diagonalisation [92, 93], selective frequency SELF-MODE [94], a data

filtering and decimation approach FIDO, the ARMA-modelling based technique SB-

HOYWSVD [95], and SELF-SVD [96]. Each of these techniques has advantages and

disadvantages that are described fully in Sandgren’s review [91]. SB-HOYWSVD

is the technique that requires the most input parameters, SELF-SVD is generally

the fastest method whereas filter diagonalisation gives better estimates. Generally,

these frequency selective local approaches are less computationally intensive than time

domain SVD methods. Limitations of these SVD methods specific to the frequency

domain are often due to pre-processing. For example, baseline errors are often an

issue, as the lack of prior knowledge about the peak itself can lead to inclusion or

omission of area. This is especially true when due to the broadness of the peak,

the signal is more appropriately modelled as a Gaussian rather than a Lorentzian
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lineshape [97].

Using Prior Knowledge and Databases

Bayesian statistics are an effective approach that is commonly used to estimate

model parameters [61, 62, 66]. Bayesian techniques incorporate prior knowledge into

the model, and allow for the estimation of uncertainty of results. Bayesian methods

are often used in software that focuses on peak classification [98, 99] although not

exclusively [100]. Prior knowledge often takes the form of providing the software with

a reference peak and knowledge of the metabolite in question from databases or from

simulated metabolite spectra. Likewise, many interactive software approaches use

a metabolite profile as a basis. Not all packages require a metabolite basis profile.

For example, AMARES (and the updated version AMARESW) [101] is a local op-

timisation procedure based on the Levenberg-Marquardt algorithm. It is a robust

and flexible software package that allows for the use of prior knowledge and can fit

echo signals. Packages that use metabolite basis sets/databases are AQSES [59],

and QUEST [102]. This basis can be built from simulated spectra (NMR-SCOPE

[103], GAMMA [104]), or from in vitro spectra. For example, GAMMA is used in

Young’s technique [73] to simulate the spectrum and determine information for use

in parametric spectral analysis.

As briefly discussed previously, AQSES is a software package that minimises the

sum of squares of the difference between the acquired signal and a linear combina-

tion of templates. This method overcomes baseline and other distortions, however

the templates must be pre-generated and thus requires prior information about the

expected lineshape. Further, it is impractical for long FIDs due to its computational

load. Other iterative model function fitting methods are also this computationally

expensive [59]. Recent focus on Bayesian techniques has been intense, and numerous

packages have appeared, including CRAFT [105], packages in completely automated

analysis (BQuant) [106], applied to complex 1D spectra (BATMAN) [69], and to 2D

NMR [71].
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Statistical Methods

Statistical analysis can be performed on NMR datasets in order to identify the

components of the substance being analysed and quantify the amplitude or area dif-

ferences of the peaks. Statistical approaches can be either targeted (local), analysing

only specific compounds, or untargeted (global), which evaluates all the features of

the spectrum depending on the level of prior knowledge [107]. Likewise, lineshape

data can be analysed using multivariate or univariate analysis. Multivariate methods

are generally used to visualise biological data, identify clusters, and build predictive

models, and univariate methods are used to identify metabolites and pathways that

are altered or correlated with specific biological conditions [108, 109]. The first step

in statistical analysis is generally automated, and is used to summarise, explore, and

discover clusters or trends in the data. This helps visualise the data and discover

possible outliers.

Principal component analysis (PCA) is a statistical tool that allows for the deter-

mination of variables within a dataset and distinguishes them from noise. It is an

untargeted method that is generally only used in the frequency domain. It does not

depend on previous information, and is independent of the shape of the peak [110].

This method is advantageous when dealing with large sets of unknown lineshapes, or

spectra that include a reference peak, however is not recommended for single peaks

or for sets of spectra that have been obtained under different conditions as these

variations may be statistically significant. Modern PCA NMR methods incorporate

phase, chemical shift, and utilise both the real and complex parts of the frequency

spectrum [88]. Further, the use of a similar technique, independent component anal-

ysis, has been explored [111]. Updated PCA methods, such as Group-Wise Principal

Component Analysis (GPCA) [112] have potential applications to improve automated

metabolomic algorithms.

Statistical techniques that require previous knowledge include partial least squares

(PLS) regression, partial least squares-discriminant analysis (PLS-DA) and orthogo-

nal partial least squares (OPLS). These techniques are beneficial, however can lead

to overfitting [35]. To avoid this, PLS-DA models are usually cross-validated using
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internal or external data sets [109]. Another similar class of statistical approaches

is data clustering. This technique subdivides samples into clusters of samples that

are similar in metabolic features. This includes methods such as K-Means (KM)

[113–115], Spectral Clustering (SC) [116], KODOMA [117, 118], and Self-Organising

Maps (SOM) [119, 120]. An additional statistical technique that is exclusive to NMR

is statistical correlation spectroscopy (STOCSY). STOCSY takes advantage of the

multi-collinearity of the frequency variables in a set of 1D NMR spectra to generate

a pseudo-two-dimensional NMR spectrum that displays the correlation among the

intensities of the various peaks across the whole sample. It is particularly suitable for

the identification of metabolites in complex mixtures, such as urine [35].

3.3.3 Machine Learning Techniques

Machine learning is a subset of artificial intelligence that is premised on pattern

recognition and the theory that computers can learn without being specifically pro-

grammed to perform certain tasks. It depends on training a model using large data

sets so the model learns complex patterns and relationships and is able to predict

similar relationships given another previously unseen dataset. Machine learning has

great applicability in NMR peak prediction and has been used to specify groups of

organic compounds starting with alkanes, alkenes and benzenes and later generalised

for many other classes of organic molecule. Early pioneers of using machine learning

in NMR were Reilly and Kowalski in 1971, and later, the machine learning main-

stay, the k-nearest neighbours algorithm was also introduced to NMR [121]. Other

approaches such as Support Vector Machines (SVM) [122], Random Forests (RF)

[123], and principal least regression [124] have also been implemented. An excellent

mini-review of recent ML tools in NMR has been written by Cobas [125].

A major challenge in NMR signal processing with machine learning methods is that

this technique is strongly dependent on having a suitable training set, and obtaining

a large number of NMR spectra is expensive. This can result in poor or unbalanced

training sets. A common approach to mitigate this is K-fold cross validation. K-fold

cross validation optimises the accuracy of training using this data set by dividing the

training set into K number of subsets (folds). The first fold is used as a validation
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set to test the classifier while the remaining K-1 sets are used to train the model.

Next, the second fold is used as a validation set and the remaining folds are used to

train. This is repeated K times and ensures the classifier has seen the entire training

set and validated the model across all folds. K is typically 10-30. Another approach

to mitigate the lack of suitable data for a training set is to use simulated data. Qu

et al created 40,000 simulated FIDs using a Poisson-gap method [126], and Hansen

created a simulated dataset with approximately 8,000,000 FIDs [127]. An alternative

method is bootstrapping, which generates new samples by drawing spectra from the

original sample with replacement [125].

A major benefit of machine learning methods is that they are much faster than

traditional database searching, in many cases orders of magnitude faster. Further,

databases in traditional search algorithms must be free of errors and the spectral

lineshape of the NMR data must match the database fairly precisely in order to

generate accurate results. Machine learning methods only require a suitable training

set and are better capable of generalising over the bounds of that training set, allowing

them more robustness with spectral data [125]. A critical need in NMR machine

learning approaches is the ability to disentangle overlapping peaks. This is important

because integration or binning will not produce accurate results if multiple NMR

peaks overlap. Techniques to disentangle the overlapping peaks are also important

in order to isolate and identify the spectrum of interest [125]. Recent approaches

expanding on machine learning include those using Deep Learning (DL) such as using

densely connected convolution neural networks [126]. These have been used by NMR

manufacturer Bruker, and by third party developers in peak picking applications,

[128] among other applications [129, 130].

3.3.4 Frequency to Area

Binning

Binning is a local, automated, frequency domain technique that is common in

chemometrics. It allows for simple, rapid calculation of peak area, and can overcome

chemical shift errors, however it provides a lower resolution than other methods and

is also susceptible to bin placement errors. As a technique, binning can be performed
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either without prior knowledge, or by incorporating knowledge of the spectrum into

the bin boundaries. Binning is accomplished by dividing the frequency spectrum into

small spectral regions (bins) and forming a new spectrum using maximum intensity

or the area under the curve as the intensity for each bin. This corrects small chemical

shifts in the peaks, reduces the noise of the spectrum, and reduces the number of data

points. This helps decrease the computation requirements of the algorithm, however

it reduces resolution as any information on intensity points within each bin is lost

and wrapped up in an aggregate intensity of all the points. Binning has previously

been used as a validation technique [131], and in conjunction with curve-fitting [132],

direct peak fitting, and peak alignment. Bins must only contain one real peak and not

split peaks in order to not lose information or create artefacts. Improper placement

of the bins can remove information or produce peaks with large errors. If the bins

are too wide, they may cover more than one peak, and thus each peak area will have

large errors. Another issue that arises is that if a peak has a large chemical shift, an

area of spectral intensity may be split into multiple bins, and thus added to the area

of a neighbouring peak volume. This can make statistical analysis less precise [133].

Binning techniques are divided into two categories of algorithm based on how the

bin size is determined. Rigid, or uniform binning is a traditional method that involves

dividing the spectrum into hundreds of bins of equal size that do not overlap each

other. This technique has been applied frequently in literature and has been shown

to be a suitable and effective method [134–139]. Generally, the spectral width of each

bin is between 0.01 to 0.05 ppm [140], with the most common size being 0.04 ppm,

however bins as small as 0.001 ppm have been used [141]. Rigid binning requires

careful user guidance in order to ensure that peaks are not overlapping, bin widths

are not smaller than the chemical shift, and that the peaks are not too close to the

bin boundaries. Different approaches exist to determine the size of the bins. The

most common approach is equidistant binning, where the spectrum is divided into

equal width bins with size dependant on the peak parameters. A number of packages

using equidistant binning are reviewed in the paper by Izquierdo-Garcia [34]. A less

common rigid boundary method is Gaussian binning, which still uses a single bin size,

however the bin size is determined using a Gaussian weighting algorithm [142].
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The second class of binning algorithms is based on flexible boundaries. Flexible

boundaries allow for a greater level of control over the size of the bins, allowing

for boundaries to be adjusted to include an entire spectral peak. This approach

allows algorithms to dynamically determine the size and location of each bin. These

methods include adaptive intelligent binning [143] which recursively identifies bin

edges in existing bins, dynamic adaptive binning [144] using undecimated wavelet

transforms to smooth a composite spectrum and forming bins from this composite

spectrum, [145], and an optimised bucketing algorithm [140].

Integration

Integration of the spectral peak is an automated local technique performed in the

frequency domain. It is the simplest and is the most common method of determining

peak area, however it is prone to errors from peaks that have a low SNR, it can

be challenging to determine the integration bounds, and integration is highly sensi-

tive to baseline errors [146]. Integration was the first quantification technique, and

can be performed manually although has not been since the development of reliable

computer algorithms [147]. Integration can either be performed on a model lineshape

function that approximates the experimental data, or directly on the signal [148, 149].

Fitting the experimental data prior to integration of the model function is more ac-

curate [150–153]. A benefit of this technique is that no assumptions have to be made

concerning the lineshape, and thus no prior information is required. It is important

to disentangle overlapping peaks prior to integrating, as multiple contributions will

lead to inaccuracies in area. Baseline signals that have not been addressed, and low

SNR will also stymie this method to a greater degree than in binning. Appropriate

phasing is also necessary.

Defining the integral bounds is the most important part of this process, as some

part of the tail of the peak to be integrated will be neglected, and thus the area under

the peak in every case will be underestimated. These inaccuracies will depend on the

chosen integral bounds, and can range up to 40% [147]. Because of the impact on

the accuracy of the concentration estimation, bounds should be as large as possible,

Griffiths recommends 25 times the spectral width for less than 1% error [154]. The
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peak must also contain an adequate number of points for an accurate integral. If the

experimental data does not provide this, then zero filling the FID can be performed

[154, 155].

3.4 Discussion

3.4.1 Local vs Global Methods

The lineshape can be created and optimised either by locally focusing on a spectral

region, generally limited to one peak, or globally by modelling the entire spectrum.

Global optimisation is generally performed in the time domain, and has been used in

approaches by Weber and Metzger [156, 157], however it is disadvantaged by its poor

computational efficiency. The downside to global methods are that there is some

risk of the solution converging to a local minimum, especially in multidimensional

datasets [156]. This requires starting values for each parameter to be closer to the

global optimum than is required in well positioned local techniques. Due to the poor

computational efficiency of global techniques, most quantitative methods are based

on local optimisation [58, 158]. Efforts to improve the efficiency of global methods

include incorporating heuristics and knowledge of molecules present in the spectrum

[156, 157]. Local techniques are generally applied in the frequency domain, as the

peaks and a frequency subsection of the spectrum to analyse can be selected easily.

In the literature, these local areas are sometimes termed Regions of Interest (ROIs).

Focusing on these areas alone allows for faster computation because only a subset of

data is considered, however the package must employ a type of picking algorithm to

determine which areas contain peaks and which contain noise. If the spectral regions

are not picked satisfactorily they can return local minima. These local techniques

include SVD, integration, and binning.

3.4.2 Prior Knowledge

Many packages require the user to manually set initial guess parameters for the

location of peaks or type of molecule present. The algorithm then iteratively opti-

mises the lineshape based on these guesses. Alternatively, the package may search
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a database in order to find a metabolite basis set that broadly matches the experi-

mental data and then optimise based on those parameters [57, 59, 102, 159]. These

prior knowledge based approaches to lineshape quantification can decrease the com-

putational demands of the program as the initial guesses are closer to the solution

lineshape. Using prior knowledge without incorporating a metabolite basis set can

save computational time, and is ideal for well separated peaks. Unfortunately, if peaks

are too close together, or there are unwanted peaks in the same frequency region, and

have large amplitudes, this method breaks down [64, 86]. This method can also work

in the short-echo time spectrum [160]. These issues, and the large degree of required

user interaction make this method less preferable than using a metabolite database

since more knowledge about the expected peaks, and any overlapping peaks can be

implicitly included in the model. This also makes it easy to identify the nuisance

peaks and distortions introduced in the experimental conditions.

Using a metabolite basis set is preferable as it allows for the separation of overlap-

ping peaks as long as the metabolite profiles are not overlapping themselves. This

prior knowledge brings greater accuracy [161]. When adding a metabolite basis set,

it is important to think about the acquisition parameters, such as the NMR magnetic

field, temperature, repetition time, pH, etc. The database metabolite profiles may

differ from the experimentally obtained signals because of any of these conditions.

The influence of this on the signal quantification, using QUEST, has been analysed

in Cudalbu’s research [162]. Prior knowledge also allows for decreased computational

resources, however requires user interaction for each lineshape. This is time consum-

ing and requires experienced operators to accurately determine the initial parameters.

Cavassila estimates the benefit to accuracy that the inclusion of prior knowledge, while

cumbersome for the user, allows [163].

Software approaches exist that do not rely on applying prior knowledge to the

dataset. These methods are generally termed “black box” and are usually based on

statistical analysis: SVD, PCA, or least squares. Black box is an ambiguous term,

and in the literature there are methods that claim to be Black box while incorporating

limited amounts of prior knowledge [85, 164]. Black box and machine learning meth-

ods are generally not as accurate as prior knowledge based methods [165] although
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this depends on the level of skill of the individual, or the ability of the database to

provide accurate prior knowledge. Black box methods also struggle more with large

overlapping peaks as there is no way for the software to intuitively disentangle the

overlapping peaks.

3.4.3 Time vs Frequency Domain

The model lineshape can be created and optimised either in the time domain [31]

or the frequency domain [32], as they are mathematically equivalent when the Fourier

Transform is applied. This is true in theory, however practical considerations mean

working in each domain is often performed differently [166]. Time domain model

lineshape fitting methods have been studied extensively [59, 102, 159] and in many

ways working in the time domain is desirable as there is no need to Fourier Transform

the data prior to processing, and all calculations are carried out in the same domain

as that in which the signal was obtained. These methods, however, are still not

widely adopted and software approaches that use the time domain are mostly used

for automated qualitative analysis and characterisation of compounds [167]. These

packages are thus generally only paired with lower power bench-top based NMR

equipment designed specifically for characterisation over quantification. The data

processing step in these approaches is simpler and quicker than for high resolution

NMR.

Working in the frequency domain is most commonly used for quantification as well

as peak characterisation, as this allows for manipulation and visualisation of peaks,

and thus is easier for the user to characterise the compounds. This also allows for

the focus of the quantitative analysis (if any is performed) to be on a smaller subset

of data. Frequency selective approaches must take into account overlapping or highly

distorted peaks, along with baseline and phase errors, and the processing load that

accompanies those corrections. Frequency based techniques must also use the Discrete

Fourier Transform (DFT) to convert the experimental data into the frequency domain,

and thus may in certain cases require more computational resources than time domain

approaches, although that is highly situation and package specific, as time domain

techniques break down frequencies into sinusoids in a similar way to the FFT, and
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thus are not inherently faster in every case.

3.4.4 Automation

Due to the increasing demand for high throughput and the large number of NMR

datasets used in 2D and 3D NMR experiments, fully automated packages that require

no user feedback have been explored. These approaches include using the Markov

chain Monte Carlo (MCMC) algorithm to automate metabolite quantification from

NMR spectral data [69], and an approach by Hiltunen et al. to quantify metabolites

in real time using an artificial neural network [168]. This method, when compared

to established fitting algorithms had a similar level of accuracy, and is a promising

step, as it required less user interaction than traditional fitting algorithms. Fully

automated software is often more computationally intensive than those that require

user interaction, and can be less accurate than manual fitting [169]. Despite this

limitation, automated NMR lineshape fitting has clear benefits, and the approaches

that currently exist are accurate enough for the majority of purposes.

3.4.5 Stand alone vs Integrated

Most NMR tools (i.e TopSpin, BAYESIL, AQuA, ASICS) [170] are packaged as

integrated platforms, designed to perform all the steps in NMR data processing. This

allows for close integration between processing steps, requires less work for the user

to export and import large datasets to different packages, and reduces unnecessary

duplication of steps. A slight disadvantage is that without extensive work (when the

source code is available at all) a user is unable to choose the best features of each

package to use for their datasets. For example, NMRSpec [171] is an open source

integrated software package written in MATLAB that focuses on peak preprocessing

and lineshape integration. If users wish to include statistical methods on datasets

using this package it would require finding or writing MATLAB compatible code,

parsing through the existing code to understand how the data is manipulated by the

core NMRSpec package, and then integrating the statistical analysis package into the

original package. This is arduous and requires knowledge of programming principles

and NMR data processing. A significant downside is that stand alone processes must

be adapted to account for the variety of manufacturer specific data formats for FID
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or frequency spectra. This lack of consistency greatly limits the feasibility of each

step in the NMR data processing pipeline having a separate implementation package,

and thus the vast majority of packages are an integrated platform of processing steps.

3.4.6 Identification of Potential Areas for Improvement

As discussed in section 3.4.1 qNMR tools generally use local optimisation techniques

due to the poor computational efficiency of global methods. Due to the challenges

of isolating individual signals in the time domain, and the ease of doing so in the

frequency domain, local techniques are also generally performed in the frequency

domain. Further, most techniques require prior knowledge in the form of initial

peak parameters or comparison datasets, however it is desirable to have automated

techniques due to the complexity and time required for each sample. These general

observations can then be applied to specific segments of the pipeline in order to

determine current techniques’ weaknesses and strengths in meeting those goals.

Reference deconvolution is a technique with the goal of correcting for lineshape

distortions due to magnetic resonance inhomogeneity. A reference peak is isolated in

the frequency domain and then Fourier Transformed in order to determine the FID

of that specific peak. An ideal Lorentzian peak with the sample peak parameters

(chemical shift, FWHM, and intensity) is then generated and compared to this FID.

Theoretically, the ideal Lorentzian peak multiplied by the error FID introduced due

to the magnetic resonance inhomogeneity will produce the experimental FID. Thus,

an estimate for this error lineshape is generated and the entire FID comprising each

peak has this error FID removed through division. This is an effective technique

and corrects for a variety of errors, however there are significant weaknesses in using

reference deconvolution for qNMR. The first is that it is a time domain technique,

and thus computational resources are expended in transforming the frequency domain

spectrum most qNMR software use into the correct domain and back again. Further,

this technique determines the lineshape error using a local segment of the frequency

domain and applies this correction to every peak. This concoction of local and global

techniques relies on the assumption that every error present in the reference peak is

also present in every other peak. This assumption is not always valid and a truly local
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or global technique is preferable. These deficiencies make reference deconvolution and

the correction of lineshape distortions caused by magnetic resonance inhomogeneities

a prime point within the pipeline to attempt to improve. A clearly improved algorithm

should be entirely in the frequency domain to match other qNMR algorithms, and

should either be completely local or global in order to avoid introducing local errors

to the entire spectrum.



Chapter 4

Theoretical Elements of Magnetic Resonance Inhomogeneity

4.1 Representation of Peaks

NMR peaks are represented mathematically in the time domain as a decaying sum

of sinusoidal frequencies, given by Eq. 4.1, where S0 is the maximum peak intensity,

Ω is the peak resonant frequency (chemical shift, or location on the frequency axis in

ppm), and R is the peak decay rate, which is related to the peak Full Width at Half

Maximum (FWHM).

S(t) = S0e
iΩte−Rt (4.1)

This time domain data can be transformed into the frequency domain using the

Fourier Transform to produce a typical NMR spectrum with compounds represented

as peaks. The location of specific peaks depends on their atom’s unique magnetic

resonance and its proximity to other atoms in the mixture analysed. The area of a

specific peak corresponds to the relative amount of that atom present in the sample

analysed [31, 32]. The frequency domain peak is represented mathematically either

as a Lorentzian, Gaussian, or Voigt peak as described by Eqs, 4.2, 4.3, and 4.4

respectively, where erfc is the complementary error function and Rg is the Gaussian

portion of the combined decay rate.

S(ν) = S0
1 + iz

1 + z2
z =
−2π(ν − ν0)

R
(4.2)

S(ν) = S0e
−z2erfc(−iz) z =

−2π(ν − ν0)

R
√

2
(4.3)

S(ν) = S0e
−z2erfc(−iz) z =

−2π(ν − ν0 + iR)

iRg

√
2

(4.4)

32
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It is possible to determine peak parameters using these mathematical models in both

the time and frequency domain and calculate their respective areas; thus determining

the concentration of compounds.

NMR peak quantification is traditionally performed in the frequency domain and

once the lineshape has been created, can be accomplished by either integrating be-

tween two defined points on the frequency lineshape, or by determining an average

value of the lineshape across a series of chemical shifts and then summing the ar-

eas that correspond to the lineshape peak (binning). Integration can be incredibly

accurate, with a measurement uncertainty as low as 0.15% for samples >2.5mg in

recent studies [172], although Malz’s landmark study indicates that the measurement

uncertainty can be much larger at >1.5% [173]. In order to decrease this uncertainty

as much as possible, the signal is usually processed to remove a series of common

lineshape errors before integration.

Multiple peaks in a NMR spectrum are simply additional sinusoids summed in

the time domain, and separate frequency peaks in the frequency domain. These

additional peaks are defined by unique Lorentzian/Gaussian/Voigt functions with

different peak parameters. If peaks are close enough to one another then in the

frequency domain the intensity values of those two peaks are summed together in the

experimental lineshape. Thus the area of each peak can be summed individually if

each lineshape’s peak parameters have been determined. Similarly to single peaks,

errors can be present in samples containing multiple peaks. Certain types of errors

are spatially limited within the sample and thus only impact specific peaks, however,

assuming the NMR sample is well mixed, most errors (for example magnetic resonance

inhomogeneity errors) are uniformly applied to every peak.

4.2 Magnetic Resonance Inhomogeneity

Within the NMR spectrometer is a superconducting magnet oriented such that the

sample within the NMR bore chamber is held within a constant magnetic field. This

is critical for the correct operation of the spectrometer, as the magnetic resonance

of the atoms (the Larmor frequency) of each NMR signal is proportional to the
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strength of the magnetic field. This relationship is described in Eq. 4.5 where γ is

the gyromagnetic ratio of the atom studied, and B0 is the magnetic field strength (in

Tesla)

ν0 =
−γB0

2π
(4.5)

It is important for this magnetic field to be as uniform as possible. Keeler details

the impact of minute changes to the magnetic field for proton NMR. For example,

a variation of 2.0 ∗ 10−10 in the magnetic field of a 500 MHz (11.75 T) spectrometer

will cause a 0.1 Hz variation in the Larmor frequency. Commonly, NMR spectral

lines are narrow and on the order of 1 Hz, so this is a significant distortion in the

lineshape. This degree of homogeneity is impossible with a single magnet, and modern

spectrometers include a series of small coils along each spatial axis of the bore chamber

to allow for local variations in the magnetic field. Along with these three shim coils

(X, Y, and Z) there is also a shim coil that varies quadratically across the Z axis, which

is the direction of the magnetic field B (Z2). There are also additional shim coils that

correlate with hydrogen atomic orbitals and correct for other specific inhomogeneities

in the lineshape [174]. Any inhomogeneity remaining in the magnetic field after

the sample is run will cause distortions in the time and frequency domain. These

lineshape distortions caused by magnetic resonance inhomogeneity are often termed

shim errors.

A graphical example of shim error is shown in Fig. 4.1. On the left is shown the

NMR sample tube oriented within the magnetic field B. The field varies spatially

across the Z axis of the sample such that a lower magnetic field strength is present at

one end of the sample and a higher strength is present at the other end. The change in

magnetic field strength spatially across the sample will cause a variance in the resonant

frequencies such that, while large groups of molecules resonate at the central frequency

ν0 = 8.02 ppm, these magnetic field imperfections will also cause a distribution of

frequencies resonating across the possible distribution of values. This phenomenon is

present to a small degree in every sample (hence the Lorentzian distribution commonly

observed), however, if the magnetic field fluctuates non-linearly or has significant

variance it can cause line-broadening as more and more molecules are resonating at

a different frequency to those in the central peak. Lineshape distortions caused by
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Figure 4.1: Representation of a physical sample suspended in NMR magnetic coil
(left) and a demonstration of lineshape distortions produced by magnetic field inho-
mogeneity and its impact on a molecule’s chemical shift (right).

magnetic resonance inhomogeneity vary depending on the degree and type of magnetic

field inhomogeneity. For example, there is often distortion of the main peak with the

impression of another small peak present at an offset to the central peak, however

sometimes the shim error is as subtle as a small degree of line-broadening. Similarly,

in the time domain shim error is often distinguishable from the “beats” that are

formed as the signal decays, however may also only be distinguished by an FID that

decays quickly. Some representative shim errors in the time and frequency domain

have been modelled and are shown in Fig. 4.2. Further details of the different types

of shim error are given by Chmurny [175].
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Figure 4.2: Examples of common NMR shim errors in the frequency (left) and time
(right) domains.



Chapter 5

Proposed algorithm

5.1 Implementation

The proposed algorithm has been programmed in the R language. A brief overview

of the important algorithm processes and parameters is given below, and the full

algorithm can be found in Appendix C (singlet) and D (multiplet). The complete

algorithm codebase and testing files have been uploaded to Dalhousie’s institutional

repository (Dalspace) where they are currently publicly available.

5.1.1 Singlet Software Implementation

For a single peak containing lineshape distortions due to magnetic resonance in-

homogeneity, the experimental NMR peak is represented as a summation of scaled,

shifted central peaks and the intensity of these scaled peaks is optimised to determine

the ideal initial parameters and shim factors. This technique is described mathemat-

ically by Eq. 5.1 where n represents each peak used to describe the overall lineshape

(i.e there is one central peak with height S0 at position ν0, the first error peak with

height S1 at position ν1 and so on).

S(ν) =
n∑

n=0

Sn
1 + izn
1 + z2

n

zn =
−2π(ν − νn)

R
(5.1)

When implemented, the error peaks have intensities that are fractions of the central

peak (i.e S1 = f1 ∗ S0 however this is merely for ease of use and has no impact on

the theoretical considerations. A flowchart of the error correction process is shown in

Fig. 5.1.

Within the algorithm, a set of user-defined parameters representing the peak loca-

tion, type of peak (Lorentzian or Gaussian), range of points to be considered, and

37
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Figure 5.1: Overview of the implementation process for correction of lineshape dis-
tortion produced by magnetic resonance inhomogeneity that is present across a single
NMR peak.

certain constraints is passed to the algorithm. The algorithm then opens the experi-

mental lineshape and locates the peak using these parameters. A guess is created for

initial shim error factors over the range specified by the user by creating a Lorentzian

or Gaussian peak guess for the central peak lineshape, then multiplying this guess

by an initial shim error factor and placing this peak at the location in the range of

frequency values. The algorithm increases the error factors incrementally until the

error peaks summed with the guess peaks approximates the experimental lineshape

and gives a suitable initial guess for the magnetic resonance inhomogeneity factors.

This process is shown graphically in Fig. 5.2 where Shim Peak 1 and Shim Peak 2

represent error peaks that are scaled copies of the central Lorentzian guess peak that

have been added at locations offset from the central peak. These peaks when summed

equal the experimental lineshape.

After these initial parameters have been calculated, the algorithm runs NLOPT

COBYLA (a derivative free non-linear optimisation algorithm) to optimise the shim

error factors and minimise the difference between the guess lineshape and experimen-

tal lineshape. The area of the central peak can then be summed with the areas of

the generated shim error peaks to obtain the total peak area and thus the relative

concentration of each compound in the spectrum.

5.1.2 Multiple Peaks Software Implementation

For multiple peaks generated in a single NMR experiment, an initial set of shim

correction factors are generated using an initial reference peak that the user specifies
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Figure 5.2: Theoretical frequency domain representation of a single peak containing
lineshape distortions due to magnetic resonance inhomogeneity as the summation of
multiple ideal Lorentzian peak areas with offset chemical shifts.
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Figure 5.3: Overview of the implementation process for correction of lineshape distor-
tion produced by magnetic resonance inhomogeneity that is present across multiple
NMR peaks.

within the spectrum. This peak should be a singlet that is not overlapped by any other

peaks. A common set of shim correction factors can then be applied to each peak

and optimised across all peaks in the dataset simultaneously. This is accomplished

according to the flowchart in Fig. 5.3. First, the user chooses a well-resolved peak

and determines the initial parameters such as peak location and initial range to pass

to the algorithm. The singlet algorithm detailed previously is then run on this peak

and an initial set of magnetic resonance correction parameters is determined for that

peak. These correction parameters are then applied to every peak in the spectrum

and NLOPT COBYLA is run again to optimise this one set of factors across all peaks.

Initial parameters required by the singlet and multiplet algorithms that should be

provided by the user follow. Representative values for many of these parameters as

applied to a singlet are described in section ??. Parameters that are not dependent

on the specifics of the peak have default values that generally do not need changing

between each spectrum.

A. Decay rate (R): This is a guess for the broadness of the central peak and can

be estimated using the FWHM. Each peak must be specified separately

B. Peak location (F0): The location of the central peak in ppm. This can be

estimated as the location of the peak maximum. Each peak must be specified

separately

C. Peak intensity (A): The maximum height of the central peak. Each peak must

be specified separately
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D. Range of points (upr/lwr limit): How many points from the central peak the

algorithm should consider on each side of the central point

E. Multiplet scaling factor: Magnetic resonance inhomogeneity often broadens

the lineshape peak- lowering the maximum intensity. This parameter allows

NLOPT to accommodate for any height variations imposed by the magnetic res-

onance inhomogeneity. This parameter is only required if multiple NMR peaks

are analysed. A default value of 0.75 was sufficient for each test performed in this

work

F. # of NLOPT evaluations: The number of times NLOPT should execute in its

optimisation stage. Separate values are provided for the reference peak and the

multiplet peak evaluation step. Values of 10,000 for each parameter were sufficient

for each test performed in this work

G. Factor constraints: i.e, if this factor is equal to five, NLOPT cannot guess

magnetic resonance inhomogeneity factors that are greater than five times the

initial guess. A value of 5 was sufficient for each test performed in this work

H. NLOPT tolerance: NLOPT should stop when this relative tolerance parameter

is met or exceeded. Separate values are provided for the reference peak and

the multiplet evaluation step. A value of 1.0 ∗ 10−10 was sufficient for each test

performed in this work

5.2 Testing Methodology

5.2.1 Simulated Data

As an initial validation step, the algorithm’s accuracy on a simulated dataset con-

taining a known degree of frequency error was tested. Using simulated data to validate

this algorithm is important for two reasons. First, it is an excellent test of whether

the algorithm does what it purports to do; fit lineshape distortions due to simulated

magnetic resonance inhomogeneity. This allows for the elimination of any algorithm

implementation errors on a known dataset without yet testing that the theoretical
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assumptions are valid. Second, in order to compare the area of the algorithm’s fit

and the experimental lineshape, a numerical integration method has been chosen with

the integration limits set as the upper and lower bounds of the peak considered by

the algorithm. As detailed in section 3.3.4 this introduces errors in the estimate for

the area. Comparing the actual area of each peak with the numerically integrated

area will allow for an estimate of the measurement error introduced by using numer-

ical integration. This testing was accomplished by generating a spectrum as three

Lorentzian peaks using similar peak parameters to real NMR spectra on a 500 MHz

spectrometer. Once the three initial peaks had been generated, a simulated lineshape

distortion due to magnetic resonance inhomogeneity was applied to each peak by tak-

ing the central peak and multiplying it by three scaling factors. Three scaling factors

were chosen in order to show the presence of error on both the left and right side of

the peak as well as close to the central peak itself. These error peaks were then added

to each pure Lorentzian peak at points offset to the main peak and random error

was added to the entire peak according to a normal distribution with a mean of 0,

standard deviation of 1, and an intensity multiplier of 1.0 ∗ 10−6. The resulting com-

bination of peaks is shown in Fig. 5.4 and the scaling factors and error peak location

are detailed in Table 5.1. The chosen peaks had FWHM of 1Hz ( 0.002 ppm). Three

runs of this experiment were completed with different levels of simulated error. Each

dataset consisted of 3934 points and was simulated based on a 500 MHz spectrometer.

In addition to the Lorentzian peaks, a simulated dataset was tested using Gaussian

peaks in order to ensure the algorithm could handle each type of lineshape.

Table 5.1: Initial spectral parameters for simulated NMR multiplet data.
FWHM (ppm) Relative Intensity F0 (ppm)

Peak 1 0.002 4 8.00
Peak 2 0.002 2 7.99
Peak 3 0.002 1 8.01

Once the simulated peaks had been generated, the algorithm was applied and a

guess obtained for the shim error factors and the area of each peak. The ideal area of

each peak can then be determined by summing the areas of each individual Lorentzian

peak. The ideal peak area can then be compared to the area of the lineshape produced
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Figure 5.4: Frequency domain spectrum consisting of simulated Lorentzian NMR
data with lineshape distortion due to magnetic resonance inhomogeneity added.
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Table 5.2: Magnetic resonance inhomogeneity parameters for simulated NMR multi-
plet data.

No. of pts from F0 Error factor Error factor Error factor
set 1 (Large) set 2 (Med.) set 3 (Small)

-8 0.3 0.2 0.1
-6 0.2 0.1 0.05
0 1.0 1.0 1.0
6 0.2 0.1 0.05

by the algorithm. The lineshape areas were each calculated as previously described

using numerical integration and the limits of integration set as the upper and lower

number of points defined in the initial parameters. The percent area as defined in Eq.

5.2 was then calculated where fex and ffit are locations on the fit and experimental

lineshape, and w is the width in ppm between two points on the lineshape. Three

sets of peaks were chosen in order to represent small, medium, and large amounts

of lineshape distortion due to magnetic resonance inhomogeneity. After comparing

the empirically calculated total lineshape area with the experimental numerical area,

a comparison of the experimental numerical area with the fitted numerical area has

been performed. This test allows for the determination of how much difference in

areas is introduced when creating the model lineshape and thus the degree of error

the algorithm introduces when fitting the experimental lineshape.

Percent Difference Area =
|Aex − Afit|
|Aex|

(5.2)

Aex =
∑

(fex)(w) +
fex − fex−1

2
w + ... (5.3)

Afit =
∑

(ffit)(w) +
ffit − ffit−1

2
w + ... (5.4)

5.2.2 Experimental Data - Singlet with Inserted Shim Error

Experimental NMR data consisting of 1% chloroform in deuterated acetone (Acetone-

d6) has been obtained and varying types of shim error has been manually applied.

The algorithm’s fit has been compared both qualitatively and quantitatively and the

sensitivity of results to changes in the initial parameters has been determined by
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applying robustness testing. The purpose of testing this algorithm on a real dataset

containing a single large central peak is threefold: First, it is important to validate

the algorithm’s effectiveness on a real dataset. Second, it is desirable to test the ro-

bustness of initial parameters. This requires many runs, and thus it is more efficient

to use less peaks and thus less computational resources. Third, there are a class of

errors included in complex multi-peak spectra (including overlapping peaks). These

are not types of lineshape error that this algorithm purports to solve and thus is not a

representative test. Including multiple peaks may skew the accuracy of the robustness

results.

Data has been obtained on a Bruker Avance 500 MHz NMR spectrometer and used

for algorithm testing. This NMR plot consists of a large central peak at 8.02 ppm and

two small C13 satellite peaks on either side of this central peak. These peaks are of

no interest in this analysis, and are small and far enough from the central peak that

they are not likely to impact the results of this test. Eleven runs were obtained, each

with a different shim error deliberately introduced as detailed in Table 5.3. Sample 1

was shimmed by a trained NMR technician, and the rest of the samples were obtained

by changing the specific shim value by the magnitude indicated. Only Z1 through

Z5 were considered as higher order shims do not need to be optimised before every

run. The accuracy of the area calculation between experimental and fit lineshape

was determined in order to test the algorithm’s ability to create an accurate model

lineshape. Algorithm robustness to initial parameters using one of the above samples

was also determined by varying the algorithm initial parameters. For the initial test

of area accuracy, each of these spectra were given reasonable initial guesses for each

peak parameter and the algorithm was run. The initial parameters are shown in

Table 5.5.

The plots were each checked visually to ensure results qualitatively fit the experi-

mental data, then the percent difference between the experimental and fit lineshapes

was determined according to Eq. 5.2. A series of tests were then conducted on sample

2 to determine the algorithm’s robustness to initial guesses. This was accomplished

by varying each initial parameter and determining the accuracy of the algorithm in

determining the peak area. This was also measured by comparing the percent relative
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Table 5.3: Shim error types and values introduced in singlet experimental data.
Sample Number Shim Type Magnitude

1 NA NA
2 Z +20
3 Z -20
4 Z2 +20
5 Z2 -20
6 Z3 +50
7 Z3 -50
8 Z4 +100
9 Z4 -100
10 Z5 +200
11 Z5 -200

Table 5.4: Initial peak parameters for singlet with inserted shim error.
R A F0 (ppm) Multiplet Factor

Central Peak 0.0006 393067000 8.022349 0.9
Satellite 1 0.0006 2864836 7.804503 0.9
Satellite 2 0.0006 2806424 8.23455 0.9

Table 5.5: Initial algorithm parameters for singlet with inserted shim error.
Parameter Value

NLOPT LN COBYLA
Xtolrel 1E-10

Maxeval 10,000
Upper limit 60
Lower limit 60
Fconstraint 5

difference in peak area. Each of the user defined initial parameters outlined in Table

5.6 was tested and the results plotted as a function of the input guesses. Each range

was chosen to represent plausible cases of user inputted data. A reasonably obser-

vant analyst should be able to obtain more accurate guesses than this range allows,

so some margin of error has been included, however completely unreasonable guesses

have not been considered.
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Table 5.6: Initial robustness testing parameters for singlet with inserted shim error.
Lower Upper Increment Runs

R 0.0004 0.0154 0.0003 50
F0 8.02 8.03 0.0005 20

Fconstraint 1 21 1 20
Maxeval 100 2600 100 25

upr/lwr limits 5 105 2 50
Intensity (A) 10000001 460000001 10000000 45

5.2.3 Experimental Data - Multiple Compound Spectrum

A larger set of experimental data consisting of a mixture of common metabolomic

components was then prepared and NMR spectra obtained. Testing the algorithm

on a set of data with multiple peaks is important as a key benefit of this algorithm

is that it implements a global consensus fit across all peaks. This consensus fit needs

to be tested to ensure the algorithm supports analysis of multiple peaks. The test

was performed on two sets of compounds consisting of alanine, glycine, and ethanol

dissolved in water, and alanine, glycine, ethanol, and sucrose dissolved in water. A

representative NMR plot of Alanine, glycine, and ethanol in water is shown in Fig.

5.5. The two large groupings of peaks at 1.3 and 3.7 ppm represent the ethanol, with

the amino acids centred around 3.8 ppm, 3.5 ppm, and 1.5 ppm. Fig. 5.6 shows the

sample containing alanine, glycine, ethanol, and sucrose. Sucrose is the large peak

located at 4.8 ppm. Reasonable estimates for peak initial parameters were provided

to the algorithm and can be found in Appendix A.

There were 30+ discernible peaks in these mixtures with their intensities ranging

from less than 100,000 to sucrose’s maximum of 500 million. These vastly different

scales represent the different concentrations of each element in the mixture. After

testing the algorithm on all of the peaks to determine the qualitative accuracy of the

fit, the percent area difference was calculated for each peak in order to determine the

quantitative accuracy. Each mixture sample was tested to ensure the algorithm could

accurately determine the concentrations of these compounds. These specific amino

acid/ethanol/sucrose mixture were chosen as complex mixtures are often biological

in nature, and thus amino acids with multiplets that are close to one another are
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Figure 5.5: Experimental data consisting of the NMR spectrum of alanine (3.8, 1.5
ppm), glycine (3.5 ppm), and ethanol (1.3, 3.7 ppm) in water in the frequency domain.

Figure 5.6: Experimental data consisting of the NMR spectrum of alanine (3.8, 1.5
ppm), glycine (3.5 ppm), ethanol (1.3, 3.7 ppm), and sucrose (4.8 ppm) in water in
the frequency domain.
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excellent test candidates. Further, ethanol and sucrose are common organic molecules

found in biological mixtures.

5.2.4 Reference Deconvolution Comparison

As a final test, the accuracy of this algorithm has been compared to the Lorentzian

area calculated using reference deconvolution. This is an important test as a key

benefit of this algorithm is that it creates a global consensus fit for error across all

peaks in the spectrum. Reference deconvolution only applies the error obtained from

one peak to all other peaks and thus this may include extraneous error in each peak’s

fit. Thus, it should be determined whether the global consensus fit improves the

accuracy of the areas obtained. The open source reference deconvolution software

package MetaboDecon1D [176] was applied to the sample containing alanine, glycine,

and ethanol in water from the mixtures in section 5.2.3. Default package parameters

were used, and no software pre-processing of the mixture data was performed before

applying the package. This package fits spectra as a series of Lorentzian peaks con-

voluted with a single shim error parameter determined from a reference peak. The

resulting peaks were then integrated using the same numerical method as for the

mixture data described previously, and the percent area differences compared with

the previously obtained mixture values in section 5.2.3. The reference deconvolution

package creates a single ideal Lorentzian lineshape that contains the area for each

peak, whereas the proposed algorithm creates a sum of a series of peaks. As such, the

reference deconvolution lineshape will be slightly broader, and in order to ensure a

similar area comparison between peaks, the integration bounds are 30 points on either

side of the peak as opposed to 15 used in section 5.2.3. This should not introduce

any extra error into the reference deconvolution area calculation as there is no noise

in the ideal Lorentzian lineshape produced by MetaboDecon1D and thus increasing

the bounds is acceptable.



Chapter 6

Results & Discussion

6.1 Simulated Data

Qualitatively from Fig. 6.1 it is clear that the proposed algorithm gives an excellent

fit for each of the simulated lineshape distortions. Further, it is clear that 10 points

on either side of the peak, giving a range of 8.0214 to 8.0185 ppm are sufficient to

capture the majority of the peak’s area. A comparison of the percent error between the

numerically integrated area and the actual lineshape area of 1.6-4.5% reinforces this

notion and confirms that numerical integration gives an adequate approximation of

the empirically determined lineshape area. Three samples are insufficient to determine

statistical significance, however it is reasonable to conclude that any difference in

algorithm approaches less than the mean of these values (<3%) could be due to

errors introduced by using numerical integration rather than the difference between

the algorithm’s performance itself. This will become important only when comparing

the algorithm to reference deconvolution in section 6.5. It should be noted that

the measurement error was on the upper end of the range on the largest inserted

error peak. This is likely due to the broadening effect of the magnetic resonance

inhomogeneity on the lineshape, although 4.5% error is still a reasonable value when

compared to the 10%+ error detailed in section 3.3.4, however, it is still clearly higher

than the 1.5% error indicated by Malz [173]

Quantitatively, calculation of the percent area differences between the simulated

experimental and the fit data yields impressive results that are shown in Table 6.1.

These validate the qualitative observations that this algorithm creates an excellent

fit for the simulated data and is able to accurately incorporate the simulated error.

It should be noted that when the algorithm was tested using simulated Gaussian

peaks, the accuracy of the algorithm appeared to depend on the degree of frequency

50
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Figure 6.1: Qualitative comparison of a simulated NMR spectrum with introduced
lineshape distortions and the results of the algorithm fitting that spectrum.
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Table 6.1: Area accuracy results for simulated NMR data comparison.
% Diff Area

Small 0.097309
Med 0.255327
Large 0.231969

distortion error present. The algorithm had greater accuracy when large extraneous

peaks added to the central peak (0.178%, 0.12%, and 0.007% difference area for small,

medium, and large error presence) and has approximately 30 times lower accuracy

when exposed to the dataset with the lowest degree of error. It is important, how-

ever, to keep these values in perspective. 0.178% difference in lineshape areas is still

incredibly accurate, despite being 30 times greater than the large error dataset at

0.007% error. This trend of decreasing accuracy with smaller errors was not present

in the Lorentzian samples, and is likely due to the broadness of the Gaussian peaks.

It is also important to insert a caveat. This test validates the algorithm only on

a dataset that was created using the assumptions inherent in the algorithm itself,

and thus the only conclusion that can be drawn from this test is that the algorithm

accomplishes its designed purpose. It is able to accurately determine the area of a peak

that has been summed with other error peaks. In order to validate the algorithm’s

inherent assumptions, a set of experimental data with real frequency distortion error

is required.

6.2 Experimental Data - Singlet with Inserted Shim Error

The first task when using a real experimental dataset with varying types of shim

error is to ensure the algorithm can fit each type of error. The results of this test

are shown in Fig. 6.2. It is clear that this algorithm is capable of correcting for Z1

through Z5 error and fitting the experimental lineshape with very accurate results.

Quantifying these results, Table 6.2 gives the percent area difference and the lineshape

difference for the large central peak in each spectrum. Again, it is clear that the

algorithm is able to accurately fit an experimental lineshape with varying degrees of

shim error as the percent difference between the model lineshape and experimental
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Figure 6.2: Qualitative comparison of NMR singlet spectrum with introduced line-
shape distortions and the results of the algorithm fitting that spectrum.
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Table 6.2: Area accuracy results for experimental NMR singlet data comparison.
Sample % Diff Area

2 0.044721
3 0.065938
4 0.051199
5 0.100722
6 0.050139
7 0.068681
8 0.059250
9 0.041514
10 0.157828
11 0.097364

lineshape in all cases is below 0.16%. Qualitatively and quantitatively, the accuracy

of this algorithm for determining the area of a large central peak in a compound with

a large central peak and two small satellite peaks is high. Each of these datasets was

the same fundamental compound and so the same initial parameters were used. This

indicates that the type of shim error does not materially affect the initial parameters,

and that this algorithm is capable of broad application to various types of shim error.

While the central peak area is accurate when compared to the experimental data,

the same is not true for the small satellite peaks. These peaks, shown in Fig. 6.3 are

of no interest in this analysis, and the large differences in the two lineshapes is almost

certainly due to the large baseline distortion and low signal to noise ratio (SNR)

present. It should be noted that despite the large errors present when considering

these small peaks, this algorithm is still able to determine the presence of lineshape

distortions due to lineshape inhomogeneity error and the consensus fit is largely able to

capture the inhomogeneity. Peaks of this size with this degree of baseline error/SNR

should not be considered in quantitative analysis.

6.3 Robustness Results

It was found that varying the factor constraint input from 1 to 20 had negligible

effect on the area accuracy (0.072% to 0.026% area difference). Further, there was

no trend in the data and as such the plot of these results have been omitted with
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Figure 6.3: Qualitative comparison of NMR sidebands and the results of the algorithm
fitting those sidebands.
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the sole remark that varying this factor does not appear to impact results. This is

intuitive, as this parameter is a simple constraint on error factors going out of bounds.

A reasonable value of between 5-10 should suffice for most cases. Greater loosening of

this factor may be required if the initial guesses are vastly different from the results,

and a smaller factor may decrease the number of runs, or increase the accuracy of

the algorithm as there are less values NLOPT will check. Further omitted is the

plot of area accuracy versus the number of NLOPT evaluations initial parameter.

As is expected, increasing the number of evaluations gives greater accuracy along an

exponentially decaying curve. After approximately 10,000 samples, the accuracy does

not improve enough to warrant the increased time required.

Fig. 6.4 shows the impact on area accuracy when varying the decay rate/FWHM

guess. It is clear that at FWHM values below 0.0015 ppm (0.75 Hz on a 500MHz

spectrometer) the accuracy is acceptable, then decreases slightly before a discernible

improvement up to 0.0038 ppm (1.88 Hz) and increases again to unsuitable levels.

It is likely that below 0.75 Hz, the algorithm is underestimating the central peak

width and making up for that by including extra correction peaks. In terms of

calculating area this is not a large flaw, however it does serve to increase the number

of error peaks, and thus the computation time required to calculate. Further, when

implementing consensus fit for multiple peaks, if FWHM is too small (and thus each

peak is described by numerous error peaks) then it will become more challenging to

develop a consensus fit as the reference peak is likely to have been overfit and had

errors that are unique to that peak corrected for rather than solely magnetic resonance

inhomogeneity errors. From visual inspection of the spectrum, the ideal FWHM is

approximately 1.5-2.5 Hz which correlates well with the dip observed between 1.4

and 1.88 Hz, although there is very little room for error in estimation of FWHM. A

more detailed analysis of these results indicate that if the algorithm is given values of

FWHM that are too large, upon optimisation a single large Lorentzian peak is formed

rather than a series of peaks representing the different regions of the error peak. Thus

it is preferable to slightly underestimate this factor as opposed to overestimating

it, however a reasonable guess for FWHM can often be determined with sufficient

accuracy.
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Figure 6.4: Area accuracies and lineshape fit robustness testing results of varying
FWHM initial guess parameter.

It is important to note that alongside the values for the percent difference in areas

calculated from the algorithm, the difference in lineshapes is also presented. This

represents the difference between the sum of each intensity value for the fit and

experimental lineshape across the upper and lower integral bounds. This evaluation

metric has been included as another tool to assess the degree of difference between

the two lineshapes because in certain edge cases when testing, it was found that the

percent difference in areas metric failed as a measure of fit. For example, when testing

the robustness of the specified range of considered points (Fig. 6.7), the algorithm

would optimise noise lineshapes and thus the area difference would be small, however

the total lineshape difference reveals increases in the absolute difference in lineshapes,

thus making this a less optimal solution overall. In most cases, however, there is very

little variation between the trends observed using both measures.

Varying the peak position initial guess gives Fig. 6.5, and shows that the algo-

rithm is sensitive to improper initial guesses for the initial position. Further, higher

initial guesses appear to have a greater impact on the accuracy of the algorithm,

although that region is overrepresented in this test and may not hold true uniformly.

Regardless, it is clear that the algorithm requires a guess between +/- 0.001 ppm

of the actual lineshape position. This is a simple parameter to accurately determine
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Figure 6.5: Area accuracies and lineshape fit robustness testing results of varying
peak position (F0) initial guess parameter.

in many cases and this level of tolerance should be attainable in the vast majority

of spectra. Rounding out the peak parameters, varying peak intensity initial guess

yielded increasing accuracy the closer the guess was to the actual peak height. As

shown in Fig. 6.6 it is clear that any guess between 65% and 130% of the actual

peak height gives suitable accuracies and that this parameter is the least sensitive to

variations of the three initial peak parameters tested.

Varying the range of points considered from either side of the peak maximum gives

Fig. 6.7. It is clear that closer to the central peak, the accuracies are unacceptable.

This makes sense as the bounds need to be wide enough to account for the majority

of the peaks area. A suitable number of points appears to be 60. This corresponds

to 0.009 ppm or 4.5 Hz on either side of the central peak. It is interesting to note

that the accuracy decreases when more points are added. This is likely due to the

inclusion of more of the baseline and thus more error which is incorrectly fitted as

lineshape distortion due to magnetic resonance inhomogeneity.
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Figure 6.6: Area accuracies and lineshape fit robustness testing results of varying
peak height/intensity initial guess parameter.

Figure 6.7: Area accuracies and lineshape fit robustness testing results of varying
upper/lower bounds initial guess parameter.
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Figure 6.8: Qualitative comparison of an experimental multiple peak NMR spec-
trum containing alanine, glycine, and ethanol in water with lineshape distortions due
to magnetic resonance inhomogeneity and the results of the algorithm fitting that
spectrum.

6.4 Experimental Data - Multiple Compound spectrum

The algorithm has been tested on a spectrum containing alanine, glycine, and

ethanol in water, and the plot showing the spectrum fitted with the algorithm is

given in Fig. 6.8. It is clear from this plot that the algorithm was able to determine

the location of the ethanol peaks, however due to the different scales, it is only possible

to determine the qualitative fit of the amino acid peaks with a subset of this spectrum

shown in Fig. 6.9. Focusing on these smaller peaks validates the algorithms ability

to qualitatively fit these smaller peaks.

A subsection of this plot focusing on the ethanol grouping around 1.17 ppm is shown

in Fig. 6.10. The ethanol peak has clearly been fit adequately, and the percent area

difference of 8.27-8.85% confirms this. The other ethanol grouping centred on 3.64

ppm had percent area differences of 6.14-18.05% as shown in Table 6.3. These errors

are large considering the size of the peaks, and the understanding that smaller peaks

will naturally have larger percent area differences, however in combination with the

qualitative fit these errors are acceptable. Focusing on the smaller peaks reveals

greater accuracy (0.02-7.86%) with the notable exception of the glycine peak at 3.545
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Figure 6.9: Qualitative comparison displaying the lower intensity values of an ex-
perimental multiple peak NMR spectrum containing alanine, glycine, and ethanol in
water with lineshape distortions due to magnetic resonance inhomogeneity and the
results of the algorithm fitting that spectrum.

ppm which had an error of 32.23%. This unusually large error appears to be specific

to glycine as Fig. 6.11 clearly shows the shape of the glycine peak is different to all

other peaks. It is possible another peak is very close to the glycine peak and thus is

obfuscating these results. Note that in this run, all 30 observed peaks were considered,

however only the important amino acid/organic molecule peaks are displayed in Table

6.3. For full results see Appendix B.

It is important to stress that in all likelihood, the area errors observed when ap-

plying this algorithm are likely due to the presence of other errors such as phase

or baseline error. This algorithm does not correct for other kinds of errors in the

peak. As an example of this, when applied to the sample containing alanine, glycine,

ethanol, and sucrose, the algorithm failed to converge when tested as there was in-

tense phase error present in the sample (Fig. 6.12). This algorithm is designed to

target lineshape distortion due to magnetic resonance inhomogeneity and be used as

a complementary technique to other lineshape improvement methods, and as such
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Figure 6.10: Qualitative comparison displaying the ethanol peaks portion of an ex-
perimental multiple peak NMR spectrum containing alanine, glycine, and ethanol in
water with lineshape distortions due to magnetic resonance inhomogeneity and the
results of the algorithm fitting that spectrum.

Figure 6.11: Qualitative comparison displaying the glycine peaks portion of an ex-
perimental multiple peak NMR spectrum containing alanine, glycine, and ethanol in
water with lineshape distortions due to magnetic resonance inhomogeneity and the
results of the algorithm fitting that spectrum.
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Table 6.3: Truncated area accuracy results for experimental NMR multiplet data
comparison.

Peak Chemical Shift (ppm) % Diff Area
1 (Alanine) 3.8 7.862609
2 (Alanine) 3.79 0.618946
3 (Alanine) 3.78 2.232451
5 (Alanine) 3.75 1.730346
6 (Glycine) 3.54 32.232686

11 (Ethanol) 3.66 6.278110
12 (Ethanol) 3.62 18.047230
13 (Ethanol) 3.65 6.143892
14 (Ethanol) 3.63 16.101096
16 (Alanine) 1.47 0.579300
17 (Alanine) 1.46 0.024619
24 (Ethanol) 1.18 8.634065
25 (Ethanol) 1.17 8.270839
26 (Ethanol) 1.16 8.850864

is unsuitable when applied as a freestanding algorithm on spectra containing other

types of error.

6.5 Reference Deconvolution Testing

A plot of the results of applying MetaboDecon1D to Sample A is shown in Fig.

6.13. Qualitatively, it appears the reference deconvolution package is able to find and

fit each peak. A subset of peaks showing the ethanol cluster at 1.17 ppm and the

alanine peaks at 3.5 - 3.8 ppm is shown in Fig. 6.14. Table 6.4 details the percent

difference in areas obtained using reference deconvolution, and compares them to the

area errors obtained using the proposed algorithm.

The differences between area when calculated using reference deconvolution is

higher than when calculated using the proposed algorithm for the majority of peaks.

Using the proposed algorithm yields improvements from 25.7% for the glycine peak

at 3.53 ppm to a low of 0.86% for the ethanol peak at 1.18 ppm (Table 6.4). The ma-

jority of these improvements were in the high single digits to low double digits. The

notable exceptions to this observed improvement was the 8.64% decrease in accuracy

obtained when applied to the ethanol peak at 1.16 ppm and 2.24% decrease on the
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Figure 6.12: NMR lineshape of a spectrum containing alanine, glycine, ethanol, and
sucrose demonstrating the presence of phase error in the sample.

Figure 6.13: Qualitative comparison of an experimental multiple peak NMR spectrum
containing alanine, glycine, and ethanol in water with lineshape distortions due to
magnetic resonance inhomogeneity and the results of the reference deconvolution
package MetaboDecon1D fitting that spectrum.
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Figure 6.14: Qualitative comparison displaying amino acid peaks from an experimen-
tal multiple peak NMR spectrum containing alanine, glycine, and ethanol in water
with lineshape distortions due to magnetic resonance inhomogeneity and the results
of the reference deconvolution package MetaboDecon1D fitting that spectrum.
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Table 6.4: Area accuracy results for reference deconvolution and proposed algorithm
on NMR multiplet data and a comparison of the difference in area accuracy results.

Peak Ref. Deconvolution Prop. Algorithm Difference
% Diff Area % Diff Area

1 (Alanine @ 3.8 ppm) 31.501443 7.862609 23.638834
2 (Alanine @ 3.79 ppm) 15.932152 0.618946 15.313206
3 (Alanine @ 3.77 ppm) 10.544190 2.232451 8.311739
6 (Alanine @ 3.75 ppm) 5.472757 1.730346 3.742411
7 (Glycine @ 3.55 ppm) 57.931141 32.232686 25.698455

11 (Ethanol @ 3.66 ppm) 15.686288 6.278110 9.408178
12 (Ethanol @ 3.62 ppm) 19.511574 18.047230 1.464344
13 (Ethanol @ 3.65 ppm) 15.035421 6.143892 8.891529
14 (Ethanol @ 3.63 ppm) 13.859835 16.101096 -2.241261
16 (Alanine @ 1.47 ppm) 10.934718 0.579300 10.355418
17 (Alanine @ 1.45 ppm) 13.462582 0.024619 13.437963
25 (Ethanol @ 1.18 ppm) 9.489721 8.634065 0.855636
26 (Ethanol @ 1.17 ppm) 15.830813 8.270839 7.595997
27 (Ethanol @ 1.16 ppm) 0.208868 8.850864 -8.641996

ethanol peak at 3.63 ppm. All ethanol peaks have lower improvement in accuracy

than by applying reference deconvolution. This is likely due to the broadness of the

peaks impacting both the accuracy of the algorithm, and the increased measurement

uncertainty observed when analysing broader peaks. This algorithm shows a differ-

ence of greater than +/-3% over reference deconvolution in 11 of 14 samples, which

suggests that the differences between the results obtained by each algorithm are due

to the algorithm’s inherent capabilities and not due to measurement error introduced

by using numerical integration. Overall then, these results demonstrate that this al-

gorithm outperforms reference deconvolution for the vast majority of peaks analysed

and thus accomplishes its goals.

Another important observation is that this compares the worst possible case for

both algorithms. First, no parameters have been optimised and tweaked to ensure

either algorithm has excellent initial guesses. Second, only rudimentary phase and

baseline correction has been applied to the experimental dataset, and more work

could be done to clean up artefacts in the spectrum in order to improve the algo-

rithms effectiveness. The importance of correcting these errors before focusing on
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lineshape distortions due to magnetic field inhomogeneity cannot be understated.

Simply stated- the presence of phase error, baseline error, and overlapping peaks are

not representative of lineshape distortions due to magnetic field inhomogeneity and

will skew results unfavourably. In general, however, this test demonstrates that for

the amino acids studied, and for most of the ethanol peaks, the proposed algorithm

demonstrates improved accuracy over reference deconvolution in creating a model fit

for the experimental lineshape.



Chapter 7

Conclusion

In this text, a literature review of available NMR spectroscopy data processing

techniques has been performed. This review focuses on techniques and categorises

the approaches according to a data pipeline of processes applied to different types

of data. The review describes techniques in the time and frequency domain, model

lineshape based, statistically based, stand alone vs integrated, amongst other param-

eters. This review highlights the need for extensive data processing of NMR spectra

in order to minimise experimental run time (and associated costs) and to correct for

types of errors commonly present, including phase error, baseline error, and lineshape

distortions produced by magnetic resonance inhomogeneity. Magnetic resonance in-

homogeneity is singled out as a potential opportunity for algorithm improvements due

to the traditional technique (reference deconvolution) having the undesirable charac-

teristics of being time domain based, and a mixture of local/global methods that can

propagate local errors across every peak. In chapter 4 the fundamentals of magnetic

resonance inhomogeneity are set forth and important concepts are described. An

algorithm is proposed that identifies and corrects for the presence of lineshape distor-

tion due to magnetic resonance inhomogeneity by representing the experimental peak

in the frequency domain as a summation of a central Lorentzian peak with multiple

error peaks. The error peaks are generated as scaled copies of the central peak and a

non-linear optimisation algorithm is applied to minimise the sum of squares between

the generated summation of peaks and the experimental peak. This conceptualisa-

tion is generalised across all peaks in the spectrum and the algorithm seeks a set of

consensus global factors that fit each peak in the spectrum; thus creating a global,

frequency-domain based algorithm that overcomes reference deconvolution’s primary

weaknesses.

68
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This approach is effective in determining lineshape distortion due to magnetic reso-

nance inhomogeneity in simulated and experimental error. When applied to simulated

data, the measurement error introduced by using numerical integration was between

1.6 and 4.5%, and when the fit lineshape was compared to the simulated lineshape

the percent difference in areas was 0.067 to 0.232%. These are excellent results and

qualitative analysis of the peaks confirms that this algorithm fits simulated data well.

Likewise, when applied to a singlet with inserted shim error, the algorithm was able

to effectively fit shim error from Z1 to Z5. When quantitatively tested on each type of

shim error, the percent area difference between the fit and experimental peak ranged

from 0.042 to 0.16%. This validates the applicability of the proposed algorithm across

a variety of different types of shim error. Further, it was found that when applied

to the peak with Z1 shim error, the algorithm is robust to an acceptable range of

initial guesses. The least tolerant initial guess was the peak initial chemical shift

parameter which required a value of +/- 0.001 ppm from the actual peak lineshape

central position. This parameter is, however, simple to accurately guess. It was found

that the factor constraint variable had no practical impact on the fit (0.072-0.026%

area difference) and that a value of 5-10 is suitable for this parameter in most cases.

Further, increasing the maximum number of NLOPT evaluations is only beneficial

until 10,000 iterations. For the FWHM initial guess it is important to choose a guess

close to the observed FWHM or slightly lower (1.4-1.88 Hz for an actual FWHM of

1.5-2.5 Hz) and that guesses that are too large will detrimentally affect the algorithm.

Similarly, the guess for the peak height must be appropriate to within 65 and 130%

of the actual peak height. Finally, a choice for the number of points the algorithm

considers must take into account as much lineshape area as possible without including

too much noisy baseline. This is simple to estimate, and for this compound was 60

points or 4.5 Hz from either side of the central peak. Overall this is a robust algorithm

that is able to accommodate a variety of reasonable initial guesses.

When this algorithm was tested on a complex metabolomic spectrum containing

alanine, glycine, and ethanol in water it demonstrated an area accuracy of 0.025 to

18.04% with the notable outlier of glycine (32.23%) likely corresponding to a heavily

overlapped peak. These values have been qualitatively shown to be accurate and
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are satisfactory considering the lack of proper peak pre-processing. When this tech-

nique was compared with reference deconvolution it was found that the proposed

algorithm generally outperformed reference deconvolution by 0.85% to 25.7% with

the notable exception of two ethanol peaks which the algorithm fit less accurately

than reference deconvolution by 8.6 and 2.2%. This technique appears to outperform

reference deconvolution when applied to smaller peaks, and performs at a similar or

slightly decreased level when compared to large ethanol peaks. This may be due

to the measurement error introduced by analysing large broad peaks, however the

outperformance of the proposed algorithm was greater than the estimate for mea-

surement error in 11 of 14 peaks which suggests measurement error is not a cause of

the algorithm’s outperformance compared to reference deconvolution. The proposed

algorithm failed to converge when tested on a sample containing the previous amino

acids, ethanol, and sucrose due to the presence of large phase error.

The technique outlined and applied herein should be incorporated into a software

package as part of a pre-processing step for NMR spectra. It accurately and efficiently

identifies and corrects for the presence of lineshape distortions produced by magnetic

resonance inhomogeneity and can be targeted in the frequency domain. Further

testing of this algorithm within a package of pre-processing steps should be performed

to ensure that the algorithm performs well with other steps added. The method should

also be investigated further to possibly incorporate prior knowledge (for example a

guess for the shape of the magnetic field lineshape) that might serve to improve the

algorithm. A rigorous robustness study should be performed on complex metabolomic

data and the results analysed to ensure this algorithm is suitable when installed in a

package of correction tools and applied to complex spectra.



Appendix A

Initial Parameters for Multiple Compound Spectrum

Table A.1: Initial peak parameters for multiplet spectrum with lineshape inhomo-
geneity.

R A F0 (ppm) Multiplet Factor
Central Peak .0005 6025735 -.000214 0.75

2 .0005 219267 3.804445 0.75
3 .0005 691724 3.789785 0.75
4 .0005 736521 3.775584 0.75
5 .0005 373554 3.76184 0.75
6 .0005 323486 3.751762 0.75
7 .0005 2705812 3.535531 0.75
8 .0005 323536 3.518122 0.75
9 .0005 724331 3.50392 0.75
10 .0005 723300 3.489719 0.75
11 .0005 259627 3.475517 0.75
12 .0005 39846370 3.663345 0.75
13 .0005 44599630 3.621198 0.75
14 .0005 120040000 3.649143 0.75
15 .0005 123982000 3.634942 0.75
16 .0005 334634 1.750249 0.75
17 .0005 2315054 1.47034 0.75
18 .0005 2268221 1.45568 0.75
19 .0005 862064 1.307709 0.75
20 .0005 1679096 1.293507 0.75
21 .0005 865020 1.279305 0.75
22 .0005 912225 1.056202 0.75
23 .0005 1712931 1.042001 0.75
24 .0005 901254 1.028257 0.75
25 .0005 156634800 1.184017 0.75
26 .0005 296451300 1.169815 0.75
27 .0005 150543700 1.155614 0.75
28 .0005 351144 0.6205334 0.75
29 .0005 349886 0.6374837 0.75
30 .0005 343131 0.6035831 0.75
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Table A.2: Initial algorithm parameters for multiplet spectrum with lineshape inho-
mogeneity.

Parameter Value
NLOPT LN COBYLA
Xtolrel 1E-10

Maxeval 10,000
Upper limit 15
Lower limit 15
Fconstraint 5



Appendix B

Full Results for Multiplet Compound Spectrum

Table B.1: Area accuracy results for experimental NMR multiplet data comparison.
Peak Chemical Shift (ppm) % Diff Area

1 (Alanine) 3.8 7.862609
2 (Alanine) 3.79 0.618946
3 (Alanine) 3.78 2.232451

4 3.76 1.618198
5 (Alanine) 3.75 1.730346
6 (Glycine) 3.54 32.232686

7 3.52 1.766067
8 3.5 20.165006
9 3.49 11.330895
10 3.48 15.706083

11 (Ethanol) 3.66 6.278110
12 (Ethanol) 3.62 18.047230
13 (Ethanol) 3.65 6.143892
14 (Ethanol) 3.63 16.101096

15 1.75 0.070520
16 (Alanine) 1.47 0.579300
17 (Alanine) 1.46 0.024619

18 1.31 37.209537
19 1.3 0.333908
20 1.28 20.654302
21 1.06 6.538963
22 1.04 25.264942
23 1.02 26.308041

24 (Ethanol) 1.18 8.634065
25 (Ethanol) 1.17 8.270839
26 (Ethanol) 1.16 8.850864

27 .62 8.545717
28 .64 74.967863
29 .6 4.427567
30 0 82.466954
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Appendix C

Singlet Algorithm - Complete R Package

#============================================================

# MISC Functions & Required Libraries

#============================================================

# Required Libraries

library(rnmrfit)

library(plotly)

library(’nloptr ’)

library(RcppFaddeeva)

# generates a lorentzian peak along f using the decay rate

(R), height (A), and position (F0)

lorentz <- function(R, A, F0 , f){

# This function generates a set of intensity points along

the frequency axis (f) that correspond to a Lorentzian

peak of height (A), decay rate (R), and centred at

peak position (F0)

z <- -2*pi*(f - F0) / R

ya <- A * complex(r = 1, i = z)/(1+z^2)

return(ya)

}

# generates a gaussian peak along f using the decay rate (R),

height (A), and position (F0)

gauss <- function(R, A, F0, f){

# This function generates a set of intensity points along

the frequency axis (f) that correspond to a Gaussian

peak of height (A), decay rate (R), and centred at peak

position (F0)
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z <- -2*pi*(f - F0) / (R * sqrt (2))

ya <- A * Faddeeva_w(z)

return(ya)

}

# opens nmr data using rnmrfit

use_rnmrfit <- function(nmrdata1 , peaks){

# generating scaffold and fitting

scaffold <- nmrscaffold_1d(peaks , nmrdata1)

fit <- nmrfit_1d(scaffold)

d <- processed(nmrdata(fit))

d <- d[order(d$direct.shift), ]

baseline <- calc_baseline(fit , d$direct.shift)

all.fits <- calc_lineshape(fit , d$direct.shift , FALSE)

sum.fits <- aggregate(all.fits$intensity ,

by = list(all.fits$direct.shift), sum)

colnames(sum.fits) <- c(’direct.shift ’, ’intensity ’)

sum.fits$intensity <- sum.fits$intensity + baseline

sum.fits$direct.shift <- rev(sum.fits$direct.shift)

sum.fits$intensity <- rev(sum.fits$intensity)

nmrdata1@processed$intensity <-

nmrdata1@processed$intensity - baseline1

return(list(’axis ’= sum.fits$direct.shift ,

’fit ’= sum.fits$intensity ,

’exp ’= nmrdata1@processed$intensity))

print ("Read file done")

}
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# generates the shim corrected lineshape given factors and an

initial peak

generate_lineshape <- function(R, A, F0, f_axis , shim_factors ,

shim_range){

mg <- Re(lorentz(R, A, F0 , f_axis))

lineshape <- 0

# scaling the central peak

for(i in 1:( length(shim_factors))){

temp_line <- mg * shim_factors[i]

# shifting all elements in the central peak to the

right by i points

if(shim_range[i] == 0){

temp_line2 <- temp_line

}else{

temp_line2 <- c(tail(temp_line , shim_range[i]),

head(temp_line , -shim_range[i]))

}

# recombining the lineshapes

lineshape <- lineshape + temp_line2

}

return(lineshape)

}

# what points and how far out from the peak maximum should the

algorithm go to

initial_range <- function(par , upr_limit , lwr_limit){

print (" Beginning initial range ")

lwr_points <- seq(1: lwr_limit)
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lwr_points <- -rev(lwr_points)

upr_points <- seq(1: upr_limit)

# What point on the freqency axis is the range going to

lwr_stop <- -max(abs(lwr_points))

upr_stop <- max(upr_points)

total_range <- c(lwr_points ,0, upr_points)

range <- list(" shim_range" = total_range ,

"lwr_stop" = lwr_stop ,

"upr_stop" = upr_stop)

print ("Range done")

return(range)

}

# The initial shim correction factors to feed to nlopt

initial_factors <- function(par , shim_range){

print (" Beginning initial factors ")

# determining the peak location

peak_location <- which.min(abs(f_axis - par [3]))

n_factor <- 0

f_low <- 0

f_high <- 0

m_guess <- Re(lorentz(par[1], par[2], par[3], f_axis))

factor_diff <- 0

temp_diff <- rep(0, length(shim_range))

for(i in 1:10){

if(i == 1){

}else{

for(i in 1: length(n_factor)){

if(n_factor[i] < 0){

n_factor[i] <- 1 - n_factor[i]
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}

}

m_guess <- generate_lineshape(par[1], par[2],

par[3], f_axis , n_factor , shim_range)

}

d_guess <- Re(f_ex) - m_guess

comp_points <- shim_range + peak_location

d_points <- d_guess[comp_points]

factor_diff <- d_points / max(m_guess)

for(j in 1:( length(factor_diff))){

if(j >= 1 && j <= 30){

factor_diff[j] <- 0.25* d_points[j] /

max(m_guess)

}else if(j > 30 && j < 70){

factor_diff[j] <- 0.5* d_points[j] /

max(m_guess)

}else if(j > 70){

factor_diff[j] <- 0.25* d_points[j] /

max(m_guess)

}

}

n_factor <- n_factor + factor_diff

}

# making sure no factor is above 1 or below 0

for(i in 1: length(n_factor)){

if(n_factor[i] > 1){

n_factor[i] <- .99

}else if(n_factor[i] < -1){

n_factor[i] <- -.99

}

}
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print (" Factors done")

return(n_factor)

}

# Creates the NLOPT objective function

nlopt_setup <- function(par){

range <- initial_range(par , upr_limit , lwr_limit)

# extracting important range parameters

s_range <<- range$shim_range

lwr_r_max <- range$lwr_stop

upr_r_max <- range$upr_stop

# the factors are then retrieved

factors <<- initial_factors(par , s_range)

# setting a constraint that the factors are no more than

x% of initial guess

factors_constrained <- ifelse(factors >=0,

f_constraint * factors ,

factors/f_constraint)

for(i in 1: length(factors_constrained)){

if(factors_constrained[i] > 1){

factors_constrained[i] <- 1

}else if(factors_constrained[i] < -1){

factors_constrained[i] <- -1

}

}

# The initial guess

par0 <<- c(par , factors)

lbnew <<- c(lb, rep(-1,length(factors)))

ubnew <<- c(ub, factors_constrained)
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# the objective function for NLOPT

function( parnew ){

shim_guess <- generate_lineshape(parnew [1],

parnew [2], parnew [3], f_axis , parnew [4:(3 +

length(factors))], s_range)

return(list(" objective" = sum( (Re(f_ex)

Re(shim_guess))^2),

"gradient" = rep(0, length(parnew))))

}

}

#=============================================================

# Importing Experimental Data

#=============================================================

start_time <- Sys.time()

# retrieving the data and creating the fit

data1 <- use_rnmrfit(nmrdata1 , peaks)

# the x axis , rnmr ’s fit of the experimental data , and the

experimental data itself

f_axis <<- data1$axis

f_ex <<- data1$exp

f_rnmr_fit <- data1$fit

#=============================================================

# NLOPT fitting

#=============================================================

# creating the evaluation function and setting up initial

range/factors
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eval_f <- nlopt_setup(par)

opts <- list( "algorithm" = algorithm ,

"xtol_rel" = xtol_rel ,

"maxeval" = maxeval)

pre_opt_time <- Sys.time()

res <- nloptr( x0=par0 ,

eval_f=eval_f ,

lb=lbnew ,

ub=ubnew ,

opts=opts)

opt_time <- Sys.time()

pre_opt_diff <- difftime(pre_opt_time , start_time ,

units = "secs")

opt_diff <- difftime(opt_time , pre_opt_time , units = "secs")

#=============================================================

# Displaying Results

#=============================================================

# displaying the final fit

f_fit <<- generate_lineshape(res$solution [1], res$solution [2],

res$solution [3], f_axis ,

res$solution [4

(3+ length(factors))], s_range)

# the initial guess

#f_fit <<- generate_lineshape(par0[1], par0[2], par0[3], f_axis ,

par0 [4:(3+ length(factors))], s_range)

# displaying the experimental data , the fit , (Toggle TRUE when

qualitative results are desired)

if(FALSE){

p <- plot_ly(x = f_axis ,
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y = Re(f_ex),

color = ’green ’,

name = ’f_ex ’,

type = ’scatter ’,

mode = ’lines ’)%>%

layout(showlegend = TRUE ,

legend = list(orientation = "h",

xanchor = "center",

x = 0.5, y = 7))

p <- p %>% add_trace(x = f_axis ,

y = Re(f_fit),

color = ’red ’,

name = ’f_fit ’,

type = ’scatter ’,

mode = ’lines ’)

p

}



Appendix D

Multiplet Algorithm - Complete R Package

# Required Libraries

library(rnmrfit)

library(plotly)

library(’nloptr ’)

library(RcppFaddeeva)

#=============================================================

# Applying shim correction to reference peak

#=============================================================

source (" FILEPATH", encoding = "UTF -8", echo = TRUE)

factors_final <- res$solution [4:(3+ length(factors))]

peak_par_multiple <- c(peak_par_multiple , factors_final)

lb_multiple <- c(lb_multiple , rep(-1, length(factors)))

ub_multiple <- c(ub_multiple , rep(2, length(factors)))

#=============================================================

# Applying correction to other peaks

#=============================================================

# the objective function for NLOPT

eval_g <- function( peak_par_m ){

shim_guess_m <- 0

j <- 0

for(i in 1:( length_par_multiple)){

shim_guess_m <-

shim_guess_m + generate_lineshape(peak_par_m [1+j],

peak_par_m [3* length_par_multiple + i] *

peak_par_m [2+j],

peak_par_m [3+j], f_axis ,
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peak_par_m [(3* length_par_multiple +

length_par_multiple + 1):(3* length_par_multiple

+length_par_multiple + length(factors_final))],

s_range)

j <- j + 3

}

return(list( "objective" = sum( (Re(f_ex)

Re(shim_guess_m))^2),

"gradient" = rep(0,length(peak_par_multiple))

))

}

opts <- list( "algorithm" = m_algorithm ,

"xtol_rel" = m_xtol_rel ,

"maxeval" = m_maxeval)

res <- nloptr( x0=peak_par_multiple ,

eval_f=eval_g ,

lb=lb_multiple ,

ub=ub_multiple ,

opts=opts)

#=============================================================

# Displaying Results

#=============================================================

# displaying the experimental data , the fit ,

final_lineshape <- 0

j <- 0

for(i in 1: length_par_multiple){

final_lineshape <- final_lineshape +

generate_lineshape(res$solution [1+j],
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res$solution [3* length_par_multiple + i]

* res$solution [2+j], res$solution [3+j],

f_axis ,

res$solution [(3* length_par_multiple +

length_par_multiple + 1)

(3* length_par_multiple +

length_par_multiple +

length(factors_final))],

s_range)

j <- j + 3

}

# Toggle if qualitative results are desired

if(FALSE){

p <- plot_ly(x = f_axis ,

y = Re(f_ex),

color = ’green ’,

name = ’Experimental lineshape ’,

type = ’scatter ’,

mode = ’lines ’)%>%

layout(showlegend = TRUE ,

xaxis = list(title = ’Chemical shift

(ppm) ’),

yaxis = list(title = ’Relative

intensity ’),

legend = list(orientation = "h",

xanchor = "center",

x = 0.5, y = 7))

p <- p %>% add_trace(x = f_axis ,

y = Re(final_lineshape),

color = ’red ’,

name = ’Fit lineshape ’,

type = ’scatter ’,

mode = ’lines ’)

p

}
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[140] S. A. Sousa, A. Magalhães, and M. M. C. Ferreira, “Optimized bucketing
for nmr spectra: Three case studies,” Chemometrics and Intelligent Labora-
tory Systems, vol. 122, pp. 93–102, 2013, issn: 01697439. doi: 10.1016/j.
chemolab.2013.01.006. [Online]. Available: http://dx.doi.org/10.1016/
j.chemolab.2013.01.006.

[141] J. E. Lee, G. S. Hwang, F. V. D. Berg, C. H. Lee, and Y. S. Hong, “Evidence
of vintage effects on grape wines using 1h nmr-based metabolomic study,”
Analytica Chimica Acta, vol. 648, pp. 71–76, 1 Aug. 2009, issn: 00032670.
doi: 10.1016/j.aca.2009.06.039.

[142] P. E. Anderson, N. V. Reo, N. J. DelRaso, T. E. Doom, and M. L. Raymer,
“Gaussian binning: A new kernel-based method for processing nmr spectro-
scopic data for metabolomics,” Metabolomics, vol. 4, pp. 261–272, 3 2008, issn:
15733882. doi: 10.1007/s11306-008-0117-3.

[143] T. D. Meyer, D. Sinnaeve, B. V. Gasse, E. Tsiporkova, E. R. Rietzschel,
M. L. D. Buyzere, T. C. Gillebert, S. Bekaert, J. C. Martins, and W. V.
Criekinge, “Nmr-based characterization of metabolic alterations in hyperten-
sion using an adaptiveintelligent binning algorithm,” Analytical Chemistry,
vol. 80, pp. 3783–3790, 10 2008, issn: 00032700. doi: 10.1021/ac7025964.

[144] P. E. Anderson, D. A. Mahle, T. E. Doom, N. V. Reo, N. J. DelRaso, and M. L.
Raymer, “Dynamic adaptive binning: An improved quantification technique
for nmr spectroscopic data,” Metabolomics, vol. 7, pp. 179–190, 2 2011, issn:
15733882. doi: 10.1007/s11306-010-0242-7.



102

[145] R. A. Davis, A. J. Charlton, J. Godward, S. A. Jones, M. Harrison, and J. C.
Wilson, “Adaptive binning: An improved binning method for metabolomics
data using the undecimated wavelet transform,” Chemometrics and Intelligent
Laboratory Systems, vol. 85, pp. 144–154, 1 2007, issn: 01697439. doi: 10.
1016/j.chemolab.2006.08.014.

[146] S. K. Bharti and R. Roy, Quantitative 1h nmr spectroscopy, May 2012. doi:
10.1016/j.trac.2012.02.007.

[147] R. A. Meyer, M. J. Fisher, S. J. Nelson, and T. R. Brown, “Evaluation of
manual methods for integration of in vivo phosphorus nmr spectra,” NMR in
Biomedicine, vol. 1, pp. 131–135, 3 Jun. 1988, issn: 0952-3480. doi: https:
//doi.org/10.1002/nbm.1940010306. [Online]. Available: https://doi.
org/10.1002/nbm.1940010306.

[148] M. Geyer, K. P. Neidig, and H. R. Kalbitzer, Automated peak integration in
multidimensional nmr spectra by an optimized iterative segmentation proce-
dure, 1995. doi: 10.1006/jmrb.1995.1143.

[149] C. Rischel, “Fundamentals of peak integration,” Journal of Magnetic Reso-
nanceSeries A, vol. 116, pp. 255–258, 2 1995, issn: 10641858. doi: 10.1006/
jmra.1995.0016.

[150] F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, “Nm-
rpipe: A multidimensional spectral processing system based on unix pipes,”
Journal of Biomolecular NMR, vol. 6, pp. 277–293, 3 1995, issn: 09252738.
doi: 10.1007/BF00197809.

[151] R. Koradi, M. Billeter, M. Engeli, P. Güntert, and K. Wüthrich, “Automated
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