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Abstract 
 

Apple aroma is a major determinant of consumer acceptability. In order to better 

understand the aroma of apples, gas-chromatography mass-spectrometry (GCMS) was 

used to quantify apple volatiles across 515 apple varieties from Canada’s Apple 

Biodiversity Collection (ABC). Among the volatiles identified, esters and aldehydes were 

the most abundant classes of compounds with butyl acetate and hexyl acetate present in 

nearly every variety. Using principal component analysis (PCA), It was determined that 

the primary axis of variation of the apple volatilome is correlated with harvest date: early-

harvested apples tend to express larger numbers and higher amounts of volatiles than 

late-harvested apples. Through genome-wide association studies (GWAS) with 250,579 

single nucleotide polymorphisms (SNPs) I identified a significant association between 

SNPs at a NAC18.1 transcription factor and the abundances of two key volatile 

compounds: 1-hexanol and 1-butanol. Taken together, these results provide a foundation 

for understanding the genetic basis of apple aroma production. 
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CHAPTER 1 –– INTRODUCTION 
 

The domesticated apple (Malus domestica) represented 43.5% of total Canadian fruit 

production in 2020, with 390,995 tonnes of apples produced (Canada 2021), making it one of the 

most consumed fruit crops in Canada. The fruit quality, especially the flavour of the fruit, is an 

important trait that determines consumer acceptability and by extension, its marketability. 

However, due to intense selection for traits that enable mass production and worldwide 

distribution such as storability, firmness and post-harvest shelf-life, little attention has been given 

to the flavour and aroma of apples, which directly impacts consumer satisfaction (Klee & 

Tieman, 2018). The lagging of this selection for fruit flavour is attributed to the high costs of 

breeding and phenotyping (Klee & Tieman, 2018). 

Traditional apple breeding is time-consuming and expensive: it takes more than two 

decades to properly evaluate a new apple variety before commercial release due to its long 

juvenile period (Igarashi et al., 2016). For example, in a breeding programme spanning 26 years, 

52,000 seedlings were originally planted, and only 3 of these were subsequently commercialized 

(Kole, 2011). Therefore, apple varieties that perform well are clonally propagated, for decades or 

even centuries, and there is a slow rate of change in variety composition on supermarket shelves 

despite consumer demand for new apple varieties with novel traits (Klee & Tieman, 2018).  

The small number of elite varieties that dominate worldwide markets means that only a 

fraction of the available genetic diversity in apples is being explored (Migicovsky, Gardner, et 

al., 2021), and this makes them prone to evolving pests and pathogens (Cornille et al., 2014). To 

mitigate this, a wide array of agro-chemicals is used to keep apples commercially viable. Indeed, 

a primary target for most apple breeding programmes worldwide is disease resistance. However, 

for the long-term sustainability of Canada’s apple industry, new apple varieties must not only 

require less chemical input to grow, but should also contain desirable flavours that result in 

commercial success (Brown & Maloney, 2003). Marker-assisted selection (MAS) can 

significantly improve the efficiency of traditional apple breeding by enabling breeders to select 

offspring using genetic markers associated with desirable traits, and markers that predict disease 

resistance are commonly used by numerous breeding programmes worldwide (Bus et al., 2011). 
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Selection for flavour using MAS lags far behind the selection for disease resistance, however. 

The reason for this is that flavour is more genetically complex than disease resistance: while 

resistance to a particular disease is frequently controlled by a single gene of large effect, flavour 

is controlled by numerous interacting genes and environmental variations (Myles, 2013). Flavour 

is composed of a large collection of volatile organic compounds (VOCs) that are recognized by 

our olfactory systems. Humans have 350 olfactory receptors which provide the foundation for 

diversity of flavour experiences (Klee, 2010). Genetic markers that predict apple flavour would 

therefore be highly desirable, and an opportunity exists to find them and use them to reduce the 

labour and costs associated with growing trees to maturity for flavour evaluation (Myles, 2013).  

Human perception of the flavour of fruit is determined by a complex interaction between 

taste receptors on the tongue and olfactory receptors located in the nose (Tieman et al., 2006). 

While taste is largely determined by sugars and acids, apple aroma is a complex trait determined 

by various VOCs that vary between varieties (Espino-Díaz et al., 2016). A recent study found 

that 56% of the variance associated with overall consumer liking of blueberry and tomato can be 

attributed to VOCs (Colantonio et al., 2022). VOCs originate from major pathways of secondary 

metabolism in plants and can therefore be characterized as secondary metabolites (Abdullah et 

al., 2015). VOCs can be further classified based on their chemical structure, which includes 

categories such as alcohols, aldehydes and esters. Among these, esters are the largest group of 

VOCs that are found in apples and they contribute to the fresh and fruity flavour of apples 

(Sugimoto et al., 2021). The most comprehensive evaluation of the genetic control of apple 

VOCs to date discovered a few genetic markers that may be useful for predicting apple aroma, 

but its scope was limited: it involved the quantification of only 33 VOCs across 162 apple 

varieties and the use of fewer than 10,000 genetic markers (Farneti et al., 2017). Recent advances 

in high-throughput analytical chemistry have enabled the untargeted assessment of the apple’s 

entire “volatilome” (Mansurova et al., 2018), which, when paired with next-generation DNA 

sequencing of hundreds of apple varieties, provides a powerful platform to elucidate the genetic 

architecture of apple aroma. The pairing of volatilome quantification and next-generation 

genomics technologies has uncovered the genetic underpinnings of commercially important 

flavour molecules in a diversity of vegetable and fruit crops such as soybean (Ravi et al., 2019), 

pear (Qin et al., 2012) and melon (Shi et al., 2020). 
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The aim of this study is to harness multi-dimensional apple VOC and genomic data to 

elucidate the mechanism of production of VOCs, as well as to identify genetic markers 

associated with key apple VOCs.  
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CHAPTER 2 –– LITERATURE REVIEW 
 

2.1 –– DOMESTICATION HISTORY AND IMPROVEMENT OF APPLES 

The cultivated apple (Malus domestica) belongs to the Rosaceae family and was first 

domesticated from its wild progenitor, Malus sieversii, in the Tian Shan Mountains in Central 

Asia. These early cultivated apples travelled with humans along the Silk Route to the west, and 

they interbred with other species such as Malus baccata, Malus orientalis, and Malus sylvestris 

(Cornille et al., 2012), all of which together contributed to the genetic pool of the domesticated 

apples we enjoy today (Migicovsky, Gardner, et al., 2021; Sun et al., 2020). 

The genome of the apple was first sequenced in 2010 using the diploid (2x=34) ‘Golden 

Delicious’ variety to produce a draft assembly, which revealed profound insights into the biology 

of this fruit. One such insight was that the apple went through a gene duplication event with the 

final number of chromosomes reaching 17 from 9 ancestral chromosomes (Velasco et al., 2010). 

Another genome assembly was performed in 2017 of the double-haploid Golden Delicious 

variety by combining the high-quality short-read sequencing and long-read sequencing data. The 

size of this new genome is 649.7-Mb containing roughly 57,000 genes and now serves as the 

reference genome (Peace et al., 2019; Zhang et al., 2019). 

Ever since the start of apple breeding through the efforts of Thomas Andrew King (1759-

1839) with his experiments in apple crossbreeding and selection (Janick, 2012), vegetative 

propagation has been the default method of mass production of apples. Vegetative production 

ensures that the fruits produced are uniform in terms of the desired traits such as taste, firmness 

and shelf-life. However, it leads to a lack of genetic diversity and opens up a whole set of new 

problems. Pathogens evolve over time via mutation, selection and genetic drift, whereas 

vegetatively propagated crops do not evolve, leaving them unshielded from evolving pathogens 

and prone to novel diseases (Myles, 2013). For example, the ‘McIntosh’ apple has been 

vegetatively propagated for over 200 years and is thus prone to novel diseases (Migicovsky, 

Gardner, et al., 2021). To overcome pathogen pressures, heavy pest management practices are 

undertaken to sustain the apple industry (Myles, 2013).  

Additionally, the repeated use of a small number of elite varieties suited for yield, 

firmness and improved postharvest shelf-life leads to an indirect reduction in flavour and nutrient 

content (Klee & Tieman, 2013). This is due to the fact that growers are not paid for flavour 
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quality, and they do not demand it. The customer of the breeder is the grower, and consumers are 

frequently left out of cultivar development, even though there are major opportunities for market 

growth with the improvement in fruit quality such as flavour and nutrients (Klee & Tieman, 

2018).   

One of the most important issues associated with improving the flavour of perennial 

crops is that the flavour of the fruit can be assessed only after the plant has grown to maturity 

and is bearing fruit, which takes 5-8 years in apples (Klee, 2010). Marker-assisted selection 

(MAS), whereby traits can be predicted at the seedling stage, provides the solution for the early 

selection of promising varieties (Klee & Tieman, 2018).      

 

2.2 –– MARKER ASSISTED SELECTION (MAS) 

MAS is the process by which offspring are selected using genetic markers that are linked 

to a phenotype of interest. This is referred to as indirect selection because instead of selecting for 

the traits directly, the markers that are linked to those traits are used for selection (Ribaut & 

Hoisington, 1998). This technique is particularly useful for perennial crops such as apples where 

the screening of the traits directly is labour intensive and time-consuming due to the plant’s long 

juvenile period. On top of that, the significant reduction in costs associated with generating 

enormous genotyping datasets make MAS an attractive choice (Schatz & Langmead, 2013). 

However, one of the considerations with MAS is that most phenotypes that are of interest to 

breeders are complex and vary quantitatively, meaning that multiple genetic loci and 

environmental factors have effects on the observable phenotype. Therefore, in order to find 

meaningful associations, genotyping a large set of single nucleotide polymorphisms (SNPs) 

throughout the genome is necessary for increasing the chances of finding markers associated 

with the causal SNPs (Ribaut & Hoisington, 1998). 

 MAS has been widely used in plant breeding and can provide significant reductions in the 

cost and time associated with traditional selection. For example, genetic screening of varieties at 

the seedling stage in the Washington Apple Breeding program was estimated to reduce the 

conventional operating costs by 60% (Edge-Garza & Peace, 2010). In another example, marker-

assisted selection has been successfully applied in pest and disease management strategies in the 

New Zealand apple breeding programme (Bus et al., 2000). 
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Even though there is enormous potential for improvement of apple quality via MAS, it 

has thus far almost exclusively been used to select for resistance to diseases such as apple scab 

and powdery mildew (Migicovsky et al., 2016). MAS could be applied to improve flavour, but a 

major roadblock to performing MAS for flavour is the lack of markers associated with flavour-

related phenotypes. Therefore, genetic mapping studies first need to be performed to identify 

genetic markers (i.e., SNPs) associated with desirable flavours.  

 

2.3 –– GENOME-WIDE ASSOCIATION MAPPING 

Genome-wide association (GWA) mapping is a technique used for the discovery of 

associations between genetic variants (i.e., SNPs) and phenotypes using populations of unrelated 

individuals (Gupta et al., 2019). It differs from the most common genetic mapping technique 

applied in apples to date called quantitative trait loci (QTL) mapping where the offspring of bi-

parental crosses are genotyped and phenotyped. Both QTL and GWA are used for identifying 

genetic variants that explain phenotypic variation (Gupta et al., 2019). One of the advantages of 

GWA is that it most often results in higher mapping resolution because it makes use of large 

numbers of unrelated individuals resulting in the rapid decay of linkage disequilibrium (Rafalski, 

2010). However, most genetic mapping studies in apples have made use of simple bi-parental 

crosses, primarily because these are widely available in breeding programmes: breeders make bi-

parental crosses as part of the breeding process and use these populations to search for markers 

that may be useful for MAS. GWA requires the use of large and diverse germplasm collections, 

such as the USDA’s apple germplasm collection, which has served as a GWA population in the 

past (Migicovsky et al., 2016). However, GWA is optimally performed in populations planted 

specifically for the purposes of discovering genotype-phenotype relationships. In apple, such a 

population was established in Kentville in 2011 and is called Canada’s Apple Biodiversity 

Collection (ABC). 

2.4 –– GENETIC BASIS OF APPLE VOCs 

Apple aroma is determined by the concentrations of VOCs, which are primarily 

composed of alcohols, ketones, aldehydes and esters. Among these various compounds, esters 

are the most abundant: they account for 80 to 95% of the total volatiles emitted in apples and are 

generally perceived as “fruity” and “floral” (Sugimoto et al., 2021). These VOCs bind to the 

receptors in the human olfactory system which gives the perception of aroma. Each apple variety 



 

7 

emits different compounds at varying concentrations and this variability in the amount and type 

of VOCs that are emitted give us different flavours (Klee, 2010). Studies of apple aroma aim to 

quantify VOCs in order to better understand the chemical composition of flavour (Espino-Díaz et 

al., 2016). Genetic mapping studies then help identify the candidate genes that might be involved 

in aroma production. For example, in a recent study in blueberries, it was shown that key VOCs 

controlling important aspects of blueberry flavour are controlled by a small number of genes 

with large effects on VOC concentrations. This suggests that markers within these genes can be 

used to predict VOCs in blueberry, which forms the basis of MAS for VOCs in a commercially 

important fruit crop (Ferrão et al., 2020). In another study, a single region on chromosome 2 was 

identified as a crucial “hot-spot” for genes involved in ester production, which account for most 

of the VOCs in apples (Larsen et al., 2019). This suggests that a small number of genetic loci 

may be responsible for VOC production in apples. More functional studies aim to elucidate the 

mechanism of a single pathway involved in production of specific types of compounds. For 

example, a transgenic ‘Royal Gala’ variety in which the expression of AAT1 gene was reduced 

showed reduced levels of most key esters, suggesting that the AAT1 gene is a critical gene 

responsible for the biosynthesis of esters contributing to ‘ripe apple’ flavour in ‘Royal Gala’ and 

‘Granny Smith’ apple varieties (Souleyre et al., 2014). 

Studies investigating apple aroma have thus far focused on targeted compounds with an 

assumption that the VOCs important for the flavour of the fruits are already known (Farneti et 

al., 2017; Larsen et al., 2019). This approach is therefore limited in terms of gaining new insights 

about fruit aroma, and it ignores the potential of rare or low concentration VOCs that may 

contribute to consumer preference. In contrast, an untargeted metabolic approach enables the 

quantification of the entire “volatilome” and thus does not suffer from the ascertainment bias of 

targeted approaches. Therefore, it is desirable to use untargeted approaches for exploring the 

VOCs in apples. 
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CHAPTER 3 –– MATERIALS AND METHODS 
 

3.1 –– SAMPLE PREPARATION 

Apple varieties in this study were from Canada’s ABC located at the Kentville Research 

and Development Centre in Kentville, Nova Scotia, Canada. A comprehensive description of the 

statistical design of the ABC and phenotyping protocols are provided in Watts et al. (2021). 

Briefly, the harvest date for each variety was determined according to several established 

ripeness metrics, including seed colour, taste, skin colour, firmness and starch index. For each 

variety, 10-20 apples were collected from either one or two trees. For volatile quantification, the 

harvested fruits were stored at 3-3.5˚C for 1 month. After storage, a sample of 5-10 fruits was 

randomly selected, cored and cut into 8 slices using an 8-piece apple slicer and corer. One or 2 

random slices from each apple were selected and frozen in liquid nitrogen. The slices were 

bagged, labelled and held at -80˚C until analysis. The total mass for each sample ranged from 

~300-500g. 

 

3.2 –– VOLATILE QUANTIFICATION 

A 5 g composite frozen sample (-80°C) was blended with 95 g of a saturated salt solution 

(NaCl, Fisher Scientific Canada, certified ACS) for 1 min using a Kinematica model MB 800 

laboratory mixer (Kinematica AG, Luzern, Switzerland) at setting 4. A 10 g sample of the 

homogenate was placed in a 20 mL headspace vial, capped and 5 µL of an internal standard 

(10.0 mg/L Benzaldehyde-d6) was added using a MultiPurpose Sampler (MPS, Gerstel, 

Linthicum, MD, USA). The VOCs were extracted and analyzed by solid-phase microextraction-

gas chromatography x gas chromatography-time of flight–mass spectrometry. Vials were 

incubated at 30 ºC for 300 s and then the divinylbenzene/Carboxen/polydimethylsiloxane SPME 

fiber (Supelco Analytical, Bellefonte, PA, USA) was exposed to the headspace for 900s with 

agitation (on for 60 s; off for 1 s). The fiber was desorbed at 250 ºC for 7 min. The injector was 

operated at 250 °C in the split mode of 1:20 for 1 min. Helium was used as the carrier gas at a 

flow rate of 1.4 mL/min. The MPS system was installed on a unit-mass resolution Pegasus 4D 

TOFMS (LECO, St Joseph, MI, USA). The modulator was mounted in an Agilent 7890 GC gas 

chromatograph equipped with a secondary oven and a quad-jet dual-stage thermal modulator. 

Liquid nitrogen was used for cooling the cold jet lines. The first dimension (1D) column was a 
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polar Stabilwax® (30 m x 0.25 mm x 0.25 µm), and the second dimension (2D) column was a 

mid-polar Rxi®-5Sil MS (1.09 m x 0.25 mm x 0.25 µm). The optimized 1D GC oven 

temperature was initially set at 50 °C for 0.20 min, before increasing from 10.3 °C/min to 220 

°C. The temperature offset for the secondary oven was 44°C and the modulator temperature 

offset was +15 ̊C. The modulation period (PM) was 1.2 s, with a hot pulse time of 0.35 s on each 

jet. The transfer line was held at 250 °C. The TOF-MS was operated in electron ionization (EI) 

mode at 70 eV, with an acquisition mass range of 35–300 amu, area count calculation applied 

apex masses, an acquisition rate of 200 Hz, and a detector voltage of 1500V with an optimized 

voltage offset of 200V. The ion source was heated to 250 °C. Daily mass calibration and tuning 

were performed using perfluorotributylamine (PFTBA). An acquisition delay of 100s was 

applied. The chemical identification of the peaks was determined based on the retention index 

and correspondence of the mass spectra with the ‘mainlib’ and ‘replib’ of the 2017 National 

Institute of Standards and Technology (NIST) Mass Spectral Virtual Library (ChemSW, 

Fairfield, CA, USA). The VOCs that had NIST similarity scores below 850 were discarded. The 

retention index for compounds was identified from the retention time using Kovats Retention 

Index formula (Kováts, 1958). 

 

3.3 –– VOLATILE DATA STANDARDIZATION AND CURATION 

The concentration of the internal standard, benzaldehyde-d8 was normally distributed 

across varieties (Shapiro-Wilks test p=2.30x10-8; Figure S1). The peak area value for each VOC 

within each variety was divided by the peak area value for benzaldehyde-d8 as a standardization 

procedure and the resulting units for the abundance values were normalized total ion counts 

(TIC). The compounds were manually categorized into 13 different classes including alcohols, 

aldehydes, esters, etc. The totals for each compound category were calculated by adding up the 

standardized peak area values for all compounds within each category. The final table contained 

106 compounds across 515 varieties (Table S1). Every compound was present in at least 35 

(6.8%) apple varieties and every variety had at least 24 (22.6%) VOCs present. 
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3.4 –– SNP GENOTYPING 

The genotyping-by-sequencing (GBS) method (Elshire et al., 2011) was used as 

previously described in Migicovsky et al. (2022). The initial genotype data consisted of 260,399 

SNPs across 1,054 varieties. Two additional markers were genotyped in the same varieties 

because of their potential role in volatile synthesis and were then combined with the GBS data. 

First, a Kompetitive Allele Specific PCR (KASP) genotyping assay was used to genotype a 

functional non-synonymous SNP that results in glutamine to glutamate change at position 387 of 

the citramalate synthase (CMS) gene that may account for variability in ester synthesis across 

apple varieties (Sugimoto et al., 2021). Second, high-resolution DNA melting (HRM)-based 

assay was used to detect the presence of a long terminal repeat (LTR) retrotransposon upstream 

of the MYB1 transcription factor that is associated with red skin (Zhang et al., 2019).  Primer 

sequences and reaction details can be found in Appendix C. Out of the 550 varieties for which 

VOC data were collected, genotype data were available for only 515 varieties, and thus the final 

SNP genotype matrix was filtered for only those 515 varieties. SNPs with minor allele frequency 

(MAF) <1% and heterozygosity > 90% were removed. The final genotype matrix contained 

250,579 SNPs across 515 varieties. 

 

3.5 –– STATISTICAL ANALYSES 

All statistical analyses were performed in R version 4.0.2 (R Core Team, 2021). Principal 

component analysis (PCA) was performed using the prcomp function with scale and center 

parameters from the stats package. GWAS was performed using the mlmm_cof function from the 

mlmm package (v0.1.1) (Segura et al., 2012). A previous genetic analysis of apple varieties in the 

ABC found a high degree of relatedness (i.e., siblings and first-degree relationships) among 

apple varieties found within the ABC, and that the population structure as determined using PCA 

is strongly correlated with the harvest date (Migicovsky et al., 2021). In order to decrease the 

impact of the observed population structure and relatedness on the GWA performed here, the 

first 5 principal components (PCs) and kinship matrix were included in the GWA model as 

covariates, which is standard practice when performing GWA (e.g., (Myles et al., 2009; Wang et 

al., 2005)). Thus, a simplified GWA model according to Yu et al. (2006) can be represented as 

follows: 
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Y ~ α + Q + K + e 

 

where Y is a vector of phenotypic observations (i.e., abundance of a particular VOC across 

varieties); α is a vector of SNP effects (i.e., SNP genotypes across varieties); Q is a matrix 

including the values from 5 PCs across varieties that controls for population structure; K is the 

pairwise kinship matrix that controls for close relatedness among varieties; and e is the error 

term (i.e., vector of residual effects). 

The kinship matrix accounts for the dependency among SNPs correlated with the 

phenotypes due to relatedness among apple varieties. The kinship matrix was calculated using a 

standalone version of Tassel (v5.0) GBS pipeline (v2) (Bradbury et al., 2007). To visualize 

GWA results, Manhattan plots and quantile-quantile (QQ) plots were generated using ggplot2 

(v3.3.5) package in R. The fit of the mixed model to the data can be evaluated by observing the 

QQ plots: the closer the observed values are to the expected values, the better the model fit. The 

model fit was quantitatively evaluated using the genomic inflation factor (), which expresses 

the deviation of the distribution of the observed test statistic compared to the distribution of the 

expected test statistic (Devlin & Roeder, 1999). High genomic inflation factors ( >> 1) indicate 

an excess of false positive genotype-phenotype associations that most frequently result from the 

model’s inability to correct properly for population structure (Reich & Goldstein, 2001). The  

values are shown within each QQ plot to enable an evaluation of model fit.  

The pairwise correlations among all pairs of compounds and among pairs of compound 

classes were calculated as Pearson correlations using the cor.test function from the stats package 

(v4.1.2). All computational tasks for this study were carried out on a high-performance 

computing (HPC) cluster from Compute Canada. Computer code was primarily written in the 

programming language R, but bash scripts were used for implementing procedures via the 

command line, especially in cases where parallel computing was required. All code and input 

files are available via the GitHub repository (2022) at the following URL: 

https://github.com/MylesLab/apple-aroma.  
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CHAPTER 4 –– RESULTS AND DISCUSSION 
 

4.1 –– THE ARCHITECTURE OF APPLE AROMA 

To investigate the aroma of apples, 106 volatiles were extracted and analyzed across 515 

apple varieties using gas chromatography mass spectroscopy (GC-MS). The names of these 

compounds were manually curated to resemble the commonly written notation. The abundance 

of a compound is defined as the area under its chromatogram peak normalized by a 

benzaldehyde-d8 standard. 

After harvesting the apples, they were subjected to one month of cold storage at 3-3.5˚C. 

Subsequently, these apples were sliced, and two random slices were flash frozen with liquid 

nitrogen and then stored at -80°C before GC-MS analysis. These pre-conditions that apples are 

subjected to before the extraction of volatiles have an effect on the food matrix and thus can alter 

the in vitro volatile profile (Dewulf et al., 2002; Farneti et al., 2013). Due to this, the volatile 

profile that is exhibited by the apple during the chewing process will likely differ from the 

volatile profile exhibited by the apple as processed using the extraction process employed here. 

Thus, the degree to which the measurement of the volatilome of an apple employed here fails to 

accurately represent the volatilome expressing during the chewing process is a caveat of the 

present study. However, the variation in the relative abundances of compounds and their 

correlation with genetic variation can nonetheless provide valuable insights about the genetic 

basis of aroma production, and this is the primary focus of present study. 

Each compound was manually categorized into a class, which resulted in 13 different 

classes of compounds: acids, alcohols, aldehydes, C13-norisoprenoid, esters (straight chain), 

esters (branched chain), furans, hydrocarbons, ketones, lactones, monoterpenoids, 

sesquiterpenes, and sulfur/nitrogen compounds (Figure 1B and 1C). In order to assess the data 

across classes of compounds, I calculated the total volatile abundance of each compound class by 

summing the abundances of each VOC belonging to that class. I identified that esters, aldehydes, 

and alcohols are not only the most ubiquitous (Figure 1B) but also the most abundant compound 

classes (Figure 1C). In fact, nearly the entire apple volatilome as measured in this study is 

composed of esters, alcohols, and aldehydes: they make up ~ 98% of the total volatile abundance 

in our dataset (Figure 1C). This observation is in line with previous work showing that esters, 

aldehydes, and alcohols are the main contributors to fruit aroma (Espino-Díaz et al., 2016). 
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Esters were not only the most abundant, but there were also a relatively large number of ester 

compounds in our dataset: 40 (38%) of the compounds I identified were esters. Esters alone are 

known to account for 80% of the fruit volatiles in apples (De Pooter H Schamp N, 1989), and our 

results support the notion that esters are likely the largest contributors to the apple volatilome.  

 

 

Figure 1 –– Volatile composition across 515 apple varieties. A) The ubiquity of each volatile 

(x-axis) is plotted against its abundance (y-axis). B) The number of VOCs detected by 

compound class. C) The total volatile abundance by compound class. D) The number of 

volatiles detected (y-axis) sorted in descending order across 515 apple varieties (x-axis) E) The 

total volatile abundance (y-axis) sorted in descending order across 515 apple varieties. The red 

horizontal lines represent the minimum values used as thresholds for inclusion in the present 

study (see Materials and Methods). 

 

In addition to our observation that a small number of compound classes dominate the 

apple volatilome, I observed that a relatively small number of individual VOCs account for a 

large proportion of the overall volatile abundance. These compounds are both ubiquitous and 

abundant: they were detected in nearly every variety and were present in high amounts. The most 

abundant compound in our dataset was butyl acetate (a volatile ester), which was detected in 511 

of the 515 varieties and whose abundance across all varieties represented 20.8% of the overall 

volatile abundance in our data set. Butyl acetate is commonly used as a flavouring agent in 

various foods (JECFA Evaluations, 2022). The apple that has the highest amount of butyl acetate 
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is ‘Dukat’, a variety from Kazakhstan primarily eaten fresh or dried (Dukat Apple, 2022). Dukat 

is a cross between Golden Delicious (female parent) and Cox’s Orange (male parent). One of 

Dukat’s parents, Golden Delicious, is known to have high concentrations of butyl acetate, which 

is designated as an ‘impact compound’ for its ability to have a decisive impact on the sensory 

quality of the fruit (Song & Bangerth, 1996). Further, there generally are higher concentrations 

of volatile esters in Cox’s Orange and Golden Delicious apples, the two parents of Dukat (Dixon 

& Hewett, 2000). While butyl acetate was present in 511 varieties, it remained completely 

undetected in 4 varieties. The ubiquity and abundance in butyl acetate observed in the present 

study supports the notion that this compound likely plays a key role in the diversity of sensory 

quality across apple varieties. 

The compound which is present in all of the 515 varieties (i.e., the most ubiquitous) is 1-

hexanol and its total abundance across all varieties represented 7.8% of the overall volatile 

abundance in our dataset. It has been previously shown that the exogenous application of 1-

hexanol onto apple fruit induces soft scald, a common post-harvest disorder that appears in 

response to cold storage after about 2-8 weeks (Wills, 1972). The variety ‘Honeycrisp’ is known 

to be highly susceptible to soft scald (Xu et al., 2017), but its level of 1-hexanol is only slightly 

above the median value of the 515 varieties evaluated here. It is therefore unclear whether 

endogenous production of 1-hexanol mediates soft scold susceptibility and, by extension, 

whether selection against 1-hexanol production by apple breeders, either phenotypically or using 

genetic markers, may be an effective strategy for selecting for resistance to soft scald.  

The apple with the highest number of VOCs is Red Cinnamon, which expressed 73 out of 

the 106 VOCs. The apple with the highest cumulative VOCs abundance was Krapchatoe. 

Descriptions of these two varieties online failed to reveal why they may lie at the extremes of our 

data distributions. Conversely, the apple that has the lowest volatile abundance is ‘Black Ben 

Davis’. This apple is known for its ruggedness, but generally has a poor flavour. It was famous in 

the 19th and 20th centuries because it was easier to ship. However, as the shipping and packing 

improved, this variety fell out of favour (Beach et al., 1905). This is a prime example of how 

flavour is an essential consideration for consumers but is often overlooked because of a focus on 

production-related traits.  
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Figure 2 –– Pairwise correlation heatmap among the volatiles. The correlation represents the 

coefficient (r) values ranging from -1 to 1. Colours range from blue to red, representing negative to 

positive correlations, respectively. 

 

In order to understand the relationships among VOCs, I created a heatmap displaying 

correlations among all pairwise combinations of VOCs (Figure 2). I observed a statistically 

significant excess of positive correlations (N = 704) compared to negative correlations (N = 22; 

Pearson's Chi-squared test, p = 7.39 x 10-91). This suggests that an increase in the abundance of 

one compound generally causes the abundance of another compound to increase rather than 

decrease. Furthermore, significant positive correlations were more often observed between pairs 

of compounds within the same class, and less often between compounds of different classes. For 

example, one of the strongest correlations observed is between (E)-2-octenal and 2-heptenal 

(r=0.97; p=1.45x10-317), two aldehydes that appear to be extremely tightly co-expressed (Figure 

3). Both of these compounds are known autoxidation products of linoleic acid and may 

contribute to the off-flavour of apple juice in the presence of light (Hashizume et al., 2007). A 

full investigation of each pair of positively and negatively correlated compounds is beyond the 
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scope of the present study. However, these data may be further analyzed to elucidate groups of 

compounds involved in similar metabolic pathways. 

 

 

Figure 3 –– Correlation of the abundance of (E)-2-octenal and 2-heptenal. The coefficient 

of correlation (R2) and significance value is calculated by fitting a linear model. 

 

4.2  –– HARVEST DATE SHAPES THE APPLE VOLATILOME 

In order to assess the relationships among varieties based on their volatilomes, I 

performed PCA on the entire VOC data set. The first two PCs explained 17.8% of the total 

variance and PC1 generally separated varieties based on their harvest date (Figures 4A and 4B).  
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Figure 4 –– Variation in volatilome is correlated with harvest date. A) PCA bi-plot of PC1 

and PC2 derived from a matrix of 106 VOCs across 515 apple varieties.  Each variety is 

coloured according to its harvest date. B) Scatter plot of PC1 values and harvest date across 

515 varieties. C) Scatter plot of ubiquity (i.e. the number of VOCs detected) and harvest date 

across 515 varieties D) Scatter plot of total volatile abundance and harvest date across 515 

varieties. Lines of best fit, R2 and P values result from Pearson correlations between variables. 

 

I observed a significant correlation between harvest date and PC1 (R2=0.17; p=3.33x10-

23): the varieties that ripen quickly and are harvested early tend to have lower PC1 values while 

the varieties that ripen slowly and are harvested late tend to have higher PC1 values (Figure 4B). 

This relationship is driven by our observation that harvest date is negatively correlated with the 

ubiquity and abundance of VOCs (Figures 4C and 4D). This suggests that early harvested apple 

varieties tend to have a larger number of VOCs and more aroma overall than late-harvested 

apples. One of the possible mechanisms for this phenomenon could be that the ripening process 

is simply accelerated in the early-ripening varieties and is slower in late-ripening varieties. In 

other words, the overall metabolic activity in early-harvested varieties may be higher than in late 

ripening varieties. This acceleration among early-ripening varieties may result in more volatiles 
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being produced at any given time since the breakdown and build-up of volatile compounds is 

higher in these early-harvested varieties in comparison to the late-harvested varieties. Taken 

together, these results suggest that the time it takes an apple to ripen on the tree is intimately 

linked to its volatilome. 

 

4.3 –– GENETIC CONTROL OF VOCs 

I performed GWAS to identify the loci in the genome that are responsible for the 

production of various VOCs. The interpretation of the resulting Manhattan and QQ plots was 

often challenging due to many insignificant genomic associations to the compounds. This 

suggested that numerous compounds in our dataset were not adequately abundant or ubiquitous 

to provide the statistical power for GWA. These compounds sometimes generated statistically 

significant SNP-phenotype associations, but an assessment of the QQ plots and the genomic 

inflation factors () suggested an excess of false positives: the distribution of the values across 

varieties frequently resulted in a poor fit for the mixed model GWA algorithm that I employed. 

Thus, I instead focus on the most reliable genotype-phenotype associations by only considering 

those that form a clear and reliable peak in a Manhattan plot, a signal that suggests the 

identification of a single genetic locus of large effect on the concentration of a VOC. The 

Manhattan plots, along with their QQ plots, are shown as supplementary figures (Figures S2-S7). 

While a further exploration of more complex GWA statistical models suitable for challenging 

data distributions could be explored in the future, only the most promising associations identified 

using a single GWA model are explored in detail below. 

1-butanol and 1-hexanol are among the most ubiquitous and abundant VOCs detected and 

both their concentrations appear to be mediated by genetic variation at a single locus on 

chromosome 3. The most significant SNP associated with these two compounds lies within the 

NAC18.1 gene, a member of the NAC family of transcription factors. Functional genomics 

studies across diverse species have demonstrated that NAC transcription factors are implicated in 

ripening phenotypes across diverse agricultural crops, including tomato (Kumar et al., 2018), 

melon (Ríos et al., 2017), banana (Shan et al., 2012), peach (Pirona et al., 2013), and apricot 

(García-Gómez et al., 2019). Notably, the homolog of NAC18.1 in tomatoes (Solanum 

lycopersicum) is the NON-RIPENING (NOR) gene, a well-studied gene that, when knocked out 

in tomatoes, produces the nor mutant tomato that does not ripen (Tigchelaar, 1973). In apple, 
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numerous recent GWASs have repeatedly identified associations between NAC18.1 and harvest 

date (Jung et al., 2020; Larsen et al., 2019; McClure et al., 2018; Migicovsky et al., 2016; 

Urrestarazu et al., 2017). A recent study demonstrated that introducing the apple NAC18.1 

transgene into a nor mutant tomato recovers ripening, providing strong evidence that genetic 

variation within NAC18.1 mediates the apple ripening process (Migicovsky et al., 2021). Our 

observation that concentrations of 1-butanol and 1-hexanol were associated with genetic 

variation in NAC18.1 is consistent with our observation that harvest date is negatively correlated 

with both 1-butanol (R = -0.46, p =2.86x1028) and 1-hexanol (R = -0.44, p = 9.75x10-26).  Both 

of these key aromatic compounds are more abundant in early ripening varieties than in late-

ripening varieties, and our results suggest that the reduction in expression of these compounds 

over the harvest season is mediated by genetic variation in or near the NAC18.1 gene. It is 

noteworthy that firmness is also strongly associated with harvest date, whereby early harvested 

varieties tend to be softer than late-harvested varieties  (Johnston et al., 2002; Migicovsky et al., 

2016; Nybom et al., 2013; Oraguzie et al., 2004). We, therefore, propose that the NAC 18.1 locus 

is a master regulator of apple ripening, and alleles at this locus modulate numerous ripening-

associated phenotypes including harvest date, firmness, and the expression of VOCs. 

I found strong associations at a single locus (chromosome 2 at 1,120,527 bp) in the 

genome for various ester compounds: 2-methyl-butyl acetate, isobutyl acetate, and hexyl acetate. 

This region in the genome encodes genes such as ribosomal protein S11-beta (MD02G1015400) 

and HXXXD-type acyltransferase (AAT1) (MD02G1013900). The AAT1 gene was involved in 

the production of esters by using the alcohols as substrates in an oxygen-dependent reaction 

where an acyl group is transferred from acyl-CoA to the oxygen and an alcohol’s hydroxyl 

group., forming an ester (Espino-Díaz et al., 2016). At the aforementioned locus on chromosome 

2, I also found a strong association for hexyl acetate. This compound has been linked to soft 

scald in apples (Wills, 1972). Exploring the genes around this locus may hold the key to 

addressing this disease in apples. Finally the results also showed a significant association for 2-4-

hexadienal in the middle of 2-oxoglutarate (2OG) Fe(II) dependent oxygenase superfamily 

(MD07G1005600). It was not clear what impact this gene or the markers nearby this locus have 

on the production of this VOC. This lack of clarity on potential functions of the loci around the 

strongly associated compounds is due to relatively poor annotation of the apple genome. Non-

model eukaryotic genomes generally are poorly annotated due to their large size and intron-
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containing genes make them difficult substrates for annotation (Liolios, 2006). Future studies 

with high-density markers with improved reference genome annotations will provide more 

details in terms of the potential causal alleles.  
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Table 1 –– The VOCs strongly associated with the genomic variation tabulated according to their 

chromosome positions. The p-value represents the significance of association after Bonferroni 

correction for multiple comparisons. The SNP positions are based on GDDH13 v1.1 reference 

genome (Zhang et al., 2019). 

Compound Chr Position 
Allel

e 
p-value Nearby Candidate Genes 

2-4-hexadienal 7 576999 G 5.28x10-08 

2-oxoglutarate (2OG) Fe(II) dependent 

oxygenase superfamily (MD07G1005600) ; 

Rad21/Rec8-like family protein (

MD07G1005000) ; C2 calcium/lipid-binding 

plant phosphoribosyltransferase family 

protein (MD07G1005400) ; Ribosomal 

protein L6 family protein (MD07G1005300) ; 

tetratricopeptide repeat (TPR)-containing 

protein (MD07G1005500), and AAA-type 

ATPase family protein (MD07G1006000) 

2-methylbutyl 

acetate 
2 1120527 A 3.64x10-18 

ribosomal protein S11-beta (MD02G1015400) 

; RNA-binding KH domain-containing protein 

(MD02G1015700) ; HXXXD-type acyl-

transferase family protein (AAT1) 

(MD02G1013900) 

hexyl acetate 2 1120527 A 1.29x10-16 

isobutyl acetate 2 1120527 A 3.74x10-20 

butyl acetate 2 1164704 A 5.16x10-19 N-acetyltransferase (MDP0000162960) 

n-propyl-acetate 2 1331428 T 7.15x10-18 
translation initiation factor activity molecular 

function (MDP0000160803) 

pentyl acetate 2 1331428 T 1.28x10-20 
hydrolase activity molecular function 

(MDP0000199630) 

1-butanol 3 30698039 A 1.05x10-11 NAC18.1 

1-hexanol 3 30698039 A 3.42x10-11 NAC18.1 

 



 

22 

 

CHAPTER 5 –– CONCLUSIONS 
 

Apples are one of the world’s most important fruit crops. However, the few elite varieties 

that are on market have been bred for production-related traits such as firmness and storability. 

Apple flavour, which is arguably the most important trait for consumers, has been largely 

ignored in commercial breeding programmes. Flavour is a complex trait determined in part by 

the aroma of apples. In this study, I have laid the groundwork for understanding the aroma-

producing compounds (i.e., VOCs) in apples. I quantified 106 VOCs across 515 apple varieties 

and coupled these data with over 250,000 genetic markers from across the genome with the aim 

of identifying genomic regions that control apple aroma production. 

By analyzing this multi-dimensional VOC dataset, I found that esters were the largest 

group of VOCs identified. Knowing from the literature that these are the most important 

compounds involved in aroma production, my work makes the case that improving apple aroma 

will likely involve altering the abundance of esters in some shape or form. Further, I find a single 

locus in the genome on chromosome 2 (1120527 bp) which is responsible for the variation in the 

abundance of most important esters such as hexyl acetate and 2-methylbutyl acetate. This 

suggests that there is a single regulator at the top of the pathway involved in ester production. 

Taken together, these insights about potential ester regulation provide novel avenues for 

evaluating the changes in ester on the fruit flavour. 

Previous works in the literature have shown the association of NAC18.1 gene with the 

variation in harvest date, firmness and other ripening processes in apples. My research expands 

on this understanding by providing additional layer of information that the variation in 1-hexanol 

and 1-butanol (two of the most important alcohols) is also associated with NAC18.1 gene. We, 

therefore, propose that the NAC 18.1 locus is a master regulator of apple ripening, and alleles at 

this locus modulate numerous ripening-associated phenotypes including harvest date, firmness, 

and the expression of VOCs. 

This exploratory study confirms previous knowledge of VOCs (such as esters being the 

largest group of VOCs in apples), as well as brings novel insights such as the involvement of 

NAC18.1 in alcohol production. Most importantly, this study provides potential gene targets for 

altering and evaluating the aroma of apples.  
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APPENDIX B –– ASSAY METHODS FOR DETECTING INDIVIDUAL 

MARKERS 
 

B.1 –– Kompetitive Allele Specific PCR (KASP) genotyping assay for citrimalate synthease 

SNP 

 

Methods: KASP assays were run on genomic DNA samples normalized in 384-well plates. 

Primer sequences for the assay can be found in Table B1.  

 

Primers used in the KASP assay. 

 

Primer Name Primer Sequence (5’ – 3’) 

 

MD_CMS_KASP

_G2 

GAAGGTGACCAAGTTCATGCTatgccagtgg

aattcacg 

MD_CMS_KASP

_C2 

GAAGGTCGGAGTCAACGGATTatgccagtgg

aattcacc 

MD_CMS_387_

R3 

AACTGCAAAATAAAAGTTAATATGGAA

A 

 

 

Each assay (5ul reaction) was run using the following reagents: 

 

0.07 µl of 100 µM primers 

2.5 µl KASP mastermix 

2.5 µl of 3 ng/µl DNA 

 

We used the following program on a CFX cycler: 

 

Stage 1: 94 °C for 15 minutes (Hot-start activation) 
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Stage 2 (Touchdown):  

94 °C for 20 seconds 

61 °C for 1 minute 

(decrease by 0.6°C per cycle) 

[REPEAT 10x] 

Stage 3 (amplification): 

 94 °C for 20 seconds 

55 °C for 1 minute 

[REPEAT 26x] 

 

The plates were then read in BioRad CFX for 1 minute at 37 °C. 

 

B.2 –– High-resolution DNA melting (HRM)-based assay method to detect redTE 

 

Methods: 

 

High-Resolution DNA melting (HRM)-based genotyping assays were run on genomic DNA 

samples normalized in 384-well plates. Primer sequences for the assay were taken from Zhang et 

al. (2019) and can be found in Table 1.  

 

Table B1. Primers used in the HRM assay. 

 

Primer Name Primer Sequence (5’ – 3’) 

 

redTE_F GGTCACCCAACCCACACTGGGCCTTG 

redTE_R CGGCCGCAATCGCAAGACGCAGA 

 

 

Each assay was run using the following reagents: 
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0.1ul of 100uM primers 

2ul of 5ng/ul DNA 

2.025 ul sterile water 

0.5ul of 10x PCR buffer 

0.05ul of 5U/ul Taq 

0.125ul 10x Evagreen Dye 

0.2 ul of 10mM dNTPs 

 

We used the following program on a CFX cycler: 

 

95°C for 3:30 minutes 

95°C for 30 seconds 

60°C for 30 seconds 

72°C for 30 seconds 

[REPEAT 34x] 

72°C for 5 minutes 

 

The plates were denatured for 3-5 minutes before they were read using a Lightscanner HR384 

(Biofire) and LightScanner Software with Call-IT 2.5 in ‘amplicon genotyping’ mode.  

 

 

  



 

34 

APPENDIX C –– SUPPORTING INFORMATION 
 

 

 

Figure S 1 –– Distribution of abundance value for benzaldehyde-d8 standard across the 

dataset. The  test statistic and significance value where calculated using a Shapiro-Wilks test for 

normality. 
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Figure S 2 –– Manhattan plot for 1-butanol along with QQ-plot. 

 

 

 

 

Figure S 3 –– Manhattan plot for 1-hexanol along with QQ-plot. 
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Figure S 4 –– Manhattan plot for 2-4-hexadienal along with QQ-plot 

 

 

 

 

Figure S 5 –– Manhattan plot for butyl acetate along with QQ-plot. 
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Figure S 6 –– Manhattan plot for n-propyl acetate along with QQ-plot. 

 

 

 

 

Figure S 7 –– Manhattan plot for pentyl acetate along with QQ-plot. 

 

 

 

 

Table S 1 –– A matrix of volatile compound abundance data for each apple variety. The apple id 

is a unique identifier of apple variety and is connected with the apple trait data from Watts et al. 

(2021). 

 

 


