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ABSTRACT 

Remote sensing has become the greatest data source for large-scale studies due to the availability 

of remotely sensed data from a variety of sensors on various platforms with a wide range of spatial 

and temporal resolutions. Landsat-8, Sentinel-2A, and Planet imaging data were used in this study 

to generate LULC maps, crop maps, and crop evapotranspiration (ETc) maps using machine 

learning methods. The outcomes of the first objective proved that using Landsat-8 and Sentinel-

2A-based indices can reduce the need for ground truth data for LULC mapping. Without relying 

on satellite data, the results of this study also revealed that random forest (RF) is a superior 

classifier for LULC mapping than k-nearest neighbour (K-NN) and k-dimensional tree (KD-Tree). 

The results of the second objective showed that when multitemporal NDVI data was merged with 

multitemporal Planet imagery, the overall accuracy of crop maps using support vector machine 

(SVM) and decision tree (DT) increased. According to the findings of the third research, created 

ETc maps with a resolution of 3 m can aid farmers in precisely estimating water crop requirements.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

 A decision support system (DSS) is needed to manage natural resources for sustainable and 

advanced agriculture under the concept of precision agriculture. Such DSS may include the use of 

land use and land cover (LULC) maps that are not only needed for natural resource management 

but also for crop yield estimation (Doraiswamy et al., 2004; Cihlar, 2000). LULC maps help to 

identify effective strategies to deal with the challenges of economic policies and environmental 

studies (Topaloǧlu et al., 2016). In previous attempts, agricultural land use information was mostly 

updated by the farmers and land surveys to identify the crop type and land cover change. Such 

conventional methods provide detailed information about soil and its cover but are expensive due 

to labour costs for collecting ground truth data (Manuel, 2007). A low-cost LULC mapping 

technique is always desirable, especially for large areas. The use of multiple vegetation indices has 

the potential to develop an economic mapping methodology. This may be accomplished by 

creating the training vectors for LULC mapping (Muavhi, 2020). This approach can limit the need 

for ground truth data for LULC mapping.   

Preparing the crop maps is challenging as the discrimination between different crops is 

problematic due to several factors, such as the same development patterns, similarity between other 

crops, and variability between the same crops and cloudy conditions (Peña-Barragán et al., 2011). 

Numerous vegetation indices are used to increase the mapping accuracy, but the normalized 

difference vegetation index (NDVI) and normalized difference water index (NDWI) are commonly 

used in crop mapping (Hao et al., 2015; Peña et al., 2014).  
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Field crops including, barley, oats, wheat, canola, corn, soybean, and potato are grown in 

Prince Edward Island (PEI), Canada. Agriculture and Agri-Food Canada (AAFC) used Landsat-8 

and Sentinel satellite data to prepare crop inventory maps at 30 m resolution in conjunction with 

machine learning algorithms. In 2020, the overall accuracy of 85 % was achieved by AAFC in 

PEI. Researcher’s documents that the accuracy of crop maps can be increased by using the high-

resolution satellite data alone and in conjunction with vegetation indices. Planet satellite takes the 

earth images at 3 m resolution. The developed higher accuracy maps help the government to 

estimate the crop acreage and distribution. The crop maps are used in various models to estimate 

the crop yield and help to prepare the crop evapotranspiration maps (ETc) for quantification of the 

actual crop water requirement.  

 Potatoes and their products are the primary agricultural commodities of the Island.  Potato is 

the world's fourth most important food crop (Zhang et al., 2017). About 34,600 ha of the total land 

area (566,560 ha), is reserved for potato production (Agriculture and land department PEI, 2019). 

The potato industry contributes $1 billion annually to the PEI economy (Mitch Macdonald, 2020). 

Contributing about 10.8% to the provincial gross domestic product (GDP) and 12% of the jobs for 

the local islanders each year (Agriculture and Agri-Food Canada, 2017). These figures can be 

further improved through adopting precision agriculture techniques and good agriculture 

management practices. Soils of PEI are sandy loam that contains moderately high silt content and 

are well-drained, therefore, suitable for potato production (SOMS, 2018). The nature of such soils 

and the future climate change prediction would require irrigation water management for potato 

crops in addition to other good agriculture practices. An up-to-date crop type map is always 

required to design the irrigation schedules of a particular crop at a regional scale (El-Magd & 

Tanton, 2003).  
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Reference evapotranspiration (ETr) is used to calculate crop ETc is considered as actual crop 

water requirement and is affected by weather and actual crop conditions (Adamala et al., 2016). 

Several researchers have used remote sensing techniques to estimate ETc at a local and regional 

scale and estimate the crop coefficient based on vegetation indices (Lei & Yang, 2014; Kjaersgaard 

et al., 2011). The Penman-Monteith equation has a standard method to estimate ETr and is 

considered a point-based method (Allen et al., 2005). The Hargraves method is an alternative to 

estimate the ETr when climatic parameters are limited. 

1.2 Knowledge Gap  

The supervised machine learning algorithms achieve higher classification accuracy 

compared to the unsupervised machine learning algorithms. Desai and Umrikar (2012) stated that 

different machine learning classification algorithms achieve different accuracies based on different 

types of satellite images. For LULC maps, ground truth data are required for training the machine 

learning algorithms and validating the results. The collection of ground truth data is time-

consuming and expensive to train the machine learning algorithms for classification. In this 

research, the proposed framework, the remote sensing indices, will be used to create the training 

dataset for main classes, including agriculture, forest, bare soil, and built-up area.   

The crop type mapping with optical satellite imagery is affected by weather conditions 

(Jiang et al., 2019). The integration of optical multitemporal vegetation indices such as NDVI, 

NDWI with high-resolution satellite imagery can be used to increase crop mapping accuracy 

(Abubakar et al., 2020; Forkuor et al., 2014). AFFC prepared the crop maps for Canada, at 30 m 

resolution. This study will explore the potential of Planet imagery for potato crop mapping in PEI 

using machine learning algorithms. 
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The calculation of ETc is critical for optimal water management (Adamala et al., 2016). 

The point-based approaches to computed ETc are time-consuming and costly (Allen et al., 2005). 

Several studies have employed remote sensing techniques to determine ETc on a local and regional 

scale, as well as to calculate the crop coefficient using vegetation indicators (Lei & Yang, 2014; 

Kjaersgaard et al., 2011). Using remote sensing methods, Reyes-González et al. (2018) and 

Adamala et al. (2016) computed ETc of wheat and corn for West Bengal and Northern Mexico. An 

exhaustive literature search revealed no in-depth study using precision agriculture research tools 

such as remote sensing and artificial intelligence to predict ETc for potato crops on PEI. 

1.3 Objectives 

The specific objectives of this research study are: 

1. Limiting the collection of ground truth data for land use land cover maps with machine 

learning algorithm  

2. Integration of multitemporal Planet imagery and NDVI for improving the crop mapping 

in Prince Edward Island, Canada: A case study 

3. Satellite based crop evapotranspiration mapping to access the variation concerning the 

crop development 
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CHAPTER 2: LIMITING THE COLLECTION OF GROUND TRUTH 

DATA FOR LAND USE LAND COVER MAPS WITH MACHINE 

LEARNING ALGORITHMS 
 

This chapter was published in the International Journal of Geo-Information, Volume 11, Issue 6. 

ABSTRACT 

Land use and land cover (LULC) classification maps help understand the state and trends of 

agricultural production and provide insights for applications in environmental monitoring. One of 

the major downfalls of the LULC technique is inherently linked to its need for ground truth data 

to cross-validate maps. This paper aims at evaluating the efficiency of machine learning in limiting 

the use of ground truth data for LULC maps. This was accomplished by (1) extracting reliable 

LULC information from Sentinel-2 and Landsat-8  images, (2) generating remote sensing indices 

used to train machine learning algorithms and (3) comparing the results with ground truth data. 

The remote sensing indices that were tested include the difference vegetation index (DVI), the 

normalized difference vegetation index (NDVI), the normalized built-up index (NDBI), the urban 

index (UI), and the normalized bare land index (NBLI). Extracted vegetation indices were 

evaluated on three ML algorithms, namely, Random Forest (RF), K-Nearest Neighbour (K-NN), 

and K-Dimensional Tree (KD-Tree). The accuracy of these algorithms was assessed with standard 

statistical measures and ground truth data randomly collected in Prince Edward Island, Canada. 

Results showed that high kappa coefficient values were achieved by K-NN (82% and 74%), KD-

Tree (80% and 78%), and RF (83% and 73%) for Sentinel-2A and Landsat-8 imagery, respectively. 

RF was a better classifier than K-NN and KD-Tree and had the highest overall accuracy with 

Sentinel-2A satellite images (92%). This approach provides the basis for limiting the collection of 
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ground truth data and thus reduces the labour cost, time, and resources needed to collect ground 

truth data for LULC maps.  

 

Keywords: Remote sensing indices, machine learning, ground truth data, LULC mapping, 

Satellite imagery   
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2.1 Introduction 

Land use and land cover classification is the most widely researched topic in the remote 

sensing field as it provides valuable information for urban planning, resource management, 

environmental monitoring, and agricultural mapping ( Nguyen et al., 2018). LULC classification 

can be used to highlight historical trends or provide evidence-based tools in decision-making for 

resource management (Burkhard et al., 2012). For several years, satellite imagery has been used 

in LULC classification in a variety of statistical and empirical methods. Unfortunately, these 

methods have several limitations on accuracy assessment, as each satellite has different spectral, 

temporal, and radiometric resolutions (Phiri & Morgenroth, 2017). Recently, the data science and 

remote sensing communities have successfully achieved higher accuracy due to the launch of new 

satellite constellations and machine learning algorithms (Abdi, 2020). Furthermore, free access to 

data from earth observation satellites, including Sentinel-2 and Landsat-8, has created competition 

among big data scientists to increase classification accuracy with new classification algorithm 

approaches. 

Population growth is a primary driving factor for LULC transformation (Showqi et al., 

2014). As a region's population grows, so does the demand increased for built-up space and food, 

while other land cover types such as barren land, agricultural, and forest decline. Food 

consumption is increasing due to the world's population more than doubled between 1961 and 

2016 (United Nations Department of Economic and Social Affairs_Population Division, 2021). 
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Cropland covers about a third of the land while grazing pastures and meadows cover the remaining 

two-thirds. Farmland area per capita has decreased substantially from 0.45 hectares per capita in 

1961 to 0.21 hectares per capita in 2016. Urban areas expand outwards when agricultural and other 

natural land cover types are transformed into developed areas. Rapid urbanization triggered rapid 

economic growth and land-use changes, raising the demand for efficient natural resource 

management (P. Li & Moon, 2004). Increased population induced rapid urbanization, and the 

resulting economic growth and land-use changes heightened the demand for efficient natural 

resource management (Vajda & Santosh, 2017). If the land cover changes are not continuously 

monitored with an increasing population, it may negatively impact the environment and resource 

management of the area (Mohan et al., 2011). An up-to-date and cost-effective method is required 

to prepare the LULC map for its resource management and planning and is helpful to meet the 

increased food demand. 

National and regional LULC maps like the AAFC Annual Crop Inventory are produced 

yearly and help to understand the state and trends in agriculture production in Canada. The method 

commonly used for preparing these maps consists of collecting ground truth data and training a 

classifier (Serra et al., 2009). Although this technique can be very accurate, the process of 

collecting reference data requires extensive planning, time, and important financial resources (Li, 

et al., 2017). In addition, if ground truth data cannot be collected for a year due to unforeseeable 
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events, the creation of LULC maps can be compromised and create a gap in the data. This situation 

occurred in 2020 when the AAFC Annual Crop Inventory could not be completed in Nova Scotia 

due to COVID-19 travel restrictions. These restrictions prevented ground data collection, making 

it impossible to define some agricultural classes (Fisette et al., 2014). Although ground truth data 

remain essential to validate LULC maps, this situation highlights the importance of developing 

new methods that would limit the number of ground truth data for LULC maps generation. 

  The quantity of training and validation data is another factor that can influence the 

classification accuracy of machine learning algorithms (Foody et al., 2006). For example, machine 

learning algorithms perform better with larger training data sets than with smaller data sets (Lu & 

Weng, 2007). The minimal number of training samples should be 10 times the number of variables, 

according to a long-standing 'rule of thumb' in machine learning (Piper, 1992). Unfortunately, 

there appears to be no comparable guidance in the literature regarding the minimum number of 

samples required for machine learning classification. According to the (Heydari & Mountrakis, 

2018) classification method, the amount of input variables, and the size and spatial heterogeneity 

of the mapped area can all influence the number of training samples required in classification. 

Large, precise training data sets are required, according to the general conclusion (Huang et al., 

2002). However, in the realm of applied remote sensing, training and validation data were both 

costly and scarce (Ramezan et al., 2021). As a result, most remote sensing studies used a single 
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fixed data set to test the accuracy of machine learning algorithms (Maxwell et al., 2018; Jamali, 

2019).  

Several supervised and unsupervised algorithms have been developed to process satellite 

images for LULC classification. Unsupervised classification algorithms use automated statistical 

algorithms to separate LULC classes without training data. Vishwanath et al. (Vishwanath et al., 

2016) used an unsupervised algorithm to distinguish the land cover features in remotely sensed 

images. They used the K-means cluster algorithm to classify the LULC classes effectively. In 

another study, Shivakumar and Rajashekararadhya (2018) tested the maximum likelihood 

classifier for mapping the LULC classes under different scenarios.   

Supervised classification algorithms are very efficient at mapping LULC features. The supervised 

classification method involves the representative samples from each predefined class, followed by 

the training of algorithms to learn about LULC classes for efficient classification. Related work 

by Mather and Tso and Abbas and Jaber (Mather & Tso, 2016; Abbas & Jaber, 2020) documented 

that supervised classification algorithms are likely to perform better than unsupervised 

classification algorithms.  

LULC maps require an appropriate classification algorithm to solve real-world problems 

with high accuracy (Desai & Umrikar, 2012). Several studies have shown the potential of machine 

learning and statistical algorithms in LULC classification. For example, Desai and Umrikar (2012) 
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tested two supervised classifiers, namely maximum likelihood and minimum distance for LULC 

classification using Landsat imagery. The maximum likelihood classification of Landsat data had 

higher accuracy than the minimum distance method. Nguyen et al. (2021) used the ground truth 

data to train the machine learning algorithms for LULC classification. Other studies by Jia et al. 

(2014) tested support vector machine (SVM) and maximum likelihood algorithms on Landsat-8 

imagery. The maximum likelihood classifier results were more accurate than the results of SVM. 

Over time, more advanced algorithms have been used in LULC classification, including decision 

trees (DT) and random forest (RF). Thanh Noi and Kappas (2017) tested RF, k-nearest neighbour 

(K-NN), and SVM using training sample sizes generated from Sentinel imagery. Results from the 

study showed that SVM had the highest accuracy and the least sensitivity to the size of the training 

sample. However, K-NN and RF classifiers attained higher accuracy with a large training size 

compared to SVM. 

The literature also reveals that every classification method performs differently depending 

on the types of satellites used to capture images. For example, Jia et al. (2014) compared Landsat-

7 and Landsat-8 using similar algorithms and found that the latter showed higher accuracy than 

the former satellite. Similarly, Ali et al. (2018) recorded higher accuracy on ALOS-2 dual-

polarization bands than the Landsat-8 optical imagery data with a maximum likelihood classifier. 

Clerici et al. (2017) tested Sentinel-1 and Sentinel-2 satellite imagery to enhance mapping 



12 

 

accuracy and found higher accuracy for Sentinel-2 data than Sentinel-1 data in conjunction with 

the SVM algorithm. Above mentioned results proved that the accuracy of LULC maps depends on 

the choice of satellite and the classification algorithms used.  

Due to the high cost associated with the collection of ground truth points and the heightened 

demand for efficient natural resource management, the objective of this study is to evaluate the 

efficiency of machine learning algorithms in limiting the use of ground truth data for LULC maps. 

This will be accomplished by extracting LULC information from Sentinel-2 and Landsat-8 satellite 

images and by generating remote sensing indices used to train machine learning algorithms. The 

results of this paper are divided into three parts. First, results from the machine learning algorithms 

were evaluated against ground truth data. Second, standard statistical measures were used to 

evaluate the performance of each machine algorithm. Third, algorithms were compared to each 

other to understand their performance better.   

The paper has been divided into two main sections i.e., the material and method and the results 

and discussion section. The material utilized in this investigation and its processing details were 

mentioned in the material and method section. The accuracy of the machine learning algorithm is 

examined and compared in the result and discussion section with the findings of prior studies. 
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2.2 Materials and Methods 

2.2.1 The Study Area 

The study area consists of PEI one of Canada's smallest provinces with a land area of 

approximately 5,669 square kilometres (Figure 2-1). In 2019, the province had a total population 

of 157,262, which represents less than 0.5% of Canada's total population (Government of Prince 

Edward Island, 2020). The climate on the Island is mild and strongly influenced by the warm 

waters of the Gulf of St. Lawrence (Department of Environment, n.d.). PEI has a wide variety of 

landscape use, including forests, agriculture, meadows, water, wetlands, and urban areas. 

 

 

Figure 2-1. Prince Edward Island, Canada 
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2.2.2 Data Acquisition 

Two types of satellite images were evaluated since literature reveals that classification 

methods perform differently on different types of satellite imagery (Asokan et al., 2020). A total 

of seven satellite scenes were acquired from the USGS website from July 7th to July 28th, 2019 

(Table 2-1).  

The Sentinels satellites are a constellation that consists of two twin satellites, Sentinel-2A and 

Sentinel-2B. When these satellites operate simultaneously from the same orbit, phased at 180° to 

each other, they can monitor the variability in land surface conditions every 5 days (Drusch et al., 

2012). Sentinel-2 satellites acquire optical imagery at a resolution ranging from 10 to 60 meters 

depending on the spectral bands. The satellite coverage limits are between 56o latitude South and 

84o longitude North with a swath width of 290 km.  

Table 2-1. List of satellite images used in the study. 

 

The Landsat-8 satellite is also an Earth observation satellite equipped with two payloads 

that collect 11 spectral bands with a spatial resolution ranging from 30 to 100 m. Landsat-8 was 

selected due to its enhanced thematic mapper in the range of visible bands compared to other 

Satellites Number 

of bands 

Resolution 

(m) 

Acquisition date 

(dd/mm/yyyy) 

Path-row/tile 

(Number) 

Cloud Cover 

(%)  
 

 

Sentinel-2A 

 

 

13 

 

 

10-60 

26-07-2019 T20TLS ≤10 

16-07-2019 T20TMT ≤10 

20-07-2019 T20TNS ≤10 

28-07-2019 T20TMS ≤10 

 

Landsat-8 

 

11 

 

15-100 

26-07-2019 008-028 ≤10 

26-07-2019 007-028 ≤10 

07-07-2019 007-027 ≤10 
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Landsat satellites (Jia et al., 2014). The Landsat-8 has improved capabilities from the previous 

generation due to the addition of new spectral bands in the blue spectrum, the use of two new 

thermal bands and an enhanced duty cycle that has increased the daily image collection capacity 

of the satellite (Richardson & Wiegand, 1977).  

  The Landsat 8 satellite scenes were selected with the lowest cloud cover available to reduce 

scattering and absorption of light in the atmosphere (Table 2-1). Additionally, the satellite scenes 

were taken from the collection-1 level-1, which was already geometrically and radiometrically 

corrected.  

2.2.3 Data Preparation  

The Sentinel-2A and Landsat-8 images were processed using the Sentinel Application 

Toolbox version 8.0.0 (SNAP). All Sentinel-2A and Landsat-8 satellite image bands were 

resampled in SNAP using the nearest neighbour method into 20 and 30 m resolutions, respectively. 

The resampled images were mosaicked to cover PEI’s provincial boundary using SNFAP built-in 

raster mosaicking tool. Three Landsat 8 scenes were mosaicked to cover the entire Island. Two of 

these scenes were collected on 26 July 2019, and the other one was acquired on 19 July 2019. The 

satellite images were reprojected to a local coordinate system, imported in ArcGIS Pro, and used 

to create training data for the LULC maps.  

2.2.4 Remote Sensing Indices and LULC Classes 

Vegetation indices such as NDVI or soil adjusted vegetation index (SAVI) can be obtained 

from remotely sensed data. Vegetation indices are simple to generate from multispectral satellite 

imagery and effective algorithms for evaluating vegetation cover quantitatively and qualitatively. 

Similarly, urban index, such as normalized built-up index (NDBI) can be used to identify urban 
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features on satellite images. In the hands of trained geospatial analysts, remote sensing indices can 

highlight different types of land cover and can be particularly useful to train classifiers used in 

LULC maps. 

In this study, difference vegetation index (DVI) and NDVI were used to identify vegetation 

cover (P. Li & Moon, 2004). Since agriculture and forest have similar values in both indices, the 

barren lands were identified using the normalized bare land index (NBLI) index was used to 

overcome this issue Figures 2-2 (A1,5 & B1,5). The NBLI index is effective in highlighting soil 

composition and is helpful to differentiate agriculture from forested areas Figure 2-2(A5 & B5) 

(Li, Wang, Zhong, Zhang, et al., 2017). Urban features were identified with the NDBI and built-

up index (UI). These indices were used because they distinguish barren land from urban features 

(Li, Wang, Zhong, Zhang, et al., 2017). Results of the NDBI index presented in Figure 2-2 (A3 & 

B3) showed that some pixels representing urban areas on the Landsat-8 and Sentinel images were 

mixed with bare land features. This issue was resolved by using the UI index since urban features 

can be identified with more precision in Figures 2-2 (A4 & B4). The minimum and maximum 

values of vegetation indices between 0 and 1 were shown in the legend in Figures 2-2. To construct 

the training samples for LULC mapping, maximum value pixels were used in each index. 

 

Table 2-2. Remote sensing indices for highlighting LULC classes 

Type Index Formulas References 

Vegetation Index 

 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Richardson & Everitt, 1992) 

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Tucker, 1979) 
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Urban index 

NDBI 

 

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 (Zha et al., 2003) 

UI 
𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅
 (H. Li, Wang, Zhong, Su, et al., 2017) 

Barren land index NBLI 
𝑅𝑒𝑑 − 𝑇𝐼𝑅

𝑅𝑒𝑑 + 𝑇𝐼𝑅
 (H. Li, Wang, Zhong, Su, et al., 2017) 

 

Four LULC classes, namely agriculture, urban, barren land, and forest, were identified in 

the study area. were used to delineate the LULC classes. These indices were used for extracting 

the training samples for LULC classification in ArcGIS Pro. A total of 2000 training samples, 500 

samples for each class, were created to train the classifier. The sample size was determined to be 

large enough since it adequately cover the entire study area without exhausting the classifier 

computing power.  

Table 2-3. Description of land use land cover classes used in this study. 

LULC Class Description 

Agriculture Cultivated land, crop fields, vegetable fields 

Urban Residential, commercial, industrial, mix urban, other urban 

Barren Land Exposed soil, construction site, fallow land 

Forest Deciduous forest and mix forest, shrubs, and other 
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Figure 2-2. Sentinel-2A and Landsat-8 Indices are used to classify the agriculture, urban, forest, 

and barren land cover. The right portion of each panel shows the details of the selected portion. 
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2.2.5 Machine Learning Algorithm 

2.2.5.1 Random Forest Classifier 

The RF classifier is a combination of tree predictors with each tree depending on an 

independently sampled random vector value with similar distribution in all trees (Figure 2-3) 

(Breiman, 2001). Boosting and bagging are two ensemble methods capable of squeezing additional 

predictive accuracy out of classification algorithms. Bagging algorithms are used to reduce the 

complexity of the models that overfit the training data; while the boosting algorithm increases 

models' complexity. The training samples, which are not used in the training sample were included 

in the evaluation and were referred to as 'out of bag' samples (Abdi, 2020). In addition, the RF 

classifier is easy to use since it only uses two parameters (e.g., number of variables at each node 

and number of trees), which is not sensitive to the parameter value (Liaw & Wiener, 2002). The 

number of trees and predictors in RF classification are vital parameters to achieve the highest 

accuracy possible. For assessing the accuracy of the current RF output, these parameters were set 

at 50 for the number of trees and a maximum number of tree depth and sample per class were set 

as 30 and 500, respectively.  
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Figure 2-3. A pictorial view of the Random Forest working principle. 

2.2.5.2 K-Nearest Neighbour  

The K-NN is a supervised machine learning algorithm that can be used to solve 

classification and regression problems. It was first discussed in an unpublished report by (Fix, 

1951), followed by more detailed K-NN rules published by (Cover & Hart, 1967). It categorizes 

the objects based on the nearest neighbour class. The major deciding factor in the classification 

task is the number of neighbours (k) used to classify an object (Figure 2-4). Small k values indicate 

relatively inaccurate results while higher k values indicate a more credible result (Karegowda et 

al., 2012). Through trial and error, the optimal k value was found and set to k = 20.  
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Figure 2-4. A pictorial view of the K-Nearest neighbor working principle. 

2.2.5.3 K Dimension Tree  

KD-Tree is the most common binary algorithm used for the nearest neighbour algorithm 

family. In KD-Tree classifiers, the clusters are developed based on the median of x and y axes 

(Figure 2-5). KD-Tree categorizes points based on the projections in lower dimensions 

(Narasimhulu et al., 2021). For lower-dimensional datasets, the KD-Tree is designed to perform 

better compared to other algorithms such as Ball and Tree (Dolatshah et al., 2015). For accuracy 

comparison of KD-Tree on both satellites, the number of training samples was set at 2000 and the 

number of neighbours was set at 20. Similar to the k value in the K-NN algorithm, the optimal 

number of neighbours was determined through trial and error.  
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Figure 2-5. A pictorial view of the K Dimension Tree working principle. 

2.2.6 Ground Truth Data for Validation and Model Evaluation Criteria 

Five sites on PEI were selected to collect ground truth data. Using a Real-Time Kinematic 

(RTK) GPS with sub-meter accuracy, a total of 200 validation points were collected at each site. 

These points were equally distributed in each class, meaning that 50 points were collected per class 

at each site. The same ground truth data were used to validate LULC maps generated with Sentinel-

2A and Landsat-8 imagery.  

Several statistical indicators were used to assess the accuracy of the models. The overall 

accuracy of the models was used to describe the correct proportion of mapped pixels. The overall 
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accuracy considers that 100% of all the classified reference sites are mapped accurately (Story & 

Congalton, 1986). The overall accuracy was calculated using the following formula: 

            Overall Accuracy (%) =  
Number of correctly classified pixels

Total number of referenced site pixels
× 100                 (2.1) 

Similarly, each LULC class's accuracy was determined using producer/user accuracies. 

Producer/user accuracy determines the real feature on the ground surface correctly shown on the 

classified map (Story & Congalton, 1986). According to the literature discussed in the 

introduction, the optimal values for the producer, user, and overall accuracy are around 80 to 85%. 

The producer and user accuracy were calculated using the following formula: 

  Producer/User Accuracy (%) =
Correctly classified pixels in one category 

Total  classified pixels in all categories
× 100        (2.2) 

The Kappa coefficient is another statistical indicator to evaluate classification accuracy. 

Kappa evaluates how well the classification has performed compared to the randomly assigned 

value. Its values range from -1 to 1, with the lowest value indicating that the classification is not 

better than a random classification. While a value close to a positive one indicates that the 

classification is significantly better than the random classification (McHugh, 2012). The Kappa 

coefficient was calculated using the following formula: 

          Kappa Cofficient =
(𝑇𝑆 − 𝑇𝐶𝑆) − ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙) 

𝑇𝑆2 − ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙) 
× 100           (2.3) 

where TS is the total number of samples, TCS is the total number of classified samples and 

column sum and row sum represent the total number of classified pixels for each class in each 

column and row, respectively.  
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2.3 Results  

2.3.1 Land Use Land Cover Mapping Results 

In prepared LULC maps (Figure 2-6), the yellow colour represents the agricultural area, 

the green colour represents the forest area, battleship grey represents barren land, and red 

represents the urban area.  

Classifier Landsat-8 Sentinel-2A 

 

 

 

 

KD-Tree 

  

 

 

 

RF 
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Figure 2-6. Remote sensing indices based LULC map prepared based on two satellite data. 

From the Landsat-8 imagery, the KD-Tree classifier detected the true positives for the 

agriculture class, e.g., 45 out of 50 with user accuracy of 90% and producer accuracy of 79% 

respectively (Figure 2-7(a) and Table 4). For Sentinel-2A imagery, the highest true positives were 

classified by the K-NN algorithm, e.g., 47 out of 50 for the agriculture class. The RF and K-NN in 

Landsat-8 and KD-Tree and RF in Sentinel-2A recorded true positives for agriculture classes 

ranging from 38-45 out of 50 (Figure 2-7(a, d)). Interestingly, the highest and lowest true positives 

for the agriculture class were recorded by the K-NN algorithm. This implies that the performance 

of classification may be improved by using finer resolution and more refined imagery (D. Chen et 

al., 2004; Rao et al., 2021).  

 

 

 

 

K-NN 
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Figure 2-7. Error matrix showing correct and incorrect training vectors of the evaluation samples 

by each machine learning algorithm. The error matrices used to calculate the producer and user 

accuracy shown are in Table 2-4. 

For the barren land class, the highest true positives were recorded by the KD-Tree classifier 

with the Sentinel-2A imagery, i.e., 49 out of 50 with a user accuracy of 98% and a producer 

accuracy of 80% (Figure 2-7(d) and Table 2-4) (Nguyen et al., 2020). However, the performance 
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of the KD-Tree classifier with Landsat-8 imagery for barren land class recorded relatively lower 

true positives, e.g., 42 out of 50. Similarly, the highest true positives for the urban forest class were 

recorded by random forest classifier with Sentinel-2A imagery. However, a relatively lower 

number of true positives was recorded for the forest class with Landsat-8 imagery, e.g., 32, 39, 

and 36 for KD-Tree, RF, and K-NN classifiers, respectively (Figure 2-7(a, b, c)). For the urban 

class, the highest average true positives were recorded for both satellite images. For the urban 

class, the RF algorithm with the Sentinel-2A satellite achieved the highest possible user accuracy 

(100%) compared to all other satellite-algorithm comparisons (Table 2-4). These results concur 

with the findings reported in the literature that mentions that the resolution, image characteristics, 

classification algorithms, and the need of the user affect the classification accuracy of LULC 

mapping (Chen et al., 2004; Nguyen et al., 2020). 

Table 2-4. User and Producer accuracies for LCLU types used in this study. 

 

 

 

Classifier Classes 
User Accuracy 

(%) 

Producer Accuracy 

(%) 

User Accuracy 

(%) 

Producer Accuracy 

(%) 

 Sentinel-2A Landsat-8 

KD-Tree 

Agriculture 80 93 90 79 

Barren Land 98 80 84 82 

Forest 78 85 64 86 

Urban 86 86 96 87 

RF 

Agriculture 88 94 86 81 

Barren Land 84 91 94 87 

Forest 94 84 78 92 

Urban 100 98 84 82 

K-NN 

Agriculture 94 89 76 79 

Barren Land 86 91 80 82 

Forest 80 80 72 84 

Urban 86 86 96 80 
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2.3.2 Satellite Accuracy Comparison 

For Landsat 8 imagery, the algorithm's kappa coefficient was recorded as 78, 80, and 74% 

for KD-Tree, RF, and K-NN, respectively (Figure 2-8). For Sentinel-2A imagery, the same 

algorithms recorded considerably increased kappa coefficient values, i.e., 2.5, 10, and 10.8% for 

KD-Tree, RF, and K-NN algorithms, respectively. Similarly, the average kappa coefficient was 

83.3% for the Sentinel-2A while the average was 77.3% for the Landsat-8.  

Figure 2-8. Kappa coefficient comparison of two satellites using different classifiers. 

Random Forest classifier's overall accuracy was recorded as 92 and 85% for Sentinel-2A 

and Landsat-8 satellites, respectively (Figure 2-9). The average accuracy of the KD-Tree classifier 

for both satellites was recorded to be 84.5%. The K-NN achieved 86 and 81% overall accuracy for 

Sentinel-2A and Landsat-8 satellites, respectively. A slightly lower average overall accuracy of 

83.5% was recorded for the K-NN algorithm in comparison with the KD-Tree classifier (Figure 2-

9).  
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Figure 2-9. Overall accuracy comparison of two satellites using different classifiers.            

2.4 Discussion  

The Sentinel-2A and Landsat-8 presently operate at medium resolution at 10, 20, and 30 

m. The resolutions of these two satellite bands are different. Before further processing, all Landsat-

8 bands were resampled to 30 m resolution, while Sentinel-2A bands were resampled to 20 m 

resolution. This study presented the potential of different remote sensing indices to create the 

training samples for LULC mapping in PEI in conjunction with three machine learning algorithms. 

The Island population is increasing and major land cover classes such as forest, agriculture, barren 

land, and urban will be affected. These rapid changes demand more effective methods to map land 

cover changes and conduct resource management analyses.  

The remote sensing indices, including DVI, NDVI, NDBI, UI, and NBLI, were selected to 

highlight agriculture, forest, barren land, and urban area. This approach to preparing LULC maps 

is much cheaper and faster than other classification methods traditionally used. Although, for some 

LULC classes, it is hard to find suitable remote sensing indices. For example, it is hard to 

distinguish between forests and agriculture using remote sensing indices. The NBLI was used to 
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overcome this problem because H. Li, Wang, Zhong, Zhang, et al. (2017) documented that the 

NBLI can highlight the soil composition at the pixel level, which helps distinguish between 

agriculture and forest (Figure 2C). The results from the experiment also verified the validity of 

this proposed method. 

In the last step, we used the same algorithms processing conditions (same training and 

validation data sets) to compare the Landsat-8 and Sentinel-2A optimal data sets for LULC 

mapping. The comparison results indicated that the overall accuracy of each algorithm highly 

depends on the input data on the results. For example, the highest overall accuracy of RF 92 % 

showed that RF offers the best classification results for Sentinel-2A; whereas KD-Tree and K-NN 

overall accuracy slightly decreased. Interestingly, RF also offers the highest overall accuracy 85% 

for Landsat-8; likewise, KD-Tree and K-NN overall accuracy slightly decreased compared to RF. 

All the results mentioned above proved that the outcomes of each classifier depend on the input 

data set. The results proved that RF is a suitable machine learning algorithm as compared to the 

KD-Tree and K-NN for land cover classification without considering input data sets. Therefore, it 

is necessary to compare the obtained results with the literature because it offers a realistic view of 

this study's results. 

  For example, Lowe and Kulkarni (Lowe & Kulkarni, 2015) used the RF, SVM, and 

maximum likelihood classifier for preparing the LULC map and achieved an overall accuracy of 

87, 83, and 77%, respectively. Another study from Franco-Lopez et al. (Franco-Lopez et al., 2001) 

prepared LULC maps with 13 classes using the K-NN algorithm and achieved an overall accuracy 

of 63%. These different results indicate that there are no clear rules for acceptable accuracy for 

any land cover type, but it depends upon the user and adoptive methodology. In any LULC 

classification, errors are present in the form of estimation and prediction (Salovaara et al., 2005). 
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So far, no clear rules have been defined on the acceptable accuracy range because different users 

have different concerns about classification accuracy (Olofsson et al., 2014). In addition, several 

factors influence the accuracy of classification such as image quality, classifier, number of classes, 

and number sample size (Nguyen et al., 2020). One study (Nguyen et al., 2020) used Sentinel-2 

data for LULC mapping in Vietnam with RF, K-NN, and SVM algorithms, and reported the 

highest accuracy by RF when the Training vector size was appropriate to cover the study area. RF 

achieved higher accuracy than the SVM by using Sentinel-1 data of the Brazilian Amazon (Chaves 

et al., 2020). These results indicate that Sentinel-2A and Landsat-8 data had satisfactory 

performance in LULC mapping. In (Nguyen et al., 2020) recommended RF for LULC 

classification because of ease in parameter selection in RF. The results of this study concur with 

the findings of (Nguyen et al., 2020). 

2.5 Conclusions  

This study proposed a methodology to produce LULC maps at less cost and in a quick 

manner by using three machine learning algorithms (KD-Tree, RF, and K-NN) and two satellites 

(Landsat-8 and Sentinel-2A). Timely updated maps can help the local authorities for better 

resource management and land use policy decisions. The proposed methodology to develop the 

LULC maps with remote sensing indices can be leveraged by researchers to determine the spatial-

temporal changes of LULC due to human activities. The results of this study demonstrated the 

potential of remote sensing indices to limit the need for ground truth data for LULC mapping. This 

would lower the labour cost, time, and resources required to generate LULC maps.  

In this study, training samples for four classes; forest, agriculture, urban and barren land 

were created on behalf of indices and these training samples were used in conjunction with the 

machine learning algorithms for LULC mapping. Prepared LULC maps based on this proposed 
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methodology showed promising results when it was validated with ground truth data. The six 

LULC maps, produced by running the three machine learning algorithms using the same training 

data for the two sources of imagery, were subjected to accuracy assessment to determine the 

effectiveness of the algorithms. resource 

Results from the study demonstrated that K-NN achieved an average kappa coefficient of 

82 and 74% and high overall accuracy of 86 and 81% for Sentinel-2A and Landsat-8, respectively. 

In comparison, the KD-Tree had an average kappa coefficient of 80 and 78% and overall accuracy 

of 85 and 84% for Sentinel-2A and Landsat-8. Random Forest achieved the highest average Kappa 

coefficient of 83.3 and 73.3% and high overall accuracy of 92 and 85 % for Sentinel- 2A and 

Landsat-8 data, respectively, compared to K-NN and KD-Tree.   

Further research should be conducted in two tasks; (1) the evaluation of this methodology 

on satellite images with higher resolution as well as refining the data by training samples for 

subclasses of crops such as potato, wheat, rice, maize and grasses. (2) The quantity and quality of 

training samples have an impact on land cover classification. By assuring quality and increasing 

the training sample size, classification accuracy can be enhanced. The ideal combination of 

training sample sizes will also be researched in the future.  
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CHAPTER 3: INTEGRATION OF MULTITEMPORAL PLANET 

IMAGERY AND NDVI FOR IMPROVING THE CROP MAPPING IN 

PRINCE EDWARD ISLAND, CANADA: A CASE STUDY 

ABSTRACT 

 Crop mapping using high-resolution satellite images and machine learning techniques has 

increased our understanding of the agroecosystem and has been used to inform policy. High-

resolution remote sensing images and vegetation indices like the normalized difference vegetation 

index (NDVI) are routinely used to construct precise and accurate crop maps, which are then 

checked using ground truth data. The application of machine learning algorithms for crop maps 

has recently shown promising results in boosting workflow performance, but it must be evaluated 

in a variety of scenarios. Using high-resolution satellite images, this study will assess the 

performance of SVM and DT algorithms for crop mapping on Prince Edward Island (PEI), Canada. 

This was achieved by acquiring multitemporal Planet satellite imagery during specific periods to 

cover the growth cycle of the targeted crops. SVM and DT algorithms were tested with four 

spectral bands and vegetation indices, namely Red, Green, Blue, NIR, and NDVI, at a spatial 

resolution of 3 meters. SVM and DT training and validation data were split following an 80/20 

ratio, respectively. The validation data were used to generate confusion matrixes, producer 

accuracy (PA), user accuracy (UA), overall accuracy (OA) kappa coefficient, and F1 score for 

each crop type. F1 was also used to judge the accuracy of the prepared crop maps and compare the 

SVM and DT algorithms. Results showed no significant difference in the OA of crop maps while 

using RGB, and NIR Planet imagery as input to SVM and DT. The use of NDVI data combined 

with the four spectral bands improved the overall accuracy of crop maps using SVM and DT. 

When combined multitemporal Planet imagery and multitemporal NDVI data were employed, the 

SVM method had a 6.25 % higher OA and a 7% higher kappa coefficient than the DT algorithm. 
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This study shows how vegetation indicators can increase the effectiveness of the supervised 

machine learning method. This study's approach to precise crop mapping is appropriate for large-

scale implementation across Canada and other parts of the world. 

Keywords: Planet scope, Normalized difference vegetation index, Decision Tree, Support Vector 

Machine, High-resolution satellite, machine learning. 
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3.1 Introduction 

Remote sensing, in combination with geographical information systems (GIS), and 

machine learning algorithms, is commonly used in agricultural monitoring applications such as 

crop mapping, crop water demands computation, etc. Remote sensing in conjunction with machine 

learning algorithms is considered a reliable technique to produce crop maps with higher accuracy 

(Government of Canada, 2015). Produced maps at a higher resolution are more beneficial to 

prepare the up-to-date crop inventory for better decision making such as implementing by-laws of 

cover rotation (Kussul et al., 2014). The accuracy of crop maps depends on numerous factors such 

as the resolution of satellite images, the accuracy of ground truth data, and classification algorithms 

used to map the crop types (Lu & Weng, 2007). 

From 2009 to 2010, the Science and Technology Branch of AAFC started to prepare crop 

maps for Canada using Radarset-2 satellite data in combination with the machine learning 

algorithm  DT (Fisette et al., 2014). After 2010, the Landsat-8 and Sentinel-2 satellite data were 

used to prepare the crop maps at 30 m resolution (Illert & Afflerbach, 2020). Using the Landsat-8 

and Sentinel-2, the AAFC achieved overall accuracy between 95 to 85% for crop maps in Canada; 

however, PEI achieved the lowest overall accuracy of 85% (Illert &Afflerbach, 2020). 

There are numerous reasons for low overall accuracy in PEI crop mapping. For example, 

the ground truth data used by AAFC for training and validation of crop mapping is taken from the 

records of crop insurance agencies. By ground survey, the missing ground-truth data that are not 

included in the crop insurance data are collected (Fisette et al., 2014). Due to this, Fisette et al. 

(2019) documented that acquiring the ground truth data from crop insurance companies is 

erroneous and leads to misclassification. Therefore, consistent ground truth data and higher 
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resolution data are currently lacking for crop mapping in Canada (Fisette et al., 2019). This study 

will solve the above-discussed issue using high-resolution satellite data, consistent ground-

truthing, and the use of new machine learning algorithms. 

Crop maps were previously developed using machine learning methods and freely 

accessible low to medium resolution satellite data. For example, Shelestov et al. (2017) evaluated 

the Landsat-8 and Sentinel-2 data in Google Earth Engine by using the artificial neural network 

(ANN), SVM, and RF algorithms for crop mapping accuracy and reported ANN to achieve higher 

accuracy. Kumar et al. (2015) tested the crop mapping accuracies with SVM, ANN, and spectral 

angle mapper (SAM) by using the linear imaging self-scanning (LISS IV) sensor data. They found 

that SVM and ANN showed higher accuracy for crop mapping than SAM. Vibhute and Gawali 

(2013) evaluated five hundred fields for crop mapping and concluded that the SVM classifier had 

higher accuracy than the RF and ANN. Kumar et al. (2017) tested the LISS IV sensor data to map 

wheat, lentils, mustard, pea, linseed, corn, sugar cane, and other crops with SVM and maximum 

likelihood classifier that SVM achieved results at higher accuracy than maximum likelihood 

classification algorithms. Several researchers have used coarse to medium spatial resolution 

multispectral satellite data originating from Landsat-8, Sentinel, and MODIS (Moderate 

Resolution Imaging Spectroradiometer) for crop mapping across the globe and reported moderate 

to reasonably acceptable mapping accuracy ranging from 80 to 85 % (Kussul et al., 2016; Zhu et 

al., 2017; Yi et al., 2020). 

High-resolution satellite data with machine learning algorithms have recently been used 

for crop mapping (Yang et al., 2019). The use of higher-resolution satellite images such as SPOT 

(French: Satellite Pour l'Observation de la Terre; English: Satellite for observation of Earth) and 
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IKONOS (Greek word for ‘imaging’) results in higher mapping accuracy compared to the 

ordinarily available satellites such as Landsat-8 and Sentinel (Boyle et al., 2014). Nowadays, 

higher temporal and spatial resolution imagery is easily accessible due to the new Planet satellite 

(Cheng et al., 2020). It consists of 150-200 nanosatellites in the orbital, making it capable of 

acquiring 3 to 5 m resolution multispectral imagery daily (Houborg & McCabe, 2016). Planet 

imagery has already been used to detect crop sowing, field boundaries, agronomic parameters, and 

crop mapping in China's Jiangsu province (Li et al., 2019; Cheng et al., 2020). The novelty of the 

current study is that it uses consistent ground truth data, and Planet satellite (3 m resolution) 

imagery in conjunction with machine learning algorithms (SVM and DT) to map crops in PEI, 

Canada. 

The vegetation indices sharpen the vegetation signals for detecting and classifying crop 

phenology (Xiao et al., 2002). Multitemporal vegetation indices can discriminate between crop 

types from the phenological spectral signatures of crops (Hatfield & Prueger, 2010). The NDVI 

has been widely used to enhance the classification accuracy of crop maps (Fitting & Models, 2019; 

Sitokonstantinou et al., 2018).  

Agriculture-rich PEI lacks crop maps with improved accuracy and resolution. For 

improved agricultural monitoring and policymaking, the province requires high-resolution crop 

maps. In light of this, the first part of this research was to create high-resolution crop maps using 

a combination of multitemporal Planet imagery and NDVI images obtained from the Planet 

satellite. The performance of SVM and DT for crop mapping was assessed in the second part. 
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3.2 Material and Methods 

3.2.1 Study Area 

Prince Edward Island is a Canadian province dominated by agriculture (Figure 3-1). The 

island is split into three counties (i.e., Prince, Queens, and Kings) and is located between 46.5107° 

N and 63.4168° W. The climate of this agriculturally rich region is moderate and heavily affected 

by the warm waters of the Gulf of St. Lawrence, according to the (Department of Agriculture and 

Land, 2020). The Island receives 890 mm of rain and 290 cm of snow per year, with an average 

temperature of -7°C in January and 19°C in July. Its agricultural output scale is immense; for 

example, agriculture is permitted on 240515 hectares of a total area of 566560 ha. Forage, barley, 

oat, spring wheat, corn, canola, soybeans, potato, and blueberry are the main crops on this island. 

Potatoes have 85,500 acres of dedicated land, whereas corn, wheat, barley, and soybeans have 

17,6000 acres (Department of Agriculture and Land, 2020). To minimize overplanting of row 

crops and maintain soil health, the agricultural crop rotation legislation mandates a three-year crop 

rotation. Crop maps with a greater resolution will be useful in enforcing the crop rotation 

legislation. 
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Figure 3-1. (A) Study region along with Canadian map. (B) Zoom-in image of Prince Edward 

Island and distribution of training and validation points overlaid on Planet satellite imagery. (C) 

A zoomed-in view showing the distribution of training and validation points. 

3.2.2 Field Data/Ground Truth Data 

During the crop growing season in the summer of 2020, a field scout was conducted to 

collect ground truth data for the training and validation of machine learning algorithms. Land cover 

and crop type classes latitude and longitude coordinates were recorded with an accuracy level of 

3 m using a German terra x GPS unit (Garmin Ltd, Kansans, USA). This approach resulted in a 

CSV file with 2000 coordinates for urban, forage, barley, oat, spring wheat, corn, canola, soybeans, 

potato, and blueberry across PEI. These are point-based ground truth data that are not uniformly 
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distributed throughout the study area (Figure 3-1). The data was imported as a point shapefile into 

ArcGIS Pro (Environmental System Research Institute, Redland, California) and overlaid over 

Planet satellite imagery (Figure 3-1). The ground truth data associated with urban, forage, barley, 

oat, spring wheat, corn, canola, soybeans, potato, and blueberry are represented by the indicolite 

green, heliotrope, medium sand, peridot green, atlantic blue, rhodolite rose, topaz sand, 

lemongrass, red, and yellow yucca points in the legend of Figure 3-1. All of the data were 

randomly divided into two parts, with an 80% to 20% split. 80 percent of the data was utilized for 

classification, while 20 percent was used for validation. 

3.2.3 High-Resolution Satellite Data 

The Planet satellite (Planet Lab, San Francisco, California, United States) is the world's 

largest microsatellite constellation that captures multispectral images at 3 m spatial resolution 

(Cheng et al., 2020). The revisit time of this satellite is about one day to cover 340 million km2 per 

day (Planet Team, 2021). Planet imagery has four spectral bands; Blue (455- 515 nm), Green (500-

590 nm), Red (590-670 nm), and NIR (near-infrared; 780-860 nm). Recently, (Rao et al., 2021; 

Cheng et al., 2020) have used Planet imagery for crop classification and delineating crop 

boundaries in India and China, respectively.   

To cover PEI, four monthly Planet imageries were acquired through www.planet.com from 

April 1, 2020, to August 1, 2020, since the majority of crops were cultivated during these months. 

To cover the PEI borders, almost 148 quads of Planet imageries were downloaded each time. To 

eliminate the scattering and absorption problems, cloud-free imageries were used. Georeferencing 

problems were checked in ArcGIS Pro by superimposing Planet satellite images onto satellite-

based imagery to align the coordinate system with the ground coordinate system. 
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3.2.4 Vegetation Indices for Improving Crop Classification 

To improve the classification performance of Planet images, multitemporal vegetation 

indices were created. Sakuma and Yamano (2020) advocated for the use of NDVI because of its 

significant potential for improving crop classification accuracy. One of the most important reasons 

for using the NDVI in this investigation is that it is well-known for highlighting crop characteristics 

with high classification accuracy (Sakuma & Yamano, 2020; Ji et al., 2018). Tucker (1979) 

proposed the NDVI formula (NIR-Red) ⁄ (NIR+Red) was used to develop multitemporal NDVI 

profiles for urban classes and crop types throughout the growing season. The multitemporal NDVI 

profile for the whole growing session was prepared using the approach described by Reyes-

González et al. (2018), which involved taking the mean value of five well-represented pixels of 

NDVI in each class every month. 

3.3 Machine Learning Algorithms  

3.3.1 Support Vector Machine Algorithm  

 

Support vector machine is a supervised machine learning algorithm used for classification 

and regression purposes (Mustafa et al., 2017). It helps to differentiate between classes of an object 

based on the hyperplane (Wang et al., 2019). In numerous studies, this algorithm has been applied 

for crop classification in conjunction with different satellite data (Rao et al., 2021; Mantero et al., 

2004). Kumar et al. (2017) documented that SVM is important in the field of remote sensing 

because it can produce accurate results in the presence of limited training data. Multitemporal 

Planet imagery stand-alone (data set A) and in combination with NDVI (data set B) was used as 

input in SVM to evaluate if adding NDVI improved the classification accuracy (Table 3-1). The 

classification with the SVM has been performed using the ArcGIS Pro classification wizard. The 
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collected ground truth data were randomly split into 80% and 20% sections for the training and 

validation of SVM. 

The SVM has only one parameter, the number of samples per class. The parameter is set 

through trial and error to produce better classification results using SVM (Onojeghuo et al., 2018). 

By adopting the trial-and-error method, samples per class (200) were selected for the optimal 

classification result for Planet imagery stand-alone and in combination with vegetation indices.  

Table 3-1. The combinations of the multitemporal Planet imagery with NDVI data are under 

investigation for crop mapping classification. 

* Normalized difference vegetation index (NDVI), Support vector machine (SVM), Decision Tree (DT). All the data sets such as (A= Planet 

imagery (SVM), B= Planet imagery + NDVI (SVM), C = Planet imagery (DT), D = Planet imagery + NDVI (DT)) used as an input data in 

classification algorithms for crop mapping. 

3.3.1.2 Decision Tree Algorithm 

The decision tree algorithm was developed by (Deschamps et al., 2012). It has been widely 

used in classification studies due to its simplicity, flexibility, and computational efficiency (Watts 

& Lawrence, 2008). It creates multiple trees based on conditions to find the best way to classify a 

pixel into its corresponding class (Reddy, 2012). The final tree outcome is used as the best scenario 

found by DT. Several studies have investigated DT and reported its high classification efficiency 

(Khosravi et al., 2017; Verma, 2017; Liu et al., 2019). It has three parameters: the maximum 

number of trees, maximum tree depth, and the number of samples per class. The DT parameters 

were set by trial-and-error method (maximum number of trees = 50, maximum tree depth = 30, 

Data sets Model input Algorithms 

A Planet imagery SVM 

B Planet imagery + NDVI SVM 

C Planet imagery DT 

D Planet imagery + NDVI DT 
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and samples per class = 200) to achieve the optimal classification results on both data sets (i.e., 

multitemporal Planet imagery stand-alone (data set C), multitemporal Planet imagery in 

combination with multitemporal NDVI (data set D)) for crop mapping. 

3.3.2 Accuracy Assessment and Performance Comparison of the Classification Algorithm 

The literature describes several methods for determining the classification accuracy of 

maps (Stehman and Czaplewski, 1998; Smits et al., 1999). The error matrix, also known as the 

confusion matrix, is a better way to assess crop map classification accuracy (Foody, 2002). 

Producer accuracy, user accuracy, and the kappa coefficient are all included in the error matrix 

(Congalton, 2001). Correctly classified pixels indicated how the real feature on the ground surface 

was correctly shown on the classified map. The overall accuracy tells us how the overall algorithm 

performs in classification. The Kappa coefficient is another statistical indicator to evaluate 

classification accuracy. Kappa evaluates how well the classification has performed as compared 

to the randomly assigned value. Its values range from -1 to 1, with the lowest value indicating that 

the classification is not better than random classification. While a value close to a positive one 

indicates that the classification is significantly better than the random classification. The confusion 

matrix is not enough for classification performances; hence, the F1 score is an additional measure 

to provide the balance between producer and user accuracy (Chen et al., 2020). The performance 

of the algorithms was compared based on the overall accuracy and specific F1 score that took into 

account both producer and user accuracy (Rao et al., 2021).  

Producer/User Accuracy (%) =
Correctly classified pixels in one category 

Total  classified pixels in all categories
× 100    (3.1) 

 Overall Accuracy (%) =  
Number of correctly classified pixels in all categories

Total number of referenced site pixels
× 100 (3.2)      



44 

 

    Kappa Cofficient =
(𝑇𝑆 − 𝑇𝐶𝑆) −  ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)

𝑇𝑆2 − ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)
× 100                (3.3) 

where TS is total samples, and TCS is total classified samples. Column sum and row sum mean the 

total classified pixels for each class in row and column.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 𝑈𝑠𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑈𝑠𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦
                                                   (3.4) 

3.4 Results 

3.4.1 Normalized Difference Vegetation Index Multi-Temporal Profile for Each Class  

Figure 3-2 shows the multitemporal NDVI profile for each class. According to the 

literature, the temporal profile results revealed that each crop has its distinct pattern during its 

various growth stages (Masialeti et al., 2010; Rao et al., 2021). Based on their growth cycles, the 

NDVI temporal profile helps discriminate between forage, barley, oat, spring wheat, corn, canola, 

soybeans, potato, and blueberry (Figure 3-2). For example, the NDVI of potatoes increased rapidly 

from 0.43 to 0.77 during the productive stage, and then quickly declined from 0.75 to 0.4 during 

the maturity stage. At the peak of maturity, when the plant canopies were fully grown, potato crops 

had the greatest NDVI value. Wheat followed a similar pattern, although its NDVI value did not 

rise rapidly throughout the production stage. Soybean NDVI increased rapidly from May to mid-

June, then dropped as the crop started to ripen and loosen its healthy green leaves. The NDVI 

profile of the urban class was completely different from that of all crop types (Figure 3-2), which 

helps to distinguish the urban class from crop types. 
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Figure 3-2. From growth to harvesting season, average monthly normalized differential 

vegetation index values for each crop type and urban class. 

3.4.2 Performance of Support Vector Machine in Crop Mapping 

The urban, forage, barley, oat, spring wheat, corn, canola, soybeans, potato, and blueberry 

were mapped using the input data sets (i.e., multitemporal Planet imagery stand-alone data set A, 

multitemporal Planet imagery combined with multitemporal NDVI data set B) in conjunction with 

SVM algorithm (Table 3-1). The SVM hit the acceptable user accuracy and producer accuracy for 

each class, namely, barley, blueberry, oat, canola, corn, forage, potatoes, soybeans, spring wheat, 

and urban of 72 to 90% when stand-alone multitemporal Planet imageries were utilized as an input 

data source (Table 3-2). Potato and forage achieved the highest user accuracy of 90%, while urban 

class yielded the lowest of 72% user accuracy (Table 3-2). The reason behind the lowest urban 

class user accuracy was pixels mixing with other crops. The F1 score yielded by urban, forage, 

barley, oat, spring wheat, corn, canola, soybeans, potato, and blueberry were 65, 93, 81, 85, 82, 

89, 87, 79, 86, and 89, respectively (Table 3-2). The blueberry achieved the highest FI score, 93, 

and the lowest F1 score, 65, was achieved by urban (Table 3-2). The multitemporal Planet imagery 
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in conjunction with SVM-based classified maps achieved an overall accuracy of 83.8% and a 

kappa coefficient of 82% (Table 3-2). The calculated accuracy statistics are acceptable as a 

recently published study already reported the almost same accuracy range (Yang et al., 2019). 

Figure 3-3A represents the SVM-based classified map using a stand-alone multitemporal Planet 

imagery input data source. 

Table 3-2. Producer accuracy, user accuracy, overall accuracy, kappa coefficient, and F1 score 

for crop mapping using multitemporal Planet imageries in conjunction with support vector 

machine algorithm. 

Table 3-3. Producer accuracy, user accuracy, overall accuracy, kappa coefficient, and F1 score 

for crop mapping using multitemporal Planet imageries combined with multitemporal NDVI data 

in conjunction with support vector machine. 

Classes 
Producer accuracy 

(%) 

User accuracy 

(%) 

Overall accuracy 

(%) 

F1 

score 

Kappa 

coefficient 

Urban 79 85 

              90 

81  

 

 

 

           89 

Forage 90 90 90 

Barely 87 85 86 

Oat 94 90 92 

Wheat 95 92 93 

Corn 95 95 95 

Canola 93 92 92 

Soybean 92 87 89 

Classes 
Producer accuracy 

(%) 

User accuracy 

(%) 

Overall accuracy 

(%) 

F1 

score 

Kappa 

coefficient 

Urban 59 72 

              83.75 

65 

            82 

Forage 97 90 93 

Barely 79 85 81 

Oat 89 82 85 

Wheat 84 80 82 

Corn 92 87 89 

Canola 89 85 87 

Soybean 81 77 79 

Potato 82 90 86 

Blueberry 92 87 89 
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Potato 90 95 92 

Blueberry 90 92 90 

The producer accuracy, user accuracy, kappa coefficient, overall accuracy, and F1 

increased significantly when multitemporal Planet imagery was combined with multitemporal 

NDVI data (data set B, Table 3-3) and used as the input data source in SVM. A 6.25% increase in 

overall accuracy and a 7% increase in kappa coefficient value were observed (Table 3-2,3). 

Onojeghuo et al. (2018) mapped rice fields, non-rice filed, built-up areas, and other vegetation and 

recorded that overall accuracy and kappa coefficient increased 8% and 11% after integrating the 

multitemporal NDVI data with Sentinel radar data. The user accuracy increased for urban, oat, 

spring wheat, corn, canola, soybeans, potato, and blueberry, 13, 8, 12, 8, 7, 15, 5, and 5 % 

respectively, when multitemporal NDVI data was combined with multitemporal Planet imagery 

(Tables 3-2,3). Forage and barely showed no increase in user accuracy when multitemporal NDVI 

data was fused with multitemporal Planet imagery (Table 3-3). Interestingly, no crop type class 

acquired less than 80% producer and user accuracy except urban class after fusing the 

multitemporal NDVI data with multitemporal Planet imagery (Table 3-3). The F1 score of each 

crop type also increased except forage when multitemporal Planet imagery fused with 

multitemporal NDVI was used in conjunction with SVM (Table 3-3). The compared result of SVM 

for both input data sets (i.e., multitemporal Planet imagery stand-alone data set A, multitemporal 

Planet imagery fused with multitemporal NDVI-data set B) proved that multitemporal Planet 

imagery fused with multitemporal NDVI is a better input data source for increasing the mapping 

accuracy and prepared map for this data set is represented in Figure 3-3B. 
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Figure 3-3. (A). Support vector machine-based classified maps using only multitemporal Planet 

imagery. (B). Support vector machine-based classified maps using multitemporal Planet imagery 

combined with multitemporal Planet imagery. 
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3.4.3 Performance of Decision Tree in Crop Mapping 

The urban, forage, barley, oat, spring wheat, corn, canola, soybeans, potato, and blueberry 

were mapped using DT in conjunction with two different data sets (i.e., multitemporal Planet 

imagery stand-alone data set C, multitemporal Planet imagery combined with multitemporal NDVI 

data set D) (Table 3-1). The multitemporal Planet imagery stand-alone in conjunction with DT 

achieved user accuracy for each class between 75 to 90% (Table 4). The urban class had the lowest 

producer accuracy of 75%, and the oat class achieved the highest accuracy of 94% (Table 3-4). 

The overall accuracy and kappa coefficient achieved were 83 and 81% respectively (Table 3-4). 

The F1 score recorded for urban, forage, barley, oat, spring wheat, corn, canola, soybeans, potato, 

and blueberry were 75, 81, 78, 80, 84, 90, 87, 84, 86, and 82, respectively (Table 3-4). The DT-

based generated classified map using multitemporal Planet imagery as an input data source is 

presented in Figure 3-4A. 

Table 3-4. Producer accuracy, user accuracy, overall accuracy, kappa coefficient, and F1 score for 

mapping using multitemporal Planet imagery in conjunction with the decision tree algorithm. 

Classes 
Producer accuracy 

(%) 

User accuracy 

(%) 

Overall accuracy 

(%) 

F1 

score 

Kappa 

coefficient 

Urban 75 75 

               83 

75 

           81 

Forage 80 82 81 

Barely 76 80 78 

Oat 83 77 80 

Wheat 86 82 84 

Corn 94 85 90 

Canola 85 90 87 

Soybean 87 82 84 

Potato 83 90 86 

Blueberry 81 83 82 
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Table 3-5. Producer accuracy, user accuracy, overall accuracy, kappa coefficient, and F1 score for 

mapping using multitemporal Planet imagery combined with multitemporal NDVI in conjunction 

with decision tree algorithm. 

The overall accuracy and kappa coefficient increased 2%, respectively, after adding the 

multitemporal NDVI data with multitemporal Planet imagery (Table 3-4,5, data set C vs D). The 

user accuracy increased for urban, barley, oat, canola, potato, and blueberry, 5, 10, 5, 5, 2, and 4 

%, respectively (Table 3-4,5, data set C vs D). Interestingly, wheat observed a 5% decline; and 

forage and canola showed no change in the producer accuracy after blending the multitemporal 

NDVI with multitemporal Planet imagery (Table 3-4,5). The increase in the F1 score for urban, 

forage, barley, oat, spring wheat, corn, potato, and blueberry was 3, 2, 6, 2, 2, 1, 4, 3, respectively, 

when Planet imagery combined with multitemporal NDVI data (Table 3-4,5). The corn recorded 

a decline in the F1 score, and soybean showed the same F1 score (Table 3-4,5, data set C vs D). 

The calculated accuracy statistics documented that mapping accuracy increased when 

multitemporal NDVI data was combined with multitemporal Planet imagery. The DT-based 

classified map using the multitemporal Planet imagery combined with multitemporal NDVI as an 

input data source is presented in Figure 3-4B. 

Classes 
Producer accuracy 

(%) 

User accuracy 

(%) 

Overall accuracy 

(%) 

F1 

score 

Kappa 

coefficient 

Urban 76 80 

 

85 

78 

 

83 

Forage 84 82 83 

Barely 78 90 84 

Oat 85 82 82 

Wheat 88 77 82 

Corn 94 85 89 

Canola 87 90 88 

Soybean 86 82 84 

Potato 88 92 90 

Blueberry 83 87 85 
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Figure 3-4. (A). Decision Tree-based classified maps using only multitemporal Planet imagery. 

(B). Decision Tree-based classified maps using multitemporal Planet imagery combined with 

multitemporal Planet imagery. 
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3.4.4 Comparative Performance of DT and SVM for Optimal Output 

Based on the classification results of SVM and DT in sections 4.2 and 4.3, the most 

promising result was produced by SVM and DT when the combined multitemporal Planet imagery 

with multitemporal NDVI was used as an input data source (Table 3-1, data set B, and D). The 

SVM classification produced an overall accuracy 5% higher than the DT-based classification 

(Table 3-3,5). SVM-based producer accuracy was higher than the DT-based producer accuracy 

(Tables 3-3,5). Interestingly, the kappa coefficient value of SVM-based classification was 6% 

higher than the DT-based classification using the same input data source (i.e., multitemporal Planet 

imagery combined with multitemporal NDVI). SVM-based classification yielded higher FI scores 

for each class than the DT-based classification (Figure 3-5). SVM-based classification observed 

the 3, 7, 2, 10, 11, 6, 4, 5, 2, and 5 points increase for urban, forage, barley, oat, spring wheat, corn, 

canola, soybeans, potato, blueberry, respectively as compared to the DT-based F1 scores (Table 

3-3,5). The optimal classifier for crop mapping was decided by comparing the overall accuracy 

and F1 scores (Rao et al., 2021). The calculated accuracy statistics proved that classified maps 

produced with SVM achieved higher accuracy than DT-based classified maps no matter which 

input data source was used (Table 3-2,5). This result is also confirmed by already published 

research; for example, Vibhute and Gawali (2013) indicated that SVM has higher accuracy for 

crop type mapping than RF. Kumar et al. (2017) used the SVM and maximum likelihood classifier 

to map the crops, namely, wheat, lentils, mustard, pigeon pea, linseed, corn, and sugar cane and 

reported that SVM algorithms performed better than the maximum likelihood classifier. 
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Figure 3-5. The overall accuracy and F1 scores comparison between Support Vector Machine 

and Decision Tree for each classified class using the combined multitemporal Planet imagery 

with multitemporal NDVI data as an input data source. 

3.5 Discussion  

This study explored the potential of multitemporal Planet imagery alone and multitemporal 

Planet imagery integrated with multitemporal NDVI for preparing crop maps at a broad scale using 

a machine learning algorithm. The crop maps of PEI were created at 3 m resolution using the SVM 

and DT machine learning classification algorithms on four data sets (i.e., A= Planet imagery 

(SVM), B= Planet imagery + NDVI (SVM), C = Planet imagery (DT), D = Planet imagery + NDVI 

(DT)). Using the multitemporal Planet imagery stand-alone in conjunction with SVM and DT 

achieved almost the same overall accuracy of 83.75% and 83%, respectively (Table 3-2,4). 

Interestingly, the trend remained the same: the highest user accuracy was achieved by potato and 

the lowest user accuracy was yielded by urban class in all data sets (Table 3-2,5,6,7). These results 
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are better than those from studies that mapped the crop from different data sources; for example,  

Recently, Rao et al. (2021) documented that Planet imagery in conjunction with SVM yielded 

overall mapping accuracy of 0.73%. Ponya et al. (2020) used the time series Sentinel-2 data for 

crop mapping using SVM and DT and achieved an overall accuracy of about 73%.  

In addition to the multitemporal Planet imagery, the inclusion of optical derived vegetation 

indices such as NDVI depicting the crop phenology information can help to provide more accurate 

methods to differentiate the crop classed from other land cover classes (Onojeghuo et al., 2018). 

This experiment also assessed the performance of two machine learning algorithms (i.e., SVM, 

and DT) when the combined multitemporal Planet imagery with multitemporal NDVI was used as 

an input data source. A previous study reported that the addition of multitemporal vegetation 

indices data in multitemporal satellite imagery facilitates improving classification accuracy (Rajah 

et al., 2019). The accuracy statistics supported the hypothesis of previous studies that the SVM 

and DT algorithms can result in a significant increase in the overall accuracy when multitemporal 

NDVI data is combined with Planet imagery (Tables 3-5,7). The results indicated that accuracy 

increased by combining the vegetation indices with satellite data, but a little part of accuracy 

depends on the classifier's performance. 

The result of the 3rd step of this analysis proved that SVM is a better algorithm than DT 

algorithms. The SVM algorithm outperformed and yielded a 5% higher overall accuracy as 

compared to the DT algorithm (Tables 3-3,5). The results proved that SVM is the best optimal 

algorithm for crop mapping, whether multitemporal NDVI data is combined with planet imagery 

or not. All the results of this study also proved that the SVM algorithm outperformed than DT 

algorithm, without concerning the input data source (Tables 3-2,3,4,5). The documented result of 
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this study is similar to previous studies for example; Devadas et al. (2012) found that SVM is more 

accurate in classification as compared to the maximum likelihood classifier.  

Agriculture and Agri-Food Canada prepared the crop maps for PEI at 30 m spatial 

resolution using DT and achieved an overall accuracy of 85% (Illert & Afflerbach 2020). In this 

study, SVM achieved 90% overall accuracy when multitemporal Planet imagery was combined 

with multitemporal NDVI and used as an input data source, which is 5% higher than AAFC 

published maps. The three main reasons for the higher accuracy of these maps are i) higher spatial 

resolution, ii) integrated original satellite data with NDVI data used in classification, and iii) 

selection of the appropriate classification algorithm.  

3.6 Conclusion 

The results show that using combined multitemporal Planet imagery and multitemporal 

NDVI data source as an input improved the mapping accuracy of the SVM and DT algorithms. 

The SVM, on the other hand, was shown to be the best method for mapping without relying on the 

input data sets. When multitemporal Planet imagery was combined with multitemporal NDVI as 

an input data source, SVM achieved more accurate results. The overall accuracy and kappa 

coefficient for this method were 90 and 80 %, respectively. All of our findings revealed that 

combining data sources can improve mapping accuracy (i.e., multitemporal Planet imagery 

combined with multitemporal NDVI). These findings can aid in the creation of higher-accuracy 

and higher-resolution crop maps for any location, which can aid in the development of agriculture 

policy, acreage estimation, and decision-making. To highlight crop phonology, several vegetation 

indexes have been produced. By integrating diverse vegetation with Planet imagery, crop mapping 

accuracy may be evaluated in the future. 
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CHAPTER 4: SATELLITE-BASED CROP EVAPOTRANSPIRATION 

MAPPING TO ACCESS THE VARIATION CONCERNING THE CROP 

DEVELOPMENT 
 

ABSTRACT 

Water for irrigation is in scarce supply in numerous regions around the world. Water 

management is greatly influenced by the accurate calculation of crop evapotranspiration (ETc). 

The use of remote sensing to estimate ETc is a quick and reliable method. This work shows how 

remote sensing data and GIS can be used to create NDVI-based potato crop coefficient (Kc), ETc 

maps at 3 m resolution for sustainable water management. The four Planet images were 

downloaded to cover four potato growth stages, i.e., (initial, development, mid, and late) during 

the 2021 season over the designated potato field (46.24136° 𝑁, 63.5311°𝑊) located in Prince 

county in Prince Edward Island (PEI), Canada. A higher correlation R2 = 0.95 was found between 

Food and Agriculture Organization (FAO) suggested Kc and NDVI. The developed regression 

linear equation was used as input in GIS for developing the new Kc of the potato during the four 

potato growth development stages. The Hargreaves method was used to estimate the reference 

evapotranspiration (ETr) corresponding to four potato growth stages. The final potato ETc maps 

were prepared by multiplying the ETr with newly developed Kc maps. The result indicated that the 

potato ETc value was low at the initial stage of growth from 0.69 to 2.01 mm/day, and increased 

from 1.89 to 3.05 mm/day, at the development stage of potato growth. The highest ETc value was 

noted at mid growth stage from 2.02 to 4.02 mm/day; then, a decline was observed in ETc values 

at the late stage from 1.06 to 2.16 mm/day. The developed ETc maps assist in estimating the actual 

potato water requirement variability in a field over four growth stages. By using the developed 
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ETc maps, farmers can apply the proper amount of water to fulfill the actual potato water 

requirements and lead to water conservation. 

Keywords: Remote-sensing; Geographic information system; Planet imagery; Normalized 

difference vegetation index; Hargraves method; Reference evapotranspiration; Crop 

evapotranspiration 
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4.1 Introduction 

Potato is considered the fourth most important food crop and the primary agricultural 

commodity of PEI. The potato industry contributes $1 billion annually to the economy of PEI 

(Macdonald, 2020), roughly 10.8% of the provincial gross domestic product (GDP), and 12% of 

the jobs for the local islanders each year (Agriculture and Agri-Food Canada, 2017). Potato yield 

is very sensitive under limited water conditions (Food and Agriculture Organization, 2021). The 

potato production in PEI is rainfed therefore, maximum rainfall is required to achieve a higher 

potato yield (Afzaal et al., 2020). However, the climate of PEI is changing now, facing more hot 

days and fewer cold nights, and precipitation patterns are also changing (Maqsood et al., 2020). 

To mitigate this precipitation pattern-changing problem, supplemental irrigation is needed to fulfill 

the potato water requirement to stay competitive in the global market (Afzaal et al., 2020). In 2018, 

the average potato yield in Alberta decreased to 272 cwt per acre. This yield was increased to 392 

cwt per acre due to supplemental irrigation (Belova, 2018). Shock et al. (1998) reported the same 

trend as potato yield decreased in a water shortage. 

The provincial government of PEI has placed a moratorium on well drilling for agricultural 

irrigations. The farmers who had wells before the moratorium can now only pump the water from 

the wells, store it in ponds, and later use it for irrigation (Belova, 2018).  As a result, irrigation 

water is scarce in PEI, and better estimation of crop water requirements is essential to use the water 

efficiently. For water conservation, farmers must adopt new methodologies for estimating the crop 

water requirement accurately. 

A prominent method to estimate  ETc is to multiply the ETr by  Kc (Adamala et al., 2016). 

The penman monteith equation is considered a standard equation to estimate the ETr, however, it 

requires a lot of metrological parameters (e.g., solar radiation, air temperature, wind speed) (Allen 
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et al., 2005). A recently published study discussed the potential of the Hargreaves method to 

estimate the ETr with limited metrological parameters (Maqsood et al., 2020). Typically, the Kc 

value is taken from the literature corresponding to crop type and its growth stages (Reyes-Gonzalez 

et al., 2018; Reyes-Gonzalez et al., 2015). The crop evapotranspiration is estimated using different 

point-based methods (e.g., weighing lysimeter, evaporation pan, Atmometer) but the maintenance 

cost is high for these methods (Xiang et al., 2020).  

In this era, remote-sensing is a viable technology to estimate ETc in less cost and time 

(Kjaersgaard et al., 2011). Two methods, empirical and physical-based, have been developed to 

estimate the evapotranspiration from remote-sensing data (Allen, R. G. et al., 1998; Lei & Yang, 

2014). The empirical method uses time-series indices and metrological data, while the physical 

method uses the surface energy balance and latent heat flux to estimate ETc (Glenn et al., 2007). 

In the empirical method of remote sensing, the Kc can be calculated based on the spectral 

reflectance of vegetation indices. The preparation of ETc maps based on remote sensing is an 

alternative to the point-based methods. 

Lei & Yang (2014) proved that vegetation indices could estimate the Kc of different crops 

as vegetation indices showed a higher correlation with Food and Agriculture Organization (FAO) 

Kc value for different crops. The NDVI is the most common index out of different vegetation 

indices used to estimate Kc of different crops (Glenn et al., 2011). For example, the Kc depend on 

the NDVI derived from Sentinel images at 10 m spatial resolution was developed by establishing 

the relationship between sugarcane Kc values taken from the FAO-56 manual. From this 

relationship, an R2 value of 0.70 was achieved (Alface et al., 2019). Farg et al. (2012) developed 

the Kc for the wheat crop from NDVI derived from the SPOT-4 satellite and achieved the R2 0.82, 

0.92, and 0.97 during the first, second, and third growth stages respectively. One study reported a 
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high correlation (R2 = 0.72) between soybean Kc values derived from NDVI and the suggested 

value of Kc by FAO-56 (de Oliveira et al., 2016). Landsat-8 imagery was used to establish the 

relationship between NDVI, and Kc values suggested by the FA0-56 manual of groundnut and an 

R2 value of 0.75 was achieved. The higher R2 = 0.71 was achieved by developing the relationship 

between wheat Kc value taken from the FAO-56 manual and NDVI derived from the Indian 

Remote Sensing satellite (Gontia & Tiwari, 2010). To the best of my knowledge, no relationship 

exists between the Planet satellite-based derived NDVI and Kc values taken from the FAO-56 

manual for developing the NDVI based potato Kc in the Canadian eastern province PEI. 

In this study, a relationship between NDVI derived from the Planet imagery at a higher 

resolution of 3 m and the Kc value taken from the FAO-56 manual for a potato field in the prince 

county of PEI was established. This established relationship will be used to prepare the potato Kc 

maps. The Hargreaves method was selected due to limited climatic parameters availability to 

calculate the ETr and the calculated ETr was used to make the Potato ETc maps at 3 m resolution. 

No studies have been done to estimate the potato ETc maps in PEI by using Planet satellite imagery. 

Water is scarce in PEI for irrigation purposes and climate change demands supplemental 

irrigation for better potato yield. The developed ETc maps at 3 m resolution will help estimate the 

spatial and temporal variability of potato crop water need at the field scale. This developed potato 

ETc maps at four growth stages (i.e., initial, mid, development and late) will help the farmers to 

apply the water precisely and help them to save the water for future use. 
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4.2 Material and Methods 

4.2.1 Study Area 

The study was carried out on a selected potato field (46.24136° 𝑁, 63.5311°𝑊 ) during 

the growing season of 2021 in PEI, shown in Figure 4-1. The common potato variety Russet 

Burbank was cultivated in this field.  In terms of management practices, this field was cultivated 

under the conventional management practices of the region. Fertility and pest management were 

applied based on the provincial recommendation. The distance between ridges was 0.75 m, and 

furrow depth was about 0.15 to 2.0 m.  In this study area, the potato crops are sown from mid-

March to the end of April and the harvesting session spans from mid-September to late October.  

Figure 4-1. Zoomed location of study field (red colour) in Prince Edward Island, Canada. 

4.2.2 Planet Satellite Data 

The Planet satellite takes the earth images at 3 m spatial resolution.  It has four spectral bands 

(Blue: 455- 515 nm; Green: 500-590 nm; Red: 590-670 nm; and Near Infrared (NIR): 780-860 

nm). The revisit time of this satellite is about one day to cover 340 million km2/day (Planet Team, 

2021). The four satellite images were downloaded to cover four potato growth stages (i.e., initial 
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stage, development stage, mid stage, and late stage). The cloud-free images were selected to avoid 

the absorption and scattering problem, then Kc depending on the NDVI was developed.  

4.2.3 NDVI Calculation and Pixel Selection Criteria for Average NDVI Value 

Satellite sensor measures red and NIR light waves reflected by the land surface 

(Vladimirova et al., 2008). The mathematical algorithms change this raw satellite data into 

vegetation indices (Bannari et al., 1995). The vegetation indices are indicator measures of the 

greenness and health of vegetation (Muraoka et al., 2013). Several vegetation indices are available, 

but the NDVI is the most widely used (Matese & Di Gennaro, 2021). The NDVI values were 

calculated during the initial, development, mid and late potato crop growth stages with the help of 

ArcGIS Pro software and by using this formula 𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑁𝐼𝑅 + 𝑅𝑒𝑑⁄ . After calculating the 

NDVI for the potato field, 10 pixels were randomly selected to calculate the average NDVI value 

during each growth stage. We assumed that these selected pixels are true representatives of the 

entire potato field. The same pixel values were observed throughout the potato growth stages. 

4.2.4 Relationship Establishment Between NDVI and Kc Maps Development 

The Kc depends on the crop growth stages and variates during different growth stages. 

Potato growth stages are divided into initial (20 days after planting (DAP)), development stage 

(21-50 DAP), mid (51-110 DAP) and late-stage (110-140). The Kc value fluctuates according to 

these growth stages: for example, the Kc value varies from 0.4 to 0.5 at the initial stage, between 

0.7 to 0.8 in the development stage, from 1.05 to 1.2 in the mid-stage of growth, and from 0.7 to 

0.75 in late session (Food and agriculture organization, 2021).  

We have adjusted the kc value according to these stages and developed the relationship between 

NDVI and Kc. This established relationship was used to generate the linear regression equation. 
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The established linear regression equation between NDVI and Kc help us to develop the Kc maps 

using ArcGIS Pro software. 

4.3 Reference Evapotranspiration Calculation 

4.3.1 Metrological Data Acquisition  

An affordable and accurate weather monitoring system is essentially needed in small-scale 

research such as precision agriculture (Dombrowski et al., 2021). A variety of weather stations are 

available in the market, but the low cost and non-standard technologies raise concerns about data 

quality. A stand-alone metrological station was installed on the field (longitude −63.84°, and 

latitude 46.44°) to access the maximum and minimum temperature corresponding to the acquired 

satellite images date. The time series readings of the metrological parameters were downloaded 

from the datalogger of the weather stations.  

4.3.2 Hargreaves Method to Estimate the Reference Evapotranspiration  

The penman-monteith is a standard method to calculate the ETr, but it needs many 

metrological parameters such as temperature, wind, velocity, solar radiations, and moisture content 

(Cai et al., 2007). In recent publications, the Hargreaves method was used to estimate the ETr, as 

this method requires fewer metrological parameters (Allen, 2001; Rodrigues and Braga, 2021). 

The required parameters for the Hargreaves method include the maximum and minimum 

temperature and extraterrestrial radiation. Extraterrestrial radiation is calculated based on the day 

of the year and latitude (Patel et al., 2015). The Hargreaves method was selected to estimate potato 

crop ETr in PEI due to its simplicity and acceptable accuracy results. The Hargreaves equation 

used in this study is: 

𝐸𝑇𝑟 = 0.408(0.0023)(17.8 + 𝑇𝑚𝑒𝑎𝑛)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 𝑅𝑎……………………….(4.1) 
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Ra is extraterrestrial radiations (MJm-2) and 0.408 is an empirical factor to convert the MJm-2 to 

mm. 

The solar radiation at the top of the earth's atmosphere is called Ra. The given equation is 

calculated based on the location's latitude and calendar day of the year.   

𝑅𝑎 =
24(60)

𝜋
× 𝐺𝑠𝑐(𝑑𝑟)[(sin(𝜑) × 𝜔𝑠 × sin(𝛿)) + (cos(𝜑) × cos(𝜔𝑠) × cos(𝛿))]…………(4.2) 

GSC = The solar constant (0.0820 MJm-2)  

 𝜑 =  Location in radian.  

dr = The inverse relative distance from the earth to the sun and calculated by using this equation: 

𝑑𝑟 = 1 + [0.33 × cos (
2𝜋

360
𝐽)]………………………………………………………(4.3) 

Where J represents the day of the year.  

𝜔𝑠 = Sunset hours in radians and calculated by using this equation: 

𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠(− tan(𝜑) × tan(𝛿))…………………………………………………(4.4) 

Where 𝛿 represents the solar declination in radians and is calculated as: 

𝛿 = 0.409 × sin (
2𝜋

360
× 𝐽) − 1.39 …………………………………………………(4.5) 

4.3.3 Potato ETc Map Development 

The Kc maps multiplied with calculated ETr to generate the ETc maps of potato crop at a higher 

spatial resolution of 3 m, for initial, development, mid and late growth stages using the ArcGIS 
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Pro software. The developed ETc maps will be used to evaluate the water requirement of potatoes 

during four growth stages such as initial, development, mid, and late.  

4.3.4 Flow Chart of this Whole Study 

The entire procedure to prepare a potato ETc map based on Planet satellite vegetation indices 

is represented in Figures 4-2. The Planet satellite-based calculated NDVI, vegetation indices-based 

Kc, and metrological data are the major data inputs for preparing the potato ETc maps during four 

growth stages. 

Figure 4-2. The flow diagram for explaining the whole process to develop the ETc maps of the 

potato crop. 
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4.4 Result and Discussion 

4.4.1 Normalized Difference Vegetation Index Relationship With FAO Suggested Kc 

The NDVI average values extracted from the selected pixels in the potato field and growth 

stages are represented in Figure 4-2. In the initial stage of development, the NDVI values were 

low, around 0.11 (Figure 4-3A). During the development stage, the values of NDVI increased 

(0.11 to 0.49), and NDVI value increased (0.49 to 0.69) during the late growth (Figure 4-3B, C). 

A decline was observed in NDVI value during the final stage (Figure 4-3D). Adamala et al. (2016) 

assessed the NDVI values for wheat and demonstrated the same pattern, such as low NDVI value 

at the initial stage and high NDVI value at the development stage. For this selected potato field, a 

strong relationship between NDVI and FAO Kc was observed (R2=0.88) and a linear regression 

equation 𝐾𝑐 = 1.043𝑁𝐷𝑉𝐼 + 0.4159 was established (Figure 4). 
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Figure 4-3. A) Selected pixels for NDVI value estimation in a potato field at the initial stage of 

growth. B) Selected pixels for NDVI value estimation in a potato field at the development stage 

of growth. C) Selected pixels for NDVI value estimation in a potato field at the mid-stage of 

growth. D) Selected pixels for NDVI value estimation in a potato field at the late stage of growth. 

 

Figure 4-4. The established relationship between FAO suggested potato Kc and Planet imagery-

based NDVI values during the 2021 growing session. 

4.4.2 NDVI Based Kc Maps  

The established linear equation between NDVI and FAO potato Kc was used to generate the 

Kc maps at 3 m resolution. Figure 4-5 shows the temporal and spatial variation of Kc values in the 

selected potato field during the growing season of 2021. At the initial stage, the developed Kc maps 

showed low Kc values of 0.32 to 0.5 (cool green to light green), which is very close to potato Kc 

values suggested by FAO (Figure 4-5A). The Kc map prepared based on NDVI showed the highest 

patches of Kc values in a field where some common grasses and other vegetation were present 

(Figure 4-5A). The Kc values increased at the development stage of the potato crop and varied 
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from 0.61 to 0.85 throughout the field (Figure 4-5B), and at this stage, FAO suggested the potato 

Kc value was 0.8 which is very close to NDVI based Kc value.  At the mid-stage, the Kc maps 

showed a value from 0.65 to 0.75 (cool green to yellowish-green) (Figure 4-5C). At the late stage 

of development, the Kc value varies from 0.57 to 1.14 (Figure 4-5D). Lei & Yang (2014) developed 

the Kc maps based on NDVI calculated from Landsat imagery for winter wheat and summer maize 

to understand better the spatial and temporal distribution of Kc value in a field. 

 

Figure 4-5. A) Spatial and temporal variability of potato Kc value at the initial stage. B) Spatial 

and temporal variability of potato Kc value at the development stage. C) Spatial and temporal 

variability of potato Kc value at the mid-stage. D) Spatial and temporal variability of potato Kc 

value at a late stage. 
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The relationship between FAO suggested potato Kc and NDVI-based calculated Kc was 

shown in Figure 4-6. A strong relationship was founded (R2 = 0.95). This relationship proved that 

the Kc values developed based on the NDVI are robust parameters to estimate the actual potato 

ETc at field level. 

 

Figure 4-6. Relationship between Kc calculated, and FAO suggested Kc for potato during the 

growing season of 2021. 

4.4.3 Potato Crop ETc Maps 

The potato ETc maps at 3 m resolution (Figure 4-7A, D) were developed by multiplying the 

NDVI-based Kc with the Hargrave method-based calculated ETr. The ETc map showed a low ETc 

value of 0.69 to 2.05 mm/day (green to red colour) at the initial stage of growth (Figure 4-7A). 

The highest value of ETc showed in the patches because some common grasses and other 

vegetation covered these patches. At the development stage, the potato ETc showed a high value 

of ETc from 1.89 to 3.15 mm/day (green to red colour) (Figure 4-7B). The highest value of ETc 

was observed in the mid-stage of growth from 2.22 to 4.02 mm/day (green to red colour) (Figure 
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4-7C). At the late stage of development, ETc values declined throughout the field (Figure 4-7D). 

Gontia & Tiwari (2010) also supports this study's results; for example, the initial stage crop needs 

lesser amounts of water mean less ETc, and as the crop grows, the water requirement increases 

means the ETc value increases. Most of this research prepared ETc maps based on NDVI for 

different crops, but they showed the same trend as shown in our study (Adamala et al., 2016; 

French et al., 2020). Simonneaux et al. (2008) documented that remote sensing-based ETc 

estimation is a promising method. Potato ETc maps prepared at a field-scale level at a higher 3 m 

resolution are helpful to quantify the actual water requirement corresponding to its different 

development stages. These ETc maps are also helpful for the PEI farmers to design the irrigation 

schedule of their potato crop to achieve a higher yield and enhance irrigation water management. 
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Figure 4-7. A) Spatial and temporal variability of potato ETc value at the initial stage. B) Spatial 

and temporal variability of potato ETc value at the development stage. C) Spatial and temporal 

variability of potato ETc value at the mid-stage. D) Spatial and temporal variability of potato ETc 

value at a late stage. 

4.5 Discussion 

This study presented a planet satellite-based approach for preparing NDVI-based ETc maps of 

the potato crop. The limitation of climatic variables became a strong reason for choosing the 

Hargraves method for the estimation of ETr for potato crops at four different growth stages. 

Valipour and Eslamian (2014) reported that the Hargraves method is suitable for estimation of ETr 

as compared to the other temperature-based methods, i.e., Modified Baier Robertson, Modified 

Hargreaves-Samani 1, Modified Hargreaves-Samani 2, Modified Hargreaves-Samani 3, and 

Modified Hargreaves-Samani 4. The selected Hargreaves method was used to estimate the ETr for 

potato crops due to the limited availability of climatic variables. 

 The FAO-suggested Kc values for potatoes showed a higher correlation R2 = 0.95 with NDVI-

based calculated Kc values of potatoes (Figure 4-6). The developed Kc values showed no 

difference with FAO-suggested Kc values at the initial and development potato growth stage, but 

a higher Kc value was observed at the development stage of the potato (Figure 4-8). At a late stage, 

no difference was observed between FAO-suggested Kc and NDVI-based Kc (Figure 4-8).  Reyes-

González et al. (2018) reported the correlation R2 = 0.93 between NDVI-based Kc and FAO-based 

Kc for corn. French et al. (2020) used the NDVI to develop a new Kc for durum wheat in the US 

southwest for ETc estimation. Zhang et al. (2019) compared the Kc value calculated on the field 

for maize with FAO Kc values and found that Kc developed based on vegetation indices has greater 
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potential for estimating the maize ETc. This literature supported the selection of the NDVI 

vegetation indices for establishing the relationship with FAO-suggested Kc for developing the new 

potato Kc based on NDVI. The newly developed potato Kc helped to estimate the actual water 

requirement corresponding to potato growth stages. 

The variability in the ETc value was identified by visualizing the prepared ETc maps during 

each growth stage (Figure 4-7A, D). In Figure 4-7A, potato ETc values have varied from 0.69 to 

2.05 mm/day (green to red colour) in the field, the higher variation in the ETc value depends upon 

multiple factors i.e., soil moisture content, shade cover, temperature (Lin 2010; Nistor et al., 2016). 

In the initial stage of growth, the ETc was less but grass patches in the field (Figure 4-7) became a 

strong reason for higher variation in the ETc value. In the development and mid-stage, attained the 

value of ETc 1.89 to 3.05 and 2.22 to 4.02 mm/day respectively for potato 

Aghajanloo et al. (2013) used the ANN genetic algorithm to estimate the potato ETc in Iran 

and found the mean and maximum potato ETc were 0.49 and 4.16 mm/day, which is very close to 

the present results. In the late stage of growth, the ETc value declined because potato crop water 

consumption decreased. The trend was compared with accepted literature to support the result of 

this study. For example, Tasumi & Allen (2007)  and Morais et al. (2015)  document that ETc 

values change due to the timing of crop development.  
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Figure 4-8. The comparison between potato FAO Kc and NDVI-based potato Kc during four 

growth stages.  

4.6 Conclusion 

The core objective of this study was to prepare ETc maps of potato crops based on the 

Planet satellite imagery for a selected field in PEI, Canada. A linear regression equation was 

developed to prepare new Kc values during the four potato growth stages. The generated linear 

regression was used in ArcGIS Pro as input to develop the Kc maps. The developed ETc value is 

low at the initial stage of growth, high at the mid-stage of growth, and again declines at the harvest 

stage of growth. The developed ETc value is low in the early stages of development, rises in the 

middle stages, and then falls in the harvest stage. These maps aid in quantifying the variability of 

potato crop water requirements at the field size. This study might be expanded in the future to 

include the use of generated ETc maps of potato crops for long-term irrigation water management. 
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CHAPTER 5: CONCLUSION  

This study evaluated the potential of satellite-based indices for 1) preparing LULC maps, 

2) improving crop mapping accuracy, and 3) preparing potato ETc maps in conjunction with 

machine learning algorithms.  Three separate studies were completed to achieve these specific 

objectives. In study 1, the agriculture, urban, barren land, bare soil, and forest were mapped using 

the Landsat-8 and Sentinel-2A data. In conjunction with RF, K-NN, and KD Tree algorithms, the 

satellite indices (i.e., DVI, NDVI, NDBI, UI and NBLI) were used to extract samples for model 

training and limit the need for ground truth data for validation of LULC maps of PEI. The results 

indicated that K-NN achieved an average kappa coefficient (82 and 74%) and high overall 

accuracy (86 and 81%) for sentinel-2A and Landsat-8, respectively. At the same time, the KD-

Tree reached the average kappa coefficient (80 and 78%) and overall accuracy (85 and 84%) for 

Sentinel-2A and Landsat-8. Random forest achieved an average Kappa coefficient (83.3 and 

73.3%) and high overall accuracy (92 and 85%) for Sentinel- 2A and Landsat-8 data, respectively, 

and proved a better classifier compared to K-NN and KD-Tree. The result of this objective also 

proved that vegetation indices have the potential to prepare the LULC maps. 

The findings of Study 2 showed that employing multitemporal Planet imagery alone as an 

input to SVM and DT did not result in a meaningful difference in overall crop map 

accuracy.  Multitemporal NDVI data combined with multitemporal Planet imagery, the overall 

accuracy of crop maps by SVM and DT enhanced. When integrated multitemporal Planet imagery 

with multitemporal NDVI data was used, the SVM algorithm-based prepared crop maps had a 6.25 

% higher overall accuracy and a 7% higher kappa coefficient than DT. 
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The research 3 experimental activities were placed in a potato field on PEI (46.24136° N, 

63.5311°W). For a real water need estimate, the potential of Planet imagery and GIS for creating 

new NDVI-based potato Kc, ETc maps at 3 m resolution was assessed. Between FAO suggested 

Kc and NDVI-based Kc values, a stronger correlation (R2 = 0.95) was found. The produced potato 

ETc maps revealed that ETc was low at the start of growth, ranging from 0.69 to 2.01 mm/day, 

then increased to 1.89 to 3.05 mm/day as growth progressed. The largest ETc value was found 

during the mid-stage of development, from 2.02 to 4.02 mm/day; subsequently, at the harvest stage 

of growth, from 1.06 to 2.16 mm/day, ETc values began to decline. The developed potato ETc 

maps to aid in estimating the variations in potato water requirements in a field across four 

development phases. The results presented above demonstrated that vegetation indices may be 

used to create LULC maps, improve crop mapping accuracy, and estimate potato ETc.  
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