

 Scan Context 3D Lidar Inertial Odometry via Iterated ESKF and

Incremental K-Dimensional Tree

by

Chang Xu

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

June 2022

© Copyright by Chang Xu, 2022

ii

TABLE OF CONTENTS

LIST OF TABLES ...iii

LIST OF FIGURES ... iv

ABSTRACT ... vi

LIST OF ABBREVIATIONS USED.. vii

ACKNOWLEDGMENTS ... viii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Contributions .. 6

1.3 Organization .. 8

CHAPTER 2 LITERATURE REVIEW .. 9

2.1 Lightweight and Ground Optimized Lidar Odometry and Mapping 9

2.2 Tightly Coupled Lidar Inertial Odometry via Smoothing and Mapping . 13

2.3 Lidar Odometry and Mapping in Real-time .. 16

CHAPTER 3 ARCHITECTURE IMPROVEMENTS .. 23

3.1 Image Projection ... 23

3.2 Feature Association ... 24

3.3 Lidar Odometry (Iterated ESKF Method) ... 27

3.4 Lidar Mapping (Incremental KD Tree) ... 31

3.5 Loop Closure (Scan Context Method) .. 36

CHAPTER 4 RESULTS AND DISCUSSION ... 40

4.1 KAIST Dataset Comparison ... 40

4.2 Riverside Dataset Comparison ... 46

4.3 DCC Dataset Comparison... 51

CHAPTER 5 CONCLUSION AND FUTURE WORK 56

5.1 Conclusion ... 56

5.2 Future Work.. 57

BIBLIOGRAPHY ... 58

iii

LIST OF TABLES

Table I: Comparison of supported incremental updates…………………………….35

Table II: Dataset details of scans and trajectory length…………………………...42

Table III: APE for KAIST dataset of four algorithms ……………………………..47

Table IV: RPE for KAIST dataset of four algorithms ……………………………..47

Table V: APE for Riverside dataset of four algorithms ……………………………52

Table VI: RPE for Riverside dataset of four algorithms …………………………...52

Table VII: APE for DCC dataset of four algorithms ……………………………….57

Table VIII: RPE for DCC dataset of four algorithms ………………………………57

iv

LIST OF FIGURES
Figure 1: (a) Industrial robotic arms, (b) Medical robotic arms. 1

Figure 2: (a) Transport mobile robotics, (b) Firefighting mobile robotics. 2

Figure 3: (a) Four-legged robotics, (b) Bipedal humanoid robotics. 2

Figure 4: Different types of cameras and lidars: (a) T-265 tracking camera, (b) RGBD

depth camera, (c) Ouster 1-64 channel, (d) Velodyne VLP-16 3

Figure 5: 3D LiDAR SLAM point cloud map .. 5

Figure 6: General localization and mapping process for LiDAR SLAM 6

Figure 7: The main process of the proposed algorithm ... 7

Figure 8: LeGO-LOAM system overview .. 10

Figure 9: Mapping process of map optimization .. 10

Figure 10: System overview of the LOAM .. 16

Figure 11: (a) Point B on a surface patch that is parallel to the laser beam, treat point

B as an unreliable point, (b) Point A on a surface patch is blocked with point B scan

plane, treat point A as unreliable point ... 17

Figure 12: Corresponding corner feature.. 18

Figure 13: Corresponding surface feature .. 19

Figure 14: Lidar mapping process.. 21

Figure 15: Integration of pose transforms .. 22

Figure 16: Point cloud downsample from left to right .. 34

Figure 17: Rebuild unbalanced sub-tree steps .. 35

Figure 18: Scan context algorithm overview .. 37

Figure 19: KAIST satellite map and google map ... 40

Figure 20: KAIST dataset point cloud map .. 41

file:///C:/Users/Brian/Desktop/Thesis/毕业论文.docx%23_Toc107568555
file:///C:/Users/Brian/Desktop/Thesis/毕业论文.docx%23_Toc107568555
file:///C:/Users/Brian/Desktop/Thesis/毕业论文.docx%23_Toc107568555

v

Figure 21: Each SLAM algorithm simulation trajectories of KAIST dataset compared

with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-SAM, (d)

A-LOAM,(e) All algorithms. ... 43

Figure 22: APE and RPE of four algorithms for KAIST dataset 44

Figure 23: Riverside satellite map and google map .. 46

Figure 24: Riverside dataset point cloud map .. 46

Figure 25: Each SLAM algorithm simulation trajectories of Riverside dataset

compared with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-

SAM, (d) A-LOAM, (e) All algorithms. .. 48

Figure 26: APE and RPE of four algorithms for Riverside dataset 49

Figure 27: DCC satellite map and google map ... 51

Figure 28: DCC dataset point cloud map ... 51

Figure 29: Each SLAM algorithm simulation trajectories of DCC dataset compared

with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-SAM, (d)

A-LOAM, (e) All algorithms. .. 53

Figure 30: APE and RPE of four algorithms for DCC dataset 54

vi

ABSTRACT

This thesis focused on a 3D lidar inertial odometry algorithm framework that

improves the Lightweight and ground optimized lidar odometry and mapping (LeGO-

LOAM) by constructing a new back-end optimization algorithm. In comparison with

the LeGO-LOAM, the feature extraction and image projection processes are still the

same. Two step Levenberg Marquardt method was replaced with an iterated ESKF

method in the lidar odometry to produce a better initial pose for the robots, and the k-

dimensional(k-d) tree method in the lidar mapping is replaced with the ikd-Tree

method to ensure high performance mapping process in real time. In the loop closure,

a scan context search method is added to better correct the algorithm’s final trajectory.

The proposed algorithm is tested and simulated by configuring the robot operating

system (ROS) with the ubuntu virtual Linux system. The performance of the

optimized back-end algorithm has compared with other three algorithms to show the

proposed algorithm has better accuracy in the localization and mapping process.

vii

LIST OF ABBREVIATIONS USED

SLAM Simultaneous Localization and Mapping

NDT Normal Distributions Transform

ICP Iterative Closest Point

G2O General Framework for Graph Optimization

GTSAM Georgia Tech Smoothing and Mapping

LOAM Lidar Odometry and Mapping in Real-time

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

LEGO Lightweight and Ground Optimized

LIDAR Light Detection and Ranging

CSM Correlative Scan Matching

LM Levenberg Marquardt

KD K-Dimensional

IKD Incremental K-Dimensional

ROS Robot Operating System

PCL Point Cloud Library

TF Transform Fusion

APE Absolute Pose Error

RPE Relative Pose Error

viii

ACKNOWLEDGMENTS

I was very grateful to everyone who helped me finish my thesis during my graduate

studies.

First and foremost, I would thank my supervisor: Dr. Jason Gu, who provided me the

opportunity to work on this thesis and helped me find a research direction. His

professional guidance and asking experts in related research fields to answer my

questions helped me solve many problems and challenges. And I was also very

grateful to my peer Hanxiang Zhang. When I was researching this thesis, we helped

each other and made progress in the process of learning and exploring together.

I also wanted to appreciate two professors of my committee members: Dr. Ya-Jun Pan

and Dr. Kamal El-Sankary. I was grateful for their time on my defense, and the

professional suggestions.

Finally, I wanted to thank my family, without their support, understanding, and care. I

may not be able to achieve my goals smoothly.

1

CHAPTER 1 INTRODUCTION

1.1 Background

In today's society, human development is getting faster and faster, especially in the

development of science and technology. As people's lives become more prosperous,

many new industries emerge. Especially after entering the 21st century, robotics and

artificial intelligence have become the most popular research projects, and various

countries and large technology internet companies have entered this field. After

decades of development, robots and artificial intelligence systems have become a part

of our lives and can help human to do a lot of things. For example, robotics are

mainly divided into two categories which are robotic arms, and mobile robotics

(footed robotics). Many industrial robots are based on robotic arms; as shown in Fig.

1(a), robotic arms are used in factories to build cars. In many surgeries today, the

direct operation of the doctor by hand may cause the big wound, and the blood loss

will lead to many problems. A unique medical robotic arm has been developed to

assistant the doctors to operate, as shown in Fig. 1(b), which can reduce the risk of the

process and make the process easier. Wounds can be made smaller, allowing the

patient to heal faster.

 (a) [44] (b) [45]

Figure 1: (a) Industrial robotic arms, (b) Medical robotic arms.

2

Mobile robots are now mainly used for transportation. As shown in Fig. 2(a), heavy

objects can be placed on top of mobile robots to transport to the directed location. It

can reduce the burden of people when handling them. As shown in Fig. 2(b), mobile

robots can also be put into firefighting. The crawler-type design allows it to move in

various complex environments. It can replace firefighters entering the fire scene for

local firefighting to protect firefighters’ safety.

 (a)[46] (b) [47]

Figure 2: (a) Transport mobile robotics, (b) Firefighting mobile robotics.

Legged robots are part of the mobile robots, and it is mainly divided into quadruped

robots (Fig. 3(a)) and bipedal humanoid robots (Fig. 3(b)). Compared with robotic

arms and mobile robots, these robotics is still immature technology. Robustness and

balance are significantly challenged in unstable ground or particular environments.

 (a)[48] (b) [49]

Figure 3: (a) Four-legged robotics, (b) Bipedal humanoid robotics.

3

Path planning, obstacle avoidance, and state estimation are already the fundamental

prerequisites for mobile robots. Simultaneous localization and mapping (SLAM) is a

popular method, which is now widely used in autonomous driving with mobile

robotics. High-performance real-time simultaneous localization and mapping based

on visual and LiDAR sensors can support six degrees of freedom state estimation [1].

Cameras and lidars are the most mainstream sensor for SLAM; they have their effects

in different using environments. For example, cameras are influenced by temperature

and light but lidars are not. As Fig. 4 shows, different types of cameras and lidars are

commonly used in this research.

 (a) [50] (b) [51]

 (c) [52] (d) [53]

Figure 4: Different types of cameras and lidars: (a) T-265 tracking camera, (b)

RGBD depth camera, (c) Ouster 1-64 channel, (d) Velodyne VLP-16

4

Due to the lightweight, camera has already become a common substitute for lidar.

Visual-based methods usually use monocular or stereo cameras and triangulate

features in continuous images to determine camera movement. Vision-based

frameworks have VPS-SLAM, ORB-SLAM, feature constrained active visual SLAM,

etc. [2]-[4]. Although vision-based methods are particularly suitable for location

recognition, the accuracy and robustness of the camera are poor. It will have the

uncertainty problem when the monocular camera faces the scale problem. In addition,

external factors such as weather, light, temperature, and appearance changes can also

affect the accuracy of the camera [5]. The lidar has a higher resolution and strong

anti-action interference ability than the camera. It can provide more accurate and

farther environmental measurement, and it is not affected by changes in illumination.

Lidar is mainly used in two different environments, indoor and outdoor, and it mainly

uses two different spatial methods, which are 2D and 3D for LiDAR-SLAM. 2D

LiDAR SLAM comprises Gmapping [6], Fast-SLAM [7], Hector-SLAM [8], Nav

SLAM [9], KartoSLAM [10] and so on. Similarly, autonomous vehicles have greater

demand for outdoor scenes, 3D lidar is currently used more frequently, and then the

obtained point cloud is used for mapping and positioning. Now mainstream state-of-

the-art algorithms have LOAM [11], LeGO LOAM [12], and LIO-SAM (Tightly

coupled Lidar Inertial Odometry via Smoothing and Mapping) [13], and Suma

(Surfel-based Mapping for 3d Laser Range Data) [14], etc. These advanced

frameworks and algorithms aim to achieve low-drift and high-precision self-motion

state estimation. Although 3D lidar SLAM is relatively expensive, it is more accurate

and stable than visual SLAM and 2D lidar SLAM [15]. Therefore, this report will

focus on 3D lidar SLAM fusion with IMU; its 3D point cloud map effect shown in

Fig. 5.

5

Figure 5: 3D LiDAR SLAM point cloud map [54]

As shown in Fig. 6, the first step of the general localization and mapping process of

lidar SLAM is to receive sensor data and transmit these data to the front end. The

front-end preprocesses the sensor data and do the point cloud feature association and

scan matching, and the classic methods used in the front end are ICP [16], NDT [17]

and CSM [18] which is published and used in the cartographer. After that, the point

cloud data processed by the front end is transmitted to the back end for nonlinear

optimization. The main methods for nonlinear optimization are graph optimization

and filters. The popular methods of graph optimization are G2O [19] and GTSAM

[20] mainstream libraries, and the non-linear filter optimization methods are mainly

used Kalman filter (KF) [33], extended Kalman filter (EKF) [43] and particle filter

(PF) [42]. At the same time as back-end optimization happened, the loop closure will

work together to correct the final global map. Combining all the point data from the

back-end optimization and the correction from the loop detection, the entire SLAM

positioning and mapping process is realized.

6

Figure 6: General localization and mapping process for LiDAR SLAM

1.2 Contributions

According to the background mentioned above of lidar SLAM, in 2D indoor lidar

SLAM, the cartographer framework [41] that open-sourced from Google become the

best algorithm and no other algorithms can better than it in same conditions.

Therefore, everyone has begun to research and optimize lidar SLAM in large-scale

outdoor scenes in 3D environments under such circumstances. This paper proposes a

fast 3D lidar inertial odometry via scan context loop closure and incremental k-d tree

framework. This framework improves the back-end optimization of the algorithm

which is based on the front-end of the LeGO-LOAM. Three methods were changed in

the back-end optimization in the proposed algorithm to achieve a better performance

in large-scale outdoor scenes in real-time. The main contributions are as follows:

• The first optimization is the processing of IMU pre-integration. The IMU pre-

integration processing of LeGO-LOAM will still generate drift and jitter when

running IMU and lidar odometry datasets. To get a better initial pose of the

7

robots, LINS [25] proposed an iterated error state Kalman filter method to

ensure both accuracy and efficiency.

• The second optimization part is to replace the search method of the k-d tree

with the search method of the ikd-Tree [23] in the lidar mapping part, which is

more efficient and ensures better real-time performance and increases the

speed and accuracy of the mapping process.

• The last optimization is to add the scan context search method [24] to the final

loop closure detection part. The scan context method is used to preserve the

internal structure of the point cloud. At the same time, the absolute position

information of the lost point can be surfaced to reduce perceptual aliasing

error in the case and better correct the final trajectory of the algorithm.

The primary process of the algorithm can be shown in Fig. 7 below, and the back-end

optimization made is in the red box:

Figure 7: The main process of the proposed algorithm

8

1.3 Organization

This thesis report is mainly divided into the following chapters:

Chapter 1: This chapter will introduce the history of the robotics and background of

the SLAM, including the usage, types of SLAM, and why I choose 3D lidar as my

thesis.

Chapter 2: This chapter is mainly a literature review of three lidar SLAM algorithms

used to discuss and compare with the improved slam algorithm in chapter 4.

Chapter 3: This chapter will introduce the improved parts and principles of the

proposed algorithm so that readers can more intuitively know which features are

improved and how it works.

Chapter 4: This chapter will compare and discuss the proposed algorithm with the

lidar SLAM algorithm introduced in Chapter 2, which shows the trajectories and

errors of those algorithms compared with the ground truth.

Chapter 5: The final chapter summarizes the paper and proposes future improvements

and work.

9

CHAPTER 2 LITERATURE REVIEW

Based on my research direction which is 3D lidar SLAM, this chapter will introduce

some classic and popular lidar SLAM algorithm frameworks commonly used in

robotics companies in recent years, such as LeGO-LOAM, LIO-SAM and A-LOAM.

In the fourth chapter, it will compare these algorithms with the improved algorithm to

better reflect the performance optimization of the algorithms relative to these

mainstream algorithms.

2.1 Lightweight and Ground Optimized Lidar Odometry and Mapping

LeGO-LOAM is a lightweight and ground-optimized lidar odometry and mapping

method based on LOAM [11] for real-time six-degree-of-freedom (6-DOF) attitude

estimation of ground vehicles. It is mainly used for the ground optimization, using the

existence of ground plane in its segmentation and optimization steps. First, the point

cloud segmentation is used to filter out the noise, and the plane and edge features are

obtained by the feature extraction method. Then the two-step LM optimization

method [40] is used to solve the transformation between the elements to eliminate the

pose estimation error caused by drift. Compared to LOAM, LeGO-LOAM can

achieve better accuracy at a reduced computational cost [12].

The primary process of LeGO-LOAM is shown in Fig. 8. The initial point cloud

segmentation and feature extraction will be mentioned in Sections 3.1 and 3.2. In this

chapter, lidar odometry and lidar mapping parts for the LeGO-LOAM will be

described.

The lidar odometry part is divided into two steps, named label matching and two-step

L-M optimization. This module estimates the sensor’s motion in two frames during

10

consecutive scans and performs point-to-edge or point-to-plane scan matching to find

the transformation relationship [12]. This part is briefly described [36].

Figure 8: LeGO-LOAM system overview [12]

Label matching is equivalent to the optimization of the first step here. Compared with

LOAM [11], the operation of loopback detection is added here. Its general mapping

process is shown in Fig. 9.

Figure 9: Mapping process of map optimization

The first function here is the callback function, which converts all the point cloud data

from the format defined by ROS to the PCL format. Then the process of closed-loop

detection and visualization of the map is carried out, and then the primary function of

this part is the back-end optimization. In this article, the back-end optimization

method uses the gtsam library. The primary better process is to convert the coordinate

11

system to the world coordinate system to obtain lidar coordinates used for mapping. If

the closed-loop detection is performed, a new point cloud is inserted at the end and

the old point cloud in the front is deleted. If the closed-loop is not performed, the

search is performed in the neighborhood, and the keyframes are stored in the

corresponding queue after the double loop. Whether the loop is closed or not,

downsampling is performed to reduce the amount of data. The latest point cloud data

obtained by downsampling is registered with the existing map to update the robot’s

precise pose and fusion mapping. It is mainly divided into corner point optimization

and plane point optimization, registration and update [12].

The principle of corner optimization is to calculate the eigenvalues and eigenvectors

of the orthogonal matrix. If it is a corner feature, its eigenvalue will be much larger

than the other two features. If it is a plane feature, then the eigenvalue will be much

smaller than the other two features, then decide whether to optimize. If optimized, it

will define three sets of variables and calculate the area of the parallelogram obtained

by the cross product between them by Eq. (1). Then the normal vector as Eq. (2) can

be obtained by the cross-product again [12].

 [
𝑋
𝑌
𝑍
] = [

(𝑦0 − 𝑦1)(𝑧0 − 𝑧2) − (𝑦0 − 𝑦2)(𝑧0 − 𝑧1)

−(𝑥0 − 𝑥1)(𝑧0 − 𝑧2) − (𝑥0 − 𝑥2)(𝑧0 − 𝑧1)

(𝑥0 − 𝑥1)(𝑦0 − 𝑦2) − (𝑥0 − 𝑥2)(𝑦0 − 𝑦1)
], (1)

[𝑙𝑎 𝑙𝑏 𝑙𝑐] = [𝑋 𝑌 𝑍] × [𝑥1 − 𝑥2 𝑦1 − 𝑦2 𝑧1 − 𝑧2]/𝑎1/𝑙1, (2)

where 𝑎1 = √𝑋2 + 𝑌2 + 𝑍2, 𝑙1 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2. The norm

of [
𝑋
𝑌
𝑍
] is area of parallelogram, and [𝑙𝑎 , 𝑙𝑏, 𝑙𝑐] is unit normal vector. Then the

surface optimization is carried out, and the principle is basically the same as that of

the corner point optimization [12].

12

The final optimization is a two-step LM optimization [40]. Its optimization process is

to set Eq. (3) as a point on the local coordinate system and transform it into Eq. (4) in

the global map coordinate system. Then define the error and combine the above

equation to get the error as shown in Eq. (5). Based on Eq. (4), use the error to obtain

partial derivatives of rotation and translation, respectively as shown in Eq. (6), and

finally solve the content displayed in Eq. (7) [12].

 𝑋(𝑘+1,𝑖)
𝐿 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)𝑇, (3)

 𝑋(𝑘+1,𝑖)
𝑤 = 𝐺(𝑋(𝑘+1,𝑖)

𝐿 , 𝑇(𝑘+1)
𝑤) = 𝑅 ∙ 𝑋(𝑘+1,𝑖)

𝐿 + 𝑡, (4)

Where 𝑋(𝑘+1,𝑖)
𝐿 and 𝑋(𝑘+1,𝑖)

𝑤 are point i at time k+1 in the lidar and world frame,

𝑝𝑥, 𝑝𝑦, 𝑝𝑧 are the feature points, 𝐺(.) is a transform function and 𝑇(𝑘+1)
𝑤 includes

rotations and shifts.

𝑑 = 𝐷(𝑋(𝑘+1,𝑖)
𝑤 , 𝑚𝑎𝑝) = 𝐷(𝐺(𝑋(𝑘+1,𝑖),

𝐿 𝑇(𝑘+1)
𝑤),𝑚𝑎𝑝) = 𝐷(𝑅 ∙ 𝑋(𝑘+1,𝑖)

𝐿 + 𝑡,𝑚𝑎𝑝), (5)

𝜕𝑙𝑜𝑠𝑠

𝜕𝑒𝑥
=

𝜕𝐷(𝐺(𝑋(𝑘+1,𝑖),
𝐿 𝑇(𝑘+1)

𝑤),𝑚𝑎𝑝)

𝜕𝑒𝑥
=

𝜕𝐷(∙)

𝜕𝐺(∙)
∙
𝜕(𝑅∙𝑋(𝑘+1,𝑖)

𝐿)

𝜕𝑒𝑥
, (6)

𝜕𝐷(∙)

𝜕𝐺(∙)
=

𝜕𝑑

(𝜕𝑋(𝑘+1,𝑖)
𝑤)

= (
𝜕𝑑

𝜕𝑥
,
𝜕𝑑

𝜕𝑦
,
𝜕𝑑

𝜕𝑧
) = (𝑙𝑎 , 𝑙𝑏, 𝑙𝑐),

𝜕(𝑅∗𝑋(𝑘+1,𝑖)
𝐿)

𝜕𝑒𝑥
=

𝜕(𝑅)

𝜕𝑒𝑥
∙ (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)

𝑇
= [

𝑠𝑦 ∙ 𝑐𝑥 ∙ 𝑠𝑧 𝑐𝑧 ∙ 𝑠𝑦 ∙ 𝑐𝑥 −𝑠𝑥 ∙ 𝑠𝑦
−𝑠𝑥 ∙ 𝑠𝑧 −𝑠𝑥 ∙ 𝑐𝑧 −𝑐𝑥
𝑐𝑦 ∙ 𝑐𝑥 ∙ 𝑠𝑧 𝑐𝑦 ∙ 𝑐𝑧 ∙ 𝑐𝑥 −𝑐𝑦 ∙ 𝑠𝑥

] ∙

(𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)
𝑇
. (7)

Same approach can solve
𝜕(𝑅×𝑋(𝑘+1,𝑖)

𝐿)

𝜕𝑒𝑦
 and

𝜕(𝑅×𝑋(𝑘+1,𝑖)
𝐿)

𝜕𝑒𝑧
.

After completing the above steps and algorithm equations, we realize the functions of

lidar odometry surveying and mapping. After that, the next step we have to do is the

coordinate system's transformation and fusion. Its primary function is the fusion

calculation of pose information. Driven by two callback functions, the first is to

obtain the accurately registered pose as the after mapped transformation and obtain

13

the registered speed as before the mapped change to prepare for the following

calculation. Another callback function is to fuse the odometry information from the

coarse registration in feature association with the odometry information in the map

optimization, then send the final outgoing odometry topic in the callback function.

The topic of transform fusion and odometry in the callback function is the final

decision. Compared with LOAM [11], LeGO-LOAM has a minor relative error and

running time performance.

2.2 Tightly Coupled Lidar Inertial Odometry via Smoothing and Mapping

This framework for high precision trajectory estimation and map construction used by

smoothing and mapping tightly coupled lidar inertial odometry. LIO-SAM can

perform a variety of relative and absolute measurements, including loop closure

detection. The IMU brings the initial pose estimation to assume a nonlinear motion

model to eliminate the tilt of the point cloud to optimize the lidar odometry. The

framework uses local-scale scan matching instead of global-scale scan matching,

which significantly improves the real-time performance of the system. Selective

introduction of keyframes and an effective sliding window store new keyframes into a

previously fixed-size set of sub-keyframes. This is the main contribution that the

framework brings [13].

In this system, the world frame is 𝑊, the robot body frame is 𝐵, 𝑅 is the rotation

matrix, 𝑝 is the position vector, 𝑣 is the velocity, and 𝑏 is the IMU bias. Then we can

get the state matrix 𝑥 of the robot as in Eq. (8) [13].

𝑥 = [𝑅𝑇 , 𝑝𝑇, 𝑣𝑇 , 𝑏𝑇]𝑇 . (8)

The LIO-SAM [13] system receives sensor data from 3D lidar, IMU or GPS and uses

these observations to estimate the state and trajectory of the robot. This state

14

estimation can be formulated as a maximum a posteriori problem, modelled using a

factor graph equivalent to solving a nonlinear least-squares problem under the

assumption of a gaussian noise model. The system mainly consists of the IMU pre-

integration factor, lidar odometry factor, GPS factor, and loop closure factor. The

optimization is performed using Bayes trees [37] for incremental smoothing and new

nodes after mapping to erode the previous elements. Since my project does not use the

GPS factor, this part will not be introduced below.

Through the measurement definition of the angular velocity and acceleration of the

IMU, the original IMU measurement value at time 𝑡 can be obtained. Using the

measurement value of the IMU, the motion trajectory of the robot can be inferred, and

the velocity 𝑉, position 𝑃 and rotation 𝑅 equations of the robot at time 𝑡 + ∆𝑡 can be

obtained in Eq. (9) [13]. 𝑏𝑡 is the bias and 𝑛𝑡 is the white noise here, 𝜔̂𝑡 and 𝑎̂𝑡 are the

raw IMU measurements. Assuming that the angular velocity and acceleration remain

constant during the above process, the relative motion in the two times can be

obtained using the IMU pre-integration method [38].

 𝑉𝑡+∆𝑡 = 𝑉𝑡 + 𝑔∆𝑡 + 𝑅𝑡(𝑎̂𝑡 − 𝑏𝑡
𝑎 − 𝑛𝑡

𝑎)∆𝑡,

 𝑃𝑡+∆𝑡 = 𝑃𝑡 + 𝑉𝑡∆𝑡 +
1

2
𝑔∆𝑡2 +

1

2
𝑅𝑡(𝑎̂𝑡 − 𝑏𝑡

𝑎 − 𝑛𝑡
𝑎)∆𝑡2, (9)

 𝑅𝑡+∆𝑡 = 𝑅𝑡𝑒𝑥𝑝((𝜔̂𝑡 − 𝑏𝑡
𝜔 − 𝑛𝑡

𝜔)∆𝑡).

In the lidar odometry factor, the operation of feature extraction is performed first. The

edge or plane feature is extracted by the roughness of the point in the local area, and

the more significant roughness point is the edge feature. LIO-SAM [13] adopts the

method of keyframe selection, which is widely used in the field of visual SLAM. All

lidar frames between two keyframes will be discarded to balance map density and

memory consumption, thus maintaining a relatively sparse factor graph for nonlinear

optimization.

15

The lidar odometry is mainly composed of three parts, which are the sub-keyframes of

the voxel map, scan matching and relative transformation. The sliding window

method is used in the voxel map to create a fixed number of point cloud maps scanned

by lidar, and keyframes are extracted for estimation. It is transformed with sub-

keyframes and merged into two types of voxel maps based on the feature extraction.

Scan matching uses the method in [36] because of better computational efficiency and

robustness. To obtain features in the lidar frame by IMU to predict the initial

transformation of robot motion. The final relative transform is mainly the principle of

point-to-line and point-to-surface of the LeGO-LOAM [12]. It is very similar to Eq.

(13-14) because the two papers are from the same institution. After that, the Gauss-

Newton method is used to solve the optimal transformation by minimizing Eq. (10) to

get ∆𝑇𝑖,𝑖+1 which in Eq. (11), which is the lidar odometry factor of the two poses [13].

min
𝑇𝑖+1

{∑ 𝑑𝑒𝑘𝑝𝑖+1,𝑘∈′𝐹𝑖+1
𝑒 + ∑ 𝑑𝑝𝑘𝑝

𝑖+1,𝑘∈′𝐹
𝑖+1
𝑝 } , (10)

∆𝑇𝑖,𝑖+1 = 𝑇𝑖
𝑇𝑇𝑖+1. (11)

𝑝𝑖+1,𝑘∈′𝐹𝑖+1
𝑒 means edge features 𝑝𝑖+1,𝑘 in ′𝐹𝑖+1

𝑒 and 𝑝𝑖+1,𝑘∈′𝐹𝑖+1
𝑝 means planar features

𝑝𝑖+1,𝑘 in ′𝐹𝑖+1
𝑝

. ∆𝑇𝑖,𝑖+1 is to transform sub keyframes in to the frame 𝑥𝑖.

Because the proposed algorithm does not involve the content of the GPS factor, it will

not be mentioned here. The last is the loop closure factor, where the factor graph

method is used, which is a loop closure detection method based on Euclidean

distance. The function implementation principle is that when a new state 𝑋𝑖+1 is

added to the factor graph, the factor graph is searched. The initial states that are close

to 𝑋𝑖+1 in Euclidean space are found, and then the sub-keyframes in the lidar frame

are matched to get the relative transformation. Adding it to the graph as a closed-loop

factor can correct the height error [13].

16

LIO-SAM [13] shows better performance on various outdoor datasets in terms of

error when comparing LOAM [11] and LIOM [39].

2.3 Lidar Odometry and Mapping in Real-time

Since the lidar odometry is in motion, errors will continue to accumulate in the

integration process, which will lead to the drift of the odometry. LOAM [11]

proposed a method using point cloud matching and feature extraction to solve the

problem of odometry drift. It first uses a high-frequency but lower-accuracy odometry

for matching, then uses a low-frequency but higher-precision odometry for correction,

and uses a combination of high and low-frequency odometry to correct the drift and

error of the odometry to ensure real-time performance and accuracy at the same time.

A-LOAM is a lidar-based slam framework based on LOAM [11] and the theory is the

same as LOAM [11].

Figure 10: System overview of the LOAM [11]

The system overview of the LOAM is shown in Fig. 10, the lidar odometry is

composed of four parts. First, the point cloud data 𝑃̂ in the lidar coordinate system is

obtained, and then the point cloud obtained by the kth scan is composed of frame data

𝑃𝑘. Finally 𝑃𝑘 is processed in the lidar odometry and lidar mapping nodes. The lidar

odometry mainly acquires the motion between two frames of point cloud data to

17

achieve the function of de-distortion. The operating frequency of this node is 10 Hz,

and then the processed result is passed to the lidar mapping node, which is 1 Hz

frequency work to match the map and register point cloud data without distortion. The

last transform integration node receives the transform information of the first two

nodes and performs information fusion processing at a frequency of 10 Hz [11].

First, in the part of feature point extraction, non-uniformly distributed point cloud data

is generated by constructing two lidars, so feature points are extracted from each scan.

The selection of feature points is shown by the curvature Eq. (12), and the

surrounding points of curvature points make up a set of consecutive points used to

find the curvature. The square of the five-point differences around the feature point is

calculated to compare the curvature. To prevent the feature points from being too

dense, the point cloud obtained by each scan is divided into four parts. In each part,

two points with the most considerable curvature are selected as edge points and four

with the minor curvature are selected as plane points. When selecting feature points, it

should avoid to choose and select points around the points and points on a plane

parallel to the laser line as shown in Fig. 11(a), and should not determine the blocked

points in Fig. 11(b) [11].

Figure 11: (a) Point B on a surface patch that is parallel to the laser beam, treat

point B as an unreliable point, (b) Point A on a surface patch is blocked with point B

scan plane, treat point A as unreliable point

18

C=
1

|𝑆|∙‖𝑋(𝑘,𝑖)
𝐿 ‖

‖∑ (𝑋(𝑘,𝑖)
𝐿 − 𝑋(𝑘,𝑗)

𝐿)𝑗∈𝑆,𝑗≠1 ‖. (12)

|𝑆| represents the set of continuous point of 𝑝 from the same range image row. After

the curvature is calculated, the operation of picking points is carried out to remove the

unreliable points, and if the distance between the two points is close, the 5 points that

are farther away are directly removed.

The next step is to find the correspondence of the feature points. The mileage

calculation method obtains the motion in a frame of point cloud time, and the time t is

used to represent the start time of the kth scan. At the end of a scan, there will be a

point cloud 𝑃𝑘, and the projected point cloud 𝑃𝑘̅̅ ̅ and at time 𝑡 + 1, 𝑃𝑘+1 is matched to

obtain the relative motion and the mutual correspondence. The relationship between

the two is by first finding the two closest points in the previous frame of data

corresponding to an edge point 𝑖 and judging whether these two points are edge

points, 𝑗 and 𝑙 must be pointed in different bundles to ensure that there is at most one

edge point in a segment of a line, as shown in Fig. 12. Then we can find the distance

from the point to the line as Eq. (13) [11].

Figure 12: Corresponding corner feature

𝐷𝑒 =
|(𝑋̃(𝑘+1,𝑖)

𝐿 −𝑋̃(𝑘,𝑗)
𝐿)×(𝑋̃(𝑘+1,𝑖)

𝐿 −𝑋̃(𝑘,𝑙)
𝐿)|

|𝑋̃(𝑘,𝑗)
𝐿 −𝑋̃(𝑘,𝑙)

𝐿 |
. (13)

19

Here 𝑋̃(𝑘,𝑖)
𝐿 , 𝑋̅(𝑘,𝑗)

𝐿 and 𝑋̅(𝑘,𝑙)
𝐿 form the corresponding edge line. The numerator is two

loud cross products. After the modulus is calculated, it becomes the area of the

triangle. As shown in Fig. 11, the denominator is the vector whose modulus is

equivalent to the length of the triangle’s base.

Using a similar principle, we can obtain the point-to-surface distance as shown in Fig.

13 and Eq. (14).

Figure 13: Corresponding surface feature

𝐷ℎ =

|
(𝑋̃(𝑘+1,𝑖)

𝐿 −𝑋̅(𝑘,𝑗)
𝐿)

(𝑋̅(𝑘,𝑗)
𝐿 −𝑋̅(𝑘,𝑙)

𝐿)×(𝑋̅(𝑘,𝑗)
𝐿 −𝑋̅(𝑘,𝑚)

𝐿)
|

|(𝑋̅(𝑘,𝑗)
𝐿 −𝑋̅(𝑘,𝑙)

𝐿)×(𝑋̅(𝑘,𝑗)
𝐿 −𝑋̅(𝑘,𝑚)

𝐿)|
, (14)

where 𝑖, 𝑗, 𝑙 and 𝑚 represent the feature index in the corresponding sets, 𝑋̃(𝑘,𝑖)
𝐿 , 𝑋̅(𝑘,𝑗)

𝐿 ,

𝑋̅(𝑘,𝑙)
𝐿 and 𝑋̅(𝑘,𝑚)

𝐿 form the corresponding planar patch. The lower part of the

numerator represents the area of the triangle obtained by the cross-multiplication of

two vectors. The upper part of the numerator represents the height of the cube, the

whole numerator represents the volume of the cube. The denominator represents the

triangle area of the cube’s base, then divides the two. The final result is the distance

from the point to the surface.

The third part is motion estimation. In this paper, it is assumed that the lidar is moving

at a constant speed. Therefore, through the transformation matrix of the endpoint of a

frame of data relative to the start point, any point in this data frame can be obtained by

20

time interpolation close to the start point. The interpolation formula is shown in Eq.

(15) [11].

𝑇(𝑘+1,𝑖)
𝐿 =

𝑡𝑖−𝑡𝑘+1

𝑡−𝑡𝑘+1
𝑇𝑘+1
𝐿 . (15)

𝑇𝑘+1
𝐿 is lidar pose transform from 𝑡𝑘+1 to 𝑡, and it contains rigid motion of the lidar in

6 DOF. 𝑡𝑖 is the timestamp with a given point 𝑖.

In order to obtain the correspondence between the points in the data of this frame and

the previous frame, Eq. (16) is represented by a rotation matrix 𝑅 and a translation

matrix 𝑇. Since the derivation of the rotation matrix is relatively complicated, the

rotation matrix is expanded by the Rodrigues formula as shown in Eq. (17). After

derivation of the rotation matrix, we can get the distance from a point to a line and

point to the surface [11].

𝑋(𝑘+1,𝑖)
𝐿 = 𝑅𝑋̃(𝑘+1,𝑖)

𝐿 + 𝑇(𝑘+1,𝑖)
𝐿 (1: 3), (16)

𝑅 = 𝑒𝜔̂𝜃 = 𝐼 + 𝜔̂ sin 𝜃 + 𝜔̂2(1 − cos𝜃), (17)

where 𝑋(𝑘+1,𝑖)
𝐿 is coordinates of a point 𝐼 in sets of edge points and planar points

extracted from the point cloud received during the sweep. 𝑋̃(𝑘+1,𝑖)
𝐿 is the

corresponding points in set of points reprojected to the beginning of the sweep.

𝑇(𝑘+1,𝑖)
𝐿 (1: 3) is first to third entries of 𝑇(𝑘+1,𝑖)

𝐿 and 𝑅 is a rotation matrix. 𝜃 is the

magnitude of the rotation. 𝜔̂ is the skew symmetric matrix of 𝜔, and 𝜔 is a unit vector

representing the rotation direction.

Through the motion of the lidar and the LM method, a non linear error function (18)

for optimization can be obtained. Each row in 𝑓 represents a feature point, and the

Jacobian matrix is calculated as Eq. (19), and finally the nonlinear iterative method is

used. Let 𝑑 become 0 [11].

21

𝑓(𝑇𝑘+1
𝐿) = 𝑑, (18)

 𝑇𝑘+1
𝐿 ← 𝑇𝑘+1

𝐿 − (𝐽𝑇𝐽 + 𝜆𝑑𝑖𝑎𝑔(𝐽𝑇𝐽)−1𝐽𝑇𝑑), (19)

where 𝐽 = 𝜕𝑓/𝜕𝑇𝑘+1
𝐿 , 𝜆 is a Levenberg Marquardt method factor.

The last part is the lidar mapping part, as shown in Fig. 14. This is the mapping

process. The curve in figure represents the lidar pose on the map. 𝑇𝑘
𝑊 is generated by

the mapping algorithm at sweep 𝑘, and 𝑇𝑘+1
𝐿 indicates the lidar motion during sweep

𝑘 + 1 which is computed by the lidar odometry algorithm. The existing point cloud

on the map 𝑄𝑘 is used to match the undistorted point cloud which is published by the

odometry algorithm is projected on the map indicated as 𝑄̅𝑘+1 [11].

Figure 14: Lidar mapping process

To calculate the distance from the feature point to the corresponding point, the

distance from a point to line and point to the surface can be obtained as shown in

Equations (13-14), and then Equations (20-21) can be derived. The difference is that

there are many advantages in 𝑄̅𝑘+1 . At the same timestamp 𝑡 , the nonlinear

optimization is solved again by LM optimization, and 𝑄̅𝑘+1 is registered on the map.

These points are evenly distributed by reducing the point cloud size in the map by a

voxel grid filter [11].

𝑓𝑒(𝑋(𝑘+1,𝑖)
𝐿 , 𝑇𝑘+1

𝐿) = 𝐷𝑒, 𝑖𝜖𝑒𝑘+1 (20)

22

𝑓ℎ(𝑋(𝑘+1,𝑖)
𝐿 , 𝑇𝑘+1

𝐿) = 𝐷ℎ , 𝑖𝜖ℎ𝑘+1 (21)

𝑒𝑘+1 and ℎ𝑘+1 are the sets of edge points and planar points. 𝑓𝑒(.) is geometric

relationship between an edge point in 𝑒𝑘+1 and the corresponding edge line, 𝑓ℎ(.) is

geometric relationship between a planar point in ℎ𝑘+1 and the corresponding planar

patch.

As shown in Fig. 15, this is the integration of pose transforms. 𝑇𝑘
𝑊represents the pose

output of the lidar mapping, area 𝑇𝑘+1
𝐿 represents the conversion output of the lidar

odometry when the frequency is about 10 Hz. The lidar pose is relative to the map

which combines two transformations, at the same frequency as the lidar odometry

[11].

Figure 15: Integration of pose transforms

LOAM can be said to be the most classic framework in SLAM. It has driven the

development of the entire lidar SLAM after the LOAM is proposed. In this situation,

we are usually referred to a series of algorithm frameworks based on LOAM as

LOAM-based algorithms.

23

CHAPTER 3 ARCHITECTURE IMPROVEMENTS

This chapter will introduce the improvement made in the proposed lidar slam

framework and the background and rationale of these changes. The changes are

mainly divided into five parts: image projection and feature association from front end

of the LeGO-LOAM, using iterated error state Kalman filter of the IMU pre-

integration in lidar odometry, ikd-Tree method to replace the k-d tree method in lidar

mapping, and the addition of the scan context method to the loop closure detection in

pose optimization. The proposed algorithm can generate a better trajectory from the

environment without large odometry errors and drifts. A detailed analysis of the

improvements will be shown below.

3.1 Image Projection

This part is mainly for point cloud segmentation. First, the starting point and the last

point are angle converted, the depth of the point cloud is calculated one by one, then

saved the point cloud with depth. Different scanning circles determine whether it is a

ground point to confirm the ground is level. Finally, the point cloud segmentation

operation is performed. If it is recognized as a feature point and a ground point, then

include a point cloud every 5 points to determine whether it is a ground point and

saved to the point cloud. The unprocessed point of the feature detects the four

adjacent points up, down, left and right. The local feature includes the adjacent point

when the plane angle is more significant than sixty degrees. When the number of

neighboring points reaches 30, the registration is successful because the robot

operates in a noisy environment; small objects can form small and unreliable features.

After that, the registered segmentation point cloud is published [12].

24

3.2 Feature Association

The main body of this section is divided into two parts: feature point extraction and

feature point matching. First, the down-sampling filter and the coordinate system

transformation of the reference LOAM [11] are defined to obtain the world coordinate

system's distortion displacement and speed. At the same time, the displacement

distortion is removed. The displacement, velocity and rotation are corrected [12].

In the feature point matching, the shift distortion calculation, as Equations (22-24), is

the shift distortion in the world frame [11]. 𝛼, 𝛽, 𝛾 are pitch, yaw and roll angles, and

∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥/𝑦/𝑧
 represents shift from the start to current in 𝑥, 𝑦 and 𝑧 axis in the

world frame.

 ∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥/𝑦/𝑧
= 𝑆𝑐𝑢𝑟_𝑥/𝑦/𝑧 − 𝑆𝑠𝑡𝑎_𝑥/𝑦/𝑧 − 𝑉𝑥/𝑦/𝑧∆𝑡,

 [

𝑥1
𝑦1
𝑧1
]

𝑇

= [

∆𝑆𝑥
∆𝑆𝑦
∆𝑆𝑧

]

𝑇

𝑅𝑦(𝛽) = [

∆𝑆𝑤𝑜𝑟𝑙𝑑𝑥
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑦
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑧

]

𝑇

[
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽
], (22)

 [

𝑥2
𝑦2
𝑧2
]

𝑇

= [

𝑥1
𝑦1
𝑧1
]

𝑇

𝑅𝑥(𝛼) = [

𝑥1
𝑦1
𝑧1
]

𝑇

[
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

], (23)

[

∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑥
∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑦
∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑧

]

𝑇

= [

𝑥2
𝑦2
𝑧2
]

𝑇

𝑅𝑧(𝛾) = [

𝑥1
𝑦1
𝑧1
]

𝑇

[
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0
0 0 1

]. (24)

Eq. (25) shows the shift distortion in the local frame, ∆𝑆𝑙𝑜𝑐𝑎𝑙 represents the shift in the

local frame:

[

∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑥
∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑦
∆𝑆𝑙𝑜𝑐𝑎𝑙_𝑧

]

𝑇

= [

∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥

]

𝑇

𝑅𝑦(𝛽)𝑅𝑥(𝛼)𝑅𝑧(𝛾). (25)

Same as the shift distortion calculation, the velocity distortion in the world coordinate

system is as in Eq. (26), and in the local coordinate system as Eq. (27) shows [11].

25

 ∆𝑉𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟_𝑥/𝑦/𝑧
= 𝑉𝑐𝑢𝑟_𝑥/𝑦/𝑧 − 𝑉𝑠𝑡𝑎_𝑥/𝑦/𝑧, (26)

[

∆𝑉𝑙𝑜𝑐𝑎𝑙_𝑥
∆𝑉𝑙𝑜𝑐𝑎𝑙_𝑦
∆𝑉𝑙𝑜𝑐𝑎𝑙_𝑧

]

𝑇

= [

∆𝑉𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥
∆𝑉𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑦
∆𝑉𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑧

]

𝑇

𝑅𝑦(𝛽)𝑅𝑥(𝛼)𝑅𝑧(𝛾). (27)

After the shift distortion is calculated, we need to remove the shift distortion as

following operations. First, the current coordinate system needs to be converted to the

world coordinate system as shown in Eq. (28). The world coordinate system is

converted to the initial coordinate system to subtract the amount of shift distortion as

Eq. (29) shows [11].

[

𝑆𝑤𝑜𝑟𝑙𝑑_𝑥
𝑆𝑤𝑜𝑟𝑙𝑑_𝑦
𝑆𝑤𝑜𝑟𝑙𝑑_𝑧

]

𝑇

= [

𝑆𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟_𝑥
𝑆𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟_𝑦
𝑆𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟_𝑧

]

𝑇

𝑅𝑧(𝛾)
−1 𝑅𝑥(𝛼)

−1 𝑅𝑦(𝛽)
−1, (28)

[

𝑆𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑎_𝑥
𝑆𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑎_𝑦
𝑆𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑎_𝑧

]

𝑇

= [

𝑆𝑤𝑜𝑟𝑙𝑑𝑥
𝑆𝑤𝑜𝑟𝑙𝑑𝑦
𝑆𝑤𝑜𝑟𝑙𝑑𝑧

]

𝑇

𝑅𝑦(𝛽)𝑅𝑥(𝛼)𝑅𝑧(𝛾) + [

∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑥
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑦
∆𝑆𝑤𝑜𝑟𝑙𝑑𝑠𝑡𝑎2𝑐𝑢𝑟𝑧

]

𝑇

. (29)

After completing the above calculations, the shift, velocity and angular shift will be

corrected. Then convert the current coordinate system to the world coordinate system

and subtract the shift distortion value as Eq. (30) shows. In Eq. (31), when the last

frame minus the time difference of the previous frame is less than the scan period, the

correction Eq. (32) will be performed, when ∆𝑡 is smaller than the scan period [11].

[

𝑎𝑤𝑜𝑟𝑙𝑑_𝑥
𝑎𝑤𝑜𝑟𝑙𝑑_𝑦
𝑎𝑤𝑜𝑟𝑙𝑑_𝑧

]

𝑇

= [

𝑎𝑙𝑜𝑐𝑎𝑙_𝑥
𝑎𝑙𝑜𝑐𝑎𝑙_𝑦
𝑎𝑙𝑜𝑐𝑎𝑙_𝑧

]

𝑇

𝑅𝑧(𝛾)
−1 𝑅𝑥(𝛼)

−1 𝑅𝑦(𝛽)
−1, (30)

∆𝑡 = 𝑡𝑙𝑎𝑠𝑡 − 𝑡𝑏𝑎𝑐𝑘 , (31)

 𝑆𝑙𝑎𝑠𝑡_𝑥/𝑦/𝑧 = 𝑆𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧 + 𝑉𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧∆𝑡 +
1

2
𝑎𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧∆𝑡

2,

 𝑉𝑙𝑎𝑠𝑡_𝑥/𝑦/𝑧 = 𝑉𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧 + 𝑎𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧∆𝑡, (32)

𝜃𝑙𝑎𝑠𝑡_𝑥/𝑦/𝑧 = 𝜃𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧 + 𝑉𝑏𝑎𝑐𝑘_𝑥/𝑦/𝑧∆𝑡,

26

where 𝜃 represents the angular rotation and 𝑉 represents the angular velocity. After

subtracting the influence of gravity, the actual value of acceleration in the 𝑥𝑦𝑧

direction is obtained, and the coordinate axis conversion is performed to unify it to the

right-hand coordinate system with the z-axis forward and the x-axis to the right. After

completion, it enters the stage of feature extraction. This stage mainly calculates the

relative pose and time difference between the point clouds, calculates the relative

movement speed, and converts the point clouds to the IMU coordinate system [12].

Then calculate the linear interpolation that are 𝑅𝑓 and 𝑅𝑏 which are Equations (33-

34), using IMU to correct point cloud distortion by Eq. (35).

𝑅𝑓 =
𝑇𝑠𝑐𝑎𝑛_𝑐𝑢𝑟+𝑇𝑝𝑜𝑖𝑛𝑡−𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑏𝑎𝑐𝑘

𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑓𝑟𝑜𝑛𝑡−𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑏𝑎𝑐𝑘
, (33)

𝑅𝑏 =
𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑓𝑟𝑜𝑛𝑡−𝑇𝑠𝑐𝑎𝑛𝑐𝑢𝑟−𝑇𝑝𝑜𝑖𝑛𝑡

𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑓𝑟𝑜𝑛𝑡−𝑇𝑖𝑚𝑢_𝑝𝑜𝑖𝑛𝑡_𝑏𝑎𝑐𝑘
, (34)

𝜃𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑐𝑢𝑟 = 𝜃𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑓𝑟𝑜𝑛𝑡𝑅𝑓 + 𝜃𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑏𝑎𝑐𝑘𝑅𝑏,

 𝑆𝑖𝑚𝑢_𝑐𝑢𝑟_𝑥/𝑦/𝑧 = 𝑆𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑓𝑟𝑜𝑛𝑡𝑅𝑓 + 𝑆𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑏𝑎𝑐𝑘𝑅𝑏, (35)

𝑉𝑖𝑚𝑢_𝑐𝑢𝑟_𝑥/𝑦/𝑧 = 𝑉𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑓𝑟𝑜𝑛𝑡𝑅𝑓 + 𝑉𝑖𝑚𝑢_𝑥/𝑦/𝑧_𝑏𝑎𝑐𝑘𝑅𝑏.

Then calculate the curvature as shown in Eq. (12) to express the smoothness of the

plane. After that, the feature point extraction process is carried out. First, the current

point cloud frame is divided into six parts according to the line bundle to prevent the

feature extraction from being too dense, and then arranged according to the curvature

from small to large. When extracting a feature point, the curvature must be greater

than or less than a certain threshold to prevent it from being a ground point.

Afterward, 20 points with more significant curvature are extracted as corner points,

and 20 with smaller curvature are removed as plane points [12].

After the feature extraction stage, the feature points are matched and associated. There

are two main matching methods here. The first is surface feature matching. As shown

27

in Fig. 12, the surface feature points are first projected to the starting coordinate

system of the frame. Next, look for the nearest neighbor point every five iterations in

the kd tree by searching through voxel filtering. Find the other two points to form a

plane in the direction where the scan id increases or decreases. Then the distance 𝐷ℎ

from the point to the surface can be obtained [11], as shown in Eq. (14).

The second part is line feature matching. The principle is similar to surface features.

As shown in Fig. 11, the distance from a point to line 𝐷𝑒 can be obtained by Eq. (13).

After the feature extraction and matching are completed, the surface and line features

are matched and optimized. An accumulated rotation amount will be shown in Eq.

(36).

𝑅𝑐𝑢𝑟
𝑠𝑡𝑎𝑟𝑡 = 𝑅𝑙𝑎𝑠𝑡

𝑠𝑡𝑎𝑟𝑡 ∗ (𝑅𝑙𝑎𝑠𝑡
𝑐𝑢𝑟)−1, (36)

Notice that 𝑅𝑙𝑎𝑠𝑡
𝑠𝑡𝑎𝑟𝑡 = 𝑅𝑧𝑅𝑥𝑅𝑦 𝑅𝑐𝑢𝑟

𝑙𝑎𝑠𝑡 = 𝑅𝑦𝑅𝑥𝑅𝑧.

Then correct the Euler angle of the current point, as shown in Eq. (37).

(𝑅𝑐𝑢𝑟
𝑠𝑡𝑎𝑟𝑡)′ = 𝑅𝑒𝑛𝑑𝑅𝑠𝑡𝑎𝑟𝑡

−1 𝑅𝑐𝑢𝑟
𝑠𝑡𝑎𝑟𝑡 , (37)

𝑅𝑒𝑛𝑑 𝑎𝑛𝑑 𝑅𝑠𝑡𝑎𝑟𝑡
−1 are rotated with 𝑧𝑥𝑦 axis.

Then the feature point extraction and feature point matching is done. It is the front end

of the LeGO-LOAM which is used in the proposed algorithm.

3.3 Lidar Odometry (Iterated ESKF Method)

The IMU pre-integration process mainly occurs in the odometry module, primarily

composed of propagation and update sub-modules. It performs an iterative Kalman

filter [33] and outputs the initial odometry and undistorted features. Then it uses the

mapping module to initialize the global map and output the new odometry to update

the map with the latest features [25].

28

The lidar inertial odometry module has the iterated ESKF method that uses the IMU

to measure and extract features from two consecutive scans to estimate the relative

transformation of the vehicle. The iterated ESKF method is constructed using a robot-

centric formulation, which allows for the placement of linearization errors due to the

accumulation of uncertainties [34]. Then the state equation as shown in Eq. (38) can

be created.

 x𝑤
𝑏𝑘 = [p𝑤

𝑏𝑘 , q𝑤
𝑏𝑘],

x𝑏𝑘+1
𝑏𝑘 = [p𝑏𝑘+1

𝑏𝑘 , v𝑏𝑘+1
𝑏𝑘 , q𝑏𝑘+1

𝑏𝑘 , b𝑎 , b𝑔, g
𝑏𝑘]. (38)

Let 𝐹𝑤 represent the fixed world frame and 𝐹𝑏𝑘 represent the IMU-affixed frame at

lidar time step 𝑘. From the Eq. (38), x𝑤
𝑏𝑘 and p𝑤

𝑏𝑘 are the location and position of 𝐹𝑤

with respect to 𝐹𝑏𝑘, x𝑏𝑘+1
𝑏𝑘 is the local relative transformation state from 𝐹𝑏𝑘+1 to 𝐹𝑏𝑘.

q𝑤
𝑏𝑘 is the unit quaternion represent the rotation from 𝐹𝑤 to 𝐹𝑏𝑘. p𝑏𝑘+1

𝑏𝑘 and q𝑏𝑘+1
𝑏𝑘 are

the translation and rotation from 𝐹𝑏𝑘+1 to 𝐹𝑏𝑘 . v𝑏𝑘+1
𝑏𝑘 is velocity, b𝑎 and b𝑔 are

acceleration and gyroscope bias. And the final component g𝑏𝑘 is part of the local state

[25].

In order to make the state estimation have good characteristics, an error state is used

to solve x𝑏𝑘+1
𝑏𝑘 , and 𝛿 is used to represent the error term as Eq. (39) shows. 𝛿𝜃 is a 3

DOF error angle, based on the ESKF traditions, once 𝛿x is solved, the final x𝑏𝑘+1
𝑏𝑘 can

be obtained by injecting 𝛿x into the state prior of x𝑏𝑘+1
𝑏𝑘 [25].

𝛿x = [𝛿p, 𝛿v, 𝛿𝜃, 𝛿b𝑎 , 𝛿bg, 𝛿g]. (39)

When new IMU measurement data is received, we propagate the error state, the error

state covariance matrix and the state prior. We can obtain a linearized continuous-

time model of the IMU error state as shown in Eq. (40) [25].

29

𝛿ẋ(𝑡) = F𝑡𝛿x(𝑡) + G𝑡w, (40)

where 𝑤 = [𝑛𝑎
𝑇 , 𝑛𝑔

𝑇 , 𝑛𝑏𝑎
𝑇 , 𝑛𝑏𝑔

𝑇]
𝑇

is Gaussian vector. The error state transition matrix 𝐹𝑡

and noise Jacobian 𝐺𝑡 at time t is shown below:

𝐹𝑡 =

[

0 𝐼
0 0

0 0

−𝑅𝑡
𝑏𝑘[𝑎̂𝑡]× −𝑅𝑡

𝑏𝑘
0 0
0 0

0 0
0 0

−[𝜔̂𝑡]× 0
0 0

−𝐼3 −𝐼3
 0 0

0 0
0 0

0 0
0 0

0 0
0 0]

, 𝐺𝑡 =

[

0 0

−𝑅𝑡
𝑏𝑘 0

0 −𝐼3

0 0
0 0
0 0

0 0
0 0
0 0

𝐼3 0
0 𝐼3
0 0]

.

𝐼3 is the identity matrix and 𝑅𝑡
𝑏𝑘 is the rotation matrix from the IMU-affixed frame at

time 𝑡 . The acceleration and angular rate at time 𝑡 are 𝑎̂𝑡 and 𝜔̂𝑡 , then we can

discretizing Eq. (40) to get propagation Eq. (41). ∆𝑡 = 𝑡𝜏 − 𝑡𝜏−1 , 𝑡𝜏 and 𝑡𝜏−1

represent IMU time steps, 𝑄 is the covariance matrix of 𝑤 [25]. Refer to [35], the

robocentric state that uses discrete time propagation model can predict the state prior.

 𝛿x𝑡𝜏 = (I + F𝑡𝜏∆𝑡)𝛿x𝑡𝜏−1

P𝑡𝜏 = (I + F𝑡𝜏∆𝑡)P𝑡𝜏−1(I + F𝑡𝜏∆𝑡)
𝑇
+ (G𝑡𝜏∆𝑡)Q(G𝑡𝜏∆𝑡)

𝑇
 (41)

After getting the above equations, we optimize it through an iterative update method.

In the optimization problem in iterative Kalman filter state update [34], the model Eq.

(42) [25] can be derived by analyzing the prior state derivative and residual function

𝑓(.).

𝑚𝑖𝑛
𝛿x
‖𝛿x‖(𝑃𝑘)−1 + ‖𝑓(−x𝑏𝑘+1

𝑏𝑘 ⊞𝛿x)‖
(J𝑘M𝑘J𝑘

𝑇)−1
. (42)

The function output in 𝑓 is the stacked residual vector calculated from point-to-

surface or point-to-edge. J𝑘 is the Jacobian of 𝑓(.) with respect to measurement noise

and M𝑘 is the covariance matrix of the measurement noise. Given x𝑏𝑘+1
𝑏𝑘 , we can get

the error term (43) of 𝑓 in the case of the ith feature point [25].

30

𝑓𝑖 (𝑥𝑏𝑘+1
𝑏𝑘) =

{

|(𝑝𝑖
𝑙𝑘−𝑝𝑎

𝑙𝑘)×(𝑝
𝑖

𝑙𝑘−𝑝
𝑏

𝑙𝑘)|

|𝑝𝑎
𝑙𝑘−𝑝

𝑏

𝑙𝑘|
 𝑖𝑓 𝑝𝑖

𝑙𝑘+1 ∈ 𝔽𝑒,

|(𝑝
𝑖

𝑙𝑘−𝑝𝑎
𝑙𝑘)

𝑇
((𝑝𝑎

𝑙𝑘−𝑝
𝑏

𝑙𝑘)×(𝑝𝑎
𝑙𝑘−𝑝𝑐

𝑙𝑘))|

|(𝑝𝑎
𝑙𝑘−𝑝

𝑏

𝑙𝑘)×(𝑝𝑎
𝑙𝑘−𝑝𝑐

𝑙𝑘)|
 𝑖𝑓𝑝𝑖

𝑙𝑘+1 ∈ 𝔽𝑝,

 (43)

where 𝑝̂𝑖
𝑙𝑘 = 𝑅𝑙

𝑏𝑇 (𝑅𝑏𝑘+1
𝑏𝑘 (𝑅𝑙

𝑏𝑝𝑖
𝑙𝑘+1 + 𝑝𝑙

𝑏) + 𝑝𝑏𝑘+1
𝑏𝑘 − 𝑝𝑙

𝑏). It is similar to Eq. (13) and

(14). 𝑝̂𝑖
𝑙𝑘 is the transformed point of 𝑝𝑖

𝑙𝑘+1, 𝑝𝑙
𝑏 and 𝑅𝑙

𝑏 represent the extrinsic parameter

between the IMU and lidar. Then we can use iterated updated Eq. (44) to solve Eq.

(42):

K𝑘,𝑗 = P𝑘H𝑘,𝑗
𝑇 (H𝑘,𝑗P𝑘H𝑘,𝑗

𝑇 + J𝑘,𝑗M𝑘J𝑘,𝑗
𝑇)

−1
,

∆𝑥𝑗 = K𝑘,𝑗 (H𝑘,𝑗𝛿𝑥𝑗 − 𝑓 (−𝑥𝑏𝑘+1
𝑏𝑘 ⊞𝛿x𝑗)), (44)

∆𝑥𝑗+1 = 𝛿𝑥𝑗 + ∆𝑥𝑗.

∆𝑥𝑗 is the correction vector at 𝑗𝑡ℎ iteration. 𝐻 here is the Jacobian matrix of 𝑓(.) with

respect to 𝛿𝑥𝑗. In every iteration, new matched edges and planes will be found to

minimize the error metric. We can update the error state covariance matrix P𝑘 (45)

when 𝑓 (𝑥𝑏𝑘+1
𝑏𝑘) is below a certain threshold [25].

P𝑘+1 = (𝐼 − K𝑘,𝑛H𝑘,𝑛)P𝑘(𝐼 − K𝑘,𝑛H𝑘,𝑛)
𝑇
+ K𝑘,𝑛M𝑘K𝑘,𝑛

𝑇 . (45)

Then we can obtain the final 𝑥𝑏𝑘+1
𝑏𝑘 , we can initialize the next state 𝑥𝑏𝑘+2

𝑏𝑘+1 with

[03, 𝑣𝑏𝑘+2
𝑏𝑘+1 , 𝑞𝑜 , 𝑏𝑎 , 𝑏𝑔, 𝑔

𝑏𝑘+1] after using the estimated relative transformation which

make the raw features from distorted to undistorted. 𝑞𝑜 represent the identity

quaternion, 𝑣𝑏𝑘+1
𝑏𝑘+1 and 𝑔𝑏𝑘+1 can be calculated by 𝑣𝑏𝑘+1

𝑏𝑘+1 = 𝑅𝑏𝑘
𝑏𝑘+1𝑣𝑏𝑘+1

𝑏𝑘 and

𝑔𝑏𝑘+1=𝑅𝑏𝑘
𝑏𝑘+1𝑔𝑏𝑘. Since the robot-centered reference frame itself has no uncertainty,

the covariance matrix still has covariances for the velocity, bias and local gravity, and

31

the covariance corresponding to the relative position is set to 0. Each time the update

is done, the global pose can be updated through the synthesis step as in Eq. (46) [25].

𝑥𝑤
𝑏𝑘+1 = [

𝑝𝑤
𝑏𝑘+1

𝑞𝑤
𝑏𝑘+1

] = [
𝑅𝑏𝑘
𝑏𝑘+1(𝑝𝑤

𝑏𝑘 − 𝑝𝑏𝑘+1
𝑏𝑘)

𝑞𝑏𝑘
𝑏𝑘+1 ⊗𝑞𝑤

𝑏𝑘
]. (46)

All of the above performed calculations and formulations are primarily intended to

facilitate the initialization of the filter state. The initial acceleration bias and the

external parameters of the lidar-IMU can be obtained through offline calibration. The

initial roll and pitch angles can be obtained from the unbiased acceleration

measurement before moving, and the initial local gravity can be obtained through

coordinate system transformation. This completes the initialization process for this

part [25].

3.4 Lidar Mapping (Incremental KD Tree)

Building the original k-d tree is inefficient and time-consuming from scratching all

the points. Compared to the static k-d tree [29], ikd-Tree only uses new future points

to update the k-d tree incrementally. The redundant operation of rebuilding the whole

tree can be eliminated and the computation time is shorter. And ikd-Tree will actively

monitor the tree structure and partially rebalance the tree to effectively perform the

nearest point search to maximize the overall efficiency [23]. The detailed substance of

ikd-Tree will be introduced below.

A k-d tree is treated as a binary search tree and inherits the same increment operation.

Generally, two schemes are designed for a fast rebalancing of k-d trees: hardware-

based acceleration and specially designed structures to support dynamic rebalancing.

Previously, single-core and multi-core CPUs [27-28] and real-time building

algorithms on GPUs were firstly proposed. Then, converting a static k-d tree to a

32

dynamic tree increases the recent search time. ikd-Tree is an efficient and complete

data structure that simultaneously supports point deletion and downsampling as

incremental operations. It only builds unbalanced subtrees, which significantly saves

running time. Such data structures are very suitable for robotics, such as SLAM,

motion planning, etc. [23].

The data structure of the ikd-Tree has the general properties of a standard k-d tree,

and its left and right nodes are represented by two pointers respectively. The point

information is then stored in the point, and the rest is incrementally updated to design

new properties [26]. When building an incremental k-d tree, the approach is similar to

building a static k-d tree. The only difference is that additional information is required

to maintain cumulative updates. The construction process is mainly constructing a

point array, sorting with the most significant covariance, saving the intermediate point

to the new binary tree node, and recursively constructing the left and right child nodes

to satisfy all the required incremental updates [23].

Incremental update operations mainly include inserting, deleting, or re-inserting

points in the k-d tree. The insertion operation is to append a new point to the k-d tree,

while the delete operation is a lazy deletion, the deleted point is not immediately

removed from the tree but marked as deleted and later inserted to the tree is referred

as re-insertion. Incremental update support is divided into point-wise updates and

box-wise updates. A point-wise update inserts, deletes, or reinserts a single point on

the tree, while a box-wise update inserts, deletes, or reinserts all points in a given box

aligned with the data axis. Because the lazy delete method is still very inefficient

when using recursive updates, a strategy is dropped to update the lazy labels of

descendant nodes [23].

33

In this algorithm, there are two support functions for updating the attributes on the

tree node. The two functions represent deleting and copying to its child nodes and

saving all the nodes on the word count to the corresponding points. The point-wise

update is implemented recursively. The algorithm searches downwards from the root

node and appends a new tree node after comparing the coordinates on the division

axis of the new point with the points stored on the tree node. Box-wise update is

achieved by inserting new points into an incremental k-d tree. Given a box of point 𝐶𝑂

updated on the root number, first-pass its lazy label to its child nodes, then recursively

search the k-d tree from the root node to check whether the current node has an

intersection with 𝐶𝑂 . If there is no intersection, recursively return directly to the

update tree, delete if included in 𝐶𝑂. If intersected but not included in 𝐶𝑂, all attributes

of the current node are updated [23].

After completing the above incremental update operation, ikd-Tree will further

downsample. Given a point and downsampling resolution, the algorithm will divide

the space into cubes with a resolution length. By storing the point and all points in the

box containing the point in an array, the point closest to the center of the box is kept.

Then delete the existing points in the box and insert the nearest point into the k-d tree

to downsample the point cloud to reduce the number of point clouds, as shown in Fig.

16 [23].

34

Figure 16: Point cloud downsample from left to right

Table I: Comparison of supported incremental updates

 Static
K-D Tree

Dynamic
K-D Tree

Scapegoat
K-D Tree

ikd-Tree

Point-

wise

Insert

Delete

Re-insert

X

X

X

√

X

X

√

√

X

√

√

√

Box-
wise

Insert
Delete

Re-insert

X
X

X

√
X

X

√
X

X

√
√

√

Downsample X X X √

As Table I mentioned in the paper [23], compared with other types of k-d trees, the

ikd-Tree has all the functions and that's reason why use the ikd-Tree method in the

proposed algorithm.

Finally, there is the process of rebalancing, which needs to be rebalanced by partially

rebuilding the dynamics. The first is that its equilibrium criterion consists of two sub-

criteria, the α-balanced criterion and α-deleted criterion. Then it should be satisfied

with the following condition [23]:

 𝑆(𝑇. 𝑙𝑒𝑓𝑡𝑠𝑜𝑛) < 𝛼𝑏𝑎𝑙(𝑆(𝑇) − 1),

𝑆(𝑇. 𝑟𝑖𝑔ℎ𝑡𝑠𝑜𝑛) < 𝛼𝑏𝑎𝑙(𝑆(𝑇) − 1),

35

where 𝛼𝑏𝑎𝑙𝜖(0.5,1) and 𝑆(𝑇) is the tree size attribute of the node 𝑇 [23].

The 𝛼-deleted criterion of the sub-tree rooted at 𝑇 (47):

 𝐼(𝑇) < 𝛼𝑑𝑒𝑙𝑆(𝑇), (47)

where 𝛼𝑑𝑒𝑙𝜖(0,1) and 𝐼(𝑇) represents the number of invalid nodes on the subtree

[23].

Figure 17: Rebuild unbalanced sub-tree steps

If the incremental k-d tree satisfies the above two conditions, the subtree is balanced,

and the balance of all subtrees means that the entire tree is balanced. When a

condition is not met, a rebuilding process is triggered to rebalance the subtree. The

reconstruction process is to flatten the subtree into a point storage array, and then

rebuild a new perfectly balanced k-d tree as shown in Fig. 17 [23].

When rebuilding a large subtree on an incremental k-d tree, it is observed that the

computing power decreases significantly. In order to maintain the efficiency of the

algorithm, a two-thread reconstruction method is proposed. The main thread rebuilds

subtrees smaller than a predetermined threshold, and the second thread rebuilds the

remaining subtrees. The algorithm of locking nodes can avoid information loss and

memory conflicts between the main thread and the second thread [23].

36

Finally, the nearest neighbor search [30] is done, which is an exact nearest search

instead of an approximate search on an incremental kd tree [23]. After satisfying the

above algorithms and functions, the principle implementation of ikd-Tree is

completed.

3.5 Loop Closure (Scan Context Method)

In SLAM, position recognition is a significant problem. Although the closed-loop is

very important for robot navigation, the perception aliasing situation will result in a

significant error due to some environmental influences. In the proposed algorithm, the

scan context method, a non-histogram based global descriptor from 3D light detection

and ranging scans is used. The method can record the 3D structure of the visible space

directly from the sensor without relying on the histogram, and effectively detect loops

by using the similarity score to calculate the distance between contexts [24].

Scan Context method is another novel spatial descriptor with matching algorithms

specifically for outdoor locations using a single 3D scan. Its main contribution is that

it has an efficient bin encoding function, which is invariant to the density and norm of

the point cloud. Scan Context can preserve the internal structure of the point cloud. It

can avoid the loss of absolute position information of points like using histogram, thus

improving the discriminative ability, and can detect reverse cycle by using scan

context. This method can also provide a rotation-invariant sub-descriptor for the first

nearest neighbor search to avoid searching all databases during loop detection, which

reduces efficiency [24].

37

Figure 18: Scan context algorithm overview

As shown in Fig. 18, it is the finishing process for location recognition using scan

context, a measure of the distance between two scan contexts is calculated by creating

a scan context given a point cloud from a 3D scan. The scanning context uses the

method of the maximum point height in each bin to summarize the vertical shape of

the surrounding structures, which does not require extensive computation to analyze

point cloud features. First, the 3D scan is divided into azimuthal and radial bins in

sensor coordinates equidistant manner. The scanning center acts as a global key point,

and 𝑁𝑆 and 𝑁𝑟 are used to represent the number of sectors and rings. If the maximum

sensing range of the lidar sensor is set to 𝐿, then the radial gap between the rings is
𝐿

𝑁𝑟
,

and the central angle of the sector is
2𝜋

𝑁𝑆
 [24].

The first process of making a scan context is to divide the entire point of the 3D scan

into mutually exclusive point clouds [31]. Because the point cloud is divided at fixed

intervals, bins farther from the sensor have a more comprehensive physical area than

close bins, and both are equally encoded into a single pixel of the scan context. Scan

context method can compensate for the lack of far-point information and treat nearby

dynamic objects as sparse noise. After the point cloud is partitioned, use the point

cloud in the bin to assign a real value to each bin [32], and the encoding function of

38

the bin is ∅(𝑃𝑖𝑗) . The content in the 𝑧 brackets is a function that returns the 𝑧

coordinate value of point 𝑝 [24]. We can obtain the matrix of scanning context 𝐼

through the above process as shown in Eq. (48).

 ∅(𝑃𝑖𝑗) = max
𝑝∈𝑃𝑖𝑗

𝑧(𝑝),

𝐼 = (𝑎𝑖𝑗) ∈ 𝑅
𝑁𝑟×𝑁𝑠 , 𝑎𝑖𝑗 = ∅(𝑃𝑖𝑗). (48)

Here, 𝐼𝑞 and 𝐼𝑐 are used to represent the scan context obtained by the query point

cloud and the candidate point cloud, respectively. They are compared in column 𝐴

(distance matrix), given scan context pair requires the sum of the distances between

the columns at the same index and context pair, which can be used to measure the

similarity of the two places. The cosine distance is used to calculate the distance

between two vectors 𝑐𝑗
𝑞
and 𝑐𝑗

𝑐 at the same index, and the following Eq. (49) can be

obtained by dividing the sum by the number of columns 𝑁𝑠 for normalization [24].

𝑑(𝐼𝑞, 𝐼𝑐) =
1

𝑁𝑠
∑ (1 −

𝑐𝑗
𝑞
∙𝑐𝑗
𝑐

‖𝑐𝑗
𝑞
‖‖𝑐𝑗

𝑐‖
)

𝑁𝑠
𝑗=1 . (49)

With a column-wise comparison, because the viewpoint of lidar varies from place to

place, the columns of candidate scan contexts in the same area may move. Since the

context is a sensor position-dependent representation, the row order is always

consistent, but the column order may vary due to changes in the lidar sensor relative

to the global coordinates. To alleviate this problem, calculate the minimum distance

of all possible column shift scan contexts to determine the distance at that time and

the number of column shifts for optimal alignment [24], as shown in Eq. (50). Here

we can use the iterative closest point algorithm to provide a good initial value for the

additional shift information. 𝐼𝑛
𝑐 is n columns of scan context shifted from the original

one which is 𝐼𝑐 .

39

 𝐷(𝐼𝑞, 𝐼𝑐) = min
𝑛∈[𝑁𝑠]

𝑑(𝐼𝑞, 𝐼𝑛
𝑐),

𝑛 ∗= argmin
𝑛∈[𝑁𝑠]

𝑑(𝐼𝑞, 𝐼𝑛
𝑐). (50)

The last thing to mention is the two-stage search algorithm. The scan context method

integrates two typical mainstream place recognition context algorithms, namely

acceptance similarity score and nearest neighbor search, to achieve a faster search

time. The above Eq. (50) for the current distance can provide a two-stage hierarchical

search algorithm introducing a ring bond. The ring key is a rotation-invariant

descriptor extracted from the scan context. Each row of the scan context r is encoded

as a single real value by the ring encoding function r, then the ring encoding function

used is the occupancy rate of the ring using the 𝐿𝑂 norm as shown in Eq. (51) [24].

𝜓(𝑟𝑖) =
‖𝑟𝑖‖0

𝑁𝑠
, (51)

Since the occupancy is independent of the viewpoint, the ring bond achieves

rotational invariance. Although this method is less informative than scanning the

context, the ring keys allow for a fast search to find possible cycle candidates to build

the keys of the k-d tree. The number of retrieved most similar keys and the scan

context are compared with a constant number of candidates of the query scan context

by using the distance, and the one closest to the threshold is selected as the re-entry

point. As shown in the following Eq. (52), 𝐶 represents a set of candidate indices

extracted from the k-d tree is also given a threshold. 𝑐∗ is the index determined as the

loop position [24].

𝑐∗ = argmin
𝑐𝑘∈𝐶

𝐷(𝐼𝑞, 𝐼𝑐𝑘) , 𝑠. 𝑡 𝐷 < 𝜏. (52)

40

CHAPTER 4 RESULTS AND DISCUSSION

This chapter will present experiments and comparisons between the proposed

algorithm and the other three algorithms described in Chapter 2, which are LeGO-

LOAM, LIO-SAM and A-LOAM simulated on different datasets. The hardware

device used is a laptop with Intel Core i7-87500H CPU, 2.20GHz and 32GB memory.

All algorithms are implemented in C++ programming and did the simulation in ROS

under Ubuntu Linux environment. The sensors suited in this report are Ouster OS-1-

64 channels 3D lidar and 9-axis IMU. Three different large scale outdoor datasets

named KAIST, Riverside and DCC are used to compare the results. The scan numbers

and trajectory length was described in Table II.

Table II: Dataset details of scans and trajectory length

Dataset Scan (Poses) Trajectory Length (m)

KAIST 86758 5965.198

Riverside 64944 6587.393

DCC 52402 4912.210

4.1 KAIST Dataset Comparison

Figure 19: KAIST satellite map and google map [55]

41

The first dataset I used to compare is the KAIST dataset which is 5965.18 meters in

total as Table II shows. Fig. 19 shows its satellite map on the left side and the ground

truth trajectory drawn by blue lines, and its google map which is generated from

South Korea on the right side. It shows that this dataset is the real scene and allows

the comparison between the algorithms more authentic and reliable. Fig. 20 is the

point cloud map of the KAIST dataset that used the proposed algorithm to simulate

with the visualization tool-Rviz. We can see that the point cloud map and the real

environment map in Fig. 19 almost fit, which is a good illustration of the algorithm’s

accuracy.

Figure 20: KAIST dataset point cloud map

42

Then we compare the trajectories of the proposed algorithm and the other three

algorithms with the ground truth. In Fig. 21(a-d), the proposed algorithm LeGO-

LOAM, LIO-SAM and A-LOAM used for comparison with the ground truth

trajectory. Fig. 21(e) compares the above four algorithm trajectories and the ground

truth trajectory in the same parameters and conditions. It is clearly to see that the

proposed algorithm trajectory most fits the ground truth trajectory. The proposed

algorithm is better than the other three algorithm trajectories. Compared with the

proposed algorithm, the other three algorithms still have different degrees of drift

when the KAIST dataset runs the second lap, especially for the LeGO-LOAM.

 (a) (b)

 (c) (d)

43

(e)

Figure 21: Each SLAM algorithm simulation trajectories of KAIST dataset compared

with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-SAM, (d)

A-LOAM,(e) All algorithms.

As Fig. 22 shows, these two plots represent the absolute pose error and the relative

pose error for the proposed algorithm (the blue line segment) and other three

algorithms (LeGO-LOAM, LIO-SAM and A-LOAM) used to compare through the

KAIST dataset. In the absolute pose error plot, it is obvious to see that in the first lap

which in the half time, the algorithm has less absolute pose error compared with the

other three algorithms. When in the second lap, the absolute pose error for the

proposed algorithm is increasing fast and has the second largest absolute pose error

only better than the LeGO-LOAM. From the above trajectory plots, it can be proved

that the absolute pose error of the proposed algorithm should not be so large. It may

44

due to the fact that the dataset has run two laps in total, and its initial pose point has a

large error relative to the first lap when running the second lap. The loopback

detection is used to correct the final trajectory, but the absolute pose error may not be

well updated here. Thus, the absolute pose error in the second lap does not have the

best performance compared to the first lap. The right plot in Fig. 22 is relative pose

error of those four algorithms simulated with the KAIST dataset. The relative pose

error should be more convincing than the absolute pose error, because it is the ratio

between the absolute pose error and the true value. The proposed algorithm compared

with the LeGO-LOAM, LIO-SAM and A-LOAM has the minimum relative pose error

almost closed to 0. It means that when run the KAIST dataset, the proposed algorithm

has a better performance than other three algorithms, and the absolute pose error of

the proposed algorithm for the second lap of the dataset may not perform well.

Figure 22: APE and RPE of four algorithms for KAIST dataset

Then Table III and Table IV show below indicate the maximum, minimum, mean and

standard deviation of the absolute pose error and relative pose error of those four

algorithms for the KAIST dataset. In Table III, because the proposed algorithm did

not work well in the second lap, it only performs the third algorithm in those four

45

algorithms of absolute pose error. But in table IV, the proposed algorithm has the

minimum relative pose error and achieves the best, compared with LeGO-LOAM,

LIO-SAM and A-LOAM, it is obvious that the proposed algorithm has made better

optimizations and performances.

Table III: APE for KAIST dataset of four algorithms

APE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed
Algorithm

340.956 125.359 11.044 97.102

LeGO-LOAM 180.360 91.601 6.712 40.370

LIO-SAM 191.763 78.677 11.799 40.083

A-LOAM 476.187 146.656 12.672 123.294

Table IV: RPE for KAIST dataset of four algorithms

RPE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed

Algorithm

0.747 0.160 0.00570 0.134

LeGO-LOAM 5.881 3.927 1.181 0.842

LIO-SAM 12.800 0.45 0.018 0.499

A-LOAM 4.947 1.652 0.277 0.540

46

4.2 Riverside Dataset Comparison

Figure 23: Riverside satellite map and google map [55]

The second dataset I used to compare is the Riverside dataset which is 6587.393

meters in total as table II shows. Fig. 23 shows its satellite map on the left side and the

ground truth trajectory drawn by blue lines, and its location in South Korea in the

google map on the right side. Fig. 24 is the point cloud map of the Riverside dataset

that I used the proposed algorithm to run in the Linux virtual environment as the

KAIST dataset did. It is able to see that the shape of the Riverside point cloud map is

the same as the shape of the Riverside under a satellite map or google map as shown

in Fig. 23.

Figure 24: Riverside dataset point cloud map

47

From Fig. 25(a-d), it can be shown that the trajectory generated by the proposed

algorithm and the trajectories generated by the other three algorithms for comparisons

with the ground truth trajectory alone. However, the trajectory generated by the

proposed algorithm and the ground truth trajectory dose not fit perfectly well. The

proposed algorithm still performs a better loop closure function and better corrects the

final trajectory compared with the other three algorithms. It can be seen that the other

three algorithms do not return to the starting point by resulting in a large offset. Fig.

25(e) compares the trajectories generated by the four algorithms and the ground truth

trajectory, so that the superiority of each algorithm can be seen more intuitively.

 (a) (b)

 (c) (d)

48

(e)

Figure 25: Each SLAM algorithm simulation trajectories of Riverside dataset

compared with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-

SAM, (d) A-LOAM, (e) All algorithms.

In Fig. 26, it shows the absolute pose error and relative pose error plots of four

algorithms which are the proposed algorithm, LeGO-LOAM, LIO-SAM and A-

LOAM implement with Riverside dataset. The left plot is the absolute pose error of

those four algorithms, it can be seen that the proposed algorithm is the blue line

segment. Even though its absolute pose error fluctuates wildly, the proposed

algorithm still shows the best performance and the most minor absolute pose error

compared to the other three classic popular algorithms. The right plot in Fig. 26 is the

relative pose error of those four comparison algorithms run on the Riverside dataset;

the proposed algorithm also has the minimum relative pose error compared with the

49

other three algorithms. There is some slight fluctuation may be caused by the large

size of the Riverside. Based on the absolute pose error and relative pose error plots,

the proposed algorithm still performs better than LeGO-LOAM, LIO-SAM and A-

LOAM, which means the proposed algorithm based on the front end of the LeGO-

LOAM after back end optimization can reduce more errors and increase the accuracy

of final trajectory compared with the other three algorithms.

Figure 26: APE and RPE of four algorithms for Riverside dataset

Table V below shows the absolute pose error for the Riverside dataset of those four

algorithms. Using the proposed algorithm compared with the other three algorithms, it

is clear to see that only the minimum absolute pose error of the proposed algorithm

does not have the best performance. And the other three conditions still have the

minimum error and have the best performance. Table VI gives the relative pose error

for the Riverside dataset of the proposed algorithm, LeGO-LOAM, LIO-SAM and A-

LOAM in maximum, minimum, mean and standard deviation of pose errors. The

proposed algorithm compared with the other three algorithms still achieves the best

performance. Based on the absolute pose error and relative pose error shown in Table

50

V and Table VI, the proposed algorithm, after back end optimization has improved

the origin LeGO-LOAM algorithm.

Table V: APE for Riverside dataset of four algorithms

APE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed
Algorithm

490.851 199.961 54.078 109.485

LeGO-LOAM 1100.950 601.168 104.084 211.523

LIO-SAM 888.986 544.190 49.106 207.759

A-LOAM 860.563 387.688 35.429 225.669

Table VI: RPE for Riverside dataset of four algorithms

RPE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed
Algorithm

1.603 0.399 0.0083 0.306

LeGO-LOAM 16.841 5.117 0.035 2.276

LIO-SAM 32.661 0.692 0.0182 0.615

A-LOAM 11.171 1.786 0.065 0.977

51

4.3 DCC Dataset Comparison

Figure 27: DCC satellite map and google map [55]

Figure 28: DCC dataset point cloud map

The last dataset I used to compare is the DCC dataset which is 5412.21 meters long as

Table II shows. In Fig. 27, the left plot is its satellite map and the trajectory drawn by

blue lines. The right plot is its real world location in South Korea on the google map.

52

Fig. 28 is the point cloud map for the DCC dataset under the simulation of the

proposed algorithm. There are a large number of consistencies between the point

cloud map and its satellite map and google map. It means that the proposed algorithm

almost restores the map of the real large-scale outdoor scene in the simulation without

large odometry errors and drifts.

(a) (b)

 (c) (d)

53

(e)

Figure 29: Each SLAM algorithm simulation trajectories of DCC dataset compared

with ground truth (a) The proposed algorithm, (b) LeGO-LOAM, (c) LIO-SAM, (d) A-

LOAM, (e) All algorithms.

Fig. 29(a-d) shows the trajectories generated by the proposed algorithm, LeGO-

LOAM, LIO-SAM and A-LOAM compared with the ground truth trajectory. It is

obvious that the proposed algorithm has better performance than other three

algorithms for the final trajectory. The algorithms of LeGO-LOAM, LIO-SAM and

A-LOAM can return to the initial pose of the robots, and have drifted to varying

degrees on the second lap, but the proposed algorithm can still correct the final

trajectory. There is only a tiny error occurred around the end path compared with the

ground truth, it proves that the proposed algorithm has better accuracy than the

54

LeGO-LOAM, LIO-SAM and A-LOAM algorithms. Fig. 29(e) gives a better

comparison plot for those algorithms with ground truth trajectories. The blue line

segment for the proposed algorithm trajectory shows in the figure is most fitting to the

dotted line which is the ground truth trajectory.

Fig. 30 indicates the absolute pose error and relative pose error plots for the DCC

dataset, the blue line segment is represented the proposed algorithm. As both plots

show, whether it is absolute pose error or relative pose error, the proposed algorithm

has the minimum error and the best performance compared with LeGO-LOAM, LIO-

SAM and A-LOAM. Compared with the simulation of the KAIST and the Riverside

datasets, when simulated the proposed algorithm for the DCC dataset, the absolute

and relative pose errors are closer to 0 and the fluctuation range is not extensive. It

may because the data volume of this dataset is smallest in these three datasets, and the

algorithm's computing efficiency is the best which reduces the absolute and relative

pose errors. For LIO-SAM algorithm, there is a spike in relative pose error at 200s,

KAIST has the same problem, it may be due to the large odometry errors occurred at

this time, and also large trajectory drifts happened as shown in Fig. 29(b).

Figure 30: APE and RPE of four algorithms for DCC dataset

55

Table VII and Table VIII indicate the absolute pose error and relative pose error for

the DCC dataset of those four algorithms that used to be compared. In standards of

maximum, minimum, mean and standard deviation of the absolute pose error or

relative pose error comparison, the proposed algorithm has the minimum error which

indicates that the proposed algorithm has the best performance on the DCC dataset.

Compared with LeGO-LOAM, LIO-SAM and A-LOAM, if the proposed algorithm

runs a smaller size of large-scale outdoor scene dataset, it will give a better

performance.

Table VII: APE for DCC dataset of four algorithms

APE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed

Algorithm
30.006 10.828 2.066 5.475

LeGO-LOAM 235.753 133.358 7.779 54.836

LIO-SAM 279.879 147.288 18.034 63.780

A-LOAM 480.252 147.917 6.550 118.755

Table VIII: RPE for DCC dataset of four algorithms

RPE Max (cm) Mean (cm) Min (cm) Std (cm)

The proposed

Algorithm

0.766 0.073 0.008 0.075

LeGO-LOAM 7.528 5.358 1.410 0.951

LIO-SAM 20.351 0.549 0.022 0.637

A-LOAM 5.998 2.243 0.352 0.762

56

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

There are enough results to discuss by comparing the proposed optimized algorithm

based on the front end of the LeGO-LOAM and three other algorithms: LeGO-

LOAM, LIO-SAM and A-LOAM after simulation under three different large outdoor

scene datasets in real world map. When the proposed algorithm simulated in DCC

dataset, the absolute and relative pose error are smaller than the other three

algorithms, resulting in a more fitted trajectory and better performance. In the

Riverside dataset, the proposed algorithm can still have the minimum errors in terms

of relative pose error, and have better performance in most aspects of absolute pose

error. In KAIST dataset, the proposed algorithm's absolute pose error and relative

pose error still has the best performance compared to the LeGO-LOAM, LIO-SAM

and A-LOAM in the first lap. The absolute pose error will be higher in the second lap,

it may be caused by the untimely update, which is also a part that can be optimized in

the future. To improve the real-time performance of the algorithm, an iterated ESKF

with a robocentric formulation method was used in the lidar odometry IMU pre-

integration. The k-d tree method was replaced with the incremental kd-tree method in

lidar mapping, and the scan context research method was added to the final loopback

detection. The results of the proposed method simulated on Mulran datasets gathered

from real scenes in South Korea. The results show that the proposed algorithm can

achieve better accuracy when compared with LeGO-LOAM, and achieve similar or

better performance when compared with LIO-SAM and A-LOAM. Those three

methods optimized the algorithm and give a better performance compared with these

three mainstream algorithms which are LeGO-LOAM, LIO-SAM and A-LOAM.

57

5.2 Future Work

Lidar SLAM has shown a good effect on localization and mapping. It can be used in

combination with other functional modules to achieve better artificial intelligence to

save computing resources allocation. However, the proposed algorithm shows higher

accuracy than some other classical mainstream lidar SLAM algorithms after

optimization. It is still a tightly coupled framework of a single lidar and IMU, which

is used in areas that require a higher safety factor such as intelligent driving. Since

lidar still has a significant error in a specific environment and has low accuracy in

small distance, the following two works can be improved and optimized in future

work:

1. Sensor Fusion: Due to the limitations of lidar in some environments, it can be

fused with more sensors to build mapping and localization, such as GPS,

cameras and millimeter-wave radar, and let these sensors compensate for their

high-precision parts, so that the SLAM is more efficient and more accurate.

2. Path Planning: Now the path planning algorithm is widely used in the field of

autonomous driving, then the proposed algorithm can combine with the path

planning. First, the combined algorithm can use the SLAM algorithm to build

and draw the map in an unknown environment, and then use the path planning

algorithm to allow the intelligent robot car to plan the optimal path.

58

BIBLIOGRAPHY

[1] Y. Liu and J. Miura, "RDS-SLAM: Real-Time Dynamic SLAM Using Semantic

Segmentation Methods," in IEEE Access, vol. 9, pp. 23772-23785, 2021.

[2] S. Fujimoto, Z. Hu, R. Chapuis and R. Aufrère, "ORB-SLAM map initialization

improvement using depth," 2016 IEEE International Conference on Image

Processing (ICIP), 2016.

[3] H. Bavle, P. De La Puente, J. P. How and P. Campoy, "VPS-SLAM: Visual Planar

Semantic SLAM for Aerial Robotic Systems," in IEEE Access, vol. 8, pp. 60704-

60718, 2020.

[4] X. Deng, Z. Zhang, A. Sintov, J. Huang and T. Bretl, "Feature-constrained Active

Visual SLAM for Mobile Robot Navigation," 2018 IEEE International Conference on

Robotics and Automation (ICRA), 2018.

[5] H. Ye, H. Huang and M. Liu, "Monocular Direct Sparse Localization in a Prior 3D

Surfel Map," 2020 IEEE International Conference on Robotics and Automation

(ICRA), 2020.

[6] Y. Abdelrasoul, A. B. S. H. Saman and P. Sebastian, "A quantitative study of

tuning ROS gmapping parameters and their effect on performing indoor 2D SLAM,"

2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation

(ROMA), 2016.

[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored

solution to the simultaneous localization and mapping problem,” in Proc. AAAI/IAAI,

2002.

[8] S. Nagla, "2D Hector SLAM of Indoor Mobile Robot using 2D Lidar," 2020

International Conference on Power, Energy, Control and Transmission Systems

(ICPECTS), 2020.

[9] N. Tongprasit, A. Kawewong and O. Hasegawa, "PIRF-Nav 2: Speeded-up online

and incremental appearance-based SLAM in an indoor environment," 2011 IEEE

Workshop on Applications of Computer Vision (WACV), 2011.

[10] S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf, "A flexible and scalable

SLAM system with full 3D motion estimation," 2011 IEEE International Symposium

on Safety, Security, and Rescue Robotics, 2011.

[11] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in

Robotics: Science and Systems, vol. 2, 2014, p. 9.

[12] T. Shan and B. Englot, "LeGO-LOAM: Lightweight and Ground-Optimized

Lidar Odometry and Mapping on Variable Terrain," 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2018.

59

[13] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and D. Rus, "LIO-SAM:

Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping," 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

[14] T. Choi, S. Song, H. Park, S. Yoon and S. Yang, "SUMA: Software-defined

Unified Monitoring Agent for SDN," 2014 IEEE Network Operations and

Management Symposium (NOMS), 2014.

[15] T. Li et al., "P3-LOAM: PPP/LiDAR Loosely Coupled SLAM With Accurate

Covariance Estimation and Robust RAIM in Urban Canyon Environment," in IEEE

Sensors Journal, vol. 21, no. 5, pp. 6660-6671, 1 March1, 2021.

[16] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-

256, Feb. 1992.

[17] Biber, Peter & Straßer, Wolfgang. (2003). The Normal Distributions Transform:

A New Approach to Laser Scan Matching. IEEE International Conference on

Intelligent Robots and Systems. 3. 2743 - 2748 vol.3. 10.1109/IROS.2003.1249285.

[18] E. B. Olson, "Real-time correlative scan matching," 2009 IEEE International

Conference on Robotics and Automation, 2009。

[19] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard, "G2o: A

general framework for graph optimization," 2011 IEEE International Conference on

Robotics and Automation, 2011.

[20] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous Localization and

Mapping via Square Root Information Smoothing. The International Journal of

Robotics Research, 25(12):1181–1203, December 2006.

[21] A. Censi, "An ICP variant using a point-to-line metric," 2008 IEEE International

Conference on Robotics and Automation, 2008.

[22] J. Lin and F. Zhang, "Loam livox: A fast, robust, high-precision LiDAR

odometry and mapping package for LiDARs of small FoV," 2020 IEEE International

Conference on Robotics and Automation (ICRA), 2020.

[23] W. Xu, Y. Cai, and F. Zhang, “ikd-Tree: An Incremental KD Tree for Robotic

Applications” 2021, arXiv:2102.10808.

[24] G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor for Place

Recognition Within 3D Point Cloud Map," 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2018.

[25] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang and M. Liu, "LINS: A Lidar-

Inertial State Estimator for Robust and Efficient Navigation," 2020 IEEE

International Conference on Robotics and Automation (ICRA), 2020.

60

[26] W. Xu and F. Zhang, "FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry

Package by Tightly-Coupled Iterated Kalman Filter," in IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 3317-3324, April 2021.

[27] W. Hunt, W. R. Mark and G. Stoll, "Fast kd-tree Construction with an Adaptive

Error-Bounded Heuristic," 2006 IEEE Symposium on Interactive Ray Tracing, 2006.

[28] M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel fast kd-tree

construction for interactive ray tracing of dynamic scenes,” Computer Graphics

Forum, vol. 26, no. 3, pp. 395-404, 2007.

[29] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517, 1975.

[30] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic

algorithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.

[31] S. G. Salve and K. C. Jondhale, "Shape matching and object recognition using

shape contexts," 2010 3rd International Conference on Computer Science and

Information Technology, 2010.

[32] E. Morello and C. Ratti, “A digital image of the city: 3D isovists in Lynch’s

urban analysis,” Env. and Plan. B: Plan. and Design, vol. 36, no. 5, pp. 837-853,

2009.

[33] C. M. Greve and K. Hara, "Real-Time Estimation of Discharge Current

Oscillations Using an Iterated Extended Kalman Filter," 2021 IEEE International

Conference on Plasma Science (ICOPS), 2021.

[34] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended

Kalman filter based visual-inertial odometry using direct photometric feedback,” The

International Journal of Robotics Research, vol. 36, no. 10, pp. 1053-1072, 2017.

[35] Z. Huai and G. Huang, "Robocentric Visual-Inertial Odometry," 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2018.

[36] J. Zhang and S. Singh, “Low-drift and Real-time Lidar Odometry and Mapping,”

Autonomous Robots, vol. 41(2): 401-416, 2017.

[37] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert, "iSAM2:

Incremental smoothing and mapping with fluid relinearization and incremental

variable reordering," 2011 IEEE International Conference on Robotics and

Automation, 2011.

[38] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, "On-Manifold

Preintegration for Real-Time Visual--Inertial Odometry," in IEEE Transactions on

Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017.

[39] H. Ye, Y. Chen and M. Liu, "Tightly Coupled 3D Lidar Inertial Odometry and

Mapping," 2019 International Conference on Robotics and Automation (ICRA), 2019.

61

[40] R.Hartley and A.Zisserman, Multiple View Geometry in Computer Vision. New

York, Cambridge University Press, 2004.

[41] W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-time loop closure in 2D

LIDAR SLAM," 2016 IEEE International Conference on Robotics and Automation

(ICRA), 2016.

[42] Li Meng and Liang Jia-hong, "A Federated particle filtering algorithm based on

EKPF," 2011 International Conference on Electric Information and Control

Engineering, 2011.

[43] W. Junrui, G. Teng, W. Xinju, W. Libao, Z. Jingchao and D. Li, "SOC

Estimation of Extended Kalman Filter Based on Hardware-in-the-Loop Simulation

Platform," 2021 IEEE 16th Conference on Industrial Electronics and Applications

(ICIEA), 2021, pp. 1610-1613, doi: 10.1109/ICIEA51954.2021.9516396.

[44] ASSEMBLY. (2019, March 27). Industrial Robot Sales Broke Records in 2018.

ASSEMBLY RSS. Retrieved July 1, 2022, from https://www.assemblymag.com/arti-

cles/94819-industrial-robot-sales-broke-records-in-2018

[45] Scott, C. (2016, August 10). Is da vinci robotic surgery a revolution or a ripoff?

Healthline. Retrieved July 1, 2022, from https://www.healthline.com/health-news/is-

da-vinci-robotic-surgery-revolution-or-ripoff-021215#A-solution-in-search-of-a-

problem

[46] Mir200™: Automate Transport Tasks and focus on higher value activities. Allied

Automation, Inc. (2018, October 4). Retrieved July 1, 2022, from https://www.allied-

automation.com/mir200-automate-transport-tasks-and-focus-on-higher-value-

activities/

[47] Deshmane, P. (2021, December 17). Precise Motion Systems Drive Autonomous

Mobile Robots. Mobile Robot Guide. Retrieved July 1, 2022, from https://mobilerobo-

tguide.com/2021/12/17/precise-motion-systems-drive-autonomous-mobile-robots/

[48] Murphy, M. (2018, February 13). This four-legged robot can open doors and

we're all doomed. MarketWatch. Retrieved July 1, 2022, from https://www.marketwa-

tch.com/story/this-four-legged-robot-can-open-doors-and-were-all-doomed-2018-02-

12

[49] Vaudel, C. (n.d.). Walker Humanoid Service Robot. RobotLAB Group - Robotics

Solution Integrator. Retrieved July 1, 2022, from https://www.robotlab.com/higher-

ed-robots/store/walker-humanoid-service-robot-for-research

[50] RealSense, I. (2022, March 7). Tracking camera T265. Intel® RealSense™

Depth and Tracking Cameras. Retrieved July 1, 2022, from https://www.intelrealsen-

se.com/tracking-camera-t265/

[51] RealSense, I. (2021, November 12). Introducing the Intel® realsense™ depth

camera D455. Intel® RealSense™ Depth and Tracking Cameras. Retrieved July 1,

2022, from https://www.intelrealsense.com/depth-camera-d455/

62

[52] Www.general-Laser.at. (n.d.). Ouster OS1-64 Lidar Sensor. General Laser.

Retrieved July 1, 2022, from https://general-laser.at/en/shop-en/lidar-en/ouster-os1-

64-lidar-sensor-en

[53] Puck lidar sensor, high-value surround Lidar. Velodyne Lidar. (2022, June 3).

Retrieved July 1, 2022, from https://velodynelidar.com/products/puck/

[54] Hur, M. (2019, October 7). Autonomous Driving, slam and 3D mapping robot.

Medium. Retrieved July 1, 2022, from https://medium.com/@hurmh92/autonomous-

driving-slam-and-3d-mapping-robot-e3cca3c52e95

[55] Mulran - dataset. MulRan - Dataset. (n.d.). Retrieved July 1, 2022, from https://

sites.google.com/view/mulran-pr/dataset

