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Abstract

In wireless communication links, receivers are typically designed to mitigate the vari-
ability in the propagation channel in presence of arbitrary white Gaussian noise. How-
ever, the variations in the instantaneous channel properties introduce high statistical
variability in the communication link reliability. In fact, the underwater acoustic
channel in the ocean is particularly sensitive to the changes in environmental condi-
tions. Extensive research has been done on the propagation but it is typically assumed
that ocean noise compares with terrestrial noise in the design of underwater acoustic
receivers. This assumption does not accurately represent the impact of ocean ambient
noise on the performance of underwater acoustic communication systems, particularly
when using receiver arrays.

This dissertation studies the unique properties of oceanic ambient noise, partic-
ularly the variability in its directional properties. The application developed in this
work focuses on both anthropogenic noise due to vessels and naturally occurring am-
bient noise within the channel bandwidth. To this end, the characteristics of these
noise sources and their impact on the underwater acoustic link are discussed in this
dissertation.

Firstly, using a compact receiver array, an acoustic source tracking procedure is
designed to characterize the directional properties of vessel noise. This is achieved
using a maximum-likelihood beamformer to estimate the bearing and a coherence-
based matched-field processor to estimate the range of a vessel over its travel duration.
Although the performance of most methodologies developed for characterizing vessel
noise in literature are evaluated using computer simulations, the algorithm applied
in this dissertation are tested with actual measurements of vessel noise from ocean
experiments. It is observed that the noise directionality can be estimated accurately
using a compact array but relies on the geometry of the array.

Secondly, noise models are developed to characterize the unique properties of
naturally occurring ambient noise at a compact array of acoustic receivers. Synthetic
ambient noise is generated with defined properties and validated against measured
ambient noise.

Thirdly, the performance of a space-time receiver for signals processed in measured
ambient noise is validated against signals processed in synthetic noise processes. It
is observed that the variations in the space-time properties of ambient noise do not
compare with the usual uncorrelated noise assumption in the design of an under-
water acoustic receiver. Also, the bit-error rate of the space-time filter depends on
optimizing the training and payload duration in the received signal to adapt to the
time-varying property of ocean ambient noise.
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Chapter 1

Introduction

1.1 Background

It is estimated that two-thirds of the earth’s surface is covered by the oceans. There

are abundance of resources in the oceans, making them highly valuable to human

existence. Some of the benefits derived from the oceans include food supply, travel,

trade, mineral exploration, power generation, security, and leisure activities. Thus,

ocean stakeholders span across a wide demography – mineral exploration compa-

nies, military and defense, governments and research institutes, just to name a few.

Among these stakeholders, there has been an increasing need to deploy systems in

the ocean for different applications. For instance, the oil and gas industry deploys

systems to protect sub-sea infrastructure such as pipelines and cables. Systems are

deployed in defense applications for intelligence and surveillance purposes. Govern-

ments are increasingly interested in protecting endangered species and managing the

ocean ecosystem, while oceanographers and scientists are keen on studying trends in

oceanic activities that will preserve the earth’s health. As the scope of applications

of underwater systems continue to grow, so does the requirements on the system

performance. In fact, in recent times, there has been significant interest in deploy-

ing underwater sensor networks for integrated sensing and communication which will

facilitate the IoUT

Considering the expanse of the ocean, a key challenge in the deployment of un-

derwater sensors is with establishing and maintaining communication in-between the

sensor nodes deployed at sea without the hassle of laying heavy cables. Various com-

munication techniques have been studied throughout the years, including the use of

EM propagation, MI coupling, optical transmission and acoustic waves.

EM propagation is used extensively in radios, for terrestrial communication net-

works. For example, in modern day applications, wideband spectra with carriers up to

50 GHz in the millimeter wave band, are being developed for 5G applications [?]. This

1
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includes Wifi networks and satellite links that can establish maritime networks over

the sea. However, for communication below the sea surface, EM waves are rapidly

degraded by attenuation due to high conductivity in sea water [?]. For this rea-

son, EM waves have only been successfully applied in short-range and high-bandwith

links. In controlled conditions, researchers have demonstrated nominal improvements

in the data rates achieved via EM waves, albeit for a limited range. For instance, EM

wave communication was demonstrated to achieve data rates up to 500 kbps over

a 90-meter range in [?], and up to 10 Mbps over a 100-meter range in [?] by first

modeling the EM wave propagation before deployment. Overall, EM still requires a

lot of research for it to be deployed for underwater communications.

Due to similar magnetic permeability in the air-water boundaries, MI has been a

promising option for underwater wireless communications. MI has been demonstrated

to be robust against multipath propagation and fading underwater [?]. Hence, in

recent times, extensive research has been carried out to apply MI in harsh underwater

environments, subject to high ambient noise levels [?]. Data rates up to about 1 kbps

have been achieved in MI applications for ranges up to 40 meters [?]. However, high

path loss (induced by energy conversion loses) limits MI’s propagation range, hence

its use is limited to short-range multi-hop applications.

Optical waves have recently been investigated as a means of communicating under-

water and rely on the visible light spectrum to transmit information signals. Though

they are not limited in bandwidth, they are rapidly absorbed and suffer from se-

vere scattering underwater [?]. Hence, optical waves can be applied in short-range

applications where a direct line-of-sight is achievable.

Although a combination of the aforementioned wireless connectivity techniques

have been proposed in underwater sensor networks, acoustic waves remain the best

solution for underwater wireless communications, especially for long-range applica-

tions [?]. Indeed, sound propagates as pressure waves and can travel over several

kilometers especially at low frequencies. This property makes acoustic communica-

tions advantageous for long-range applications although confined to lower bandwidths

and its inherent challenges are unique relative to that of terrestrial radio frequency

(RF) communications. Hence, acoustics technology is used in this work as a means

to achieve wireless connectivity underwater.
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1.2 Underwater Acoustic Communications

The principle of underwater sound has probably been used by marine animals for

millions of years However, the first documented reference to UWA is reportedly by

Leonardo da Vinci [1] in 1490 when he wrote the following,

“If you cause your ship to stop and place the head of a long tube in the water and

place the outer extremity to your ear, you will hear ships at a great distance from

you.”

By the 20th century, the tragic sinking of the Titanic compelled different research

communities to explore underwater communication with great emphasis on disaster

management. It is also reported that during the world wars, UWA was applied for

applications in sub-sea detection and underwater telephones. Since that time, a lot

of the findings in UWA have been applied for military surveillance, submarine com-

munications, and in recent times for underwater sensor networks and communication

to ROV.

There has been significant progress in the development of the physical layer for

UWA networks. However, the development of systems in terrestrial communications

are at least a few decades more advanced than in UWA systems. In fact, many of

the technologies and signal processing techniques are inherited from RF applications.

The big challenge remains on how to optimize these techniques for acoustic systems

especially at the physical layer [?].

In the past decade, to enable a reliable underwater communication link, there has

been a growing trend to adopt multicarrier communications typically used in LTE net-

works and even in 5G NR [?], to mitigate channel distortion. In multicarrier systems,

data is transmitted over multiple carriers which are normally close spaced, making

the communication link resilient to interference, narrow band fading and multipath

effects. A widely used multicarrier technique is the OFDM. Also, the combination

of MIMO and OFDM (as in LTE and NR) has been proven to be a promising solu-

tion for UWA communication applications [?, ?, ?, ?]. Further, adaptive modulation

techniques that rely on the prediction of the statistics of the acoustic channel was

described in [?] to maximize data rates. These techniques – multicarrier modulation,

MIMO-OFDM, adaptive modulation – have been used extensively in RF communi-

cations to date. However, the uniqueness of the UWA link largely due to the medium
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(water) limits the effectiveness of UWAC systems compared to RF. It is therefore

important to review the constraints for UWAC systems. This will be described in

Section 1.3. Then, in Section 1.4, the research objectives will be presented.

1.3 Underwater Acoustic Communication System Constraints

The structure depicted in Fig. 1.1 forms the foundation for the development of most

wireless communication systems.

At the transmitter, the information signal is modulated and matched to the car-

rier’s phase symbol by symbol. The information symbols are upsampled by a clock

with a very high frequency so that the symbols can be reconstructed at the receiver

with minimal errors. The information symbols are bandlimited by a pulse shaping

filter to the operational bandwidth in the system specification. Typically, a single

source is used to transmit the signal; however, with the advancement in space-time

coding techniques, multiple transmitters have also been considered to transmit using

multiple sources [?, ?].

Figure 1.1: The standard structure of the UWAC system.

At the receiver, hydrophones are used to receive the information signals. The

output of the hydrophone is converted to a discrete-time signal using an ADC. Usually

a RRC filter is used to match the transmit filter (which is also often a RRC), to limit

the bandwidth of the signal. The matched filter is designed to maximize the SNR

at the receiver. The equalizer is required to mitigate the distortions (impairment

sources) introduced by the propagation channel and the noise channel, while the
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demodulator maps the complex baseband information symbols to the bit streams

that were modulated at the transmitter.

Not shown, at the receiver, it is also crucial to synchronize the received signal,

and a phase locked loop is also necessary for carrier frequency and phase recovery

[?]. Carrier and clock recovery at the receiver is hugely important to reliably decode

the information symbols. That being said, the evaluation of the receiver performance

using a baseband model often ignores clock synchronization.

At the physical layer of the communication system, it is typical that the informa-

tion signal is structured into frames, partitioned into training and payload durations

as depicted in Fig 1.2. The training symbols contain a known sequence of bits so that

the receiver can use the training duration to predict the channel characteristics before

processing unknown (payload) symbols. However, the length of the training sequence

reduces the spectral efficiency, and thus, the effective user throughput. Generally, the

frames are repeated, i.e L1 to LN as in Fig 1.2, and the number of payload symbols

in error in each frame is computed and used as a figure of merit to determine the

performance of the communication system.

The frame structure in Fig 1.2 is generally adopted and the training symbols

are used to define the equalizer coefficients to mitigate the effect of the wireless

channel [2]. The linear equalizer processes the received signal with a linear filter.

Two common approaches are: 1) the minimum mean-square error (MMSE) equalizer

which estimates the error between the transmit information signal and the equalizer

output; and 2) the zero forcing equalizer which approximates the inverse of the channel

with a linear filter. An adaptive equalizer is typically a linear equalizer or a decision-

feedback equalizer (DFE), which updates the equalizer parameters (such as the filter

coefficients) while processing the data online. Typically, it uses the mean-squared

error cost function which relies on an update procedure to minimize the error estimate

between the transmit and received information symbols. Other applications rely on

blind equalization techniques to estimate the transmit symbols without knowledge of

the channel statistics. Although advantageous in that it does not use a portion of the

channel capacity for training the filter, blind equalizers are often inadequate due to

their slow convergence and/or high computational complexity.
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Figure 1.2: Standard frame structure showing training and payload duration in a
communication system.

The evaluation of the communication performance requires an accurate repre-

sentation of the distortion caused by the propagation channel as well as the noise

interference at the receiver. To this end, models are usually developed for the prop-

agation channel (or media) and the noise channel to predict their impact on the

information symbols. Extensive research has been done to characterize the under-

water acoustic (UWA) propagation channel and its impact on signal transmission.

The current state-of-the-art shows that although there is no consensus on statisti-

cal characterization of the acoustic communication channel, however, experimental

results have been demonstrated for different propagation environments so that some

modeling strategies in RF has been applied for the UWAC channel [?]. The UWA

channel is discussed in greater details in Chapter 2.

One of the challenges with UWAC is the lack of standards in the communication

protocols as in LTE and NR. Most systems deployment (for sensing and acoustic

communications) have relied on good practice and government restrictions as the

basis for operation. One of such constraints in UWAC is the need to transmit at low

power. This requirement is largely due to the threat that high power transmission

poses to marine life [?, ?, ?]. Although preserving marine life is much desirable,

low power transmission compounds the challenges in the UWA propagation channel.

In fact, acoustic signals become more vulnerable to the noise floor at low transmit

power. Furthermore, shipping noise (which has increased significantly over the years)

worsens the impact of noise in UWAC systems. Hence, the need for robust UWAC

systems at low transmit power has become a key topic of discussion among many

research groups in recent times.

Considering the enormity of these challenges, some authors have even argued that

UWA systems may never achieve higher data rates than they do right now due to the

distortions from the propagation channel and the impact of noise [?], coupled with the

susceptibility of sound waves to turbidity, salinity, and pressure gradients in the ocean.
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This assertion is hugely based on the difficulties involved with mitigating channel

distortions by improving systems design at the physical layer of the communication

stack. However, UWAC can still be enhanced with state-of-the-art techniques in RF

to achieve higher data rates. For instance, scheduling has been used in LTE and NR

at the MAC to mitigate the small-scale and large-scale variability in the propagation

channel (air) and noise [?]. Also, other techniques such as online antenna calibration

as in LTE and NR can be applied to adapt to the varying channel conditions in

UWAC. Other authors have also pointed out the advantages in applying cross-layer

design in UWAC [?].

Considering the demand for low power transmission and the susceptibility of com-

munication signals to ambient noise, it is important in the acoustic communication

community to understand the impact of noise on the systems design even at the phys-

ical layer. Although it is common knowledge that the signals are swamped by noise at

low transmit power, to the best of the author’s knowledge it has not been documented

in literature how the unique space-time properties of ambient noise specifically impact

the UWAC space. Largely, the established knowledge about noise in RF communica-

tions has been transferred for systems design in UWAC.

It has been demonstrated in RF communication that the noise channel contains

uncorrelated samples characterized by a Gaussian distribution and has equal power

at all frequencies within the system’s bandwidth [?]. This knowledge has also formed

the basis of assumption about the ambient noise channel in UWAC. This assumption

is particular to systems design in UWAC and not all oceanographic applications. It is

very important to investigate this assumption about the noise channel to accurately

characterize systems design in UWAC. Therefore, this dissertation focuses on the

OAN channel and its impact on the UWAC link.

1.4 Research Motivation and Problem Statement

In an underwater communication system, the ambient noise source is unique, and

standard techniques used at RF cannot be adopted. Radio noise is a combination of

natural electromagnetic atmospheric noise emanating from electrical processes in the

atmosphere like lightning, man-made radio frequency interference from other electrical

devices, and thermal noise due to the receiver input circuits. In comparison, OAN
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sources is a combination of man-made sources (due to shipping and seismic activities)

and natural sources due to marine animals, precipitation and surface generated waves

due to wind. The man-made sources produce impulsive noise while the naturally

occurring sources could be either impulsive (as in marine mammals) or persistent (as

in surface waves or shipping noise). Unlike radio noise, the spectrum of ambient noise

is frequency dependent, making the samples temporally correlated. Similarly, ambient

noise samples measured at an array of hydrophones are spatially correlated. These

properties – temporal correlation (i.e. frequency dependence), spatial correlation as

well as the impulsive spectrum makes ambient noise uniquely different from radio

noise.

Ambient noise in the ocean can significantly impact the communication link. For

instance in [1, ?], ambient noise is highlighted as a limitation on the useful bandwidth

in an UWAC system. Also in [?], the author presented closed-form approximate

models for the time-invariant acoustic channel that takes into consideration a model of

the acoustic path loss and the ambient noise. It was concluded that the time-varying

propagation channel as well as path loss and ambient noise impact the capacity and

distance of an acoustic link. Further, in [?] the author describes an underwater

acoustic channel model that excludes the impact of ambient noise (primarily due to

sea waves and sea creatures) as highly inaccurate. More recently, in [?], the author

highlighted the major effects of ambient noise on bit-error rate using different routing

protocols in an underwater sensor network. Summarily, several authors have shown

that the impact of ambient noise in an UWAC link cannot be explained away. But

the question remains – by how much?

However, to evaluate the performance of UWAC systems, it is typically assumed

that the noise at the receiver is uncorrelated in frequency, time, and space. This is

typical in wireless radio receivers, in which the noise sources are known to be uncor-

related and have a white spectrum [?]. This assumption underestimates the impact

of acoustic OAN sources on the performance of UWAC systems. Previous works have

confirmed the impact of the statistical distribution of impulsive ambient noise sources

on an UWAC receiver [3, ?, ?, ?], but the impact of directional ambient noise (par-

ticularly from naturally occurring sources) on UWAC is still not well understood. To

the best of the author’s knowledge, as at the time of writing this dissertation, there
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are no models in literature that characterize the ambient noise channel (excluding the

impulsive sources) in an UWAC receiver. At best, some authors have only replaced

ambient noise by any frequency-dependent noise in UWAC systems.

Having established the above knowledge gap in the understanding of the OAN

channel in UWAC, it is therefore important to investigate the specific attributes

of the noise channel that impacts the quality of the UWAC link and some design

considerations at the physical layer. This dissertation gleans from the well established

knowledge about the attributes of OAN such as the directionality [4], space-time

correlation [5] and the frequency dependent spectral properties [?] since the early

days of the studies on OAN. As depicted in Fig.1.1, the characteristics of the ambient

noise channel is the primary focus in this dissertation.

To this end, to provide an understanding about the characteristics of OAN, espe-

cially with respect to the acoustic communication link, three tasks are defined in this

dissertation; first, the variability in the directionality of vessel noise is characterized

through source sensing; second, models are described to characterize the directional,

spatial and spectral properties of naturally occurring ambient noise at a compact

acoustic array; and third, the impact of directional ambient noise on an UWAC link

is characterized.

1.4.1 Research Objectives

The work described in this dissertation is in response to specific needs in the under-

water acoustic community.

The first part of this dissertation provides an in-depth study that characterizes

the unique spatial properties of vessel noise as a persistent source of ambient noise.

This task approaches the spatial property by actually investigating the directional

property of vessel noise.

The second part of this dissertation develops a space-time model that is able to

generate synthetic ambient noise process which can be applied in modeling an UWAC

link with a greater accuracy.

The third part of this work provides an analysis of the impact of ambient noise on

the array gain and the bit-error rate of spatial arrays in a coherent communication

system. The section focuses on the impact of surface generated and vessel noise in
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an UWAC system. A system design is proposed to mitigate vessel noise in an UWAC

link.

Summarily, the first part of this dissertation is two-edged in that it is developed in

response to the need for an enhanced system design that uses acoustic technology to

track vessels over a long range while exploiting the directional property of vessel noise.

The system design estimates the position of a vessel by using its self-noise over about

a 2 km range by post processing measured acoustic data. The data measurements

and other scientific support were provided by Jasco Applied Sciences 1 who is also

the partner organization for this project. The outcome of this design provides an

understanding about the variability in the directional property of vessel noise as well

as meeting the need of the partner organization for an enhanced vessel tracking system

that relies on passive arrays.

Overall, this dissertation is developed in response to the need for high reliability

in acoustic systems especially in noisy environments where low power transmission is

also a requirement. At low transmit power, UWAC systems become more susceptible

to the characteristics of ambient noise, referred to as noise in this study, especially in

environments where surface generated noise levels are high. The models developed in

this work are validated against actual ambient noise measurements provided by Jasco

Applied Sciences and the UW-STREAM lab of Dalhousie university. The author

anticipates that the results provided about the impact of ambient noise on the UWAC

link would provide a baseline for modeling acoustic receivers in the UWAC research

community.

1.4.2 Research Contributions

Three major contributions are highlighted in this thesis.

First, a system design that characterizes the time varying directionality of spatial

ambient noise through source sensing is characterized. To this end, a system is

designed to estimate the directionality of vessel noise and surface generated noise.

Second, two distinct noise models are developed to generate synthetic noise pro-

cesses that represent ambient noise in a shallow water environment.

1Jasco Applied Sciences is an acoustics manufacturing and ocean science company with the head
office based in Nova Scotia Canada.
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Third, is the quantification of the impact of ambient noise on an underwater

acoustic link. To this end, the impact of directional ambient noise on an UWAC

systems is evaluated even in narrowband conditions.

Characterization of Directional Ambient Noise Through Acoustic Sensing

A system design that characterizes directional ambient noise through source sensing

is developed in this dissertation. The system estimates the position (characterized by

bearing, depth and range) of a vessel using the changes in the directional property

of the noise produced by the vessel’s propeller. A system-level algorithm is used

to demonstrate the properties of directional vessel noise using a combination of a

beamforming technique, matched-field processing (MFP) and Kalman filtering. The

system compares the positional estimate of a vessel using acoustic measurement of the

vessel noise with the standard satellite report on a vessel’s position with a reasonable

match.

The MFP technique relies on estimates of the spatial coherence of the vessel noise

measured at a spatial array. Spatially coherent signals have been used in literature

for several purposes including source detection. Often, the MFP algorithms rely

on plane-wave beamforming techniques in which the empirical ambiguity surface is

matched against the ambiguity surface of the modelled source fields. This technique is

prone to errors as a result of the sidelobes induced in the beam pattern when applying

the beamforming algorithms. However, the coherence-based MFP developed in this

work replaces the usual beamforming technique with an algorithm that matches the

empirical coherence against the modelled coherence of the noise fields. The associated

challenge with sidelobes in conventional MFP techniques and the coherence-based

MFP are described in greater detail in Chapter 2 and Chapter 3 respectively.

The work described in Chapter 3 contains materials that is currently under an

internal review for the following publication:

• A. Egbewande, et. al, ”A System Design for Vessel Tracking Using Compact

Acoustic Arrays” in Journal of Acoustic Society of America - Extended Letter

(Under Review).
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Modelling Space-time Noise for UWAC

In a second contribution, two distinct models are developed to generate synthetic

noise model at an array of narrowband acoustic receivers.

In a first model – the directionality-based model, a synthetic noise process is

generated at a compact array from the directionality function of the noise field. This

method extends the model presented in [4] for noise fields over vertically separated

pairs of sensors to a generalized solution for a multi-element VLA. The second model

– the coherence-based model generates a synthetic noise process from the spatial

coherence function of the noise fields. This method relies on previous work in [?] in

which a synthetic noise process with defines spatial coherence property is generated

by applying a mixing matrix characterized by the decomposition of the complex

coherence matrix. The two noise models are developed to match actual measurement

scenarios described in this work.

The development of these models are justified in that they provide some funda-

mental understanding about the attributes of the ambient noise channel that impacts

the UWAC link. Although several models have been described in literature to charac-

terize the properties of ambient noise, they are not developed to accurately represent

the transient characteristics of noise that are representative of different measurement

environments, particularly at an array of receivers.

The work described in this chapter contains materials that were presented at the

following conference and submitted for journal publication:

• A. Egbewande and J. Bousquet, ”Space-Time Noise Characterization for Un-

derwater Acoustic Communications,” OCEANS 2018 MTS/IEEE Charleston,

2018, pp. 1-5.

• A. Egbewande, et. al, ”The Effect of Directional Noise on the Reliability of

an Acoustic Receiver in Shallow Environments”, in IEEE Journal of Oceanic

Engineering (IEEE-OES), Submitted June 2021.
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Impact of Ambient Noise on Coherent Receivers

In a third contribution, the developed models are applied in a coherent UWAC system

developed in baseband (excluding the carrier frequency modulation) for demonstra-

tion purposes. The received signal at an array of receivers is processed in measured

ambient noise and compared with the synthetic noise processes developed in this work.

In one scenario, the modulated symbols are transmitted over a controlled channel so

that the impact of the ambient noise can be isolated from the propagation channel.

This approach is typical in evaluating the impact on noise on wireless communica-

tion systems. In a second scenario, the information symbols are transmitted over a

time-varying multipath channel, so that the impact of ambient noise is assessed for

realistic deployment scenarios.

The impact of the ambient noise channel on the performance of a communica-

tion link is therefore evaluated and informed suggestions are provided to effectively

mitigate the impact of ambient noise in an UWAC receiver. A portion of the work

described in this chapter contain materials that were submitted in:

• A. Egbewande, et. al, ”The Effect of Directional Noise on the Reliability of

an Acoustic Receiver in Shallow Environments”. In IEEE Journal of Oceanic

Engineering (IEEE-OES), Submitted June 2021.

Other related work that have been presented at conferences include:

• Singh, S., Egbewande, A., Chalmers, A., Taylor, R., de Gooyer, J. and Bous-

quet, J.F., ”A MIMO Underwater Acoustic Transmitter Implementation with

Space-Time Block Coding” in 4th Underwater Acoustics Conference and Exhi-

bition (UACE) 2019

• Egbewande, A. and Bousquet, J.F., 2017, November. ”Measurement of a Space-

time Noise Mitigation Technique”. In Proceedings of the International Confer-

ence on Underwater Networks and Systems (pp. 1-2).

• Egbewande A, Bousquet JF. Optimum space-time filter performance using a

realistic noise model of the ambient environment. InUnderwater Acoustic Con-

ference and Exhibition series, Skiathos, Greece 2017 (pp. 911-916).
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1.5 Outline of Dissertation

The rest of this dissertation is organized as follows:

In Chapter 2, a more detailed review of the UWA system development is provided.

Hence, key concepts that are used in the technical development of this work are also

introduced to provide the reader an understanding of the topics discussed in this

work.

In Chapter 3, the algorithms that estimate the position of a vessel using acoustic

arrays are described. The algorithms rely on; 1) an optimum beamformer to estimate

the bearing of the vessel; 2) a coherence-based MFP to estimate the range and depth

of the vessel; and 3) a Kalman filter to remove the effect of estimation noise in both

bearing and range. The measured acoustic position is also compared with the reported

satellite data on the vessel.

In Chapter 4, two noise models are presented whose spatial properties rely on the

directionality function and the coherence of the noise fields. The spectral charac-

teristics are also derived from well-known analytical equations. The spatial and the

spectral properties of the noise models are also validated against measured OAN.

In Chapter 5, a simple space-time receiver is developed to demonstrate the impact

of naturally ambient noise on the acoustic link. For this purpose, a baseband infor-

mation signal is processed in the presence of measured ambient noise. The receiver

performance characterized by the BER is compared with that of the signal processed

in the presence of the synthetic noise process.

Finally, a summary of the findings and suggestions for future work is provided in

Chapter 6.



Chapter 2

Impairments in the Underwater Acoustic Channel

In this chapter, the fundamental impairments in the underwater acoustic propagation

media are described. First, in Section 2.1, the physics of the acoustic waveguide is

briefly introduced. Second, in Section 2.2, the factors that impact acoustic wave

propagation in an underwater environment are reviewed. Then in Section 2.3, a

channel profile obtained from an ocean experiment is used to depict the typical factors

that contribute to channel impairments in UWAC. Finally, in Section 2.4 a succinct

description is provided for the linear model typically used to represent the UWAC

system.

2.1 The Acoustic Waveguide

The ocean is an acoustic waveguide bounded by the sea surface and the seafloor.

Sounds radiated by an acoustic source (located at zs) interacts with both the surface

and the seafloor before arriving at receivers (located at z1 and z2) as shown in Fig. 2.2.

Models are developed to characterize the way acoustics waves interact with these

boundaries. Modeling acoustic waveguides serves to reliably predict the propagation

channel in an underwater communication link. It can also be used, for example, in

target tracking and other localization applications [?], since the waveguide models

make it possible to localize the acoustic sources.

In acoustic modeling, the sea surface can be considered to be a simple horizontal

boundary often viewed as a nearly perfect reflector. The exception are cases such as

in the Arctic, where the ice cover at the surface is an elastic medium which couples

with and affects the acoustic propagation [6]. On the other hand, the seafloor is a

lossy boundary with varying topography throughout the seafloor. Both boundaries

have small-scale roughness associated with them, e.g. surface gravity waves, which

causes scattering and attenuation of sound. The scattering on the seafloor depends on

the sediment type which could be a mixture of different elements – ranging from silt

15
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Figure 2.1: Sound speed profile computed from an acoustic measurement in July
2017.

to rocky sand, and of different particle sizes [?] with varying reflection characteristics

in different locations. These factors make the seafloor a more complex boundary,

and introduces difficulties in modelling the ocean acoustic waveguide for different

geographical locations.

The variability in the sound speed as a function of depth is also a major factor

in the propagation of sound in the acoustic waveguide. Fig. 2.1 represents the SSP

obtained from a sea experiment that was run in 2017. This result is referenced simply

to depict the variability in the SSP as a function of depth. It is shown that the sound

speed fluctuates the most near the surface boundary largely due to the daily heating

and cooling, precipitation, mixed layer temperature due to wind, salinity and depth

[6]. Hence, the SSP of a measurement environment depends on the column depth

and the measurement location. For instance, for the same column depths, the SSP is

different in the polar region compared to locations closer to the equator.

Although the general ocean-acoustic propagation involves the interaction of the
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Figure 2.2: Ideal isovelocity ocean waveguide with pressure-release surface and bot-
tom.

signals with the sea surface and sea bottom boundaries, the ideal waveguide is of-

ten well suited to illustrate the basic waveguide phenomena associated with the

ocean acoustic propagation. The ideal waveguide is a range-independent, isovelocity

(depth-independent) water column with perfectly reflecting boundaries as depicted

in Fig. 2.2. The waveguides are easily characterized by simple models due to the

homogeneity of the water column and a uniform sound speed with depth. However,

heterogeneous waveguides with layered media i.e. varying sound speed and density,

require more complex models to model the acoustic wave propagation. The choice

of a waveguide model depends on the column depth, associated boundaries and the

radiation conditions [6]. These factors in turn importantly determine the accuracy

of a source-sensing/localization algorithm or the reliability of signal detection in a

communication system.

Although it remains a difficult task to model the acoustic waveguide to perfectly

match the actual deployment environment, several methodologies have been devel-

oped over the years to optimize both the boundary parameters and the computational

time of the models [6].

Waveguide modeling characterized by the interaction of acoustic pressure at the

surface and seafloor remains the central principle to achieve reliable communication
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links in UWAC systems design. It is also the foundation for acoustic source sens-

ing/tracking. The principle of signal interaction in the acoustic waveguide is applied

in the source ranging algorithm described in Chapter 3 to estimate the position of a

vessel.

2.2 The Underwater Acoustics Propagation Channel

In underwater acoustic communication, similar to the terrestrial network, the phys-

ical layer of the communication stack is responsible for encoding and decoding of

information signals to achieve reliable data transmission and reception between com-

munication devices. The efficient design of UWAC systems must mitigate the sources

of distortion in the acoustic channel. As such, pre-coding can be done at the trans-

mitter, and equalization can be realized at the receiver. In an UWAC channel, the

information signal suffers from degradation due to transmission loss, intersymbol in-

terference due to multipath, spatial and temporal variability of the channel as well

as ambient noise [1].

Transmission loss is measured as the sum of losses due to geometrical spreading

and attenuation. The spreading loss is a measure of the weakened signal as it prop-

agates away from the source. Attenuation on the other hand, is a measure of the

part of the acoustic energy that is absorbed (i.e. transformed into heat) or scattered

due to different in-homogeneous factors such as dependence on temperature, pressure,

salinity, and acidity (pH value). Salinity and temperature variations as a function

of depth also determine the sound speed as a function of depth. This phenomenon

is more pronounced in deep water columns but is less of a problem in shallow en-

vironments where the sound speed is of a relatively uniform value of approximately

1500m/s depending on the measurement site.

Spatial and temporal variability in the acoustic channel are primarily due to the

interaction of acoustic waves in the propagation waveguide as well as platform motion.

In the acoustic waveguide, sound waves reflection from the surface is worsened by

surface motion which in turn causes wave bending.

Noise in the ocean are primarily characterized by the sources that produce them.

These sources – either man-made and/or artificial contribute to the overall noise level

in the ocean. Thus, the reliable detection of a communication signal relies on the sea
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state which is also characterized by the ambient noise sources present during the

signal transmission.

It has been demonstrated that transmission loss and noise determine the available

bandwidth, propagation range and the signal-to-noise-ratio [?]. The time-varying

multipath determines the signal design and the processing techniques adopted [?, ?].

Furthermore, spatial variability due to the propagation waveguide and platform mo-

tion influences the signal design and the receiver structure that optimizes coherent

signal detection [?]. Both spatial and temporal variability determine the channel

throughput and performance of the communication system. Summarily, the key fac-

tors that affect acoustic signal propagation underwater are multipath propagation,

bandwidth limitations, Doppler spread, small scale space-time variations, and noise

in the acoustic channel. These factors are reviewed next.

2.2.1 Multipath

As discussed earlier, acoustic propagation is prone to severe multipath bounces due to

the wavefront being reflected from the surface and the bottom of the ocean, depending

on the propagation environment. The multipath profile of an acoustic channel is

different in deep and shallow water. It also depends on the communication range,

column depth and deployment depths of the transmitter and receiver nodes. Although

boundary reflections due to both surface and bottom are not as pronounced in deep

water columns, ray bending due to variations in the sound speed of water aggravates

the channel distortion in deep columns. Also, due to the low sound speed (about

1500 m/s) of water, copies of the reflected paths of arrival could spread over hundreds

of milliseconds, making the channel frequency-selective.

Many models have been presented to capture all these parameters in the acous-

tic multipath channel. However, in its simplest form, the acoustic channel can be

modelled as an FIR filter

h(t) =
∑
p

hp(t− τp), (2.1)

where p is the path index, hp is the signal amplitude of each propagation path, the

path delay τp = lp/c, where lp is the path length and c is the sound speed in water.
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The multipath power delay profile (often referred to as the multipath profile) of

a propagation environment is determined by the number of paths with significant

amplitudes and the delay between successive paths. For instance, for a transmitter

and receiver separated by distance r, at nominal depths d1 and d2, the time difference

in the surface-reflected paths due to waves (or wind) is [?]

l(t) ≈ l0 + 2Δh(t) cos θ0 = l0 +Δl(t), (2.2)

where l0 is the nominal path length, θ0 is the nominal angle of incidence. Due to

the difference in path lengths, the signal component which is generalized as A cosωt

(where A and ω are the signal amplitude and frequency, respectively) at the receiver,

appears to be phase-modulated by a waveform

Δψ(t) =
ω

c
Δl(t). (2.3)

The bandwidth of the received phase-modulated signal is

B − w = 2fw(1 + Δψ), (2.4)

where Δψm is the modulation index.

The mean excess delay, rms delay spread, and excess delay spread are multipath

channel parameters that can be estimated from a given multipath profile. The rms

delay spread and mean excess delay are estimated from the temporal or spatial average

of consecutive impulse responses collected and averaged over a local area. Also, several

measurements obtained from many local areas (i.e. large-scale area) determine the

statistical range of the multipath channel parameters which can be used in the design

of the UWAC system.

At the receiver, copies of the signals from each propagation path are incoherently

received due to different path delays causing ISI. To reliably receive the transmitted

signal at the receiver, the goal is to coherently sum up these multiple paths. The

multipath bounces also vary as a function of time and even spatially. Hence, signal

processing techniques are developed at the receiver to predict the multipath profile

and track the changes in the channel characteristics.

One other key challenge with signal propagation in UWAC is that the multipath
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profile is significantly determined by the column depth and the type of sediment at

the seabed. For instance, hard sediments such as rocks and gravel reflect sounds

differently from silt and clay [?, 7].

2.2.2 Small-scale Variations

In UWAC (or any wireless communication) systems, fluctuations in the received signal

due to small-scale and large-scale variations in the multipath propagation channel

are an inherent challenge in reliably detecting the signal at the receiver. Small-

scale variations are largely associated with changes in the propagation medium and

the relative motion between the transmitter and the receiver. Historically, these

variations have been perceived as a problem. Recently, to mitigate this pheneomena,

the development of channel-dependent scheduling, wherein signal transmission takes

place when the channel conditions are favorable, have been applied in long-term

evolution (LTE) networks and in the emerging 5G new-radio (NR) networks [?].

Specifically, in shallow acoustic environments, the small-scale variations are at-

tributed to surface scattering due to waves. In deep water columns, surface scat-

tering compounded by internal waves along each deterministic path, contribute to

the small-scale time variations [6]. Surface scattering is caused by wind-driven waves

displacing the reflection points of the propagation paths at the surface, resulting in

signal dispersion. Internal waves (otherwise called gravity waves), on the other hand,

are caused by a stratified column as the water density changes with depth due to

changes in temperature and/or salinity.

Generally, in wireless channels, the goal is to predict the multipath profile at the

receiver by developing statistical models that capture the time-varying profile of the

channel. There are several models available to characterize the channel probability

distribution in radio channels, and in [?] a model has been developed to account for the

different time constants associated with different phenomena, including the surface

roughness, inherent motion of nodes affected by currents, and mobility of underwater

vessels. Studies have demonstrated that the mean channel amplitude as a function of

depth can follow a log-normal distribution [?]. This is attributed to the reverberation,

which causes caustics in the ocean. Additionally, experimental results showed that

the amplitude for the different tap delays can exhibit Rician [?] or Rayleigh fading [8].
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Recall that channel profiles with a dominant path of arrival (i.e. line-of-sight) are

characterized by Rician distribution, while Rayleigh distribution describes channel

with no dominant paths [9].

2.2.3 Bandwidth

Communication between acoustic devices is determined by the allocation of an oper-

ational bandwidth on which the information signals are transmitted and received by

the receiver. The factors that determine the operational bandwidth of an acoustic

link are transmission loss, spatial variability and noise (discussed later in this section).

Transmission loss as discussed earlier, is caused by geometrical spreading and

attenuation (due to absorption loss). Transmission loss increases with range and fre-

quency, limiting the useful bandwidth in acoustic propagation to the lower frequen-

cies. Spatial variability is caused as a consequence of shadow zones in the acoustic

waveguide [1].

The frequency-dependent transmission loss and noise determine the bandwidth,

achievable range and the signal-to-noise ratio (SNR) measured at the receiver. Both

factors also determine the carrier frequency. Often, the transmission bandwidth is at

least 10% of the carrier frequency. This in turn implies that acoustic communication

links are more than often wideband and susceptible to multipath reflections. Band-

width limitation is a key consideration in the design of UWAC systems. It determines

the maximum achievable range and in fact the data-rate of an acoustic link.

Further, the bandwidth of the channel can be quantified by the coherence band-

width which in turn is related to the multipath profile of the channel. Hence, the

coherence bandwidth of the channel is described in this section.

Coherence Bandwidth

The received signal amplitudes from the multipath profile as shown in (2.1) yield

copies of the transmit signal that are spread out in time. In the frequency domain,

the multipath induces a variation of the channel amplitude as a function of frequency.

The coherence bandwidth is the measure of the maximum frequency difference for

which signal amplitudes are still strongly correlated [9]. Hence, coherence bandwidth

is used to characterize the channel in the frequency domain, which is analogous to
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delay spread in the time domain. It is a statistical measure of the frequencies over

which the channel is considered to be flat i.e. all the spectral components passes

with approximately equal gain and linear phase. Implicitly, this implies that two

signals with frequency separation greater than the coherence bandwidth are affected

differently by the channel.

Generally, in wireless communication, the coherence bandwidth, expressed as

Bc ≈ 1

5σt

, (2.5)

is defined as the bandwidth over which the frequency correlation is above 0.9, where

σt is the r.m.s delay spread of the channel.

2.2.4 Doppler Spread

Doppler, is the change in frequency of a wave with respect to an observer who is mov-

ing relative to the source producing the wave. In wireless communications, Doppler

is caused by the relative motion between a transmitter and a receiver resulting in the

received signal being shifted in frequency. The low sound speed in water aggravates

the Doppler effect in acoustic propagation, making it one of the most challenging

medium for communication. Also, wind-driven waves displacing signals at the sur-

face of the ocean causes a relative motion in the reflected points. The non-coherent

combination of the signals at the receiver sensor results in frequency spreading of the

surface-reflected signals, leading to the concept of Doppler spreading.

The Doppler spread caused by a surface reflected path at a discrete frequency f0

can be expressed as [9]

f ′ = 0.0175(f0/c)w
3/2 cosψ, (2.6)

where ψ is the incidence angle and w is the wind speed in m/s. From (2.6), higher

Doppler spreads are expected at higher frequencies (which is typical for short-range

communication links), while lower Doppler spreads are expected at lower frequencies

(i.e. for long-range links).

In the time domain, the coherence time is used to characterize the time-varying

nature of the frequency dispersion in the channel. Hence, coherence time is a measure
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of duration over which the CIR is invariant. This also implies the duration over which

two received signals have a strong potential for amplitude correlation. Coherence time

is defined by

Tc =

√
9

16πf 2
m

, (2.7)

where fm = c/λ is the maximum Doppler shift.

2.2.5 Acoustic Ocean Ambient Noise

Noise in the ocean is ubiquitous – caused by both man-made (anthropogenic) and

naturally occurring sources. The natural sources can be grouped into sources due

to surface waves and precipitation, and impulsive noise due to marine life. The

anthropogenic sources are due to man-made activities, such as shipping and pile-

driving. Ambient noise sources due to shipping is dominant in frequencies between

10 Hz to 500 Hz, while surface agitation is dominant between 1 kHz to 10 kHz,

and the impulsive sources (due to marine mammals and anthropogenic activities)

are dominant in frequencies between (10 Hz - 100kHz) [?]. Sonar systems designed

for UWAC systems operating in these bands are susceptible to these noise sources,

further limiting the available operational bandwidth.

The unique attributes of OAN, referred to as noise in this study, are well known

in literature. Some of these attributes are discussed next.

Directionality

It is well established that ambient noise sources are directional in their propagation.

In fact, modeling ocean noise often relies on the directionality of the noise field.

For instance, the characterization of surface generated noise [4, 5], shipping noise

[?], and impulsive noise produced by marine mammals [?] are all founded in the

directional propagation of the sources that produce them. The directional noise

characteristics in deep and shallow water environments are described in [5, 4, 1, 6, 10],

and several related models have been developed for ocean noise. OAN is known to

be directional, producing spatially correlated samples when measured at spatially

separated hydrophones. This property distinguishes ocean noise from the standard
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white Gaussian noise samples.

Coherence

The coherence property of noise relies on the correlation of the noise samples at

spatially separated sensors. The coherence can serve to evaluate the degree of resem-

blance for the noise field received at any two spatially separated sensors, and it is

a representation of the squared magnitude of the phase shift in the measured noise

fields at these spatial sensors.

Cox in [4] derived the integral expression for two vertically aligned sensors {x, y},
separated by distance d in a spatially homogeneous ambient noise field, by relating

the spatial coherence function with the directionality of the noise fields by

Γyz =
1

2

∫ π

0

F (θ)eiωτd cos θ sin θdθ, (2.8)

where i =
√−1, θ is the polar angle measured from the zenith, c = 1500m/s is the

sound speed and τd =
d
c
is the time difference of signal replicas measured at the

sensors. The directionality function F (θ) represents the noise power integrated over

all the azimuthal angles. Thus, from (2.8), the coherence measured at any pair of

hydrophones is uniquely related to the directionality function of the noise fields.

It is also well established that the coherence measured at any pair of spatially

separated sensors depends on the orientation of the receiver. For instance, in [5], it

was demonstrated that the spatial coherence measured at a horizontal pair of sensors

(separated by an angle γ = 0) decays faster than that of vertical pairs (i.e. γ = 90)

in an infinitely deep ocean. This is observed in Fig.2.3 where the spatial coherence

decays rapidly beyond the first zero in the horizontal array than in the vertical pairs.

Hence, in applications that rely on the measure of the spatial coherence to estimate

different oceanic parameters, vertical arrays are often preferred to horizontal arrays.

The coherence measured at a VLA is discussed in greater details in chapter 3.

Power Spectral Density

The spectral characteristics of ocean noise have been well defined [1]. The major

components are turbulence, shipping, wind and thermal noise. Each component is
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Figure 2.3: Effect of receiver orientation on the spatial coherence of surface noise
fields for the case of directional noise sources.

dominant at different portions of the frequency spectrum as discussed earlier. The

analytical expressions for the PSD (in dB re μPa) of the different components of

ambient noise are

Nt(f) = 17− 30 log f

Ns(f) = 40 + 20(s− 0.5) + 26 log f − 60 log(f + 0.03)

Nw(f) = 50 + 7.5w(1/2) + 20 log f − 40 log (f + 0.4)

Nth(f) = −15 + 20 log f, (2.9)

where f denotes frequency in kHz, and {Nt, Ns, Nw, Nth} represent sources due to

turbulence, shipping, wind and thermal noise, respectively. The total noise PSD (in

dB re μPa) measured at sensor y for a given frequency f [kHz] is therefore

Syy = Nt(f) +Ns(f) +Nw(f) +Nth(f). (2.10)

Fig. 2.4 shows the ambient noise PSDs for shipping activities and with wind
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speeds up to 10 m/sec (19.4 knots) obtained from (2.9). It is observed that each

noise source is dominant in bandwidths up to 10 kHz. Turbulence noise is dominant

in the frequency band 0.1 Hz − 10 Hz, while shipping activities are the major factors

contributing to noise in the frequency region 10 Hz − 1 kHz, although propagation

effects (e.g. high frequency absorption, or mode stripping in shallow water environ-

ments) can modify the shipping noise signature that arrives at the sensor. Shipping

activities are usually weighted by a factor s which is a value between 0 and 1 rep-

resenting low and high shipping activity, respectively. Surface agitation due to wind

(where w is the wind speed in m/s) is dominant between 1 kHz to 10 kHz. Moreover,

impulsive sources (due to marine mammals and anthropogenic activities) have also

been showed to be dominant in frequencies between (10 Hz - 50 kHz) [1].

Although the spectrum of the ambient noise channel is often approximated as

white noise in UWAC systems, in practice it is indeed colored exhibiting a decaying

PSD with a rate of ≈ 18dB/decade as demonstrated by the inverse frequency (1/f )

in Fig. 2.4. This implies that the ocean column acts as a low-pass filter to yield

an ambient noise process. Thus, the ambient noise PSD is usually considered as a

1/fn spectrum i.e. noise has more power at lower frequencies than at the higher

frequencies [8]. Coincidentally, sonar systems designed for UWAC systems operating

in these bands are susceptible to these noise sources, further limiting the operational

bandwidth.

Generally, it is more challenging to model or predict noise in shallow water than

in deep water columns, due to variability in both space and time primarily owing to

bottom interactions. Typically, shallow water environments are approximately about

200 meters, while deep columns are in excess of 2000 meters. Ambient noise in shallow

environments are classified into sources due to wind, shipping activities and biological

noise mostly due to snapping shrimp. It is also noteworthy that ambient noise power

decreases with depth with about 9dB higher noise levels in shallow water compared

to deep environments [?].

The properties of OAN are not only limited to the spatial and spectral domains. In

fact, other statistical properties such as the autocorrelation, probability distribution

and linearity of OAN are also quite unique to the sources that produce them. To

analyze the distribution and linearity of OAN, it is commonplace to apply bi-spectral
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Figure 2.4: Power spectral density of the ambient noise level in dB re μPa/Hz for
wind speed 10 m/s (19.4 knots) and different shipping noise is presented for high
(s=1), moderate (s=0.5), light (s=0) shipping activities.

analysis in literature. For instance, a classical example is in [11], in which the author

developed a statistical method for testing whether OAN has a Gaussian distribution

and that it contains evidence of nonlinear components in the different noise sources

observed from various ocean experiments. Often, these statistical properties of OAN

are demonstrated by observing windows of the noise time series to establish duration

limits over which certain distributions and linear properties of OAN are valid. The

work developed in this dissertation excludes these statistical analyses, but are highly

recommended for future studies on the modeling of OAN.

To summarize in this section, the unique properties of ambient noise are defined

by its directionality, coherence and frequency-dependent spectrum. These properties

have been proven to be useful in localizing shipping vessels or quantifying shipping

activity [?, ?, ?], and monitoring wind speed and rainfall levels [12, 13, 14]. In

other applications, the inversion of OAN can be used to obtain information about

the seabed [?, ?], bathymetry [?, ?] and the water column [?, ?]. This is because

ambient noise has a spatial signature that depends on the ocean environment, while
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its PSD is frequency-dependent even over a relatively narrow bandwidth (discussed in

chapter 4), and depends on the nature and density of the sources present. However,

these unique properties are often ignored in the design of an UWAC receiver where

the noise is often assumed to be uncorrelated white Gaussian samples [?, ?].

These key factors – multipath propagation, bandwidth limitations, Doppler spread,

small scale space-time variations, and noise in the acoustic channel distort acoustic

signal propagation underwater. Often, these factors are characterized by mathemati-

cal models which can be developed for computer simulations so that the performance

of the communication system can be characterized in controlled conditions. In other

scenarios, the values for these channel distortion parameters are obtained experimen-

tally. The latter is often applied in UWAC, whereby through post-processing acoustic

signals, the channel parameters in a specific area can be calculated.

Some results from an ocean experiment are described in Section 2.3 to depict a

typical experiment where the channel parameters are computed from post-processed

data transmission.

2.3 Characterization of the Multipath Channel

In this section, the CIR from an ocean experiment is shown as a function of time.

The objective of this section is to simply show some of the sources of distortion in an

UWA channel as earlier discussed. Hence, the details of the experimental setup is not

discussed in this section, but the experiment (DalComm1) is revisited in Chapter 4.

In the results shown in this section, acoustic waveforms are transmitted by a single

transmitter, while the waveform is received by a five-element hydrophone array. The

transmit acoustic waveform shown in this section is a maximum length (ML) sequence

used in spread-spectrum communication. The ML-sequence consists of 512 bits and

is transmitted at a rate of Rb = 240 symbols per second so that the channel can be

characterized for a maximum excess delay of 2.1 seconds and a processing gain of

24 dB.

The CIR of the ML-sequence is shown in Fig. 2.5 for the different measurement

ranges – 1 km, 2 km, 4 km, 8 km, and 10 km. It is observed that the overall CIR mea-

sured at the hydrophones are similar over long-term except at the first hydrophone.

During this sea trial, the sea state was relatively high – between 2 and 2.5, so that even
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(a) 1 km. (b) 2 km.

(c) 4 km. (d) 8 km.

(e) 10 km.

Figure 2.5: Channel impulse response in dB as a function of time measured using
M-sequence on hydrophone 1.
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though the deployment vessel was anchored, it was drifting through the experiments.

It can also be observed that as the distance between the transmitter and receiver

increases, the multipath echo arrival becomes more diffused while the significant path

arrival delay is more spread.

To further investigate the CIR, a single channel profile is also represented in

Fig. 2.6. A close observation of the CIRs shows that for ranges at 2 km and 10 km,

the channel delay is similar. Likewise, the channel profiles over the rest of the mea-

surement ranges are similar.

Further, the Doppler spread measured for all the transmission ranges are shown

in Fig. 2.7. The results show that the maximum Doppler spread observed in the 2 km

range is about 0.14 Hz. Recall that the coherence time Tc can be obtained from (2.7),

so that the average coherence time of the channel is about 3 seconds.
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(a) 1 km. (b) 2 km.

(c) 4 km. (d) 8 km.

(e) 10 km.

Figure 2.6: Example of channel impulse response profile in dB using ML-sequence.
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Figure 2.7: Doppler spread for all ranges
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2.4 Model of a Space-time Linear System

It is quite usual to model the channel CIR as a linear system described in (2.1). This

makes it possible to also model the signal x(t) measured at the receiver by a linear

model [15]

x(t) = s(t)� h(τ, t) + n(t) (2.11)

where s(t) is the information signal that contains the modulated symbols, convolved

(or multiplied in the frequency domain) with the CIR h(τ, t), and n(t) is the additive

noise (as in Fig. 1.1). Eq.(2.11) can be extended for a multi-element receiver array, in

which case s(t),h(τ, t), and n(t) are the information signal, CIR and noise measured

at all the elements of the array, where the boldface notation depicts the combined

vector of values spatially sampled at an array of sensors.

In RF communications, the noise is characterized by Gaussian distribution whose

derived samples are uncorrelated and has a flat frequency spectrum. However, the

attributes of OAN described thus far in this chapter do not compare with noise in RF.

At the receiver, mitigating the impact of both the multipath channel and the noise

are equally important to be able to reliably detect the transmit information signal.

Summarily, in this chapter, the high-level description of the acoustic waveguide

and the factors that impact the propagation of sounds in an UWAC systems have been

introduced. Chapter 3 focuses on the space-time directional properties of vessel noise.

Chapter 4 discuses the directionality properties of ambient noise used for generating

synthetic noise at an acoustic array. Finally, the impact of ambient noise as well

as the multipath propagation is quantified on an adaptive space-time equalizer in

Chapter 5.



Chapter 3

Space-time Directionality of Shipping Noise

3.1 Background

In this chapter, the time varying characteristics of the directionality of OAN is demon-

strated. To this end, the unique space-time signature of vessel noise is demonstrated

through acoustic source tracking.

The justification for the system design in this chapter is in two folds. First, the

system is designed in response to the need of Jasco Applied Sciences for a covert

system that relies on acoustic technology to track the position of a vessel over a long

range. Second, the system provides insights into the time-varying directional property

of vessel noise which is a significant contribution to the ability to mitigate shipping

noise sources in an UWAC.

To achieve these objectives, first, a ML-BF is applied to estimate the directionality

(hereafter interchangeably referred to as bearing) of the noise produced by a vessel’s

propeller, measured at a compact array of hydrophones. Second, a MFP technique

is applied to estimate the range of the vessel to the array. Third, estimates of the

bearing and range of the vessel are applied to compute the position of the vessel to

the compact array.

The novelty in this chapter lies in the system level design which is derived from

algorithms that have been applied for other solutions in the past. The ML-BF is a

well-known solution for resolving the angle of arrival of signals while the MFP is a

well-known solution in source localization. However, these algorithms are integrated

together to achieve an efficient system that is able to track the bearing and range of

a vessel. The system is developed as a proof of concept and suggestions are provided

on how the system can be implemented and optimized for real-time deployments.

Therefore, Section 3.2 reviews the evolution of the technologies that have been

used for vessel tracking applications over the years. The section also discusses the

ongoing challenges in vessel tracking applications and proposes a system design in

35
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response to some of these challenges. In Section 3.3, the noise measurement scenarios

that are used in this chapter are described. In Section 3.4, the concept and design

strategy in acoustic source tracking is introduced. In Section 3.5, a ML-BF that

achieves the lowest possible variance of a linear TDOA estimator specified by the

Cramér-Rao lower bounds is developed to estimate the optimum bearings of the

vessel with respect to time. In Section 3.6, a type of MFP that relies on the estimate

of the spatial coherence of the measured signal is developed for source depth and

range estimation. Finally, in 3.7, a Kalman filter that removes the estimation noise

from the computed bearing and range is presented along with a methodology that

validates the estimates of the vessel’s position as a function of time against the AIS

data reported on the same vessel.

3.2 State-of-the-art in vessel tracking

Monitoring the location of vessels in the open ocean has been achieved mainly by using

a line-of-sight communication e.g. AIS, Global System for Mobile Communications

(GSM), WIFI; or maritime mobile satellite communication (e.g. Inmarsat, Iridium,

VSAT) [?, ?, ?, ?]; or a combination of these systems. Other systems rely on video

detection of the vessel to estimate its position [?, ?, ?]. The AIS and GPS rely on

the transponder on board the vessels to update the vessel’s position and have been

used extensively over the years and for different fleet tracking needs. Other systems

that rely on video detection are prone to failure in inclement weather conditions and

sea-state, thus limiting the scope of their applications [?, ?].

Overall, there are challenges involved with having a homogeneous system that

works in varying environmental conditions, for different kinds of vessels - ranging

from kayaks to commercial vessels, and that would not totally rely on the discretion

of the sailors to turn on an on-board transponders. These challenges have been

identified by several ocean stakeholders and has led to standardized requirements for

monitoring marine traffic over the decades.

Since 2002, the International Maritime Organization (IMO) has made it compul-

sory for all passenger vessels as well as all commercial vessels over a certain size to

carry an AIS transponder[?]. Since then, the AIS has become ubiquitous in the ma-

rine industry. The AIS was introduced for three applications: 1) as a ship-to-ship
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system for collision avoidance; 2) ship-to-shore technology for littoral States/regions

to obtain information about a ship or cargo; and 3) operation of Vessel Traffic Services

(VTS) management that controls and monitors maritime traffic [?]. Port authorities

and other land-based ocean stakeholders are equipped with receivers so that they can

view the local traffic without the need to transmit any information from shore.

Since the early days of using the AIS, information such as position (in longitude

and latitude), ID, speed, heading, cargo, destination, etc. were collected via on-board

GPS and other navigation sensors and broadcast at intervals via a VHF radio trans-

mitter. Marine traffic was accessible via these AIS transceivers that were limited to

the VHF range [?], about 10–20 nautical miles. With the rise in the global number of

ships and the increasing need to secure the oceans, the short-range capabilities of the

VHF enabled transceivers were too limited relative the growth in the marine indus-

try [?]. Space-based AIS that rely on satellite communication have been developed

to improve detection probability for long-range applications [?] and have been used

extensively for vessel monitoring applications.

In 2009, SpaceQuest launched AprizeSat-3 and AprizeSat-4 that rely on AIS re-

ceivers [?]. By 2010, these receivers were successfully able to receive a search and

rescue transmission test by the U.S. Coast Guard. Also, in 2010, Canada announced

a partnership arrangement whereby data from AprizeSat-3 and AprizeSat-4 would

be incorporated into the exactEarth system and made available worldwide as part

of their exactAIS service [?]. In 2010 the Norwegian AISSat-1 nano-satellite was

successfully launched into polar orbit to improve surveillance of maritime activities

in the North Sea [?]. Since 2010, satellite AIS systems have been fully operational

at commercial capacities globally for monitoring ship traffic, but not without some

identified challenges.

The technical challenges with receiving AIS messages in areas with high marine

traffic density have been identified in literature [?]. Also, given that the AIS is a

self-reporting system, there are concerns about its reliability [?] and susceptibility to

human manipulations [?, ?]. The challenges involved with AIS data reliability may

be classified into three categories[?]: 1) erroneous messages due to the fact that some

information (such as the name of the vessel and the vessel destination) are entered by

the crew on-board the vessel; 2) AIS messages being spoofed; and 3) AIS transponders



38

being turned off to perform illegal activities. Although erroneous AIS messages could

be due to inadvertent human errors, message spoofing and on-off switching are the

more frequent attacks on AIS messages [?, ?]. Techniques and algorithms have been

proposed in literature to identify intentional AIS on-off switching [?, ?].

Having identified the satellite-based AIS as the widely used technology for vessel

monitoring, its inherent challenges and its propensity to attacks, the AIS also falls

short in meeting the pertinent needs involved with protecting marine life in the oceans.

With the evolving understanding of earth’s oceans over the years, human activities -

system deployment for ocean observatory purposes, as well as commercial and leisure

vessels have significantly increased [?, ?]. The derived benefits from increased oceanic

activities have not been without some adverse effects on the ocean ecosystem. For

instance, it was showed in [?] that between 1950 and 2007, there has been a rise in

the global number of ships by a factor of 3.5, with a 3.3dB increase in noise levels

every decade, mostly due to increased shipping activities. It has also been established

that vessel traffic is an ubiquitous anthropogenic source of ocean noise and with a

high potential to harm marine life [?, ?, ?, ?, ?, ?]. Therefore, there has been many

efforts by different research groups to assess and reduce the impact of vessel noise on

marine life. For instance, the Enhancing Cetacean Habitat and Observation (ECHO)

program by port Vancouver in Canada is aimed at developing measures that quantify

and reduce the threats posed by vessel traffic and port activities on at-risk whales

in the region [?, ?]. Many research and ocean observatory groups as well as port

and marine conservation authorities have showed interest in systems that are able to

effectively manage anthropogenic activities without destroying marine life [?, ?].

To address the challenge involved with the increase in human activities and the risk

posed to marine species, passive arrays of hydrophones have been used extensively to

localize whale calls and fish vocalization in the ocean [?, ?, ?, ?] with promising results.

For instance, through the ongoing measures by the Canadian government to reduce

the risks to North Atlantic right whales, arrays of hydrophones have been deployed

to monitor whale aggregated areas and restriction measures on human activities have

been implemented in these areas. To this effect, season-long fishing has been closed,

speed limits are enforced on vessels and new gear marking requirements are enforced

in these areas [?, ?]. Furthermore, the interfering noise emanating from vessels have
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also been showed to not only impact the communication space for fish vocalization

and marine mammals [?, ?], but also deteriorates the ability to accurately localize

and track these aquatic species [?] with acoustic arrays. Having been demonstrated

that acoustic sensors can localize marine animals, it is desirable to simultaneously

localize vessels especially in areas with high density marine life.

The system described in this chapter is proposed as a solution that can estimate

the range of vessels over a few kilometer radius. The system design is proposed as a

proof of concept to enhance ongoing efforts towards ship noise assessment and noise

saving calculations associated with maintaining tolerable noise levels for marine life.

The motivation behind the design strategy proposed in this chapter is provided in

this section.

Design Motivation

Underwater acoustic localization techniques are classified into two main categories,

namely; 1) range-based, and 2) range-free algorithms. Range-based algorithms first

estimate the distance or the direction of arrival (DoA) of a source to a target. Various

algorithms for computing the DoA rely on estimates of the angle of arrival (AoA), time

difference of arrival (TDOA), frequency-difference of arrival (FDOA), or other similar

associated techniques. Subsequently, estimates of these ranges are then converted

into different coordinates using multi-lateration or triangulation methods. On the

other hand, range-free algorithms rely on the knowledge of the local topology and

the positional estimates of the deployed sensor nodes, using the knowledge of nearby

anchor nodes [?]. Hence, the range-free techniques are often applied in underwater

acoustic sensor networks, while the range-based techniques are applied for array-based

localization techniques. The system development presented in this chapter relies on

the use of acoustic arrays which in-turn confines the localization techniques to the

range-based algorithms.

Sensor arrays are capable of obtaining directional beam pattern applied to the

source signals measured at the array. Hence, signals propagating from a desired direc-

tion can be amplified while those from undesired directions are attenuated, yielding

an overall improvement in the SNR or SINR. This concept defines the underlying

principle in beamforming.
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TDOA techniques have been applied even for localizing broadband acoustic sources

[?, ?]. TDOA techniques require accurate estimates of the relative time-delay between

the array elements (or sensor nodes, as in acoustic sensor networks). Since, the en-

ergy of acoustic signals are range-dependent, TDOA algorithms need to be carefully

implemented to achieve great accuracies. Owing to this, some authors have proposed

energy-based acoustic source localization techniques [?].

Further, AOA techniques exploit the phase difference measured at the receive

sensors [16, ?, ?] and is applicable when the acoustic source emits coherent signals.

Several beamforming techniques have been developed to estimate the AoA. The di-

rectional sensitivity of the array beamforming algorithm produces beam patterns

with defined structures, secondary beams, as well as sidelobes which are smaller in

amplitude and do not correspond to any direction in which the array is focused. In-

herently, sidelobes are a major challenge with beamforming and must be considered

in the efficient design of the beamformer.

Once the AoA is known, the question then remains, how far is the source from

the array. This is necessary so that the position of the source can be characterized

accurately. Matched-field processing (discussed in greater details in Section 3.4) is

another array processing technique used for estimating the range of the source. In

this technique, replica fields are computed by solving the wave equation for a source

placed in an arbitrary position in the water column. The results is then compared

with the measured acoustic pressure, and the best fit for the source location is derived

by a searching mechanism, which often rely on beamforming techniques. The major

drawback of the MFP is to predict the exact model of the environment and to be

able to generate a look-up table (LUT) of the replica signals. In fact, to address

this problem, some authors have to derive features directly from the data to predict

the model of the environment [?, ?]. Another implicit challenge is with applying

beamforming techniques as the searching mechanism in MFP. This also introduces

sidelobes in the MFP techniques.

As in most navigation problems, uncertainties are introduced in the source esti-

mates, making it more cumbersome to convert the source range and/or direction into

other coordinates. For this reason, state-space filters are applied, in which the range
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and direction of the source is characterized by state-space models [?, ?]. A classi-

cal example of this class of models if the Kalman filter, which has been applied in

MFP for acoustic solutions [?, ?]. In MFP applications, it is often required that the

estimates of the range and bearing of the source be first converted to the Cartesian

coordinate before applying the Kalman filter.

Overall, the ML-BF is developed to realize an optimal beamformer that estimates

the directionality, while the CB-MFP is developed as a processor that does not rely

on a beamforming algorithm to estimate the source (vessel’s) range. A more detailed

comparison of the beamforming algorithms and the discussed in Section 3.4.3, while

the rest of this chapter describes the building blocks in the vessel tracking system.

3.3 Experimental Set-up

Two different noise measurement scenarios used to characterize the vessel’s position

are described in this section. Acoustic ambient noise is recorded at each of these

experiments and the analyses developed in this dissertation rely on these measured

ambient noise.

In a first trial – the Shallow Water CANAPE – which was run from September

2016-2017, experiments were run north of Barrow, AK, between the Chukchi Sea

and Beaufort Basin. CANAPE consisted of a deepwater experiment (DW CANAPE)

with its site in the central Canadian Basin and a shallow-water experiment (here-

after referred to as CANAPE) with its site in the northeast Chukchi Shelf. Both

experiments included acoustic sources and acoustic receivers. The objectives of the

CANAPE experiments were 1) to receive and record signals to quantify shallow and

deepwater propagation and its spatio-temporal variability, 2) to assess ambient noise

on the shelf, investigate environmental measurements and inference, and 3) measure

mid-frequency reverberation and propagation.

There were four recording stations each containing an eight-channel hydrophone

array. The recording units utilized JASCO’s AMAR recorder. The recorded data was

sampled at 16 kHz. AMAR1 - the first recording station used in this work, had a

VLA with 2.5 m spacing, incorporated with horizontal arms near its mid-section that

convert it into a spatial array of a tetrahedral structure (as in Fig. 3.1), thus able

to estimate compass bearings in addition to a vertical arrival angle. The array was
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deployed with the center element at a depth of 125.25 meters, and in a water column

of about 149 meters. The data recording during these experiments were separated

in time to record ambient noise which are used in this work. Shipping noise sources

detected during these measurements were used to characterize the algorithm for vessel

localization and tracking. It is noteworthy that the post-processing of the sonars

recorded during these experiments is exclusive to JASCO and are not included in

this dissertation. Albeit, the presence of active sonars at frequencies higher than 640

Hz (as in Fig. 3.1) in these data set interfere with the accuracy of the algorithms

developed in this work.

Figure 3.1: Power spectrum showing detected vessels in the October 2016 measure-
ment

At a second sea experiment – the ADEON – which was developed and deployed

in November of 2017, acoustic data were measured from the U.S. Mid- and South

Atlantic Outer Continental Shelf (OCS). Acoustic arrays were deployed for long-term

measurements of both the natural and human factors that are active in the region.

The objectives of the ADEON experiments were 1) to understand the cumulative

impacts that the natural and human factors have on marine resources and provide

insight for ecosystem-based management efforts, 2) to assess baseline soundscape and

ecosystem conditions that will support predictive environmental modeling and trend

analyses in the the region, 3) to assess the spatial and temporal characteristics of the

soundscape and biological sources, including their expected variation and correlation

with distance, and 4) to provide an open source data stream platform that will fa-

cilitate future development of ecological models targeted for other environments and

applications.

Although there were a few different arrays that were deployed at the ADEON
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Figure 3.2: Time series from ADEON data set measured with timestamp 2019-06-08;
07:21:05, B = {0, 8000} and Fs = 16kHz.

experiments, the array used in this study is a combination of a two-element VLA

with 0.5 m spacing, and two horizontal elements with 0.5 m spacing, so that the

array deployed at a depth of 291 m with a 1.5 m offset from the seafloor is described

within the first quadrant of a sphere.

It is also expected that this array will be able to provide compass bearings in

addition to a vertical arrival angle. Various acoustic sources were detected during

these experiments. Some of the recorded data sets from ADEON experiments are

open source 1 and some preliminary results showing the detection of various acoustic

sources have been documented. The data set used for the vessel localization algorithm

developed in this work are obtained from JASCO’s AMARs sampled at 16 kHz and

are strictly based on the detection of vessels. The power spectrum of the measured

noise from the ADEON experiment prior to post-processing is showed in Fig 3.2.

3.4 Acoustic Source Sensing

Acoustic source sensing is the development of systems that are able to detect acoustic

sources or in some cases to track them. Source detection relates to becoming aware

of the presence of a type of acoustic source, for instance vessels, while source tracking

deals with estimating the state (i.e. position, velocity or acceleration) of single or

multiple moving targets. The latter is often of interest in surveillance or in military

1https://adeon.unh.edu/data portal
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Figure 3.3: Geometry of the deployed array in CANAPE.

applications in which systems accuracy and low latency is of great importance. The

term source localization is used interchangeably with source tracking in this work.

The traditional methods that apply acoustic sensors for source tracking either use

active systems (as in sonar applications) or passive systems which majorly rely on

acoustic hydrophones [?]. Traditionally, in active systems, a row of acoustic arrays

transmit at a certain frequency and the target is tracked by the reflection of the echoes.

These systems can be limited in mission-critical scenarios because; 1) they need to

be towed by a submarine or ship; 2) their tracking areas depend on the mobility and

trajectory of the tracking platform; and 3) it is expensive and almost impractical

to maintain a 24-hour surveillance using the tracking platforms. Underwater sensor

networks have been proposed to address some of these problems [?].

The application of acoustic sensors for source tracking relies on algorithms that

are able to estimate the source position by computing either the source range, DOA,

or time difference of arrival, or a combination of these observation parameters. When

the target is detected, the measured acoustic pressure is spatially sampled and the

observation parameters can be estimated by applying signal processing algorithms.
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Finally, the estimation process may require some filtering techniques to improve the

tracking accuracy [?].

Intuitively, visual detection (as in video surveillance) of moving targets comes to

mind as a pertinent solution for source tracking. However, video systems are limited in

scope due to variability in sea-state and weather conditions [?]. Thus, other methods

have been studied in literature to achieve source tracking with less limitations.

3.4.1 Matched Field Processing

Matched field processing is a signal processing technique that has been applied ex-

tensively for target tracking. In principle, MFP estimates the range, depth and/or

azimuth of a target by matching the complex pressure field measured at an array of

sensors with replicas (often referred to as the replica fields) of the acoustic field com-

puted from numerical models representing the acoustic pressure fields. The models

rely on the knowledge of the waveguide i.e. parameters such as the sediment proper-

ties and the sound-speed profile. The replica fields shown in Fig. 3.4 are computed

over a grid of possible locations (in range 
r and depth z) in an acoustic waveguide.

The acoustic source (at the star symbol) is located at an unknown location 
r0, zs and

the position estimate is chosen at the point of best match with the measured acoustic

field at the array. The choice of the acoustic waveguide is important in replicating

the signal propagation environment.

M
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Figure 3.4: Depiction of the matched-field processing concept representing the grid
of the field replicas.
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To estimate the point of best match of the pressure fields, the replica fields are

matched with the measured complex pressure fields at the array by computing the

ambiguity surface of the propagation field. The ambiguity surface is computed by ap-

plying plane-wave beamforming techniques which are developed to estimate the DOA

of a signal by canceling other interfering sources. However, just as in conventional

plane-wave beamformers with sidelobes, the ambiguity surface also contains ambigu-

ous peaks [6, 16]. This leads to a mismatch of the ambiguity surface. Moreover, the

choice of the waveguide model coupled with array tilting due to mobility significantly

contribute to mismatch in MFP.

3.4.2 Plane-wave Beamforming

In beamforming, the goal is to estimate signals of interest arriving from specific

directions in the presence of noise and other interfering signals by using an array of

spatially separated sensors. It is generally assumed that the spatial sensors have the

same characteristics and are omnidirectional or isotropic such that their response to

impinging signals are independent of the DOA. According to the relative locations of

the sensors, the arrays can be divided into three classes: 1) one-dimensional (1-D)

or linear arrays; 2) two-dimensional (2-D) or planar arrays; and 3) three-dimensional

(3-D) or volumetric arrays. Each of the classes can be further grouped into categories

based on the elemental spacing: 1) regular spacing which includes uniform and non-

uniform spacing; and 2) irregular or random spacing. The beamforming technique

developed in this work is based on arrays with regular spacing.

The beamforming problem is formulated on the assumption that the array is

sufficiently distant from the source, such that the impinging signals is planar at the

array. Thus, for a ULA, the received signal is of the form

x(t) = s(t)ejωct, (3.1)

where s(t) is the signal envelope, ωc denotes the carrier frequency and j =
√−1.

Due to the planar received signals, spatial beamformers are referred to as plane-wave

beamformers.

The distance d that separates the plane waves arriving at the adjacent elements

(sensor 0 and 1) of an array depicted in Fig. 3.5 is d cos θ. Also, the time interval Δt
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Figure 3.5: A uniformly-spaced array of sensors depicting plane-wave beamforming.

taken for the wave to propagate from sensor 0 to 1 is d cos θ/c, so that

Δt = 2πd cos θ/(ωcλ), (3.2)

where λ is the wavelength and is related to c by the wavenumber (k) using

k =
ωc

c
=

2π

λ
. (3.3)

Eq. (3.3) is of a single dimension and is applicable for ULAs. However, for 3-D

arrays, the wavenumber equation can be represented in the Cartesian coordinate as

k = [kx, ky, kz]
T . Similarly, for uniformly linear arrays, [kx, kz] = 0 for HLA so that

k = [ky], while [kx, ky] = 0 for VLAs such that k = [kz].

The beamforming equation relies on the response of the array to copies of an

impinging signal received at the array. From (3.1), s(t)ejωct is the signal at sensor 0

at a spatial origin at time t, while s(t+Δt)ejωct is the signal at sensor 1 at the same

time instant. Therefore, for an M -element array

s(t)ejωc

(
t+

2πd cos θ

ωcλ

)
= s(t)ejωctej

2πm
λ

d cos θ (3.4)

wherem = 0, 1, . . . ,M − 1 and the first element of the array is sensor 0. Eq.(3.4) is the

output of the ULA obtained by linearly combining the measurements at the sensors.
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It is also observed from (3.4) that in the frequency domain, the received signals at

the elements of the array are phase shifted. Thus (3.4) forms the foundation for the

array factor which is discussed in Section 3.4.3.

3.4.3 Array Factor

The AF describes the complex-valued radiation pattern (in the far field) for an array

consisting of M -element isotropic radiators. From Fig. 3.5, because the transmission

paths between a radiating source and the receive elements are not equal, delayed

copies (in the time domain) of the information signal are received with a phase shift

(in the frequency domain) at each element. This concept is obvious from (3.1) and

(3.4) in which the phase information of the received plane waves are different at the

elements of the array. From (3.1), for an impinging plane wave whose envelope am

is of a unit energy, the phase shift experienced by an element at the spatial point of

origin is zero, such that am = x(t) = 1. Thus, for a reference sensor at a spatial origin

0, the AF is

AF = 1 + ejkd cos θ + ejk2d cos θ + · · ·+ ejk(M−1)d cos θ (3.5)

=
M−1∑
m=0

ejkmd cos θ =
M−1∑
m=0

ejkmd cos θ/(M−1).

By setting ψ = kd cos θ, the AF yields

AF =
M−1∑
m=0

ejmψ = 1 + ejψ + ej2ψ + · · ·+ ej(M−1)ψ. (3.6)

Multiplying (3.6) by ejψ yields

AF · ejψ = ejψ + ej2ψ + · · ·+ ejMψ. (3.7)

Further, subtracting (3.7) from (3.6) yields AF(1 − ejψ) = 1− ejMψ, and rearranging

this results in
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AF =
1− ejMψ

1− ejψ
(3.8)

=
ejMψ/2

ejψ/2
· e

jMψ/2 − e−jMψ/2

ejψ/2 − e−jψ/2
.

The maximum value of the AF occurs when ψ = 0. Hence, disregarding the phase

information and normalizing (3.8) yields

AF =
sin (Mψ/2)

M sinψ/2
. (3.9)

The array factor determines the beam pattern of an array which in turn determines

the ability to measure the information signal at an array of receivers as accurately

as possible. Among many factors, the following observations are made about the

radiation pattern computed using the AF.

• A maximum beam is obtained at ψ = 0 which corresponds to θ = 90◦ (i.e. the

broadside direction) which is determined as normal to the plane of the array.

• The width of the main lobe has an inverse relationship with M , such that the

first null beam width is obtained where the numerator of (3.9) goes to zero.

• The width of the main lobe in terms of ψ is 2π/M , while the width of the minor

lobes are half that.

• The number of sidelobes increases as M increases, while the sidelobe level de-

creases with M .

These observations are characterized analytically and its application for the arrays

used in this work are discussed in greater details in this chapter.

Fig. 3.6 shows the beam pattern for an isotropic ULA for an impinging signal at

0◦ with different number of elements and different elemental spacing derived from

(3.9). It is observed that the beam pattern is symmetric for isotropic radiators and

the beam width of the main lobe decreases as M increases. Similarly, the number of

sidelobes increases with M .
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(a) M = 2, d = λ (b) M = 2, d = λ/2

(c) M = 10, d = λ (d) M = 10, d = λ/2

Figure 3.6: Array pattern construction for ULAs with different elemental spacing for
M = 2 in (a) - (b); and M = 10 in (c) - (d). The radius values are evenly spaced
angles between 0 and 2π
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In beamforming, it is desirable to focus the beam in the direction of the signal of

interest, while the interfering sources are eliminated. To achieve this, it is assumed

that the magnitudes of the signal envelopes at all the elements are the same (i.e.

|a0| = |a1| = . . . = |aM − 1|), which are all arbitrarily set to 1, and the phase shift

between the elements is α. Therefore, the signal excitation at each element of the

array can be expressed as am = ejmα and the AF is

AF =
M−1∑
m=0

ejkmd cos θ+jmα (3.10)

redefining ψ = kd cos θ + α. The beam steering in specific direction is achieved by

setting the value of α in the desired look direction. For instance α = 0◦ at broadside

i.e. the impinging signal is received without having been phased shifted.

(a) N = 2, d = λ (b) N = 10, d = λ/2

Figure 3.7: Beam steering pattern for a ULA with two and ten elements. The radius
is evenly spaced angles between 0 and 2π

From Fig. 3.7, it is observed that the main lobe can be steered in the desired direction

at 60◦ such that the gain of the signal of interest can be maximized in the look

direction. Similarly, the directionality is maximized by increasing the number of

elements M as in Fig. 3.7b.

The example illustrated in Fig. 3.7 is derived by setting the received gain (i.e. signal
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envelope) to unity, such that the beam energy is maximized in the desired look di-

rection. In practice, weighting vectors ws are computed to maximize the gain in the

look direction characterized by azimuth and elevation {θ, φ}.
There are several algorithms that have been developed in literature to compute the

weighting vector that maximizes the total output power at the array in the look di-

rection of the signal of interest. A well-known solution is the MVDR which minimizes

the total array output power by setting the gain in the desired response direction to

unity. The spatial weight w of the MVDR filter is computed from

w =
R−1

x v

vR−1
x v

(3.11)

where v is the steering vector (i.e. the phase information at the array) corresponding

to the desired response direction, and Rx is the covariance matrix that contains the

contributions from all incoming signals and noise. Generally, beamforming algorithms

are developed for narrow beams. However, in wideband scenarios, the performance

deteriorates significantly. Hence, the system’s bandwidth is divided into sub-bands

wherein the beamforming algorithms can be applied. Details of the wideband beam-

former are developed in [17, 18].

The overall goal of a beamformer is to estimate the direction of arrival (DOA) of a

source as accurately as possible, for which several techniques have been developed in

literature. These techniques are broadly categorized into 1) conventional beamform-

ers; and 2) adaptive beamformers or phased array. Conventional techniques, such as

the delay-and-sum beamformer, use a fixed set of weights and time-delays to combine

the signals from the sensors in the array. These techniques primarily rely only on

the information about the location of the sensors in space (contained in the steering

vector) and the known DOA to estimate the signal of interest. In contrast, adaptive

beamforming techniques such as the MVDR, Multiple Signal Classification (MUSIC)

and the more recent Estimation of Signal Parameters via Rotational Invariance Tech-

niques (ESPRIT) algorithms, combine the array steering vector with the properties

of the signals measured by the array to improve the quality of the received signal

while rejecting the unwanted signals from other directions.

A conventional beamformer, although simple in its implementation, has the weight-

ing vectors of equal magnitudes across the elements of the array, hence limited in
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practical applications. One major disadvantage of the delay-and-sum method is its

poor resolution – the width of the main lobe and the power of the side lobes, limit its

ability to separate closely spaced signals [16]. On the other hand, an adaptive beam-

former, with a more complex implementation, dynamically adapts its response to the

different conditions to mitigate interferes while minimizing the total noise output.

Due to the variation of noise with frequency, in wide band systems it often desirable

to implement the algorithms in the frequency domain.

Capon’s minimum variance technique overcomes the poor resolution associated

with the delay-and-sum and yields a significant improvement. However, Capon’s

method fails when the interferers are correlated with the desired signal. The MU-

SIC and ESPRIT algorithms rely on the decomposition of the eigen structure of

the received signals and have shown excellent accuracy in signal resolution in both

theoretical and experimental studies. MUSIC algorithm relies on the foreknowledge

of the number of incoming signals or by searching the eigenvalues to determine the

number of incoming signals. The ESPRIT algorithm does not rely on an exhaustive

search through all possible steering vectors to estimate the DOA, hence reduces the

computational requirements compared to MUSIC.

Although the ESPRIT as well as other adaptive beamforming approaches are

efficient algorithms depending on the application, from statistical analysis, the ML-BF

is an asymptotically unbiased optimal estimator whose solution is closest to the CRB

[?]. It is also well known that the output of the optimum distortionless beamformer

is the ML estimate of the signal. Thus, Section 3.5 discusses the ML-BF used to

estimate the bearing and elevation of shipping vessels.

3.5 Maximum-Likelihood Adaptive Beamformer

In this section, a maximum-likelihood beamformer is described to estimate the opti-

mum bearing of the sound produced by a vessel to a compact array.

Compact arrays are robust in estimating the azimuth and elevation angles (here-

after referred to as directionality) of acoustic sources. This property has been ex-

ploited in the detection and tracking of vessels [?, ?] and marine mammals [?, ?, ?],

and is suitable for broadband sound sources [?, ?]. Generally, using compact arrays to

estimate directionality relies on the estimate of the TDOA of a plane wave measured
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at multiple sensors. Various TDOA estimators have been proposed in literature for

estimating directionality [?, ?, ?, ?, ?]. It has also been established that the ML-BF

approach achieves the lowest possible variance of a linear TDOA estimator specified

by the Cramér-Rao lower bounds [17]. Hence, a ML-BF developed in [?, ?] is applied

to estimate the measured ambient noise directionality in bearings in this section.

Suppose that the received signal at sensor m (for m = 0, 1, . . . , (M − 1)) sampled

at the same time instant, is arranged in a vector x(n). The received signal is a linear

combination of the desired signal s(n) and the additive noise n(n) expressed similarly

to (2.11) as

x(n) = s(n) + n(n). (3.12)

The output of a processor with coefficients w = [w0 . . . w(M−1)]
T computed in the

spatial s domain is

y(n) = wHx(n) = wHs(n) +wHn(n), (3.13)

where H denotes the Hermitian transpose The power of the signal measured at the

output of the linear processor is

Py(n) = E{|y(n)|2} = E{wHx(n)xH(n)w} = wHRx(n)w (3.14)

where the output signal power is

Ps(n) = E{|wHs(n)|2} = E{wHs(n)sHw} = wHRs(n)w (3.15)

and the output noise power is

Pn(n) = E{|wHn(n)|2} = E{wHn(n)nHw} = wHRn(n)w. (3.16)

where Rs,Rn are the covariance matrices of the signal and the noise respectively.

Eq. (3.15) and (3.16) show that the signal output power and noise output power

are linear combinations of the weighted values of the signal and noise measured at the

array. These equations form the basis on which most filtering techniques (spatial or

temporal) are designed. In the spatial filtering sense, for plane waves arriving from an
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impinging radial bearing angle θ at a spatial array of M -elements, with inter-element

separation of d, the steering vector v(θ) is

v(θ) = exp(j2πmd cos θ), (3.17)

for 0 ≤ θ ≤ 360◦ in the horizontal plane. The desired goal is to compute a set of com-

plex spatial weights (w) that results in a perfect phase alignment of all the received

signals at the sensors. The beamforming weighting vector that phase-aligns a signal

from direction θ at the array elements is the steering vector that is matched to the

array response of the impinging signal from the same look direction, i.e. w(θ) = v(θ).

Hence, the output of the spatially matched filter, derived from (3.13) yields

ys(n) = wH(θ)x(n) = vH(θ)x(n), (3.18)

and the output noise power measured at the linear processor, derived from (3.14) is

P (n) = E{|wHx(n)|2} = E{wHx(n)xH(n)w} = wHRx(n)w, (3.19)

where P is the power of the impinging signal in the spatial dimension.

Eq. (3.19) is a sufficient solution to estimate the directionality for signals measured

at ULAs where accuracy is a huge trade off for low system complexity. However, the

steering vector of an optimum beamformer that is applicable for three-dimensional

(3D) arrays (as described in Section 3.3) can be resolved in azimuth and elevation

from the expression

v(ω,Θ) = exp(j2πfpmr(Θ)/c), (3.20)

where pm is the spatial location of sensor m, ω = 2πf is the discrete frequency values

and c is the sound speed. Also, the array steering vector in a 3-D space is characterized

by the spatial frequencies, such that

r(Θ) =

⎡
⎢⎢⎣
kx

ky

kz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
sin(θ) cos(φ)

sin(θ)sin(φ)

cos(θ)

⎤
⎥⎥⎦ (3.21)
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and {θ, φ} are the azimuth and elevation, respectively, which are to be estimated.

To apply (3.20) and (3.21) on wideband signals, the signal bandwidth is divided into

narrowband bins where spatial beamforming techniques can be applied. The signal

radiated by the source is assumed to be a random process with non-uniform PSD,

such that most of the energies of the signal is concentrated within the bandwidth

B = [f0, fmax]. The sensors are synchronized and the received signals are sampled at

Fs = 2fmax.

With slight modifications to (3.12), the acoustic pressure field received at the array

is a linear combination of the signal of interest and the additive noise, represented in

the frequency domain as

X(ω) = S(ω) +N(ω), (3.22)

where S(ω) and N(ω) are the N -dimensional FFT spectra of the signal of interest and

the additive noise, respectively, and RN(ω) is the covariance matrix of the background

noise N(ω) with a normal distribution and zero mean. Similar to (3.18), the output

of the spatial beamformer also yields

Y(ω) = X(ω)vH(ω,Θ) = S(ω)vH(ω,Θ) +N(ω). (3.23)

It is noteworthy that the signal of interest S(ω) in this application is the vessel noise.

The maximum-likelihood beamformer is based on the principle that the parameter

vectors Θ can be estimated from the observed sample vectors Y(ω), ∀ ω ∈ B. Thus,

the ML estimate (i.e. Θ̂ML), defined by the conditional joint probability density

function resolves to the well-known result [17, ?]

Θ̂ML = argmax
Θ

∑
ω∈B

�e{Y(ω)}. (3.24)

The justification for the optimal performance of the ML-BF in the Cramér-Rao

lower bounds has been described extensively in literature [17, 2, ?]. Thus, this disser-

tation will detail the procedural implementation of the ML estimator that is developed

to estimate the directionality of a source (vessel) as a function of time. The three

steps for developing the ML-BF is described next, followed by the results computed

at the output of the ML-BF.
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Step 1. Partition the time-series into equal windows.

The time series observations of the measured noise across the elements of the array

are divided into K intervals of length ΔT , where for k = 1, 2 · · · , K, each window

start time is equal to (k − 1)ΔT + 1 and the stop time is equal to KΔT .

As such, the ambient noise time-series at the k-th window is xk and the entire time-

series occupies KΔT windows. A procedure for choosing an optimal ΔT is described

in [17]. In this application, ΔT ≈ 0.25 s, i.e. 4096 samples for the broadband noise

time-series sampled at the original sampling frequency Fs = 16 kHz.

Step 2. Transform each time-series window to the frequency domain.

Following the expression in (3.22), the KΔT windows are transformed to the fre-

quency domain, such that Xk(ω)
F−→ xk in the k-th window, and k ∈ K. Thus, there

are X1(ω),X2(ω), . . . ,XK(ω) available sequences of snapshots, where Xk(ω) is an

N -dimensional vector and N = 8192 is the DFT size of the frequency domain snap-

shot at time k and (ω) denotes the frequency domain signal. This step requires high

frequency resolution, thus N must be sufficiently large. Steps 1 and 2 can be eas-

ily computed using the spectrogram function in Matlab that computes the Fourier

transform using short-time windows. In this processing, N ≈ 8192 points.

Step 3. Compute the array response and the spectral matrix.

The steered response of the array is computed from

YK = XK(ω)v
H(ω,Θ), (3.25)

where Yk is an N -dimensional vector. It is noteworthy that (3.20) is defined as a

function of the wavenumber which is computed over the N DFT window, such that

the expanded data matrix, i.e. the steered array response is

Ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1(0)
... Y2(0)

... YK(0)

Y1(1) Y2(1)
... YK(1)

...
... . . .

Y1(N − 1) Y2(N − 1)
... YK(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.26)

is of dimensionK ×N , normalized by the 1√
K
factor. In array processing, the primary

statistics of interest is to estimate the spatial spectral matrix. It has been shown that
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in the ML sense, the estimate of the spatial spectral matrix is the sample correlation

matrix [17] of the spatial snapshots expressed as

CY =
1√
K

ŶŶ
H
. (3.27)

Eq. (3.26) yields a four dimensional matrix whose dimensions represent the fre-

quency bins of N - dimension, the spatial snapshots of K-dimension, the discretized

directionality represented in azimuth θ and elevation φ. To obtain the ML estimate

Θ̂ML from CY, a 2-D grid search of the azimuth and the elevation is set up to com-

pute (3.24). The estimate θ̂ corresponds to the source directionality {θ, φ} i.e. the

directionality of the vessel.

3.5.1 Directionality Results and Discussions

To evaluate the the accuracy of the bearing estimates, data sets that show the presence

of vessels at the CPA in both CANAPE and ADEON are processed. From (3.23),

the signal of interest S(ω) is the vessel’s noise emanating from the propeller.

It is expected that the directionality accuracy should be similar for both bearing

and elevation. This expectation will hold in an ideal waveguide that is void of sur-

face and bottom interactions. However, as indicated in [?], model (3.23) may not be

accurate enough in the elevation domain due to variations in the propagation envi-

ronment and boundary interactions with the propagated signals among other factors.

This is especially true in shallow environments where the propagation of sounds could

significantly differ in the vertical and horizontal planes. Additionally, in shallow en-

vironments, estimating the elevation angles could be challenging because the slant

propagation angle of the source to the array could be much longer than the column

depth [6] (see Fig. 3.17). Therefore, the estimation of the directionality is limited

to the bearing domain in this work. However, to ensure accuracy in estimating the

azimuth, especially in situations where the source is in close proximity to the array,

a single value of the elevation angle is chosen, so that the model in (3.23) still holds

true.
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CANAPE’s Results

The bearing estimates are computed from the five spatial (tetrahedral) elements from

the CANAPE array. First, the array pattern is computed as a function of Θ ∈ {θ, φ}
for 0 ≤ θ ≤ 360◦ and φ = 3◦ (when the vessel is closest to array) using the five-element

tetrahedra array.

The PSD of the measured acoustic pressure at the array over the travel duration

of the vessel, is shown in Fig. 3.8. The PSD is computed from the model in (3.23)

as a function of the travel time of the vessel. The power in the measured vessel

noise estimated at the output of the beamformer shows a scaled maximum power

of about 140 dB re 1 μPa2 /Hz, and an overall minimum power of about 50 dB re

1 μPa2 /Hz within the bandwidth BC = {10, 600 Hz}. Further, it is observed that

the noise power is persistent within certain bandwidths (for instance at about 170 -

200 Hz and about 370 - 390 Hz) than in the others. These observations confirm the

frequency dependence of vessel noise which has been demonstrated in literature.

Also, recall from Fig. 3.1, that the measured acoustic pressure time-series shows

high amplitudes at the CPA of the vessel. Similarly, Fig. 3.8 shows that the dominant

power occurs around the 12 : 06 timestamp within the bandwidth BC = {10, 600 Hz}
for the vessel.

A similar observation is made in the normalized spectrogram of Fig. 3.9, showing

the dominant energies in the time-series around the the 12 : 06 timestamp. The nor-

malized spectrogram is computed to emphasize the bandwidths and the timestamps

over which the power in the signals are concentrated. The well established bathtub

pattern [6] in the spectrum of vessel-generated noise is also more pronounced in the

normalized spectrogram. From Fig. 3.8 and Fig. 3.9 suggest that the vessel must

have closely approached the array around the 12 : 06 timestamp. These observations

are in agreement with the dominant amplitudes observed in the time-series shown in

Fig. 3.8. These observations will be further verified in the source range estimation

described in Section 3.6.

To avoid interference errors induced by the sonar transmission in the CANAPE

data, the frequency bins corresponding to the sonars may be manually removed before

applying the beamforming algorithm. However, this is a tedious operation which

could also introduce some bias in the post-processing results. Therefore, the vessel
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dominant bandwidth is limited to BC ≈ {10, 600 Hz}, and is sufficiently large to

achieve the desired accuracy while avoiding the interference from the active sonars.

Figure 3.8: PSD of the measured noise process processed over 360 seconds,
BC = {10, 600 kHz} and Fs = 16kHz.

Figure 3.9: Output of the normalized spectrogram computed for 0 ≤ θ ≤ 360◦,
BC = {10, 600 kHz} and Fs = 16kHz.

Fig. 3.10 shows the output of the spectral matrix of the measured time-series, com-

puted from (3.27) for BC = {10, 600 Hz} and Θ ∈ {0 ≤ θ ≤ 360◦, φ = 3◦}. Similar

to the earlier observations in the PSD and the normalized spectrogram of the beam-

former, an abrupt transition is observed in the azimuth estimates of the vessel around

the 12 : 06 timestamp. It also noteworthy that the dominant azimuth lies between

about 500◦ − 150◦ before the 12 : 06 timestamp, after which the dominant azimuth

lies between about 200◦ − 250◦ up until the end of the measurement at 12 : 11.
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Figure 3.10: Output of the sample spectral matrix computed for 0 ≤ θ ≤ 360◦,
BC = {10, 600 kHz} and Fs = 16kHz.

Finally, by applying (3.24), estimates of the bearings that correspond to the high-

est energy in the spectral matrix of (3.27) is computed. To achieve this, the power

spectrum is summed over BC = {10, 600 Hz} and the θ that corresponds to the max-

imum energy is obtained at each observation snapshot of the time-series. Fig. 3.11

confirms the hard transition of the bearings from about 50◦ to about 220◦ at the

12 : 06 timestamp. By obtaining the vessel ID from the AIS data as demonstrated

later in this chapter, it is determined that the vessel is a research vessel, and there

are high chances that the vessel passed directly over the array at this timestamp.

Not included in this dissertation, it is suggested that the algorithm be optimized

for instances when the vessel is close to the array to improve the bearing accuracy in

such scenarios.

ADEON’s Results

Similar to the CANAPE’s results, the array pattern is computed from the combination

of all the elements of the array, such that Θ ∈ {θ, φ} for 0 ≤ θ ≤ 360◦ and φ = 3◦.

Unlike the CANAPE data set, there were no sonar transmission in the ADEON data

set. Thus, the entire measurement bandwidth BA = {10, 8 kHz} of the data set could

be fully utilized.

The following shows the results obtained from the estimates of the bearing by

processing ADEON data set in a similar way as in CANAPE.



62

Figure 3.11: Bearings of the vessel as a function of time

Figure 3.12: PSD of the measured noise process processed over 360 seconds,
BA = {10, 8 kHz} and Fs = 16kHz.

From Fig. 3.12, the dominant bandwidth (observed from the interference pattern)

of the vessel is observed to lie in BA = {10, 7 kHz}. From the output power spectrum,

the dominant power in the lower bandwidths (about 10 Hz - 100 Hz) spans throughout

the measurement. The PSD also shows the interference pattern with the bathtub

curves spans throughout the dominant bandwidth BA = {10, 7 kHz}.
Similarly, the normalized spectrogram from Fig. 3.13 confirms that the interference

pattern spans over the entire bandwidth in the measured data and is most dominant

around the 07 : 24 timestamp. The interference pattern from Fig. 3.12 and Fig. 3.13

suggest that the vessel is closest to the array around the 07 : 24 timestamp. The

dominant power in the spectrogram is not as concentrated around a single timestamp



63

Figure 3.13: Output of the normalized spectrogram computed for 0 ≤ θ ≤ 360◦,
BA = {10, 8 kHz} and Fs = 16kHz.

Figure 3.14: Output of the sample spectral matrix computed for 0 ≤ θ ≤ 360◦,
BA = {10, 8 kHz} and Fs = 16kHz.
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Figure 3.15: Bearings of the vessel as a function of time

as observed in CANAPE. It can therefore be implied that, although the vessel is

closest to the array at the 07 : 24 timestamp, it may not have passed directly above

the array as in CANAPE.

Further, Fig. 3.14 represent the spectral matrix computed from (3.27) for

BA = {10, 8 kHz} and Θ ∈ {0 ≤ θ ≤ 360◦, φ = 3◦}. Particularly, in the lower band-

width (¡ 3000 Hz), the dominant azimuth gradually increases from about 40◦ to

about 130◦. However, in the higher bandwidths, this observation is less pronounced.

Albeit, to estimate the source bearing, the spectra matrix in (3.27) summed over

BA = {10, 8 kHz} such that the θ that corresponds to the maximum energy is ob-

tained at each observation snapshot of the time-series. Although it was observed that

using any two vertically-offset elements of the array was sufficient to estimate the

vessel’s bearing, using all the elements of the array was found to yield results with

the least error. Also, using all the elements eliminated the hard transition of the

bearing when the vessel is closest to the array.

Summarily, the ML-BF has been applied to estimate the bearing of vessels from

the CANAPE and ADEON data sets as they traveled in the ocean. The results from

the CANAPE experiment are compared with the AIS data in Section 3.7.1. The

CB-MFP algorithm that computes the range of the vessel to the array at the same

discrete time intervals is described in Section 3.6.
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3.6 Matched-field Processing

In this section, the CB-MFP algorithm is applied to estimate the depth and range

of a source to a compact acoustic array. To this end, as described in chapter 1,

the methodology used to compute the replica fields and the ambiguity surface that

matches the source position is described next.

3.6.1 Computation of the Replica Fields

In an infinitely deep water column (without sediment boundaries), the displaced

pressure field by a point source at (0, zs) can be evaluated using the superposition

principle that yields

Gm(r, z) = Sw
eikR

4πR
. (3.28)

In more realistic waveguides, specifically in shallow environments, the computa-

tion of the pressure field must include the boundary conditions of the reflected fields

at the surface and bottom of the waveguide. To compute the pressure field at a

receiver, two methods are often applied – the first, is the image method ; and the

second, is the integral transform method. The image method fundamentally depicts

the physics of the propagation environment in an ideal waveguide. It relies on the

fact that the multipath reflections due to the boundaries may be modelled by mir-

ror effects of a perfectly reflecting boundary at the surface or at the basement (see

Fig. (3.16)). Although, the method is not easily generalized to more complex propa-

gation environments such as the Pekeris waveguide, to demonstrate the applicability

of the systems design in this work, the image method is applied. The method is

easy to implement and was found to reasonably capture the sound propagated by the

vessels in the measurements.

The image solution describes a point source at depth zs below the sea surface,

where there are several possible reflected paths that the signals could travel before

arriving at an array of receivers. For signals radiated by an acoustic source over

range r to a receiver, the generalized source displacement from the integration of the

Green’s function for each propagated path is described in [6] by
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Figure 3.16: The image source solution showing the superposition of a line-of-sight
path and the first three images of the source.

Gm(r, z) =
Sw

4πR

∞∑
m=0

[
eikRm1

Rm1

− eikRm2

Rm2

− eikRm3

Rm3

+
eikRm4

Rm4

]
, (3.29)

where Rmn =
√
r2 + z2mn are the distances of the individual rays to the receiver and
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zm1 = 2Dm− zs + z

zm2 = 2D(m+ 1)− zs − z

zm3 = 2Dm+ zs + z

zm4 = 2D(m+ 1) + zs − z. (3.30)

D is the vertical depth of the duct and m = 1, 2, . . . ,M propagation modes. Also,

Rm1 is the direct path (i.e. line-of-sight) and Rm2, Rm3, Rm4 are the reflected paths

representing the image paths at the mth receiver.

In deep water columns, the model in (3.29) resolves to the well-known Lloyd’s

mirror solution

Gm(r, z) =
eikRm1

Rm1

− eikRm2

Rm2

, (3.31)

which represents the acoustic interference pattern created by a point source placed

near a perfectly reflecting sea surface.

To estimate the source location, the usual approach in MFP is to match the spatial

replicas with the measured acoustic pressure by computing the ambiguity surface of

the propagation field.

3.6.2 The Ambiguity Surface

To estimate the source location, the general MFP approach matches the replica fields

with the measured complex pressure field at the array by a generalized plane-wave

beamformer. A very common approach is the Bartlett beamformer which is defined

by

BBartlett(s) = wHRxw (3.32)

where BBartlett(s) is the ambiguity surface, Rx is the spatial correlation matrix and

s ∈ {r, z} represents the spatial domain (i.e. range and depth). The weighting vector

w is computed as the spatial norm of the acoustic field replicas by
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Figure 3.17: Geometry of surface image solution using the Lloyd-Mirror’s interference
pattern.

w =
Gm(r, z)

|Gm(r, z)| . (3.33)

The peak of the ambiguity surface BBartlett(s) matches the spatial position of the

source. However, the ambiguity surface also contains ambiguous peaks which are

similar to the sidelobes of a conventional plane-wave beamformer [6, 16]. In such sce-

narios, sidelobe suppression is often accomplished by using an adaptive beamformer

such as the minimum variance beamformer

Bmvdr(s) = [wHR−1
x w]−1. (3.34)

There are, in fact, other beamforming methods developed to compute the ambigu-

ity surface to match the true source position as accurately as possible. The sidelobes

are majorly due to the fact that information about the ocean environment is often

difficult to obtain and slight variations would lead to a mismatch of the ambiguity

surface. Other factors are attributed to array tilt which introduces uncertainties in
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the ambiguity surface. Different techniques have been investigated to address the

mismatch problem [?, ?]. In recent times, state-of-the-art deep neural-networks have

been applied for localization problems with successes [?, ?]. For instance, the recent

work in [?, ?] showed the successes of deep learning methods for ship classification

and detection via acoustic signatures. More pertinently, the work in [?] addresses a

problem similar to that in this work by applying the deep learning framework.

However, deep learning models are not robust to noisy data. Their success in

computer vision is attributed to the quasi-absence of noise in the data set. In a

recent work [?], it was recognized that noise-induced perturbation in the data set

would lead to a complete failure of deep learning models.

Most efforts in literature, maintain the concept of matching the measured data to

the solutions or partial solutions of the wave equation as the central theme, though

different algorithms to compute the ambiguity surface are applied. The uniqueness in

the MFP algorithm developed in this dissertation is in matching the spatial coherence

of the measured data to the coherence of the replica fields. This approach does

not generate the sidelobe problems that are often encountered in the plane-wave

beamforming techniques.

3.6.3 Coherence based Matched-field Processing

The CB-MFP relies on the estimates of coherent interference pattern of signals mea-

sured at the elements of an array. The coherence-ranging method was recently applied

to estimate the range of a vessel in [?]. This method computes the normalized CSD

of the measured data and that of the spatial field replicas of the range-depth grid.

The well-known generalized expression for estimating spatial coherence in OAN fields

is [4]

Γxy =
Sxy√
Sxx Syy

, (3.35)

where Sxy is the CSD between the spatially separated sensors x and y, Sxx and Syy are

the PSD at each receiver, and the overbar denotes the ensemble average. Thus, Γxy

is computed from the measured acoustic data at pairs of sensors while the estimate

of the coherence computed from the spatial replicas from either (3.29) or (3.31), or
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any other model of the acoustic propagation field is expressed as

Γxy(rK , zD) =
Gxy(rK , zD)√

Gxx(rK , zD) Gyy(rK , zD)
, (3.36)

where Gxy(rK , zD) represents the spatial replicas of acoustic field at sensor x, y.

Γxy(rK , zD) is computed with respect to the spatial dimension s ∈ {rK , zD} and

{K,D} represent the maximum search grid points in range and depth respectively.

The coherence grid that is similar to the ambiguity surface is computed at all the

discrete spatial points in range and depth such that

Γ̂xy(r, z) =

⎡
⎢⎢⎢⎢⎢⎣
Γxy(r1, z1) Γxy(r2, z1) . . . Γxy(rK , z1)

Γxy(r1, z2) Γxy(r2, z2) . . . Γxy(rK , z2)
...

...
. . .

...

Γxy(r1, zD) Γxy(r2, zD) . . . Γxy(rK , zD)

⎤
⎥⎥⎥⎥⎥⎦ . (3.37)

It is expected that the coherence functions between adjacent pairs of the el-

ements of an array will be the same i.e. Γ̂12(r, z) = Γ̂23(r, z) =, . . . ,= Γ̂xy(r, z),

such that (M − 2)Γ̂xy(r, z) = Γ̂12(r, z) + Γ̂23(r, z)+, . . . ,+Γ̂(M−1)M(r, z) when apply-

ing the model in 4.5. Similarly, Γxy is expected to be uniform across the array.

However, uncertainties due to array tilt could impact the integration of the empirical

spatial coherence at pairs of the hydrophones. Thus, in this work, any pair of sensors

is sufficient to estimate the spatial location of the acoustic source in CANAPE and

the two-element VLA is applied in ADEON.

The estimate of the source location is obtained by computing the root-mean-square

error (RMSE) between all the computed range-depth coherence functions Γ̂xy(r, z)

and the empirical coherence Γxy at discrete spatial snapshots. Similar to the spec-

tral matrix discussed in Section 3.5, the measured acoustic data is divided into K

snapshots, so that the estimates of the range are computed over k = 1, . . . , K dis-

crete time and the snapshot at k occupies ΔT duration. This implies that Γxy is

computed over K snapshots which is also equivalent to the discrete intervals in range

{rk ∈ r1, . . . , rK} at the replica fields, so that the instantaneous range estimate is
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rk(ω) = argmin
r

{√√√√ 1

K

K∑
k=0

(
Γ̂xy(r, z)− Γxy(k)

)2}
, (3.38)

and the instantaneous source depth is obtained from

zk(ω) = argmin
z

{√√√√ 1

K

K∑
k=0

(
Γ̂xy(r, z)− Γxy(k)

)2}
, (3.39)

where ω denotes that the estimates of the range and depth are computed over the

measurement bandwidth at each snapshot k.

Note that, the source depth zs(ω) ≈ 1
K

∑
zK(ω), since the instantaneous depth

of a vessel is relatively constant. In fact, to estimate sz, K can be limited to a few

snapshots, but the source range rK(ω) is estimated over the K snapshots.

3.6.4 Range Estimation Results

The results shown in this section are computed from the measured acoustic pressure

from the CANAPE and the ADEON measurements. The instantaneous source depth

zk(ω) is computed over a few snapshots and averaged to obtain zs(ω). To estimate

the range of the vessel with respect to time, the theoretical vertical coherence between

pairs of sensors was computed from (3.36) for which the spatial replicas are modeled

from the Lloyd-mirror’s pattern in (3.31). The empirical coherence is computed at

pairs of sensors from (3.35). It is expected that in certain environments, either (3.29)

or (3.31) will be sufficient to match the interference pattern to the source position.

In other environments with depth-dependent sound speed, other propagation models

will be required to match the specific interference patterns of the water column.

CANAPE Range Results

Fig. 3.18 shows the real and the imaginary coherence computed from the replica fields

representing CANAPE’s measurement environment.

Similarly, Fig. 3.19 shows the interference pattern of the coherence computed from

the acoustic measurement from the CANAPE experiment. To be able to capture the

full interference pattern, the coherence is computed over BC = {10, 800 kHz}. The

bandwidth that corresponds to the sonars is removed manually to avoid inaccurate
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Figure 3.18: The ambiguity surface representing the coherence of the replica fields in
CANAPE. (i) =⇒ the real coherence; (ii) =⇒ the imaginary coherence.

estimates of the range. Fig. 3.18 and Fig. 3.19 indicate that there is a relationship

between the range of the vessel and travel time of the vessel. This is evident in that

the vessel covers distance with respect to time.

Furthermore, the source depth is estimated by the depth dimension of the LUT

of the ambiguity surface in (3.37). The depth dimension of the LUT simply implies

that the replica fields are computed over all the possible depths of the vessel. It is

observed that the average depth of the vessel was about 3.6ft.

Fig. 3.21 shows the range estimation result from (3.38). It is observed that the

range of the vessel could be estimated over about 1800 meters accurately, after which

the estimate deteriorates significantly. The range also compares with a 6-minute

travel duration of the vessel. This suggests that the vessel travels at a moderately

slow speed.
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Figure 3.19: The coherence computed from the measured complex pressure field from
the CANAPE experiment. (i) =⇒ the real coherence; (ii) =⇒ the imaginary
coherence.
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Figure 3.20: A snapshot estimate of the vessel depth computed from the coherence
ambiguity surface whose look-up table is computed as a function of depth.

ADEON Range Results

The replica field is computed from the image-source model in (3.31). Different com-

binations of the elements of the array were used to compute the empirical coherence.

It is observed that unlike the vertical elements in CANAPE, the vertical elements in
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Figure 3.21: Track of the vessel with respect to time, measured from the CANAPE
experiment.

ADEON do no capture a robust interference pattern. Fig. 3.22 shows the coherence

estimated at the vertical elements 3 and 4 of the ADEON array.

Figure 3.22: The coherence pattern of the replica fields in ADEON. (i) =⇒ the real
coherence; (ii) =⇒ the imaginary coherence.

Fig. 3.23 shows the empirical coherence computed from ADEON’s data set. It

is observed that the coherence pattern does not capture an interference pattern that

will accurately estimate the range of the vessel. Also, from Fig. 3.22 and Fig. 3.23,

it is observed that the interference pattern of the replica fields do not compare with
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the empirical interference pattern. This difference in the coherence based ambiguity

surface limits the range estimation from the ADEON data set.

Figure 3.23: The coherence computed from the measured complex pressure field from
the ADEON experiment. (i) =⇒ the real coherence; (ii) =⇒ the imaginary coher-
ence.

From Fig. 3.24, there is more difficulty with computing the range of the vessel with

great accuracy from the ADEON experiment. The range estimates from CANAPE

and ADEON indicate that the accuracy of the CB-MFP depends on the accurate

computation of the replica fields, as well as the interference pattern of the acoustic

field measured at the array. It is also observed that the wider aperture in CANAPE

captures more interference pattern than the shorter aperture in ADEON.

Figure 3.24: Track of the vessel with respect to time, measured from the ADEON
experiment.
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Having established that the ADEON array limits the range estimation described

in this section, the rest of this chapter focuses strictly on the results obtained from

the CANAPE experiment to characterize the position of the vessel as a function of

time.

Just as in most source tracking algorithms, the implementation of the algorithms

described thus far shows some estimation noise, although minimal, for both the di-

rectionality from Section 3.5 and the range estimates from the coherence MFP in

Section 3.6. To estimate the position of the vessel accurately, a Kalman filter dis-

cussed in Section 3.7 is implemented to mitigate the estimation noise.

3.7 Kalman Filtering

In this section, the Kalman filter is demonstrated as a solution to remove the estima-

tion noise in the vessel’s position.

The Kalman filter (KF) algorithm is a unique case of the optimal linear filter

that has been applied extensively in aerospace [?] and navigation [?], where a signal

trajectory must be well defined. The KF uses a set of dynamic state-space model

of a system to recursively update the input data that contains random errors or

uncertainties [2]. The recursive equations make the KF suitable for online applications

where the actual state of a system needs to be accurately predicted by observations

that are measured sequentially.

The equation of motion that relates the current position Xt with the prior state

Xt−1 of the vessel can be expressed as

Xt = Xt−1 + vt−1t+
1

2
att

2. (3.40)

where at and vt are the instantaneous acceleration and velocity of the vessel respec-

tively, at time index t. Note that Xt is the vector that contains vessel’s state which

is different from the spatially sampled signal Xk(ω) used in Section 3.5.

It is noteworthy that (3.40) is an equation in the Cartesian coordinate, however,

the measured state of the vessel (characterized by the range and bearing) is defined in

the polar coordinate. There are several conversion methods that have been proposed

in literature to convert the state of a system from polar to the Cartesian coordinate
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so that the KF equations can be applied. A conventional conversion technique [?]

is applied in this work. Hence, the measured position of the vessel in the polar

coordinates can be transformed into the Cartesian coordinates by

xt = rt cos θt

yt = rt sin θt. (3.41)

The equations that describe the KF are described in [2, ?]. There are two im-

portant aspects of the KF: 1) the theoretical prediction of the state of the system or

process; and 2) the measurement update which involves the correction of the measured

state of the system.

The recursive matrix equation that characterizes the KF prediction update is [2]

Xt = AXt−1 +But−1 + φ, (3.42)

where A is the state transition matrix applied to the previous state matrix Xt−1, B

is the control input matrix applied to the state control matrix Ut−1, and Φ is the

error term in the state prediction with a known covariance matrix whose elements

are computed from

Φ11 = r2t σ
2
θ sin

2 θt + σ2
r cos θt

Φ22 = r2t σ
2
θ cos

2 θt + σ2
r sin

2 θt

Φ12 = Φ21 = (σ2
r − r2t σ

2
θ) sin θt cos θt, (3.43)

where σr and σθ are the variances in range and in bearing, respectively. The update

for the error covariance matrix in the prediction state is expressed as

Pt = APt−1A
T +Qt, (3.44)

where Qt is the noise covariance matrix introduced at each state of the prediction.

Qt is assumed to be of constant values at all the states.

In the measurement update portion of the KF process, the measured (or the
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computed) state of the vessel St = [xt, yt]
T in the Cartesian coordinate is related to

the predicted state estimate by

Vt = St −HXt. (3.45)

The KF update relies on the efficient computation of the KF gain

Kt = PtH
T (HPtH

T + Φ)−1. (3.46)

Also, the measurement update that weighs the level of accuracy in the predicted state

estimate Xt and compares it with the sensor prediction is

Ŝt = Xt +KtVt, (3.47)

where H,C are the adaptation matrices introduced to ensure the dimensions of the

state matrices are consistent. Thus, Ŝt is the true state estimate of the vessel from

the KF filtering.

Finally, the estimate of the true position of the vessel can be converted back to

the polar domain, so that r′K and θ′K are the estimated true range and bearing of

the vessel.A methodology is described in Section 3.7.1 to represent the range and the

bearing of the vessel in longitude and latitude values.

Kalman Filtered Results and Discussion

Fig. 3.25 and Fig. 3.26 show that the uncertainties introduced in the bearing and

range from the system design in this work can be filtered using a KF. Although other

robust particle filtering algorithms have been derived in literature, the KF used in

this work is a sufficient solution to track the vessel for demonstration purposes. It is

suggested that in other harsh environments with more estimation noise, other particle

filtering methods may be explored.

Finally, in order to compare the instantaneous position of the vessel measured

at the acoustic array with the AIS data reported on the vessel, a methodology is

described in Section 3.7.1 to represent these distances in longitude and latitude values.



79

Figure 3.25: Particle filtered bearing versus travel time of the vessel measured from
the CANAPE experiment.

Figure 3.26: Particle filtered range of the vessel computed from the CB-MFP for the
measured data from the CANAPE experiment.
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3.7.1 Estimation of Source Position

In this section, the estimates of the range r′K and bearing θ′K of vessel at the spatial

snapshots are converted to distances on the great circle so that the vessel’s position can

be represented on a geographical map. The determination of great circle distances are

often applied in great-circle navigation problems 2, which also computes the azimuths

and intermediate way-points. The goal of this section is to be able to represent the

instantaneous position of the vessel in latitude and longitude values.

First, the range estimates are converted to arc lengths on a great circle from

dK =
180r′K
πR

(3.48)

where R = 6371000 meters is the radius of the earth. To estimate the position i.e.

the latitude γ and longitude λ of the vessel to the array at position {γ0, λ0}, the
expression that relates the source bearing θ to a given arc distance [?] yields

λK = λ0 + arctan

[
sin dK sin θ′K

(cos γ0 cos dK − sin γ0 sin dK cos θ′K)

]
(3.49)

and

γK = arcsin(sin γ0 cos dK + cos γ0 sin dK cos θ′K). (3.50)

In this design, the estimates of {λK , γK} are computed over the K snapshots and

compared to historical AIS data obtained from Marine Traffic3 for the same vessel in

the CANAPE measurement. Note that (3.49) and (3.50) can be inverted so that if

the source position is given in latitude and longitude, the values can be converted to

distances in meters. A detailed derivation is developed in [?].

Using the historical AIS data, the reported vessel that was tracked is confirmed

to be the Sikulaq, a research vessel with AIS ID number 400622. Three timestamps

at TS1 = 11h19, TS2 11h21 and TS3 = 11h24 on October 24, 2016 are depicted in

Fig. 3.27. The AIS and the acoustic estimates are interpolated over about a 40 minutes

interval i.e 11h24 (from the AIS) and 12h05 (from the acoustics measurement). Note

2Great-circle navigation or orthodromic navigation is the practice of navigating a vessel or aircraft
along a great circle. These routes yield the shortest possible distance between two points on the
globe.

3www.marinetraffic.com
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that the start and stop time of the acoustic estimate are 12h05 and 12h11 respectively.

Using the AIS information, the approximate range of the vessel at the three times-

tamps are respectively R1 = 8.2 km, R2 = 7.6 km, and R3 = 6.9 km. This suggests

that the vessel traveled an average of 1km within the 3-minute interval. Similarly,

the range estimates from Fig. 3.26 shows that the vessel traveled over about 2km in

the 6-minute duration of the acoustic measurement.

Unfortunately, there is not enough AIS data to confirm the resolution of the

localization algorithm. Nonetheless, from the geographical plot, it is observed that

the vessel indeed travels in close proximity to the array around the 12h06 timestamp.

At close proximity, the bearing estimates from the acoustic measurement become

inaccurate due to the hard transition in the bearing estimates, and an optimization

technique needs to be developed to achieve beamforming accuracy.

Figure 3.27: The geographical plot of the position of the vessel, compared with the
AIS data for the vessel detected during the CANAPE experiment.

To summarize this chapter, first, the acoustic signature can be used on a passive

sensor array to track a vessel, and in this work, a stable bearing and range estimate

was obtained over relatively long ranges up to about 2 km. The performance of the
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algorithm depends on the array geometry and deployment depth. The array aperture

must capture multiple wavelengths in the dominant bandwidth to achieve accuracy

in the CB-MFP. Second, vessel noise is directional and can be used to track a moving

platform.

The bearing and range estimation algorithms described in this chapter can be op-

timized for varying ocean conditions using more accurate models of the propagation

environment, especially in layered media. Because the sensor array geometry is rel-

atively compact, it can be deployed on autonomous platforms for real time tracking

of vessels within a few kilometers for different use cases.

Conclusively, this chapter has focused on characterizing the directionality of tran-

sient vessel noise, and in Chapter 4 models of directional noise will be developed.

While this demonstrates that shipping noise is directional, the impact of such direc-

tional noise sources on the communication link will be shown in Chapter 5.



Chapter 4

Space-time Synthesis of Ocean Ambient Noise

In this chapter, the space-time characteristics of naturally occurring OAN are dis-

cussed. In the design of acoustic receivers, the white Gaussian noise assumption may

be attributed to the fact that existing noise models are either too involved and often

not developed for engineering applications, or they are not particularly representative

of the environment of interest. Therefore, it is desirable to develop a low-complexity

model that generates synthetic space-time ambient noise and that is applicable for sig-

nal detection underwater. To achieve this objective, first, a methodology is described

for modeling space-time OAN process measured at a compact array of hydrophones

over wide bandwidths and validated against well established ambient noise models.

To this end, first, a step-wise implementation for two different methodologies that

characterize the spatial properties of ambient noise processes over a multi-element

compact VLA is presented. Second, an AR model that characterizes the temporal

property is also presented. Third, the unique properties of ambient noise in narrow-

band conditions are characterized and compared with the usual white Gaussian noise

assumption about OAN in UWAC.

The contributions in this chapter are in two folds. First, noise models are devel-

oped that are able to match the specific properties of a noise measurement environ-

ment. Second, the unique spectrum of ambient noise even in narrowband conditions

is demonstrated.

Therefore, in Section 4.1, some fundamental work in modeling OAN is briefly

reviewed. In Section 4.2, the noise measurements that are used to validate the prop-

erties of the noise models developed in this chapter are described. In Section 4.3,

the two methodologies that are developed for synthesizing the spatial properties of

OAN are described. In Section 4.4, the spectral properties of the synthetic ambient

noise process are developed. In Section 4.5, the unique characteristic of ambient noise

83
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in over a narrow bandwidth is demonstrated. Finally, in Section 4.6, the instanta-

neous temporal variability in the directionality of naturally occurring ambient noise

is described.

4.1 Background of Ambient Noise Modeling

In pioneering work on OAN [5, 4], analytical expressions were presented to character-

ize the spatial correlation function for isotropic (volume) and surface noise sources.

In [5], the authors noted that for isotropic noise characterized by point sources with

invariant power over all distribution angles, as the noise sphere radius approaches

infinity, the normalized cross-spectral density (CSD), or the coherence Γyz between

two sensors {y, z} physically separated by a distance d, can be expressed as

Γyz =
sin(kd)

kd
(4.1)

where k is the wavenumber of the incoming plane waves. A closed form expression

was found for the vertical coherence of surface noise sources due to wind generated

breaking waves, which are represented as directional point sources distributed over

the planar surface. For a two-element vertical array in an infinitely deep isovelocity

ocean, the correlation was described as

Γyz = 2

[
sin(kd)

kd
+

cos(kd)

kd

]
. (4.2)

Cox [4] characterized these noise fields in terms of a directionality function, by

placing angular dependent weighting factors over the plane waves arriving from all

directions. For a noise field measured at sensors y and z, the coherence is computed

from (3.35).

In [?], a generalized model for surface generated noise which characterizes the CSD

(using the Green’s function) between the noise sources and the receiver is described.

The coherence expression for vertically separated sensors in surface generated noise

is

Γyz =

∫∞
0

q GyqG
∗
zqdq

[
∫∞
0

q|Gyq|2dq
∫∞
0

q|Gzq|2dq]1/2
(4.3)
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where Gyq and Gzq are the Hankle transformed Green’s functions and the solutions to

the depth-dependent wave equation between a source placed at a depth zs and the two

receivers, respectively, and q is the complex horizontal wavenumber. This expression

allows the vertical noise coherence in an arbitrary environment to be computed, so

long as the Green’s function itself may be computed.

To evaluate the integral in (4.3) for the case of the two receivers in an isovelocity

water column overlying a homogeneous bottom boundary (a Pekeris waveguide), a

closed form integral solution can be utilized to numerically evaluate the transformed

Green’s function at the mth (where m is equal to y or z) sensor as

Gmq = C
sin η1zs

η1

{
(η1 + bη2) exp[jη1zm] + (η1 − bη2) exp[jη1(2h− zm)]

(η1 + bη2) + (η1 − bη2) exp[2jη1h]

}
, (4.4)

where C is a scaling constant, h is the depth of the water column, zm is the depth

of the mth sensor, η1 and η2 are the vertical wave numbers in water and sediment,

respectively, c1 and c2 represent the sound speed of water and the sound speed of the

sediment, respectively, and b is the ratio of densities in the seabed and water column.

In an infinitely deep water column, the noise field can be evaluated directly by

first computing the (untransformed) Green’s function between a single surface point

source and receiver using the image source method [6]

Gm =
eikRm1

Rm1

− eikRm2

Rm2

, (4.5)

where Rm1 is the direct path and Rm2 is the surface reflected waves arriving at the

mth receiver. Assuming azimuthal symmetry with the receivers placed at the origin,

the noise CSD and PSD are then computed by integrating over the infinite sheet of

surface sources, giving an expression for the vertical noise coherence

Γyz =

∫∞
0

r GyG
∗
zdr

[
∫∞
0

r|Gy|2dr
∫∞
0

q|Gz|2dr]1/2
(4.6)

where r is the horizontal coordinate. The result is exactly consistent with Cron &

Sherman’s expression given in (4.2). The well-known background knowledge about

ambient noise fields have been described thus far in this section.

In more recent times, several authors have demonstrated the impact of impulsive
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OAN on underwater acoustic receivers while some authors have suggested that even

the non-impulsive sources need to be investigated. Generally, these authors have

simply represent these noise sources as being of a colored spectrum. Although it has

been showed that OAN is generally of a colored spectrum [1], this representation

is still far from accurately capturing all the characteristics of OAN. To the best of

the author’s knowledge, there is no work in literature that has strictly examined the

impact of naturally occurring OAN on an underwater acoustic receiver neither are

there models that can easily be applied to characterize OAN in the design of UWAC

receivers. This chapter describes a model for OAN by describing its spatial and

spectral characteristics and compares them with actual ambient noise measurements.

The noise measurement scenarios are described next.

4.2 Noise Measurement Scenarios

In this section, two measurement scenarios are presented and used to characterize the

noise in an underwater communication link.

In the Summer of 2017, a 3-day sea trial (Dalcomm1) was run 10 kilometers off

the coast of Nova Scotia between the entrances to Halifax harbour and St. Mar-

garet’s Bay in a water depth of 80 meters. A multichannel autonomous recorder

(Turbulent Research ORCA) with a five-element vertical line array (VLA) consisting

of omnidirectional hydrophones with an acoustic bandwidth of 1 Hz-120 kHz was at

mid-column - about 40 m below the surface as depicted in Fig. 4.2. The receiver

sampling frequency was 10.24 kHz.

Recall that some results detailing the CIR from DalComm1 were briefly intro-

duced in Chapter 2. The specific objectives of DalComm1 are in two folds. The

first objective was to characterize the propagation channel for medium to ling-range

UWAC in a point-to-point link and correlate the channel with oceanographic con-

ditions. The second objective was to evaluate the reliability of some novel acoustic

communication techniques.

A database of the communication waveforms were stored on a transmit laptop.

The waveforms were amplified to the appropriate levels and applied to the transmit

projector. The transmit signals were OFDM modulated symbols, frequency shift

keying (FSK) symbols and a chirp signal.



87

During this period, the acoustic data were recorded and various communication

experiments were run to characterize the channel and estimate the performance of a

narrowband acoustic communication link with a center frequency of 2 kHz. The data

transmission during these experiments were measured at 1 km, 2 km, 4 km, 8 km,

10 km, so that the propagation channel can be characterized by post-processing the

data.

Four different experimental setup were completed in DalComm1 to achieve the

aforementioned objectives. First, the time-varying UWA channel properties were

characterized. Second, a spread-spectrum modulation technique was evaluated using

a chirp signal. Third, the Doppler compensation was also evaluated in coherent com-

munication systems. Finally, the performance of an adaptive equalization algorithm

was evaluated. The evaluation of the adaptive equalization algorithm is applicable to

this dissertation and discussed in greater details in the rest of this chapter.

To evaluate the CIR as a function of time, two types of acoustic waveforms were

transmitted – a linear FM sweep (or chirp) used to characterize the channel even in

the presence of Doppler, and a maximum length (ML) sequence which is often used

in spread-spectrum communication.

The chirp signal spans over a 300 Hz bandwidth and a duration of 0.5 seconds.

To extract multiple successive CIR, 1024 successive chirps were transmitted to last a

duration of 8:30 minutes. Also, the ML sequence consisting of 512 bits were trans-

mitted at a rate of R− b = 240 symbols per second, to allow the characterization of

the channel with a maximum excess delay of 2.1 seconds and a processing gain of 24

dB. At the transmission rate Rb, the path arrival resolution is 1/Rb = 4.1ms. In each

sound file, multiple ML sequences are concatenated to extract 256 successive CIR, so

that each sound file lasts 9:06 minutes.

The ambiguity functions representing the chirp and the maximum length sequence

are depicted in Fig. 4.1. Although the ML sequence cross-correlation deteriorates

even at very low Doppler shifts, the sequence is chosen because it is representative of

constant envelop coherent modulation schemes, and as such, is a natural fit for the

data frame.

While the chirp ambiguity function decays with delay to values on the order of

40 dB, that of the ML-sequence remains at a much higher noise floor on the order
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(a) A 320 Hz, 0.4 second chirp. (b) A 512 psuedo-random noise sequence.

Figure 4.1: Ambiguity functions for channel characterization in DalComm1.

of -25 dB below the maximum peak. One disadvantage of the chirp is that the auto-

correlation as a function of delay contains ripples with high amplitude close to the

main tap delay. This can introduce imprecision in the CIR. For this purpose, the

channel statistics obtained using the two signatures are analyzed carefully to obtain

complementary information. After post-processing, the CIR obtained from the ML

sequence were shown and discussed earlier in Fig. 2.6, while readers are referred to

[?] for the CIR from the chirp signal as well as other post-processing results.

Further, the ambient noise was measured throughout the experiment to accurately

characterize the communication links. Details of the acoustic source, the receivers,

the water column and some initial post-processed results are described in [19, 20, ?].

The geoacoustic parameters of the DalComm1’s measurement site were derived

from the bottom composition provided by the Canadian Hydrographic Services (CHS)

[21] at the Department of Fisheries and Oceans Canada using a survey of previously

published data [7]. The DalComm1 site’s bottom is characterized by a rocky and

coarse sand with a sound-speed of 1560 m/s and a mean column sound speed of 1482

m/s [?].

The second data set used to characterize the properties of ambient noise in this

chapter are derived from the CANAPE measurements described in Section3.3. Specif-

ically, the acoustic pressure measured at the 3-element VLA during the open water

(ice free) period, in the month of October, were selected for analysis. Also, there

were no vessels present in the portion of the data analyzed in this section, such that

it can be assumed that the overall noise is surface generated. The geoacoustic values
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Figure 4.2: DalComm1 deployment scenario.

of the sediment were provided by JASCO and agreed with the results determined by

searching for the best match, in a root-mean square error sense, between the measured

and modelled noise coherence given by (4.4). The derived geoacoustic parameters for

both experiments are summarized in Table 4.1.

Measurement location DalComm1 Canape
Position (Latitude, Longitude) 44◦30′00.0”N, 63◦24′00.0”W 72◦33′57.2”N, 158◦13′23.9”W

Water depth (m) 80 149
Sediment type Coarse sand Clayey silt

Sediment sound speed, (m/s) 1560 1550
Sediment density, (kg/m3) 3705 1429
Column sound speed, (m/s) 1482 1453
Mean sensor depth (m) 40 125.25
Loss tangent β = 1/2Q1 0.0156 0.0156

Table 4.1: Environmental parameters at the DalComm1 and Canape measurement
sites

From Fig. 4.3, it is observed that both DalComm1 and CANAPE mean noise

PSDs over the array have significant contributions from about 500 − 4000 Hz which

are representative of surface generated noise. In DalComm1, noise is relatively strong
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at low frequency, and as will be demonstrated in Section 4.3 it has low correlation

over space. Further discussions about the coherence analysis and its importance in

generating a synthetic ambient noise process is described in Section 4.3.

Figure 4.3: PSD of the ambient noise conditions during the DalComm1 and Canape
experiments. Both noise processes were re-sampled at 10240 Hz and an FFT window
of size 2048.

The empirical histogram was computed for the measured noise pressure time series

and fit with the Normal distribution function whose probability density function

(PDF) is defined as

f(x) =
1

σ
√
2π

e−
1
2
(x−μ

σ
)2 , (4.7)

where the parameters μ and σ are the mean and standard deviation of the measured

noise process, respectively, and f(x) is calculated directly from the measured noise

processes at both experiments.
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Figure 4.4: DalComm1 noise PDF using one-second duration

Figure 4.5: Canape noise PDF using one-second duration

From Fig. 4.4 and Fig. 4.5, it is observed that for a one-second duration, the normal

distribution closely fits the data from both DalComm1 and CANAPE respectively.

Since the normal distribution fits the empirical histograms with the least deviation

over the short duration of a few seconds, for consistency and simplicity, the normal

distribution was fit with the measured data for both measurements.
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Note that the noise processes from both experiments were re-sampled throughout

the rest of this work at 10240 Hz, which is the sampling frequency of the communi-

cation system which is discussed in Chapter 5. It should be noted that the signal at

the output of DalComm1 recorder has a DC offset, which was cancelled prior to the

analysis by calculating the long term average amplitude on each sensor output.

It is noteworthy that since the early days of underwater acoustic research, it has

been shown that the distribution of OAN is not always consistent with the classical

normal distribution [?, ?]. For instance, in [?], it was shown that vessel and bio-

logical noise sources have kurtoses 2 that are markedly different from the Gaussian

distribution, thus exhibiting non-Gaussianity. Similarly in [11], it was demonstrated

that shipping noise sources exhibit non-Gaussianity when compared with background

ocean noise which is predominantly Gaussian.

It has also been demonstrated that the performance of statistical signal detection

algorithms depend on the distribution of the background noise [?]. In fact, in [?],

it was shown through simulations that for signals transmitted in OAN, the BER is

worse even at higher input SNR compared to signals in AWGN. Overall, the noise

distribution can significantly impact the BER, and must be considered in the design

of UWAC receivers. However, to limit the scope of the BER analysis developed in

chapter 5, the OAN is assumed to be predominantly surface generated (also shown

empirically in this Section), such that the normal distribution is a good fit for the

data set.

Finally, on the pre-processing analysis of the noise measurements, the coherogram

that represents the spatial coherence of the noise over windows spanning about 1-

second each is presented. Fig. 4.6 and Fig. 4.7 represent the coherogram of DalComm1

and CANAPE noise measurements, respectively.

From Fig. 4.6, it is observed that the dominant coherent energies in DalComm1

time-series are in the lower bandwidths up to about 800Hz. The imaginary com-

ponent also shows a minimum in these lower bandwidths. Also, from Fig. 4.7, the

dominant coherent energies in the noise are in the lower bandwiths up to about

800Hz. It is evident that the variations in the coherence levels span throughout the

measurement bandwidth. When compared to the well-known results in Fig. 2.4, the

2Kurtosis is a measure of the tailedness of the distribution from which a dataset is generated.
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dominant bandwidths in the measured noise suggest that the dominant noise sources

are primarily surface generated.

Although sonar transmissions are observed in the measured CANAPE noise, the

sonar interference is avoided by selecting segments of the data set where there were

no sonar transmissions. However, Fig. 4.7 shows the presence of the sonars since the

full bandwidth of the noise is processed to show the dominant bandwidths. Therefore,

the rest of the analysis in this chapter focuses on ambient noise sources that do not

contain impulsive sources.

(a) Real coherogram (b) Imaginary coherogram

Figure 4.6: Coherogram of DalComm1 noise computed over about 21 minute dura-
tions. Fs = 10240 Hz, BD ∈ {0, Fs/2}.

4.3 Spatial Characteristics

The spatial characteristics of synthetic OAN is described in this section. Two distinct

methodologies that model the spatial attribute of OAN over a wide bandwidth are

described next.

4.3.1 Directionality Based Model (DBM)

A first method that relies on the knowledge of the directionality function of the noise

field to generate the synthetic ambient noise process representing a measurement

environment is presented in this section. In this method, the model presented by [4]
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(a) Real coherogram (b) Imaginary coherogram

Figure 4.7: Coherogram of CANAPE noise over a 20-minute duration. The data is
resampled at Fs = 10240 Hz and BC ∈ {0, Fs/2}.

for isotropic and surface noise over vertically spaced pairs of sensors, is enhanced to

generate the noise time series at a five-element VLA using a three-step process. The

procedure is described as follows:

Step 1. Computation of the directionality function.

The polar angle θ for random incident plane waves is taken with reference to the

zenith and the directionality function for the noise field is computed. For example,

for isotropic noise, the directionality function F(θ) is

F(θ) = 1; (4.8)

while for a surface noise field, the directionality function F(θ) is

F(θ) = cosm θ, for 0 ≤ θ ≤ π/2; . (4.9)

The noise directionality from (4.8) and (4.9) are shown in Fig. 4.8 in which the

isotropic noise has a unit power with respect to all azimuthal angles while the surface

noise has peak power in the upper hemisphere. From (4.9), F(θ) = cosm θ, where

m = 1/30 is obtained from [5]. Note that F(θ) is a vector which could be of an

arbitrary length. This model is representative of any desired noise field with a defined

directional density function.



95

Figure 4.8: Directionality function for isotropic and volume noise fields.

Step 2. Computation of the noise process

In this step, first a random white Gaussian noise process xm is generated with dimen-

sion 1× l at sensor m. Initially, when θ = 0, the noise samples Xm(ω) with dimension

1× l are initialized with zeros, where m = 1, 2 . . . ,M ; and M is the last element of

the array, while l is the length of the discrete Fourier transform (DFT) window. The

noise at each element of the array is computed from the expression

Xm(ω) =

∫ π

θ=0

{
F(θ)xme

−jdω
c
cos θ

}
dθ (4.10)

where d is the distance between adjacent sensors, ω = 2π f , and c is the local sound

speed. Eq.(4.10) shows that at discrete directional angle θ, the random sources (or

plane waves) are superimposed, such that these sources are integrated to yield the

overall volume noise.

Step 3. Representation as a function of time

SignalX(ω) across the array is transformed to the time domain byX[n] = F−1(X(ω))
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to represent the noise process over the array at discrete time n, such that

X[n] = [X1[n], . . . ,XM [n]]T .

The normalized cross spectral density for pairs of sensors on the array are cal-

culated from (3.35). For the isotropic noise field in (4.8), the coherence between

adjacent pairs of sensors closely matches the analytical result given by (4.1) as shown

in Fig. 4.9a. Similarly, from Fig. 4.9b, for the surface noise with a fractional cosine

directional function in (4.9), the coherence of the noise process matches the analytical

result given by Cron and Sherman in (4.2).

(a) Isotropic noise field (b) Surface noise field

Figure 4.9: Coherence function from; (a) an isotropic noise field, and (b) surface noise
field, validated against the coherence of synthetic noise from DBM.

Finally, to validate the noise model further, the directionality functions that gen-

erate noise processes that match the two measurement scenarios (DalComm1 and

CANAPE) are computed. Although there are methods in literature that can be de-

veloped to compute the directionality function for the two sites computationally, for

simplicity sake, a brute force approach was applied by guessing the value of m in (4.9)

to generate a noise process whose coherence function estimates match DalComm1 and

CANAPE’s coherence.

From Fig. 4.10, it is observed that the coherence function of the synthetic noise

reasonably matches the coherence from measured DalComm1 noise. The same is

observed in CANAPE’s coherence.

The model described thus far is applicable for any defined directional density
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(a) Real vertical coherence (b) Imaginary vertical coherence

Figure 4.10: Real and imaginary vertical coherence using the the DBM model
and validated against DalComm1 noise for sensors separated by 0.36m, sampled at
Fs = 10240 Hz

(a) Real vertical coherence (b) Imaginary vertical coherence

Figure 4.11: Real and imaginary vertical coherence using the DBM model and
validated against CANAPE noise for sensors separated by 2.5m, sampled at
Fs = 10240 Hz

function and would accurately generate the synthetic noise processes in the time or

frequency domain that could be applied in characterizing the spatial performance of

an underwater acoustic communication receiver.
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4.3.2 Coherence Based Model (CBM)

A second model that generates the noise process from known spatial coherence func-

tion is described in this section. Cox’s expression relates the vertical coherence for

arrays in planar noise fields with the directionality function [4]. Although it is desir-

able to invert the integral expression to develop unique noise directionality functions

from the spatial coherence, this approach could yield expressions that may not have

unique numerical solutions. Instead, a method developed in [?], hereafter referred to

as CBM, generates a noise process from a predetermined spatial coherence.

A five-step procedure is described to generate the noise process as follows.

1. A matrix Γ(ωn) that contains all the coherence functions and PSDs across the

array, is computed for all discrete points of the angular frequency (ωn), so that

Γ(ωn) =

⎡
⎢⎢⎢⎢⎢⎣
Γ11(ωn) Γ12(ωn) . . . Γ1M(ωn)

Γ21(ωn) Γ22(ωn) . . . Γ2M(ωn)
...

...
. . .

...

ΓM1(ωn) ΓM2(ωn) . . . ΓMM(ωn)

⎤
⎥⎥⎥⎥⎥⎦ . (4.11)

The elements of Γ(ωn) are the modeled spatial coherence, which may be ob-

tained from (4.3). For the shallow water Pekeris waveguide case, the Green’s

function at each hydrophone is derived from (4.4) using the geoacoustic param-

eters in Table 4.1.

2. The eigenvalue decomposition of the coherence matrix is computed from

Γ(ωn) = V(ωn)Λ(ωn)V(ωn) and the mixing matrix C(ωn) =
√
Λ(ωn)V

H(ωn),

where Λ(ωn) is the diagonal matrix that contains the eigenvalues, and V(ωn)

is the matrix of the eigenvectors.

3. Random white Gaussian noise vector N(l, ωn) is generated, where l is the frame

index at each element of the array of length M .

4. For all l and ωn,

compute X(l, ωn) = C(ωn)N(l, ωn), where X(l, ωn) = [X1(l, ωn), . . . , XM(l, ωn)]

and N(l, ωn) = [N1(l, ωn), . . . , NM(l, ωn)].
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5. Compute, the time-domain signal at each sensor m from the inverse short-time

Fourier transform of Xm(l, ωn) for m = 1, . . . ,M ; i.e X[n] = F−1{X(l, ωn)} .

To compare the measured noise and the modeled noise, the error between the

spatial coherence of the generated noise process from the CBM and the analytical

model is computed from the normalized mean square error (MSE) and can be obtained

from

MSE =

∑N/2
n=0

(
Γ̂yz(ωn)− Γyz(ωn)

)2

∑N/2
n=0(Γyz(ωn))2

, (4.12)

where N is the size of the fast Fourier transform (FFT) window, Γ̂yz and Γyz are

the estimated spatial coherence from the CBM, and the analytical spatial coherence

from (4.3), respectively. The geoacoustic values are obtained from the geoacoustic

parameters of the bottom summarized in Table 4.1. The MSE is presented in decibels

(dB) by computing 10 log10(MSE). This procedure generates the noise process from

the coherence function that is computed from known geoacoustic parameters, but in

fact, could be used for any coherence function.

To validate the noise model, three scenarios of the coherence are compared: 1)

from the analytical model in (4.3); 2) from the noise process generated from the CBM;

and 3) from the noise measured from DalComm1 and the CANAPE experiments. In

both measurement scenarios, the coherence is compared for adjacent pairs of sensors.

From Fig. 4.12, there is a reasonable match between the analytical coherence

obtained using (4.3), the synthetic noise generated using the CBM model, and the

measured coherence from DalComm1. The roll-off at low frequency is due to the

uncorrelated flow noise on the vertical line array [22], which was observed by in-

specting the noise PSD. These lower bandwidths were excluded to avoid bias in the

computation of the MSE.

Fig. 4.13 shows the comparison between the coherence obtained using (4.3), the co-

herence obtained using the CBM model, and the measured coherence from CANAPE.

The observed deviation in the real (Fig. 4.13a) and imaginary (Fig. 4.13b) coherence

may be attributed to the presence of horizontally propagating sounds during the mea-

surement. This may be attributed to the sonar transmissions (discussed in Section
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(a) Real vertical coherence (b) Imaginary vertical coherence

Figure 4.12: Real and imaginary vertical coherence computed using the analyti-
cal surface noise model (black), the CBM (blue dashed), and the DalComm1 data
(red) against dimensionless frequency, for sensors separated by 0.38m, sampled at
Fs = 10240 Hz

(a) Real vertical coherence (b) Imaginary vertical coherence

Figure 4.13: Real and imaginary vertical coherence using the analytical surface noise
model, the CBMmodel, and validated against the empirical coherence from CANAPE
noise for sensors separated by 0.38m, sampled at Fs = 10240 Hz

3.3) which may have partially overlapped on the noise measurement. The difference

in the imaginary coherence at low frequency indicates that the models are not return-

ing enough energy from the seabed, either due to incorrectly estimated geoacoustic

parameters, or due to a layered, inhomogeneous basement [?]. It is noteworthy that

the model in (4.3) requires a long computational time since the coherence is computed
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over discrete frequency points. Very short DFT windows are used in this computation,

which smooths the coherence curves.

In this section, two distinct methods – the DBM and the CBM have been presented

to simulate the spatial property of an ambient noise process.

The slight differences in the coherence plots from DBM are primarily due to

the method applied for computing the directionality functions. Hence, in practical

applications, it is suggested that a computationally efficient method be applied to

compute the directionality function of the noise fields. However, the method applied

[?] for computing the theoretical coherence in the CBM is shown to be efficient.

Consequently, the choice of the model used for generating the ambient noise time

series would depend on the ease of obtaining or computing either a directionality

function or a coherence function representing the noise fields.

4.4 Spectral Characteristics

The spectral signature of the synthetic space-time ambient noise can be described

using an AR model. The AR parameters are extracted from the measured OAN

from both experiments. The minimum order that minimizes the error output of the

AR process was found to be 6. The AR coefficients define the all-pole filter whose

magnitude response when applied to white noise as a low-pass filter, produces a

coloured noise spectrum representative of ocean noise.

A procedure that characterizes the AR parameters from the PSD is described in

[23]. The empirical expression [1] that characterizes the frequency dependent PSD of

ambient noise due to breaking surface waves in units of dB re 1μPa is

10 log Syy = 50 + 7.5w1/2 + 20 log(f)− 40 log(f + 0.4) (4.13)

where w is the wind speed in m/s. The autocorrelation function may be obtained as

the inverse Fourier transform (IFFT) of the PSD on a linear scale. Finally, the AR

parameters may be obtained by solving the Yule-Walker equation. The AR parame-

ters are computed by using the Levinson-Durbin recursion on the input estimate of

the autocorrelation, via the built-in Matlab function aryule [?]. Each signal at the

elements of the array may be filtered by the same all-pole filter, since the noise is
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homogeneous across the array.

The synthetic noise processes generated from both the DBM and the CBM, to-

gether with the enforced spectral characteristics are compared with the measured

noise process in Chapter 5. Next, the narrowband spectrum of OAN is discussed.

4.5 Ambient Noise in Narrowband Conditions

In this section, the PSD of ambient noise is verified over a narrowband spectrum.

To this end, the measured ambient noise is downsampled at a center frequency

fc = 2048 Hz while the transmitted signal is band-limited using a raised-cosine fil-

ter to 240 Hz, matching the baseband receiver specifications3 described in greater

details in Section 5.

From Fig. 4.14, it is observed that the spectral power for the noise scenarios do

not compare with that in Fig. 4.3 because Fig. 4.3 and Fig. 4.14 are evaluated in

passband and baseband, respectively. Also, it can be noted that the measured noise

PSD from both experiments are frequency dependent (with a defined trend) over

a 240 Hz bandwidth. This observation is contrary to the spectrum of uncorrelated

white noise samples which is known to be frequency flat and without a defined trend.

(a) DalComm1 (b) Canape

Figure 4.14: Baseband representation of PSD for measured noise centered at 2048 Hz
with a bandwidth of 240 Hz for (a) DalComm1 and (b) Canape noise.

To confirm the spectral variability of the synthetic noise processes generated from

3The specification for the communication link is provided in response to the project sponsored
by Ultra Electronics, Nova Scotia, under the The Atlantic Innovation Fund (AIF).
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both CBM and DBM, representing DalComm1 and CANAPE’s measurement loca-

tions, the PSDs were computed over a 240Hz bandwidth. The spatial characteristic

of the synthetic noise process was generated as described in Section 4.3, while the

spectral characteristics were obtained from Section 4.4.

From Fig. 4.15, it is observed that the spectrum in the synthetic noise computed

from the CBM, representing both DalComm1 and CANAPE reasonably compare with

the measured noise.

(a) DalComm1 (b) Canape

Figure 4.15: Baseband representation of PSD for synthetic noise (computed from the
CBM) centered at 2048 Hz with a bandwidth of 240 Hz for (a) DalComm1 and (b)
Canape noise.

Further, the PSD of the synthetic noise process generated from the DBM in Sec-

tion 4.3.1 was computed over a 240Hz bandwidth. It is observed that by enforcing

the spectral characteristic described in Section 4.4 on either synthetic isotropic or

surface noise process, the spectrum over a 240Hz bandwidth are exactly the same.

The spectrum of the space-time surface noise – with spatial attributes computed from

the DBM and an enforced spectral attribute – over 240Hz bandwidth is showed in

Fig 4.16. It is observed that the narrowband spectrum from DBM and CBM are

similar. Thus, it can be concluded that the spatial and spectral content of OAN can

be perceived as independent of each other.
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Figure 4.16: PSD of baseband surface noise (computed from the DBM) centered at
2048 Hz with a bandwidth of 240 Hz.

4.6 Temporal characteristics of Ocean Ambient Noise

In Chapter 3, the time varying characteristics of directional noise emanating from

a vessel’s propeller was demonstrated. This was achieved by implementing a ML-

BF that estimated the TDOA of the acoustic noise pressure at a compact array of

hydrophones. In this chapter, the temporal variability of naturally occurring OAN is

demonstrated using the beamformer developed in Section 3.5 with the same system

parameters. Thus, this section only focuses on the results obtained by applying the

beamformer to the measured noise from DalComm1 and the VLA elements from the

CANAPE experiment.

The measured broadband noise in both DalComm1 and CANAPE are sampled

at 10, 240 Hz. The zero degree elevation represents broadside, while 90◦ and −90◦

represent the surface and the ocean bottom, respectively. The directionality results

are computed from the kernel density estimates 4 of the elevation angles. The kernel

4Kernel density estimation is a method applied to estimate the unknown probability density
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density estimates are computed at each point of the elevation angle and summed to

produce the mean density of the directionality of the noise sources. Each point of the

kernel density is depicted by a scatter plot so that the instantaneous change in the

directionality of the noise can be observed. The intricate details about kernel density

estimation goes beyond the scope of this dissertation, but there is an abundance of

resources in literature on this topic [?].

Figure 4.17: Beamformer directionality computed for windows spanning 0.01 second
for measured DalComm1. The time axis represents the measurement duration.

From Fig 4.17, it is observed that the energy of DalComm1 noise propagates over

elevation angles between 25◦ and 55◦. It is found that the mean energy arrives from

an elevation angle of 40◦ with a secondary peak at −30◦ relative the plane of the

VLA. This suggests that DalComm1 noise peak energy arrives from a cone above the

function of some data. It defines a kernel function centered on each data point and summed together
to generate the density function of the data.
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Figure 4.18: Beamformer directionality computed for windows spanning 0.01 second
for CANAPE. The time axis represents the measurement duration.

array, while some reflected energy is observed from the seabed. This accords with

the directionality expectation for an array deployed in relatively shallow water at

mid-column. It is also observed that the directionality of OAN varies spatially and

as a function of time. This property is expected to impact the array gain measured

at the output of a spatial filter as will be demonstrated in Section 5.1.3.

The directionality of CANAPE’s noise power in Fig 4.18 shows that most of

the noise power arrives over elevation angles that span −10◦ to + 10◦. The mean

directionality also has a peak at 0◦ i.e. broadside. Although this observation is

surprising, knowing fully that the spectrogram of CANAPE noise shows that the

noise is predominantly surface generated, the directionality can be attributed to the

reflected noise from the basement of the ocean considering that the array was deployed

at a 1.5 meter offset from the bottom of the ocean.
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Figure 4.19: Beamformer directionality computed for windows spanning 0.01 second
for the synthetic noise process representing DalComm1 measurement environment.
The time axis represents the simulation duration.

To confirm the measured noise directionality, the mean noise directionality was

computed from the synthetically generated ambient noise from the CBM, for both

the DalComm1 and CANAPE cases. From Fig. 4.19, there is a good match in the

beamformer directionality obtained from the synthetic DalComm1 noise and that of

the actual measurements. However, the instantaneous variations in the directionality

observed in the actual measurements are not present in the synthetic noise. Note that

the low energies in the instantaneous directionality at the start and end of the duration

are attributed to the averaging of the kernel density estimates. Furthermore, the

directionality observed in the synthetic noise representing the CANAPE environment

reasonably matches the actual measurement. Also, the instantaneous variations in

the noise directionality is not as pronounced in CANAPE noise as in the DalComm1



108

Figure 4.20: Beamformer directionality computed for windows spanning 0.01 second
for the synthetic noise process representing CANAPEmeasurement environment. The
time axis represents the simulation duration.

noise. This suggests that the sea state may be relatively stable in CANAPE more than

in DalComm1 noise measurement. These instantaneous variations in directionality

are expected to change the statistics of the noise process and in turn impact the

frame structure of an underwater acoustic receiver. This phenomenon is investigated

in Chapter 5, where the impact of the directional properties of ambient noise on the

communication system is described.

Thus far in this chapter, the spatial and spectral characteristics of synthetic OAN

have been described. The temporal characteristics of OAN have also been demon-

strated from the measured ambient noise process. It can be concluded that OAN

has three dimensions that characterize its properties – spatial, spectral and temporal.

Finally, to be able to estimate the impact of OAN on the design of acoustic receivers,
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it is desirable to estimate the coherence-time of the noise channel.

To summarize, in this chapter, two methods have been presented to generate

an ambient noise process with unique spatial properties over a compact array. The

first approach, the DBM, relies on the knowledge of the directionality of the noise

field, while the CBM relies on knowledge of the coherence function between pairs

of sensors on a compact array. The DBM generates non-stationary noise process

whose spatial characteristic is defined from the coherence function [?]. The DBM

also compares to the measured noise scenarios (DalComm1 and CANAPE), since the

coherence functions can be easily computed numerically from the geoacoustic profile of

the environments. Further, by enforcing the spectral characteristic from DalComm1

noise on the synthetic noise process from the DBM, the narrowband spectrum becomes

frequency-dependent. Thus, the spectral content of OAN is not only important over

broad bandwidths, but even over a narrow bandwidth, the spectrum is still frequency

dependent. It is also noteworthy that the spectral shape of the noise does not depend

on the spatial coherence of the noise process i.e. the spatial and spectral domain of

OAN may be perceived as independent of each other.

The integral inversion that relates the directionality of noise fields and spatial

coherence of two vertically aligned sensors was derived in [4]. Thus, under the as-

sumption of a plane wave noise field, there is a relationship between the DBM and the

CBM, or between the noise directionality function and the vertical noise coherence.

Although it is desirable to invert the integral expression to develop unique noise di-

rectionality functions from the spatial coherence, the methods applied by the author

showed that the inversion approach could yield expressions that may not have unique

numerical solutions.

Finally, an AR model was used to superimpose the time-varying spectral signature

on the spatially correlated synthetic noise. The spatial and spectral characteristics of

measured ocean noise have been validated against the synthetically generated noise

processes. The results indicate both long-term and short-term variations in direction-

ality are expected to change the statistics of the noise process and in turn impact the

frame structure of an underwater acoustic receiver. Next, in Section 5, the impact of

the directional properties of ambient noise on the communication system is described.



Chapter 5

Impact of Ambient Noise on Space-time Equalizers

In this chapter, space-time equalizers are presented to optimize the communication

performance in the presence of ambient noise and in a multipath propagation channel.

In Section 5.1 the impact of ambient noise on an UWAC link is evaluated assuming

linear equalizers in a controlled environment. Then, in Section 5.2, a space-time deci-

sion feedback equalizer is utilized to mitigate multipath distortion for a shallow water

long range communication link subject to real ambient noise. Finally, in Section 5.4,

a beamforming technique is described for mitigating vessel noise in an UWAC link.

5.1 The Impact of Ocean Ambient Noise in UWAC

In this section, to demonstrate the impact of ambient noise on an UWAC link, a linear

space-time filter (STF) structure is used to optimize the communication reliability.

This objective is approached by isolating the impact of OAN (i.e. a frequency-flat

channel) on the acoustic link.

The rest of this section is organized as follows: in Section 5.1.1, the parameters

of communication link are described; in Section 5.1.2, a linear space-time filter is

analyzed and the recursive least square (RLS) is presented to obtain the space-time

weights using adaptive algorithms; in Section 5.1.3, the impact of ambient noise on

the array gain is analyzed analytically; in Section 5.1.4, the impact of ambient noise

on the gain is computed through simulations; in Section 5.1.5, the BER is analyzed; in

Section 5.1.6, the optimal training duration and payload duration of signals processed

in OAN are analyzed. Note that the information symbols are processed in OAN in

this section and the impacts of multipath reflections are excluded.

5.1.1 Model of the Communication Link

In this work, the UWAC link is modelled at baseband to characterize the impact of

ambient noise. The binary information is modulated using phase shift-keying (PSK).

110
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PSK is chosen because of its simplicity and its recognized reliability, even at relatively

high data rates for PSK modulated signals [?] and in frequency shift-keying signals

[24, 25].

The effect of ambient noise on a long-range communication system is evaluated,

and to be able to achieve a long-range communication (up to several tens of kilo-

meters), the acoustic receiver is centered at 2048 Hz while the transmitted signal is

band-limited using a raised-cosine filter to 240 Hz. The measured ambient noise is

down converted to baseband and bandlimited to the channel bandwidth (240 Hz).

The VLA structure from DalComm1 is utilized to evaluate the BER in the presence

of ambient noise and compared when AWGN is added so that the impact of OAN on

the UWAC link can be evaluated. To further justify the importance of an accurate

model of the ambient noise process, the BER is also evaluated when the signal is

processed in synthetic ambient noise described in Section 4.3.

5.1.2 The Linear Space-time Filter

Similar to the model of the space-time linear system described in Section 2.4, theM×1

vector of the received signal x[n] at time n spatially sampled at the M elements of

the array is

x[n] = s[n] ∗ h[n] + n[n], (5.1)

where s[n] is the information symbols, h[n] is a matrix of M × p CIRs between the

transmitter and the M receive elements, where p is the length of the multipath taps,

and n[n] is an M × 1 vector of ambient noise at the array. Note that in free-space,

h[n] is of unity gain and of M × 1 dimension. Also, note that the operator ∗ is a

convolution.

At the output of each sensor m, the signal is sampled at the symbol

rate Ts as shown in Fig. 5.1, and a time-domain equalizer that consists of

K weighted multiple tap delays is applied to the window of received samples

xm[n] = [xm,0 xm,1 . . . xm,(K−1)]
T to mitigate the impact of the channel distortion

on the signal. Then, the weighting vector am = [am,0 am,1 . . . am,(K−1)]
T optimizes

the MMSE between s[n] and xm[n]. Also, the MMSE filter is augmented to process

an array of M sensors, such that the filter output at time n is
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Figure 5.1: Tapped delay line filter structure with feedforward taps.

y[n] =
M−1∑
m=0

N2−1∑
k=−N1

xm,k[n]a
∗
m,k (5.2)

where ∗ denotes the complex conjugate, the feedforward taps has a total length

K = N1 +N2 + 1, and the received signal is delayed by N1 samples to maintain

causality [9]. To obtain the weights for the STF, the weighting vectors at the elements

of the array can be organized in a MK×1 vector such that ast = [aT
0 aT

1 . . . aT
(M−1)]

T .

Also, the MK × 1 input vector to the filter is defined as xst = [xT
0 xT

1 . . . xT
(M−1)]

T ,

such that

y[n] = aH
stxst, (5.3)

where the superscript H denotes the hermitian transpose.

Eq. 5.2 represents the output of a finite-impulse-response (FIR) space-time filter

with a linear structure. The linear FIR filter (also referred to as the feedforward

filter) is the simplest adaptive equalizer structure whose current and past values of

the received signal are linearly weighted by the filter coefficient am and summed to
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produce the output. The filter output (sometime referred to as the soft decision) can

be demodulated (also referred to as the hard decision) so that the information bits

can be recovered at the receiver.

The ability of this array of filters to reliably receive the transmit signal depends

on the efficient computation of the space-time weights (or filter coefficients). Several

algorithms have been developed to compute these weights and the choice of an ap-

propriate algorithm depends on the application of the STF. Also, various space-time

filters have been described to resolve signal directionality and to combat frequency

selectivity in multipath channels [26, 27, 28], one of which is discussed in Section 5.2.

Two types of the algorithms that were applied to compute the feedforward weights

ast are succinctly described next.

The Matrix Inversion Solution

The optimum weights ast can be obtained by using the matrix inversion solution

otherwise known as the Wiener-Hopf’s filter defined as

ast = R−1
st p, (5.4)

where the space-time covariance matrix Rst of the filter’s tap input vector can be

computed using

Rst = E[xstx
H
st ], (5.5)

and the correlation vector p between the filter input and transmit symbol s[n] at dis-

crete time n is defined as p = E[xsts
∗[n]]. Eq. 5.4 is the optimum matrix solution for

the linear filtering problem [2]. It should be noted that the matrix inversion in (5.4) is

computationally expensive, hence not often a desirable solution for hardware imple-

mentation, it however remains a preferred solution to compute the optimal weights

of an equalizer.

The RLS Filter

In a more realistic system design (with hardware implementation in mind), the opti-

mum weights ast are computed using stochastic gradient descent techniques. Using
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these techniques, the filter is adapted based on the error between the transmitted and

the received signal at the current time. There are several algorithms developed based

on the gradient descent technique. However, the RLS algorithm is described in this

work due to its fast convergence time [2]. The weights are updated at each snapshot

of time to maximize the receive power for all the symbols measured at the array by

ast[n] = ast[n− 1] + k[n]ξ∗[n]. (5.6)

The weighting vector computed at the previous iteration is denoted as ast[n− 1]

and the predicted error at time n is

ξ∗[n] = s∗[n]− ast[n− 1]xst[n], (5.7)

which is the difference between the desired response s∗[n] and weighted tap input

vector xst[n]. From (5.6), the gain vector k[n] penalizes the predicted error by using

the expression

k[n] = P[n− 1]xst[n]{λ+ xH
st [n]P[n− 1]xst[n]}−1, (5.8)

where λ is the forgetting factor and the inverse correlation matrix P[n] is updated

recursively from

P[n] = λ−1P[n− 1]− λ−1k[n]xH
st [n]P[n− 1]. (5.9)

Both algorithms – the matrix inversion and RLS, although introduced for com-

puting the space-time weights, can be reduced to either the spatial or temporal di-

mensions to compute as or at respectively. There are other algorithms that are well

known in literature to compute the weighting vectors. A classical solution for spatial

filtering is the MVDR filter which was briefly introduced in Chapter 3 and will be

further discussed in Section 5.4.

Overall, the goal of a filter – spatial or temporal, is to mitigate the impact of the

impairments due to multipath bounces, interference, noise and/or synchronization

errors on the transmit signal. The array gain (AG), which represents the SNR at the

ouput of the filter divided by the SNR at the filter inputs, is a figure of merit often
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used to quantify the signal power relative the noise power, while the BER is used to

determine the number of information bits that have been altered by the sources of

distortion in the communication link. Both AG and BER are used as the figures of

merit to evaluate the impact of OAN on an UAWC link in this work. Therefore, in

Section 5.1.3 an analytical approach is taken to examine the impact of ambient noise

on the AG.

5.1.3 Impact of Noise Spatial Correlation on the Array Gain – An

Analytical Approach

In this section, the impact of the spatial correlation property of OAN on the AG

measured at a spatial array is demonstrated analytically. The analysis developed in

this section relies on (5.1), and assumes that the signal of interest is subject to a

single path arrival. Based on this assumption, the impact of ambient noise on the

communication signal at the receiver can be analyzed in a controlled setting.

At the receiver, a spatial filter with a single memory element is used to reliably

detect the information symbols. An array of sensors at the receiver is typically used

to provide SNR gain in the received signal. The exact value of gain depends on the

desired signal correlation Rs as well as the noise correlation Rn between the elements

[1].

From (5.1), having assumed that h[n] = 1, the filter output spatial correlation

across the elements of the array can be expressed as

Rxx = Rs +Rn. (5.10)

Recall that from (3.23), the output of a spatial beamformer was defined. Similar

to the frequency domain expressions in (3.23), but this time at discrete snapshots of

time, by substituting (5.1) into (5.10), the spatial correlation can be expanded into

Rxx = E{xxH} = E

{(
v(θ)s[n] + n[n]

) (
sH [n]vH(θ) + n[n]

)}
, (5.11)

where v(θ), s[n], n, E, H are the steering vector, the signal of interest, the additive

noise, the expectation operator and hermitian operator respectively. Without losing

generality, let a represent the spatial weights at the array elements which can be
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computed using any spatial filtering technique. Hence, the array gain at the output

of the beamformer, which is ratio of the weighted signal correlation to the weighted

noise correlation can be expressed in terms of the correlation matrices as

AG = 10 log
aHRsa

aHRna
. (5.12)

From (5.12), it is evident that an accurate assessment for the AG depends on the

estimates of Rs and Rn. For signals in uncorrelated noise with variance σ2
n, the noise

covariance matrix Ru
n = σ2

nI, and (5.11) resolves to

Ru
xx = v(θ)E

{
s[n]sH [n]

}
vH(θ) + σ2I, (5.13)

where the superscript u denotes uncorrelated noise.

However in correlated ambient noise, the directionality of the noise cannot be

ignored. Hence, the steering vector is applicable to the noise as well as the signal.

Thus, similar to (5.1), the equation for the received signal can be expressed as

x[n] = v(θ)s[n] + vn(θ)n[n], (5.14)

where the subscript n differentiates the steering vector vn(θ) of the correlated noise

from that of the desired signal. Thus, for correlated noise

Rc
xx = E{xxH} = E

{(
v(θ)s[n] + vn(θ)n[n]

) (
sH [n]vH(θ) + vH

n (θ)n[n]
)}

. (5.15)

where the subscript c denotes correlated noise. Following the same derivation in

(5.13), Eq.(5.15) can be resolved into

Rc
xx = v(θ)E

{
s[n]sH [n]

}
vH(θ) + vn(θ)AvH

n (θ)σ
2, (5.16)

where A is a square matrix of the spatial correlation values, such that A → I for

uncorrelated noise. In (5.16), we can write Rc
n = vn(θ)v

H
n (θ)Aσ2 , while Rs =

v(θ)E
{
s[n]sH [n]

}
vH(θ) in (5.13) and (5.16).

From (5.16), it can be implied that the received signal at an array depends on the

steered response of the signal as well as the steered response of the correlated noise.
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Note that it was established in Section 4.6, that the instantaneous directionality of

the noise could vary as a function of time. This also suggests that the AG may vary

temporally. Therefore, the instantaneous AG in (5.12) for signals in uncorrelated

noise expands into

AGu = 10 log
aHv(θ)E

{
s[n]sH [n]

}
vH(θ)a

aHaσ2I
, (5.17)

while for signals in correlated ambient noise,

AGc = 10 log
aHv(θ)E

{
s[n]sH [n]

}
vH(θ)a

aHvn(θ)AvH
n (θ)σ

2a
. (5.18)

Eq. (5.17) and (5.18) can be further resolved by computing the eigen-value decom-

position (EVD) of Ru
xx in (5.13) and Rc

xx in (5.16), so that insights can be provided

about the impact of the correlated matrix A on the AG.

From (5.13) and (5.16), the EVD of matrix Rs can be expressed as Rs
vs = λm
vs,

where 
vs and λs are the eigenvectors and the corresponding eigenvalues of Rs respec-

tively. From the properties of EVD [?], the eigenvalues of Ru
xx in (5.13) are λn + σ2

and the eigenvectors remain unchanged across the elements of the array. However,

from (5.16), the EVD of Rc
xx depends largely on the EVD of matrix A. The eigen-

decomposition of A may be written as A
vn = λn
vn. The eigenvalues λn of A are

unique acrosss the array elements, and for an M -element array, there are M indepen-

dent eigenvectors whose directions are unique. In fact, as indicated in [?], λn will take

on large values at some noise observations, while the values will be smaller at other ob-

servations. The author also demonstrated that the SNR of correlated isotropic noise

differs from that of uncorrelated noise and the signal processing requires a different

approach.

The comparison between OAN and uncorrelated AWGN stems from the fact that

noise in UWAC systems are often assumed to be AWGN. As discussed in chapter1 and

2, this assumption underestimates the impact of OAN on the UWAC system. Hence,

the rest of the analysis developed in this chapter, compares OAN with uncorrelated

AWGN samples.

In summary, since the directionality of OAN varies spatially and as a function of

time, the AG will also varies as a function of time. This is primarily due to the spatial
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correlation property of the noise, which is related to the change in the instantaneous

directionality of the noise [4]. Also, the correlation property of OAN impacts the

AG measured at spatial arrays. This observation contradicts the assumption that

ambient noise impacts the performance of an UWAC link similarly to AWGN. To

further strengthen this analysis, the AG of measured and synthetic ambient noise is

evaluated computationally in Section 5.1.4.

5.1.4 Impact of Noise Spatial Correlation on the Array Gain – A

Computational Approach

In the previous section, the impact of the spatial correlation on the AG was demon-

strated analytically. Also, knowing fully that the correlation property of OAN is

related to the directionality of the noise samples, it is important to closely examine

the impact of noise directionality on the AG. Therefore, the impact of noise direc-

tionality on the AG is demonstrated computationally in this section. To this end, the

communication link described in Section 5.1.1 is applied.

The binary information signal is modulated using the binary phase-shift keying

(BPSK) and transmitted over a single tap channel. At the receiver, OAN is added.

The impinging angle of the received signal is assumed to be known at the receiver,

so that the array response is calculated from (3.17) where 0◦ ≤ θ ≤ 180◦. The spatial

weighting vector as that maximizes the AG in the direction of the impinging signal

is computed from the RLS algorithm described in Section 5.1.2 using the linear FIR

structure.

At the output of the spatial receiver, the symbols are demodulated. The er-

ror vector magnitude (EVM) between the soft decision and the demodulated signal

is calculated and the output SNR is obtained from SNRout = −20 log(EVM/100).

The AG is obtained by subtracting the input SNR (SNRin) from th SNRout i.e.

AG = SNRin − SNRout. Through simulation, the input SNR is set to 3 dB to as-

sess the effect of noise on the signal at a relatively low SNR.

The AG is computed when the signal of interest is processed in AWGN, in mea-

sured noise as well as using synthetically generated ambient noise from DBM and

CBM. It is expected that in AWGN, the AG is approximately equal to 10 log n ≈ 7 dB

∀ θ since the directionality of AWGN is the same in all look directions.
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Figure 5.2: Array gain of signals processed in AWGN and DalComm1 noise. The
bandwidth is 240 Hz and fc = 2048 Hz.

The elevation angles are represented with respect to the center of the array, such

that the negative angles are measured from the center of the array to the seabed,

and the positive elevation angles are measured from the center of the array to the sea

surface.

The following observations are made about the computed AG shown in Fig. 5.2:

• The AG ≈ 7.0 dB ∀ θ when the information signal is processed in AWGN. Note

that the smoothness in the flat spectrum of AWGN is related to the FFT av-

eraging window. Similarly, the moderate variations in the value of the AG in

AWGN are attributed to the frame duration used to in the simulation setup in

Fig. 5.2. In comparison, in presence of measured DalComm1 noise, the AG of

the STF varies over about 8 dB as a function of the elevation angles.

• The AG in DalComm1 noise is maximum at broadside (i.e 0◦) and minimum

between 30◦ and 70◦. This observation is expected since the directionality of

DalComm1 noise shows that the noise power is maximum between 30◦ and 70◦

and minimum at broadside, as in Fig. 4.17. It is also observed that the AG at

broadside is about 2.7 dB greater than in AWGN.
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• For synthetic DalComm1 noise computed from the CBM, the AG moderately

deviates with about 2 dB gain at broadside.

• A more drastic deviation of the AG is observed from the synthetic DalComm1

noise computed from the DBM.

There are two different conclusions from this section. First, the AG computed for

signals in CBM generated noise closely compare with the measured ambient noise from

the DalComm1 experiment. The deviation observed in the AG of DBM generated

ambient noise is associated with the brute force approach that was used to validate

the directionality of the noise fields as discussed in Section 4.3.1. It is expected that

the AG will closely compare with the empirical noise if a more refined methodology

is used to match the directionality of the noise field in the DBM method. Second,

the assumption that the spatial property of OAN compares with that of an AWGN

has been further verified as inaccurate by evaluating the spatial AG at a VLA. It

is established that the AG of OAN depends on the noise directionality which varies

spatially and temporally. The impact of ambient noise on the BER is discussed in

Section 5.1.5.

5.1.5 Impact of Ambient Noise on BER

Having established in Section 5.1.3 and Section 5.1.4 that the directionality of OAN

has an impact on the spatial AG, in this section, first, the impact of the directionality

of OAN on the BER is described, and second, a frame structure that optimizes the

BER of an UWAC link is characterized through simulations.

The same model of the communication link described in Section 5.1.1 is applied

in this section. The BER is computed in the different noise scenarios – AWGN,

measured and empirical DalComm1. The optimum space-time weighting vector ast

is computed from the matrix inversion algorithm for the linear FIR STF structure.

The matrix inversion algorithm is preferred in the simulations in this section, so that

the optimum weights that mitigate the noise can be computed across the elements of

the array.

The filter is trained for a sufficiently long period using a subset of the noise frame.

Then the the rest of the frame is applied as payload symbols over which the BER
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is computed. The BER is computed after the entire noise (measured or synthetic

DalComm1) time-series is processed. The filter is re-trained at each repetition of the

received frame so that an optimum weight is obtained for each transmitted frame. The

filter performance is evaluated at quite low SNR values because of the gain provided

by applying multiple sensors at the receiver.

BER in a Noise Corrupted Channel

First, to confirm the accuracy of the simulated STF, the BER is computed for signals

processed in a free-space environment and in the presence of AWGN. The BER is

compared with standard theoretical values for BER in AWGN for BPSK modulated

signals obtained from the analytical expression 0.5erfc(
√
M 10(SNRin/10)). To allow

convergence, the training sequence is 1024 symbols, while the payload sequence is

1024 symbols. From Fig. 5.3 [15], it observed that the simulated BER values closely

compare with the theoretical values.

Figure 5.3: BER of signals processed in AWGN (i.e. sim) and compared with theo-
retical BER values for BPSK modulated signals in AWGN.

Further, the BER values were obtained for signals processed in measured Dal-

Comm1 noise as well as the synthetic noise processes computed from DBM and

CBM. From Fig. 5.4, it is observed that the BER values for a single receiver el-

ement in measured DalComm1 compare closely with theoretical values in the low
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SNR regime. However, when multiple elements are combined, a BER improvement

is observed at low SNR: specifically for M = 3, the SNR is improved by 1.2 dB to

obtain a BER of 10−3, while for M = 5, the SNR is lower by about 2.0 dB to obtain

a BER of 10−3. The BER worsens significantly at higher SNR values (greater than

0 dB), albeit at a low BER of about 10−5. The BER deterioration is attributed to the

changes in the noise process, since the received frames are repeated multiple times so

that a set error threshold is achieved before computing the BER. Frame repetition is

a well-known method for evaluating the BER of a communication link [15]. Unlike

the stationary noise process in AWGN, OAN process yields properties which are may

only be stationary within certain durations [?].

Figure 5.4: BER of signals processed in measured DalComm1 noise and compared
with theoretical BER values for BPSK signals in AWGN. The bandwidth is 240 Hz
and fc = 2048Hz

From Fig. 5.5b, for signals processed in synthetic DalComm1, a close match is

observed in the BER for the noise process obtained from the CBM in the low SNR

regime. However, contrary to the BER deterioration observed in empirical DalComm1

noise, the BER in CBM-generated noise converges. This suggests that the noise

statistics does not temporally vary as in the measured DalComm1 noise. Hence, the

BER does not fully compare with the measured DalComm1 noise. It is also observed

that the BER in DBM-generated noise does not compare with that of the empirical
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noise.

Although different properties of the synthetically generated noise (from DBM

and CBM) described in this work have been validated against measured noise, the

deviation in the BER is attributed to the temporal variations in the measured OAN

which is attributed to the variations produced by events at the sea surface due to

wind.

These results demonstrate the limitations of the CBM to represent time-varying

noise. Although the time-varying noise properties of OAN is not modeled in this

work, the approach described in [?] for generating wind noise with defined temporal

statistics in mobile communication devices is suggested to further improve the CBM

for generating OAN.

Having established that the statistics of OAN varies temporally and has an impact

on the BER, next, an optimum frame structure is defined for signals processed in

measured DalComm1 noise. Also, note that the rest of the analysis in this chapter

are based on the measured DalComm1 noise and compared with AWGN.

(a) DalComm1 from DBM (b) DalComm1 from CBM

Figure 5.5: BER simulation scenarios for signals processed in synthetic DalComm1
noise process using: (a) The DBM, and (b) The CBM. The bandwidth is 240 Hz and
fc = 2048Hz.

5.1.6 An Optimum Frame Structure in OAN

In this section, a frame structure that maximizes the BER in measured OAN is defined

computationally.
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Having shown that the BER in OAN diverges when multiple frames of the commu-

nication signal are averaged over time, it is desirable to establish a time constant over

which the BER of the communication link can be optimized. To define a frame struc-

ture that optimizes the BER in an UWAC link, frames containing the information

signals with varying training lengths, and varying payload lengths are transmitted in

a simple free space channel. As will be demonstrated, both the training length and

the payload length can be optimized when processed in OAN.

First, the input SNR is set at 2 dB to ensure the impact of ambient noise can

be assessed by the STF. The filter is trained at different intervals equal to 2, 3, 4,

and 5 seconds, and the minimum payload duration is one second which is equivalent

to 240 symbols. Using the training sequence, at the receiver, the weights ast are

obtained by using the Wiener-Hopf’s filter, as described in (5.4). Then, the payload

is applied to the STF weights obtained during the training. To ensure consistency

in the simulation scenarios, the BER is computed after the entire measured noise

time-series is processed and a maximum number of errors equal to 1000 is achieved.

(a) (b)

Figure 5.6: (a) BER as a function of payload duration using the STF in measured
DalComm1 noise. (b) BER as a function of training lengths for a fixed payload length
at 3 seconds. The bandwidth is 240 Hz, fc = 2048 and the input SNR is 2 dB.

Fig. 5.6a shows the BER as a function of payload duration for the different training

lengths. It can also be observed that increasing the payload duration produces a

small degradation in the BER. The degradation is attributed to the fact that the

noise spatial statistics changes over this short time period. Also, from Fig. 5.6b, it



125

is observed that the filter must be trained for at least 4 seconds to converge to a

reasonable BER. This is expected, since a longer training period will allow a better

averaging, and it should be noted that 4 seconds corresponds to 960 training symbols

(recall that the transmit signal is band-limited to 240 Hz). As the training length

increases beyond 4 seconds, the BER stays relatively constant or even suffers a small

degradation. Hence, it is suggested that the training length be set at 4 seconds and

the filter should be retrained after about 4 seconds to optimize the BER.

Figure 5.7: BER in AWGN using a Wiener-Hopf STF for different array size M . The
bandwidth is 240 Hz and the SNR of 2 dB with five receivers.

To validate the impact of the ambient noise process, the BER is also evaluated in

AWGN. From Fig. 5.7, it is observed that contrary to the observations in measured

DalComm1 noise, the BER converges after about 7 seconds of training sequence and

stays relatively constant at a mean value of 3.4303× 10−5 at an input SNR of 2 dB.

This is the expected value from the theoretical BER expression 0.5erfc(
√
M10(SNR/10))

in BPSK, where M = 5 and SNR = 2dB.

5.2 A Space-time Filter in Realistic Deployment Conditions

In the previous section, the impact of noise has been demonstrated assuming an ideal

signal. The analyses that have been presented thus far also exclude the impact of

the multipath reflections in the propagation channel. In this section, the impact of

OAN as well as that of the multipath channel is analyzed by using a robust coherent
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receiver. The STF structure is enhanced with a decision-feedback and a robust space-

time filter with hypothesis testing is developed in this section.

5.2.1 The Decision Feedback Equalizer

Recall that the equations that characterize the STF with a linear structure have been

discussed in Section 5.1.2 and the same have been used to evaluate the impact of

noise in an UWAC link. The computational complexity of the linear SFT increases

in severe multipath conditions, because the number of filter taps becomes excessively

large. As such, in this section, alternative filter structures are applied for a reliable

signal detection.

The decision feedback equalizer (DFE) is a well know filter structure. Using the

DFE, once an information symbol has been detected and a hard decision has been

made, the ISI that it induces on the future symbols can be estimated and subtracted

out before the detection of future symbols. Thus, the DFE is a great solution for

estimating the equivalent impulse response of a channel. The DFE can be realized

either in the transversal form or as a lattice filter [9]. The direct form of filtering

consists of a feedforward filter and a feedback filter, where the feedback filter is driven

by the symbol decisions at the output of the feedforward filter. Thus, the feedback

coefficients can be adjusted to cancel out the ISI in the current symbol at the DFE

i.e. the past detected symbols from the feedforward filter.

Following the same derivation in Section 5.1.2, the DFE has K ′ feedback filter

taps and the output of the combined filter structure can be expressed as

y[n] =
M−1∑
m=0

N2−1∑
k=−N1

xm,k[n− k]a∗
m,k +

M−1∑
m=0

K′−1∑
k′=0

b∗
m,k′y[n− k′], (5.19)

where b∗
m,k′ represents the feedback weights of length K ′ at sensor m. The filter struc-

ture depicted in Fig. 5.8 combines the feedforward taps with length K = N1 +N2 + 1

and feedback taps with length K ′ at the symbol rate, for a single receiver. Note that

this filter structure is extended for an array of multiple elements yielding a space-time

DFE.

Following a similar description as in the feedforward weights, the weighting vector

of the feedback filter at sensor m is bm = [bm,0 bm,1 . . . bm,(K′−1)]
T and the space-time
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Figure 5.8: Tapped delay line filter structure with both feedforward and feedback
taps.

weights across the elements of the array is bst = [bT
0 bT

1 . . . bT
(M−1)]

T . The DFE is

incorporated into a coded coherent filter which is described next.

5.2.2 Decision Feedback Equalizer with Hypothesis Feedback

A DFE for coherent UWAC was first described in [29] to implement coherent trans-

mission. Direct-sequence spread spectrum was added to the communication link in

[30], so that a similar code division multiple-access (CDMA) technique that has been

used in RF communication is applicable for an UWAC link. The enhanced system

with spread spectrum technology was later applied for low-SNR regimes in [31].

In a direct-sequence spread spectrum system, the signals from different spreading

codes are considered to be transmitted from different users. Typically, a single-user

scheme is used at the receiver due to its low complexity. A single-user receiver uses the

knowledge of the spreading code at the transmitter to detect only the desired user’s

signal. It is typically comprised of a de-spreader that is matched to the spreading code,

followed by a decision device. Adaptive single-user receivers have also been shown to

be robust against multipath ISI. Therefore, the DFE receiver applied in this section is
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robust in mitigating ISI, and because the equalizer weights are continuously adapted,

it can track variations of the channel as well as the noise variations as a function of

time. The spread spectrum added to the communication system also helps to improve

the tracking ability in presence of multipath and noise [15].

Figure 5.9: Fractionally spaced DFE enhanced with a spread spectrum code.

The same model of the communication link described in Section 5.1.1 is used in

this section. The acoustic receiver is centered at 2048Hz, while the transmit signal is

bandlimited to 240Hz.

5.2.3 The Single-element Hypothesis Feedback Equalizer

The equalizer structure that is applied for a single receiver element is shown in Fig. 5.9.

A detailed development for the filter is described in [30], while a succinct description

of the equations that characterize the filter is provided in this section.

At the transmitter, a baseband equivalent Quadrature Phase-Shift Keying

(QPSK) modulated symbols is generated. There are four possible hypotheses:

1,+1j,−1,−1j for the QPSK modulation. At user i = 1, . . . , I, the spread spec-

trum duration is T = LTc, where L is the processing gain of the system, Rc = 1/Tc is

the chip rate and R = 1/T is the symbol rate. The spread information sequence at

the i-th user is di(k) such that

ui(t) =
∑
k

di(k)g(t− kTc). (5.20)
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where g(t) is the transmitter pulse, k = nL+ l and l = 0, . . . , L− 1. Let the infor-

mation symbol transmitted at time nT be denoted by Di(n) and the codeword at the

i-th user be pi(l). Then, the spread sequence at the i-th user is

di(k) = Di(n)pi(l). (5.21)

The signal ui(t) is passed through a multipath channel and the received signal from

all the users combined with the the additive noise is

r(t) =
I∑

i=1

hi(t)ui(t− τi)e
jθ(t) + n(t), (5.22)

where h(t) is the CIR and n(t) is the additive noise, and the boldface n distinguishes

the noise from the time index.

The DFE in Fig. 5.9 relies on a feedforward equalizer that cancels the post-cursor

ISI and a feedback equalizer that cancels the pre-cursor ISI i.e. the ISI in the past

detected symbol from the feedforward filter. The feedforward filter’s sample rate Ts

is twice the signature chip rate Tc, i.e. Ts = Tc/2. A phased correction can then be

applied before the filtering operation at the receiver. In the application described

in this work, a coherent detection is assumed such that the phase correction can be

excluded. To maintain causality, the received signal is delayed by N1 samples, such

that at time index n, the feedforward filter input is

r(n) = [r(nTc +N1Ts) · · · r(nTc −N2Ts)]
T , (5.23)

The feedforward weighting coefficients can be arranged in a vector

a = [a−N2 · · · aN1]
T , so that the output produced at each symbol interval excluding

the carrier phase update is

pn = a · rT . (5.24)

Similarly, the feedback filter input consists of the K ′ previously detected symbol

decisions, i.e. ŝ = [s1 · · · sn−K′ ] and its weighting coefficients are b = [b1 · · · bK′ ]. The
output of the feedback filter can therefore be expressed as
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qn = b · ŝT , (5.25)

and the combined filter coefficient w = [aT bT ]T is obtained jointly by using an RLS

filter. The RLS algorithm that updates the filter coefficients was described in Sec-

tion 5.1.2. The RLS forgetting factor that accommodates the time variations in the

channel is set to λ = 0.98. Also, the equations that describe the phase detector and

its update mechanism that tracks the channel phase fluctuations have been presented

in [29].

A hypothesis is made on the transmitted information symbols. For QPSK de-

modulation, four tracking hypotheses are implemented – one for each possible sym-

bol. The reference for each spreading code is the spread spectrum signature at the

transmitter, weighed by the symbol hypothesis. For each hypothesis value of Di(n),

the corresponding chips are fed back into the filter, and an estimate of the current

chip is made. The chip estimates are used for de-spreading and a symbol decision is

made after integration over all the signature chips. A minimum Euclidean distance

detector is used to make the best decision. The filter coefficients that lead to the

symbol decision are retained to initiate the detection of the next symbol.

5.2.4 An Enhanced Multi-element Receiver Structure

In this Section, the DFE is enhanced to account for multiple elements at the receiver

to improve the reliability of the UWAC link. The advantage of using multiple elements

at the receiver is two-fold – power gain and diversity gain.

The architecture of the space-time receiver is shown in Fig 5.10. The multi-element

DFE is an enhanced structure of Fig. 5.9 which includes a feedforward equalizer, a

decision feedback filter (described in Fig. 5.8) as well as a phase-locked loop (which

is excluded in this work). Thus, the output of the filter are regulated by the same

equations as described in Section 5.2.3. However, the feedforward filter inputs are

organized to include the input window from multiple hydrophones. The output from

each of the four hypotheses is integrated at all the elements of the receiver before the

chip decision is made. As indicated in Section 5.2.1, the DFE is useful for time-varying

environments. For, this purpose, the DFE updates the weights at the convergence

rate of the RLS filter, while a phase-locked loop can be used to maintain carrier and
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clock recovery.

Figure 5.10: A space-time equalizer using multiple hydrophones at the receiver.

Receiver Performance in a Realistic Environment

The performance of the hypothesis DFE using an array of sensors is characterized

for signals processed in a frequency flat channel and in multipath conditions. To

this end, the QPSK signal is transmitted over a five-tap time-invariant channel with

h[n] = [1 0.7 0.5 0.1 0], and its BER is compared in the presence of AWGN and mea-

sured DalComm1 noise. The feedforward filter size is N1 + N2 + 1 = 9 taps, the

feedback filter is of length K ′ = 4 and the processing gain L = 2 throughout the

simulations.

Fig. 5.11 shows the simulation scenario in which the communications signals are

processed in a flat fading channel. Fig. 5.11a shows the computed feedforward and

feedback weights for the first 10,000 symbols, while Fig. 5.11b shows the BER for

M = 4 computed when the signals are processed in AWGN and empirical DalComm1

noise. From Fig. 5.11a, by updating the filter coefficients at each symbol, it is observed

that the filter weights converge quickly so that the BER can be evaluated.
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Also, it is observed that the BER improves compared to the theoretical AWGN

values for BPSK signals. The comparison between the simulated BER in AWGN

and the theoretical values also confirm that the multi-element DFE with hypothesis

testing is able to provide diversity gain. For signals processed in measured DalComm1,

compared to the BER in Fig. 5.4 where the BER diverges at higher SNR values, the

hypothesis testing DFE is able to converge the BER to reasonably lower values at

higher SNR.

(a) DFE weights (b) BER in AWGN

Figure 5.11: a(i) =⇒ the feedforward weights, and a(ii) =⇒ feedback weights; com-
puted for a four-element array (i.e M = 4) in a frequency flat channel. (b) =⇒ the
SNR versus BER of the hypothesis testing DFE for signals in measured DalComm1
noise and in AWGN.

Fig. 5.12 shows the second simulation scenario in which the signal of interest is

transmitted through a multipath channel and noise is added at the receiver. Fig. 5.12a

shows the weights computed for the DFE, while Fig. 5.12b shows the BER for signals

processed in a multipath channel and the additive noise is AWGN and empirical

DalComm1 noise.

Just as in the single tap channel (i.e frequency-flat), it is observed that the hy-

pothesis testing DFE provides diversity gain even in multipath conditions. It is also

observed that the feedback weights provide an equivalent estimate of the channel tap

gains. Further, the filter structure is able to make the BER converge at higher SNR

values.
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(a) Adaptive weights in multipath channel (b) BER in multipath channel

Figure 5.12: a(i) =⇒ the feedforward weights, and a(ii) =⇒ feedback weights;
computed for a four-element array (i.e M = 4) in a time-invariant multipath channel.
(b) =⇒ the SNR versus BER of the hypothesis testing DFE for signals propagated
through a multipath channel and processed in measured DalComm1 noise and AWGN.

It is noteworthy that the multi-element DFE with hypothesis testing is tested by

constantly updating the filter coefficients at the symbol rate. The constant update

maximizes the link performance against the temporary variations in the noise channel.

Not shown, but it is expected that the filter will also provide an improved performance

in time-varying multipath channels.

From these observations about OAN compared with AWGN, it can be concluded

that the performance of an UWA receiver in OAN is different when compared in the

presence of uncorrelated white Gaussian noise. In fact, both metrics – the AG and the

BER, which are the most commonly used figure of metrics for characterizing UWA

receivers do not agree with the usual assumption that noise in an UWA receiver is

uncorrelated in space and/or time. To optimize the UWAC link in the presence of

OAN, the filter weights must be re-trained to adapt to the temporal variations in the

statistics of OAN.

5.3 Mitigating the Impact of Ambient Noise in a Measured Channel

In this section, the impact of measured OAN is evaluated for communication signals

in measured DalComm1 channel. The CIR is obtained from the post-processing of the
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propagation channel measurements described in Section 4.2. Recall that the channel

profiles for DalComm1 were shown in Section 2.3. Particularly, the channel profile

over the 10 km range depicted in Fig. 2.5 is applied in this section.

To this end, the communication signal is simulated as described in Section 5.1.1.

The signal is propagated through a snapshot of the 10 km CIR, such that the CIR

is time-invariant. The measured OAN from DalComm1 is added artificially at the

receiver such that the communication link is representative of a realistic environment.

The DFE characterized by (5.19) is applied to mitigate the impact of the channel

distortion and noise.

Figure 5.13: A snapshot of the CIR for a 10 km propagation range, obtained from
the DalComm1 measurements.

A snapshot of the CIR is depicted in Fig. 5.13. It is observed that the rms delay

spread is about 63 ms. The CIR is normalized so that there are six tap gains with

significant energies. Across the M -element array, it is also noteworthy the channel

is sparse with zero values in the channel profile across the array elements. This

observation is typical in the UWAC channel, making it more challenging to mitigate

the impact of the channel on the information symbols.

To compare the BER performance of the multipath signal in the presence of
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measured noise and AWGN, the DFE is trained using 1024 symbols and the payload

length is also 1024 which is approximate a 4 second duration. A total of 106 payload

symbols are transmitted and the BER is computed at each input SNR value. Note

that the simulation conditions are exactly the same when the multipath signal is

processed in measured DalComm1 noise and in AWGN.

From Fig. 5.14, similar to the observation in Fig. 5.4, the BER computed by using

one receive element closely compare for signals in AWGN and DalComm1 noise.

However, for M = 3, the SNR is improved by 1.2 dB to obtain a BER of 10−1, while

for M = 5, the SNR is lower by 2 dB to obtain a BER of 10−1. Also, the BER

worsens significantly at input SNR values greater than 16 dB. This also confirms that

the statistics of OAN changes when averaged over time and can impact the BER

performance of an UWAC receiver even in multipath conditions.

Figure 5.14: The BER of signals processed in DalComm1 propagation conditions.
The CIR is computed from the 10 km range and measured DalComm1 noise (DC) is
applied.

In summary, the assertion that OAN impacts the performance of an acoustic

receiver differently compared to AWGN has been further strengthened even when the

signal is propagated through a sparse multipath channel. In fact, just as stated in



136

[?], an UWA channel model that excludes the impact of ambient noise can be highly

inaccurate. It is suggested that the discrepancy between UWAC systems performance

in actual ocean deployments compared to the models can be attributed to the bias

introduced by a wrong assumption that the OAN channel is uncorrelated noise in

space and time.

Thus far, the impacts of noise that excludes impulsive or transient sources (due to

vessel) have been described. In Section 5.4, the impact of vessel noise on the spatial

AG is discussed.

5.4 Mitigating the Impact of Vessel Noise in UWAC

Noise interference emanating from vessels are often present during underwater acous-

tic measurements especially with the increase in shipping activities in recent times.

Vessel noise overwhelms communication signals and make the decoding quite cumber-

some or impossible. This problem is particularly apparent in harbours, and near the

littoral, where communication link may be corrupted for example by fleets of vessels,

and fishing boats passing in close proximity of the sensor.

In a recent work [?], deep learning was applied to mitigate shipping noise in an

UWA OFDM system. The results showed that the deep learning framework is more

efficient in lower bandwidths where shipping noise samples are more correlated than

in the higher bandwidths. Also, in [?], it was noted that most algorithms that have

been developed for mitigating transient noise (particularly shipping noise) rely on the

statistical knowledge of the noise process to achieve accurate estimation of the noise.

The author also noted that there are currently little or no work available in literature

on mitigating impulsive noise interference emanating from nearby shipping activity.

Several authors [3, ?, ?, ?] have demonstrated the impact of impulsive noise on

UWAC links, but developing robust receivers that are able to mitigate vessel noise

remains an arduous task. Hence, mitigating the impact of shipping noise in UWAC

cannot be overemphasized, even in OFDM systems as demonstrated in [?, ?].

Thus far in this chapter, the communication link has been modelled as narrow-

band, so that the impact of OAN can be evaluated pertinently over a narrow spectrum

of 240 Hz. However, since the spectrum of vessel noise could extend over a very wide
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bandwidth, the communication system discussed in this section is modelled as wide-

band. Therefore, in this section, the signal of interest is modeled by a chirp signal.

The chirp signal is representative of a broadband signal which has been proposed for

UWAC applications. In some wideband UWA applications, chirp signals are desirable

because they exploit the low Doppler sensitivity as well as their great autocorrelation

properties especially in applications where either the source or the receiver are in

motion [?, ?]. In fact, recently, Orthogonal Chirp Division Multiplexing has been

studied as an alternative to OFDM, because of its resilience to Doppler shift [?].

The chirp signal is simulated such that it’s duration can be approximated to the

spatial snapshot duration of the ML-BF in Section 3.5. Recall that the each spatial

snapshot of the measured acoustic pressure from CANAPE and ADEON occupies

4096 points and the original sampling frequency is 1.6 kHz. However, in this section,

the noise recording is bandlimited to 1000 Hz and at a centre frequency of 1000 Hz.

Hence, the chirp signal occupies a bandwidth of 1 kHz and duration of 0.25 seconds.

As discussed in Chapter 3, narrowband beamformers can be applied in wideband

applications by dividing the system’s bandwidth into sub-bands in which beamform-

ing algorithms can be applied. In fact, in Chapter 3, the ML-BF was applied for

estimating the bearing of vessels that within a few hundreds of meters to an acoustic

array. In this section, the MVDR beamformer is developed as a viable algorithm

applied to reduce the noise contribution emanating from a vessel, by placing nulls in

the direction of the interferer (vessel) even in wideband conditions in an UWAC link.

Hence, three simulation scenarios are defined to demonstrate that the wideband

beamformer can be applied to mitigate vessel noise in wideband UWAC systems.

Note that the methodology developed in this section is for demonstration purposes

only.

Simulation Scenarios

To demonstrate the beamforming approach, first, an MVDR beamformer is applied

to mitigate a narrowband interference source depicted through simulation by a single

tone at 2.25 kHz arriving from a direction d(θ, φ) = [56◦, 0◦], where θ is the azimuth

and φ is the elevation.
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In a second scenario, the MVDR beamformer is applied for mitigating multi-

ple interfering sources received as plane waves from three different impinging angles

d1(θ, φ) = [64◦, 0◦], d2(θ, φ) = [32◦, 0◦] and d3(θ, φ) = [10◦, 0◦] at the receiver. In these

simulation scenarios, the chirp signal is normalized to a unit power.

In a third scenario, the MVDR beamformer is applied over a wide bandwidth

to mitigate the noise emanating from ADEON’s vessel. The noise recording is ban-

dlimited to 1000 Hz at a centre frequency of 1000 Hz and added to the chirp signal

which is the synthetic signal of interest with an impinging angle of 90◦ with respect

to the plane of the array. The vessel is treated as a directional source of interference

with a known bearing, since the directionality of the vessel was already estimated in

Chapter 3. Hence, the instantaneous bearing of the vessel computed in Chapter 3

is applied in this simulation. This section is limited to the ADEON array since the

sonar interference in CANAPE significantly distorts the accuracy of the beamformer.

The four spatial elements of the ADEON array are applied in this section. This is pri-

marily due to the fact that the same elements were used to compute the directionality

of the vessel in Chapter 3.

At the beamformer, the system bandwidth is divided into 64 equal sub-bands and

the MVDR was applied in each sub-band. The spatial weights are computed using the

sub-band MVDR such that nulls are placed in the estimated direction of the vessel.

The simulation was developed using the Phased Array toolbox in Matlab. The array

gain of the MVDR beamformer is computed from [17]

AG = vHρ−1
x v, (5.26)

where v is the steering vector, the normalized spectral matrix ρx = RxxPn, the su-

perscript H is the hermitian operator, Rxx is the covariance matrix of the received

signal and Pn is the input noise power.

Demonstration of the Wideband Beamforming Technique

In the first simulation scenario, the beamformer nulls a single tone interference with

frequency 2.25 kHz arriving from d(θ, φ) = [56◦, 0◦]. Fig. 5.15b depicts the first simu-

lation scenario with a single tone interference which was combined with an input noise

at −7 dB. The signal power is normalized to unity. It can be observed from Fig. 5.15b



139

that the beamformer nulls the interferer whose bearing is from 56◦. Similarly, the

chirp signal was recovered with an output AG of 11.7 dB as shown in Fig. 5.15a.

(a) (b)

Figure 5.15: (a) The input and output of the MVDR beamformer for signals processed
in AWGN. (b) The beam pattern at the output of the MVDR beamformer showing
that a null was placed at a single tone 2.25kHz interference sine wave impinging at
[56◦, 0◦] for a signal processed in AWGN.

In the second simulation scenario, the chirp signal is received alongside three

sources of interference combined with noise at an input SNR of −30 dB as depicted

in Fig. 5.16b. It is observed that the sources of interference measured as plane waves

at the array are nulled in the 10◦, 32◦ and 64◦ respectively. Similarly in Fig. 5.16a,

the signal of interest is recovered with an AG of 18 dB. This observation shows that

the wideband MVDR beamformer is able to mitigate multiple sources of interference

in wideband conditions. Note that the array response showed in Fig. 5.15b and

Fig. 5.16b depict just five frequency bands out of the full system bandwidth. This

is done to avoid cluttered plots which makes the results harder to interpret. These

frequency bins are rendered in the rest of the results discussed in this section.

Beamforming Application for Vessel Noise Mitigation

In the third simulation scenario, the wideband MVDR is applied to process the chirp

signal while the source of interference is the measured vessel noise from the ADEON

experiment. The four elements of the ADEON array are applied in this section to



140

(a) (b)

Figure 5.16: (a) The input and output of the MVDR beamformer for a chirp signal
processed in AWGN and multiple interferers (plane waves). (b) The beam pattern
at the output of the MVDR beamformer showing that nulls were placed at in the
direction 10◦, 32◦ and 64◦ of the interferers.

mitigate the impact of the vessel noise on the chirp signal. The measured vessel noise

is processed over K snapshots as described in Section 3.5. After bandlimiting the

noise, each snapshot of the time series occupies a window of 512 points (i.e. about

0.25 seconds) in which the beamformer is applied.

It is observed from Fig. 5.17b and Fig. 5.17d that the beamformer is able to place

a null in the direction of the vessel from 42◦ and 132◦ at discrete time intervals. A

second null (at about 48◦) is observed in Fig. 5.17d, suggesting that multiple energy

peaks are present at this time. Also, Fig. 5.17a and Fig. 5.17c show a gain of about

18.4 dB and 5.6 dB respectively, measured at the output of the beamformer.

Fig. 5.17b represents the time when the vessel was relatively approaching the

array, while at the snapshot at Fig. 5.17d represents the vessel while traveling away

from the array. This observation can also be confirmed in Fig. 3.15. Although the

specific range of the vessel at these discrete snapshots are not accurately known (as

described in Section 3.6.4), by visually inspecting the power spectrum of the time

series or by an audio inspection, it can determined whether the vessel is close to the

array or not.
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(a) (b)

(c) (d)

Figure 5.17: Fig. (a), (c) shows the beamformer input and the recovered signals at
the output of the beamformer, while Fig. (b), (d) shows the beam pattern for vessel
noise impinging at 42◦ and 132◦ respectively.
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In this section, with a prior knowledge of the directionality of a vessel, it is demon-

strated that the wideband beamformer is able to improve the quality of the received

signal significantly. The beamformer was able to achieve a gain of about 18 dB when

the vessel is at a relatively close distance to the array.

5.5 Chapter Summary

The contributions in this chapter are in three parts. First, are the computational

analyses of the impacts of OAN compared to that of AWGN in an UWAC link.

Second, is the design of a space-time decision feedback equalizer combined with spread

spectrum technology used to improve the communication reliability over an array of

receivers. Third, is the description of a beamforming technique that is applicable for

mitigating vessel noise in a broadband UWAC link.

To summarize, the impact of ocean ambient on an UWAC system has been demon-

strated in this chapter. First, it has been shown that the AG and the BER of signals

processed in OAN do not compare with that of AWGN. It has also been shown that

defining an optimum frame structure that is able to adapt to the temporal variability

in OAN is key to maximizing the link reliability. The accuracy of the noise models

described in this work has been tested in an UWAC receiver. Furthermore, a DFE

with hypothesis testing applied for an array of receivers has been been developed. It

was demonstrated that this receiver structure is able to mitigate the impact of OAN

even in realistic deployment conditions where the signal is propagated with multipath

reflections. Finally, a wideband MVDR beamformer has been applied to mitigate the

impact of vessel noise in a broadband signal. A summary of the research developed

in this dissertation is presented in Chapter 6.
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Conclusion

In this work, three different contributions have been presented on the central theme

of OAN. First, the directional properties of OAN have been characterized through

acoustic source localization. Second, two distinct models have been developed to

characterize the properties of ambient noise. Third, the impact of ambient noise on

an UWAC receiver has been analyzed. The methodologies developed in this work

have been applied to actual acoustic measurements derived from three different ex-

periments – CANAPE, ADEON and DalComm1.

In the first contribution, a ML beamformer has been applied to demonstrate the

directional property of OAN. A combination of the ML-BF and the CB-MFP has been

applied to track the course of vessels from measured acoustic data. Measured noise

from the CANAPE and ADEON experiments were used to characterize the ability of

these algorithms to estimate the bearing and range of the vessels to the arrays. The

AIS positions reported on CANAPE’s vessel have been compared with the results

from the acoustic processing. Although, there were insufficient data points obtained

from the AIS, it was demonstrated that the AIS also detects a vessel in the vicinity

of the array. Also, it has been demonstrated that the limitation of the CB-MFP is

constrained on the ability of the array to capture sufficient interference pattern, which

is determined by the elemental separation of the VLA.

In the second contribution, two distinct methodologies – the DBM and the CBM

have been developed to model the properties of ambient noise. The DBM relies on

the knowledge of the directionality function of the noise field, while the CBM relies on

the knowledge of the coherence function at any pair of spatial sensors. Either method

is applicable to characterize the noise properties depending on the application and

whether the noise directionality or the coherence is known. However, it was found

that in an UWAC system, the CBM is better applicable when using the array gain

as a figure of merit to characterize the system performance. Both methodologies do

143
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not perfectly compare with the BER analysis in measured DalComm1 noise. It is

proposed that the noise models be optimized by including temporal variability in the

noise statistics.

In the third contribution, the impact of ambient noise on an UWAC system was

verified. The assumption of uncorrelated OAN in an UWAC link was verified as

inaccurate and the impact of the directionality of OAN in a narrowband commu-

nication system was established. It was established that for a 5-element array, the

STF must be trained for at least 4 seconds to achieve convergence in the presence of

space-time ambient noise. Also, to achieve a relatively constant BER, the STF must

be retrained after approximately 4 seconds, since as the payload duration becomes

excessively long, the BER degrades, although marginally due to the temporal change

in the space-time noise properties.

Furthermore, a STF that is able to mitigate the multipath channel distortion as

well as OAN in realistic conditions has been described. Finally, a wideband beam-

former was proposed at the receiver to mitigate the impact of vessel noise on an array

of receivers. It was established that the beamformer can achieve up to about 18 dB

gain in the presence of vessel noise. It was also noted that just as in the estimation of

the vessel’s directionality, the performance of the beamformer will be degraded when

the vessel is in a close proximity to the array.

Overall, this work demonstrates that naturally occurring ambient noise sources

can impact the reliability of an UWAC link. It is proposed that the UWAC chan-

nel propagation model must include the impact of ambient noise to achieve a high

reliability, especially in noisy environments where low power transmission is also a

requirement. More importantly, the impact of OAN even in narrowband conditions

has been evaluated. Therefore, the findings from this research can be applied in

narrowband subcarrier system.

The author hopes that the results from this research enlightens the UWAC com-

munity about the impact of OAN on the UWAC link. It is highly recommended

that the design of narrowband UWAC system and even narrowband subcarrier sys-

tems must consider the impact of directional ambient noise to achieve optimum signal

detection at the receiver.
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