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ABSTRACT

Winter Extratropical Cyclones (ETCs) are mid-latitude storms that regularly impact the

east coast of North America. These storms are characterized by high winds and heavy

precipitation (rain, snow, and ice). ETCs are well predicted by NWPs at short- to mid-range

forecast lead times (up to 5 days) however, on seasonal time scales these storms are not

well predicted. The goal of this thesis is to first understand and then predict the seasonal

variability of winter ETC activity along the east coast of North America. It begins with

creating a dataset of ETCs from ERA5 mean sea level pressure. After calculating the

climatology, the spatio-temporal variability of the dataset is analyzed to draw out the

dominant patterns and trends. The covariability between storms and regional atmospheric

variables is then examined to look for large scale forcing patterns. Those relationships form

the basis of a set of storm type-specific multiple linear regression prediction models. This

set of models is applied in a probabilistic forecast framework that predicts characteristics

of the winter season experienced in Halifax, Nova Scotia, Canada.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Extratropical cyclones (ETCs), also known as mid-latitude cyclones, wave cyclones, or

baroclinic disturbances, threaten life and property in eastern North America every winter.

Hurricane-force winds can down power lines, mixed precipitation can cause treacherous

road conditions, storm surges can flood coastlines, and countless homes can be snowed in

as these powerful synoptic-scale low pressure systems tear through a region. Fortunately,

not every storm passing through has these extreme consequences. In fact, all ETCs are

climatically critical for horizontal heat, momentum, and moisture transport (Edmon et al.,

1980). System characteristics, intensity, and impacts vary from storm to storm and from

winter season to winter season. In the last decade, insured damages from winter storms in

the US adjusted for inflation have ranged between 684 million in 2012 to 4.4 billion in

2015 (Insurance Information Institute, 2021). This variability is a proxy for the combined

effects of variability in storm frequency and intensity from season to season.

Furthermore, variations in the usual precipitation type brought by storms in different

winter seasons cause very different impacts. For example, in Halifax, NS, the 2000 winter

season had more than 150% of the average amount of snowfall and only 80% of the average

rainfall. Compare this with the 1994 season that only had about 40% of average snowfall

and 110% of average winter rainfall to see the differing impacts of winter season variability.

A season with many snow storms will require larger budgets for road maintenance, while

a season with more freezing precipitation storms may have a higher number of traffic

accidents due to the poor road conditions. A season characterized by rain storms may cause

flooding issues, while a winter of many high wind storms is likely to cause power outages.
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From 2003-2012 approximately 80% of all power outages were caused by extreme weather

events making storms the leading cause of outages (Kenward and Raja, 2014).

Extreme weather events often have the power to cause injury and loss of life, and

mid-latitude cyclones are no exception. Deaths may occur through direct impacts such as

falling trees which can crush victims, but more often fatalities result from secondary effects.

The most common cause of winter storm related deaths is traffic accidents which occur

due to poor road conditions, followed by heart attacks experienced when shoveling snow

and hypothermia (NOAA National Severe Storms Laboratory, 2021). Power outages are

likely to increase the severity of all risks present during storms by increasing the difficulty

of contacting emergency services and adding higher risk of hypothermia while awaiting

medical attention.

ETC tracks and impacts are typically well predicted by numerical weather prediction

(NWP) models and operational forecasters on time scales of a few days. Prediction on this

time scale is crucial for emergency preparedness and human safety, however a seasonal

forecast would provide the opportunity for more extensive planning, preparation, and

damage mitigation in the months leading up to the storm season. Thus, I set out to better

understand and quantify the seasonal variability that exists and attempt to quantify the

predictability to develop a winter season forecast for ETCs so our communities can be

better prepared for whatever mother nature has in store each winter.

1.2 Background

On the scale of individual systems, ETCs are dynamically forced by synoptic scale

atmospheric processes. However, to understand the forcing and effects of baroclinic storms

collectively in the climate system, we must take a broader viewpoint. These complementary

perspectives allow us to follow the story from the movements of an individual parcel within

a storm through to the global circulation of the atmosphere. This section provides context

for the role of storms in the global atmosphere, works its way down to individual storm

dynamics, and ties in the climatology and variability of winter storms in the northwestern

Atlantic. The potential predictability of the ETC field and previous efforts to forecast

seasonal mid-latitude winter storm activity are also discussed.
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1.2.1 Role of ETCs in the climate system

Extratropical cyclones are an integral piece of the global atmospheric circulation pattern,

particularly meridional transport (Edmon et al., 1980). Without meridional transport of both

energy and momentum, the atmosphere as we currently observe it would be unbalanced.

Shortwave and longwave radiation at the surface of the earth (Fig. 1.1) indicates that in the

Tropics the net surface incoming solar energy (shortwave radiation) is much greater than

the net emitted radiation (longwave radiation). Conversely, at the poles there is less energy

emitted (longwave) than gained from the sun (shortwave). In the absence of any other

transfers, this would cause the temperature in the tropics to increase and the temperature at

the poles to continually decrease until some new equilibrium was reached. However, in

reality the annual mean temperature at both the tropics and the poles does not exhibit such

behaviour and is relatively stationary (climate variability notwithstanding). A poleward

transfer of energy is required to explain the observed latitudinal temperature distribution.

Ocean circulation is responsible for some of this energy transport (estimated about 40 %;

Talley (2003)). However, atmospheric circulations are responsible for the majority of this

poleward flux (Edmon et al., 1980).

Figure 1.1: Meridional distribution of radiation (Pidwirny, 2006). Zonal average net
surface shortwave radiation (blue) and longwave radiation (red). Shortwave radiation
surplus shaded in yellow and deficit shaded in green.

On average, the atmosphere must conserve its angular momentum to maintain the

consistently observed mid-latitude westerlies and tropical easterlies. At lower latitudes

3



where there are prevailing easterly winds, the angular momentum of the atmosphere

(Matm) is less than the solid earth (Mearth). Therefore, where they are in contact, the solid

earth transfers momentum to the atmosphere. Conversely, at mid- to high-latitudes where

the prevailing winds are westerlies, the atmosphere has greater angular momentum than

the earth. Therefore, where they are in contact, the earth receives angular momentum

from the atmosphere. In both cases, surface friction acts to decelerate the prevailing

easterlies or westerlies. However, we observe that the upper level winds maintain their

speed, rather than decreasing over time. In order for the winds to maintain their observed

speed, there must be an atmospheric flux of angular momentum poleward. This transfer

takes momentum from the tropical atmosphere (accelerating the easterlies) and gives it

to the atmosphere at mid- to high-latitudes (accelerating the westerlies) to balance the

deceleration caused by surface friction (Fig. 1.2).

Figure 1.2: Conceptual diagram of momentum fluxes in the meridional plane. Blue arrows
show the transfer of momentum between the earth and atmosphere (from higher momentum
to lower momentum) and the atmospheric momentum transfer that allows upper level
winds to maintain their velocity.

The atmosphere transfers momentum and energy poleward through fluxes within mid-

latitude cyclones. These transfers can be observed on aggregate over a season, but the

amount of energy and momentum transferred poleward by an individual baroclinic distur-

bance makes a great enough contribution that on a single day in the life cycle of a storm

the transfers are large enough to be observed (Edmon et al. (1980), their Fig. 3). Thus, the
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general circulation of the atmosphere depends on mid-latitude baroclinic storms to weaken

the meridional temperature gradient through vertical heat fluxes and to accelerate the

tropical easterlies and mid-latitude westerlies through meridional momentum fluxes. These

eddies force the residual meridional circulation which transfers energy and momentum

poleward, thereby maintaining the balance of the atmosphere.

1.2.2 Energy partitioning in the atmosphere

The four box model of energy in the atmosphere (Fig. 1.3) represents the reservoirs or states

of energy and the transfers between them. To understand the development, propagation,

and decay of extratropical cyclones, it is important to analyze the forms of energy in the

atmosphere and their variation in time (Chang and Fu, 2002). Energy in the atmosphere

exists in two forms: kinetic energy, which is energy related to motion, and potential energy,

which is static.

The potential energy of the atmosphere is due to a combination of gravitational potential

energy and internal energy. Dynamics and thermodynamics in the atmosphere transfer

energy between kinetic and potential energy which allows these energy pools to vary in

time. However, there are physical limits to the amount of energy that can be in either

form at a given time. Because of the configuration of the atmosphere, zero gravitational

potential energy cannot be achieved, as it would require that the entirety of the atmosphere

be contained at the surface. Similarly, zero internal energy cannot be achieved since an

atmospheric temperature of absolute zero cannot be reached on the Earth. Therefore, the

atmosphere must have a minimum potential energy level, below which values cannot be

reached. Only potential energy in excess of this lowest potential energy state is available

for conversion into kinetic energy and is, accordingly, called available potential energy

(APE; Lorenz (1955)). The study of ETCs is concerned with kinetic energy and transfers

into and out of this form, thus the potential energy of interest for the understanding of

storm track dynamics is specifically APE. Considering the time mean atmosphere, the

main states of energy are a mean background state and the eddy state which consists of

energy that is anomalous from the mean state. That is to say that within the total kinetic

energy in the atmosphere (KE), energy can be pooled into the mean state kinetic energy

(MKE) and as some perturbation from that mean, the eddy component, being the eddy

kinetic energy (EKE). As with kinetic energy, APE in the atmosphere can be partitioned

into the climatological mean state (MAPE) and the eddy available potential energy (EAPE).
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Thus, the traditional 4-box model is developed to describe the transfers of energy in the

atmosphere among these partitions of MAPE, EAPE, MKE and EKE (Fig. 1.3).

Figure 1.3: Schematic of the 4-box model of the energy cycle in the atmosphere. Energy is
partitioned into mean kinetic energy (MKE), eddy kinetic energy (EKE), mean available
potential energy (MAPE), and eddy available potential energy (EAPE). The energy of the
mean state is the sum of MKE and MAPE and the total eddy energy (TEE) is the summ of
EKE and EAPE.

The total eddy energy (TEE) describes the energy related to atmospheric disturbances.

Transfers to and from this pool describe how energy is moved between the mean state and

storms. The time averaged energy budget for total eddy energy is given in the following

equation from Orlanski and Katzfey (1991):

∂

∂t
TEE =

αm
θm

v′θ′

dθ̃/dp
·∇θm − (v′ · v′ ·∇Vm)− Vm ·∇TEE + ωα− v′ ·∇φ′ (1.1)

The first term on the RHS describes the flux due to baroclinic instability occurring

around the time of storm genesis, which is associated with transfers between MAPE

and EAPE. The second term, describes the (negative) flux of energy due to barotropic

conversion as the storm decays. It relates to transfers between MKE and EKE. Additional

terms not shown include dissipative loss by mechanical dissipation and diabatic sources

and sinks of EAPE. The remaining terms are related to the advection and propagation

of total eddy energy describing the redistribution of eddy energy which occurs as the

storm evolves between genesis and decay. The first and second term describe how the

energy used in storm processes relates to the mean state. Energy is transferred from the
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mean state into eddy energy by the first term. This term incorporates the vertical and

horizontal temperature gradients (dθ̃/dp and∇θm), and the flux of anomalous temperature

by the anomalous wind (v’θ′). This highlights the importance of temperature gradients and

advections in the transfer of energy from mean to eddy available potential energy which

occurs at lower mid-latitudes. Through the third collection of terms, energy is redistributed

within the pool. Energy is transferred back to the mean state from eddy energy in the

second term. This term can be interpreted as Reynolds stresses when averaged (Orlanski

and Katzfey, 1991). This describes how friction and turbulent motion causes storms to spin

down and return their energy to the mean state, a transfer that occurs at higher latitudes.

Thus, storms transfer energy (both momentum and temperature) poleward to maintain

balance in the atmosphere.

1.2.3 Primary drivers of ETCs formation and development

The primary energy source of extratropical cyclones is baroclinicity. A baroclinic zone is a

region where density varies with both temperature and pressure, causing isopycnic and

isobaric surfaces to be unaligned. Baroclinic zones can be located in areas of temperature

advections, i.e. where isotherms intersect with isobars on a horizontal surface. Baroclinic

zones are also found in regions of strong horizontal temperature gradients, i.e. where

isotherms are tightly packed. Even if the orientation matches that of the isobars, the 3D

constant temperature and constant pressure surfaces will intersect to create misalignment.

A region of strong temperature gradient where isotherms also cross the isobars is a

combination of the two types of baroclinic zones described above. This is where the

strongest baroclinic zones are commonly found. Not all baroclinic zones give rise to ETCs.

There must also be some mechanism that causes upward motion to initiate the surface

low. Most commonly, this is divergence at upper levels. The most common forcings of

upper level divergence are positive vorticity advection at upper levels and ageostrophic

circulations around upper level jet maxima. When upper level divergence occurs over

regions of baroclinicity, advections are initiated which form fronts in a rotation around

the surface low pressure centre that forms below the upper level divergence. Thus an

extratropical cyclone is formed. The system continues to deepen until the upper level

support is lost at which point the thermal wave breaks off from the low pressure centre, the

low transitions from having a westward tilt with height to become vertically stacked, and

convergence occurs at all levels filling the low and causing it to dissipate.
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1.2.4 Climatology and variability

Not surprisingly, most ETCs are found where upper level support from the mechanisms

of baroclinic instability is strong. They tend to form under the right entrance and left exit

regions of upper level jets, on the lee side of mountain ranges, and on the east side of upper

level troughs i.e. regions with strong upper level divergence. ETCs are also found along

the east coasts of mid-latitude continental landmasses, regions of consistent temperature

gradients with partial meridional orientation i.e. regions of strong baroclinicity.

In North America, high ETC frequency is found on the lee side of the Rocky Mountains,

over the Great Lakes, and along the east coast, particularly northeastern USA and Atlantic

Canada (Fig. 1.4; Varino et al. (2019); Hoskins and Hodges (2002); Plante et al. (2015)).

Storms on the lee side of the Rockies are forced by increased vorticity as air flows over

the mountains which leads to upper level divergence. For much of the winter season, the

Great Lakes region is a baroclinic zone due to water surface temperatures being warmer

than surrounding surface land temperatures. Due to the lee troughing caused by the

Rocky Mountains, the Great Lakes region is often located under the east side of an upper

level trough providing upper level divergence to trigger ETC genesis in the Great Lakes

baroclinic zone. The east side of this upper level trough also frequently sets up over eastern

North America supporting ETC genesis along the coastal baroclinic zone.

The winter extratropical cyclone field in the Northwest Atlantic varies by individual

storm characteristics, overall storm frequency, and typical storm paths both intraseasonally

and interannually (Chang and Fu, 2002; Hoskins and Hodges, 2019; Varino et al., 2019;

Grise et al., 2013). General storm track orientation tends to be northeastward, latitudinal,

or slowly moving to the point of being quasi stationary (Blender et al., 1997). Individual

storm characteristics that vary include lifetime, minimum central pressure, precipitation

rates, and deepening rates which have been found to differ spatially and temporally (Gulev

et al., 2001; Frankoski and Degaetano, 2011). Spatial and temporal storm frequency has

been shown to vary in relation with ENSO (Plante et al., 2015) and NAO (Rogers, 1997).

The most extreme ETCs, rapidly deepening systems that undergo explosive cyclogenesis,

have been given the nickname bomb cyclones. To be considered in this category, the

deepening rate of a mid-latitude cyclone must be at least 12 mb in 12 hours, at 45◦N

(Sanders and Gyakum, 1980). These storms are forced similarly to less extreme ETCs.

However in bomb storms, the effects of some drivers are considerably larger than they
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Figure 1.4: Number of Oct-Mar ETCs/year (tracked by 850 hPa vorticity max; black
contours) and trends (colour) for 1980-2009 (Fig. 1d Varino et al. (2019)).

would be in a typical ETC leading to the observed rapid deepening of the system. The

drivers known to play a large role in the explosive deepening include latent heat release,

strong upper-level forcing, stratospheric intrusions of high potential vorticity air, strong

upper-level forcing, sensible heating (air-sea fluxes), and differential diabatic heating

which enhances baroclinicity (Wang and Rogers, 2001). Any particular bomb cyclone is

forced by a specific combination of these drivers with the dominant mechanism for rapid

development varying from system to system (Uccellini, 1990).

The majority of bomb cyclones in the area of interest track over the Atlantic Ocean

(Gulev et al., 2001; Sanders and Gyakum, 1980; Wang and Rogers, 2001). This common

track is collocated with regions of strongest differential diabatic heating, sensible heating,

and moisture (necessary for latent heat release) which are found along the coast and over

the ocean. Within the main Atlantic bomb storm track, Wang and Rogers (2001) identify

two subgroups of storm tracks. One track is located in the west near North America and

the other is in the east with storms that dissipate near Iceland. Variable characteristics in

the storm duration and deepening process exist between in the two regions which is tied to

differences in the forcing fields. Northeastern Atlantic bombs are shorter lived but more

violent than their counterparts in the northwestern Atlantic. From winter season to winter

season, the number of rapidly intensity Gulf Stream storms can vary by as much as 50%,
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however a 3-year running mean gives relatively consistent yearly storm numbers (Gulev

et al., 2001).

1.2.5 Developing storm track datasets

Any study of ETCs begins with developing a dataset of storms to study. This involves

some method of detection or identification of storm centres followed by tracking of these

centres through time. Prior to the computational era, this had to be done by hand. Storm

centres would be identified by analysing a field of atmospheric measurements and the

location of a system would be tracked through time on a map.

Modern detection and tracking makes use of computer algorithms to process atmospheric

fields and produce a dataset of storm tracks. A plethora of methodologies exist to complete

this task which are well explained and evaluated by Walker et al. (2020). There are

two main methods for detecting and tracking in ETCs: Lagrangian feature tracking and

Eulerian track identification. Eulerian track identification assesses activity in specific

fields through a synoptic scale bandpass filter (e.g. 2-6 days). This window only allows

activity on synoptic time scales to pass through thus isolating ETCs from the data. A

variety of fields may be examined to reveal mid-latitude cyclone activity. These include

500 mb geopotential heights (Blackmon, 1976), mean sea level pressure, meridional wind

at 850hPa, and relative vorticity at 850hPa (Hoskins and Hodges, 2002). The Eulerian

method has the benefit of computational efficiency and smooth output fields.

The Lagrangian method is a two-step process consisting of an identification step and a

tracking step. Identifying storm centres involves locating local extrema in an atmospheric

field. While atmospheric variables used to locate storm centres vary from algorithm to

algorithm, minima in mean sea level pressure (MSLP) and maxima in vorticity are the most

commonly used definitions of a storm centre (Walker et al., 2020). Once a feature has been

identified, it must be tracked through time and space. This issue, called the correspondence

problem (Post et al., 2003), presents another opportunity for variation in method. Some

algorithms use a nearest neighbour model which connects centres at adjacent time steps

based on proximity (Lakkis et al., 2019), while others employ a cost function (Massey,

2012). Smoothing and filtering techniques are often used to refine the dataset before

analysis begins. This primarily includes adding criteria for minimum duration or spatial

extent of the track (Hoskins and Hodges, 2019). Lagrangian tracking retains details about

each system at every time step. This gives the benefit of more detailed study because of
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the opportunity to explore multiple aspects of the storm activity e.g. rate of deepening. For

a more complete review of methods for developing ETC track datasets, refer to the review

done by Walker et al. (2020) mentioned previously or by Neu et al. (2013).

1.2.6 Predicting ETCs

Short term forecasting in the range of 2-3 days generally anticipates extratropical cyclones

well, although skill varies depending on the forcing (Deveson et al., 2002). The short-range

forecast is essential. It provides detailed information about the incoming system and allows

citizens to make necessary preparations. Unfortunately, some aspects of life related to

winter storms require more than a few days of preparations. Seasonal forecasting allows

for better resource planning. For example, government budgeting for snow removal and

orders for salt or sand to treat the road surfaces must be made in advance. Power grid

maintenance can also benefit from a seasonal storm forecast especially for high wind

storms. If a major wind storm season is expected, the power company can upgrade or

reinforce vulnerable sections of the grid to prevent extended outages during storm events.

The insurance industry can also benefit from seasonal outlooks on potential damages

caused by extratropical cyclones through a winter season.

Seasonal forecasts can also support short range forecasting and possibly extend lead

times or increase confidence. It is common for 3-5 day forecasts to have enough skill to

warn of an impending storm, but still have considerable uncertainty in the forecasted track

of a system. In atmospheric modelling, the uncertainty of an outcome can be conveyed

through probabilistic forecasting. The goal in such a forecast is to model or estimate the

probability density function of the output for the atmospheric feature of interest, rather

than forecasting a specific single value output. This becomes particularly useful when

the nature of the system being forecasted makes it difficult to predict exactly. Ensemble

forecasting is a common type of probabilistic forecast in which a model is run multiple

times with slightly varying parameters to produce a set of outputs that approximate the

probability density function of the forecasted outcome. When forecasting ETCs in the 3-5

day range, an ensemble forecast may indicate a high degree of uncertainty in the storm

track. A higher degree of uncertainty may also be inferred from a lack of NWP model

agreement or the presence of some confounding atmospheric phenomena. In the case of

a forecast with high uncertainty, especially with extreme events, it is common practice

among meteorologists to hedge toward the climatological mean. A good seasonal forecast
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could provide an alternative to the climatological mean with greater skill. Rather than

hedging toward the mean, hedging uncertain systems toward the expected seasonal mean

track or activity level may give more accurate short range predictions. Finally, seasonal

forecasts are of general interest to the public and can increase overall storm preparedness.

A skilled seasonal forecast can have positive impacts in many areas.

In contrast with ETCs, seasonal forecasting of Atlantic hurricanes is a well-established

field. The development of seasonal hurricane models has been lead by researchers at

Colorado State University for many years (Klotzbach and Gray, 2009). It began with

purely statistical modelling (Gray, 1984), and more recently, moved into the realm of

statistical-dynamical modelling (Klotzbach et al., 2020). In general, current seasonal

hurricane forecasts, such as the outlook produced by NOAA, are skillful and well trusted

by the general public.

Seasonal forecasting of ETCs trails behind that of hurricanes. Current seasonal ETC

forecasts are mainly derived from global circulation models (GCMs), empirical orthogonal

functions (EOFs), or teleconnections such as NAO and ENSO. The most influential

teleconnections for east coast winter storms are NAO and ENSO. While they show some

effects on seasonal activity, the combined variability explained by these predictors is still

small (DeGaetano et al., 2002). The most predictable area for seasonal ETC forecasting is

located in the North Pacific (Yang et al., 2015). Many studies have identified predictability

in this region (Feng et al., 2019; Yang et al., 2015; Befort et al., 2018). Windstorms near

Europe have also been predicted with some skill (Befort et al., 2018). Most models fail

to skillfully predict storms in the western North Atlantic (Befort et al., 2018; Yang et al.,

2015; Feng et al., 2019). In addition, the majority of models are characterized by generality.

The spatial extent of the prediction area is large, there is little spatial nuance added in the

forecast, and little to no information about precipitation typing or other storm impacts

is included. One existing model for extratropical cyclone prediction which specifically

focusses along the US coast was developed by DeGaetano et al. (2002). It produces skillful

forecasts of overall seasonal storm activity, but does not add detail around the expected

storm types. The prediction efforts of my research will therefore focus on building in

details about impacts and forecasting storms in areas where GCMs and other prediction

models have limited skill: the east coast of North America.
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1.3 Objectives

With the overall goal of this thesis being to develop a seasonal ETC forecasting system for

storms in the northwest Atlantic, I’ve identified three primary enabling objectives:

• Develop a method to detect and track storms that occur within the region of interest;

• Determine a storm track climatology and interannual variability including links with

regional climate drivers and impacts; and

• Develop a statistical seasonal forecast model of east coast extratropical cyclones

using predictors identified above.

Each objective builds on those preceding it to culminate in the development of a regionally

specific probabilistic forecast of the characteristics of storm track activity for the northwest

Atlantic over an upcoming winter season. Each of the objectives map on to an individual

thesis chapter.

Chapter 2 details the storm tracking algorithm, with particular attention to the choice of

parameters and pre- and post-processing techniques. These are the steps used to fine-tune

the dataset of tracks to be representative of the phenomena this work aims to describe,

understand, and ultimately predict. Case studies are included to demonstrate the algorithm

outputs.

Chapter 3 validates the dataset by evaluating the climatology of storm track density over

the region between 25◦N and 70◦N and between 110◦W and 0◦. The full storm dataset

is evaluated as well as subsets of storms based on temporal and intensity differences. A

study of interannual variability follows by means of empirical orthogonal functions (EOF)

analysis and self-organizing maps (SOMs). The clustering of the SOMs is used to connect

regional climate drivers and effects of ETCs with variability in the storm field.

Chapter 4 develops the framework of a probabilistic winter season ETC forecast. This

model is regionally specific to Halifax, Nova Scotia, Canada. After refining the set of

predictands, the development process steps through a skill-based selection of predictors,

model fitting, and validation. The final section of this chapter applies the model outputs

in a practical probabilistic forecast designed specifically to provide useful, accessible

information to the general public.
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The efforts of this endeavor are reviewed in a final discussion chapter, which ties together

the individual pieces of this work, places it in the context of the broader field of ETC study

and applies the proposed probabilistic forecast to the practical field of meteorological

forecasting on shorter and longer time scales.
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CHAPTER 2

DETECTION AND TRACKING

The study of extratropical cyclones typically begins with a dataset of such storms. While

datasets of ETCs are not widely available, extensive high-resolution datasets of mean sea

level pressure are publicly accessible. Since ETCs are low pressure systems they can be

identified and tracked using these fields. In this Chapter, the steps taken to turn sea level

pressure fields into an extensive storm track dataset are explained.

2.1 Data

As in numerous other ETC studies, the storm data used in this study is derived from

the outputs of an atmosphere reanalysis. Reanalysis data from the European Centre for

Medium-Range Weather Forecasts Reanalysis v5 (ERA5) hourly single levels data from

1979 to present is obtained (Hersbach et al., 2018b). The variable used is mean sea level

pressure, as in Massey (2016), at a temporal resolution of 3 hours, starting at 00:00 UTC.

The grid spacing of the model is 0.25 degrees. Data was obtained between 25◦N and 70◦N

and between 110◦W and 0◦ (Fig. 2.1). In this study, the extended winter storm season

is defined as November 1 of the first year to March 31 of the following year. Data was

obtained from November 1 of 1979 to March 31 of 2019. In total this is 40 winter seasons.

The convention used when naming a season is to call it by the year in which it began. For

example, the 1979 season spans the period of time from November 1, 1979 to March 31,

1980.
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Figure 2.1: Study area for storm detection and tracking (outlined in red).

2.2 Storm Tracking Algorithm

There are two popular methods for detecting and tracking in ETCs: Lagrangian feature

tracking and Eulerian track identification. The many implementations of these methods are

reviewed well by Walker et al. (2020). Eulerian storm track identification uses bandpass

filters to highlight activity in fields such as vorticity, MSLP, meridional wind, and geopo-

tential heights on synoptic timescale (typically 2-6 days; e.g. Hoskins and Hodges (2002)).

The variability that occurs in fields that are closely related to ETCs on such time scales

can be attributed to the passing of an ETC through the region. This method captures the

impacts of large and small storms alike and naturally aggregates the storm activity into a

single field. The Lagrangian track identification process involves identifying an individual

storm centre, which may be defined as a minimum in MSLP or positive vorticity maximum,

at its genesis and then tracking the storm centre through time (e.g. Catto (2016)). The

Eulerian method is useful for visualizing a smooth, overall picture of the storm field. The

Lagrangian method is useful to observe characteristics of individual storms and investigate

different subsets of the data such as storms with genesis in a particular region, storms that

have certain length or size, or storms that cause specific effects (e.g. snow) at a given

location (Walker et al., 2020). The Lagrangian tracking method was chosen for this study.
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The principles of the storm tracking algorithm used here originate in the eddy tracking

algorithm developed by Chelton et al. (2011) as applied by Oliver et al. (2015) which has

been adapted here to track atmospheric storms.

2.2.1 Detection

Storms are detected in a mean sea level pressure (MSLP) field that was smoothed with

a Gaussian filter with a 1-degree radius to remove noise. The pressure field comes from

the ECMWF ERA5 hourly reanalysis dataset which has a 1
4

◦ grid spacing. The data is

available hourly, however I used 3-hour temporal resolution for detection and tracking to

reduce computational costs. At a single point in time the algorithm loops through a series

of critical MSLP levels from highest to lowest. The array of critical MSLP levels begins at

1048 mb and goes down to 920 mb at decrements of 4 mb. At each level, the MSLP field

is separated into grid cells with values above the critical level and grid cells with values

below the critical level.

Storms are then identified as contiguous regions of pixels below the critical level that

meet the following criteria:

i. There is at least 1 local minimum (i.e. a viable storm centre).

ii. There are at least 9 pixels and not more than 6000 pixels within a region.

A minimum of nine pixels is necessary in order to have a central pixel that is not

also an edge pixel. Without an upper limit on the number of pixels that can make

up a storm, the algorithm would identify the entire input field that is below the first

critical level as one storm. On a 1
4

◦ x 1
4

◦ grid, a grid cell at 45◦N is 560 km2 so an

area of 6000 pixels corresponds to 3.36x106 km2 or roughly the area of a circle with

diameter of 2000 km. A synoptic system in the mid-latitudes typically has a length

scale on the order of 1000 km (American Meteorological Society, 2020).

iii. The relative amplitude of the storm is 100 Pa.

The relative amplitude is defined as the difference between the outermost pressure

contour of the storm and its central pressure. Requiring that this value is least 100

Pa eliminates any very weak low pressure regions that might have been detected.

The value is based on the relative amplitude threshold used in Chelton et al. (2011)

of 1 cm of sea surface height which corresponds to 1 hPa of atmospheric pressure. I
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chose not to include an absolute threshold for the central pressure because it has the

potential of removing storms in their genesis and decay stages from detection.

iv. The distance between any pair of points is no more than a maximum value that

is calculated based on the area of the storm.

The area of a storm is defined as the total area within the outermost closed SLP

contour that encloses the identified storm centre. Extratropical cyclones generally

have a shape best approximated by an oval. If we assume the storm takes on the

shape of an oval with a specified eccentricity, then given the measured area we can

calculate the furthest distance apart that any two points in that system should be.

This distance is the threshold value. Varying this threshold changes what features

are detected as storms. For example, using a threshold that is too high (e.g. 0.98)

allows storm centres that are minima in transient features rather than centres of

an organized system to enter the dataset. Using a threshold that is too low causes

storms that are not circular enough in shape to be discarded. Knowing that the tail

of a typical, comma-shaped ETC can extend quite far from the storm centre, we

need to be careful regarding the extent to which the eccentricity is restricted. The

eccentricity threshold affects storm centre detection (Fig. 2.2). The detection step

was run five times with different eccentricity thresholds, and a different set of centres

was detected on each run. One can see how using the highest threshold, 0.98, causes

the detection of areas that are not true storm centres. The lowest threshold, 0.80, fails

to detect any centres that are not nearly circular. If the measured furthest distance

between two pixels within the storm exceeds the threshold distance calculated from

the eccentricity threshold, this tells us that the area identified is likely an elongated

region of contiguous low pressure, rather than an organized storm system. If the

algorithm fails to detect a true storm feature because it is contained within an

unconventionally shaped area, it will be detected at a lower critical sea level as the

algorithm continues.

After a storm is identified, the location of its centre is recorded along with the date and

time. The pixels comprising the storm are then removed from consideration at all lower

critical MSLP levels to avoid double detection.
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Figure 2.2: Variation of storm centre candidate locations resulting from different distance
thresholds. The MSLP field (algorithm input) is contoured at 4 hPa intervals and detected
storm centres are marked with points. The detection step was run five times with different
eccentricity thresholds ranging from 0.8 to 0.98 (legend). Marker colour indicates the
eccentricity of the model run during which that storm centre was detected.

2.2.2 Tracking

Once possible storm centres have been identified at each timestep, they are stitched together

across time to form tracks. For each storm centre at time t, the algorithm looks for a storm

centre at time t+ 1 within a radius of 240 km. This works out to a maximum propagation

speed of 80 km/h. If there is one storm centre found at time t+ 1 within a 240 km radius

of the time t location, the time t+ 1 and time t storm centres are stitched together as part

of a track. If multiple centres are detected, the closest one to the time t location is chosen.

If no centres are found, the storm is considered to be terminated. The details of the storm

are then saved and no further timesteps can be added to its track. Once the storm track

dataset had been created for the whole study period, track locations were interpolated to

hourly resolution.

2.2.3 Pre- and Post-processing

As previously stated, the mean sea level pressure (MSLP) field is smoothed by a Gaussian

filter with a 1-degree radius prior to detection and tracking. Smoothing levels were tested

ranging from 0 (no smoothing) to 5 degrees. Across all smoothing levels, the shape of
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Figure 2.3: Effect of input field smoothing on time series of algorithm-detected winter
storms. Number of storms in each Nov-Mar storm season from MSLP input fields with no
smoothing and smoothing by Gaussian filter with radius of 1-5 degrees.

the timeseries of storm counts per season remains relatively unchanged (Fig. 2.3). The

mean number of storms detected per season decreases overall with increased smoothing.

However, in a handful of seasons the total number of storms at a higher smoothing

level exceeds the number of storms for a lower smoothing level (e.g. 1982 season - no

smoothing: 340, 1 degree: 348). The correlation coefficients among the six timeseries

range from 0.6898 to 0.9203. The main storm track also retains its shape throughout the

smoothing processes (Fig. 2.4). These findings show that this smoothing does not remove

the dominant patterns of the variability in the dataset.

After the tracking is complete, the dataset is refined by removing storms that obscure

the signal we’re interested in. Specifically, storms are removed if they have:

i. Genesis north of 60◦N

This is implemented to cut out the signal from the Icelandic low, which is a persistent,

quasistationary climatological feature in the NH winter. The algorithm picks up

this feature as it is a strong minimum in MSLP. Since it exists in the same region at

almost every timestep through the winter, the track densities in this region greatly

exceed those at any other point in the study area thereby drowning out the other

important signals in the field. One possible solution to this issue would be simply

cutting the study area off south of the typical location of the Icelandic low, however
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Figure 2.4: Effect of smoothing of the input field on algorithm output. (a) Detected storm
tracks from unsmoothed spatial sea level pressure fields and from sea level pressure fields
smoothed using a Gaussian filter of (b) one, (c) two, (d) three, (e) four, and (f) five degree
radius.
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this would result in cutting off the end of many systems within the climatological

storm track causing loss of decay stage and termination-related information. Another

possible way to remove this feature would be to use a criterion that required a storm

to travel at least some minimum distance from genesis to termination, however I

chose not to use such a criterion to avoid possible issues that this restriction could

create for tracking stalled or very slow-moving systems.

Choosing to remove storms with genesis north of 60◦N separates the Icelandic

low tracks from the extratropical cyclone tracks. This methodology prevents the

Icelandic low from increasing the storm track density in that region, but retains the

contribution of extratropical cyclones that pass through that area.

ii. Duration less than 24 hours

This is a common practice used to remove very short term, noisy features that have

been picked up by the tracking algorithm (Hoskins and Hodges, 2002; Massey, 2012,

2016; Hoskins and Hodges, 2005; Hodges et al., 2003; Neu et al., 2013; Pinto et al.,

2016; Raible et al., 2008).

iii. Location above 1000 m Above Sea Level

Orographic effects on air circulations in mountainous regions create mesoscale low

pressure centres that differ from the larger ETCs which are the focus of this study.

For this region, the filtering removes all centres that are detected at a location where

the surface elevation is greater than 1000 m above sea level before the tracking

begins. Some of these leeward rotational features may develop into ETCs of interest.

However if they do, the algorithm picks them up once they are below 1000 m

elevation so they are not lost. Using this terrain filter removes the strong signal of

lows detected in the mountains that tends to drown out the activity of interest along

the climatological east coast storm track and secondary continental tracks.

2.3 Case Studies

The characteristics of individual storms as they are represented in the detection and tracking

dataset described above were evaluated in comparison with manual tracking of the same

systems based on observations. In general, the algorithm-derived storm tracks matched
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Figure 2.5: Complete 1979-2019 winter storm track dataset after applying all smoothing
and filters.

well with observed, manually created tracks. The results of this comparison for two

well-known storms are included below.

2.3.1 New Year Storm 2018

This storm caused major snowfall throughout the Northeastern States, New Brunswick and

Eastern Quebec. High winds also extended throughout Nova Scotia. Overall, this tracking

algorithm identifies the New Years Storm of 2018 well. Although there was a break early

in the storm track that caused this storm to be represented as two storms, its position and

duration were quite accurate. Comparing with observations from the Ocean Prediction

Centre, the central pressure of the storm recorded in the storm track dataset was within 10

mb of observations at all timesteps, and usually only a few millibars off.

2.3.2 White Juan 2004

In February 2004, the extratropical cyclone nicknamed White Juan hit the east coast of

Canada causing long lasting blizzard conditions, widespread areas of 2-3 feet of snow,

and extensive damage due to the high winds and heavy precipitation (Fogarty, 2004). The

observed track is much straighter than the track from the dataset, but the overall trajectory
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Figure 2.6: Comparison of algorithm representation of well-known winter storm tracks
with observations. Observed and algorithm-detected tracks (lower panels) and central
pressures (upper panels) of the New Years Storm 2018 (left) and White Juan 2004 (right).

is consistent. The central pressure has good agreement, especially at the lowest point

where the observation and dataset have a difference of less than 1 mb. This storm track,

as it was represented in this dataset, exhibited a hooking behaviour, travelling towards

and then away from the coast as it tracked to the northeast. Upon further investigation it

was confirmed that this was not an issue in the detection and tracking algorithm, it exists

in the ERA5 MSLP field. This does not appear in the observed storm track (Fogarty,

2004). It was determined that the level of smoothing that would be required to remove the

hooking would’ve smoothed out important features elsewhere in the dataset. Season-by-

season analysis by eye revealed only a handful of other tracks in the dataset exhibited such

behaviour, thus it was determined to be an insignificant issue which was not dealt with

further.
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2.4 Summary

The development of the dataset of extratropical cyclones for analysing climatology and

variability, and predicting future characteristics of storm activity was described in this

section. A Langragian feature tracking algorithm was adapted from an existing eddy

tracking algorithm (Oliver et al., 2015) to detect and track storm centres as minima in

mean sea level pressure fields. Adaptation of the algorithm required the optimization of

parameters for the specific purpose of detecting the characteristics of mid-latitude ETCs

in Eastern North America and over the North Atlantic Ocean. This included making

adjustments to both the detection and tracking portions of the algorithm. The resulting

storm track dataset was assessed and the need for further pre- and post-processing was

identified. Appropriate processing was added to refine the dataset of storms by removing

features that are not pertinent to this study. To verify that the storms in the dataset were

generally representative of real ETCs, specific storms were compared with observations

and manual tracking techniques. Two of these comparisons were shown in section 2.3. It

was determined that individual storms had accurate characteristics in terms of amplitude

and geographical positioning. This establishes the dataset that is the foundation for the

rest of this work. The climatology and variability of ETCs as they are represented in this

dataset will be studied in Chapter 3 which will form the basis of the ETC prediction study

in Chapter 4.
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CHAPTER 3

CLIMATOLOGY AND VARIABILITY

A dataset of extratropical cyclones has been developed and now the spatiotemporal features

present in this dataset are investigated. This begins with analyzing the number of storms

and the spatial distribution. These details are compared with other literature to further

validate the dataset. The climatology of monthly subsets of storms is then briefly explored

in addition to a subset of more extreme ETCs called bomb cyclones.

After establishing the climatology of the system, a variability analysis follows. Both a tra-

ditional statistical (empirical orthogonal functions) and machine learning (self-organizing

maps) approach are taken to tease apart patterns in both time and space. The identified

patterns in storm track variability are then compared with the variability of known drivers

and effects of ETCs to build a physical basis for the observed winter season to winter

season differences.

3.1 Data

3.1.1 Storms

The data used to analyze the climatology and variability of ETCs is the storm track dataset

detailed in Chapter 2. This dataset includes all storms that occurred during the winter

seasons of 1979 through 2018 in the eastern North America and North Atlantic region. In

total there are 7792 storms detected. The season with the most storms was the 1997 season

which totaled 221 storms (Fig. 3.1a). The least active season overall was 1992 with only

159 storms (Fig. 3.1a). On average, there are 194.8 storms per season. Each storm in this

dataset records its coordinates, central pressure, size, and the UTC time for each hourly

timestep of the storm.
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3.1.2 Atmospheric Variables

I compare the patterns identified within the storm field with a set of diagnostic atmospheric

variables. The specific variables are mean sea level pressure, 2 m air temperature, 1000-500

mb thickness (calculated from geopotential heights), total precipitable water vapour, wind

velocities at 250 mb and 10 m, 500 mb vorticity, hourly precipitation rates, and hourly

snowfall rates. The data used is ERA5 hourly data on single levels (Hersbach et al., 2018b)

and on pressure levels from 1979-2019 (Hersbach et al., 2018a). The spatial extent of this

data is restricted to the study area: 25◦N to 70◦N and between 110◦W and 0◦W.

3.2 Methods

3.2.1 Gridded Track Density

The storm tracks were gridded on a 1◦ x 1◦ grid. The value of a grid cell in the climatology

grid was increased by one each time the location of a storm centre from a unique storm

was located within the cell. In the dataset developed in the previous section, each track of

connected storm centres is considered one unique storm. The storms that passed through

the specific grid cell of interest were totaled over each season within the study period. In

order to ensure that a storm would not pass over a grid cell without recording a storm centre

location within it, the tracks were interpolated down to one hour which, given typical

storm speeds and the grid cell size, ensures a storm never skips over adjacent cells, where

adjacent is defined as sharing a side or corner. After the climatology grid was populated,

the total counts in each grid cell was divided by the area of the grid cell to account for the

meridional decrease in grid cell size. Therefore, each grid cell has units of storm counts

per square kilometre, which is referred to as storm density.

3.2.2 Climatology

A winter storm season climatology is calculated with the season defined as November 1 to

March 31 inclusive where the season is named by the year in which it begins (i.e. the 2015

season is Nov. 1 2015 – Mar. 31 2016). In addition, a monthly climatology is calculated

for each month within the winter season. For an individual month, the climatology is

determined by summing the storm count totals in that individual month over all seasons. To

ensure a storm that occurred in two calendar months was not counted twice in the monthly
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climatology analysis, it was stipulated that in order for a storm to contribute toward the

monthly storm total, it then must exist in that month for the majority of its lifetime.

Bomb cyclones or bomb storms are classified as systems that experience a central

pressure drop of 12 mb in 12 hours (Sanders and Gyakum, 1980). The rate of pressure

decrease was calculated for every 12-hour period over the storm’s lifetime. If there was

at least one 12-hour period over which the central pressure of the storm decreased 12 mb

or more, the storm was added to the bomb cyclone dataset. The climatology of bomb

cyclones was also calculated as a gridded track density according to the method defined

above.

3.2.3 Trends
To analyze long-term, temporal trends in storms, each grid cell was considered individually.

The gridding and averaging processes created an annual time series of seasonal storm

counts for each grid cell. Using this time series, a simple linear regression was executed

to determine the best fit trend line through the timeseries. The slope of this trend line in

each grid cell is shown in section 3.3.4. The significance of the slope is assessed using

a 90% confidence interval. For each slope calculation, the upper and lower bound of the

90% confidence interval are identified. If a slope of zero is within the range given by

the confidence interval, the null hypothesis cannot be rejected and the calculated slope is

considered not to be significant at the 10% significance level.

3.2.4 Empirical Orthogonal Functions Analysis
An empirical orthogonal functions (EOF) analysis decomposes a spatiotemporal dataset

into a set of statistically independent modes of variability. It has the potential to shed light

on predictability, as it gives spatial patterns with associated timeseries for each identified

mode (Monahan et al., 2009).

To use EOF analysis, as in Monahan et al. (2009), all grid cells in the field that do not

have any storms over the whole season are removed from consideration and then the storm

field is converted into anomalies. The anomalous storm count for a grid cell is calculated

as the difference in counts of storms in that grid cell from the mean counts of storms per

season over the whole field, Z ′x,y,t = Zx,y,t − ¯Zx,y. The anomalous storm field which is

a function of latitude, longitude, and time, Z ′(x, y, t), is then reduced to a space by time

field or N-dimensional vector timeseries, X(t) where N is equal to the number of active

grid cells in the spatial field.
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The empirical orthogonal functions of the anomalous storm field are defined as the

eigenvectors of the covariance matrix, C, of X(t). Given that C is a real symmetric NxN

matrix, its N eigenvectors form a complete orthonormal basis. One can thus at any time, t,

write the anomaly state vector, X, as a linear combination of the eigenvectors according to

X(t) =
N∑
n=1

αn(t)en, (3.1)

where en is the nth eigenvector and the coefficient αn is the projection of the anomalous

state vector at that time onto the eigenvector. Remapping the space dimension of the state

vector X back to latitude and longitude and by the same process mapping each eigenvector

onto latitude and longitude gives

Z(x, y, t) =
N∑
n=1

PCn(t)EOFn(x, y). (3.2)

where the nth principal component timeseries (PCn(t)) is the time series αn(t) and the

nth EOF spatial pattern (EOFn(x, y)) is the eigenvector en reshaped into dimensions of

latitude by longitude. The nth PC time series and EOF spatial pattern pair are together

called an EOF mode or simply a mode. Finally, the eigenvalue that corresponds to each

mode, λn, when divided by the sum of all eigenvalues, gives the fraction of the variance

explained by that mode, ρn:

ρn =
λn∑N
n=1 λn

. (3.3)

3.2.5 Self-Organizing Maps

Self-organizing maps (SOM) analysis is a machine learning technique with the primary

function of pattern sorting (Kohonen, 1990; Hewitson and Crane, 2002; Oliver et al.,

2018; Liu and Robert, 2011). When given a set of images or patterns, a SOM algorithm

identifies common themes within the set and sorts the inputs into groups that are similar.

Each of these groups is called a node. Similarities between groups are captured by the

node locations relative to each other. The node placement is not random. Each node bears

similarities to the nodes to which it is adjacent. The further apart two nodes are in the

arrangement, the less similar those groupings are. This set of related nodes is the “map”.

Thus, the storm counts fields self-organize into groups that have similar characteristics. I
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chose to run a 2 by 2 SOM which sorts the data into four groupings that are arranged in a

square formation so that a given node is more similar to the nodes directly adjacent to it

than to the node that is diagonal from it. I used the minisom package for python created by

Giuseppe Vettigli available on GitHub (Vettigli, 2018).

The main SOM input is the set of gridded seasonal totals of storm counts for each of the

40 seasons that occur between November 1979 and March 2019. These are the patterns

that the algorithm is tasked with sorting into 4 groups. The main SOM output is 4 lists of

seasons, one for each node, where the seasons within each list have similar characteristics.

To begin, each node is initialized as a vector or matrix that has the shape of the observa-

tion field. I initialize the weights of the nodes with the first four EOF modes determined in

the EOF analysis section (3.4.1). This gives the algorithm a starting point for sorting the

inputs. Since the EOF modes are informed by the variability of the field, I expect it would

take the algorithm fewer iterations to get to a given level of refinement when the weights

are initialized using the EOF modes over random initialization.

With initialization weights set, the algorithm is trained by iterating over the full set

of observations. On each iteration, the weights of the nodes are adjusted with the goal

of minimizing the euclidean distance between the observation and the weights of the

nodes. Over the course of training, the weights are refined to become more and more

representative of the patterns of observations in the input dataset. The algorithm requires

that the user give parameters pertaining to this refinement process. The initial learning rate,

which determines how quickly the weights are adjusted to fit the inputs, and number of

iterations to train over were set at 0.4 and 6000, respectively. Together, these parameters

determine how and to what extent the nodes are refined before the algorithm gives the final

output. To specify how closely each node is related to the nodes around it, a Gaussian

neighbourhood function is used with an initial standard deviation of 0.3. The details

regarding the selection of these parameters can be found in subsection 3.4.2.1.

At the end of training, each node shows a pattern that is characteristic of the set of

observations (seasons) associated with that node. The SOM output also includes a list of

the “winning node” for each input observation. This is the node to which the input is most

similar. This set of outputs gives M groups each containing a list of seasons with similar

observations, where M is the number of nodes. There is no requirement for the inputs to

be evenly distributed between nodes. The final step is to visualize the SOM groupings.
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For each node, the mean storm counts per square kilometre in each grid cell is calculated

by averaging over the seasons in that node only. This illustrates the typical pattern of a

season that belongs in that grouping. To further highlight the differences among the four

groupings, the temporal mean field of storm counts km−2 is removed to obtain a grid of

anomalous storm counts km−2 in each node.

3.2.6 Conditional Means of Atmospheric Variables

To link the patterns of variability identified through the SOM analysis with known drivers

and effects of ETCs I calculate conditional means of atmospheric variables based on the

SOM nodes. I also set out to explore how related atmospheric variables behave within

those same groupings of seasons. For each atmospheric variable considered (section 3.1.2)

the seasonal mean was calculated for each winter season of the study period from the ERA5

hourly reanalysis data. For each SOM-identified group, the seasonal mean from the years

within the group were averaged to calculate the node mean for that atmospheric variable.

This gives four independent conditional means. To further highlight the differences

between these four mean states, the full time period mean of the atmospheric variable is

subtracted from each conditional mean to get anomalies.

3.3 Extratropical Cyclone Climatology

3.3.1 Winter Season Mean

The annual mean winter storm track density informs us about the basic climatological

background state of ETCs and its interannual variability (Fig. 3.1a). The main track begins

off the coast of the Carolinas and propagates northeastward following the coast, over Nova

Scotia and Newfoundland, then branches west and east around Greenland (Fig. 3.1b). A

secondary storm track begins around northwest Texas and propagates northeastward over

the Great Lakes and into northern Quebec. Other regions of high track density exist over

southern Saskatchewan and Manitoba and southeast Hudson Bay including James Bay.

This generally matches the literature across a variety of tracking techniques and storm

centre definitions (Hoskins and Hodges, 2002, 2019; Varino et al., 2019; Plante et al.,

2015). The time series of total storms per season over the whole study area has a mean

value of 194.8 storms with a standard deviation of 13.5 (Fig. 3.1a). Note the season with

the most storms is Nov 1997 - Mar 1998 and the season with the fewest storms is Nov 1992
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Figure 3.1: Winter season extratropical cyclone climatology. (a) Time series of winter
storms per Nov-Mar season. (b) Spatial distribution of total storm density from 1979-2019.
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- Mar 1993. The difference between those two seasons is 62 storms. In some cases, there

are differences between consecutive seasons of up to 50 storms per season. There appears

to also be some long-term trends underlying this high frequency variability, however this

was not explored within the scope of this project.

3.3.2 Monthly Means

The monthly climatology reveals intraseasonal variability indicating that storm season

characteristics evolve from November to March (Fig. 3.2). The November climatology is

characterized by proportionately more storms over the continent and Hudson Bay. As the

season progresses, track density increases along the east coast of North America and the

climatological track seems to increase in width into the Atlantic Ocean through the later

part of the season. The primary storm track extends further south with colder temperatures

in January and February.

3.3.3 Bomb Storms

These rapidly deepening storms are concentrated along the east coast of North America

from the Mid-Atlantic Bight to Labrador, and, also extending from Newfoundland to

east of Greenland (Fig. 3.3b). These systems are not common over the continent. The

time series of total bomb storms per season has a mean of 35.2 storms per season and a

standard deviation of 6.20 (Fig. 3.3a). A linear fit line has a slope of 0.068 storms per

square kilometre per season indicating no trend at the 95% confidence level. Looking at

the correlation coefficient, the seasonal variability of these extreme storms is not obviously

related to the total seasonal storm counts. The correlation coefficient between the two

time series is -0.13 which is not a statistically significant correlation (p=0.42). There are

multiple seasons with high numbers of bomb cyclones, but average total storm counts (e.g.

1996, 2006) however, there are other seasons in which counts of bomb storms and total

counts are both low (e.g. 1982, 1995) or both high (e.g. 1989, 2014).

3.3.4 Trends

The linear trend in storm track density over the study period for each grid cell shows a very

heterogeneous pattern (Fig. 3.4). The majority of the trends identified are not statistically

significant with a 90% confidence interval. However, I have some confidence in a trend

that is found along the east coast of the USA. Noting that the climatological storm track
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Figure 3.2: Monthly climatology of total storm density from 1979-2019. (a) November,
(b) December, (c) January, (d) February, (e) March.
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Figure 3.3: Winter season bomb cyclone climatology. (a) Time series of winter bombs per
Nov-Mar season. (b) Spatial distribution of total bomb storm density from 1979-2019.

35



Figure 3.4: Storm track density trends. Slope of linear regression of winter seasonal storm
track density time series from 1979-2019 in each grid cell. Shading shows 90% confidence
interval.

begins off the coast of Georgia and South Carolina, there is a dipole pattern which shows

negative trends to the east of South Carolina and Georgia extending northeastward and

positive trends along the northeast US, indicative of a northward shift in the climatological

storm track as well as a narrowing of the track along the coast in this region. Note also the

statistically significant increases in track density over the subpolar North Atlantic and parts

of the continent, namely over Quebec and southeastern parts of the Canadian Prairies.

3.4 Variability

In this section, interannual variability of winter storm activity is investigated with two

common techniques. First, it is examined with a statistical technique called Empirical

Orthogonal Functions (EOF) analysis to find independent modes of variability in the storm

field (refer to section 3.2.4). Then a machine learning technique called Self-Organizing

Maps (SOM) is utilized to pick out common winter storm tracks patterns over the years

of the study (refer to section 3.2.5). The section is concluded with a study of relevant

atmospheric variables from reanalyses that connects the results of the EOF and SOM

with observations and further links the identified patterns to potential physical drivers and
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climate impacts.

3.4.1 Empirical Orthogonal Functions Analysis
3.4.1.1 All Storms

The EOFs were calculated using the annual fields of gridded storm density of all storms

within the study area of 103◦W-23◦W, 25◦N-62◦N. The spatial patterns and PCs of the first

4 modes are shown in Figs 3.5 and 3.6, respectively. The variance explained by the leading

mode was just 4.28% (Fig. 3.7). The first 15 modes must be considered in order to explain

half of the total variance. This means that the pattern associated with the first few modes

do not represent a significant amount of the variability in storm track activity. The power

of EOFs is that they can reduce the dimensionality of a problem. If there are a few key

patterns of variability that explain most of the variability in the full field, an EOF analysis

will reveal those patterns. If these patterns together explain a large portion of the variance

in the field, these leading patterns can be analysed and discussed to gain insights into the

total variability of the field. In this case, a large number of modes is needed to explain

most of the variance in the ETC field which counteracts the utility of EOF analysis.
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Figure 3.5: Spatial patterns of the first 4 EOF modes of gridded storm densities.

To reduce the noise in the storm track fields and obtain higher explained variance from

the leading modes, many adjustments to the input field were tested. These adjustments

included significantly reducing the spatial domain to focus only on the main track and

increasing grid cell size from the original 1◦x1◦ cells to 5◦x5◦ and 10◦x10◦.

The effects of these adjustments on two important measures of EOF results are given

in table 3.1. The table shows the variance explained by the leading mode as a percentage

of the total variance of the system and the number of modes required to get a cumulative

variance explained that surpasses 50% of the total. The full results of these analyses can

be found in appendix A.

The spatial domain reduction only slightly increased the explained variance of the

leading mode and slightly decreased the modes required to reach 50% variance explained.

As one would expect, increasing grid cell size from original to medium and then larger

cells improved the variance explained by the leading mode and decreased the number of

modes required to explain half the variance of the system.

For the EOF performed on the full field with large (10x10 degree) grid cells, the

explained variance of the first 4 modes combined is 52%. This is a significant portion

of variance explained by just a few modes, which means analysing and discussing the
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Figure 3.6: Principal component timeseries of the first 4 EOF modes of gridded storm
densities.

Figure 3.7: Percent of total variance explained by each EOF mode (blue) and cumulative
variance explained (red) of gridded storm densities.
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Spatial domain (resolution) Variance explained by mode 1 Modes required to reach
50% variance explained

original
(1x1 deg) 4.28 % 15
main track
(1x1 deg) 5.84% 13

medium grid cells
(5x5 deg) 11.36% 8

large grid cells
(10x10 deg) 18.54% 4

Table 3.1: Comparison of EOF results performed on the gridded storm counts at varying
resolutions and over varying spatial extents.

variability in time of these patterns could be useful for understand and possibly predicting

the variability of the whole system. However, using grid cells this size causes a loss of

much of the spatial detail within the field.

This set of EOF analyses on the field of storm counts over a range of grid cell sizes

and spatial extents shows that in general this field is highly variable. Even within the

main track, there are many independent modes that contribute to the observed interannual

variability. In order to obtain useful EOF results, I must reduce the variability of the

field and in this process, important spatial detail is lost. This leads to the conclusion

that EOF analysis is not the best method for studying seasonal variability of the western

North Atlantic winter storm track. Subsection 3.4.2 investigates self-organizing maps as a

complementary technique to explore this variability.

3.4.1.2 Bomb Storms

In addition to all storm counts, EOFs were used to analyse the count density fields of

bomb storms (Figs. 3.8 and 3.9. The first mode, which explains 6.17% of the variability,

illustrates a dipole pattern between the early (upstream) and later (downstream) parts of

the main storm track. This suggests in a season with many bomb cyclones off the east

coast of USA and Atlantic Canada, there are likely to be fewer bomb cyclones in the

open ocean south and east of Greenland in that same season. The second and third modes,

which explain about the same portion of the total variability (4.9 % and 4.5% respectively)

indicate lateral shifting of the track. The track shift occurs primarily between 40 and 60

degrees north. In the third mode, a track passes to the west (east) of Nova Scotia and
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Figure 3.8: Spatial patterns of the first 4 EOF modes of gridded bomb storm densities.

Newfoundland for a positive (negative). One can see a track that hugs the east coast of NS

and NFLD for both positive second and third mode. Also, a track that passes further off

shore (on shore) occurs in a positive (negative) mode two.

As with the field of all storms, I attempted to reduce variability in the bomb storm field

by reducing the spatial extent of the study area. The leading mode of this smaller spatial

field EOF analysis explains 5.8% of the variability. See appendix A for more details.

Having identified in the EOF analysis of all storms that increasing the grid cell size causes

unwanted loss of spatial resolution, I did not explore EOF analysis of the field of bomb

storms on a grid with larger cell sizes.
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Figure 3.9: Principal component timeseries of the first 4 EOF modes of gridded bomb
storm densities.

Figure 3.10: Percent of total variance explained by each EOF mode (blue) and cumulative
variance explained (red) of gridded bomb storm densities.
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3.4.2 Self-Organizing Maps Analysis

The dimensionality of the highly variable storm track density field is not well reduced

using EOF analysis as shown in the previous section. Self-organizing maps (SOMs)

is an alternative method of dimensionality reduction that is complementary to the EOF

analysis. In EOF analysis, the temporal features can be reconstructed from the decomposed

components. Conversely in SOM analysis, the spatial patterns from each time step are

preserved but the temporal connections between spatial characteristics do not constrain the

analysis. The nonlinear SOM algorithm proves advantageous over the linear EOF analysis

for identifying more complex patterns in noisier fields (Liu and Robert, 2011). SOMs

are used to give additional understanding of the variability of the system to further the

information obtained with EOFs.

As explained in section 3.2, a self-organizing maps algorithm is a machine learning

technique that sorts patterns. In this section, SOMs are used to sort the 40 spatial patterns

of seasonal storm track density that occur over the study period into groups of seasons

with similar activity.

3.4.2.1 Parameter Selection

When using a self-organizing maps algorithm to analyse data, one must choose parameters

that set the behaviour of the algorithm. Varying these parameters can give different

SOM outputs. These parameters should be chosen carefully to ensure the SOM output is

meaningful and reproducible.

This subsection explores the effects of varying three parameters: the initial learning

rate (ηini), the initial standard deviation of the Gaussian that defines the neighbourhood

function (σini), and the number of iterations on which to train the SOM (tmax).

At each iteration (t), the set of weight vectors (W) is adjusted according to the following

update equation (Vettigli, 2018):

Wnew = η(t) · f(σ(t)) · (xi −W) (3.4)

where xi is the input vector on which the algorithm is being trained at that iteration,

η is the learning rate, and f is the neighbourhood function which has a Gaussian shape

with standard deviation given by the iteration-dependent parameter σ that is centred on the

location of the current winning node (wci) of xi. The neighbourhood function specifies the
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extent to which the nodes surrounding the winning node are adjusted by the current input

vector. Effectively this controls the relationships between the final output nodes. Because

a Gaussian neighbourhood function was chosen in the 2x2 set up, a given node is more

similar to the nodes directly adjacent to it than the node that is diagonally adjacent.

As shown in the update equation (Eq. 3.4) the learning rate is iteration-dependent. At

each iteration, the learning rate changes with iterations as follows

η(t) =
ηini

1 + 2t
tmax

, (3.5)

where tmax is the total number of iterations completed during training (Vettigli, 2018).

Similarly, the neighbourhood function decays with iterations according to the decay of

its standard deviation which is defined as follows (Vettigli (2018))

σ(t) =
σini

1 + 2t
tmax

. (3.6)

Note the influence of tmax on the decay of both η and σ. Stopping a SOM run before

it reaches tmax does not allow these two parameters to complete their decay process, at

which point their value is equal to one third of the initial. For this reason, we only evaluate

and compare outputs from runs that have progressed all the way through to t = tmax. An

iteration of the algorithm is defined as each time a vector is given as an input and the

update equation is used. Therefore, every N th iteration marks a full cycle through the

input vectors. The values of tmax are restricted to multiples of N to ensure each input

vector is equally accounted for in the final output.

The parameter selection process begins by choosing a testing range for the initial learning

rate and initial standard deviation of the Gaussian that defines the neighbourhood function.

The quantization error (QE) is a measure of how well the inputs are represented by their

individual winning node in the SOM. A small QE means the input vectors fit well within

the groups they have been separated into. QE is defined as follows:

QE =

∑N
i=1 ||xi − wci ||

N
(3.7)

where N is the number of input vectors, xi is an individual input vector and wci is the

weight vector of the winning node (Wandeto and Dresp-Langley, 2019). QE can be used
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Figure 3.11: Variation of quantization error with SOM parameters. QE of SOM outputs
trained over a range of maximum iterations (tmax), while varying the standard deviation of
the Gaussian neighbourhood function (σini, shown by line style) and the learning parameter
(ηini, shown by colour).

to narrow down the range of σini and ηini that give useful SOM results. The initial range

chosen for both parameters is from 0.1 to 1 at intervals of 0.1. The SOM algorithm is run

many times varying ηini and σini within this range and letting tmax vary between 40 to 10

000 specifically at multiples of 40. For each output, the QE is calculated to evaluate the

SOM run (Fig. 3.11).

For the full range of parameter values, the QE settles to a relatively constant value for all

subsequent iterations once the model is trained with a sufficiently high tmax. The sufficient

number of max iterations depends on the size of ηini. For smaller initial learning rate, ηini,

the SOM requires a higher number of max iterations to reach a steady QE. This is an effect

of the decay function (3.6, 3.5). In general, QE is lowest for ηini = 0.3 (Fig. 3.11, blue).

The standard deviation of the Gaussian function in the neighbourhood parameter (σini)

seems to have less of an effect on QE, but values around 0.4 give lower equilibrium QE

than values closer to 1. This preliminary analysis narrows the range of testing on σini to

[0.4, 0.5, 0.6] and narrow the range of testing on ηini to [0.3, 0.4, 0.5].

Guided by the results of the QE calculations, further investigation narrows down the

parameter selection using pattern convergence. If the outputs of many different SOMs

converge to a single solution, then the result is reproducible and meaningful. Periods of

temporary convergence or near-convergence can be identified for a given (σini, ηini) pair

by measuring root mean squared error. Root mean squared error (RMSE) can be used to
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σini = 0.4 σini = 0.5 σini = 0.6

ηini = 0.3 41 13 35
ηini = 0.4 43 4 8

Table 3.2: Number of times RMSE is equal to zero for each (σini, ηini) pair over 63 trials

compare the difference between two outputs of the SOM with different initial parameters.

When RMSE is zero, it signifies no pattern change. A consistently small RMSE indicates

a robust SOM result, because it indicates at least partial elimination of the dependence of

the result on the choice of itialization parameters.

RMSE is used to evaluate increasing tmax. For a constant (σini, ηini) pair, RMSE is

calculated between the SOM output from tmax = kN and tmax = (k + 1)N where k

is an integer between 1 and 250 that specifies the number of times the algorithm has

looped over the full set of input vectors; and N is 40, the number of input vectors. Testing

all SOMs within this range would require the algorithm to be run with 1500 unique

parameter combinations (6 (σini, ηini) pairs multiplied by 250 possible k values). Due to

the computational restrictions, I sampled the range of k values 63 times for each of the 6

(σini, ηini) pairs, thereby running 378 SOMs instead of 1500 and calculated the RMSE for

each k value.

The goal is to identify a (σini, ηini) pair for which the output pattern converges at tmax
greater than a sufficiently high value. This would reveal the ideal (σini, ηini) values and

minimum tmax. Unfortunately, none of the pairs exhibited perfect convergence in this way.

There were, however, regions of temporary convergence i.e. where RMSE = 0 for some

period of time before the pattern changed again. The total number of k values for which

RMSE = 0 for each (σini, ηini) pair is given in table 3.2

The RMSE is most frequently equal to zero for σ = 0.4, and η = 0.3 or 0.4. This allows

the investigation to be reduced to two pairs: A: σ = 0.4; η = 0.3 and B: σ = 0.4; η = 0.4.

The RMSE is found for all k values (1 to 250) for pair A and B. Over this range, parameter

combination A had 142 instances of RMSE equal to zero, while parameter combination

B had 93 instances. This leads me to settle on the parameter pair A: σ = 0.4; η = 0.3 to

build the final SOM for analysis.

Having chosen learning rate and neighbourhood parameter, it only remains to choose

the number of iterations for training (tmax). The SOM temporarily converges on a few

different patterns. One of these must be chosen for the analysis. This decision will be
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Figure 3.12: Frequency of unique SOM pattern outputs. Each unique output in the set of
all SOM results is denoted with a pattern ID number. The pattern frequency is shown as a
function of pattern ID with the quantization error of that unique pattern indicated by tone
of its marker.

informed by QE and the frequency with which each unique pattern is identified i.e. how

many k values give that specific pattern.

Examining how QE changes with number of training iterations for pair A, (Fig. 3.11,

dashed teal line) we see that QE settles to a relatively constant mean (6.51x10−3) for

tmax ≥ 720 which corresponds to k = 18. All tmax values below this threshold are

neglected. To determine the best tmax in this range, I evaluate the patterns that result from

running 233 SOMs, using pair A and letting tmax range from 18N to 250N . Each unique

SOM result was given a unique pattern ID number. For each unique pattern, I calculate

how many times a SOM produced that output along with the QE of that pattern (Fig. 3.12).

The most common pattern resulting from the SOM initialized with σini = 0.4 and

ηini = 0.3 is pattern 62 which reoccurs 17 times. Running the SOM algorithm with

tmax = 6000, σini = 0.4 and ηini = 0.3 produces pattern 62. The QE of this pattern is

small at 0.006518. Table 3.3 gives the SOM groupings of the seasons in the study period.

Recall that the winter seasons are named according to the year in which they start.
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Node 1 Node 2

1983, 1985, 1993, 2000, 2002,
2007, 2009, 2012, 2013, 2018

1980 1982, 1990, 1991, 1995, 1999,
2001, 2003, 2010, 2017

Node 3 Node 4

1979 1984 1987, 1988, 1992, 1997,
1998, 2005, 2008, 2014, 2016

1981, 1986, 1989, 1994, 1996,
2004, 2006, 2011, 2015

Table 3.3: Seasonal groupings of SOM pattern 62.
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Figure 3.13: Anomalous storm counts for each of the four sets of SOM-grouped seasons.
Unique SOM output pattern 62 with parameters (σ = 0.4, η = 0.3, tmax = 6000).

3.4.2.2 Results

The SOM was run with the specified parameters (see Section 3.4.2.1) and the 40 storm

seasons in our dataset were sorted into 4 groups in a 2x2 arrangement. To visualize the

SOM groupings, the mean seasonal storm counts km−2 is calculated in each grid cell for

the 4 nodes across the seasons grouped into the specific node. This allows us to see the

typical pattern of a season that belongs in each grouping. Then, to further highlight the

differences among the four groupings, the all time mean field of seasonal storm counts

km−2 is removed to obtain a grid of anomalous storm counts km−2 that spans the study

area in each node (Fig. 3.13). The result is further interpreted in Fig. 3.14.

The strongest signal in node 1 (Fig. 3.13a and Fig. 3.14a) is found along the main

climatological track identified in Section 3.3. The pattern shows a dipole pattern with

an increase in track density extending along the eastern seaboard from Cape Hatteras to

southeastern Newfoundland contrasted with a decrease in storms further offshore following

a similar orientation as the positive signal. This indicates a shift in the main climatological

track towards the shoreline along NE USA and Atlantic Canada during node 1 years. There

is also a strong positive signal later in the climatological track located in the North Atlantic

to the west of Ireland. The prairie storm track appears to be less active than average in this
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node and the Labrador Sea is slightly more active.

The second node (Fig. 3.13b and Fig. 3.14b) shows weak anomalies indicating seasons

in this node are generally quite similar to the climatological mean storm track density

pattern particularly in the early portion of the track. One can, however, identify a decrease

in storms in the northeastern Atlantic as well as in northern Newfoundland and along the

coast of Labrador. The St. Lawrence river valley region sees above average activity in

this node contrasted with fewer storms around the Great Lakes including around Lake

Michigan, Lake Huron and Lake Erie.

The strongest signal in node 3 (Fig. 3.13c and Fig. 3.14c) is found northeast of New-

foundland extending from just offshore toward the southern tip of Greenland. The features

offshore from New England and Nova Scotia may indicate a shift of the climatological

track away from the coast and into the North Atlantic. In addition, this is the node with the

strongest signal of Colorado Lows tracking over the Great Lakes.

The final node (node 4; Fig. 3.13d and Fig. 3.14d) shows below average activity

along the main climatological along the northeastern coast of USA, Nova Scotia, and

Newfoundland. This is contrasted with above average activity across Saskatchewan,

Manitoba, and northwestern Ontario. Another notable feature is a positive anomaly

extending from northeastern Texas to Kentucky.

The SOM has organized the winter storm seasons into groups with at least some spatial

commonalities as shown by the negative and positive track anomalies identified in the

SOM output analysis (Fig. 3.14). The following section (3.4.3) will examine the SOM

results further by drawing connections between the signals found within the four nodes

and atmospheric variables that are related to ETCs.

3.4.3 Links to atmospheric drivers and effects

If the SOM had separated our inputs into random groups, we would see four nodes with

patterns that lack spatial structure. Instead, we see noticeably different patterns of storm

track variability across the four nodes. In this section, the SOM outputs are expanded

upon by evaluating their physical basis. I look for links between the patterns in storm

track activity within the SOM groupings and patterns in two classes of variables: drivers

and effects. Drivers are atmospheric variables that are involved in the formation and

development of storms while the effects are variables that are typically caused by storms,

such as wind and precipitation.
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Figure 3.14: Important features within anomalous seasonal storm counts for the SOM-
identified groups of seasons. Regions of stronger and weaker positive anomalies indicated
by solid and dashed red outlines, respectively. Regions of stronger and weaker negative
anomalies indicated by solid and dashed blue outlines, respectively.

3.4.3.1 Drivers

The main driver of ETCs is baroclinic instability. Baroclinic zones occur where there are

strong horizontal temperature gradients. The 2m air temp and 500mb thickness are used to

identify these zones and how they vary with SOM node (Figs. 3.15 and 3.16, respectively).

In the winter months, the air over the ocean typically stays warmer than air over the land.

This is due to the greater heat capacity of water. The ocean water itself is warmer than the

land, and this keeps the air mass above at a warmer temperature, as well. By contrast, the

air over land cools down quickly in the fall and winter. These two air masses meet along

the coastline to form a strong temperature gradient. For this reason, most storms are found

along this coastline climatologically (Fig. 3.1b). Based on this theory, one can expect an

increased coastal temperature gradient to lead to an increase in storm activity.

Across the SOM nodes, a strong relationship with 2m air temperature is observed over

land. In node 1, an increase in storms along the main track, east of North America, can

be connected with below normal temperatures over land which strengthens the coastal

baroclinic zone. In node 2, an increase in 2m air temperatures over Newfoundland and

Labrador weakens the coastal temperature gradient in that region. In the 500 mb thickness
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(a)  (b)  

(c)  (d)  

Node 1 Node 2

Node 3 Node 4

Figure 3.15: Mean seasonal 2 meter air temperature (contours) and anomaly from the
climatological mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the
SOM-grouped seasons.

field, there is an increase in heights in the later part of the track east of Newfoundland and

south of Greenland. In the storm field there is a slight decrease in storms in the region just

offshore of Labrador and an overall decrease in the northern part of the North Atlantic. In

node 4, the pattern appears to be roughly opposite to node 1. The 2m air temperatures and

500 mb thickness both show warmer continental temperatures which weakens the coastal

baroclinicity. As expected, there is a corresponding decrease in the main storm track along

the east coast.

Within these baroclinic zones, storms are most likely to develop and intensify where

there is strong upper level divergence which is often closely tied to vorticity. These areas

that are conducive to ETC formation are identified using 250 mb winds (Fig. 3.17 and

Fig. 3.18), 500 mb geopotential heights (Fig. 3.19), and 500 mb relative vorticity (Fig.

B.1). A common level for diagnosing maximum upper level winds is 250 mb. The winds

at this level can be used to identify jet streaks which are areas of especially fast winds

within the jet stream. As the air accelerates into (decelerates out of) the region of higher

wind speeds the change in speed creates a counter-clockwise (clockwise) ageostrophic

circulation in the vertical plane. As a result, there is upper level divergence in the right
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Figure 3.16: Mean seasonal 500 mb thickness (contours) and anomaly from the clima-
tological mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the
SOM-grouped seasons.

entrance (left exit) region of the jet streak. Within the 250 mb wind fields, the strongest

winds are found in node 1 (Fig. 3.17a). The multi-season mean jet streak located near the

Mid-Atlantic Bight has its right entrance region over coastal North Carolina, a common

genesis region for ETCs. Its left exit region is located south of Cape Cod. In node 1 of the

storm density field, the start of the region of increased storm activity is collocated with

the left exit region of the mean jet streak. The other nodes show similar, although weaker,

patterns in the 250 mb winds.

Comparing node 1 and 2 of the anomalous 250 mb wind fields in the northern North

Atlantic shows opposite patterns (Fig. 3.18a,b). In node 1, the anomalous wind has a

counterclockwise circulation and in node 2 there is a clockwise circulation. The anomalous

storm field respectively show a corresponding increase and decrease in downtrack storms

in node 1 and 2 (Fig. 3.14). Considering the anomalous circulation patterns in the context

of the mean 250 mb flow, this tells us there is a strong zonal component to the 250 mb

streamlines in seasons with higher storm track density downstream in the eastern North

Atlantic. However along the east coast of North America, the anomalous wind fields show

that there is an increased meridional component to the 250 mb flow. This is consistent with

the physics of ETCs since the presence of a meridional jet increases the likelihood of storm
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Figure 3.17: Mean seasonal wind direction (arrows) and intensity (colours) at 250 mb for
(a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the SOM-grouped seasons.

development. Node 3 indicates a positive upper level wind anomaly collocated with the

positive storm track density anomaly northeast of Newfoundland. Finally, node 4 shows

increased wind speeds over eastern Canada with a stronger southeastward component

which indicates more cold dry continental air blowing over the Atlantic provinces. There

is also a decrease in wind speed along the coast of USA. In the storm density field, node 4

shows a decrease of storms along the eastern seaboard, Nova Scotia, and Newfoundland

which could reasonably be the effect of slower 250 mb winds in the typical genesis region

leading to weaker divergence aloft and stronger advection of cold dry air over the ocean

which weakens the temperature gradient by cooling the air mass over the ocean and lowers

the amount of moisture available to condense and release latent heat, an element in storm

intensification and persistence.

Next, consider curvature and shear vorticity in the 500 mb geopotential height field.

Shear vorticity can be identified in regions of diffluence of geopotential height contours.

Curvature vorticity is evident in the curvature of geopotential height contours, such as

in the base of a trough. In northern hemispheric winter, the main feature governing the

500 mb field in the mid-latitudes is Rossby wave propagation. These waves propagate

across the continent and ocean typically from west to east. The mean state (contours in
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Figure 3.18: Anomaly from the climatological mean of seasonal wind direction (arrows)
and intensity (colours) at 250 mb for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of
the SOM-grouped seasons.

Fig. 3.19) shows heights decreasing with latitude with some slight troughing with an axis

over Eastern North America. Day-to-day in the winter, we see a stronger trough than what

appears in the mean state, but the axis of the trough varies in location. The strength of the

troughing is washed out in the mean state because of the variation in location. Look to

the anomalies (colours in Fig. 3.19) to identify more features of the field as it relates to

storm activity. Typically, the synoptic situation in which an ETC develops consists of a

trough with a north-south axis located over mid to eastern North America. At the base

of the trough, there is a maximum of curvature vorticity which leads to positive vorticity

advection (PVA) on the right side of the trough. A deeper trough has stronger curvature

vorticity. In node 1, the negative anomaly over the continent indicates generally deeper

continental troughs in those seasons (Fig. 3.19a). This corresponds with higher east coast

storm track density. In node 3, a slight negative anomaly just east of the Rockies could

indicate stronger lee-troughing in those seasons (Fig. 3.19c). The track density increases

to the right of this negative anomaly. In node 4, higher geopotential heights over eastern

North America indicate generally weaker troughs in the region that is important for ETC

development. The track density field shows a corresponding decrease in east coast ETCs.

In the eastern portion of our study area, shear vorticity can be deduced from diffluence.
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Figure 3.19: Mean seasonal 500 mb geopotential height (contours) and anomaly from the
climatological mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the
SOM-grouped seasons.

In node 1, the diffluent pattern north of 50◦ has positive shear vorticity). An increase in

storm density also occurs in this region in node 1 (Fig. 3.19a). In node 2, there is generally

straight flow north of 50◦, while south of this, the diffluence gives rise to negative vorticity

or anticyclonic rotation (Fig. 3.19b). The storm track density decreases in the same region

for this node. The diffluence in node 3 south of 50◦ indicates negative vorticity. Storm

track density is slightly below or near average in this region for node 3 (Fig. 3.19c). In the

far northeast a diffluent pattern that creates positive vorticity corresponds to an increase in

storm track density for node 4 (Fig. 3.19d).

The final driver taken into consideration is the total precipitable water vapour (TPWV)

field. This field is important for deducing moisture sourcing of storms including locating

atmospheric rivers. Having a moisture source is important for the development and

propagation of ETCs. A storm with more moisture will have more latent heat release

throughout the system which can act to offset the adiabatic cooling in areas of ascent and

provide more energy for the persistence of the storm. Greater amounts of TPWV also lead

to higher precipitation amounts causing the storm to have greater impacts on human life

and the environment. I expect TPWV to be a particularly important field because it acts
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as a tracer for many atmospheric processes. TPWV is related to temperature because the

amount of water vapour that can be held within a parcel increases as the temperature of

the parcel increases. Thus, temperature will be reflected in the TPWV field. Regions of

subsidence and upward motion are evident in the TPWV field as well as these processes

lead to changes in TPWV. TPWV is also commonly used as a tracer for large scale patterns

of movement in the atmosphere to aid in the identification of likely storm tracks.

The TPWV pattern in node 1 indicates a strong moisture source region over the western

North Atlantic Ocean associated with more storms along the east coast (Fig. 3.20a). Node

2 shows decreased moisture in the Gulf of Mexico and off the southeast coast of USA

which may be connected with fewer storms downstream to the southeast of Greenland

(Fig. 3.20b). An overall weak pattern in node 3 can be related to generally weak storm

track activity (Fig. 3.20c). The moisture anomaly in the Gulf of Mexico in node 4 can be

linked to the storm track density increase in the southern States and continental Canada

(Fig. 3.20d). The decrease in moisture over the western Atlantic Ocean and associated

decrease in a moisture gradient along the coast may relate to the decrease in storms along

the coast of New England, Maine, Nova Scotia and Newfoundland, although this may

be more forced by the decreased coastal temperature gradient in this node that is being

reflected in the TPWV field.

3.4.3.2 Effects

The SOM method has identified four characteristic types of storm seasons for our study

area. In section 3.4.3.1 I found physical connections for the characteristic types. Next, I

explore how a storm season of each type affects the weather experienced throughout the

winter months.

The precipitation pattern associated with each of the four SOM nodes shows a variation

across SOM nodes (Fig. 3.21). The climatological maximum precipitation in the mid-

latitudes for our study area extends northeast from the coast of the Carolinas out into the

ocean around 40N and 60W. In nodes 1 and 4, the anomalous precipitation pattern shows

an off-mean coastal increase/decrease. Conversely, nodes 2 and 3 exhibit anomalously low

and high precipitation along the mean, respectively.

As expected, high storm track activity leads to above average precipitation. This is

shown in node 1 along the coastline of the eastern States and in the eastern North Atlantic.

Positive precipitation anomalies also correspond geographically with the node 2 increase
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Figure 3.20: Mean seasonal total precipitable water vapour (contours) and anomaly from
the climatological mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of
the SOM-grouped seasons.

in storms along the St. Lawrence River Valley, the node 3 increase in Midwest/Great

Lakes storms, and the node 4 increases in southern US and Canadian Prairie storms.

Unsurprisingly, the precipitation anomalies and storm track density anomalies are closely

related.

Next, consider a subset of the total precipitation field: accumulated snowfall. A season

like the node 1 variety, which includes an active east coast storm track, brings a snowy

winter season to the northeastern States and Atlantic Canada (Fig. 3.22a). In node 2, the

New England region sees below average snowfall as storm densities along the coast are

average to below average while densities along the St. Lawrence river valley increase

(Fig. 3.22b). This positive storm track anomaly corresponds to increased snowfall levels

in Quebec. Throughout Newfoundland and to its East and Northeast there is a decrease

in snowfall which corresponds to a decrease in track density. In node 3, the track density

increase over the Midwest/Great Lakes corresponds with an increase in snowfall over

the Lakes (Fig. 3.22c). Comparison with the total precipitation signature in which the

associated region of positive anomaly extends south as far as Northern Texas, suggests

storms that track through this region do not produce snow until they pass over the Great

Lakes. Knowing that snow is most common in the cold sector of a storm, or the northwest
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Figure 3.21: Mean seasonal precipitation (contours) and anomaly from the climatological
mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the SOM-grouped
seasons.

quadrant, the location of the positive snow anomaly northeast of Labrador can be connected

with the storm track density increase northeast of Newfoundland. In node 4, which has

below average storm track density along the US coast, the accumulated snowfall is below

average over northeastern US and maritime Canada (Fig. 3.22d). An increase in storms

over the Canadian prairies also matches up with an increase in snowfall in that region.

Note that while the extent of this positive storm density anomaly continues south through

much of the US, the snowfall field has a negative anomaly. This can be explained by

referring again to the 2m temperature field for this node (Fig. 3.15d) which shows that the

temperatures are warmer than average. Also noting that the total precipitation field shows

a positive anomaly here (Fig. 3.21d), one can deduce that the negative snowfall anomaly

is not related to fewer storms, rather it is caused by warmer than average temperatures

making the storms more likely to produce rain than snow.

The fields of relative vorticity and 10m winds are also of interest, but due to more

complex analysis being required to interpret the results, they were not analysed in this

work. Nevertheless, the SOM-clustered seasonal means of relative vorticity and 10m winds

are included in Appendix B.
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Figure 3.22: Mean seasonal snowfall (contours) and anomaly from the climatological
mean (colours) for (a) node 1, (b) node 2, (c) node 3, and (d) node 4 of the SOM-grouped
seasons.

3.5 Discussion

The analysis of spatial and temporal connections between atmospheric variables and ETC

track density identifies possible predictor-predictand relationships. This also confirms a

physical basis for the SOM clustering of storm seasons, which can give confidence in the

patterns seen emerging in the mean storm track density SOM results. A summary of the

main track density patterns (coloured ovals) and related atmospheric variables (text) is

visualized (Fig. 3.23).

The main feature of node 1 is a shift in the climatological storm track closer into the

coast. This is deduced from the increase in storms along the east coast of North America

from the coast of the Carolinas to Newfoundland coupled with the decrease in storms

offshore along a similar axis. The drivers that support this shift and strengthening of the

typical storm track include lower 500 mb geopotential heights which increase curvature

vorticity over the eastern seaboard, colder continental air temperatures creating a stronger

land-sea temperature gradient, and a stronger upper level jet over the mid-Atlantic Bight

with an anomalously meridional orientation increasing upper level divergence in key areas

along the coast. The supporting effects are an increase in snow to the NW of the positive
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Figure 3.23: Visual summary of atmospheric variable-storm track density relationships in
the SOM framework. The locations of main positive (negative) track density signals are
shown by red (blue) ovals. Solid (dashed) outline shows stronger (secondary) signals. The
atmospheric variables related to the identified signals are given in text in the approximate
location that they occur. (a) SOM node 1, (b) node 2, (c), node 3, (d) node 4.
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signal in the New England region and increased precipitation along the track.

The main patterns to note in node 2 are no strong anomalies in the track along the east of

coast USA and a decrease in storms over the Labrador Sea. This is supported by the lack

of strong anomalies in the fields of our drivers, except for anomalously warm temperatures

over Labrador which would act to decrease the land-sea temperature gradient, thereby

decreasing the available potential energy for storms in the Labrador Sea area. A decrease

in snow coincides with fewer storms in that area.

The dominant features in node 3 are a strong positive storm anomaly extending NE

from Newfoundland to the tip of Greenland and an anomalously strong Great Lakes storm

track. The supporting drivers for both of these features are strong jets increasing upper

level divergence which induces upward motion and supports the development of ETCs.

The Great Lakes track increase may be supported by colder air temps over the Dakotas

increasing the temperature gradient with the warmer air over the lakes and a negative

height anomaly indicating troughing over the Plains. Both features are supported by snow

increases along their NW side.

Node 4 is characterized by a decrease in storms along the coast of NE USA, Nova Scotia,

and Newfoundland - a portion of the main climatological storm track. The drivers that

support this signal are the same as node 1, but they act oppositely. The 500 mb heights

are higher, the temperature is warmer, and the jet is weaker, all acting to decrease storms

along the main coastal track. Supporting effects include a decrease in precipitation along

the coast and a decrease in snow over New England and New Brunswick.

3.6 Conclusions

This chapter explored the climatology and variability of our storm track dataset. The

gridded climatology showed high track density along the east coast of North America

extending west and east of Greenland in a pattern consistent with the known climatology

of winter storms in the North Atlantic. The climatology also included higher track density

over the US Midwest and Great Lakes along with another continental track across southern

Saskatchewan, southern Manitoba, and northern Ontario - well known as the path of

Alberta Clippers (Lawson, 2003).

The monthly climatology highlights some intraseasonal variability within our dataset,

but this section focusses more on exploring the annual winter season variability. To quantify
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this variability, I used an EOF analysis. The results showed little useful information other

than to give the insight that the storm track density field is highly variable and is influenced

by many independent modes of variability. Further information was gained through a

SOM analysis. The grouping of seasons denoted as Node 1 indicate a common feature of

increased storm track density along the northeast coast of the USA and Atlantic Canada.

Node 2 showed little anomalous activity in the southern part of the study area, with some

decreased density in the Labrador Sea and far northeastern Atlantic. The Great Lakes

storm track is strongest in Node 3 along with a region that extends northeastward from

Newfoundland to Greenland. The primary feature of Node 4 is a decrease in storm track

density along the main climatological east coast storm track. The SOM results were

then used to investigate physical connections using conditional means of potential ETC

drivers and effects over the SOM-identified groupings of seasons. This analysis revealed

many potentially useful predictor-predictand relationships with theoretical bases for the

mechanisms at play. Specifically, the association between storm track density and 2m air

temperature differences over North America and the Atlantic Ocean was identified as a

key relationship. The connections identified in this section will be utilized to inform the

prediction model developed in the following Chapter.
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CHAPTER 4

PREDICTION

Extratropical cyclone activity in eastern North America and the adjacent North Atlantic

region has variable characteristics from season to season as demonstrated in the previous

chapter. This seasonal variability is connected with specific atmospheric processes and

variables. In this section, those relationships are utilized to develop a forecast model for

the seasonal characteristics of ETCs.

The aforementioned variability is noisy and spatially nuanced. This makes prediction

difficult and makes it less likely to be able to build a model with any significant skill.

The complexity of the problem is reduced by reducing the area of interest to focus on the

region around Halifax, Nova Scotia, Canada. The forecast model is developed with the

application of operational usage in mind. Therefore, we elect to use predictors from the

fall season so they can be observed and processed with adequate time to produce a forecast

before the winter season. With a goal of aiding public forecasting, it is desirable to have a

model that can give outputs that a typical citizen would value. For this reason, the focus is

placed on forecasting frequency of storms and storm types, rather than trying to produce

exact track locations or other specifics that are unlikely to have much predictability. The

main ETC effects that the average citizen is concerned with are precipitation type, if any,

whether or not there will be high winds, and what the overall intensity of the storms will be

i.e. whether or not it will be a bomb storm. The storms that pass by Halifax are separated

into types according to these effects and develop a multiple linear regression prediction

model for each subset of storm type. Model results are evaluated and possible application

to seasonal forecasting is explored.
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Nearest ERA5 grid point to YHZ
Latitude: 45° N
Longitude: 63.5° W Halifax Stanfield International Airport

Airport ID: YHZ
Station ID: 6358/50620
Climate ID: 8202250/8202251
Latitude: 44° 52’52.000” N
Longitude: 63° 30’31.000” W

Figure 4.1: The location of the Halifax airport weather station where ECCC observations
are gathered and the location of the closest ERA5 Reanalysis grid point.

4.1 Data

4.1.1 Local Weather Observations

To determine the effects of a particular storm at Halifax, observations of the weather are

needed. Hourly observations from the Environment and Climate Change Canada (ECCC)

weather station at the Halifax Stanfield International Airport are used. The closest grid

point to Halifax in the ERA5 reanalysis is located approximately 13.25 km north of the

airport weather station (Fig. 4.1).

Reanalyses are known to have biases, specifically in underestimating extremes (Fig.

4.2). Subplots a, b, and c show scatter plots comparing the value of a specific atmospheric

variable observed at the Halifax weather station with the ERA5 reanalysis output of

that same variable from the nearest grid point. The red line in each subplot shows

where the points would lie for a perfect relationship between reanalysis and observational

measurements. The correlation coefficient is given in text on each subplot. The fourth

panel (d) illustrates the distribution of wind speed measurements from ERA5 and from

ECCC. I created 35 bins of equal width for the ECCC wind observations that range from 0

to 93 km/h and 25 bins of equal width for ERA5 measurements ranging from 0 to 48 km/h.

Because the reanalysis assimilates the real station data we expect good agreement

between the observations and the reanalysis values. The pressure values indeed show very

good agreement with a consistent small overestimation by the reanalysis especially at
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Figure 4.2: Comparison of ECCC station data and ERA5 reanalysis outputs from the
nearest grid cell. (a) Pressure observations vs. reanalysis outputs, (b) temperature observa-
tions vs. reanalysis outputs, (c) wind speed observations vs. reanalysis outputs, and (d)
histogram of wind speed from observations (green) and reanalysis (blue).
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higher pressures (Fig. 4.2a). The temperature measurements also show good agreement,

however at low temperatures, the reanalysis gives lower temperatures than those measured

at the weather station (Fig. 4.2b). The reanalysis has a bias in wind speed, underestimating

it except at low speeds (Fig. 4.2c). Looking at the distribution of wind speed measurements

from the station (Fig. 4.2d, green) and the reanalysis (Fig. 4.2d, blue) in the bottom right,

the reanalysis distribution is like a smoothed version of the observation distribution. There

are especially few instances of high winds in the reanalysis dataset.

In the hourly station data obtained from ECCC, precipitation type is recorded in the

weather remarks category. This category of the observations includes remarks such as

“Rain”, “Freezing Rain”, “Cloudy”, “Snow”, “Blowing Snow”, “Fog”, etc. The ERA5

hourly dataset gives the amount of accumulated precipitation over the hour and the amount

of accumulated snowfall over the hour. The combined rainfall and freezing rainfall amounts

are inferred by subtracting the snowfall from the total precipitation.

Comparison of reanalysis precipitation and station precipitation data showed that pre-

cipitation is recorded by the reanalysis dataset on many more occasions than the Hali-

fax weather station observations indicate that rain occurred. Precipitation poses unique

challenges for reanalysis owing to the discontinuous nature of this field. Overall, the

observations and reanalysis matched 59% of the time for rain/freezing rain, 56% of the

time for snow, and 69% of the time for hours with multiple precipitation types recorded.

Considering the cases in which rain or freezing rain is observed at Halifax, the reanalysis

also indicates rain for 99% of those timesteps. If snow is observed at Halifax, the reanalysis

also indicates snow for 97% of those timesteps. However, the reanalysis indicates precipi-

tation at more than 3 times as many timesteps as the observations. This could be explained

by spatial averaging in the reanalysis. These values are meant to be representative of the

surrounding area while observations at the weather station are only concerned with the

weather at that specific point. Due to the precipitation discrepancies, the observations

made by a human observer at the weather station are used rather than the ERA5 reanalysis

data.

Using weather observations also provides more descriptive information about the condi-

tions experienced. At each timestep, the written remarks at the station include comments

about the amount and characteristics of the weather conditions, such as “Heavy Drizzle”,

“Moderate Snow”, or “Freezing Fog”, which can be used to categorize and describe storm
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types more specifically than if the only information considered was total precipitation and

snowfall amounts as in the reanalysis.

4.1.2 Predictands: Storm Time Series

The model takes a regionally specific approach by focussing on storms that affect Halifax,

Nova Scotia. Such a dataset must be defined and built in order to develop a prediction

model.

Storms are selected from the full storm track dataset (section 2) for inclusion in the

predictand time series based on a single criterion: that their storm centre location is within

750 km of Halifax for at least one timestep (Fig. 4.3a). Given this set of storm tracks, an

annual time series of total Halifax winter storms is calculated (Fig. 4.4a). Each unique

storm track can contribute to the total counts in the time series exactly one time, regardless

of the number of times it enters or exits the 750 km radius.

The dataset is then separated into seven subsets based on precipitation and winds at the

Halifax International Airport. It is assumed that the weather experienced at Halifax is due

to the storm when the storm is within 1000 km of the weather station given the typical

length scale of ETCs is on the order of 1000 km. When assessing hours of precipitation

due to the storm or hours of high winds due to the storm, the precipitation and/or wind are

assessed at Halifax airport only for the timesteps when the storm is within 1000 km of the

station. The combination of 750 and 1000 km radii allowed us to minimize the number of

storms included that had little effect on the conditions at Halifax while retaining sufficient

precipitation information from storms that did have an impact. The seven subsets of storms

that pass within 750 km of Halifax are defined as follows:

i. Storms with at least 3 hours of precipitation (total precip)

If a storm is within 1000 km of Halifax for at least 3 hours, and precipitation is

recorded at the Halifax airport for at least three of the hours that it is within that

radius, the storm is determined to be a precipitating storm (Fig. 4.4b). Remarks that

qualify as precipitation include the words “Rain”, “Drizzle”, “Freezing”, “Snow”, or

“Ice Pellets”.

ii. Snow storms (snow)

All storms with at least 3 hours of precipitation are further classified as either a

snow, rain, or mixed storm. To be a snow storm, the observation remarks must
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include either “Snow” or “Ice Pellets” for at least 90% of timesteps during which

precipitation is recorded, with the restriction that precipitation can only be recorded

when the storm is within 1000 km of Halifax (Fig. 4.4c).

iii. Rain storms (rain)

To be classified as a rain storm, the observation remarks must include either “Rain”

or “Drizzle” for at least 90% of timesteps at which precipitation is recorded when

the storm is within 1000 km of Halifax (Fig. 4.4d).

iv. Mixed precipitation storms (mixed)

A storm can be grouped into the mixed precipitation category one of two ways. If a

precipitating storm does not fit into the snow or rain storm categories, it is marked

as a mixed precipitation storm because it is not predominantly one type or the other.

Alternatively, a storm will be placed in this category if it records a “Freezing” remark

in at least 90 % of the timesteps at which precipitation is recorded within 1000 km

of Halifax (Fig. 4.4e).

v. Storms with less than 3 hours of precipitation (no precip)

Any system with less than 3 hours of precipitation recorded in the weather remarks

at the Halifax airport when it is within 1000 km of the station is categorized as a

storm with no precipitation (Fig. 4.4f). This category separates out storms that are

geographically close enough to Halifax that they could have an impact on the region,

but either aren’t large enough or developed enough to have a significant precipitation

impact. These storms may have other impacts such as storm surge or high winds,

although in our dataset there are no high wind storms with no precipitation. It also

catches storms that are not within 1000 km of Halifax for at least 3 timesteps, since

such a storm does not have enough timesteps to meet the precipitation requirements.

vi. High wind storms (wind)

If an hourly sustained wind speed greater than 44 km/h is recorded at Halifax while

the storm is within 1000 km, it is classified as a high wind storm (Fig. 4.4g). The

threshold of 44 km/h is the value of the 98th percentile of all wind measurements at

Halifax throughout the study period. This category is not a subset of the precipitation
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storms, therefore these storms may or may not also be found in a precipitation

category or in bomb storms.

vii. Bomb storms (bomb)

A storm is considered to be of the bomb variety if it has a deepening rate of at

least 12 mb· sinφ
sin45◦

in 12 hours, where φ is the latitude of the storm centre (Sanders

and Gyakum (1980); Fig. 4.4h). This category has no requirements pertaining to

precipitation or wind speeds, although bomb storms are known to be associated with

high impact weather.

Maps of the identified storm tracks show patterns that vary with storm type (Fig. 4.3).

Theory of ETCs states that the cold sector is to the NW of the storm centre while warm air

is typically to the E and SE. Assuming snow is the more likely precipitation type in the

cold sector and rain is the more likely precipitation type in the warm sector, the results are

consistent with warm and cold sector theory of ETCs. The vast majority of snow storms

track to the south and east of Halifax (Fig. 4.3c) leaving this region in the cold sector of

the storm and bringing snow. Conversely, most rain storms stay to the north of Halifax and

the region is impacted by warm sector rain (Fig. 4.3d). Mixed storms tend to track almost

directly over Halifax, between the preferential tracks of the snow and rain storms (Fig.

4.3e). Not surprisingly, the no precipitation storms are not near Halifax (Fig. 4.3f). It is

likely that some of these storms are in the early stages of development and not yet causing

precipitation, while others are smaller systems that are too far away for their effects to

be felt in Halifax. High wind storms appear to be distributed throughout the range with

possibly a slight concentration of tracks that follow the coastline from Long Island/Cape

Cod through the Bay of Fundy into the Gulf of St. Lawrence (Fig. 4.3g). The majority of

bomb storms track over the open water (Fig. 4.3h), consistent with the climatology given

last chapter (Fig. 3.3). The moisture sourcing and lack of surface friction provided by the

ocean can be important factors in the bomb deepening process.

Annual time series of storm counts are calculated for each of these categories or types

as they will often be referred to (Fig. 4.4). Rain, snow, and mixed storms sum to the

precipitation storms. The precipitation storms and the no precipitation storms combine

to make up the total storms. Each storm within the high wind storms and bomb storms

categories will also be found in either the precipitation or no precipitation storms categories
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Figure 4.3: Tracks of all storms passing within 750 km of Halifax in (grey) overlayed with
storms of each subseries (colour). (a: total, b: total precip, c: snow, d: rain, e: mixed, f: no
precip, g: high wind, h: bomb)
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Type Mean Variance Slope of P-Value Percentage of
Linear Trend Total Storms

total 32.2 16.91 0.01 0.8364 100

total precip 24.85 20.23 -0.03 0.6155 77

snow count 10.32 11.62 -0.04 0.4404 32

rain count 5.75 6.69 0.02 0.6365 18

mixed count 8.78 4.07 -0.01 0.6713 27

no precip count 7.35 8.23 0.04 0.2754 23

wind count 7.38 10.43 0.16 0.0002 23

bomb count 11.05 8.15 0.04 0.3573 34

Table 4.1: Statistics of Halifax storm timeseries.

and possibly in one of the subsets of precipitation types. The basic statistics of these time

series are summarized in Table 4.1. None of the time series have a statistically significant

linear trend except for the wind storm time series (p = 0.0002) which increases at a rate of

0.16 storms per season.

4.1.3 Predictors: Atmospheric Variables

The model predictors are chosen from the same set of ERA5 reanalysis atmospheric

variables used in the previous chapter. See 3.1.2 for more details.

The use of time-lagged seasonal storm counts as potential predictors was also con-

sidered. For example, we might consider using the storm counts from one season to

forecast the number of storms in the following season, which would be considered a

lag-1 predictor-predictand relationship. The viability of these predictors was assessed

through autocorrelation (ACF) and crosscorrelation (CCF) analysis. This revealed very

few significant correlations, but some interesting cyclic nature in the ACFs. The use of

lagged storm time series as predictors is ruled out, but the ACF and CCF plots are included

in Appendix C for the readers interest.
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Figure 4.4: Time series of (a) all winter storms affecting Halifax and the seven subseries
of storms (b: total precip, c: snow, d: rain, e: mixed, f: no precip, g: high wind, h: bombs).
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Figure 4.5: Visualization of three different methods of prediction using linear regression
models.

4.2 Prediction Model

4.2.1 Multiple Linear Regression

A multiple linear regression (MLR) model is a simple, but often powerful method of

predicting future behaviour within a system that combines the effects of multiple inde-

pendent variables to predict an outcome. The basic components of a linear regression are

one or more predictors and a predictand with a regression coefficient that gives the linear

relationship between them.

Given a predictand (y) and a predictor (x) timeseries, a linear regression can take on

three basic forms (Fig. 4.5). Model 1 leverages a time lag relationship between the

predictand and itself. This model type is particularly useful for forecasting a time series

with a strong periodic nature. It takes the following form:

y(t+ τ) = βo + βy(t) + ε (4.1)

where t indicates current time, τ is some lag so that (t + τ) is a future time, β is the

regression coefficient, βo is the intercept, and ε is the residual or the portion of y(t + τ)

not explained by a linear relationship with y(t).

The second form (Model 2) uses the relationship between a predictor at the current time

(t) and the predictand at some time in the future (t+ τ). The model can be described by
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the following equation:

y(t+ τ) = βo + βx(t) + ε (4.2)

This model uses information independent from y (i.e. x), to forecast y at a future time.

The third model type (Model 3) is a two-step model which combines Models 1 and 2.

The first step is to use Model 1 to forecast x at a future time based on its present value.

The second step is to use a zero-lag relationship between the predictor, x, and predictand,

y, to obtain the value of the predictand at the future time. Step one is given by

x(t+ τ) = κo + κx(t) + ε (4.3)

where κ is the regression coefficient and κo is the intercept. Step two relies on a zero-lag

relationship between x and y which can be obtained from the following regression:

y(t) = βo + βx(t) + ε (4.4)

Assuming β is constant with time, the predicted value of x(t+ τ) from step one (Eq. 4.3)

is used to complete step two which can be written as

y(t+ τ) = βx(t+ τ) + ε (4.5)

Step one could also be completed using a model of a different type, e.g. an existing forecast

model from ECMWF. While substituting eq. 4.3 into eq. 4.5 shows that mathematically

model 2 and 3 are equivalent, the important difference lies in the lag at which the predictor

and predictand are related. In model 3, a lag-0 predictor-predictand relationship is used

to obtain the regression coefficient β. However in model 2, the regression coeffient is

obtained from a lagged predictor-predictand relationship. If the predictor is closely related

to the predictand concurrently but not at a lag, model 3 may be the better choice even

though it requires an extra step which adds a second error term.

The choice of model should be made based on performance and practicality of use. To

test performance completely, I would need to fully develop all the model types and compare

results. This would take a considerable amount of time, so I attempt to narrow down

our choice with a preliminary analysis. Assessing the ACF of the eight predictand time

series revealed no strong autocorrelations for any predictand (see Appendix C). Therefore,
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Model 1, which relies on autocorrelation, is eliminated. Having a multistep model of type

three adds more room for error. Any uncertainty in the first step propagates through to the

second step and is compounded by the error of the second model. Error in step one could

be minimized by relying on an existing seasonal forecast model of the predictors, however

I did not have easy access to such model outputs.

This project proceeds, therefore, with model type two (Eq. 4.2), which incorporates a

lag in time between predictands and predictors. With practical usage of the prospective

model in mind, a short time lag is chosen. It is likely that dynamical predictors from the

previous season are too far removed in time to have predictive power over the next season.

I decide to use predictors that are averaged over the month of September immediately

preceding the winter storm season (Nov-Mar). All the data required to forecast storm track

activity in the upcoming season would, in practice, be available before the first day of the

season and the time lag is small enough that one can reasonably expect the dynamics of

the system to be relevant for the storm season.

4.2.2 Predictor Selection

In section 3.4.3, I identified five theoretical drivers of extratropical cyclones and showed

empirical connections between these drivers and east coast winter storm activity. This is

evidence that these drivers may be useful predictors of the Halifax storm season. I use them

to build a pool of potential predictors for our model. Each potential predictor is a time

series of a single variable at a specific location that are expected to have some usefulness

in predicting storms. The variables included in the pool are 2m air temp, 500mb thickness,

mean sea level pressure, 500 mb geopotential height, wind at 250 mb (u-component,

v-component, and magnitude), and total precipitable water vapour. In addition, the spatial

gradient of each of these variables was calculated using second order central differencing

and added to the pool to make a total of 16 potential variables. Each of these variables is

considered over a spatial extent that is bounded by longitudes of 103◦W and 22◦W and

latitudes of 25◦N and 63◦N. Within this region, the data is available on a 1◦ by 1◦ grid

which results in 3 198 possible predictor locations for each variable. The time series in this

set are not independent. In fact, in some cases they are very highly correlated especially for

possible predictors at proximate locations. Removal of this correlation will be addressed

in the selection process. With 16 variables at over 3 000 locations, there are over 50 000

possible predictors in the predictor pool, PP = {pP
i |i = 1, 2...N} where i is the predictor
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Figure 4.6: Predictor selection process overview. Processes indicated with an asterisk
are further explained in subsequently in Figs. 4.7 (initial predictor filtering), 4.8 (MLR
training and validation), and 4.9 (final predictor processing).

index and N the number of possible predictors in the pool. Each possible predictor,

pP
i = [pi1, p

i
2, ..., p

i
40], is a 40 year time series (1979-2018) of the mean September value of

the variable, pii at its specific location. With the number of possible predictors being greater

than the number of observations, the MLR problem is underdetermined. It is not possible

to develop an MLR using the entire predictor pool. To solve this problem, cross-validation

is used to select an appropriate set of predictors for the model. The process of selecting the

best predictors for each storm type model from this broad pool involves three main steps:

initial predictor filtering, MLR training and validation, and final predictor processing (Fig.

4.6). These steps are repeated until the addition of any remaining possible predictors fails

to improve the model.

The initial pool of predictors used when building the model is common to all the

subseries of storms (Fig. 4.7). However, the pool undergoes an initial filtering process

as the first step of predictor selection for each subseries specific model. We remove the

correlations between the possible predictors and all predictors that have already been

selected for use in the model. This prevents the inclusion of redundant information in the

model and makes the final coefficients clearer to interpret. To do so, the linear relationship

between the set of previously chosen predictors (PF) and each possible predictor (pP
i ) is
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Figure 4.7: Initial predictor filtering schematic.

obtained through ordinary least squares regression. This relationship is then subtracted

from the predictor time series (pP
i ) to leave the independent portion of the time series

(pD
i ) for possible use as a predictor. This step is only necessary when selecting the second

or greater predictor for the model. Each predictor time series in the decorrelated pool

(PD) is then correlated with the predictand time series of that subseries model (ytype).

Any possible predictor that does not have a statistically significant correlation with the

predictand at a 95% confidence level is removed from the pool. The output from the initial

predictor filtering step is a reduced set of possible predictors (PS) that are independent of

any previously selected predictors and significantly correlated with the predictand time

series (ytype).

The multiple linear regression model is then built by selecting predictors one by one

from the filtered pool of possible predictors (Fig. 4.8). The process of selecting the best

predictors from our large predictor pool is based on their correlation with predictands. In

the first round of predictor selection, the model does not yet have any predictors chosen

(PF = 0). Thus, the process starts by testing each possible predictor (pS
i ) in a single

variable linear regression. In the second round of predictor selection, a two variable linear

regression model is used with the previously chosen predictor (PF = pF
1 ) and the possible

predictor (pS
i ) as the independent variables. In subsequent selection rounds, the number of

independent variables in the multiple linear regression continues to grow with PF. The

performance of the possible predictor is evaluated based on the RMSE of the predictions

made from the test MLR. The test model is trained over a 30 year period (Fig. 4.8, training),

and then used to forecast storm activity in the remaining 10 years of our 40 year study
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Figure 4.8: Multiple linear regression model training and validation process diagram.

period (Fig. 4.8, validation). This process is repeated four times with unique fitting and

prediction periods each time, which allows for the predicted storm counts for each year

in the 40 year period (ŷtype) to be obtained without the forecast of any individual season

being informed by the observations from that season (ytype). It also prevents choosing a

predictor that by chance does very well over one time period, but not over another and is

therefore not a robust predictor. The 40-year composite of forecasted storm counts over

the validation time periods (ŷtype), and the observed storm counts over the study period

(ytype) are used to calculate the root mean squared error of the forecasts for each possible

predictor (RMSEi). The possible predictor (psi ) that combines with the previously chosen

predictors (PF) to form the MLR with the lowest composite RMSE is chosen as the “best

predictor” (pS
best).

The last step is final predictor processing (Fig. 4.9). In this step, the procedures either

prepare to select another predictor or finalize the model. If the addition of the best predictor

improves the RMSE of the model, pS
best is added to PF. Regardless of its usefulness, the
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Figure 4.9: Final predictor processing flow chart.

best predictor is removed from future consideration in the possible predictor pool, PP. If

any possible predictors remain in the possible predictor pool, the next step is to return to

the beginning of the selection process to choose another predictor for the model. This

process continues, adding new predictors to the model until eventually there are no possible

predictors left. At this point, all original possible predictors that have not been added to

the model cannot decrease the RMSE of the model if they are added as another predictor.

The final model parameters can then be determined. The final set of predictors (PFF) is the

set of predictors that have been selected until this point in the process. The final regression

coefficients (βFF) result from using ordinary least squares to fit a model with the full time

series of PF as the independent variables and ytype as the dependent variable.

The set of predictors (PFF) chosen for each subseries model are given in table 4.2. The

models range in size from two to four predictor models. The most commonly selected

predictor is gradient of total precipitable water vapour and the second most common

predictor field is the gradient of 2m air temperature. The frequency of these predictors

is not surprising. The pattern of total precipitable water vapour in the atmosphere is a

reflection of upper level flow and integrates many atmospheric fields. This makes it a likely

choice in the prediction model since it combines the effects of many predictive features,

such as temperature, moisture, vorticity, and mid-level winds into a single predictor.

Recalling that the primary energy source of ETCs is baroclinicity explains the prevalence

of 2m temperature gradient among the final predictors. Baroclinic zones exist where there
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Predictand Predictor 1 Predictor 2 Predictor 3 Predictor 4
(ytype) (PFF

1 ) (PFF
2 ) (PFF

3 ) (PFF
4 )

[lat, lon] [lat, lon] [lat, lon] [lat, lon]

total gradient TPWV gradient TPWV
[57, 309] [49, 327]

total precip gradient TPWV gradient T2M
[57, 310] [29, 258]

snow count gradient T2M gradient V250 gradient TPWV gradient TPWV
[48, 332] [42, 331] [53, 311] [26, 277]

rain count gradient TPWV gradient TPWV gradient TPWV
[37, 331] [63, 284] [48, 321]

mixed count gradient T500 gradient TPWV gradient T2M gradient U250
[63, 313] [29, 293] [40, 310] [29, 277]

no precip count gradient TPWV gradient T2M gradient V250
[42, 279] [29, 264] [40, 319]

wind count T2M gradient U250 T2M
[28, 291] [27, 281] [49, 310]

bomb count gradient TPWV gradient V250 WND250 T500
[30, 292] [55, 298] [32, 309] [61, 322]

Table 4.2: Location and variable type of predictors selected for each type of subseries
seasonal storm count model.

are strong spatial differences in temperature which is represented in the 2m temperature

gradient field. The locations of the predictors are quite variable, but many are located

downstream from Halifax in the climatological storm track (Fig. 4.10).

4.2.3 Model Fitting and Validation

To assess the performance of the final models (Table 4.2), I evaluate the composite predicted

time series (ŷtype). For each predicted value two prediction intervals are also calculated

(66 and 90 % levels). A prediction interval (PI) gives the range within which a predicted

value is expected to fall based on the uncertainty of the model’s ability to predict a specific

value rather than simply predict the mean. It incorporates the sample uncertainty typically

expressed by a confidence interval (CI) associated with the prediction of the mean in

addition to the uncertainty associated with the new prediction. Due to this difference, a PI

is always wider than a CI. In this model, PI is calculated for a given significance level (α)

and time step (i) according to the following equation:

PIŷ = ŷ ± tαdf σ̂ŷi , (4.6)
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Figure 4.10: Locations of predictors chosen for each seasonal storm count model. Predic-
tand storm type is shown by colour, predictors are indicated with marker shape.

where ŷ is the predicted value of storms in the season; tαdf is the critical t-value for the

specified significance level and the degrees of freedom (df ) of the model; and σ̂ŷ is the

standard error of the ith predicted value (Helwig, 2017). The standard error is defined

mathematically as follows:

σ̂ŷ =
√
MSE(1 + (P FF

i )T ((P FF )TP FF )−1P FF
i ) (4.7)

where MSE is the mean squared error and P FF
i is the set of predictor values at the ith time

step.

To validate the model, the 40-year forecasted storm activity time series and prediction

intervals are compared with the observed storm activity over those 40 seasons (Figs. 4.11

and 4.12). We must remember that because the MLR problem was underdetermined,

the relationships between error measurements that hold for a conventional MLR will

not hold in this case. Thus RMSE, normalized root mean squared error (NRMSE), and

cross-correlation are used to quantify the fit of each subseries prediction model (Table

4.3). All predicted model timeseries are correlated with their corresponding observation

time series at a value of at least 0.78. Our best model as determined by cross-correlation
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Figure 4.11: Model output time series validation for (a) all storms, (b) precipitation storms,
(c) snow storms and (d) rain storms. Forecasted storm count timeseries (dashed line)
shown with a 66 % prediction interval indicated by the dark grey shaded area and a 90 %
prediction interval indicated by the entire light and dark grey shaded area. Observed storm
counts (solid) shown for comparison. For each type, dashed lines indicate one standard
deviation above and below the time mean observed storm tracks per season.
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Figure 4.12: As in Fig. 4.11 but for (a) mixed precipitation storms, (b) storms without
precipitation, (c) wind storms, and (d) bomb storms.
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Predictand RMSE NRMSE corr(obs, pred)

total 2.53 0.76 0.7888
total precip 2.65 0.72 0.8086
snow count 1.76 0.58 0.8580
rain count 1.61 0.74 0.7849

mixed count 1.09 0.62 0.8421
no precip count 1.72 0.68 0.8038

wind count 1.98 0.72 0.7923
bomb count 1.53 0.61 0.8442

Table 4.3: Validation results for all eight predictand models.

is the snow storm model at a correlation of 0.8580. The lowest RMSE is recorded by

the mixed storm model. However, to compare RMSE across models, the value should be

normalized. The NRMSE is calculated by dividing the RMSE by the standard deviation of

each subseries (σtype). When this is taken into account, one can see that while results are

comparable across models, the snow storms model is best with the NRMSE equal to 0.58.

Overall, the models forecast seasonal storm activity with some skill showing the chosen

predictors have some predictive value. However, the large width of the prediction interval

on each model may pose issues for model usage.

For future use of these models, I produce eight final equations for forecasting winter

seasonal storm activity in the Halifax area. The regression coefficients are obtained from

fitting the predictors and predictand time series over the whole 40-year study period (Table

4.4). For six of the eight MLRs, the intercept (βFF
0 ) is similar to the mean storm activity

value for that storm type. The value of the intercepts for the wind and bomb storms

however, are much lower to account for the positive trend in these time series.

4.2.4 Seasonal Forecast of Halifax Winter Storms

A forecast made directly from the output of the MLRs has considerable uncertainty as

shown by the prediction intervals on the model outputs. While this precludes the use

of the models for deterministic forecasting, the model outputs can still be utilized for a

probabilistic forecast. The framework for this usage is outlined in this subsection. Rather

than forecast an exact number of storms, I create categories of storm track activity that give

context to the forecast outputs. These categories are above average, average, and below

average. The threshold values that separate these categories are defined based on the mean
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Predictand Intercept Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4
(βFF

0 ) (βFF
1 ) (βFF

2 ) (βFF
3 ) (βFF

4 )

total +42.0 -10.9 -3.48 - -
total precip + 29.1 -13.8 -9.02 - -

snow + 20.9 -20.4 -4.13 +3.24 +1.42
rain + 8.86 -3.77 +4.04 -2.00 -

mixed + 11.3 -0.0350 -1.36 +3.37 +0.966
no precip + 6.86 +2.60 -4.34 -2.57 -

wind -1825. +4.96 +2.43 +1.23 -
bomb -176. +2.35 -2.95 -0.547 +0.00357

Table 4.4: Model parameters for each type of subseries forecast model.

Storm track activity category Range
Above Average ŷ > T uptype

Average T lotype < ŷ < T uptype

Below Average ŷ < T lotype

Table 4.5: Classifications of storm activity. The upper threshold (T uptype) separating above
average and below average is one standard deviation above the mean and the lower
threshold (T lotype)
which separates average and below average is one standard deviation below the mean.

and standard deviation of the observed storm time series for each storm type. The upper

threshold is one standard deviation above the mean (T uptype = ytype + σtype) and the lower

threshold is one standard deviation below the mean (T lotype = ytype − σtype; illustrated with

dashed lines in Figs. 4.11 and 4.12). The above average storm season range lies above the

upper threshold and the below average category lies below the lower threshold. The range

considered average lies between the two thresholds i.e. within one standard deviation of

the mean.

The probabilistic forecast determines the likelihood that the number of storms in a given

season falls within each of these three ranges. To do so, the prediction interval (PI) is

utilized. The PI follows a Student’s t-distribution which is symmetric and dependent on the

degrees of freedom of the model. At large degrees of freedom (df > 30), the t-distribution

approaches a normal distribution (Heckert et al., 2002). Thus, the probability density

function of the forecast can be represented using a normal distribution centred on the

forecasted value (ŷtype) with width given by the standard error of the prediction (σ̂ŷtype).
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2 %

70 %

28 %

It is very unlikely to be a below average storm season

It is likely to be an average storm season

It is unlikely to be an above average storm season

Figure 4.13: Probabilistic forecast schematic for an example storm season. The probability
density function of the forecast is illustrated with the curve and compared with the storm
activity categories. The percentage of the area under the curve that lies within each category
is used to make the written forecast statements.

To determine the likelihood that the number of storms in a storm season will fall within

each of the three activity categories, assess the percent of the forecast distribution that falls

above, between, and below the thresholds. This gives a probability as a percentage for

each possible activity level (Fig. 4.13). The numerical probabilities are also categorised.

The language of our proposed probabilistic forecast follows the IPCC (2014) probability

language (Table 4.6).

The resulting language of the forecast would be, for example, it is very likely that Halifax

has an above average number of rain storms this season. The italicized text indicates the

Probability terminology Numerical probability
Very likely ≥ 90%

Likely 66− 89%

About as likely as not 34− 63%

Unlikely 11− 33%

Very unlikely ≤ 10%

Table 4.6: Relationship between probability language and statistical likelihood.

87



parts of the forecast that would change based on the model output each season and the

predictand being examined. Mathematically, the example above is stating that 90 % of the

probability density function of the forecast lies greater than one standard deviation above

the mean number of rain storms recorded over the 40 year study period.

This prediction model is applied to forecast the likelihood of above average, average,

and below average storm activity in the 2019-20 and 2020-21 storm seasons, which were

not used in any step of the model development process (Tables 4.7 and 4.8). The forecasts

are also compared with the observed storm activity in those seasons (Table 4.9). The

probabilistic forecast shows some skill with an accurate activity category being predicted

more than half the time. The model seems most accurate when forecasting that the activity

for the season will be average. There are some situations where the predicted and observed

number of storms for a given type are within a 2 counts of one another, but the forecast

is marked as a miss because the activity category threshold is between the predicted and

observed values. This occured in 2019 for both the mixed and no precipitation storm types.

The probability distribution of the forecast is narrow for these projections which causes

only a small portion of it to extend into the adjacent activity categories. Therefore, in the

probabilistic forecast, the proximity of the prediction to the threshold between categories is

not as well communicated as one might hope. The observed activity category (average) was

the second most probable in the forecast, but was only given a probability of “unlikely”.

4.3 Summary

Forecasting eastern North American ETCs began with narrowing down our spatial focus.

The previous sections showed that the field of ETCs in eastern North America is noisy and

highly spatially variable. This makes it unlikely that a single model could successfully

forecast over the entire broad region explored in the climatology and variability analyses.

More accurate results can be gained from regionally specific or single location-focussed

models. The Halifax, NS area was chosen as the focus of this study primarily due to its

status as the largest Canadian urban centre located along the main climatological storm

track. Winter storms are an important feature of local weather and culture in this area.

I used a multiple linear regression model and focussed on obtaining results that could

be usefully applied to forecasting and give meaningful results for a citizen of Halifax. I

assembled a large pool of possible predictors based on driving forces of ETC activity and
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2019 Forecasts Probability of Probability of Probability of
Above Average Average Below Average

total very unlikely likely very unlikely
0.084 0.8825 0.0335

total precip unlikely likely very unlikely
0.3066 0.6908 0.0026

snow count very unlikely very likely very unlikely
0.0696 0.9172 0.0132

rain count very unlikely likely unlikely
0.02 0.8435 0.1365

mixed count very unlikely unlikely likely
0.0001 0.2564 0.7435

no precip count likely unlikely very unlikely
0.7081 0.2918 0.0001

wind count very likely very unlikely very unlikely
0.9879 0.0121 0.0

bomb count about as likely as not about as likely as not very unlikely
0.6145 0.3854 0.0001

Table 4.7: Probabilistic forecast of 2019 winter storm activity for 8 subseries. The most
probable activity category for each type is italicized. Bold indicates when the observed
storm activity falls within the forecasted highest probability category.

2020 Forecasts Probability of Probability of Probability of
Above Average Average Below Average

total very unlikely likely very unlikely
0.0302 0.8742 0.0956

total precip very unlikely about as likely as not about as likely as not
0.0011 0.5898 0.4091

snow count about as likely as not about as likely as not very unlikely
0.4003 0.5994 0.0003

rain count very unlikely likely unlikely
0.0124 0.7762 0.2114

mixed count very unlikely very unlikely very likely
0.0 0.0867 0.9133

no precip count very unlikely very likely very unlikely
0.0398 0.8962 0.064

wind count about as likely as not about as likely as not very unlikely
0.5767 0.4225 0.0007

bomb count very unlikely likely unlikely
0.0027 0.7572 0.2402

Table 4.8: As in Fig. 4.7 but for 2020 winter season
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2019 yhat yobs Validation 2020 yhat yobs Validation

total 32.78 32 Hit total 31.46 41.0 Miss

total precip 27.97 22 Hit total precip 20.98 27 Hit

snow count 11.01 10 Hit snow count 13.27 10 Hit

rain count 4.96 5 Hit rain count 4.53 6 Hit

mixed count 5.9 7 Miss mixed count 5.11 11 Miss

no precip count 11.23 10 Miss no precip count 7.15 14 Miss

wind count 16.09 8 Miss wind count 11.02 15 Hit

bomb count 14.37 7 Miss bomb count 9.35 10 Hit

Table 4.9: Validation of 2019 and 2020 winter season predictions. Comparison of predicted
(yhat) and observed (yobs) storm counts for each type with accuracy of the forecasts given
in the validation column. The observed storm counts must fall within the most probable
predicted activity category for the forecast to be considered a hit.

selected predictors from this pool based on their performance in the model. The models

developed with these predictors showed the predictive power of atmospheric variables

in the late summer/early fall on winter ETC activity, especially the spatial gradient of

total precipitable water vapour and 2m air temperature. Though the models had skill,

there remained some uncertainty. This uncertainty combined with the goal of usability for

the general public lead me to suggest a more qualitative, probabilistic seasonal forecast

model based on the MLR forecasts and the calculated prediction intervals to be used in

operational forecasting.

Though the model could be further developed and refined, I believe I have presented a

good basis for a simple model that has reasonable applicability to seasonal forecasting of

ETCs in Halifax and the surrounding area.
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CHAPTER 5

DISCUSSION

The work presented in this thesis complements the efforts of other scientists in the field to

understand and predict the seasonal variability of extratropical cyclones. At the outset, I

identified three primary objectives on the path toward the main goal of developing a skilled,

practical seasonal ETC forecast. These objectives were addressed in three main science

chapters. First, I developed a method to detect and track extratropical cyclones in eastern

North America (Ch. 2). Then I explored the climatology and variability of the ETCs that

had been detected and tracked (Ch. 3). Finally, informed by the relationships explored in

the variability analysis, I developed a probabilistic winter season forecast model to forecast

the frequency and types of storms that impact Halifax, Nova Scotia, Canada (Ch. 4).

5.1 Summary of findings

I developed a similar detection, tracking, and smoothing techniques to many other studies

to build a dataset of ETCs (Neu et al., 2013). I was able to produce a dataset that well

represents storms that impact the east coast of North America. The raw output of the

detection and tracking algorithm contained some features that were not desirable for the

analysis. This included features that did not impact eastern North America, were persistent

low centres rather than transient eddies, or had characteristics that needed refinement, such

as zig-zagged rather than direct tracks. Careful tuning of the algorithm as well as pre-

and post-processing were required to ensure the dataset captured true ETCs and not these

other features. The dataset obtained has similar characteristics to observations and other

algorithm-tracked datasets both on aggregate (Figs. 1.4 and 3.1) and when comparing

individual storm outputs (Fig. 2.6).
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I employed the very common technique of EOF analysis to the winter storm field, as

others have done (Parding et al., 2019). The individual modes of variability identified by

this technique explained only small portions of the overall variability of the storm field.

I then turned to SOMs which have been applied to atmospheric phenomena for many

years (Liu and Robert, 2011; Hewitson and Crane, 2002). Similarly, cluster analysis has

often been used to group ETCs (Gaffney et al., 2007; Arnott et al., 2004). However, the

application of SOMs for clustering ETCs is novel. In the SOMs analysis and subsequent

comparison with conditional means of atmospheric variables, I found that anomalies in

storm track density within SOM-clustered winters can be clearly related with anomalies in

drivers of ETCs within those same years. Node 1 showed increased storm density along

the northeast states and Atlantic Canada connected with an increased land-sea temperature

difference and a strong jet. Node 2 had no strong anomalies along the early part of the

main climatological storm track which was tied to widespread average values of common

ETC drivers, however later in the track, between Newfoundland/Labrador and Greenland,

related to a weakened land-sea temperature difference. In node 3, there was a strong signal

of higher storm density northeast of Newfoundland which was supported at the upper levels

by a strong jet. In the final node (4), fewer storms were found along the northeast States

and Atlantic Canada connected with warmer land temperatures and weaker troughing at

500 mb. I also identified clear spatial patterns in fields of ETC precipitation effects that

coincide with increased and decreased storm activity in the SOM-clustered winter seasons.

I have proposed a probabilistic forecast for all winter extratropical cyclones that affect

Halifax separated into seven subsets of storm types, based on extensive investigation of

the climatology and variability of the ETC field on the east coast of North America. Storm

types included categories based on precipitation type, wind, and storm intensity. The

EOF analysis made evident the high degree of spatial and temporal variability exhibited

throughout the study area. Therefore, the predictand field was simplified to be regionally

focussed on Halifax, NS, allowing the temporal variability in the field to be quantified

and predicted without complications of spatial variability. I developed 8 MLR models,

one to forecast all storms and seven subset models each to forecast a unique storm type.

Using the September mean values of ETC drivers identified in the SOMs analysis, the

most skilled predictors were methodically selected for each model. Most often, the best

predictors were found to be the gradient of total precipitable water vapour and 2m air
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temperature and its gradient field. The best model as determined by R2 is the snow storm

model (R2 = 0.7342). The forecast is built upon this set of 8 moderately skilled, storm

type-specific MLR models. Through the whole development process, the intent was to

create a forecast that communicates information of value to the general public. This

was ultimately achieved with probabilistic descriptions that compare projected activity

to usual winter storm season activity in clear, digestible statements. The forecast uses

the probability distribution of the model output for a given season compared with typical

seasonal storm counts for that storm type to determine the probability of an average, below

average, or above average storm season. While this project focussed on Halifax, the

framework presented could be applied at any location.

The ETC research field is currently lacking in seasonal prediction of ETCs along

much of the east coast of North America, especially regionally nuanced forecasting.

Storm characteristics, such as precipitation type or severity, are also not currently well

forecasted. Existing seasonal prediction models for mid-latitude cyclones often utilize

EOFs as both predictors and predictands as in Parding et al. (2019). The time series

of the leading few principal components are used as predictands and because of the

spatiotemporal relationship inherent to EOF analysis, predicting these time series provides

spatial information as well. The predictors are then chosen from the leading EOFs of

common predictor fields such as temperature gradient or 500 mb geopotential heights.

Global climate models (GCMs) provide another way to obtain seasonal ETC forecasts. The

skill of various GCMs have been assessed for their representation of frequency of ETCs

during a winter season (Yang et al., 2015; Feng et al., 2019; Renggli et al., 2011). Overall,

existing seasonal forecasting has shown skill forecasting ETCs in the North Pacific (Yang

et al., 2015; Befort et al., 2018; Feng et al., 2019). It is thought that this predictability

is related to ENSO (Feng et al., 2019), which has been identified as a predictor of ETCs

in many studies. While Plante et al. (2015) and others have identified relationships

between ENSO and eastern North American storm activity, these connections have not

been extended to prediction. Some skill has also been identified in GCM forecasts of

windstorms over Europe which is thought to be related to the NAO (Befort et al., 2018). In

general, little predictability has been identified along the east coast of North America - the

main area of interest of this study (Yang et al., 2015; Befort et al., 2018). Even if some

predictability exists, forecasts made from climate models, EOF-based predictions, and
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teleconnection-based predictions have limited spatial resolution and limited information

about storm characteristics making it difficult to get meaningful results when applying

them to a specific location or region.

The need for a focussed, digestible seasonal ETC forecast is filled by the development

of the regionally specific, multi-type probabilistic forecast model presented in chapter 4

which provides skillful forecasts of ETC activity differentiated according to storm impacts.

Existing models can make broad sweeping statements such as, “The storm track will

experience a northward shift this winter season.” The models presented here add spatial

and impact-related detail to make more specific and applicable forecasts such as, “It is

likely to be an above average storm season this winter. It is highly likely to be above

average in terms of snow storms, likely to be below average for rain storms, and highly

likely to be average in numbers of wind storms and bomb cyclones.” Focussing the

spatial extent of the predictand and subtyping storms according to impacts has allowed for

increased detail and enhanced usefulness for the general public. As previously explained,

accurate seasonal forecasting of ETCs can increase disaster preparedness and mitigate

human and economic loss. This regionally specific seasonal probabilistic forecast model

framework gives a practical projection of likely winter storm season characteristics one

month ahead of the upcoming season providing the lead time to allow for ample preparation

to minimize losses.

5.2 Limitations

5.2.1 Storm detection and tracking algorithm

As discussed in the introduction, the primary types of storm detection and tracking al-

gorithms are Lagrangian and Eulerian. A Lagrangian algorithm was chosen to allow for

analysis of the characteristics of individual storms. Because of this choice, the storm field

was likely noisier than if an Eulerian method had been used. Though this caused some

issues in the variability analysis, which is elaborated on subsequently, the analysis was

still successfully completed. The choice of Lagrangian tracking enabled the separation

of storms into subgroups based on effects for a more detailed and applicable forecast in

Chapter 4. Overall, the Lagrangian tracking technique was an appropriate choice for this

study.

The precision of the track outputs depends on the model processes. Within the detection
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step of the algorithm, the MSLP field was analysed for the presence of storms at 4 hPa

intervals. This interval was chosen because 4 hPa intervals are the meteorological standard

for contouring MSLP fields. A meteorologist who is manually marking the centre of a low

pressure system on a surface map then uses scattered point observations accurate to the

tenth of a hectopascal and surface wind fields to place the low centre within the innermost

contour. In the algorithm, the low is placed at the pixel with the lowest pressure. For future

use, if the intended use of the dataset is highly sensitive to the location of the low centre,

the algorithm could be adapted to include surface wind fields in the placement step. It may

also be beneficial to adjust the algorithm to analyse MSLP fields at smaller intervals if the

exact area of a low pressure system is a key piece of the study. The area is calculated as

the region inside the outermost closed MSLP contour that contains the low. Adding more

contour levels will increase the precision of this calculation.

The tracked storms do not include storm velocity at each time step. The output tracks

are composed of a series of coordinates that specify the location of the storm every hour.

Using this information, it would be straightforward to calculate storm velocity vectors at

each timestep. Storm speed is important for forecasting wind and precipitation impacts of

a system. A slow-moving storm poses a flood risk whereas a fast-moving system is more

likely to cause stronger winds particularly on the east side of the low. This information

may be incorporated into the forecasting portion of this study. Aggregate or mean fields

of storm velocity would be useful for inferring momentum fluxes and illustrating the

climatological storm track.

5.2.2 EOFs and SOMs

The initial variability analysis using EOFs had limited success. This method did not

identify modes of variability that explained any substantial amount of the storm field

indicating the field is highly variable both in space and time. In order to obtain leading

EOFs that explained more than 10% of the variance of the field, I had to increase grid cell

size. Reducing the spatial extent to focus on the main track did not improve the results.

This suggests that the issue was low sample sizes in each grid cell, a consequence of the

high resolution of the grid. Many successful EOF studies on ETCs have used an Eulerian

tracking method to produce the storm dataset which gives less noisy fields and is not

limited by sample size (Rogers, 1997). Other studies that calculated meaningful EOFs

on Lagrangian-tracked datasets used larger grid spacing, or populated cells based on the
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number of storms that passed near as well as through a cell (Parding et al., 2019) to avoid

sample size limitations. As an alternative to EOFs, I used SOMs in a novel application

to the ETC track density field. By calculating conditional means of ETC drivers based

on the SOMs clustering of seasons, the validity of the SOM-identified variability was

established by tying anomalous storm density features with forcing by atmospheric effects.

Conditional means of ETC effects were also used as evidence to support the presence

of the storm track density patterns. A traditional statistical significance analysis could

complement this physical validation approach. The SOMs analysis confirmed that annual

winter variability exists in the mid-latitude ETC system and that the variability can be

connected to possibly predictive atmospheric variables, particularly 2m air temperature.

Gore et al. (2020) are also working on understanding ETCs using SOMs. Contrary to

the methodology used in this work, they obtain clusters by applying the SOMs algorithm

to large scale meteorological patterns and evaluating the ETC differences that occur within

the groups that were distributed according to the atmospheric patterns. Conversely, I

choose to apply the SOMs algorithm directly to the ETC field, then evaluate atmospheric

patterns within the ETC-directed groupings. While the synoptic typing-like methodology

of Gore et al. (2020) may be easier to apply operationally, I surmise that allowing the

storms themselves to dictate the groupings results in cleaner separation of unique storm

types.

Future work on this topic should focus on quantifying the observed relationships between

drivers, storm density, and effects. This would help to differentiate the more influential

forcings from the secondary factors. Further, the quantified relationships could be applied

in a predictive manner to determine variations in the storm field.

5.2.3 Prediction model

The physical interpretation of the predictor-predictand relationships in the proposed model

is ambiguous. Chapter 3 demonstrated the concurrent relationships between ETCs and

their known drivers within the same time frames. The predictor fields were selected

based on those concurrent physical relationships between the storms and atmospheric

variables. However, the dependence of predictands on the predictors in the model design

is lagged in nature. The predictors exhibit skill which demonstrates that some sort of

relationship does exist at this lag, however I have not developed a physical basis for

the mechanisms or processes underpinning those relationships. A further investigation
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into the predictor-predictand relationships at the lag used in the forecast model would

give better insights into the mechanisms at play and build a stronger theoretical basis

for the model. Such an analysis could reveal that predictors at a slightly different time

lag have a stronger physical connection or that spatial averaging or other filtering of the

predictor field gives more robust predictor-predictand relationships. Alternatively, a model

of type three (see Fig. 4.5) would be easier to interpret physically based on the variability

analysis presented in Chapter 3 because this model type uses no-lag predictor-predictand

relationships. Choosing to build a model of this type instead of the type two MLR that I

proposed may lead to a forecast with stronger or more straightforward physical roots.

Alternative methods of storm selection may be employed to better refine the predictand

time series so they are more representative of impactful storms. The forecast models

are predicated on the assumption that storms that are within 750 km of Halifax for a

portion of their life cycle are relevant to the weather at Halifax. After testing multiple

radii this distance was chosen because it balanced reducing the number of storms in the

no precipitation category with keeping storms in other categories that affected weather at

Halifax. Based on my analysis, the storms in the “no precip” category do not cause major

impacts at Halifax (precipitation or high winds). These storms meet the 750 km criterion,

but seem to have little to no impact at the location of interest. It may be informative to

explore the effects of only selecting storms when the system is in the later developing

and mature stages of its life cycle (as in Plante et al. (2015)). It is apparent that some

of the storms in the “no precip” category begin their life cycle within the area, but since

precipitation and high winds do not occur until later life cycle stages, the effects of that

system are not experienced at Halifax. Within the storm dataset, the detected area of

each system at can be found at every time step. This area measurement could be used to

determine whether or not a storm is affecting Halifax at any given time step by determining

the extent of the storm based on the area and assumed circular or elliptical shape of the

system. Further accuracy may be gained by saving the actual shape of the system in the

detection process rather than just the area.

The forecast models developed here include no intermodel relationships that would

consider different model types jointly. Additionally, they do not consider counts from

previous seasons of other storm types as possible predictors because this introduces

varying predictor-predictand lags to the models. Since by definition there are mathematical
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relationships between the categories of storms (e.g. precip + no precip = total storms), the

models could be constrained to preserve these relationships. This could mean letting the

total storms forecast simply be the sum of the precipitation and no precipitation forecasts,

rather than forecasting total storms by its own individual model. Because the actual use

of the model outputs is in a probabilistic forecast, the outputs don’t need to be perfectly

congruent. However, if an exact quantitative forecast of the storm types was derived from

the MLRs, the number of storms in an aggregate category (e.g. precip storms) should be

equal to the sum of its constituents (e.g. snow, rain, and mixed storms).

I have proposed a probabilistic forecast based on a set of MLR models. I believe the

framework of the probabilistic forecast is well designed. It uses publicly available ERA5

data, has a practical lead time, can be readily applied at any location, and gives forecast

statements that incorporate both context and uncertainty in a manner that is digestible for

the general public. However in this thesis, the forecasting framework is applied using a set

of MLRs that have not been extensively developed. Future work focussed on this endeavor

could significantly improve the forecast system.

5.3 Conclusion

From the beginning, the intent of this thesis has been to develop a seasonal ETC forecasting

system for storms in the northwest Atlantic. It started with developing detection and

tracking method to build a dataset of ETCs in the area of interest. This endeavor was

successful in creating a set of storms that both agreed with individual storm tracks and

collectively matched with known climatology of ETCs in this region. Next, the interannual

variability of the storm track density field was analysed using SOMs to cluster similar

winter storm seasons. Using these clusters, I identified spatial and temporal connections

between storm track variability and atmospheric drivers, most notably, with the 2m air

temperature field. The development of the storm track dataset and the investigation of the

climatology and variability of the ETC field culminated in the development of a winter

season ETC forecast regionally focussed to Halifax, Nova Scotia, Canada. I established the

framework of a probabilistic forecast that delivers estimates of storm type and frequency

for the upcoming winter season with one month of lead time. The forecast system leverages

the probability distribution of the forecast and the typical characteristics of a winter storm

season to give a digestible forecast within a familiar frame of reference that incorporates
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mathematical uncertainty in an accessible way. The main success within the forecasting

study was not necessarily creating a well-refined deterministic forecast model, but in

constructing a framework that takes a model output and its uncertainty and communicates

it clearly to the general public with context. Sharing such a forecast ahead of an upcoming

winter season can enable mitigation of losses, improved financial planning, and better

overall preparedness for the impending trials of Mother Nature.
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APPENDIX A

FULL SET OF EOF RESULTS

The EOF analysis in section 3.4.1.1 outlined the adjustments made in an attempt to

improve the variability explained by the EOF output. The complete analysis for each of

these adjustments is included in this appendix.

In our first attempt to reduce the variability of the field and obtain higher explained

variability from the leading modes, I reduce the spatial field to focus only on the main track.

The area chosen is a quadrilateral with corners at (35◦N, 82◦W), (35◦N, 52◦W), (60◦N,

28◦W), (60◦N, 58◦W). The spatial patterns and PCs of the first 4 modes are shown in figs

A.1 and A.2. This increases the explained variance by the leading mode to 5.84%(fig A.3).

While this is an improvement, it is only slight. I instead test increasing the grid cell size of

our input climatology field.

The climatology of winter storms within the study area on a 5x5 degree grid is shown in

fig A.4.

The spatial patterns and PC timeseries from the first four modes are shown in figures

A.6 and A.8. Using the 5x5 degree grid instead of the 1x1 degree grid for the EOF analysis

doubles the explained variance from the first mode: 11.36 % (fig A.9). The leading 8

modes combine to explain half of the variance. It takes 16 modes to explain 75% of the

variance. While this is a better improvement than the main track spatial restriction, the

explained variance is still less than I want.

The final EOF analysis for the field of all storms is performed on the climatology at

10x10 degree grid size. Spatial patterns and PC timeseries of the first four modes are

shown in figures A.10 and A.12. This gives a leading mode that explains 18.54% of the

variance of the field (A.13). The explained variance of the first 4 modes combined is 52%.
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Figure A.1: Spatial patterns of the first 4 EOF modes for PCA on main storm track

This is a significant portion of variance explained by a few modes, which means analysing

and discussing the variability in time of these patterns would be useful for understand and

possibly predicting the variability of the whole system. However, using grid cells this size

causes a loss of much of the detail within the field.

A.1 Bomb Storms

As with the field of all storms, I attempted to reduce variability in the field by reducing the

spatial extent of the study area. The leading mode of the reduced spatial field EOF analysis

explains 5.8% of the variability (fig A.16). This is actually less than when I used the full

study area. The spatial pattern of the leading mode (fig A.14a) indicates an increase or

decrease in storms over the entire main track, a common first EOF pattern. Modes 2, 3,

and 4 (fig A.14) show lateral track shifts similar to the second and third mode of the full

spatial field EOF analysis.
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Figure A.2: Prinicipal component timeseries of the first 4 EOF modes for PCA on main
storm track

Figure A.3: Fraction of total variance explained by each principal component for PCA on
main storm track
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Figure A.4: Unique storm centres km−2 for storms with origin south of 60◦N on a 5 degree
grid
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Figure A.5: Unique storm centres km−2 for storms with origin south of 60◦N on a 5 degree
grid, contoured
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Figure A.6: Spatial patterns of the first 4 EOF modes for PCA on 5x5 degree gridded
storm counts

Figure A.7: Spatial patterns of the first 4 EOF modes for PCA on 5x5 degree gridded
storm counts
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Figure A.8: Prinicipal component timeseries of the first 4 EOF modes for PCA on 5x5
degree gridded storm counts

Figure A.9: Prinicipal component timeseries of the first 4 EOF modes for PCA on 5x5
degree gridded storm counts
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Figure A.10: Spatial patterns of the first 4 EOF modes for PCA on 10x10 degree gridded
storm counts

Figure A.11: Spatial patterns of the first 4 EOF modes for PCA on 10x10 degree gridded
storm counts with contours
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Figure A.12: Prinicipal component timeseries of the first 4 EOF modes for PCA on 10x10
degree gridded storm counts

Figure A.13: Prinicipal component timeseries of the first 4 EOF modes for PCA on 10x10
degree gridded storm counts
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Figure A.14: Spatial patterns of the first 4 EOF modes for PCA on degree gridded bomb
storm counts
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Figure A.15: Prinicipal component timeseries of the first 4 EOF modes for PCA on degree
gridded bomb storm counts

Figure A.16: Prinicipal component timeseries of the first 4 EOF modes for PCA on gridded
bomb storm counts
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APPENDIX B

ADDITIONAL CONDITIONAL MEANS
OF ATMOSPHERIC DRIVERS AND
EFFECTS

Following the methods outlined in Section 3.4.3, this appendix shows supplementary

analysis of conditional means using atmospheric variables that were not analyzed in this

work but may be of interest to the reader.

Figure B.1: Mean seasonal relative vorticity at 500 mb for SOM-grouped seasons (unit:
1/second)
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Figure B.2: Mean seasonal relative vorticity (contour) and anomaly from the climatological
mean (colours) at 500 mb for SOM-grouped seasons (unit: 1/second)
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Figure B.3: Mean seasonal wind direction (arrows) and intensity (colours) at 10 m for
SOM-grouped seasons (unit: meters/second)
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Figure B.4: Anomaly from the climatological mean of seasonal wind direction (arrows)
and intensity (colours) at 250 mb for SOM-grouped seasons (unit: meters/second)

Figure B.5: Average seasonal mean sea level pressure (contours) and anomaly from the
climatological mean (colours) for SOM-grouped seasons (unit: mb)
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APPENDIX C

FURTHER PREDICTAND TIME SERIES
ANALYSIS

The eight time series that are used as predictands can be further analyzed for their properties

by means of the autocorrelation function and the cross-correlation function. The results

are shown in the following figures and tables.

The ACF of rain counts shows the only significant correlation which is found at lag

of one season. Despite having no significant correlations, the other time series show

interesting cyclical nature, especially no precipitation and snow count which has a nearly

significant signal at lag 4.
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Figure C.1: Autocorrelation function of each subseries with significance shown by dashed
line.

The cross-correlation function between the first 7 time series is shown in Figures C.2

and C.3. Note CCF was not calculated for bomb storms.
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Figure C.2: Cross-correlation functions for twelve time series combinations.
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Figure C.3: Cross-correlation functions for the remaining nine time series combinations.

The zero lag correlations are summarized in table C.1.
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total total
precip

snow
count

rain
count

mixed
count

no
precip
count

wind
count

total 1 0.79 0.54 0.44 0.29 0.21 0.26

total
precip 0.79 1 0.70 0.58 0.31 -0.44 0.26

snow
count 0.54 0.70 1 0.02 -0.15 -0.33 0.03

rain
count 0.44 0.58 0.02 1 -0.03 -0.27 0.24

mixed
count 0.29 0.31 -0.15 -0.03 1 -0.08 0.22

no
precip
count

0.21 -0.44 -0.33 -0.27 -0.08 1 -0.04

wind
count 0.26 0.26 0.03 0.24 0.22 -0.04 1

Table C.1: Correlations of the full time series and six subseries.

The time series that have higher cross-correlation at a non-zero lag are summarized in

the table below
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ρx(h) max lag (h) of max ρx(h)

total x no precip count -0.3 9

total x wind count 0.44 4

total precip x mixed
count -0.34 -3

total precip x wind count -0.43 1

snow count x rain count 0.3 11

snow count x mixed
count 0.42 -7

snow count x no precip
count 0.36 -4

snow count x wind count -0.34 -15

rain count x mixed count 0.31 -4

rain count x no precip
count 0.35 5

rain count x wind count -0.37 -28

mixed count x no precip
count 0.33 3

mixed count x wind
count -0.3 -16

no precip count x wind
count -0.37 -11

Table C.2: Highest lagged cross-correlations for time series pairs with max ρx(h) at h 6= 0
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