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ABSTRACT

RATIONALE: The frequency dependence of resistance, R(f), is currently being used as a clinical
measure, thought to assess small airway heterogeneity of the respiratory system. However, it also
can arise from tissue viscoelasticity, upper airway shunt, and recently a novel mechanism due to
time-variation in mechanical properties, but potential sources of this time variation such as from
the nonlinear mechanical properties have not been investigated. METHODS: Here using
measurements from lung tissue and analytical modeling using constant phase models amended
with nonlinear tissue or pressure-volume mechanics, we investigated if the time-varying
mechanics that can arise from tissue nonlinearities during stretch lead to increases in R(f). We
explored these models at different operating stretches or volumes with different stretch amplitudes
and different degrees of nonlinearities. We also modeled the normal pressure volume relationship
as well as curves representative of fibrosis and emphysema. We also investigated if time-varying
properties from ventilation or oscillometry due to the nonlinear pressure-volume relationship can
also predict R(f) and if it is increased in patients with lung transplants including patients with
chronic lung allograft dysfunction. RESULTS AND DISCUSSION: We found that nonlinearity
in tissue and the respiratory system could increase low-frequency resistance above the static model
resistance and thus lead to R(f) greater than predicted from the constant phase model. R(f)
increased more strongly with increases in mean stretch volume, amplitude, or the exponent of the
nonlinearity. The increase in R(f) was mechanistically related to the time variation of stiffness
during oscillatory stretch or ventilation of the models. R(f) was increased as much as 200% during
modeled mechanical ventilation in the ventilation frequency range (0.2 — 5 Hz), however, this
effect was nearly absent during modeled oscillometry (5 — 37 Hz). This can be largely attributed
to the much smaller oscillation amplitude, and lack of any effects from the breathing motion in the
oscillometry frequency range in our model. CONCLUSIONS: Nonlinearity in lung tissue or the
pressure-volume curve during stretch or ventilation respectively, leads to time variations in
mechanical properties that cause increases in low-frequency resistance and thus R(f) larger than
observed from tissue viscoelastic properties alone. Increases in nonlinearity can be a source of
R(f) not previously identified that may be important to the interpretation of the effects of lung
disease on lung tissue mechanics and provides a novel mechanism for the origin of the R(f) and
its changes. While pressure-volume nonlinearity can strongly affect R(f) determined during
mechanical ventilation, measurements by oscillometry are likely not susceptible, although we did

not model other sources of time variation such as flow limitation.
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CHAPTER 1: LITERATURE REVIEW

This chapter presents a literature review focused on what is known, concerning the
frequency dependence of respiratory mechanical resistance and its origins/sources. It begins with
a brief review of the lung structure and function, followed by the mechanics of the respiratory
system and the different mechanisms for the frequency dependence of resistance. Then I provide
a brief introduction to the measurement of nonlinear lung tissue properties and analytical modeling
that led directly to the investigation of how tissue and pressure-volume nonlinearities may
contribute to the frequency dependence of resistance in mechanical impedance measurements,

finishing with a brief review of how heterogeneity in ventilation is assessed using imaging.

1.1 ANATOMY AND PHYSIOLOGY OF THE LUNG

The conducting pathways to the gas exchanging region of the respiratory system begin at
the nose and end at the alveoli. The pathway consists of the nasal cavity, posterior pharynx, glottis,
vocal cords, trachea, tracheobronchial tree, and lung interstitium consisting of connective tissue,
including the smooth muscle, as well as lymphatics amongst other structures. Outside the lungs is
the chest wall which moves with inflation and deflation of the lungs and is defined to include the
muscles of the chest and rib cage, heart, and diaphragm. Below the diaphragm is the abdominal
contents that also move during breathing. The airways, the lung tissue, and the chest wall tissue

all contribute to the mechanical properties of the respiratory system.

Figure 1.1: Airway tree (reproduced with permission from [1])



Structurally, airways (in the lung) run from the trachea to bronchi to bronchioles to terminal
bronchioles, which are the conducting zone where air enters and leave. Air is delivered to alveoli
through a branching airway tree structure, which is further divided into respiratory bronchioles
extending to alveolar ducts and sacs where gas exchange takes place (Figure 1.1). Therefore, the
lung is a heterogeneous branching tree which in disease results in heterogeneous ventilation due
to airway narrowing (especially in the small airways — defined to be less than 2 mm), mucous

plugging, or changes to lung tissue such as fibrotic lesions.

The lung tissue structure is composed of many different extracellular fibers and
intercellular soft tissue that make up the extracellular matrix. The major constituent includes the
collagen fibers which limit distensibility and elastin which is a major contributor to elastic recoil.
Collagen and elastin, together with the surface tension from the alveolar surface, and the gas
compressibility within the available lung volume largely determine lung elastance or stiffness.
Together with the chest wall stiffness, these provide the elastic properties of the respiratory system
and to a lesser extent, the viscoelastic deformation of these tissues contributes to the mechanical

resistance of the respiratory system.

1.2 RESPIRATORY SYSTEM MECHANICS

The mechanics of the respiratory system determine the forces and work required during
breathing by the deformation of the respiratory tissues and the movement of air. Essentially the
mechanics are defined by the pressures required to move the volume of air as it flows through the
airway tree and as the associated tissues deform. When we inhale, negative pressure is created by
the diaphragm and supporting muscles contraction resulting in lung expansion. Similarly, when
we exhale, positive pressure is created by the passive elastic recoil of the lung pulling the chest
inward and driving the flow out, and it can be aided by accessory muscles of expiration in the chest
wall including the abdominal cavity. In obstructive diseases, the primary pathology is that the flow
of air is impeded or obstructed, while in restrictive disease flow can also be reduced, but it’s largely
because of the loss in lung volumes and stiffening of the lung tissue. Several of the mechanical
features of the respiratory system can be measured using several different methods. Spirometry is
the measurement of flow during learned maneuvers using a spirometer. Key measurements include

the Forced Expired Volume in 1 second (FEV1) and the Forced Vital Capacity (FVC) which is the



total volume obtained by integrating the flow between total lung capacity at maximum lung
inflation to residual volume, at the end of a forced expiratory maneuver. In plethysmography, a
subject is seated in a closed box which usually also includes spirometry for the measurement of
respiratory flows. By panting on the mouthpiece after the end of a normal expiration while the
valve to the outside of the box is closed, the Functional Residual Capacity (FRC) can be
determined. This is by the simultaneous measurement of the pressure changes in the box (outside
of the chest wall) and the pressure changes of the lungs at the airway opening and using Boyle’s
Law. The FRC is the lung volume at the end of a normal exhalation and is the equilibrium volume
between the forces of expansion from the chest wall and contraction from the elastic recoil of the
lung pulling inwards. Other lung volumes such as residual volume or Total Lung Capacity (TLC)
can be determined referencing the FRC measurement. Often spirometry is combined with
plethysmography on the same equipment. Similarly using slow maneuvers over the whole volume
range of the lung the pressure-volume curve can be obtained, and the lung compliance can be

determined (i.e., the slope of the curve), which is an inverse of the measure of lung stiffness.

A key parameter of the respiratory system mechanics is the resistance to airflow. The
resistance in any tube is defined as the pressure difference measured between two points along the
tube divided by the flow in liters/s. Lung resistance can be inferred using plethysmography using
a sophisticated algorithm. However, the total respiratory system resistance from the mouth across
the lung and chest wall can also be measured using oscillometry which is an approach gaining in
popularity. The increased interest in this method is in part because spirometry is more challenging
to perform for some subjects such as elderly individuals and young children, and plethysmography

is expensive and bulky requiring a large sealable box

Standard oscillometry applies small oscillations at frequencies in the range between 5 and
40 Hz via a mouthpiece during breathing usually for several breaths within 20 seconds or more.
Figure 1.2 (left) shows a subject on a mouthpiece breathing normally while the oscillations are
delivered by the oscillometer through a detachable disposable antibacterial/antiviral filter
mouthpiece, (right) shows representative data collected by the device that is displayed in real-time.
By measuring how much pressure is required for a given flow at each frequency one can compute
the respiratory system impedance to that flow (Figure 1.2). The respiratory system impedance, Z,,
is determined at each frequency of oscillation from the ratio of the pressure to flow in the frequency

domain. in equation 1.1:



Zns() =508 = Res(f) + iXes() (L1)

where P is pressure and V is flow and f is the frequency of oscillation. R, is the resistance,
which is that part of the impedance in phase with the flow, while the reactance Xrs is that part of
the impedance that describes the pressure-volume relationship and is out of phase with the flow.
It is composed of the
1) elastic properties arising from the stretch of the tissues and surface tension which
dominates X, at low frequencies and

2) the inertive properties largely form the acceleration of air which dominates X, at high
frequencies.

Signal processing is used to reduce the effects of breathing noise and reject any artifacts
that might occur due to coughing, holding the breath, etc., and multiple measurements are done
with acceptable measurements from at least 3 with the coefficient of variance of the resistance less
than 10% for adults or less than 15% in children [2]—[5]. In a healthy subject, R, is nearly constant
over the frequency range of oscillometry, but in obstructive disease, resistance typically becomes
frequency dependent in an almost inverse hyperbolic fashion. The source of this frequency

dependence is a matter of controversy that is explored in this thesis.

W=

Oscillometer

——

———

o
——

Figure 1.2. Oscillometry system and measured flow, pressure, and volume curves with time. (used with
permission from Thorasys)

1.3 FREQUENCY DEPENDENCE OF RESPIRATORY RESISTANCE R(f)

Frequency dependence of R,.;, which will be denoted as R(f) has been observed to increase

in asthma and COPD. For example, Figure 1.3 shows frequency dependence increasing with the



severity of asthma with similar behavior observable in COPD [6]. However, R(f) is also known
to occur in very young healthy children and infants [7]-[9]. Similarly, it is observed in healthy

small animals such as mice or rodents [10]-[13].
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Figure 1.3: R(f) from healthy control subject to groups clinically diagnosed with increasing level of severity of
asthma (reproduced with permission from [6])

Looking at Figure 1.3, R is fairly flat in healthy subjects, and it increases with the severity
of asthma. R(f) begins to occur in mild asthma reaching as much as 3 cmH,0. s/l subtracting the

resistance at 20 Hz from the resistance at 5 Hz which is the standard measure of R(f).

1.4 MECHANISM FOR R(f)

There are three established mechanisms for R(f) and one novel mechanism recently
discovered in our lab. The established mechanisms include 1) tissue viscoelasticity [14]-[16], 2)
airway resistance heterogeneity [17], [18], and 3) upper airway shunt [19]-[21]. The most recent
mechanism is from time-varying mechanics, whereby Alamdari et al. [22], [23] showed using
modeling that R(f) occurs when the stiffness of the respiratory system as can be estimated from
low frequency X, is non-stationary and varies in phase with the with the imposed oscillations of
flow. Alamdari et al. modelled mechanical ventilation of subjects while measuring pressure and
flow in response to a temporally varying single compartment resistance and elastance model where
elastance varied sinusoidally with time. Such variations in elastance can occur during mechanical

ventilation or during periodic flow limitation during exhalation that can occur in disease [22]. This



mechanism is now recognized as potential source of R(f) [24], [25]. These mechanisms for R(f)

are described in more detail in the next sections.

1.4.1 Lung tissue viscoelasticity:

One of the four identified sources of R(f) is lung tissue viscoelasticity. Viscoelasticity is
a macroscopic property of matter used to collectively describe both the liquid-like and solid-like
characteristics of a material. In contrast to perfect elasticity, viscoelastic substances do not
maintain constant stress under constant deformation, but the stress in the material slowly relaxes,
a phenomenon called stress relaxation [15]. In the frequency domain, in response to oscillations,
stress-strain behavior is rate-dependent. This is observed when the mechanical properties are
expressed as a mechanical impedance (stress or pressure response to imposed flow), the impedance
displays an approximately inverse hyperbolic frequency dependence. However, airway resistance
is Newtonian and is frequency independent. At low frequencies, the resistance of the respiratory
system is frequency-dependent from the lowest frequencies measured near 0.05 Hz to about
0.6 Hz in adults and this is thought to arise from the viscoelastic tissue mechanics [14] rather than
airway pressure losses which are constant for higher frequencies in the oscillometry range. This
behavior is often modeled using lumped element models composed of ideal elastic springs and
ideal viscous dashpots [15]. Multiple pairs of these viscoelastic elements can be used to describe
the observed inverse frequency dependence thought to arise from tissue viscoelasticity. The
number of elements required to effectively describe the frequency dependence depends on the
observed frequency range for the inverse frequency dependence with an inverse distribution of
viscoelastic time constants describing the behavior fairly well [26]. No mechanism has been
identified to account for this potential distribution, but it is thought to arise from the complexity
of the interactions of the structural elements mainly the collagen and elastin network within a soft

glycosaminoglycan matrix [5].

Figure 1.4 (left), shows a schematic of the elastin and collagen-based mesh structure of
lung tissue in the alveolar structure within an acinus at a larger scale, which may provide a
structural mechanism for scaling of viscoelastic time constants as larger fibers weave and
interconnect at greater distances, as do the alveolar walls and septal boundaries between lung

structures. The data pointe of Figure 1.4 (right) shows the frequency dependence of resistance from



healthy dog lung tissue before and after and histamine challenge, showing that airway smooth
muscle contraction increases the frequency dependence of resistance, similar to how the

dependence is observed to be greater in asthma [15].

Also shown in Figure 1.4 (right) are curves that well-describe the frequency dependence
and represent a common model for tissue viscoelasticity known as the constant phase model

(CPM) (equationl.2):

G+jH

Z(w) = —~F = R(w) + jX(w) (1.2)

where G is called the tissue damping and H is the tissue elastance and o is an exponent

with a value typically between 0.9 and 0.95, giving inverse hyperbolic frequency dependence in

both the dissipative (G) and elastic (H) portion of the mechanical impedance, very close to %
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0.1 1 "W
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Figure 1.4: (left) Alveolar walls within which are networks of collagen and elastance fibers which with surface
tension forces deform viscoelastically governing tissue stress-strain relationship (right) Resistance is
frequency dependent and increases after contractile agonist challenge measured in dog lungs (reproduced with
permission from[15])

1.4.2 Ventilation Heterogeneity of the lung:

A second identified source of R(f) is from airway impedance heterogeneity which is often
termed ventilation heterogeneity. Inverse hyperbolic R(f) can also arise from a multibranch
network of airways, but only if the tree is not symmetric. Homogenous ventilation in a symmetric
tree means the behavior can be defined by a single resistance. However, if the airways have
heterogeneity in their diameters, this causes heterogeneity in impedance and thus ventilation.
Indeed the simplest parallel two-compartment model demonstrates R(f) over almost a decade in

oscillation frequency, when the two branch resistances are unequal [17]. More branches are needed



to extend the frequency range, and of course, there are many thousands of branches in the lung.
Normally in non-diseased human lungs, there is negligible frequency dependence in the ranges
4 — 40 Hz, but in diseases with increasing airway diameter heterogeneity, leading to different time
constants, the impedance becomes increasingly frequency-dependent [18]. Since the Newtonian
resistance of an airway is highly dependent on its diameter particularly at small diameters, this
could account for the observed frequency dependence in vivo in obstructive disease. However,
heterogeneity in tissue properties that may occur in disease could also contribute to the observed
frequency dependence in disease. Interestingly normal differences in airway diameters, and the
difference that arises from gravity-dependent effects, narrowing airways more in the dependent
regions (more compressed regions) at the base of the lung does not appear to be substantial enough
to produce frequency dependence in healthy adults at least in the oscillometry range of 4 to 40 Hz.
This may be a factor contributing to R(f") in pre-school children. Some heterogeneity in tissue and
airway properties might arise with changes in disease that affect the stress-strain nonlinearity of

lung tissue, which may be relevant in the 4" mechanism for R(f) discussed further below.
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Figure 1.5: Qualitative analysis of Heterogeneity. S1 & S2 hyperpolarized He MRI imaging of two Asthmatic
subjects with less and higher heterogeneity reflected in the ventilation in turquoise with the thoracic cavity in
gray scale. Respectively oscillometry images of the patients showing resistance in blue and reactance in orange
with respect to frequencies. The hatched area in orange is Ax which is not studied in this thesis. S3 & 54 shows
respective COPD patients MRI images and oscillometry plots. (reproduced with permission from[27] )



Heterogeneity in ventilation can be observed by several imaging methods, including MRI.
Imaging in [27] is done using hyperpolarized gas either Helium (*He) or Xenon '>*Xe typically, in
MRI Ventilation Imaging, which uses a nonradioactive, gaseous contrast agent that, when inhaled,
allows images of lung ventilation to be taken with good spatial and temporal resolution. Figure 1.5
shows two examples of diseased cases, asthma, and chronic obstructive pulmonary disease
(COPD). COPD is characterized by long-term breathing problems and poor airflow. It is common
in older subjects or smokers. Two representative patients per disease are chosen to show the R(f)
due to heterogeneity in [27]. It is evident that in the case of asthma, subject one has more
homogenous ventilation characterized by the blue color imagining in the boundaries of the lung in
black. We can also see the oscillometry results for each subject in Figure 1.5. Due to homogenous
ventilation in subject 1, we can see there is R(f) (which is defined as resistance at 5 Hz minus
resistance at 19 Hz. The 5 Hz component is the lowest frequency of oscillation delivered by the
oscillometry device, and 19 Hz is the closest oscillation frequency to 20 Hz which is
conventionally used to represent the plateau resistance, such that R;_;4 is the difference in
resistance quantifying R(f). However, it is significantly increased in subject 2 where ventilation
is more heterogenous. Similarly for the case of patients with COPD, subject 3 shows more
homogenous ventilation compared to subject 4 — resulting in the significant increase in R(f) in
subject 4 compared to subject 3. Therefore, heterogeneity is highly attributed to R(f) especially

in obstructive diseases like asthma and COPD

Asthma : COPD

P =0.48,F =0.0005 P=0.45, P=0.0004
o .-

Rs.19 (cmH0s.)

VDP (%) VDP (%)

Figure 1.6: (left) R(f) vs %VDP plot for Asthma and (right) COPD respectively (reproduced with permission
from|[27])



It has been shown previously that ventilation heterogeneity is associated with R(f). One
way to quantify ventilation heterogeneity is via the ventilation defect percentage (VDP), which is
the total ventilation defect volume normalized to the thoracic cavity volume. VDP is correlated
with R(f") using Rs_,4 but it can be seen there is a substantial variation amongst subjects (Figure
1.6). VDP is a single index, that may only partly capture the distribution of airway diameter

narrowing that could cause R(f), if these are indeed mechanistically linked.

1.4.3 Upper Airway Shunt:

A third possible source of R(f) is upper airway shunt. This is the oscillatory flow that
bypasses the path through the lung and chest wall tissues and goes instead into oscillating the
cheeks and soft tissues in the upper airway above the glottis. This can be modeled as a parallel
shunt impedance pathway from the source of the oscillations to ‘ground’ which is atmospheric
pressure outside the body. The shunt has a strong effect when the respiratory impedance is high.
The dominant effect is lowering the measured impedance from what it would have been without
the available shunt, but it can also alter the measured frequency dependence of resistance [9-11],

although this varies amongst reported studies.
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Figure 1.7 (left) Head generator; (right) Effect of Upper Airway Shunt (reproduced with permission from [28])

The upper airway shunt can be measured by using a head generator which attempts to
present an identical oscillation to the outside of the cheeks negating the shunt (Figure 1.7, left). In
Figure 1.7 (right) are the recorded impedance of a person with a fairly high impedance of about
9 cmH20.s/l (0.9 kPa.s/l). The hollow dots indicate when loudspeaker LS b is in motion

approximately matching the pressure at MP from loudspeaker LS a also in motion, gives a higher
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impedance across frequency and little R(f). The solid dots are the conventional technique with
LS a alone including using a nose clip and cheek hold, and there is a some R(f) evident. Larger
R(f) is apparent without a nose-clip or cheek-hold and impedance is more strongly affected. In
individuals with lower typical R, (2.0 cmH20. s/l) the effect of shunt is much smaller. Figure 1.8
(left & right) shows the effects of modeling shunt using experimentally determined measurements
of the shunt impedance with typical respiratory impedance in moderate asthma <5 cmH20. s/l at

5 Hz, inferring that the effects of shunt may be quite modest [21].
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Figure 1.8 (left) Upper Airway Shunt as model parameter; (right) Effect of Upper Airway Shunt over R(f)
(reproduced with permission from[20], [21])

1.4.4 Time-varying lung (tissue) mechanics:

A fourth possible source of R(f) is time-varying lung (tissue) mechanics, which was only
recently identified [22], [23]. Time-variation in lung mechanics can come from multiple sources.
They can arise from variations in airway diameters during breathing with changes in lung volume
with inspiration and expiration. This can also include the opening of collapsed or partially
collapsed airways at very low lung volumes or due to disease termed recruitment and their collapse
termed derecruitment, which is observed most commonly as expiratory flow limitation in COPD
where airways are very compliant and partially collapse. Even partial collapse can mean oscillatory
flow no longer travels past the sites of flow limitation, which increases impedance, but this is
relieved during inspiration and impedance falls. While these variations were known, it was
generally assumed that this variation was normally small and regardless would be averaged out

over many breaths when estimating the mean impedance. However, the changing impedance with
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time means the system is non-stationary, which is one of the assumptions in the estimation method

of impedance (Z,(f) =% = Rs(f) + iXps(f) (1.1 1.1).

However, to correct this equation 1.2, we can represent a time-varying impedance as

follows in equation 1.3:

2(f,0) = 555 = R0 + X (D) (1.3)

It’s often thought the effects of time variation can be minimized by reducing the window
during which the variation occurs, or including a very wide window, assuming the non-stationarity
within the window averages away. However, a signal analysis approach has been developed to
consider this behavior, developed by Zadeh in 1950 which we will refer to here as the Zadeh

transform [29].
FGw;t) = [7 S(t,&ejot-DdE (14)

where rather than a normal transfer function I'(jw), I'(w; t) is the function of jw involving
t as a parameter, ¢ is the time delay, S(t, §) analogous to the impulse response function that is not
fixed, which Zadeh solved using Heaviside expansion in variable networks. Further details and

examples of its solution are found in [29] and Alamdari et al [22], [23].

This transform, while being used occasionally in circuit theory is seldom used in network
modelling, and in biological systems has only had limited use in despite potential many potential
applications [30]-[33]. It was first applied to respiratory mechanics by our lab in 2019 [22], [23].
Alamdari et al. [22], [23] showed that time variation in mechanics could produce R(f), using two
modelling approaches, using both the Zadeh transform as well as direct time domain modelling,
finding the same results. We did not employ the Zadeh transform in this thesis instead we used
direct time modeling that Alamdari et al. did here. Alamdari et al. thus provided a new mechanism
for R(f), mathematically connecting temporal variation in mechanical properties to R(f), which
had been assumed to be a static mechanical behavior attributed previously to either tissue
viscoelasticity, small airway heterogeneity or occasionally upper airway shunt. Notably, they
showed that if temporal variation in elastance varied at the oscillation frequency and in phase or
partially in phase with the flow, this led to R(f). If completely in phase with the flow this had no

effect on X(f). Also, temporal variation in resistance had only a negligible effect on X(f) and no

12



effect on R(f). The effect of temporal variation in elastance was amplitude-dependent, the greater
the variation, the greater the R(f). This was important since although both R(f) and temporal
variation of mechanics are both known to be increased in disease, they were not thought to be

potentially mechanistically associated [19].
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Figure 1.9: Experimental tracing from a representative flow-limited patient and definition of the indices used
to characterize the respiratory system reactance (X, ) time course during a single breath. (reproduced with
permission from [34])

Figure 1.9, shows the time-varying reactance X,; at 5 Hz attributed to varying elastance,
largely due to expiratory flow limitation [34]. The variation is quite large, at about 6 cmH?20. s/l.

This may have led to R(f") observed typically in COPD [34].

In summary, there are 4 potential mechanisms for R(f). Currently the most commonly
attributed source in disease for R(f) is heterogeneity attributed to the small airways, while
viscoelasticity of the tissues is felt to be dominant at lower frequencies below and near breathing
frequency in health, with shunt potentially a factor at high impedance. The most poorly understood

and recently contributed source is from time-varying lung mechanics.

However, the potential mechanisms for time-varying mechanics sufficient to produce R(f)
and in which frequency range have not been explored, and how these mechanisms might change
their influence on R(f) is unknown. One important factor characteristic of the mechanical
properties of the lung and the lung tissue is its highly nonlinear stress-strain or pressure-volume
relationship, which is known to be altered in disease. The nonlinearity would naturally lead to time
variation in an apparent stiffness during any oscillatory stretching such as done by mechanical
ventilation or during oscillometry. That is, because of the nonlinearity there is a change in slope
of the stress-strain (or pressure-volume) curve and the instantaneous apparent stiffness (or
elasticity) varies. This is similar to the case when a parameter of the underlying system changes

with time, changing its mechanical stiffness in a time varying manner. Since the nonlinearity can
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change in disease [35]-[37], understanding it’s potential contribution to R(f) is important as R(f)

is also increased in disease [6], [27], [38],as was mentioned previously on page § .

Thus, the principal aim of this thesis is to quantify this potential source to better understand
the mechanisms underlying this contribution to the frequency dependence of resistance. A
secondary aim will be to briefly compare this source to heterogeneity, as heterogeneity is most
commonly considered to be the dominant mechanism to produce R(f). These aims together with

hypotheses are provided in more detail later in the next chapter.

1.5 INVESTIGATING R(f) DUE TO TIME-VARYING MECHANICS
ARISING FROM NON-LINEAR LUNG TISSUE PROPERTIES

R(f) as previously described, has become/used as one of the clinical measures to diagnose
or monitor respiratory disease especially obstructive disease. The research questions we are
probing in this thesis are — Does the R(f) comes from respiratory system nonlinearity, and if
so, what is the potential magnitude of this contribution? And how does this mechanism occur
from tissue properties or from the combined nonlinearity characteristic in the pressure-
volume relationship of the respiratory system? We initially began our investigation
experimentally using ex-vivo lung tissue but due to COVID-19, we had to shift to mathematical

modeling of nonlinear lung characteristics and its effect over R(f).

1.5.1 Experimental: Lung Measurements

In-vitro tissue measurements can give a good understanding of the underlying mechanics
of the organ. Hence, the first proposed thesis plan was to measure tissue mechanics in vitro directly
measuring the nonlinear tissue properties, the development of time-varying stiffness, and use that
to predict R(f) and compare that to measured R(f). Altering the tissue mechanics using enzymes
such as collagenase and elastase as a model of disease was also to be explored. Since some of this
work was completed, I briefly report it in this thesis for potential future development. To do this I
began developing a tissue bath where pig lung tissue strips would be used to study the stress-strain
relationship which would give the underlying lung mechanics through material properties.

Different approaches exist for tissue baths of lung tissue, including from alveolar walls and

14



parenchymal slices to contractile function airway smooth muscle strips or airway rings, and the
medium can be easily changed to degrade tissue structure using collagenase and elastase [39]—
[41]. It is also possible to measure the mechanics of the whole lung ex-vivo, including human
lungs delivering air via the trachea and sometimes media via the vasculature [41]. However, it was
not possible to achieve this aim even though most of the apparatus used for the tissue measurement
had been prepared due to lab restrictions in COVID-19. The thesis since pivoted to using published
tissue data and focus on modeling the tissue mechanics analytically and computationally producing
the time variation of mechanics, simulating its measurement, and comparing the R(f) under

different conditions and altered mechanics.

1.5.2 Analytical: Lung Modeling

In the early 1970s — 1980s, several models of lung tissue or respiratory mechanics were
developed using lumped mechanical elements, which followed one of the early seminal papers in
1955 [42]-[60]. The simplest lumped element model of respiratory mechanics comprises a single
spring as the elastic element, with a dashpot to account for tissue viscosity and/or Newtonian
airflow resistance. If higher frequencies were being modeled as an inertial element is added to
account for the acceleration of the mass. This is known as the equation of motion of the respiratory
system and has been applied to parts of the system as well such as the lung excluding the chest
wall and upper airway P = EV + RV + IV, where P is the airway opening pressure, E is
respiratory system elastance, Vis the respiratory volume, R is the respiratory system resistance,
Vis airflow to the airway opening, I is inertia and V is acceleration of the volume. Considering
lung tissue on its own, the stress-strain nonlinearity was modeled empirically, as in Navajas et al
[39], as well as more complex approaches using springs of different stiffnesses for elastin and
collagen using distributed properties [39], [61], [62]. Most models attempted to describe the
nonlinear stress-strain curve as a static elastic nonlinearity without including the tissue viscoelastic
or time-dependent behavior, but a few included sources of resistive losses such as spring and
dashpot elements, or the conceptual fractional dimensional spring pot [61][62]. It was
hypothesized and also shown that models with a distribution of time constants arising from
multiple spring and dashpot pairs could produce the frequency dependence of impedance known

to be characteristic of lung tissue [26].
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Figure 1.10: Stress-Strain relationship of dog lung tissue (reproduced with permission from[39])

Figure 1.10 shows the nonlinearity of lung tissue [39], [63], taken from canine lung tissue
undergoing a very slow cyclic stretch over a wide range. This is known as preconditioning when
tissue is initially stretched experimentally in an apparatus and shows the gradual shift to larger
stretch values with the cycles becoming more reproducible. A loss of hysteresis is also observed.
Navajas et al [39] used analytical modeling to explore how the nonlinearity affected small-
amplitude linear behavior, probing changes in strain amplitude and changes operating point (mean
strain), and indeed also measured frequency dependence of impedance. However, they did not
assess if the time-varying behavior in tissue stiffness that would have been present was linked with

any frequency dependence of Rrs, which is one of my hypotheses.

The stress-strain curves shown can be fit to a nonlinear curve i.e., exponential in equation

1.5.
T = T,e*?-4r) (1.5)

Where T, is the stress when the stretch ratio is equal to a reference stretch 4, and « is a

nonlinearity exponential constant.

Alamdari et al. [22], [23], [64], as mentioned earlier, explored how time-varying
respiratory mechanics could lead to the frequency dependence of Rrs, both in a single
compartment model and in a parallel compartment model. He did not utilize any mechanisms such
as tissue properties for the imposed time variation. Figure 1.11 shows a reproduction of this
modeling that I developed in preliminary work of the single-compartment model (Figure 1.11,
right) with time-varying in E (t) as shown in the equations, with sinusoidally varying E,,, and the
frequency dependence that reproduced Alamdari’s findings in Figure 1.11 (left).

16



%s_timated Resistance vs Oscillation Frequency

- o = e R S L] bod
o/ o ety {1
| —G—'; § |'|—|.. .;'--ﬁ;
16} | £— 7% Tima varying .
— ,"" ™
o 14 I \
;I. |..- EI ;I.
O 12 4
E:E Time Varying Lung Mechanics
§ 10 Due to increases . W\,
= e : 85
w s in time varying g% .
li 9,
- amplitude Ev -
gS -
4 '@E
ao
g" 2
2 w @
0 | 2 3 4 5 i T B 2 3 a4 8 & 7
Frequency (Hz) Time (s)

Figure 1.11: (left) Time-varying mechanics behind the R(f) (right) Single compartment model with time
varying mechanics of lung.

Briefly the resistance, R(t) and elastance E (t) are modeled as time-varying parameters as

follows in equations 1.6 & 1.7:
R(t) = Ry, + R, sin(2mf,,t) (1.6)
E(t) = E,, + E, sin(2nfyst) (1.7)

Where R, is the mean resistance and R,, is the amplitude of the variation at the oscillation
frequency f,s, and E,, is the mean elastance and E,, is the amplitude of the variation. Using the
single-compartment model (equation 1.2) and the Zadeh transform (equations 1.3 and 1.4),

Alamdari showed that the time-varying impedance was as follows:
P(t) = R,A21f,s sin(2rfyst) — EyAcos(2nf,st) + Vi, E, sin(2mfyst) (1.8)

where Z is the impedance of the lung determined by the ratio of P (pressure) to V (flow) at
specific f, (oscillation frequency). A are the amplitude of sinusoidal varying volume, and the red
colored terms are highlighted for their relationship in the next equation. Alamdari showed that
resistance at the oscillation frequency, and only considering the component of pressure in phase

with flow, will be dependent on the following variables given in equation 1.9:
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However in practice resistance is determined by estimating the real part of impedance Z
where Z is estimated by performing the Welch periodogram technique to compute Z(f) as follows

in equation 1.10:

-1 n (FFT(PP®)1))
Z(f) = N * &k=1 (FFT(W(V(t)k))) (1.10)

which is commonly used to estimate impedance in oscillometry. This equation described
how the time domain P and V are divided into k windows of finite duration, a windowing function
WY is applied typically using a hamming window, then each is Fourier Transformed using the FFT,
the ratio is taken, to compute impedances for each window, and the average of the k impedances
computed as the final impedance as a function of frequency, at the frequencies of oscillation.

Usually, the windows are overlapped anywhere from 50% to 95%.

It can be seen from equation 1.9 that resistance Ry where the subscript f is used to denote

the frequency of oscillation, arises from the fi term in Equation 1.9, and it depends on the mean
os

volume at which the lung oscillates (that is where on the pressure-volume static relation the
oscillation occurs) and depends inversely on the amplitude of the volume input signal, and depends
on the magnitude of the time-varying elastance, E,, (indicated in the box legend of Figure 1.11
(left)). If in the case of no time variation (E,, = 0) there will be no frequency dependence of
resistance, which is the blue flat line in Figure 1.11 (left). An increase in E,, increases the frequency
dependence of resistance. However, Alamdari et al had no mechanism for why E, would be
altered, it was simply varied arbitrarily. They also showed that the R(f) depended on the phase of
the oscillation of elastance, with maximal R(f) when the phase of oscillation was in phase with
the flow signal, and no effect when the phase within phase with the volume. Alamdari also
demonstrated this behavior using the Zadeh transform [29] showing with two separate modeling
approaches that R(f) can arise from time variation of elastic behavior. It can potentially be a
substantial source of R(f) given the large variation evident in X,; at 5 Hz in COPD as shown in

Figure 1.9.

As indicated above, one mechanism for inducing an apparent variation in elastance is the

nonlinearity in lung tissue to potentially contribute to the frequency dependence of R, . This is
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observed when we are tracking Z,¢ with larger amplitude oscillations or at different operating
points exploring changes in the slope of the stress-strain or the PV curves. However, this variation
would be in phase with volume, and as Alamdari predicted is not expected to produce R(f) which
he showed arose from variations in-phase with flow or strain rate. When stretching soft tissues
such as lung tissue, it is established that the output stress is a fixed phase shift behind the input
strain. This is well described by a model known as the constant phase model or CPM as described
in more details below. This means a portion of the output stress is in phase with the input strain,
but a smaller portion of the stress (typically 10 to 20%) is 90 degrees out of phase with the strain

and is thus is in phase with strain rate.

At any point in the stress-strain curve the elastic stiffness can be approximated to the slope
of the stress-strain curve, and with a change in the mean stretch, or increase in the oscillatory
stretch, the slope changes, can be thought of as an apparent stiffness changing with time, although
it is driven by the input strain. Previously the effect of this apparent time variation on impedance
and R(f) has not been modeled but is similar to the time variation arbitrarily considered by
Alamdari et al (cite his thesis and his paper). In this thesis I assess if the nonlinearity similarly can
provide a potential source of sufficient temporal or nonlinear variation to contribute significantly
to the frequency dependence of the resistance as observed in vivo. Also, since lung tissue elastic
properties are known to change with disease, this may also contribute to the increased R(f)
observed with the disease as previously mentioned. Of course, lung tissue nonlinearity is only one

source of potential temporal variation and is the focus of Aim 1.

1.6 INVESTIGATING R(f) DUE TO HETEROGENEITY OF
VENTILATION IN THE LUNG

Since heterogeneity in airway diameters is thought to be the predominant source of
frequency dependence of resistance in whole lungs, I felt I could also take advantage of some work
being done in my lab measuring heterogeneity of ventilation in patient’s post-lung transplant that
develop lung dysfunction known as chronic lung allograft dysfunction (CLAD). These patients
also have measurements of respiratory impedance including time variation of impedance

potentially useful to my thesis objectives. Thus, the following provides a brief review of CLAD
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and how imaging methods can demonstrate the heterogeneity of ventilation attributable to airway

diameter variation.

1.6.1 Chronic Lung Allograft Dysfunction Study

Patients that receive lung transplants are at risk of developing CLAD which leads to
breathing dysfunction and altered lung mechanics. Within 5 years of lung transplant (LT), 40 —
50% of recipients will develop (CLAD), which most often results in the fatal disease bronchiolitis
obliterans (BOS) [65]. BOS is a disease that initiates in the small airways, obstructing airflow.
Unfortunately, the current assessment of lung health using spirometry in post-lung transplant

patients is inadequate to detect CLAD [66], as it is insensitive to the small airway obstruction.

Here in our lab group, we are investigating Technegas single-photon emission tomography
ventilation SPECT/CT (T-VSPECT/CT) to assess ventilation heterogeneity. T-VSPECT/CT using
Technegas is an imaging technique where patients are asked to inhale Technegas-TM, which is air
containing Tc04 labeled carbon nanoparticles that travel through the airways during inhalation and
deposits in the alveoli and are later detected by their gamma particle emission [67]. Uneven
deposition and regions with no ventilation indicate changes that may be due to CLAD. These
patients are known to develop heterogeneous disease, but this has not been previously measured
by SPECT/CT. Ventilation images were compared with standard lung function using spirometry
as well as oscillometry which measures impedance to airflow and can be sensitive to heterogeneity

in small airway obstruction [68] which will be shown in detail in the next chapters.
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CHAPTER 2: OBJECTIVES AND HYPOTHESES

This chapter presents the hypotheses and corresponding objectives of this thesis, which are

as follows:

Hypothesis 1:

Objective 1:

Hypothesis 2:

Objective 2a:

Objective 2b:

The R(f) in lung tissue is dependent on the time-varying mechanics arising from

nonlinear tissue as well as whole lung properties and may be a source of R(f) in

respiratory system mechanics.

This will be investigated by introducing the nonlinearity into the most common
tissue and whole lung impedance model, known as the constant phase model. Using
the combined model, we will use oscillatory input over a range of frequencies,
oscillation amplitudes, and operating points, assess the time-varying mechanical
properties and assess the R(f), in two frequencies ranges, 0.03 to 5 Hz and the

standard oscillometry range 5 Hz to 37 Hz,

The R(f) in respiratory mechanics is more greatly dependent on the heterogeneity

of impedance.

This will be explored through VSPECT/CT imaging in post-LT subjects who
develop heterogeneous lung dysfunction. Using quantitative measures of from
imaging and oscillometry measurements of R(f), we will see if heterogeneity in

post-LT patients is correlated with R(f).

The effect of time-varying lung mechanics will also be studied in post-LT patients
using the time variation in reactance at 10 Hz as an estimate of the time variation

in elastance and tested by correlation with measured R(f) over 5 to 37 Hz.

In chapter 3, I describe the approaches to measure time-varying mechanics of lung tissue

in a tissue bath. In chapter 4, I investigated the lung tissue nonlinearity model and studied where

time-varying lung characteristics are expected to arise resulting in R(f). I simulated different

amplitude and

operating point effects over stress-strain curves as well as increases in nonlinearity

to study diseased cases which might give us insight that diseases will have a higher effect over

R(f), due to time-variation coming from nonlinearity, making it clinically significant parameter

for diagnosis.
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In chapter 5, I investigate the whole lung nonlinearity pressure-volume models in a similar
approach to chapter 4, exploring the behavior including changes in the Pressure-volume
relationship appropriate for diseases that are known to alter the PV nonlinearity — Fibrosis and
emphysema, and explore these over two frequency ranges near breathing, and the oscillometry

frequency range.

In chapter 6, I describe our Chronic Lung Allograft Disease Study, from which [ used some
of the data to correlate the ventilation heterogeneity, and the time-varying characteristics of lung
impedance collected by oscillometry with R(f). In our lab group performed by other students, we
analyzed the SPECT/CT images to obtain quantitative results using published approaches. Then I
used a measure known as the coefficient of variation (CoV) as a measure of heterogeneity to test
its correlation to R(f). I also correlated time-varying reactance obtained from the lung transplant
patients to R(f). In chapter 7, I present concluding thoughts on the thesis and suggestions for

future work.
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CHAPTER 3: INVESTIGATING R(f) DUE TO TIME-
VARYING MECHANICS ARISING FROM NON-LINEAR LUNG
TISSUE PROPERTIES (IN-VITRO TISSUE APPROACH)

This chapter presents methods and results of the in-vitro tissue approach that was used to
establish the time-varying mechanics arising from the nonlinear tissue properties of the lung
resulting in R(f). It starts with the in-vitro tissue approach where all the steps taken to develop the
tissue bath and tissue preparation are presented. The chapter follows with results and a discussion

of some of the obtained outcomes.

3.1 METHODS

We designed the tissue bath from requirements both to maintain the flow of nutrients to
living tissue and maintain it at close to normal body temperature. Important requirements of the
tissue bath are maintaining tissue viability, the force, and length ranges, as well as the frequency

bandwidth for exploring frequency dependence of tissue mechanics as can be seen in appendix A.

3.1.1 Tissue Preparation

We chose pig lung tissue as it is similar to human lung tissue and is readily available from
local abattoirs and our sourcing of the tissue and use was approved by animal care at Dalhousie
University. Pig lung tissue is taken from the left inferior lobe of the lung. First, the left pig lung is
obtained from the abattoir and then kept in Krebs Solution and kept within a cooler packed with
ice for transportation. Once the lung arrives at the lab, it is flushed with 1 liter of new Krebs
Solution to make sure that blood is removed. The pleura is removed manually and then using a
scalpel a couple of tissue strips of 3 X 1 X 1 cm are obtained, selecting tissue without large
bronchial segments. The strips are then placed in Krebs in a beaker where they float and then are
briefly degassed by placing the beaker in a vacuum pump chamber which takes less than 30 sec,
and the tissue sinks. The strips are then ready to be removed and using cyanoacrylate glue can be
affixed to plastic attachments. These plastic attachments were designed by a summer student (C.

Potter) and are used to fit the tissue within the tissue bath as described below.
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3.1.2 Setup

The preparation of the tissue bath was adapted from Maksym [69] (Figure 3.1). It included
3 baths and tubing to allow fresh media circulation, including a heater and a pump. The upper bath
contains a 100W cup heater and Omron Heater controller which is intended to keep the tissue bath
at a constant temperature for constant flow at a design temperature above 32°C and less than 37°C.
The lower bath collects overflow from the tissue bath and the pump returns fluid to the upper bath.
The noise of the pump is separated from the tissue bath and the flow to the tissue bath is regulated
by a pinch valve using this design. The main bath includes the actuator attachment on one side and
the selected force transducer (Honeywell — Low Range Precision Miniature Load Cell, Model 31
Low) embedded into the tissue bath wall on the other side. For tissue attachment the fluid can be
drained using the lower exit tube valve and tissue is put in place using attachments that slide into

the actuator arm connector and the force transducer connector tightened with set screws.

We chose a force transducer that could operate under fluid and with a maximum force
range that exceeded a maximum expected force by a safety factor of 1.5, which was 50g. The
length actuator must provide a range of at least 30 mm for full strain, but to provide the flexibility
the design requirement was a length range of double this of 60 mm. The speed requirement was

3 Hz at an amplitude of 10% strain which is 3 cycles/sec X 2 Xt X 0.1 X 30 mm = 56 mm/s.

The bath included two outlets: the higher outlet was for a tissue while submerged in media,
and the lower was for tissue suspended in air if waves in the media contaminated the force
measurements. This was done with the assistance of our technician D. Cole, who designed the
thumbscrew regulators to help regulate fluid flow. The attachments for the tissue were developed
by C. Potter and were 3D printed to allow low fluid disruption during motion. To keep the tissue
alive, and help maintain the appropriate pH, it is necessary to oxygenate the Krebs solution using

carbogen (95% 0,, 5% CO0,) provided via a fish tank diffuser in the lower bath.

We sourced a stepper motor-based length actuator from a colleague that appeared to meet
these requirements from its specifications. We built a simple stand that was clamped to the bench
and began testing it against the requirements. It was controlled by ST-5S Applied Motion Driver
using Serial Communication from the computer. A test controller software and user interface were
planned to control the actuator, record the actuator position, and force output and save the data on

a PC with Windows 10 and LabView 2019. A prototype version was developed enabling testing
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of the actuator control to see if it met our requirements. The design requirements and some design

calculations to test the actuator are in appendix A.

Temp.
Control @

Thearmistor
] Sensor

-

Carbogen
Gas

3H

Heater

(XH
T

u

f Illa'lll

i

Tissue Bath

Pump

Figure 3.1: Tissue Bath from Maksym’s Thesis [70]

The software was to do the following: 1) preconditioning to adapt the tissue over the strain
range to be tested which helps make subsequent experiments reproducible and 2) fixed oscillations
mimicking oscillatory measurements of mechanics varying amplitude, operating points (mean
stretch), and frequencies of oscillation chosen to explore the physiological ranges of stretch and
stress. Preconditioning cycles are fixed slow rate stretching from zero to a maximum stretch or
stress (e.g., 5 kPa) and return to zero for n cycles (typically 5), which would be done prior to

experimental measures.

After some software development and several attempts to achieve the manufacturer’s stated
performance characteristics, we concluded that the existing actuator would unfortunately not fulfill
the desired requirements. While the actuator exceeded the velocity requirements as per their
specifications for single instructions and single direction motion, in practice the communication
delays were too high to achieve stable oscillatory motion. This is also shown in appendix A. We
thus switched to a design using servomotor-controlled linear actuators, and we explored and chose

a solution from different manufacturers that would meet our requirements. The best options are
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presented in appendix A. However due to COVID-19, which prevented us from proceeding with
tissue-based lab work for an uncertain time, we decided to instead use published lung tissue data
and extend the modeling and analyses. We could potentially return to experimental measurements

of lung tissue mechanics after my MASc as part of a potential Ph.D. if determined to be still useful.

3.2 RESULTS AND DISCUSSIONS

Here I described the tissue bath construction which was completed before COVID-19 and
some of the actuator testing. Figure 3.2 on the left shows the main bath indicating the actuator and
force transducer where the pig lung tissue would be attached 3D printed attachments via
cyanoacrylate glue. On the right is the 3D printed assembly drawing created by A. Brezovan a co-
op student in our lab. Also shown are the upper bath where the heater would be installed, the main
bath with actuator and force transducer tissue attachments circled in red, and the lower bath 3D

assembly drawing.

We were able to develop software in LabVIEW to test the actuator. As described above the
actuator failed to meet our requirements for oscillatory motion. This was because the time required
between commands inherent in the actuator controller was too long to maintain smooth oscillatory

motion with direction reversals at the desired frequencies, achieving stable motion only at lower

than 0.03 Hz.

Figure 3.2: Tissue Main Bath setup and 3D design of whole tissue bath
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Figure 3.3 shows the basic tissue preparation steps. The tissue is sliced to approximately

30mm X 3mm X 3mm (Figure 3.3 (left)) while on the right is the tissue floating in Krebs

solution prior to degassing.

Figure 3.3: Steps to obtain pig lung tissue strip: (left) slicing of pig lung tissue using scapple to the desired
length, (right) floating lung tissue in Krebs solution.

The tissue bath was developed, and the tissue preparation looked promising, but the
actuator needed improvement. However, I was not able to conduct any experiments due to
COVID-19, there is sufficient published data that we can proceed without collecting instead we

modified the project to focus on the modeling as can be seen in Chapters 4 & 5.
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CHAPTER 4: LUNG TISSUE MODELING

In this chapter lung tissue, nonlinear viscoelastic models are investigated and studied where

time-varying lung characteristics are expected to arise resulting in R(f).

4.1 METHODS

In this section, I describe the development of different analytical tissue models for
modeling the stress-strain characteristics of lung tissue, since this is more directly relevant to the
measurement of respiratory mechanics in-vivo. I consider models based on mechanics parameters
from healthy cases, as well as mimicking states of the disease known to alter the lung tissue
properties. The models are developed to specifically explore the impact of time-varying lung
properties on the mechanical impedance and in particular, the mechanical tissue or lung resistance
that arises from the normal nonlinear properties of the lung tissue as well as abnormal properties

that can occur in disease.

4.1.1 Nonlinearity in a lung tissue model

To be able to calculate impedance vs time, and to reproduce the results of Alamdari as a
starting point, we first tested the approach using a linear single-compartment (equation of motion-
based) model, where we made sure that the time-varying elastance is in phase with the flow and

we also chose the amplitude of the sine wave to be inversely proportional to the amplitude of the

A . . . . :
wave — which means the velocity amplitude is constant with frequency, useful for actual

Wos

actuators, but not a limitation for simulation. I found as expected that this model provided simple
linear behavior using the single-compartment model with independent R(t) and E(t) matching

the modeling of Alamdari et al.

To explore time variation leading to R(f) that we hypothesize that it can arise from tissue
stress-strain nonlinearity; we used the model of Navajas et al who obtained stress-strain
relationships from seven dog-lung tissue strips, and who also demonstrated that this relationship

well described the quasi-static nonlinear behavior given in equation 1.5.
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T = T,e*?-4) (1.5)

Where T is stress, and T, is relative stress at stretch ratio 1 equal to the reference stretch
ration 1, and « is a constant. The instantaneous stiffness of this is the slope at any stretch and will

vary with varying A(t).

We then combined the nonlinearity of equation 1.5 with the constant phase model shown
later in the next section, where we also explored the effects of changing operating points, i.e.,
operating stresses in the exponential nonlinearity, resulting in the time variation which we expect

might result in R(f).

4.1.2 Tissue nonlinearity time-varying characteristics model

MODEL DEVELOPMENT: We developed a model of the lung tissue mechanics based on
a more commonly used linear model known as the constant phase model (CPM). This model links
the in-phase elastic response and out of phase dissipative response to stretch via a constant phase
difference, (3, and has been established to well describe tissue behavior, as well as lung mechanics
at low frequencies [11], [14], [37], [62], [71]. As implemented by Kaczka et al. [37], [72] who

applied it to the stress-strain behavior of lung tissue, it is as follows:

CPM:% = jGwf + Hwf; (@.1)
po1- @ (- 1- Qo 1-Q 62

where o is the stress on the lung tissue and ¢ is the strain, G is the viscous property, i.e.,
loss modulus of the tissue and H is the stiffness i.e., storage modulus, and £ beta is the phase

angle between the loss and storage modulus respectively.

This is a linear model, and here I develop a quasilinear constant phase model (QLCPM)
including the exponential nonlinear relationship from Navajas et al. (equation 2.5 [39]) in a very
similar approach to quasi-linear viscoelastic tissue modeling (QLM) known as the quasi-linear
theory of viscoelasticity found in Fung et al [26], but here using the CPM linear model above as
the linear component. I first re-express the stretch ratio A by the more common strain &, and

explicitly including it as an oscillatory variable dependent on radial frequency w:
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f(w) =Aw) - 1; (4.3)

and instead of 3, I instead use the more commonly used constant hysteresivity 1 which is

defined as the ratio between G and H.
G -1
n=s=— ¢ =tan" "7 4.4)

Note that the values from the CPM can be related to the parameters of the standard single
compartment viscoelastic model G = R and E = H, although in the CPM they are related via
the hysteresivity constant. The constant phase model is often also known as the structural damping
model since energy dissipation (in () is related to energy storage (via H) by a constant, and the
dissipation is thought to come from a fixed fraction of the elastic motion of the structure [73]. ¢
is then the angle between resistive or out of phase stress and elastic or in phase stress from

deformation in equation Error! Reference source not found.4.4.

Now in order to calculate mechanical impedance, which will ultimately be used to estimate
the R(f), we start with the standard relation, assuming linearity and stationarity are. linear and

time-invariant behavior,

olw) _ olw)

Z(w) = (4.5)

tw) jwe(w)
where Z (w) is the impedance of the lung tissue and the dot denotes the time derivative of
strain and j is the imaginary number v —1. Now using this in the CPM model we have,

o(lw) _ jGwﬁ+Hwﬁ __ G+jH
jwe(w) jw T wl-B

Z(w) =

(4.6)

Note also that impedance can be defined with respect to strain rate or the rate of change of

the stretch ratio:

_ g _ ow _ o)
Z(w) = tw)  AMw)-1)  Aw) @D

Also, the viscous component can be written in terms of stiffness which depends on the
value of eta. Therefore, the final stress-strain relationship is as follows:

2@ _ iGwf + HoP = jnHw? + HwP 4.8)

s(w)

Therefore, the resulting relationship of stress stretch will be:
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o(t) = (jr;Ha)ﬁ + Hwﬁ)/l(t); (4.9)
Where stretch is sinusoidally changing with time:
At) = Agmp sSin(wyst) + 4y; (4.10)

A(t) is a time-varying stretch as mentioned in the last experiment where the slope is
resulting in exponential i.e., lung tissue stiffness, A4y, 1s stretch amplitude and 4, is the operating

point. Therefore, the resulting stress stretch model of QLM is
QLM:o(t) = g,e™® 4.11)

This equation 4.11 represents the QLM model for computing the resultant stress for any

input strain. And QLCPM is
QLCPM: o(t) = (jnHw? + HwP)(e®®) (4.12)

Here we are using a shorthand notation where j is used to invoke a portion of the stress to
be out of phase with the strain and in phase with the strain rate. This is because a fundamental
feature of the constant phase model is that a portion of the stress varies with constant phase delay
defined by 7 to the portion of the stress that is in phase with strain. For example, if A(t) is sin (wt)
then

o(t) = nHwP e®0s (@) 4 [P easin (@) (4.13)

This equation 4.13 represents the QLCPM model for computing the resultant stress for any
input strain and represents an implementation of the quasi-linear theory of viscoelasticity found in
Fung et al [26]. It should be noted that no parameter in this model is varying in time, yet the
apparent stiffness of the model can be shown to vary. This is different from the approach of
Alamdari, but I show below that the nonlinearity through introducing a variation in the apparent

arising from the oscillatory input can lead to R(f).

EXPERIMENTAL PROTOCOL: We simulated the CPM and QLCPM models for different
stretch/strain amplitudes of 0.05, 0.1, 0.2, and 0.4. It is expected that higher stretch amplitudes will
induce higher nonlinearity resulting in higher R(f) which is done in the next section. Zadeh
showed that impedance can depend on the effects of time variation in system parameters. More
recently this was applied to the single-compartment model of respiratory mechanics, where

Alamdari et al. used two separate modeling approaches, both the Zadeh transform and direct

31



temporal modeling, and demonstrated using an arbitrary time-varying elastance that this could
produce effects on the real part of impedance, specifically R(f). Here in equation 4.12 is also a
model that naturally leads to time-varying of stiffness, which is produced by the nonlinearity in
the QLCPM in this work, contributing to R(f). To help show this we quantified how much
stiffness varied by defining a simple proxy of the time-varying stiffness, termed here the Delta
Stiffness, which is defined as the difference between the peak and valley from a calculating of the
change in stress over the change in strain within one sample. This closely approximates changes

in stiffness when 7 is small.

Then we looked at the effect of operating strains of 0.4,0.6,0.8, and 1 at the stretch
amplitude of 0.05. We expect at higher levels of strains the lung stiffness increases as well as
nonlinearity making it more exponential. Higher strain results in higher R(f) as well. Therefore,
both effects of stretch/strain amplitude and operating points are studied, and the results of the

formulation are given in the next section.

We then looked at the effects of the exponent alpha. The first small stretch amplitude of
0.05 was used to study the behavior at the operating strain of 0.68. It is expected that for higher
values of alpha, that this will amplify R(f). Each of these is important to establish since increases
in R(f) have been sometimes attributed to alternative mechanisms when observed in obstructive
diseases. For investigating this dependence, we used the stretch amplitude of 0.4 and the operating
strain of 0.683 with alpha changed to half and twice the representative value of 4.65 for dog lung
tissue from Navajas et al [39]. We also examined the effect of the different alphas at different
operating strains at the lowest stretch amplitude of 0.05 to examine if the effects persisted even at
the small amplitude approximation which is used often as a justification enabling one to ignore the

effects of nonlinearities.

We also obtained the instantaneous stiffness as a measure to quantify the study time-
varying stiffness response due to nonlinearity. It is calculated as stress difference between samples

divided by strain difference between samples as follows:

32



_ o(tz)—o(ty) _ Ao (t)
e(tx)—e(ty)  As(t)

(4.13)

In the case of CPM, it is expected that instantaneous stiffness will be constant over time as
the slope is linear, whereas for QLCPM it is likely to vary. We looked at the respective resistance

and reactance at the low-frequency range (in log scale) due to lung tissue size.

It is important to note that the CPM and thus the QLCPM produce R(f) without any time

variation of stiffness when 7 is non-zero. This can be seen from the signal compartment linear
model (equation 1.1) that R = E, without time variation of stiffness. Thus, what we are

hypothesizing here is that R(f) may be amplified in the QLCPM models due to the presence of
the nonlinearity leading to time-varying stiffness. We further expect this to be larger with higher
stretch amplitudes at lower frequencies, and larger at larger operating strains, where the

nonlinearity is steeper.
4.2 RESULTS:

4.2.1 Nonlinearity in a lung tissue model

The effect of exponential static nonlinearity arising from the material properties of lung
tissue (i.e., stress-strain relationship) was first investigated with two different operating stretch
ranges on the Navajas et al stress-strain behavior curve (equation 1.5). Here it can be shown using
the QLM model equation 4.11, examining the temporal changes of stress and the instantaneous

stiffness (Figure 4.1).

Figure 4.1 shows the effect of the stress and the stiffness calculated as the instantaneous
slope at two different operating points of stress (mean stretch of 1.4 and 1.8) but the same stretch
amplitude. At a higher stretch, the stress range during an oscillatory stretch is larger due to the

higher stiffness, and the mean stiffness has increased ~7-fold.
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Figure 4.1: Nonlinear cyclic stretch strain curve, yellow outlined figures show stretch range between 1.3 and

1.5 with resulting time-varying stress and stiftness, similarly blue outlined figure indicates for a stretch range
of1.7 and 1.9.

4.2.2 Tissue nonlinearity time-varying characteristics model

The effect of exponential static nonlinearity arising from the material properties of lung

tissue (i.e., stress-strain relationship) combined with constant phase model is as follows:

Instantanecus Stifiness (Inphase) CPMR QLCPM R
C PM 10° 100
»
©
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Figure 4.2: (a) Resulting instantaneous stiffness vs time for CPM (top) and QLCPM (bottom) (b)Resistance and

Elastance vs frequency for CPM & QLCPM models
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Figure 4.2 (a top) shows the flat line at 4.5 kPa showing that stiffness of the CPM is not
changing with time, Figure 4.2 (a bottom) shows the instantaneous stiffness is sinusoidal changing
with time for QLCPM equation 4.13, showing the effect of nonlinearity imparting. In Figure 4.2
(b), we matched the linear constant phase model by adjusting the H (Elastance) to have the same
stiffness matching the slopes at 0.65 operating strain. At small amplitudes, the linear resistance
and linear elastance calculated as per equations 4.1 & 4.13 are thus identical shown across
frequency comparing CPM to QLCPM. This can also be seen in Figure 4.4 which shows R vs
frequency at 0.05 amplitude the curves are superimposed. Recall there is frequency dependence
explicit in the CPM model through the term eta (equation 4.2). However, when the amplitude is
increased while this frequency dependence is unaltered in the CPM model, it increases nearly 50%
more due to the nonlinearity present in the QLCPM model (right). This means that the nonlinearity

of the stress-strain curve, through time variation led to an increase in the R(f).

Figure 4.3 shows the stress-strain relationship for different strain amplitudes (SA). It is
evident that for CPM the behavior is linear (i.e., each loop is larger proportionately to the amplitude
and with the same slope). Whereas the loops are curved in QLCPM and the increase in size is not

proportionate to the amplitude.
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Figure 4.3: CPM & QLCPM models for a range of strain amplitudes
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Figure 4.4 (left) R(f) for CPM & QLCPM for different SA and (right) percentage difterence between CPM &
QLCPM

Figure 4.4 (left) shows the same frequency dependence that can be observed in Figure 4.2
for CPM for each SA amplitude (denoted just CPM), underneath the curve for QLCPM at SA of
0.05. However, as SA increases the R(f) curves move to higher R. The percent increases are

plotted in Figure 4.4 (right)
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Figure 4.5: Time-varying stiftness effect on R(f) dependent on SA at different frequencies

The frequency dependence in the QLCPM is depicted vs delta stiffness showing the
dependence on R on SA observed using delta stiffness is greatest at low frequencies (see the f,; =

0.03 Hz curve) that at low amplitude. This dependence is absent in CPM (solid circles).
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Figure 4.6: R(f) for fixed and % stretch amplitude. Inset shows small difference between fixed and}% stretch

amplitude responses.

When testing lung tissue response, it is often measured over the whole frequency range
making the strain amplitude ]lc dependent; that is at high oscillation frequencies, the SA is reduced
inversely with frequency largely limited due to actuator speed limitations. Choosing inversely

frequency-dependent SA did not much change R(f) compared with constant amplitude

oscillation; the inset shows very small differences in response (Figure 4.6)

When SA was fixed at 0.05 but operating strain changed (Figure 4.7) the R(f) in QPLCM
was highest at the highest operating point of 0S = 1 (Figure 4.8). The highest R(f) at the OS of
1 leads to an increase in R(f) by 346% compared to the R(f) for CPM (Figure 4.8).

Figure 4.9 similar to Figure 4.5 shows that the increase in R(f) is directly related to the
time-varying stiffness from the nonlinearity in QLCPM. The circles in the plot show the R(f) in

the CPM model and adding time variation from the nonlinearity leads to a dramatic increase in

R(f).
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Figure 4.7: CPM & QLCPM models for a range of operating strains
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Figure 4.8: (left) R(f) for CPM & QLCPM for different operating strains and (right) percentage difference
between CPM & QLCPM
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When we varied the degree of nonlinearity by changing the exponent a, Figure 4.10, this
also results in increasing R(f). with higher nonlinearity (Figure 4.11). The relationship of R(f) to

the time variation in stiffness quantified by delta stiffness is shown in Figure 4.12.
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Figure 4.11: (left) R(f) for CPM & QLCPM for different operating strains and (right) percentage difference
between CPM & QLCPM
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Figure 4.12: Time-varying stiffness eftect on R(f) due to varying alpha at different frequencies
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If SA is increased to large amplitudes such as 0.4 the effect of « is increased Figure 4.13
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Figure 4.14: Time-varying stiftness eftect over R(f) due to alpha/diseases

Interestingly, in Figure 4.14, both lower R(f) (¢ = 2.325 & 4.65) and higher R(f) were
observed (a = 9.3) relative to CPM. This is seen again examining the behavior vs. the amplitude

of the time-varying stiffness comparing curves to CPM which are the solid circles at zero delta
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stiffness (Figure 4.15). Looking at 0.03 Hz, resistance increases with delta stiffness vs. alpha, but
at low alpha R(f) is less than CPM while at higher alpha R(f) is greater than CPM. Also, R(f)

at higher frequencies is small.
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Figure 4.15: Time-varying stiffness effect on R(f) due to varying alpha at different frequencies.

. 2.325
4 G5
o 9.3
o .
=
n 2
7y
Q oz
5 :
) 15| -
-~
T o
15 | e 5
,_.' i i i i i i .
(1] oy 02 03 o4 s e L1 08 (R
Strain

Figure 4.16: QLCPM models for a range of alphas with SA of 0.05 & range of OS

When we looked at behavior vs operating strain with different alphas (Figure 4.16) we
again see the greatest R(f) at the highest OS and also at the largest a (Figure 4.17) which was also

when delta stiffness was largest (not shown).
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Figure 4.17: Time-varying stiftness effect over R(f) due to alpha/diseases and OS
4.3 DISCUSSION

This study shows that nonlinearity can increase R(f) above what is present in the constant
phase model. This is particularly strong at high strain amplitudes or operating strains. The
nonlinearity leads to time variation in the stiffness, and because of the coupling of the dissipative
component to the elastic behavior through the hysteresivity, 1, the out-of-phase variation leads to

R(f). This source of frequency dependence of resistance was unrecognized previously.

The principal findings of this study are: 1) time variation in lung parameters can be
obtained if there is a nonlinearity typical of that measured in the real lung tissue mechanics, 2)
increasing the stretch amplitude results in higher nonlinear effects on time variation resulting in
higher R(f), 3) higher operating strains also results in greater effects of the nonlinearity and
increased time-variation resulting in higher R(f), 4) the effect of alpha which directly changes the
nonlinearity causes changes in R(f), 5) when both operating strain and alpha values are increased
as might occur with disease, this may mean that changes in disease that cause changes in alpha are

thus likely to lead to changes in R(f) affecting the interpretation of R(f).

It was shown in the literature [69], [73]—[75] lung tissue has a pronounced nonlinear stress-
strain relationship. Here I introduced the nonlinearity into the simple constant phase model and

studied its parameters to better mimic real lung tissue. We used a more common constant phase
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model for the oscillatory mechanics of the lung tissue. But other models exist. For example, this
is similar to the Hildebrandt model which was developed from stress-relaxation behavior using
logarithmic stress decay following a step strain. The constant phase model we used instead predicts
a power law behavior [76], [77]. However, while this model has a different mathematical non-
constant dependence between loss modulus and storage modulus, which is different from the
constant phase model, the difference is very small. Indeed, both models do describe lung tissue
deformation fairly well, and thus the differences may not be important. In any case, the constant
phase model is by far the most common model used for respiratory tissue mechanics and was used

here.

Our implementation investigated the role of time-varying mechanics that arises from the
presence of the well-established static nonlinearity of lung tissues, and the well-established small-
amplitude constant phase model, and examined its effect when combined to predict its effect on
R(f). Here we found that indeed, greater R(f) occurred due to the presence of the nonlinearity

compared to CPM, with large amplitude oscillation at low frequency.

When lung tissue is stretched in the tissue bath it should mimic these results, finding at
higher operating strains that R(f) should be more than at lower strain amplitudes. Navajas et al
indeed did find that resistance increased with operating stress by about 250% from operating stress
of 0.6 to 2.1 comparable to what we observed here for similar strain amplitudes. They developed
an empirical fit to describe the behavior that was related to the nonlinearity but did not identify the
mechanism attributable to the development of time variation in the mechanical properties. They
did not explore changes in the nonlinearity via alpha, instead modeled the mean behavior. This
would be interesting to examine since they did have different lung tissue strips with differences in
nonlinearity and thus this could be examined. If the nonlinearity in lung tissue is a substantial
source of R(f) when measured in vivo as is possible with pressure-volume or pressure flow
measurements as during mechanical ventilation or oscillometry this could be potentially useful
particularly for diseases that alter the stress-strain behavior of lung tissues. This is explored in the

next chapter.

It was mentioned we were planning to explore R(f) in lung tissue in in-vitro models
simulating altered tissue properties in disease with the use of collagenase, which would lead to

increased alpha, beyond what would occur due to normal variation between samples. Here I used
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3 different cases changing alpha from healthy dog lung tissue by arbitrary factors of 2 both below
and above normal and studied theoretically the behavior of tissue in diseases, also at normal stretch
amplitude. This produced a very large change in R(f) which could be confirmed in-vitro and could
also be examined using human tissue from deceased subjects, although that may be challenging.
Changes in nonlinearity are known to occur due to changes in tissue from the effects of fibrosis or
COPD. Rather than explore this in our tissue model, we explored the effects of altered nonlinearity
in fibrosis and COPD by modeling pressure-volume relationships in whole respiratory system

models in the next chapter.

Limitations to the study in this chapter are as follows: 1) We examined only healthy canine
tissue behavior using data from the literature and did not verify directly if the predicted behavior
would occur in-vitro, although the behavior was similar to that reported in Navajas et al. [39]
Navajas similarly found that resistance was strikingly frequency dependent. They did also explore
the effect of strain amplitude and operating strain to examine the effect of the nonlinearity but
unfortunately not over a range of frequencies to examine the effects on R(f). However, the
nonlinearity should have led to an amplitude and operating strain dependence which would be in
agreement with the nonlinearity leading to increased R(f). However, when Navajas et al. explored
the dependance of resistance on amplitude at a single frequency of 0.3 Hz they did not find an
increasing dependence of resistance on strain amplitude which we had observed. However, this
was only done at low operating stress and over a smaller range in amplitude than we explored, and
thus the nonlinearity may not have been sufficient to lead to amplitude dependence. However, they
did find a striking dependance on strain operating point also tested only at 0.3 Hz. Over the range
of 0.6 to 2 kPa, resistance changed 2-fold which agrees well with our findings. 2) Another
limitation is that we used arbitrary values to model changes in alpha from our canine healthy values
as it seemed more reasonable to address appropriate disease models in chapter 5 when we model

the pressure-volume relationship.

This study shows that frequency dependence of mechanical resistance of lung tissue can
arise from static tissue nonlinearities provided it is combined with the source of the suitable
viscoelastic component which is here provided by CPM. This means that nonlinearity in behavior

can possibly lead to R(f) observed in the whole lung which is discussed in the next chapter.

45



CHAPTER 5: WHOLE LUNG MODELING

Here we wanted to do a similar modeling effort as in Chapter 4 but extended to the
respiratory system. This would be more meaningful since the oscillatory mechanics of the
respiratory system are commonly measured in research and are increasingly being measured
clinically. Indeed, R(f) is commonly being attributed to small airways heterogeneity in lung
diseases such as asthma and COPD, although there are other mechanisms for R(f) as discussed in
the introduction. In order to develop a respiratory system model including the oscillatory
impedance and the pressure-volume characteristics, we repeated the approach of Chapter 4. There
are several models of the respiratory system that include the very common single-compartment
model to quite complex multiple branch models with 100’s of thousands of compartments. Some
of these include multiple CPM models at the termination of the branches [14], [18], [37]. Common
amongst almost all of these models are that they are generally employed only for simulation of
small amplitude mechanics and do not usually include the large pressure-volume nonlinearity
known as the PV curve. Other models explicitly model the nonlinearity using empirical
relationships [35], [78], but these are not usually coupled with small amplitude linear models. In
this chapter, we use a similar approach to chapter 4 and use the CPM model of the respiratory
system with a common nonlinear PV model and use this to explore where time-varying lung

characteristics are expected to lead to R(f).

5.1 METHODS

In this section, as in Chapter 4, I rely on the constant phase model as it has also been used
to very well describe the small amplitude respiratory mechanics in vivo and I add to it the well-
known pressure-volume nonlinearity known as the Salazar and Knowles equation [78] for the PV-
curve. Once the model is developed using values from the literature, I explore changes in operating

volumes and differences in the nonlinearity due to disease

MODEL DEVELOPMENT: In the lung/respiratory system, the mechanical relationship is
not between stress and strain but between pressure and volume. This relationship is also nonlinear,
and a common equation used to describe the deflation limb of the PV-curve as mentioned is known

as the Salazar and Knowles equation [78] and is expressed as follows:
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V = A — Be *P; 5.1)

Rearranging

Py = —=In (A V) (5.2)

B

Where V is the volume (in L), A, B and k are constants or parameters indicating the healthy
and diseased cases and P is pressure obtained from the volume, which can be approximated as
sinusoidal for the modeling purposes here. The CPM model with volume as input and pressure as

output is found in the Kaczka et al. [72] as follows:
G
Pepy = ( ]wa)]wV (meﬁ + HwP)V; where G = nH 5.3)

Incorporating this to tissue compartment in the nonlinear version by combining Py &

Pcpy we get:
Porcpm = ——ln( ) (mwﬁ + wﬁ) 5.4

. : 1
Where H is incorporated into the ~ parameter.

To complete the CPM model used for the respiratory system we also add a linear upper
airway resistance and an inertia term to account for the acceleration of the gas and any tissue
accelerations as is commonly done for the standard equation of motion of the respiratory system,
with the tissue compartment being the CPM model (equation 5.3) or QLCPM model (equation
5.4). The impedance is the ratio of pressure to flow for both CPM and QLCPM

P(t) =RV + IV + Pcpy or QLCPM> (5.5)
Where P is the pressure and V is the flow; Pcpy, is the pressure of the constant phase model
(5.3) obtained from the pressure-volume relationship, similarly Py, cpy 1S quasi-linear constant
phase model pressure (5.4) obtained from nonlinearity in the volume.
EXPERIMENTAL PROTOCOL: The values of the parameters were defined as follows. The
values for the Salazar and Knowles equation (equation 5.4) are found in Table 5.1 from Gibson et

al. [35]. The values for the CPM model were adjusted/matched to the QLCPM model in order to

obtain the same impedance at specific operating volume with specific volume amplitude and a
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healthy case of A, B & k constants. The matched values with mean resistance and inertance added

to the equation were:

Repm = 2.2 cmH,0.8/L = Ryrcpums

Ecpm = 3.5 cmH,0/L = Eq1cpy; @H~3.38kPa 5.6)

In this Chapter 5, we will be looking at two different frequency ranges: first, all the
experiments were done using a frequency range of 0.2 to 5 Hz. This is a frequency range used
previously where ventilators delivered a selection of frequencies while providing mechanical
ventilation [79]. The second group of experiments was done at the oscillometry frequency range
of 5 to 37 Hz respectively. Similar to Chapter 4, we explored the effect of different operating
volumes (OV), including one near a typical end-expiratory lung volume (FRC) of 2 liters and
matched the CPM model to it by choosing right H value as well as two higher lung volumes of 3
and 4 liters to explore the effect of the nonlinearity on R(f). We did not choose different
amplitudes since this general behavior was studied in Chapter 4, and normal breathing defined by
tidal volume is typically fairly constant during measurement of respiratory mechanics while
operating volume can be altered when on a ventilator by adjusting the positive end-expiratory

pressure or can be elevated in disease such as in COPD.

Table 5.1: Values of the nonlinear components to the QLM and QLCMPM model [35].

Diseases/Variables k (cmH,0™1) A (D) B ()
Fibrosis 0.089 2.64 0.93
Normal 0.143 5.65 4.79
Emphysema 0.325 7.66 6.98

Using the values of Gibson et al. [35] for each condition altered the nonlinearity k, but also
the constants A and B, but this is more representative of the physiological changes with disease.
For comparison of these three cases, we also choose 3 different lung volumes, choosing volumes
that worked well for each curve, that is, avoided the asymptotes as well as had the same
approximate end-expiratory pressure values across conditions. These were end-expiratory volumes
of 2,3.3& 6.3 L for each model. However, FRC often is increased in COPD associated with

emphysema, so I also chose a second operating point in this model of 7.2 L, which while high, was
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chosen to explore the effects of elevated end-expiratory pressure of approximately 11 cmH,0. In

this experiment, CPM is matched to a normal curve similar to the last experiment.

After doing the investigations of the PV curves for the low-frequency range, we also
examined the oscillometry frequency range. We took the same PV curves and breathing was
simulated with sinusoidal oscillation at 0.25 Hz. The magnitudes/amplitudes are typically
inversely dependent on the frequency with specific phases to minimize peak-peak motion. The
magnitudes and phases of a typical oscillometry signal used by the Tremoflo™ are indicated in
table 5.2. For analysis of the impedance, the pressure and flow signals were first high pass filtered
at 2 Hz using an ideal FFT domain zero phase high pass filter. The impedance was then computed
using the Welch periodogram approach using windows of 1 second, applying Hanning windows

also of 1 sec, with the overlap of 95% as described in Chapter 1, equation 1.9.

Table 5.2: Amplitudes and phases of the oscillometry probing signal

Frequencies Amplitudes (1) Phase (rad)
5 0.02504 -0.8655
11 0.01082 -2.871
13 0.009283 2.296
17 0.00616 0.9318
19 0.005471 -0.8432
23 0.004822 2.009
29 0.004048 -2.565
31 0.004551 -0.9766
37 0.004029 -2.277

Figure 5.1 shows the CPM and QLCPM pressures in the time and frequency domain for a
single one-second window. The flow is the input signal, and the pressure at the oscillation
frequencies is roughly the same for the CPM and QLCPM at this operating amplitude (20 mL) and
volume (2 L). There appears to be some spectral, or artifactual leakage at non-input frequencies,
potentially due to the windowing, but these frequencies are not part of the analysis and do not
contribute to the measured impedance as they are not at the input oscillation frequencies. This was
confirmed as to when a rectangular window was used (not shown here) energy was confined to the

oscillation frequencies.
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Figure 5.1 shows the CPM and QLCPM pressures in the time and frequency domain for a
single one-second window. The flow is the input signal, and the pressure at the oscillation
frequencies is roughly the same for the CPM and QLCPM at this operating amplitude (20 mL) and
volume (2 L) for normal matched case. There appears to be some spectral, or artifactual leakage at
non-input frequencies, potentially due to the windowing, but these frequencies are not part of the
analysis and do not contribute to the measured impedance as they are not at the input oscillation
frequencies. This was confirmed as to when a rectangular window was used (not shown here)

energy was confined to the oscillation frequencies.
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Figure 5.1: CPM & QLCPM Pressures time and frequency plot for 1-sec window with 500 samples, sampling
rate of256 Hz and high pass filtered alongside windowed flow signal, where on right orange is signal i.e.
windowed using rect window and blue is signal windowed using Hanning window respectively.

5.2 RESULTS

The pressure-volume relationships for CMP, nonlinear QLM, and constant phase QLCPM

model are shown in Figure 5.2

Figure 5.3 shows the pressure-volume relationship for breathing at the different operating
volumes. Similar to Figure 4.7, it is evident that for the CPM the behavior is linear each PV loop
at different operating volumes with the same shape and slope, whereas, for QLCPM it can be

seen that the loops change the slope and shape with nonlinearity.
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Figure 5.2: Pressure volume relationship for CPM, QLM, and QLCPM models
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Figure 5.3: CPM & QLCPM models for a range of operating volumes
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Figure 5.4 (left) R(f) for CPM & QLCPM for different operating volumes and (right) percentage difterence of
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With different operating volumes, R(f) does not change in CPM but increases for QLCPM
in Figure 5.4.
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Figure 5.5 Frequency dependence of elastance (E(f)) for CPM & QLCPM for different operating volumes

Elastance estimated as in equation 5.4 is also dependent on operating volume in the

QLCPM model Figure 5.5. At higher frequencies, E turns downward due to the effects of
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inertance, and the approximation of equation 5.4 no longer is a good estimate of the elastic part of

the impedance.

——CPM & OV =2 w.0 1/f
OV =3 w.01/f

——O0V =4 w.01/f

——CPM & OV =2 wt 1/f
OV = 3wt 1/f 12

— OV =4 wt 1/f

23

N
N
T

10°

N
T

N
T
o
@

-
©
T
o
IS

R (cmH20.s/L)

Difference R (cmH20.s/L)
o
>

=3
)

-
o
T

1.7

16 I L I I L L I L L |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

fos (Hz)

Figure 5.6: R(f) for stretch amplitude changing with % and Witbout% for 2-4 L Operating Volumes (OV), (inset)

shows the difference of the R(f) between the respective response.

Similar to Figure 4.6, here in Figure 5.7 we can see the response of fixed and % amplitude

input for OV of 2 - 4 L, where OV = 2 L is matched to CPM. Figure 5.7 (Inset) clearly indicates

that there is no difference for constant amplitude or % amplitude input volume signals on R(f).
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Figure 5.7: (Left) The pressure-volume relationships with different disease models from Gibson et al[35] fib is

fibrosis, nor is normal and emp is emphysema (right), with pressure-volume loops during oscillatory input at
the different operating volumes
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Figure 5.7 shows pressure-volume curves that are representative of different disease cases,
taken from Gibson et al. [35]. With the same operating pressure, but with the different PV curves,
the slopes and shapes of the loops are very different. The fibrosis model has a larger pressure
swing, likely larger than ordinarily would occur in-vivo, as likely a subject with this PV curve
would move to lower lung volume and alter their breathing rate and amplitude to avoid generating
larger pressures. On the emphysema model, we modeled two operating volumes, including a
higher volume simulating the higher FRC typical for emphysema, which shows a shallower slope

due to the higher stiffness at higher volumes and greater curvature.
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Figure 5.8: R(f) for the linear and nonlinear models including disease models.

The size of the PV loops is determined by 7, the value of which was from measurements
of subjects while being mechanically ventilated with the optimal ventilator waveform [79]. One
can see that the loops are slightly below the PV curves, this is due to the effect of w?, the
coefficient in the constant phase portion of the QLCPM model which reduces the mean pressure

slightly in this frequency range.

We found R(f) was present with CPM as expected due to the viscoelastic property of the
CPM. But we found that nonlinearity increased the R(f) in QLCPM models from the CPM which
we had matched at specific operating pressure (6 cmH,0) and volume (3.3 L), achieved by

matching the operating point and normalizing the CPM slope to match the normal PV curve from

Gibson et al [35].
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The greatest R(f) occurred with the fibrosis model since it had the largest PV slope at the

operating pressure modeled. In the emphysema models at the lower operating pressure (6 cmH,0),

the R(f) was lower than the normal curve from the lower PV slope, while at higher pressure the

R(f) was larger than the normal curve. Thus, it can be seen that additional R(f) is produced due

to the nonlinearity and the R(f) is dependent on the nonlinearity which agrees with clinical

findings.
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Figure 5.9: Time-varying instantaneous stiffness of CPM and QLCPM diseased models

Figure 5.9 shows the time-varying instantaneous stiffness obtained from the CPM and the

QLCPM models. This illustrates that during oscillation, the mechanical properties of the model

are changing due to the PV nonlinearities dependent on the local curve of the QLCPM models.
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Figure 5.10: E(f) for different diseased case
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We also examined E (f) which as expected showed some strong dependence on the disease
model due to the changes in the slope of the PV curve, but there is also some small frequency

dependence in E.
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Figure 5.11: Repeat of Figure 5.8, R(f) for the CPM & QLCPM disease models as well as X (f) for optimal
waveform ventilation frequency range
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Figure 5.12 R(f) for the CPM & QLCPM disease models as well as X(f) for oscillometry frequency range

Figure 5.11 shows the R(f) & X(f) for the CPM model matched with normal QLCPM in
the optimal ventilator waveform frequency range, while Figure 5.12 shows the impedance in the

oscillometry frequency range. We can see that Figure 5.12 is similar to Figure 5.11 showing the
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R(f) & X(f), however at the oscillometry range the dependance is much smaller decreasing from
approximately 0.2 cmH,0.s/L to 0.02 cmH,0. s/L for the healthy case and similar for disease
cases. Therefore, while R(f) is predicted to be substantially affected by the nonlinearity at low
frequencies due to time-varying lung mechanics, the effect appears to be negligible for the

oscillometry frequency range, from the model tested here.

5.3DISCUSSION

There have been several models to help understand the impedance and also to understand
the frequency dependence of resistance. As discussed in the introduction, Otis [80], [81] showed
that a parallel branch compartment model could produce frequency dependence over a limited
range of frequencies if the time constants were not equal, and this is also shown over a wider
frequency range in multi-branch models where airway diameters are heterogeneous [82]-[85].
Kaczka used CPM in his airway tree model, but, while complex the branching tree impedance
model was linear. None of these models included the pressure-volume nonlinearity. Bates et. al.
developed a recruitment model to describe the nonlinear behavior and pressure-volume
relationship of the lung, but they did not explore the effect of the nonlinearity on R(f). To my
knowledge, no model includes the impact of time varying mechanical properties on R(f) except
for Alamdari et al. However, in their approach they arbitrarily assigned time variation to the
elastance to show that this could be a mechanism for R(f), and did not include the pressure volume
nonlinearity. Here I coupled CPM with Salazar Knowles equation to investigate the influence on

the nonlinearity potentially on R(f) which have not been investigated before.

Principal findings of this study are 1) higher operating volumes and alpha (4, B & k),
similar to tissue model in the last section, results in higher nonlinearity and coincidentally
increased time-variation resulting in higher R(f); 2) time-varying stiffness of the lung results in
R(f) which is substantial in diseased cases at optimal ventilator waveform frequency ranges,

however, we lose this effect at oscillometry frequency range where R(f) is negligible.

It is evident in the whole lung nonlinearity study we achieved similar results as in lung
tissue i.e., higher operating volume results in higher nonlinearity, similarly with increase alpha
values for diseases we achieved higher R(f). The values of alpha in the whole lung case are taken

from published pressure-volume relationships [35]. It is evident that for emphysema which had a
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very pronounced nonlinear PV curve, we found stronger R(f). We also saw strong R(f) in the
fibrosis case due to the fact that PV curve is confined to a very narrow range, and for our choice
of constant volume breathing, this accentuated the effect of the nonlinearity probably more than
would occur in vivo. In each case, if there is a substantial nonlinear pressure-volume relationship
during breathing or mechanical ventilation this can add substantially to the R(f) already present
due to the viscoelastic behavior accounted for by the constant phase model. That is this modeling
has identified a potentially significant source of R(f) over and above any tissue property and
potentially also in addition to any heterogeneity present, although this was not modeled here. This
finding may be useful in helping to understand the changes in mechanics of the lung in disease.
For example, if the nonlinearity is assessed it may be possible to predict the expected R(f) due to
this mechanism, thus additional R(f) can be attributed to other sources such as heterogenetiy. The
contribution of nonlinearity and heterogeneity to R(f) is assessed experimentally in the next
chapter, but only in the oscillometry range, which we found is not expected to have significant

contribution from tissue nonlinearity.

R(f) arises from time-varying elastic lung parameters if they vary in phase with the flow
as Alamdari showed previously. Here we also find that because of the CPM model which includes
that out of phase pressure with oscillatory volume is determined by the constant 7, which causes
time variation in pressure that is out of phase with volume from the PV nonlinearity. We found
that the time-varying stiffness effect from the nonlinear PV curve can only be seen when the
oscillations that explore the nonlinearity are the ones used for estimating the mechanical properties
as with tissue strip oscillation in Chapter 3. This occurs when measuring lung mechanics using
mechanical ventilation as done by the optimal ventilator waveform [79]. Thus interpreting
impedance can be challenging in this case, which was recently raised by Hantos et al [86] when
other mechanisms such as time-variation in mechanics may be present, and here we show may
arise from nonlinear phenomena However, for oscillometry, the only signal which substantially
explores the nonlinearity is breathing which occurs at frequencies below that of oscillometry, and
. we found the contribution of the nonlinearity is negligible at the higher frequency range. This is
likely due to two factors, the dependence diminishes with frequency, and also at the oscillometry
range, the amplitude of the oscillations from oscillometry are far smaller than breathing tidal
volumes. These were not sufficiently large to explore the nonlinearity of the PV curve and produce

the addition R(f). The breathing signal which we included is large, but it is at a much lower
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frequency and thus did not affect the measurement of impedance in our model. However, we only
used sinusoidal breathing and actual breathing includes higher frequencies extending beyond 5 Hz
although small in amplitude. These could introduce some additional R(f) but this was not
explored here. Nevertheless, lung disease alters the nonlinearity, and also can introduce time
variation in mechanical properties that may have slightly higher effects over the R(f) extending

to the oscillometry frequency ranges.

Limitations to this study are: 1) Only a single representative curve for an obstructive and a
restrictive disease were studied, and compared to a representative normal PV-curve. We did not
assess the variation amongst individuals in either normal or disease. 2) We did not include
simulation of real breathing waveforms which have a much wider bandwidth than the purely
sinusoidal breathing that we used. This might affect frequencies at and perhaps somewhat above
5 Hz, since breathing noise does have frequency components in this range and adds to the noise in
oscillometry measurements typically at the lower oscillometry range near 5 Hz, and somewhat
higher frequencies in children. However, this effect will likely be small since the magnitude of
pressure and flow oscillation at 5 Hz in normal breathing is also small. It is possible that in diseases
such as COPD with flow limitation, leading to very non-sinusoidal waveforms and potentially

harmonics in this range during breathing that the effect might become important.

This study shows that frequency dependence of mechanical resistance of lung tissue can
arise from pressure-volume nonlinearity provided it is combined with the source of the suitable
viscoelastic component which is here provided by CPM similar to static tissue nonlinearity
explored in Chapter 4. This means that nonlinearity in behavior can possibly lead to R(f") observed
in the whole lung which is explored further for lung transplant patients in the next chapter along

with the effect of heterogeneity over the R(f).
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CHAPTER 6: INVESTIGATING R(f) DUE TO
HETEROGENEITY OF VENTILATION IN THE LUNG

In this chapter, we took advantage of some recent measurements in my laboratory to
investigate the R(f) and potentially relate it to measures of heterogeneity and assessed by lung
imaging (section 6.1) as well as time-varying lung mechanics (section 6.2) in data collected from

post-LT patients at risk of developing CLAD as introduced in Chapter 1 section 1.6.

6.1 INVESTIGATING HETEROGENEITY IN LUNG TRANSPLANT
PATIENTS

6.1.1 Methods

My lab group is conducting a study to explore measurements of heterogeneity in subjects’
post-lung transplants as a potentially sensitive measure to detect CLAD. I’ve helped collect
oscillometry data in some of the patients. In this thesis, I have included data from the 9 subjects
we have recruited thus far. Their demographic data can be seen in Table 6.1. The study protocol
is depicted in a flow chart in Figure 6.1. Briefly, we obtain spirometry data (with the help of S.
Fulton, the respiratory technologist) and collected the oscillometry data aided by summer students

C. Potter, A. Brezovan, and M. Renn using the Tremoflo™ software.

Table 6.1: Post-LT Patients demographics data

Patient 9
Years since transplant 9.25 +3.99
Sex 7M /2F

Age (years) 61.44 + 8.25

Weight (kg) 79.13 + 14.89

Height (cm) 171.67 + 8.57

Best post-LT Visit 1

FVC (% Ref) 94 + 14.02 90.13 + 12.85
FEV1 (% Ref) 92 + 15.36 73.5 +22.99
FEV1/FVC (% Ref) 78.63 +11.40 64.13 +17.08
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Table 6.1 also shows FVC, FEV1, and FEV1/FVC the measures of the Spirometry, we can
see that for visit one the mean is significantly low with a substantially large standard deviation

indicating the LT patients with BOS.
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Figure 6.1: Flow Chart of CLAD Study

Figure 6.1 shows the flow chart of the study protocol. In this study for each patient, there
are 3 - 5 recordings of oscillometry in supine and upright followed by spirometry and then
subjects inhale a bronchodilator and the measurements are repeated 20 minutes later, although for
this study we only used pre-bronchodilator data. Oscillometry was performed according to
ATS/ERS technical standards, with at least 3 repeated measurements with the coefficient of
variation of resistance at 5 Hz of less than 0.10. The study also includes SPECT/CT imaging data
recorded prior to the oscillometry measurements. The summer students largely conducted the
image analysis with supervision from myself and Dr. Maksym, quantifying the heterogeneity
measures. The inhalation protocol for the Technegas as well as the imaging method is explained

in detail later in the chapter.

From the CT images, the user chooses a threshold to segment the lungs from the chest wall
(which includes the diaphragm and heart as well as larger blood vessels). The software uses
thresholds from three separate slices through the lungs, central and two more slices each midway
to the central surfaces and dorsal surface, and then creates a surface describing the lung chest-wall
boundary. The summer students then manually removed any of the trachea and mainstem bronchi

that were part of the mask in a refinement step. This mask then represents the potentially aerated
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volume of the lungs for analysis. From the volume within the mask is computed the coefficient of

variation of image intensity (CoV) [87] which I used as an index of ventilation heterogeneity as

. . SD(Intensities)
can be seen in equation CoV = —
Mean(Intensities)

(6.1.

SD(Intensities)
Mean(Intensities)

CoV = (6.1)

I used the CoV to explore the hypothesis that heterogeneity of ventilation is related to the
frequency dependence of resistance which has been thought to arise from heterogeneity of airway
diameters as described in section 1.4.2. I also calculated percentage predicated Rs_;9 using the
representative healthy data corresponding to individual patients from the Oostveen Database [2],

which represents the comparison of disease.

As mentioned previously, the imaging is done by radiology technologists at the QEII,
supervised by Dr. A. Ross, and largely the image analysis was carried out by summer students C.
Potter, A. Brezovan, and M. Renn under the supervision of Dr. Ross and my supervisor G Maksym.
Patients performed a ten-second breath-hold of 555Mq of Technetium-99m (Technegas),
vaporized in a carbon vessel, inhaled through a closed spirometer system until a count rate of
1500 kps or greater was reached. Briefly, patients first inhale Technegas while supine and a short
SPECT scan is done to check if the inhaled dose is sufficient, if not, a second inhalation is done.
Following this, CT is then obtained after exhalation and the patient is instructed to cease breathing
for a few seconds. Then they can breathe normally, and Ventilation SPECT is obtained for approx.
10 — 15 minutes of normal breathing. Details regarding the imaging methodology and image
reconstruction can be found here [88], [89] but briefly. Image segmentation of the CT is used to
define the chest wall boundary including the diaphragm, and some smaller regions such as
mainstem bronchi, blood vessels are also excluded from the lung tissue (parenchyma) volume.
This was either done using Hermes software or freely available segmentation software 3D slicer.
Differences between approaches were very small (< 35 ml not shown) likely due to the clarity in
the chest-wall boundary by CT. The CoV of the intensity from the VSPECT images is then
calculated after applying the mask to the VSPECT.

During oscillometry we also collected 30 seconds of 10 Hz single frequency oscillometry
from which the variation in impedance with time can be measured i.e., the real-time recording of

10 Hz collect from lung transplant patients and tested the hypothesis the variation of X, at 10 Hz
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as a measure of the temporal variation of lung elastance might also be related to the frequency
dependence of resistance, in oscillometry measurements, even though this was not predicted to be

very strong in chapter 5.

6.1.2 Results and Discussion

Two examples of coronal (frontal) plane slices showing VSPECT data using the color bar
overlayed on the CT image in pale magenta are shown in Figure 6.2. Locations, where the
Technegas particles have been deposited in high concentration, are indicated by the red while
where little or no particles have been deposited are indicated by dark blue. These images have been
scaled to the maximum intensity voxel (value 1.0) over all slices of the lung volume, and thus the
maximum does not necessarily appear in the slice shown. The patient on the left is a healthier
patient with better deposition more thoroughly in the slice, as well as with normal spirometry and
oscillometry. While the patient on the right has highly heterogeneous deposition, and we can see
‘hot’ spots of ventilation whereas the rest of the lung is not being ventilated indicating in the case

of BOS i.e., CLAD.
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Figure 6.2: (left) Technegas deposition (red max 0.74, blue min 0) in a coronal slice of a post LT subject with
normal mechanics, (right) Technegas deposition (red max 0.31) in a coronal slice of a post LT subject with
Bronchiolitis Obliterans

In order to quantify the heterogeneity from the images as mentioned earlier, CoV was
calculated. The imaging measure (CoV) is then correlated with R5_;9 which is defined as R(f)

mentioned earlier as oscillometry measure.
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Figure 6.3: R(f) correlated with imaging variables

In Figure 6.3 we can see R(f) as well as percentage predicted R(f) is correlated with CoV
in order to study the effect of heterogeneity over the R(f). It is evident that Rs_19 (R(f)) is highly
correlated to CoV with p = 0.001 as well as it is correlation linearly increasing indicating that
higher heterogeneity results in higher R(f). It is also clear that there is a strong linear correlation
between CoV and %predicted R(f) (p = 0.004) indicating that the heterogeneity increases the
R(f) regardless of other factors like BMI etc.

We have investigated R(f) in respiratory mechanics dependence on the heterogeneity of
ventilation arising from diseases in lung transplant patients. This was done by exploring through
VSPECT/CT imaging in post-LT subjects who develop heterogeneous lung dysfunction. Using
the quantitative measures of imaging and oscillometry measurements of R(f). The next section is
the effect of time-varying lung mechanics in post-LT patients using the time variation in reactance
at 10 Hz as an estimate of the time variation in elastance and tested by correlation with measured

R(f) over 5to 37 Hz.

6.2 INVESTIGATING TIME-VARYING CHARACTERISTICS IN LUNG
TRANSPLANT PATIENTS

6.2.1 Methods

The oscillometry data collected was collected at 10 Hz to obtain the time-varying lung

mechanics parameters i.e., resistance and reactance. The reactance at 10 Hz was used to check the
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correlation with R (f) using the reactance as an estimate of the time-varying elastance as Alamdari
who’s time variation in elastance leads to R(f). The reactance at 10 Hz was first cleaned using
the quality control standards (Appendix B). The standard deviation of reactance at 10 Hz was used

to assess the variation and the correlation with R(f) assessed.

6.2.2 Results and Discussions
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Figure 6.4: Correlations of R(f) with STD X10

In Figure 6.4, despite a wide range of both Rs_;4 and std (X10) we can see that there is no
correlation between R(f) (Rs_19) With time-varying lung mechanics i.e., the standard deviation of
X10 for either supine (p = 0.64) or upright (p = 0.23) position. This implies that for lung
transplant patients time-varying lung mechanics did not affect the frequency dependence of lung
resistance. However, as we showed in Figure 6.4 heterogeneity as assessed by VSPECT imaging
was more related to R(f) from oscillometry. However, it may be that the variation in reactance at
10 Hz was not a good estimate of the elastance, since it is closer to the resonance frequency where
inertance matches elastance and reactance is zero. However, more likely is that R(f) was not
affected by any variation in reactance. As we found in Chapter 6, time variation from nonlinearity
has only negligible effects on R(f) measured during oscillometry. While we did not model the
effects from other sources of time variation that might induce variation in the oscillatory frequency
in Chapter 5, it might be useful to assess the variation in phase with the flow in these subjects,
although this is likely to be quite small. However, the correlation of R(f) with heterogeneity for
volume SPECT imaging leads to this being a more likely contributing mechanism to R(f) in the

oscillometry range.
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CHAPTER 7: DISCUSSIONS & CONCLUSIONS

In Chapter 4 we found that nonlinearity can produce time-varying dependence of lung
tissue mechanics that leads to R(f) in the low-frequency range, which had not been demonstrated
before. Thus, this thesis adds a new mechanism, nonlinear induced time variation of mechanics
that can cause R(f). This was found to be present at the level of the lung tissue and added to the

underlying contribution by tissue viscoelasticity (1) to R(f).

This was dependent on the degree of nonlinearity. Increasing the stretch amplitude resulted
in higher nonlinearity and increased time-variation of mechanics that resulted in higher R(f).
Similarly, the contribution to R(f) was increased at higher operating stains. The most interesting
result we obtained was the effect of alpha which can be altered in disease increasing the tissue
nonlinearity. We saw that when both operating strain and alpha values were increased that the

contribution to R(f) was the strongest.

In Chapter 5 we found higher operating volumes and greater nonlinearity that is associated
with respiratory diseases of fibrosis and emphysema each would lead to higher R(f) attributed to
increased time-varying stiffness of the lung. This was true for oscillation of the lung during
mechanical ventilation while measuring impedance at the frequencies of ventilation. However, we
lose this effect during oscillometry, as the oscillometry is much smaller in amplitude and at higher
frequencies where effects on R(f) are reduced. Indeed, in chapter 6 we found no evidence of R(f)
being related to time variation in mechanical properties in lung transplant patients, but a strong

relationship to heterogeneity as assessed by VSPECT imaging.

Thus, we show that nonlinearity in lung tissue and the PV-curve can lead to substantial
R(f) independent of any other mechanism and adds to any R(f) due to tissue viscoelasticity in

the low-frequency breathing frequency range.

These findings are potentially important for the interpretation of the number of different
types of experiments currently done, where data is presented in the literature. These include
measurements of mechanics for subjects on a ventilator when the waveform for ventilation is used
to estimate the impedance of the respiratory system. A portion of the subject R(f) will not only
be due to the viscoelastic properties of the lung and chest wall tissues, but a portion of it can arise

from the nonlinearity in the pressure-volume curve and the time variation that occurs in the
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mechanical properties as demonstrated in Chapter 5. R(f) was previously demonstrated in
measurements of patients in the low-frequency range, and thus this mechanism may be responsible
for some of the R(f) observed including the seminal work by Suki and Kaczka [37], [79], [90],
[91]. In disease there would be the possibility of additional sources of R(f) arising from
heterogeneity in airway resistances in the multi-branch airway tree [70], [92], this is known to be
a substantial contributing mechanism as demonstrated with physical models [21], [93]-[95].
Indeed, we found using imaging that heterogeneity by VSPECT was strongly correlated to R(f) in
agreement with the literature. However, these mechanisms likely overlap as tissue disease alters

the PV curve, but also introduces heterogeneity, which might thus both be present adding to R(f).

On the other hand, in the oscillometry range, the effect is much reduced. In Chapter 5 we
showed that in the oscillometry range the effect is greatly reduced due to in theory nonlinearity
being strongly excited/stimulated by large-amplitude oscillation such as breathing which we
simulated at lower frequencies even though there is large amplitude breathing during oscillometry.
However, it is not at the frequency of oscillations therefore as we found, it doesn’t affect the
measured mechanics. The only effect of the nonlinearity on R(f) comes from the small amplitude
of oscillation being applied due to oscillometry, which produces a small but negligible effect.
Therefore, it is likely that as long as there is little contamination to the oscillatory frequencies from
the breathing signal that may be affected by nonlinearity or simply varying in phase with the flow,
there will be little effect on R(f) from time variation in mechanical properties. It is possible that
with flow limitation and very non-sinusoidal breathing patterns that contamination of the

oscillometry signal could lead to some R(f) but we did not examine this.

In Chapter 6 we have investigated R(f) in respiratory mechanics dependence on the
heterogeneity of ventilation arising from diseases in lung transplant patients. This was done by
exploring through VSPECT/CT imaging in post-LT subjects who develop heterogeneous lung
dysfunction. Using the quantitative measures of imaging and oscillometry measurements of R(f).
We observed strong correlations and significant results, where the increase in heterogeneity
linearly increases R (f) making it the strongest source. We also studied the effect of time-varying
lung mechanics in post-LT patients using the time variation in reactance at 10 Hz as an estimate

of the time variation in elastance and tested by correlation with measured R(f) over 5 — 37 Hz.
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However, there was no correlation with R(f) which agrees with the finding that oscillometry range

time-variation is not likely to have much effect on R(f)

There are some limitations of this result - we only simulated breathing that was confined

to a single frequency. Breathing does have noise energy that extends over many frequencies, and

it is possible, particularly with flow limitation and maybe in children that the breathing oscillation

noise might affect 5 Hz and might introduce some R(f). Flow limitation does tend to produce

variation in phase with the flow during breathing, but this was not studied in this thesis.

7.2 CONTRIBUTIONS FROM THESIS

1)

2)

3)

4)

5)

A. Tahir, C. Potter, P. Hernandez, A. Ross, and G. Maksym, “Ventilation Heterogeneity
Assessed by VSPECT and Altered Lung Mechanics Post Lung-Transplant,” BMES 2019
Annual Meeting, Oct 2019, presented a poster in Philadelphia, USA.

A. Tahir, “VSPECT/CT and FOT in Lung Transplant”, CRRN Annual
General/Investigator Meeting, Jan 2020 presented in the lightning round presentation in
Ottawa, Canada.

A. Tahir, C. Potter, A. Brezovan, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, G.
Mawko, S. Fulton and G. Maksym, “Heterogeneity and Altered Lung Mechanics in Lung
Allograft Dysfunction using Ventilation SPECT/CT and Oscillometry Post-Lung
Transplant”, Canadian Respiratory Conference 2020, April 2020, abstract got accepted
for poster presentation in Niagara Falls, Canada.

A. Tahir, A. Brezovan, C. Potter, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, G.
Mawko, S. Fulton and G. Maksym, “Investigating Ventilation SPECT/CT and
Oscillometry Post-Lung Transplant for Ventilation Heterogeneity as Marker for Chronic
Lung Allograft Dysfunction”, ATS International Conference 2020, May 2020, abstract
got accepted for ORAL presentation Mini-Symposium and also got accepted for 10th
Annual CTS Research Poster Competition.

A. Tahir, M. Renn, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, and G. Maksym,
“Investigating the Origin of the Frequency Dependence of Respiratory Resistance to
Airflow in Post Lung Transplant Patients as a Marker for Chronic Lung Allograft
Dysfunction”, ATS International Conference 2021, May 2021, presented an online poster.

In addition to the above peer-reviewed contributions, I also presented in department

seminar, October 2020 and 2 research days, June 2020, and June 2021 respectively. I also received

2" prize in the Master presentation category in Research Day 2021.
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7.3 FUTURE WORK/DIRECTIONS

To answer the question if time variation in mechanics can lead to R(f) even in the
oscillometry frequency range from harmonics in the breathing signal affecting 5 Hz in above, this
needs to be assessed experimentally. This is probably best done with subjects with flow limitation
as the variation in reactance is quite large, and the waveform is a square wave not sinusoidal as

can be observed in the study by Dellaca et al. [34].

Other experiments can be done to investigate this work further. I was only able to model
how time variation from nonlinearity in lung tissue could lead to R(f). This could be done in-vitro
with lung tissue such as proposed in chapter 3. It would be useful to also model disease using

enzymes to alter the nonlinearity and explore if this alters R(f).

It would also be useful to explore how much additional resistance is from time variation of
mechanical stiffness during mechanical ventilation, either in animals or in ventilated humans. This
could be done at a single frequency or using more natural breathing waveforms from mechanical

ventilation or the optimal ventilator waveform to validate the model.

The magnitude of R(f) from tissue nonlinearity could also be compared to effects of shunt
and heterogeneity which can be modeled using a two-compartment model or other multi-
compartment models using several different exiting techniques presented in [17], [19], [20], [22],
[80], [96], [97]. One could implement a model with a shunt for different patients such as children
where shunt might be more important and also compare that to the effect of nonlinearity of PV

curve if there is data available for pediatric PV relationships.

Optimal Ventilator Waveform can be implemented to induce heterogeneity is another idea
that needs attention. There is no single ideal solution because practically all the sources’ effects
each other and have contribution together at the same time and you cannot separate them in order
to explore individually in-vivo. For example, even in modeling, we decided to focus on
nonlinearity contribution, however how big the contribution of heterogeneity over the R(f), it is
good to see the comparison. This can be done to quantify the magnitude of R(f) in relation to
heterogeneity in-vivo in comparison to nonlinearity with the disease. It is challenging because the

disease can increase the effectiveness of both heterogeneity and nonlinearity.
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APPENDIX A: DESIGN REQUIREMENTS

A.1 TISSUE BATH PERFORMANCE

Keeping the porcine lung tissue alive

The steady flow of Krebs solution with carbogen pumped into the liquid

High sensitivity force transducer with range for tissue force capable of submersion
Preconditioning and sinusoidal stretching of the lung tissue over 150% stretch and 0.03 to
3 Hz range.

b=

A.2 TESTING AND CALIBRATION REQUIREMENTS

1. Calibration of the force transducer
a. Use of low friction pulley with known weights: 0, 15, 25, 35, 45 grams
b. Adjust gain and offset for input data acquisition range
2. Preconditioning
a. Initialize software to tissue length ([,)
b. Tissue stretches to twice its length (100% Stretch = 21,) and back to the original
unstretched length with 5-10 repeated cycles, each cycle 1 min.
c. Set appropriate velocity (VE string for the driver)
d. Set appropriate acceleration and Deceleration for smooth turns (AC & DE strings
for the driver) — e.g., setting 25 or 50
3. Triangle Wave
a. Triangle waves with frequencies of 0.5, 1, 1.5, 2, 2.5, and 3 Hz are sent
b. Studied the optimum characteristics of the tissue
c. Duration—-2, 1, 0.66, 0.5, 0.4, 0.33 sec
d. Velocity (VE), acceleration, and deceleration (AC & DE)
e. Amplitude (position of the actuator — FP, FL, or FE string control)
4. Sinusoidal Wave
a. Sinusoidal waves with frequencies of 0.5, 1, 1.5, 2, 2.5, and 3 Hz are sent
Studied the optimum characteristics of the tissue
Duration — 2, 1, 0.66, 0.5, 0.4, 0.33 sec
Velocity (VE), acceleration, and deceleration (AC & DE)
Amplitude (position of the actuator — FP, FL, or FE Control)

o a0 o

A.3 ACTUATOR REQUIREMENTS

1. 0.3 — 3 Hz Sinusoidal oscillations at full amplitude i.e., twice the length of tissue initial
length.

79



2. For 100% amp with safety factor for 10%, actuator min, and max position 10% to min, and
10% to the max — 20% for preconditioning. The performance (i.e., VE & AC) for the PC
is low.

3. For 20% amp, for 3 cm tissue with 10% safety factor, sinusoidal amplitude is
0.5 Xx3.3x0.2 = 0.33cm. Velocity maximums are 2mf X Position amplitudes.
Acceleration maximums are 2rtf X velocity amplitudes.

fo 0.01 |0.03 0.1 |03 1 3
Position (mm) 33 (33 33 |33 3.3 3.3
Velocity () 021 [0.62 |207 |[622 20.73 62.20
Acceleration (%7) 0.01 |0.12 130 | 11.73 | 13028 | 1172.51

A.4 PRINCIPAL DESIGN REQUIREMENTS

1. The triangle wave should achieve performance the time, position, and desired
characteristic force results

2. The sinusoidal wave should achieve the time, position, and desired characteristic force
results

Theoretically, we should be able to achieve the requirements, as they were in the velocity
specification but practically, we were not able to, because of communication delays for

sinusoidal control and switching directions.

A.5 IMPLEMENTED DESIGN LIMITATIONS OF THE SYSTEM

After several stepper motor control algorithms were tested. It was possible that the
specified velocity could be achieved but only with single ramp commands. Delays for
communicating multiple commands for reversing direction and for the sinusoidal motion were not
possible. The stepper motor FP command could not be interrupted for adequate control. This was
because this was a buffered command, not immediate and there were no immediate position control
commands. Another configuration that used the encoder was also determined to be likely limited
in the same way as it was also a buffered command with the same time delay. Amongst the motion
commands, only the ST (Stop Command) had a short time delay for execution. Thus, it was

determined that position control using this stepper motor and likely most stepper motors would be
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limited. It was decided to pursue linear actuators. Below is a table of potential actuators for tissue

testing that were investigated.

SR#

1

Speed

0.37"/sec (150 1bs);
1.14"/sec (50 Ibs);
2.00"/sec (35 lbs)
3.15"/sec (33 Ibs);
5.51"/sec (22 1bs);
9.05"/sec (11 1bs)

10mv/s
2"/sec (35 Ibs);

2"/sec (35 Ibs);

4.5" (9" at no load) @
221bs

No Load Speed 5000
RPM; 2mm Travel Per
Revolution

No Load Speed 4200
RPM; 5mm Travel Per
Revolution

Stroke Length

2" 40"

1" 24"

5n_ 50"
1" - 30"
o qon

on 38"

6” screw extended
from the motor

12” screw extended
from the motor

Feedback
Built-in
potentiometer
feedback

No

Linear
Potentiometers
Optical
Feedback
potentiometer
feedback

No

Figure A.5.1: Potential linear actuators

Power

N/A

N/A

N/A

N/A

N/A

N/A

40W

34W

Current

5-13A
(Full Load)

9-23A
(Full Load)

<lmA
SA
S5A

6A

Rated
Current < 3A

Rated
Current <
2.5A

AC/DC/Both

Voltage

12-48 VDC DC
12-48 VDC DC
N/A N/A
12vDC DC
12vDC DC
12vDC DC
24V DC
24V DC

Price

$173.74

$181.25

$89.00
UuSD
$149.99
UusD
$139.99
usD
$149.00
USD

$230.00

$271.00

Website
https://www.progressiveautomations.ca/pr
oducts/linear-actuator-with-potentiometer
https://www.progressiveautomations.ca/pr
oducts/tubular-high-speed-linear-actuator

https://www.firgelliauto.com/products/potent
iometer

https://www firgelliauto.com/products/opti
cal-sensor-actuators

https://www firgelliauto.com/products/feedba
ck-rod-actuator
https://www.firgelliauto.com/products/high-
speed-actuator
https://www.anaheimautomation.com/prod
ucts/brushless/brushless-linear-actuators-
item.php?sID=842&pt=i&tID=1225&cID=
562
https://www.anaheimautomation.com/prod
ucts/brushless/brushless-linear-actuators-
item.php?sID=843&pt=i&tID=1225&cID=
562

Figure A.5.1 above shows the prospective actuators we could buy and achieve our desired

requirements, however, due to COVID-19 deliveries were not being allowed due to lockdowns,

and it was becoming clear with laboratory restrictions as well that it would be better to use

published measurements rather than pursue measurement.
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APPENDIX B: INVESTIGATING HETEROGENEITY AND
TIME-VARIATION EFFECT ON R(f)

B.1 PUBLISHED CORRELATIONS

In addition to the work in this thesis of chapter 6, we also published some correlations from

the CLAD study data which I include 3 of these below.
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Figure B.1.1: Published figure in BMES poster

In this Figure B.1.1, there are two oscillometry variables, and one spirometry variable, each
linearly correlated with the coefficient of variation i.e., a variable obtained from VSPECT imaging
as described in Chapter 6. The oscillometry variables are the percent predicted values of Rs and
X5 which are the percent of the individual patient according to their height, weight, and sex [2].
The oscillometry data are at 5 Hz for resistance and reactance of the lung showing that while
X5 (Y%opred) was correlated with CoV, Rs (%opred) was not. This implied that with increased
heterogeneity the lung was stiffer to volume changes implying the loss of regions of the lung for
ventilation which agrees with the higher levels of heterogeneity as indicated by the increased
CoV%. Similarly, FEV/FVC% by spirometry decreases with CoV% indicating that there is a loss
in exhaled volume in 1 second normalized to FVC, indicating some flow limitation with increased
heterogeneity in the lung. Compared to spirometry which is the standard measure for bronchiolitis

obliterans (BOS), the correlations appear to be better with X5 (%pred).

82



B.2 QUALITY CONTROL

Here we wished to examine if our values from a single recording of 30 seconds over
multiple breaths at a single frequency of 10 Hz after a quality control step were in agreement with
our repeated measurements at multiple frequencies (5 to 37 Hz) examining the impedance values
obtained at the closest frequency to 10 Hz out of the multi-frequency signal which was 11 Hz.
The 10 Hz impedance measurements first went through quality control as follows. We visually
examined all the X;, and R, data vs time. First, a 1 Hz bandpass filter centered at 10 Hz was
applied then an algorithm that separated and overlapped the breaths for visualization was used. If
any breath was abnormal to the typical breath it was eliminated. We then compared the std-dev of
the variable either R,y or X;, before and after this quality control step for all patients (Figure B.2.1,
left). We then also compared the correlation of X4 to X, to see if they agreed (Figure B.2.1,
right). The X;, values were then correlated with R5_14 to test the hypothesis presented in Chapter
6 section 6.2.2.
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Figure B.2.1 Left: Standard deviations of R, and X,, before (blue) and after (orange) quality control for each
patient? Right: Correlations of X,, and Ry, from spectral measurements vs. average X,, and Ry, from single
frequency-time course measurements after quality control.

In Figure B.2.1 (left), the blue line represents the older standard deviation of Ry, and X;,
compared with the standard deviation after quality control in orange. In a couple of subjects, the
standard deviation changes, but not for most of the subjects. It is evident that the standard deviation
even after the quality control has not changed significantly as it is found that a lot of data collected

had noise added to it and even after removing redundant breaths the mean values do not change
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significantly. In this Figure B.2.1 (right), we can see that after the quality control the impedance

at 10 and 11 Hz correlate linearly, which shows that data is reliable.
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Figure B.2.2. Examples of 2 patients time domain for Ry, and X,, supine (Sup) and upright (Up) pre-

bronchodilator (PreBD)

In Figure B2.2, we can see the time domain plots for R, and X, for 2 post-lung transplant

patients (4 & 8) pre-bronchodilator test for a supine and upright position in the CLAD study. We

can see that is nice variability in X;,, however, we did not get the correlation with Rs_;9 as seen

in Chapter 6, section 6.2.2. We can also see the presence of noise in the data, also the variation in

the R, is evident, however, that does not contribute to R(f).

In conclusion, even though we employed quality control on the std X;, data, however, the

method was not highly effective, and we did not receive a significant correlation of std X;, to

R(f), might be due to the low signal-to-noise ratio.
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