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ABSTRACT 

RATIONALE: The frequency dependence of resistance, 𝑅(𝑓), is currently being used as a clinical 

measure, thought to assess small airway heterogeneity of the respiratory system. However, it also 

can arise from tissue viscoelasticity, upper airway shunt, and recently a novel mechanism due to 

time-variation in mechanical properties, but potential sources of this time variation such as from 

the nonlinear mechanical properties have not been investigated. METHODS: Here using 

measurements from lung tissue and analytical modeling using constant phase models amended 

with nonlinear tissue or pressure-volume mechanics, we investigated if the time-varying 

mechanics that can arise from tissue nonlinearities during stretch lead to increases in 𝑅(𝑓). We 

explored these models at different operating stretches or volumes with different stretch amplitudes 

and different degrees of nonlinearities. We also modeled the normal pressure volume relationship 

as well as curves representative of fibrosis and emphysema. We also investigated if time-varying 

properties from ventilation or oscillometry due to the nonlinear pressure-volume relationship can 

also predict 𝑅(𝑓) and if it is increased in patients with lung transplants including patients with 

chronic lung allograft dysfunction. RESULTS AND DISCUSSION: We found that nonlinearity 

in tissue and the respiratory system could increase low-frequency resistance above the static model 

resistance and thus lead to 𝑅(𝑓) greater than predicted from the constant phase model. 𝑅(𝑓) 

increased more strongly with increases in mean stretch volume, amplitude, or the exponent of the 

nonlinearity. The increase in 𝑅(𝑓) was mechanistically related to the time variation of stiffness 

during oscillatory stretch or ventilation of the models. 𝑅(𝑓) was increased as much as 200% during 

modeled mechanical ventilation in the ventilation frequency range (0.2 − 5 𝐻𝑧), however, this 

effect was nearly absent during modeled oscillometry (5 − 37 𝐻𝑧). This can be largely attributed 

to the much smaller oscillation amplitude, and lack of any effects from the breathing motion in the 

oscillometry frequency range in our model. CONCLUSIONS: Nonlinearity in lung tissue or the 

pressure-volume curve during stretch or ventilation respectively, leads to time variations in 

mechanical properties that cause increases in low-frequency resistance and thus 𝑅(𝑓) larger than 

observed from tissue viscoelastic properties alone. Increases in nonlinearity can be a source of 

𝑅(𝑓) not previously identified that may be important to the interpretation of the effects of lung 

disease on lung tissue mechanics and provides a novel mechanism for the origin of the 𝑅(𝑓) and 

its changes. While pressure-volume nonlinearity can strongly affect 𝑅(𝑓) determined during 

mechanical ventilation, measurements by oscillometry are likely not susceptible, although we did 

not model other sources of time variation such as flow limitation. 
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CHAPTER 1: LITERATURE REVIEW 

This chapter presents a literature review focused on what is known, concerning the 

frequency dependence of respiratory mechanical resistance and its origins/sources. It begins with 

a brief review of the lung structure and function, followed by the mechanics of the respiratory 

system and the different mechanisms for the frequency dependence of resistance. Then I provide 

a brief introduction to the measurement of nonlinear lung tissue properties and analytical modeling 

that led directly to the investigation of how tissue and pressure-volume nonlinearities may 

contribute to the frequency dependence of resistance in mechanical impedance measurements, 

finishing with a brief review of how heterogeneity in ventilation is assessed using imaging.  

1.1 ANATOMY AND PHYSIOLOGY OF THE LUNG 

The conducting pathways to the gas exchanging region of the respiratory system begin at 

the nose and end at the alveoli. The pathway consists of the nasal cavity, posterior pharynx, glottis, 

vocal cords, trachea, tracheobronchial tree, and lung interstitium consisting of connective tissue, 

including the smooth muscle, as well as lymphatics amongst other structures. Outside the lungs is 

the chest wall which moves with inflation and deflation of the lungs and is defined to include the 

muscles of the chest and rib cage, heart, and diaphragm. Below the diaphragm is the abdominal 

contents that also move during breathing. The airways, the lung tissue, and the chest wall tissue 

all contribute to the mechanical properties of the respiratory system.  

 

Figure 1.1: Airway tree (reproduced with permission from [1]) 
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Structurally, airways (in the lung) run from the trachea to bronchi to bronchioles to terminal 

bronchioles, which are the conducting zone where air enters and leave. Air is delivered to alveoli 

through a branching airway tree structure, which is further divided into respiratory bronchioles 

extending to alveolar ducts and sacs where gas exchange takes place (Figure 1.1). Therefore, the 

lung is a heterogeneous branching tree which in disease results in heterogeneous ventilation due 

to airway narrowing (especially in the small airways – defined to be less than 2 mm), mucous 

plugging, or changes to lung tissue such as fibrotic lesions. 

The lung tissue structure is composed of many different extracellular fibers and 

intercellular soft tissue that make up the extracellular matrix. The major constituent includes the 

collagen fibers which limit distensibility and elastin which is a major contributor to elastic recoil. 

Collagen and elastin, together with the surface tension from the alveolar surface, and the gas 

compressibility within the available lung volume largely determine lung elastance or stiffness. 

Together with the chest wall stiffness, these provide the elastic properties of the respiratory system 

and to a lesser extent, the viscoelastic deformation of these tissues contributes to the mechanical 

resistance of the respiratory system. 

1.2 RESPIRATORY SYSTEM MECHANICS  

The mechanics of the respiratory system determine the forces and work required during 

breathing by the deformation of the respiratory tissues and the movement of air. Essentially the 

mechanics are defined by the pressures required to move the volume of air as it flows through the 

airway tree and as the associated tissues deform. When we inhale, negative pressure is created by 

the diaphragm and supporting muscles contraction resulting in lung expansion. Similarly, when 

we exhale, positive pressure is created by the passive elastic recoil of the lung pulling the chest 

inward and driving the flow out, and it can be aided by accessory muscles of expiration in the chest 

wall including the abdominal cavity. In obstructive diseases, the primary pathology is that the flow 

of air is impeded or obstructed, while in restrictive disease flow can also be reduced, but it’s largely 

because of the loss in lung volumes and stiffening of the lung tissue. Several of the mechanical 

features of the respiratory system can be measured using several different methods. Spirometry is 

the measurement of flow during learned maneuvers using a spirometer. Key measurements include 

the Forced Expired Volume in 1 second (FEV1) and the Forced Vital Capacity (FVC) which is the 
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total volume obtained by integrating the flow between total lung capacity at maximum lung 

inflation to residual volume, at the end of a forced expiratory maneuver. In plethysmography, a 

subject is seated in a closed box which usually also includes spirometry for the measurement of 

respiratory flows. By panting on the mouthpiece after the end of a normal expiration while the 

valve to the outside of the box is closed, the Functional Residual Capacity (FRC) can be 

determined. This is by the simultaneous measurement of the pressure changes in the box (outside 

of the chest wall) and the pressure changes of the lungs at the airway opening and using Boyle’s 

Law. The FRC is the lung volume at the end of a normal exhalation and is the equilibrium volume 

between the forces of expansion from the chest wall and contraction from the elastic recoil of the 

lung pulling inwards. Other lung volumes such as residual volume or Total Lung Capacity (TLC) 

can be determined referencing the FRC measurement. Often spirometry is combined with 

plethysmography on the same equipment. Similarly using slow maneuvers over the whole volume 

range of the lung the pressure-volume curve can be obtained, and the lung compliance can be 

determined (i.e., the slope of the curve), which is an inverse of the measure of lung stiffness.  

A key parameter of the respiratory system mechanics is the resistance to airflow. The 

resistance in any tube is defined as the pressure difference measured between two points along the 

tube divided by the flow in liters/s. Lung resistance can be inferred using plethysmography using 

a sophisticated algorithm. However, the total respiratory system resistance from the mouth across 

the lung and chest wall can also be measured using oscillometry which is an approach gaining in 

popularity. The increased interest in this method is in part because spirometry is more challenging 

to perform for some subjects such as elderly individuals and young children, and plethysmography 

is expensive and bulky requiring a large sealable box 

Standard oscillometry applies small oscillations at frequencies in the range between 5 and 

40 𝐻𝑧 via a mouthpiece during breathing usually for several breaths within 20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 or more. 

Figure 1.2 (left) shows a subject on a mouthpiece breathing normally while the oscillations are 

delivered by the oscillometer through a detachable disposable antibacterial/antiviral filter 

mouthpiece, (right) shows representative data collected by the device that is displayed in real-time. 

By measuring how much pressure is required for a given flow at each frequency one can compute 

the respiratory system impedance to that flow (Figure 1.2). The respiratory system impedance, 𝑍𝑟𝑠, 

is determined at each frequency of oscillation from the ratio of the pressure to flow in the frequency 

domain. in equation 1.1: 
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 𝑍𝑟𝑠(𝑓)   =
𝑃(𝑓)

𝑉̇(𝑓)
 =  𝑅𝑟𝑠(𝑓)   +  𝑖𝑋𝑟𝑠(𝑓) (1.1) 

where 𝑃 is pressure and 𝑉̇ is flow and 𝑓 is the frequency of oscillation. 𝑅𝑟𝑠 is the resistance, 

which is that part of the impedance in phase with the flow, while the reactance 𝑋𝑟𝑠 is that part of 

the impedance that describes the pressure-volume relationship and is out of phase with the flow. 

It is composed of the  

1) elastic properties arising from the stretch of the tissues and surface tension which 

dominates 𝑋𝑟𝑠 at low frequencies and  

2) the inertive properties largely form the acceleration of air which dominates 𝑋𝑟𝑠 at high 

frequencies. 

Signal processing is used to reduce the effects of breathing noise and reject any artifacts 

that might occur due to coughing, holding the breath, etc., and multiple measurements are done 

with acceptable measurements from at least 3 with the coefficient of variance of the resistance less 

than 10% for adults or less than 15% in children [2]–[5]. In a healthy subject, 𝑅𝑟𝑠 is nearly constant 

over the frequency range of oscillometry, but in obstructive disease, resistance typically becomes 

frequency dependent in an almost inverse hyperbolic fashion. The source of this frequency 

dependence is a matter of controversy that is explored in this thesis.  

 

Figure 1.2. Oscillometry system and measured flow, pressure, and volume curves with time. (used with 
permission from Thorasys) 

1.3 FREQUENCY DEPENDENCE OF RESPIRATORY RESISTANCE 𝑹(𝒇) 

Frequency dependence of 𝑅𝑟𝑠, which will be denoted as 𝑅(𝑓) has been observed to increase 

in asthma and COPD. For example, Figure 1.3 shows frequency dependence increasing with the 

𝑉
 

Oscillometer 
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severity of asthma with similar behavior observable in COPD [6]. However, 𝑅(𝑓) is also known 

to occur in very young healthy children and infants [7]–[9]. Similarly, it is observed in healthy 

small animals such as mice or rodents [10]–[13].  

 

Figure 1.3: 𝑅(𝑓) from healthy control subject to groups clinically diagnosed with increasing level of severity of 
asthma (reproduced with permission from [6]) 

Looking at Figure 1.3, 𝑅 is fairly flat in healthy subjects, and it increases with the severity 

of asthma. 𝑅(𝑓) begins to occur in mild asthma reaching as much as 3 𝑐𝑚𝐻20. 𝑠/𝑙 subtracting the 

resistance at 20 𝐻𝑧 from the resistance at 5 𝐻𝑧 which is the standard measure of 𝑅(𝑓).  

1.4 MECHANISM FOR 𝑹(𝒇) 

There are three established mechanisms for 𝑅(𝑓) and one novel mechanism recently 

discovered in our lab. The established mechanisms include 1) tissue viscoelasticity [14]–[16], 2) 

airway resistance heterogeneity [17], [18], and 3) upper airway shunt [19]–[21]. The most recent 

mechanism is from time-varying mechanics, whereby Alamdari et al. [22], [23] showed using 

modeling that 𝑅(𝑓) occurs when the stiffness of the respiratory system as can be estimated from 

low frequency 𝑋𝑟𝑠 is non-stationary and varies in phase with the with the imposed oscillations of 

flow. Alamdari et al. modelled mechanical ventilation of subjects while measuring pressure and 

flow in response to a temporally varying single compartment resistance and elastance model where 

elastance varied sinusoidally with time. Such variations in elastance can occur during mechanical 

ventilation or during periodic flow limitation during exhalation that can occur in disease [22]. This 
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mechanism is now recognized as potential source of 𝑅(𝑓) [24], [25]. These mechanisms for 𝑅(𝑓) 

are described in more detail in the next sections. 

1.4.1 Lung tissue viscoelasticity: 

One of the four identified sources of 𝑅(𝑓) is lung tissue viscoelasticity. Viscoelasticity is 

a macroscopic property of matter used to collectively describe both the liquid-like and solid-like 

characteristics of a material. In contrast to perfect elasticity, viscoelastic substances do not 

maintain constant stress under constant deformation, but the stress in the material slowly relaxes, 

a phenomenon called stress relaxation [15]. In the frequency domain, in response to oscillations, 

stress-strain behavior is rate-dependent. This is observed when the mechanical properties are 

expressed as a mechanical impedance (stress or pressure response to imposed flow), the impedance 

displays an approximately inverse hyperbolic frequency dependence. However, airway resistance 

is Newtonian and is frequency independent. At low frequencies, the resistance of the respiratory 

system is frequency-dependent from the lowest frequencies measured near 0.05 𝐻𝑧 to about 

0.6 𝐻𝑧 in adults and this is thought to arise from the viscoelastic tissue mechanics [14] rather than 

airway pressure losses which are constant for higher frequencies in the oscillometry range. This 

behavior is often modeled using lumped element models composed of ideal elastic springs and 

ideal viscous dashpots [15]. Multiple pairs of these viscoelastic elements can be used to describe 

the observed inverse frequency dependence thought to arise from tissue viscoelasticity. The 

number of elements required to effectively describe the frequency dependence depends on the 

observed frequency range for the inverse frequency dependence with an inverse distribution of 

viscoelastic time constants describing the behavior fairly well [26]. No mechanism has been 

identified to account for this potential distribution, but it is thought to arise from the complexity 

of the interactions of the structural elements mainly the collagen and elastin network within a soft 

glycosaminoglycan matrix [5]. 

Figure 1.4 (left), shows a schematic of the elastin and collagen-based mesh structure of 

lung tissue in the alveolar structure within an acinus at a larger scale, which may provide a 

structural mechanism for scaling of viscoelastic time constants as larger fibers weave and 

interconnect at greater distances, as do the alveolar walls and septal boundaries between lung 

structures. The data pointe of Figure 1.4 (right) shows the frequency dependence of resistance from 
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healthy dog lung tissue before and after and histamine challenge, showing that airway smooth 

muscle contraction increases the frequency dependence of resistance, similar to how the 

dependence is observed to be greater in asthma [15].  

Also shown in Figure 1.4 (right) are curves that well-describe the frequency dependence 

and represent a common model for tissue viscoelasticity known as the constant phase model 

(CPM) (equation1.2): 

 𝑍(𝜔) =
𝐺+𝑗𝐻

𝜔1−𝛽
= 𝑅(𝜔) + 𝑗𝑋(𝜔)  (1.2) 

where 𝐺 is called the tissue damping and 𝐻 is the tissue elastance and 𝜊 is an exponent 

with a value typically between 0.9 and 0.95, giving inverse hyperbolic frequency dependence in 

both the dissipative (𝐺) and elastic (𝐻) portion of the mechanical impedance, very close to 
1

𝜔
.  

  

Figure 1.4: (left) Alveolar walls within which are networks of collagen and elastance fibers which with surface 
tension forces deform viscoelastically governing tissue stress-strain relationship (right) Resistance is 
frequency dependent and increases after contractile agonist challenge measured in dog lungs (reproduced with 
permission from [15]) 

1.4.2 Ventilation Heterogeneity of the lung: 

A second identified source of 𝑅(𝑓) is from airway impedance heterogeneity which is often 

termed ventilation heterogeneity. Inverse hyperbolic 𝑅(𝑓) can also arise from a multibranch 

network of airways, but only if the tree is not symmetric. Homogenous ventilation in a symmetric 

tree means the behavior can be defined by a single resistance. However, if the airways have 

heterogeneity in their diameters, this causes heterogeneity in impedance and thus ventilation. 

Indeed the simplest parallel two-compartment model demonstrates 𝑅(𝑓) over almost a decade in 

oscillation frequency, when the two branch resistances are unequal [17]. More branches are needed 
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to extend the frequency range, and of course, there are many thousands of branches in the lung. 

Normally in non-diseased human lungs, there is negligible frequency dependence in the ranges 

4 − 40 𝐻𝑧, but in diseases with increasing airway diameter heterogeneity, leading to different time 

constants, the impedance becomes increasingly frequency-dependent [18]. Since the Newtonian 

resistance of an airway is highly dependent on its diameter particularly at small diameters, this 

could account for the observed frequency dependence in vivo in obstructive disease. However, 

heterogeneity in tissue properties that may occur in disease could also contribute to the observed 

frequency dependence in disease. Interestingly normal differences in airway diameters, and the 

difference that arises from gravity-dependent effects, narrowing airways more in the dependent 

regions (more compressed regions) at the base of the lung does not appear to be substantial enough 

to produce frequency dependence in healthy adults at least in the oscillometry range of 4 to 40 𝐻𝑧. 

This may be a factor contributing to 𝑅(𝑓) in pre-school children. Some heterogeneity in tissue and 

airway properties might arise with changes in disease that affect the stress-strain nonlinearity of 

lung tissue, which may be relevant in the 4𝑡ℎ mechanism for 𝑅(𝑓) discussed further below. 

 

Figure 1.5: Qualitative analysis of Heterogeneity. S1 & S2 hyperpolarized He MRI imaging of two Asthmatic 
subjects with less and higher heterogeneity reflected in the ventilation in turquoise with the thoracic cavity in 
gray scale. Respectively oscillometry images of the patients showing resistance in blue and reactance in orange 
with respect to frequencies. The hatched area in orange is 𝐴𝑥 which is not studied in this thesis. S3 & S4 shows 
respective COPD patients MRI images and oscillometry plots. (reproduced with permission from[27]) 
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Heterogeneity in ventilation can be observed by several imaging methods, including MRI. 

Imaging in [27] is done using hyperpolarized gas either Helium (3He) or Xenon 129Xe typically, in 

MRI Ventilation Imaging, which uses a nonradioactive, gaseous contrast agent that, when inhaled, 

allows images of lung ventilation to be taken with good spatial and temporal resolution. Figure 1.5 

shows two examples of diseased cases, asthma, and chronic obstructive pulmonary disease 

(COPD). COPD is characterized by long-term breathing problems and poor airflow. It is common 

in older subjects or smokers. Two representative patients per disease are chosen to show the 𝑅(𝑓) 

due to heterogeneity in [27]. It is evident that in the case of asthma, subject one has more 

homogenous ventilation characterized by the blue color imagining in the boundaries of the lung in 

black. We can also see the oscillometry results for each subject in Figure 1.5. Due to homogenous 

ventilation in subject 1, we can see there is 𝑅(𝑓) (which is defined as resistance at 5 𝐻𝑧 minus 

resistance at 19 𝐻𝑧. The 5 𝐻𝑧 component is the lowest frequency of oscillation delivered by the 

oscillometry device, and 19 𝐻𝑧 is the closest oscillation frequency to 20 𝐻𝑧 which is 

conventionally used to represent the plateau resistance, such that 𝑅5−19 is the difference in 

resistance quantifying 𝑅(𝑓). However, it is significantly increased in subject 2 where ventilation 

is more heterogenous. Similarly for the case of patients with COPD, subject 3 shows more 

homogenous ventilation compared to subject 4 – resulting in the significant increase in 𝑅(𝑓) in 

subject 4 compared to subject 3. Therefore, heterogeneity is highly attributed to 𝑅(𝑓) especially 

in obstructive diseases like asthma and COPD 

 

Figure 1.6: (left) 𝑅(𝑓) vs %VDP plot for Asthma and (right) COPD respectively (reproduced with permission 
from [27]) 



10 

 

It has been shown previously that ventilation heterogeneity is associated with 𝑅(𝑓). One 

way to quantify ventilation heterogeneity is via the ventilation defect percentage (VDP), which is 

the total ventilation defect volume normalized to the thoracic cavity volume. VDP is correlated 

with 𝑅(𝑓) using 𝑅5−19 but it can be seen there is a substantial variation amongst subjects (Figure 

1.6). VDP is a single index, that may only partly capture the distribution of airway diameter 

narrowing that could cause 𝑅(𝑓), if these are indeed mechanistically linked. 

1.4.3 Upper Airway Shunt: 

A third possible source of 𝑅(𝑓) is upper airway shunt. This is the oscillatory flow that 

bypasses the path through the lung and chest wall tissues and goes instead into oscillating the 

cheeks and soft tissues in the upper airway above the glottis. This can be modeled as a parallel 

shunt impedance pathway from the source of the oscillations to ‘ground’ which is atmospheric 

pressure outside the body. The shunt has a strong effect when the respiratory impedance is high. 

The dominant effect is lowering the measured impedance from what it would have been without 

the available shunt, but it can also alter the measured frequency dependence of resistance [9-11], 

although this varies amongst reported studies. 

 

Figure 1.7 (left) Head generator; (right) Effect of Upper Airway Shunt (reproduced with permission from [28]) 

The upper airway shunt can be measured by using a head generator which attempts to 

present an identical oscillation to the outside of the cheeks negating the shunt (Figure 1.7, left). In 

Figure 1.7 (right) are the recorded impedance of a person with a fairly high impedance of about 

9 𝑐𝑚𝐻20. 𝑠/𝑙 (0.9 𝑘𝑃𝑎. 𝑠/𝑙). The hollow dots indicate when loudspeaker 𝐿𝑆 𝑏 is in motion 

approximately matching the pressure at 𝑀𝑃 from loudspeaker 𝐿𝑆 𝑎 also in motion, gives a higher 
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impedance across frequency and little 𝑅(𝑓). The solid dots are the conventional technique with 

𝐿𝑆 𝑎 alone including using a nose clip and cheek hold, and there is a some 𝑅(𝑓) evident. Larger 

𝑅(𝑓) is apparent without a nose-clip or cheek-hold and impedance is more strongly affected. In 

individuals with lower typical 𝑅𝑟𝑠 (2.0 𝑐𝑚𝐻20. 𝑠/𝑙) the effect of shunt is much smaller. Figure 1.8 

(left & right) shows the effects of modeling shunt using experimentally determined measurements 

of the shunt impedance with typical respiratory impedance in moderate asthma < 5 𝑐𝑚𝐻20. 𝑠/𝑙 at 

5 𝐻𝑧, inferring that the effects of shunt may be quite modest [21].  

 

Figure 1.8 (left) Upper Airway Shunt as model parameter; (right) Effect of Upper Airway Shunt over 𝑅(𝑓) 
(reproduced with permission from [20], [21]) 

1.4.4 Time-varying lung (tissue) mechanics: 

A fourth possible source of 𝑅(𝑓) is time-varying lung (tissue) mechanics, which was only 

recently identified [22], [23]. Time-variation in lung mechanics can come from multiple sources. 

They can arise from variations in airway diameters during breathing with changes in lung volume 

with inspiration and expiration. This can also include the opening of collapsed or partially 

collapsed airways at very low lung volumes or due to disease termed recruitment and their collapse 

termed derecruitment, which is observed most commonly as expiratory flow limitation in COPD 

where airways are very compliant and partially collapse. Even partial collapse can mean oscillatory 

flow no longer travels past the sites of flow limitation, which increases impedance, but this is 

relieved during inspiration and impedance falls. While these variations were known, it was 

generally assumed that this variation was normally small and regardless would be averaged out 

over many breaths when estimating the mean impedance. However, the changing impedance with 
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time means the system is non-stationary, which is one of the assumptions in the estimation method 

of impedance (𝑍𝑟𝑠(𝑓)   =
𝑃(𝑓)

𝑉̇(𝑓)
 =  𝑅𝑟𝑠(𝑓)   +  𝑖𝑋𝑟𝑠(𝑓) (1.1 1.1).  

However, to correct this equation 1.2, we can represent a time-varying impedance as 

follows in equation 1.3: 

 𝑍(𝑓, 𝑡) =
𝑃(𝑓,𝑡)

𝑉̇(𝑓,𝑡)
= 𝑅(𝑓, 𝑡) + 𝑗𝑋(𝑓, 𝑡) (1.3) 

It’s often thought the effects of time variation can be minimized by reducing the window 

during which the variation occurs, or including a very wide window, assuming the non-stationarity 

within the window averages away. However, a signal analysis approach has been developed to 

consider this behavior, developed by Zadeh in 1950 which we will refer to here as the Zadeh 

transform [29]. 

 Γ(𝑗𝜔; 𝑡) = ∫ 𝑆(𝑡, 𝜉)𝑒−𝑗𝜔(𝑡−𝜉)𝑑𝜉
∞

−∞
 (1.4) 

where rather than a normal transfer function Γ(𝑗𝜔), Γ(𝑗𝜔; 𝑡) is the function of 𝑗𝜔 involving 

𝑡 as a parameter, 𝜉 is the time delay, 𝑆(𝑡, 𝜉) analogous to the impulse response function that is not 

fixed, which Zadeh solved using Heaviside expansion in variable networks. Further details and 

examples of its solution are found in [29] and Alamdari et al [22], [23]. 

This transform, while being used occasionally in circuit theory is seldom used in network 

modelling, and in biological systems has only had limited use in despite potential many potential 

applications [30]–[33]. It was first applied to respiratory mechanics by our lab in 2019 [22], [23]. 

Alamdari et al. [22], [23] showed that time variation in mechanics could produce 𝑅(𝑓), using two 

modelling approaches, using both the Zadeh transform as well as direct time domain modelling, 

finding the same results. We did not employ the Zadeh transform in this thesis instead we used 

direct time modeling that Alamdari et al. did here. Alamdari et al. thus provided a new mechanism 

for 𝑅(𝑓), mathematically connecting temporal variation in mechanical properties to 𝑅(𝑓), which 

had been assumed to be a static mechanical behavior attributed previously to either tissue 

viscoelasticity, small airway heterogeneity or occasionally upper airway shunt. Notably, they 

showed that if temporal variation in elastance varied at the oscillation frequency and in phase or 

partially in phase with the flow, this led to 𝑅(𝑓). If completely in phase with the flow this had no 

effect on 𝑋(𝑓). Also, temporal variation in resistance had only a negligible effect on 𝑋(𝑓) and no 
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effect on 𝑅(𝑓). The effect of temporal variation in elastance was amplitude-dependent, the greater 

the variation, the greater the 𝑅(𝑓). This was important since although both 𝑅(𝑓) and temporal 

variation of mechanics are both known to be increased in disease, they were not thought to be 

potentially mechanistically associated [19].  

 

Figure 1.9: Experimental tracing from a representative flow-limited patient and definition of the indices used 
to characterize the respiratory system reactance (𝑋𝑟𝑠) time course during a single breath. (reproduced with 
permission from [34]) 

Figure 1.9, shows the time-varying reactance 𝑋𝑟𝑠 at 5 𝐻𝑧 attributed to varying elastance, 

largely due to expiratory flow limitation [34]. The variation is quite large, at about 6 𝑐𝑚𝐻20. 𝑠/𝑙. 

This may have led to 𝑅(𝑓) observed typically in COPD [34]. 

In summary, there are 4 potential mechanisms for 𝑅(𝑓). Currently the most commonly 

attributed source in disease for 𝑅(𝑓) is heterogeneity attributed to the small airways, while 

viscoelasticity of the tissues is felt to be dominant at lower frequencies below and near breathing 

frequency in health, with shunt potentially a factor at high impedance. The most poorly understood 

and recently contributed source is from time-varying lung mechanics.  

However, the potential mechanisms for time-varying mechanics sufficient to produce 𝑅(𝑓) 

and in which frequency range have not been explored, and how these mechanisms might change 

their influence on 𝑅(𝑓) is unknown. One important factor characteristic of the mechanical 

properties of the lung and the lung tissue is its highly nonlinear stress-strain or pressure-volume 

relationship, which is known to be altered in disease. The nonlinearity would naturally lead to time 

variation in an apparent stiffness during any  oscillatory stretching such as done by mechanical 

ventilation or during oscillometry. That is, because of the nonlinearity there is a change in slope 

of the stress-strain (or pressure-volume) curve and the instantaneous apparent stiffness (or 

elasticity) varies. This is similar to the case when a parameter of the underlying system changes 

with time, changing its mechanical stiffness in a time varying manner. Since the nonlinearity can 
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change in disease [35]–[37], understanding it’s potential contribution to 𝑅(𝑓) is important as 𝑅(𝑓) 

is also increased in disease [6], [27], [38],as was mentioned previously on page 8 .  

Thus, the principal aim of this thesis is to quantify this potential source to better understand 

the mechanisms underlying this contribution to the frequency dependence of resistance. A 

secondary aim will be to briefly compare this source to heterogeneity, as heterogeneity is most 

commonly considered to be the dominant mechanism to produce 𝑅(𝑓). These aims together with 

hypotheses are provided in more detail later in the next chapter. 

1.5 INVESTIGATING 𝑹(𝒇) DUE TO TIME-VARYING MECHANICS 

ARISING FROM NON-LINEAR LUNG TISSUE PROPERTIES 

𝑅(𝑓) as previously described, has become/used as one of the clinical measures to diagnose 

or monitor respiratory disease especially obstructive disease. The research questions we are 

probing in this thesis are – Does the 𝑹(𝒇) comes from respiratory system nonlinearity, and if 

so, what is the potential magnitude of this contribution? And how does this mechanism occur 

from tissue properties or from the combined nonlinearity characteristic in the pressure-

volume relationship of the respiratory system? We initially began our investigation 

experimentally using ex-vivo lung tissue but due to COVID-19, we had to shift to mathematical 

modeling of nonlinear lung characteristics and its effect over 𝑅(𝑓). 

1.5.1 Experimental: Lung Measurements 

In-vitro tissue measurements can give a good understanding of the underlying mechanics 

of the organ. Hence, the first proposed thesis plan was to measure tissue mechanics in vitro directly 

measuring the nonlinear tissue properties, the development of time-varying stiffness, and use that 

to predict 𝑅(𝑓) and compare that to measured 𝑅(𝑓). Altering the tissue mechanics using enzymes 

such as collagenase and elastase as a model of disease was also to be explored. Since some of this 

work was completed, I briefly report it in this thesis for potential future development. To do this I 

began developing a tissue bath where pig lung tissue strips would be used to study the stress-strain 

relationship which would give the underlying lung mechanics through material properties. 

Different approaches exist for tissue baths of lung tissue, including from alveolar walls and 
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parenchymal slices to contractile function airway smooth muscle strips or airway rings, and the 

medium can be easily changed to degrade tissue structure using collagenase and elastase [39]–

[41]. It is also possible to measure the mechanics of the whole lung ex-vivo, including human 

lungs delivering air via the trachea and sometimes media via the vasculature [41]. However, it was 

not possible to achieve this aim even though most of the apparatus used for the tissue measurement 

had been prepared due to lab restrictions in COVID-19. The thesis since pivoted to using published 

tissue data and focus on modeling the tissue mechanics analytically and computationally producing 

the time variation of mechanics, simulating its measurement, and comparing the 𝑅(𝑓) under 

different conditions and altered mechanics.  

1.5.2 Analytical: Lung Modeling 

In the early 1970s – 1980s, several models of lung tissue or respiratory mechanics were 

developed using lumped mechanical elements, which followed one of the early seminal papers in 

1955 [42]–[60]. The simplest lumped element model of respiratory mechanics comprises a single 

spring as the elastic element, with a dashpot to account for tissue viscosity and/or Newtonian 

airflow resistance. If higher frequencies were being modeled as an inertial element is added to 

account for the acceleration of the mass. This is known as the equation of motion of the respiratory 

system and has been applied to parts of the system as well such as the lung excluding the chest 

wall and upper airway 𝑃 = 𝐸𝑉 + 𝑅𝑉̇ + 𝐼𝑉̈, where 𝑃 is the airway opening pressure, 𝐸 is 

respiratory system elastance, 𝑉is the respiratory volume, 𝑅 is the respiratory system resistance, 

𝑉̇is airflow to the airway opening, 𝐼 is inertia and 𝑉̈ is acceleration of the volume. Considering 

lung tissue on its own, the stress-strain nonlinearity was modeled empirically, as in Navajas et al 

[39], as well as more complex approaches using springs of different stiffnesses for elastin and 

collagen using distributed properties [39], [61], [62]. Most models attempted to describe the 

nonlinear stress-strain curve as a static elastic nonlinearity without including the tissue viscoelastic 

or time-dependent behavior, but a few included sources of resistive losses such as spring and 

dashpot elements, or the conceptual fractional dimensional spring pot [61][62]. It was 

hypothesized and also shown that models with a distribution of time constants arising from 

multiple spring and dashpot pairs could produce the frequency dependence of impedance known 

to be characteristic of lung tissue [26]. 
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Figure 1.10: Stress-Strain relationship of dog lung tissue (reproduced with permission from [39]) 

Figure 1.10 shows the nonlinearity of lung tissue [39], [63], taken from canine lung tissue 

undergoing a very slow cyclic stretch over a wide range. This is known as preconditioning when 

tissue is initially stretched experimentally in an apparatus and shows the gradual shift to larger 

stretch values with the cycles becoming more reproducible. A loss of hysteresis is also observed. 

Navajas et al [39] used analytical modeling to explore how the nonlinearity affected small-

amplitude linear behavior, probing changes in strain amplitude and changes operating point (mean 

strain), and indeed also measured frequency dependence of impedance. However, they did not 

assess if the time-varying behavior in tissue stiffness that would have been present was linked with 

any frequency dependence of 𝑅𝑟𝑠, which is one of my hypotheses.  

The stress-strain curves shown can be fit to a nonlinear curve i.e., exponential in equation 

1.5.  

 𝑇 = 𝑇𝑟𝑒𝛼(𝜆−𝜆𝑟) (1.5) 

Where 𝑇𝑟 is the stress when the stretch ratio is equal to a reference stretch 𝜆𝑟 and 𝛼 is a 

nonlinearity exponential constant.  

Alamdari et al. [22], [23], [64], as mentioned earlier, explored how time-varying 

respiratory mechanics could lead to the frequency dependence of 𝑅𝑟𝑠, both in a single 

compartment model and in a parallel compartment model. He did not utilize any mechanisms such 

as tissue properties for the imposed time variation. Figure 1.11 shows a reproduction of this 

modeling that I developed in preliminary work of the single-compartment model (Figure 1.11, 

right) with time-varying in 𝐸(𝑡) as shown in the equations, with sinusoidally varying 𝐸𝑣, and the 

frequency dependence that reproduced Alamdari’s findings in Figure 1.11 (left). 
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Figure 1.11: (left) Time-varying mechanics behind the 𝑅(𝑓) (right) Single compartment model with time 
varying mechanics of lung. 

Briefly the resistance, 𝑅(𝑡) and elastance 𝐸(𝑡) are modeled as time-varying parameters as 

follows in equations 1.6 & 1.7: 

 𝑅(𝑡) = 𝑅𝑚 + 𝑅𝑣 sin(2𝜋𝑓𝑜𝑠𝑡) (1.6) 

 𝐸(𝑡) =  𝐸𝑚 + 𝐸𝑣 sin(2𝜋𝑓𝑜𝑠𝑡) (1.7) 

Where 𝑅𝑚 is the mean resistance and 𝑅𝑣 is the amplitude of the variation at the oscillation 

frequency 𝑓𝑜𝑠, and 𝐸𝑚 is the mean elastance and 𝐸𝑣 is the amplitude of the variation. Using the 

single-compartment model (equation 1.2) and the Zadeh transform (equations 1.3 and 1.4), 

Alamdari showed that the time-varying impedance was as follows: 

𝑃(𝑡) = 𝑅𝑚𝐴2𝜋𝑓𝑜𝑠 sin(2𝜋𝑓𝑜𝑠𝑡) − 𝐸𝑚𝐴𝑐𝑜𝑠(2𝜋𝑓𝑜𝑠𝑡) + 𝑉𝑚𝑬𝒗 sin(2𝜋𝑓𝑜𝑠𝑡) (1.8) 

where 𝑍 is the impedance of the lung determined by the ratio of 𝑃 (pressure) to 𝑉̇ (flow) at 

specific 𝑓𝑜𝑠 (oscillation frequency). 𝐴 are the amplitude of sinusoidal varying volume, and the red 

colored terms are highlighted for their relationship in the next equation. Alamdari showed that 

resistance at the oscillation frequency, and only considering the component of pressure in phase 

with flow, will be dependent on the following variables given in equation 1.9: 
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 𝑅𝑓=𝒇𝒐𝒔
=

𝑃(𝑡)

𝑉̇(𝑡)
= 𝑅𝑚𝑒𝑎𝑛 +

𝑽𝒎𝑬𝒗

𝑨𝟐𝝅𝒇𝒐𝒔
 (1.9) 

However in practice resistance is determined by estimating the real part of impedance 𝑍 

where 𝑍 is estimated by performing the Welch periodogram technique to compute 𝑍(𝑓) as follows 

in equation 1.10: 

 𝑍(𝑓) =
1

𝑁
 ∗  ∑ (

𝐹𝐹𝑇(Ψ(𝑃(𝑡)𝑘))

𝐹𝐹𝑇(Ψ(𝑉̇̇ (𝑡)𝑘))
) 𝑛

𝑘=1  (1.10) 

which is commonly used to estimate impedance in oscillometry. This equation described 

how the time domain 𝑃 and 𝑉̇ are divided into 𝑘 windows of finite duration, a windowing function 

Ψ is applied typically using a hamming window, then each is Fourier Transformed using the FFT, 

the ratio is taken, to compute impedances for each window, and the average of the 𝑘 impedances 

computed as the final impedance as a function of frequency, at the frequencies of oscillation. 

Usually, the windows are overlapped anywhere from 50% to 95%.  

It can be seen from equation 1.9 that resistance 𝑅𝑓 where the subscript 𝑓 is used to denote 

the frequency of oscillation, arises from the 
1

𝑓𝑜𝑠
 term in Equation 1.9, and it depends on the mean 

volume at which the lung oscillates (that is where on the pressure-volume static relation the 

oscillation occurs) and depends inversely on the amplitude of the volume input signal, and depends 

on the magnitude of the time-varying elastance, 𝐸𝑣 (indicated in the box legend of Figure 1.11 

(left)). If in the case of no time variation (𝐸𝑣 = 0) there will be no frequency dependence of 

resistance, which is the blue flat line in Figure 1.11 (left). An increase in 𝐸𝑣 increases the frequency 

dependence of resistance. However, Alamdari et al had no mechanism for why 𝐸𝑣 would be 

altered, it was simply varied arbitrarily. They also showed that the 𝑅(𝑓) depended on the phase of 

the oscillation of elastance, with maximal 𝑅(𝑓) when the phase of oscillation was in phase with 

the flow signal, and no effect when the phase within phase with the volume. Alamdari also 

demonstrated this behavior using the Zadeh transform [29] showing with two separate modeling 

approaches that 𝑅(𝑓) can arise from time variation of elastic behavior. It can potentially be a 

substantial source of 𝑅(𝑓) given the large variation evident in 𝑋𝑟𝑠 at 5 𝐻𝑧 in COPD as shown in 

Figure 1.9.  

As indicated above, one mechanism for inducing an apparent variation in elastance is the 

nonlinearity in lung tissue to potentially contribute to the frequency dependence of 𝑅𝑟𝑠. This is 
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observed when we are tracking 𝑍𝑟𝑠 with larger amplitude oscillations or at different operating 

points exploring changes in the slope of the stress-strain or the PV curves. However, this variation 

would be in phase with volume, and as Alamdari predicted is not expected to produce 𝑅(𝑓) which 

he showed arose from variations in-phase with flow or strain rate. When stretching soft tissues 

such as lung tissue, it is established that the output stress is a fixed phase shift behind the input 

strain. This  is well described by a model known as the constant phase model or CPM as described 

in more details below. This means a portion of the output stress is in phase with the input strain, 

but a smaller portion of the stress (typically 10 to 20%) is 90 degrees out of phase with the strain 

and is thus is in phase with strain rate.  

At any point in the stress-strain curve the elastic stiffness can be approximated to the slope 

of the stress-strain curve, and with a change in the mean stretch, or increase in the oscillatory 

stretch, the slope changes, can be thought of as an apparent stiffness changing with time, although 

it is driven by the input strain. Previously the effect of this apparent time variation on impedance 

and 𝑅(𝑓) has not been modeled but is similar to the time variation arbitrarily considered by 

Alamdari et al (cite his thesis and his paper). In this thesis I assess if the nonlinearity similarly can 

provide a potential source of sufficient temporal or nonlinear variation to contribute significantly 

to the frequency dependence of the resistance as observed in vivo. Also, since lung tissue elastic 

properties are known to change with disease, this may also contribute to the increased 𝑅(𝑓) 

observed with the disease as previously mentioned. Of course, lung tissue nonlinearity is only one 

source of potential temporal variation and is the focus of Aim 1. 

1.6 INVESTIGATING 𝑹(𝒇) DUE TO HETEROGENEITY OF 

VENTILATION IN THE LUNG 

Since heterogeneity in airway diameters is thought to be the predominant source of 

frequency dependence of resistance in whole lungs, I felt I could also take advantage of some work 

being done in my lab measuring heterogeneity of ventilation in patient’s post-lung transplant that 

develop lung dysfunction known as chronic lung allograft dysfunction (CLAD). These patients 

also have measurements of respiratory impedance including time variation of impedance 

potentially useful to my thesis objectives. Thus, the following provides a brief review of CLAD 
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and how imaging methods can demonstrate the heterogeneity of ventilation attributable to airway 

diameter variation. 

1.6.1 Chronic Lung Allograft Dysfunction Study 

Patients that receive lung transplants are at risk of developing CLAD which leads to 

breathing dysfunction and altered lung mechanics. Within 5 years of lung transplant (LT), 40 −

50% of recipients will develop (CLAD), which most often results in the fatal disease bronchiolitis 

obliterans (BOS) [65]. BOS is a disease that initiates in the small airways, obstructing airflow. 

Unfortunately, the current assessment of lung health using spirometry in post-lung transplant 

patients is inadequate to detect CLAD [66], as it is insensitive to the small airway obstruction.  

Here in our lab group, we are investigating Technegas single-photon emission tomography 

ventilation SPECT/CT (T-VSPECT/CT) to assess ventilation heterogeneity. T-VSPECT/CT using 

Technegas is an imaging technique where patients are asked to inhale Technegas-TM, which is air 

containing Tc04 labeled carbon nanoparticles that travel through the airways during inhalation and 

deposits in the alveoli and are later detected by their gamma particle emission [67]. Uneven 

deposition and regions with no ventilation indicate changes that may be due to CLAD. These 

patients are known to develop heterogeneous disease, but this has not been previously measured 

by SPECT/CT. Ventilation images were compared with standard lung function using spirometry 

as well as oscillometry which measures impedance to airflow and can be sensitive to heterogeneity 

in small airway obstruction [68] which will be shown in detail in the next chapters. 
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CHAPTER 2: OBJECTIVES AND HYPOTHESES 

This chapter presents the hypotheses and corresponding objectives of this thesis, which are 

as follows: 

Hypothesis 1: The 𝑅(𝑓) in lung tissue is dependent on the time-varying mechanics arising from 

nonlinear tissue as well as whole lung properties and may be a source of 𝑅(𝑓) in 

respiratory system mechanics.  

Objective 1: This will be investigated by introducing the nonlinearity into the most common 

tissue and whole lung impedance model, known as the constant phase model. Using 

the combined model, we will use oscillatory input over a range of frequencies, 

oscillation amplitudes, and operating points, assess the time-varying mechanical 

properties and assess the 𝑅(𝑓), in two frequencies ranges, 0.03 to 5 𝐻𝑧 and the 

standard oscillometry range 5 𝐻𝑧 to 37 𝐻𝑧,  

Hypothesis 2: The 𝑅(𝑓) in respiratory mechanics is more greatly dependent on the heterogeneity 

of impedance. 

Objective 2a: This will be explored through VSPECT/CT imaging in post-LT subjects who 

develop heterogeneous lung dysfunction. Using quantitative measures of from 

imaging and oscillometry measurements of 𝑅(𝑓), we will see if heterogeneity in 

post-LT patients is correlated with 𝑅(𝑓). 

Objective 2b: The effect of time-varying lung mechanics will also be studied in post-LT patients 

using the time variation in reactance at 10 𝐻𝑧 as an estimate of the time variation 

in elastance and tested by correlation with measured 𝑅(𝑓) over 5 to 37 𝐻𝑧. 

In chapter 3, I describe the approaches to measure time-varying mechanics of lung tissue 

in a tissue bath. In chapter 4, I investigated the lung tissue nonlinearity model and studied where 

time-varying lung characteristics are expected to arise resulting in 𝑅(𝑓). I simulated different 

amplitude and operating point effects over stress-strain curves as well as increases in nonlinearity 

to study diseased cases which might give us insight that diseases will have a higher effect over 

𝑅(𝑓), due to time-variation coming from nonlinearity, making it clinically significant parameter 

for diagnosis. 
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In chapter 5, I investigate the whole lung nonlinearity pressure-volume models in a similar 

approach to chapter 4, exploring the behavior including changes in the Pressure-volume 

relationship appropriate for diseases that are known to alter the PV nonlinearity – Fibrosis and 

emphysema, and explore these over two frequency ranges near breathing, and the oscillometry 

frequency range. 

In chapter 6, I describe our Chronic Lung Allograft Disease Study, from which I used some 

of the data to correlate the ventilation heterogeneity, and the time-varying characteristics of lung 

impedance collected by oscillometry with 𝑅(𝑓). In our lab group performed by other students, we 

analyzed the SPECT/CT images to obtain quantitative results using published approaches. Then I 

used a measure known as the coefficient of variation (CoV) as a measure of heterogeneity to test 

its correlation to 𝑅(𝑓). I also correlated time-varying reactance obtained from the lung transplant 

patients to 𝑅(𝑓). In chapter 7, I present concluding thoughts on the thesis and suggestions for 

future work. 
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CHAPTER 3: INVESTIGATING 𝑹(𝒇) DUE TO TIME-

VARYING MECHANICS ARISING FROM NON-LINEAR LUNG 

TISSUE PROPERTIES (IN-VITRO TISSUE APPROACH) 

This chapter presents methods and results of the in-vitro tissue approach that was used to 

establish the time-varying mechanics arising from the nonlinear tissue properties of the lung 

resulting in 𝑅(𝑓). It starts with the in-vitro tissue approach where all the steps taken to develop the 

tissue bath and tissue preparation are presented. The chapter follows with results and a discussion 

of some of the obtained outcomes. 

3.1 METHODS 

We designed the tissue bath from requirements both to maintain the flow of nutrients to 

living tissue and maintain it at close to normal body temperature. Important requirements of the 

tissue bath are maintaining tissue viability, the force, and length ranges, as well as the frequency 

bandwidth for exploring frequency dependence of tissue mechanics as can be seen in appendix A. 

3.1.1 Tissue Preparation 

We chose pig lung tissue as it is similar to human lung tissue and is readily available from 

local abattoirs and our sourcing of the tissue and use was approved by animal care at Dalhousie 

University. Pig lung tissue is taken from the left inferior lobe of the lung. First, the left pig lung is 

obtained from the abattoir and then kept in Krebs Solution and kept within a cooler packed with 

ice for transportation. Once the lung arrives at the lab, it is flushed with 1 liter of new Krebs 

Solution to make sure that blood is removed. The pleura is removed manually and then using a 

scalpel a couple of tissue strips of 3 × 1 × 1 𝑐𝑚 are obtained, selecting tissue without large 

bronchial segments. The strips are then placed in Krebs in a beaker where they float and then are 

briefly degassed by placing the beaker in a vacuum pump chamber which takes less than 30 𝑠𝑒𝑐, 

and the tissue sinks. The strips are then ready to be removed and using cyanoacrylate glue can be 

affixed to plastic attachments. These plastic attachments were designed by a summer student (C. 

Potter) and are used to fit the tissue within the tissue bath as described below. 
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3.1.2 Setup 

The preparation of the tissue bath was adapted from Maksym [69] (Figure 3.1). It included 

3 baths and tubing to allow fresh media circulation, including a heater and a pump. The upper bath 

contains a 100𝑊 cup heater and Omron Heater controller which is intended to keep the tissue bath 

at a constant temperature for constant flow at a design temperature above 32𝑜𝐶 and less than 37𝑜𝐶. 

The lower bath collects overflow from the tissue bath and the pump returns fluid to the upper bath. 

The noise of the pump is separated from the tissue bath and the flow to the tissue bath is regulated 

by a pinch valve using this design. The main bath includes the actuator attachment on one side and 

the selected force transducer (Honeywell – Low Range Precision Miniature Load Cell, Model 31 

Low) embedded into the tissue bath wall on the other side. For tissue attachment the fluid can be 

drained using the lower exit tube valve and tissue is put in place using attachments that slide into 

the actuator arm connector and the force transducer connector tightened with set screws. 

We chose a force transducer that could operate under fluid and with a maximum force 

range that exceeded a maximum expected force by a safety factor of 1.5, which was 50𝑔. The 

length actuator must provide a range of at least 30 𝑚𝑚 for full strain, but to provide the flexibility 

the design requirement was a length range of double this of 60 𝑚𝑚. The speed requirement was 

3 𝐻𝑧 at an amplitude of 10% strain which is 3 𝑐𝑦𝑐𝑙𝑒𝑠/𝑠𝑒𝑐 × 2 × 𝜋 × 0.1 × 30 𝑚𝑚 =  56 𝑚𝑚/𝑠. 

The bath included two outlets: the higher outlet was for a tissue while submerged in media, 

and the lower was for tissue suspended in air if waves in the media contaminated the force 

measurements. This was done with the assistance of our technician D. Cole, who designed the 

thumbscrew regulators to help regulate fluid flow. The attachments for the tissue were developed 

by C. Potter and were 3D printed to allow low fluid disruption during motion. To keep the tissue 

alive, and help maintain the appropriate pH, it is necessary to oxygenate the Krebs solution using 

carbogen (95% 𝑂2, 5% 𝐶𝑂2) provided via a fish tank diffuser in the lower bath. 

We sourced a stepper motor-based length actuator from a colleague that appeared to meet 

these requirements from its specifications. We built a simple stand that was clamped to the bench 

and began testing it against the requirements. It was controlled by ST-5S Applied Motion Driver 

using Serial Communication from the computer. A test controller software and user interface were 

planned to control the actuator, record the actuator position, and force output and save the data on 

a PC with Windows 10 and LabView 2019. A prototype version was developed enabling testing 
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of the actuator control to see if it met our requirements. The design requirements and some design 

calculations to test the actuator are in appendix A. 

 

Figure 3.1: Tissue Bath from Maksym’s Thesis [70] 

The software was to do the following: 1) preconditioning to adapt the tissue over the strain 

range to be tested which helps make subsequent experiments reproducible and 2) fixed oscillations 

mimicking oscillatory measurements of mechanics varying amplitude, operating points (mean 

stretch), and frequencies of oscillation chosen to explore the physiological ranges of stretch and 

stress. Preconditioning cycles are fixed slow rate stretching from zero to a maximum stretch or 

stress (e.g., 5 𝑘𝑃𝑎) and return to 𝑧𝑒𝑟𝑜 for 𝑛 cycles (typically 5), which would be done prior to 

experimental measures.  

After some software development and several attempts to achieve the manufacturer’s stated 

performance characteristics, we concluded that the existing actuator would unfortunately not fulfill 

the desired requirements. While the actuator exceeded the velocity requirements as per their 

specifications for single instructions and single direction motion, in practice the communication 

delays were too high to achieve stable oscillatory motion. This is also shown in appendix A. We 

thus switched to a design using servomotor-controlled linear actuators, and we explored and chose 

a solution from different manufacturers that would meet our requirements. The best options are 
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presented in appendix A. However due to COVID-19, which prevented us from proceeding with 

tissue-based lab work for an uncertain time, we decided to instead use published lung tissue data 

and extend the modeling and analyses. We could potentially return to experimental measurements 

of lung tissue mechanics after my MASc as part of a potential Ph.D. if determined to be still useful. 

3.2 RESULTS AND DISCUSSIONS 

Here I described the tissue bath construction which was completed before COVID-19 and 

some of the actuator testing. Figure 3.2 on the left shows the main bath indicating the actuator and 

force transducer where the pig lung tissue would be attached 3D printed attachments via 

cyanoacrylate glue. On the right is the 3D printed assembly drawing created by A. Brezovan a co-

op student in our lab. Also shown are the upper bath where the heater would be installed, the main 

bath with actuator and force transducer tissue attachments circled in red, and the lower bath 3D 

assembly drawing.  

We were able to develop software in LabVIEW to test the actuator. As described above the 

actuator failed to meet our requirements for oscillatory motion. This was because the time required 

between commands inherent in the actuator controller was too long to maintain smooth oscillatory 

motion with direction reversals at the desired frequencies, achieving stable motion only at lower 

than 0.03 𝐻𝑧. 

 

Figure 3.2: Tissue Main Bath setup and 3D design of whole tissue bath 
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Figure 3.3 shows the basic tissue preparation steps. The tissue is sliced to approximately 

30 𝑚𝑚 ×  3 𝑚𝑚 ×  3𝑚𝑚 (Figure 3.3 (left)) while on the right is the tissue floating in Krebs 

solution prior to degassing. 

 

Figure 3.3: Steps to obtain pig lung tissue strip: (left) slicing of pig lung tissue using scapple to the desired 
length, (right) floating lung tissue in Krebs solution. 

The tissue bath was developed, and the tissue preparation looked promising, but the 

actuator needed improvement. However, I was not able to conduct any experiments due to 

COVID-19, there is sufficient published data that we can proceed without collecting instead we 

modified the project to focus on the modeling as can be seen in Chapters 4 & 5. 
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CHAPTER 4: LUNG TISSUE MODELING 

In this chapter lung tissue, nonlinear viscoelastic models are investigated and studied where 

time-varying lung characteristics are expected to arise resulting in 𝑅(𝑓). 

4.1 METHODS 

In this section, I describe the development of different analytical tissue models for 

modeling the stress-strain characteristics of lung tissue, since this is more directly relevant to the 

measurement of respiratory mechanics in-vivo. I consider models based on mechanics parameters 

from healthy cases, as well as mimicking states of the disease known to alter the lung tissue 

properties. The models are developed to specifically explore the impact of time-varying lung 

properties on the mechanical impedance and in particular, the mechanical tissue or lung resistance 

that arises from the normal nonlinear properties of the lung tissue as well as abnormal properties 

that can occur in disease. 

4.1.1 Nonlinearity in a lung tissue model 

To be able to calculate impedance vs time, and to reproduce the results of Alamdari as a 

starting point, we first tested the approach using a linear single-compartment (equation of motion-

based) model, where we made sure that the time-varying elastance is in phase with the flow and 

we also chose the amplitude of the sine wave to be inversely proportional to the amplitude of the 

wave  
𝐴

𝜔𝑜𝑠
 which means the velocity amplitude is constant with frequency, useful for actual 

actuators, but not a limitation for simulation. I found as expected that this model provided simple 

linear behavior using the single-compartment model with independent 𝑅(𝑡) and 𝐸(𝑡) matching 

the modeling of Alamdari et al.  

To explore time variation leading to 𝑅(𝑓) that we hypothesize that it can arise from tissue 

stress-strain nonlinearity; we used the model of Navajas et al who obtained stress-strain 

relationships from seven dog-lung tissue strips, and who also demonstrated that this relationship 

well described the quasi-static nonlinear behavior given in equation 1.5. 
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 𝑇 = 𝑇𝑟𝑒𝛼(𝜆−𝜆𝑟) (1.5) 

Where 𝑇 is stress, and 𝑇𝑟 is relative stress at stretch ratio 𝜆 equal to the reference stretch 

ration 𝜆𝑟 and 𝛼 is a constant. The instantaneous stiffness of this is the slope at any stretch and will 

vary with varying 𝜆(𝑡).  

We then combined the nonlinearity of equation 1.5 with the constant phase model shown 

later in the next section, where we also explored the effects of changing operating points, i.e., 

operating stresses in the exponential nonlinearity, resulting in the time variation which we expect 

might result in 𝑅(𝑓). 

4.1.2 Tissue nonlinearity time-varying characteristics model 

MODEL DEVELOPMENT: We developed a model of the lung tissue mechanics based on 

a more commonly used linear model known as the constant phase model (CPM). This model links 

the in-phase elastic response and out of phase dissipative response to stretch via a constant phase 

difference, 𝛽, and has been established to well describe tissue behavior, as well as lung mechanics 

at low frequencies [11], [14], [37], [62], [71]. As implemented by Kaczka et al. [37], [72] who 

applied it to the stress-strain behavior of lung tissue, it is as follows: 

 𝐶𝑃𝑀:
𝜎(𝜔)

𝜀(𝜔)
= 𝑗𝐺𝜔𝛽 + 𝐻𝜔𝛽; (4.1) 

 𝛽 = 1 − (
2

𝜋
) tan−1 (

𝐺

𝐻
) = 1 − (

2

𝜋
) tan−1(𝜂) = 1 − (

2

𝜋
) 𝜙 (4.2) 

where 𝜎 is the stress on the lung tissue and 𝜀 is the strain, 𝐺 is the viscous property, i.e., 

loss modulus of the tissue and 𝐻 is the stiffness i.e., storage modulus, and 𝛽 beta is the phase 

angle between the loss and storage modulus respectively.  

This is a linear model, and here I develop a quasilinear constant phase model (QLCPM) 

including the exponential nonlinear relationship from Navajas et al. (equation 2.5 [39]) in a very 

similar approach to quasi-linear viscoelastic tissue modeling (QLM) known as the quasi-linear 

theory of viscoelasticity found in Fung et al [26], but here using the CPM linear model above as 

the linear component. I first re-express the stretch ratio 𝜆 by the more common strain 𝜀, and 

explicitly including it as an oscillatory variable dependent on radial frequency 𝜔: 



30 

 

 𝜀(𝜔) = 𝜆(𝜔) − 1; (4.3) 

and instead of 𝛽, I instead use the more commonly used constant hysteresivity 𝜂 which is 

defined as the ratio between 𝐺 and 𝐻.  

 𝜂 =
𝐺

𝐻
=

𝜔𝑅

𝐸
;                         𝜙 = tan−1 𝜂 (4.4) 

Note that the values from the CPM can be related to the parameters of the standard single 

compartment viscoelastic model 𝐺 =  𝜔𝑅 and 𝐸 =  𝐻, although in the CPM they are related via 

the hysteresivity constant. The constant phase model is often also known as the structural damping 

model since energy dissipation (in 𝐺) is related to energy storage (via 𝐻) by a constant, and the 

dissipation is thought to come from a fixed fraction of the elastic motion of the structure [73]. 𝜙 

is then the angle between resistive or out of phase stress and elastic or in phase stress from 

deformation in equation Error! Reference source not found.4.4. 

Now in order to calculate mechanical impedance, which will ultimately be used to estimate 

the 𝑅(𝑓), we start with the standard relation, assuming linearity and stationarity are. linear and 

time-invariant behavior, 

 𝑍(𝜔) =
𝜎(𝜔)

𝜀̇(𝜔)
=

𝜎(𝜔)

 𝑗𝜔𝜀(𝜔)
 (4.5) 

where 𝑍(𝜔) is the impedance of the lung tissue and the dot denotes the time derivative of 

strain and 𝑗 is the imaginary number  √−1. Now using this in the CPM model we have, 

 𝑍(𝜔) =
𝜎(𝜔)

𝑗𝜔𝜀(𝜔)
=

𝑗𝐺𝜔𝛽+𝐻𝜔𝛽

𝑗𝜔
=

𝐺+𝑗𝐻

𝜔1−𝛽 (4.6) 

Note also that impedance can be defined with respect to strain rate or the rate of change of 

the stretch ratio: 

 𝑍(𝜔) =
𝜎(𝜔)

𝜀̇(𝜔)
=

𝜎(𝜔)

(𝜆(𝜔)−1)̇ =
𝜎(𝜔)

𝜆̇(𝜔)
 (4.7) 

Also, the viscous component can be written in terms of stiffness which depends on the 

value of eta. Therefore, the final stress-strain relationship is as follows: 

 
𝜎(𝜔)

𝜀(𝜔)
= 𝑗𝐺𝜔𝛽 + 𝐻𝜔𝛽 = 𝑗𝜂𝐻𝜔𝛽 + 𝐻𝜔𝛽 (4.8) 

Therefore, the resulting relationship of stress stretch will be: 
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 𝜎(𝑡) = (𝑗𝜂𝐻𝜔𝛽 + 𝐻𝜔𝛽)𝜆(𝑡); (4.9) 

Where stretch is sinusoidally changing with time: 

   𝜆(𝑡) = 𝜆𝑎𝑚𝑝 𝑠𝑖𝑛(𝜔𝑜𝑠𝑡) + 𝜆𝑟; (4.10) 

𝜆(𝑡) is a time-varying stretch as mentioned in the last experiment where the slope is 

resulting in exponential i.e., lung tissue stiffness, 𝜆𝑎𝑚𝑝 is stretch amplitude and 𝜆𝑟 is the operating 

point. Therefore, the resulting stress stretch model of QLM is  

 𝑄𝐿𝑀: 𝜎(𝑡) = 𝜎𝑜𝑒𝛼𝜆(𝑡) (4.11) 

This equation 4.11 represents the QLM model for computing the resultant stress for any 

input strain. And QLCPM is 

 𝑄𝐿𝐶𝑃𝑀: 𝜎(𝑡) = (𝑗𝜂𝐻𝜔𝛽 + 𝐻𝜔𝛽)(𝑒𝛼𝜆(𝑡)) (4.12) 

Here we are using a shorthand notation where 𝑗 is used to invoke a portion of the stress to 

be out of phase with the strain and in phase with the strain rate. This is because a fundamental 

feature of the constant phase model is that a portion of the stress varies with constant phase delay 

defined by 𝜂 to the portion of the stress that is in phase with strain. For example, if 𝜆(𝑡) is sin (𝜔𝑡) 

then  

 𝜎(𝑡) = 𝜂𝐻𝜔𝛽𝑒𝛼cos (𝜔𝑡) + 𝐻𝜔𝛽𝑒𝛼sin (𝜔𝑡) (4.13) 

This equation 4.13 represents the QLCPM model for computing the resultant stress for any 

input strain and represents an implementation of the quasi-linear theory of viscoelasticity found in 

Fung et al [26]. It should be noted that no parameter in this model is varying in time, yet the 

apparent stiffness of the model can be shown to vary. This is different from the approach of 

Alamdari, but I show below that the nonlinearity through introducing a variation in the apparent 

arising from the oscillatory input can lead to 𝑅(𝑓).   

EXPERIMENTAL PROTOCOL: We simulated the CPM and QLCPM models for different 

stretch/strain amplitudes of 0.05, 0.1, 0.2, and 0.4. It is expected that higher stretch amplitudes will 

induce higher nonlinearity resulting in higher 𝑅(𝑓) which is done in the next section. Zadeh 

showed that impedance can depend on the effects of time variation in system parameters. More 

recently this was applied to the single-compartment model of respiratory mechanics, where 

Alamdari et al. used two separate modeling approaches, both the Zadeh transform and direct 
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temporal modeling, and demonstrated using an arbitrary time-varying elastance that this could 

produce effects on the real part of impedance, specifically 𝑅(𝑓). Here in equation 4.12 is also a 

model that naturally leads to time-varying of stiffness, which is produced by the nonlinearity in 

the QLCPM in this work, contributing to 𝑅(𝑓). To help show this we quantified how much 

stiffness varied by defining a simple proxy of the time-varying stiffness, termed here the Delta 

Stiffness, which is defined as the difference between the peak and valley from a calculating of the 

change in stress over the change in strain within one sample. This closely approximates changes 

in stiffness when 𝜂 is small.  

Then we looked at the effect of operating strains of 0.4, 0.6, 0.8, and 1 at the stretch 

amplitude of 0.05. We expect at higher levels of strains the lung stiffness increases as well as 

nonlinearity making it more exponential. Higher strain results in higher 𝑅(𝑓) as well. Therefore, 

both effects of stretch/strain amplitude and operating points are studied, and the results of the 

formulation are given in the next section. 

We then looked at the effects of the exponent alpha. The first small stretch amplitude of 

0.05 was used to study the behavior at the operating strain of 0.68. It is expected that for higher 

values of alpha, that this will amplify 𝑅(𝑓). Each of these is important to establish since increases 

in 𝑅(𝑓) have been sometimes attributed to alternative mechanisms when observed in obstructive 

diseases. For investigating this dependence, we used the stretch amplitude of 0.4 and the operating 

strain of 0.683 with alpha changed to half and twice the representative value of 4.65 for dog lung 

tissue from Navajas et al [39]. We also examined the effect of the different alphas at different 

operating strains at the lowest stretch amplitude of 0.05 to examine if the effects persisted even at 

the small amplitude approximation which is used often as a justification enabling one to ignore the 

effects of nonlinearities.  

We also obtained the instantaneous stiffness as a measure to quantify the study time-

varying stiffness response due to nonlinearity. It is calculated as stress difference between samples 

divided by strain difference between samples as follows: 
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 𝑆 =
𝜎(𝑡2)−𝜎(𝑡1)

𝜀(𝑡2)−𝜀(𝑡1)
=

∆𝜎(𝑡)

∆𝜀(𝑡)
 (4.13) 

In the case of CPM, it is expected that instantaneous stiffness will be constant over time as 

the slope is linear, whereas for QLCPM it is likely to vary. We looked at the respective resistance 

and reactance at the low-frequency range (in log scale) due to lung tissue size. 

It is important to note that the CPM and thus the QLCPM produce 𝑅(𝑓) without any time 

variation of stiffness when 𝜂 is non-zero. This can be seen from the signal compartment linear 

model (equation 1.1) that 𝑅 =
𝜂𝐸

𝜔
, without time variation of stiffness. Thus, what we are 

hypothesizing here is that 𝑅(𝑓) may be amplified in the QLCPM models due to the presence of 

the nonlinearity leading to time-varying stiffness. We further expect this to be larger with higher 

stretch amplitudes at lower frequencies, and larger at larger operating strains, where the 

nonlinearity is steeper. 

4.2 RESULTS: 

4.2.1 Nonlinearity in a lung tissue model 

The effect of exponential static nonlinearity arising from the material properties of lung 

tissue (i.e., stress-strain relationship) was first investigated with two different operating stretch 

ranges on the Navajas et al stress-strain behavior curve (equation 1.5). Here it can be shown using 

the QLM model equation 4.11, examining the temporal changes of stress and the instantaneous 

stiffness (Figure 4.1). 

Figure 4.1 shows the effect of the stress and the stiffness calculated as the instantaneous 

slope at two different operating points of stress (mean stretch of 1.4 and 1.8) but the same stretch 

amplitude. At a higher stretch, the stress range during an oscillatory stretch is larger due to the 

higher stiffness, and the mean stiffness has increased ~7-fold. 



34 

 

 

Figure 4.1: Nonlinear cyclic stretch strain curve, yellow outlined figures show stretch range between 1.3 and 
1.5 with resulting time-varying stress and stiffness, similarly blue outlined figure indicates for a stretch range 
of 1.7 and 1.9. 

4.2.2 Tissue nonlinearity time-varying characteristics model 

The effect of exponential static nonlinearity arising from the material properties of lung 

tissue (i.e., stress-strain relationship) combined with constant phase model is as follows: 

 

Figure 4.2: (a) Resulting instantaneous stiffness vs time for CPM (top) and QLCPM (bottom) (b)Resistance and 
Elastance vs frequency for CPM & QLCPM models 

(

a) (

b) 
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Figure 4.2 (a top) shows the flat line at 4.5 𝑘𝑃𝑎 showing that stiffness of the CPM is not 

changing with time, Figure 4.2 (a bottom) shows the instantaneous stiffness is sinusoidal changing 

with time for QLCPM equation 4.13, showing the effect of nonlinearity imparting. In Figure 4.2 

(b), we matched the linear constant phase model by adjusting the 𝐻 (Elastance) to have the same 

stiffness matching the slopes at 0.65 operating strain. At small amplitudes, the linear resistance 

and linear elastance calculated as per equations 4.1 & 4.13 are thus identical shown across 

frequency comparing CPM to QLCPM. This can also be seen in Figure 4.4 which shows 𝑅 vs 

frequency at 0.05 amplitude the curves are superimposed. Recall there is frequency dependence 

explicit in the CPM model through the term eta (equation 4.2). However, when the amplitude is 

increased while this frequency dependence is unaltered in the CPM model, it increases nearly 50% 

more due to the nonlinearity present in the QLCPM model (right). This means that the nonlinearity 

of the stress-strain curve, through time variation led to an increase in the 𝑅(𝑓). 

Figure 4.3 shows the stress-strain relationship for different strain amplitudes (SA). It is 

evident that for CPM the behavior is linear (i.e., each loop is larger proportionately to the amplitude 

and with the same slope). Whereas the loops are curved in QLCPM and the increase in size is not 

proportionate to the amplitude. 

 

Figure 4.3: CPM & QLCPM models for a range of strain amplitudes 
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Figure 4.4 (left) R(f) for CPM & QLCPM for different SA and (right) percentage difference between CPM & 
QLCPM 

Figure 4.4 (left) shows the same frequency dependence that can be observed in Figure 4.2 

for CPM for each SA amplitude (denoted just CPM), underneath the curve for QLCPM at SA of 

0.05. However, as SA increases the 𝑅(𝑓) curves move to higher 𝑅. The percent increases are 

plotted in Figure 4.4 (right) 

 

Figure 4.5: Time-varying stiffness effect on R(f) dependent on SA at different frequencies 

The frequency dependence in the QLCPM is depicted vs delta stiffness showing the 

dependence on 𝑅 on SA observed using delta stiffness is greatest at low frequencies (see the 𝑓𝑜𝑠  =

 0.03 𝐻𝑧 curve) that at low amplitude. This dependence is absent in CPM (solid circles).  
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Figure 4.6: 𝑅(𝑓) for fixed and  
1

𝑓
 stretch amplitude. Inset shows small difference between fixed and 

1

𝑓
 stretch 

amplitude responses. 

When testing lung tissue response, it is often measured over the whole frequency range 

making the strain amplitude 
1

𝑓
 dependent; that is at high oscillation frequencies, the SA is reduced 

inversely with frequency largely limited due to actuator speed limitations. Choosing inversely 

frequency-dependent SA did not much change 𝑅(𝑓)  compared with constant amplitude 

oscillation; the inset shows very small differences in response (Figure 4.6) 

When SA was fixed at 0.05 but operating strain changed (Figure 4.7) the 𝑅(𝑓) in QPLCM 

was highest at the highest operating point of 𝑂𝑆 = 1 (Figure 4.8). The highest 𝑅(𝑓) at the OS of 

1 leads to an increase in 𝑅(𝑓) by 346% compared to the 𝑅(𝑓) for CPM (Figure 4.8). 

Figure 4.9 similar to Figure 4.5 shows that the increase in 𝑅(𝑓) is directly related to the 

time-varying stiffness from the nonlinearity in QLCPM. The circles in the plot show the 𝑅(𝑓) in 

the CPM model and adding time variation from the nonlinearity leads to a dramatic increase in 

𝑅(𝑓). 
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Figure 4.7: CPM & QLCPM models for a range of operating strains 

 

Figure 4.8: (left) R(f) for CPM & QLCPM for different operating strains and (right) percentage difference 
between CPM & QLCPM 
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Figure 4.9: Time-varying stiffness effect of R(f) dependent on operating strains at different frequencies 

 

Figure 4.10: QLCPM models for a range of alphas with SA of 0.05 & OS 0.683 
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When we varied the degree of nonlinearity by changing the exponent 𝛼, Figure 4.10, this 

also results in increasing 𝑅(𝑓). with higher nonlinearity (Figure 4.11). The relationship of 𝑅(𝑓) to 

the time variation in stiffness quantified by delta stiffness is shown in Figure 4.12. 

 

Figure 4.11: (left) R(f) for CPM & QLCPM for different operating strains and (right) percentage difference 
between CPM & QLCPM 

 

Figure 4.12: Time-varying stiffness effect on R(f) due to varying alpha at different frequencies 
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Figure 4.13: QLCPM models for a range of alphas with SA of 0.4 & OS 0.683 

If SA is increased to large amplitudes such as 0.4 the effect of 𝛼 is increased Figure 4.13  

 

Figure 4.14: Time-varying stiffness effect over R(f) due to alpha/diseases 

Interestingly, in Figure 4.14, both lower 𝑅(𝑓) (𝛼 =  2.325 & 4.65) and higher 𝑅(𝑓) were 

observed (𝛼 = 9.3) relative to CPM. This is seen again examining the behavior vs. the amplitude 

of the time-varying stiffness comparing curves to CPM which are the solid circles at zero delta 
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stiffness (Figure 4.15). Looking at 0.03 𝐻𝑧, resistance increases with delta stiffness vs. alpha, but 

at low alpha 𝑅(𝑓) is less than CPM while at higher alpha 𝑅(𝑓) is greater than CPM. Also, 𝑅(𝑓) 

at higher frequencies is small. 

 

Figure 4.15: Time-varying stiffness effect on R(f) due to varying alpha at different frequencies. 

 

Figure 4.16: QLCPM models for a range of alphas with SA of 0.05 & range of OS 

When we looked at behavior vs operating strain with different alphas (Figure 4.16) we 

again see the greatest 𝑅(𝑓) at the highest OS and also at the largest 𝛼 (Figure 4.17) which was also 

when delta stiffness was largest (not shown). 
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Figure 4.17: Time-varying stiffness effect over R(f) due to alpha/diseases and OS 

4.3 DISCUSSION 

This study shows that nonlinearity can increase 𝑅(𝑓) above what is present in the constant 

phase model. This is particularly strong at high strain amplitudes or operating strains. The 

nonlinearity leads to time variation in the stiffness, and because of the coupling of the dissipative 

component to the elastic behavior through the hysteresivity, 𝜂, the out-of-phase variation leads to 

𝑅(𝑓). This source of frequency dependence of resistance was unrecognized previously. 

The principal findings of this study are: 1) time variation in lung parameters can be 

obtained if there is a nonlinearity typical of that measured in the real lung tissue mechanics, 2) 

increasing the stretch amplitude results in higher nonlinear effects on time variation resulting in 

higher 𝑅(𝑓), 3) higher operating strains also results in greater effects of the nonlinearity and 

increased time-variation resulting in higher 𝑅(𝑓), 4) the effect of alpha which directly changes the 

nonlinearity causes changes in 𝑅(𝑓), 5) when both operating strain and alpha values are increased 

as might occur with disease, this may mean that changes in disease that cause changes in alpha are 

thus likely to lead to changes in 𝑅(𝑓) affecting the interpretation of 𝑅(𝑓). 

It was shown in the literature [69], [73]–[75] lung tissue has a pronounced nonlinear stress-

strain relationship. Here I introduced the nonlinearity into the simple constant phase model and 

studied its parameters to better mimic real lung tissue. We used a more common constant phase 
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model for the oscillatory mechanics of the lung tissue. But other models exist. For example, this 

is similar to the Hildebrandt model which was developed from stress-relaxation behavior using 

logarithmic stress decay following a step strain. The constant phase model we used instead predicts 

a power law behavior [76], [77]. However, while this model has a different mathematical non-

constant dependence between loss modulus and storage modulus, which is different from the 

constant phase model, the difference is very small. Indeed, both models do describe lung tissue 

deformation fairly well, and thus the differences may not be important. In any case, the constant 

phase model is by far the most common model used for respiratory tissue mechanics and was used 

here.  

Our implementation investigated the role of time-varying mechanics that arises from the 

presence of the well-established static nonlinearity of lung tissues, and the well-established small-

amplitude constant phase model, and examined its effect when combined to predict its effect on 

𝑅(𝑓). Here we found that indeed, greater 𝑅(𝑓) occurred due to the presence of the nonlinearity 

compared to CPM, with large amplitude oscillation at low frequency.  

When lung tissue is stretched in the tissue bath it should mimic these results, finding at 

higher operating strains that 𝑅(𝑓) should be more than at lower strain amplitudes. Navajas et al 

indeed did find that resistance increased with operating stress by about 250% from operating stress 

of 0.6 to 2.1 comparable to what we observed here for similar strain amplitudes. They developed 

an empirical fit to describe the behavior that was related to the nonlinearity but did not identify the 

mechanism attributable to the development of time variation in the mechanical properties. They 

did not explore changes in the nonlinearity via alpha, instead modeled the mean behavior. This 

would be interesting to examine since they did have different lung tissue strips with differences in 

nonlinearity and thus this could be examined. If the nonlinearity in lung tissue is a substantial 

source of 𝑅(𝑓) when measured in vivo as is possible with pressure-volume or pressure flow 

measurements as during mechanical ventilation or oscillometry this could be potentially useful 

particularly for diseases that alter the stress-strain behavior of lung tissues. This is explored in the 

next chapter.  

It was mentioned we were planning to explore 𝑅(𝑓) in lung tissue in in-vitro models 

simulating altered tissue properties in disease with the use of collagenase, which would lead to 

increased alpha, beyond what would occur due to normal variation between samples. Here I used 
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3 different cases changing alpha from healthy dog lung tissue by arbitrary factors of 2 both below 

and above normal and studied theoretically the behavior of tissue in diseases, also at normal stretch 

amplitude. This produced a very large change in 𝑅(𝑓) which could be confirmed in-vitro and could 

also be examined using human tissue from deceased subjects, although that may be challenging. 

Changes in nonlinearity are known to occur due to changes in tissue from the effects of fibrosis or 

COPD. Rather than explore this in our tissue model, we explored the effects of altered nonlinearity 

in fibrosis and COPD by modeling pressure-volume relationships in whole respiratory system 

models in the next chapter.  

Limitations to the study in this chapter are as follows: 1) We examined only healthy canine 

tissue behavior using data from the literature and did not verify directly if the predicted behavior 

would occur in-vitro, although the behavior was similar to that reported in Navajas et al. [39] 

Navajas similarly found that resistance was strikingly frequency dependent. They did also explore 

the effect of strain amplitude and operating strain to examine the effect of the nonlinearity but 

unfortunately not over a range of frequencies to examine the effects on 𝑅(𝑓). However, the 

nonlinearity should have led to an amplitude and operating strain dependence which would be in 

agreement with the nonlinearity leading to increased 𝑅(𝑓). However, when Navajas et al. explored 

the dependance of resistance on amplitude at a single frequency of 0.3 𝐻𝑧 they did not find an 

increasing dependence of resistance on strain amplitude which we had observed. However, this 

was only done at low operating stress and over a smaller range in amplitude than we explored, and 

thus the nonlinearity may not have been sufficient to lead to amplitude dependence. However, they 

did find a striking dependance on strain operating point also tested only at 0.3 𝐻z. Over the range 

of 0.6 𝑡𝑜 2 𝑘𝑃𝑎, resistance changed 2-fold which agrees well with our findings. 2) Another 

limitation is that we used arbitrary values to model changes in alpha from our canine healthy values 

as it seemed more reasonable to address appropriate disease models in chapter 5 when we model 

the pressure-volume relationship. 

This study shows that frequency dependence of mechanical resistance of lung tissue can 

arise from static tissue nonlinearities provided it is combined with the source of the suitable 

viscoelastic component which is here provided by CPM. This means that nonlinearity in behavior 

can possibly lead to 𝑅(𝑓) observed in the whole lung which is discussed in the next chapter. 
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CHAPTER 5: WHOLE LUNG MODELING 

Here we wanted to do a similar modeling effort as in Chapter 4 but extended to the 

respiratory system. This would be more meaningful since the oscillatory mechanics of the 

respiratory system are commonly measured in research and are increasingly being measured 

clinically. Indeed, 𝑅(𝑓) is commonly being attributed to small airways heterogeneity in lung 

diseases such as asthma and COPD, although there are other mechanisms for 𝑅(𝑓) as discussed in 

the introduction. In order to develop a respiratory system model including the oscillatory 

impedance and the pressure-volume characteristics, we repeated the approach of Chapter 4. There 

are several models of the respiratory system that include the very common single-compartment 

model to quite complex multiple branch models with 100’𝑠 of thousands of compartments. Some 

of these include multiple CPM models at the termination of the branches [14], [18], [37]. Common 

amongst almost all of these models are that they are generally employed only for simulation of 

small amplitude mechanics and do not usually include the large pressure-volume nonlinearity 

known as the PV curve. Other models explicitly model the nonlinearity using empirical 

relationships [35], [78], but these are not usually coupled with small amplitude linear models. In 

this chapter, we use a similar approach to chapter 4 and use the CPM model of the respiratory 

system with a common nonlinear PV model and use this to explore where time-varying lung 

characteristics are expected to lead to 𝑅(𝑓). 

5.1 METHODS 

In this section, as in Chapter 4, I rely on the constant phase model as it has also been used 

to very well describe the small amplitude respiratory mechanics in vivo and I add to it the well-

known pressure-volume nonlinearity known as the Salazar and Knowles equation [78] for the PV-

curve. Once the model is developed using values from the literature, I explore changes in operating 

volumes and differences in the nonlinearity due to disease  

MODEL DEVELOPMENT: In the lung/respiratory system, the mechanical relationship is 

not between stress and strain but between pressure and volume. This relationship is also nonlinear, 

and a common equation used to describe the deflation limb of the PV-curve as mentioned is  known 

as the Salazar and Knowles equation [78] and is expressed as follows: 
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 𝑉 = 𝐴 − 𝐵𝑒−𝑘𝑃;  5.1) 

Rearranging 

 𝑃𝑄𝐿𝑀 = −
1

𝑘
ln (

𝐴−𝑉

𝐵
) (5.2) 

Where 𝑉 is the volume (in 𝐿), 𝐴, 𝐵 and 𝑘 are constants or parameters indicating the healthy 

and diseased cases and 𝑃 is pressure obtained from the volume, which can be approximated as 

sinusoidal for the modeling purposes here. The CPM model with volume as input and pressure as 

output is found in the Kaczka et al. [72] as follows: 

𝑃𝐶𝑃𝑀 = (
𝐺

𝜔𝛼
+

𝐻

𝑗𝜔𝛼
) 𝑗𝜔𝑉 = (𝑗𝜂𝐻𝜔𝛽 + 𝐻𝜔𝛽)𝑉;                            𝑤ℎ𝑒𝑟𝑒 𝐺 = 𝜂𝐻 5.3) 

Incorporating this to tissue compartment in the nonlinear version by combining 𝑃𝑄𝐿𝑀 & 

𝑃𝐶𝑃𝑀 we get: 

 𝑃𝑄𝐿𝐶𝑃𝑀 = −
1

𝑘
ln (

𝐴−𝑉

𝐵
) (𝑗𝜂𝜔𝛽 + 𝜔𝛽) (5.4) 

Where 𝐻 is incorporated into the 
1

𝑘
 parameter.  

To complete the CPM model used for the respiratory system we also add a linear upper 

airway resistance and an inertia term to account for the acceleration of the gas and any tissue 

accelerations as is commonly done for the standard equation of motion of the respiratory system, 

with the tissue compartment being the CPM model (equation 5.3) or QLCPM model (equation 

5.4). The impedance is the ratio of pressure to flow for both CPM and QLCPM 

 𝑃(𝑡) = 𝑅𝑉̇ + 𝐼𝑉̈ + 𝑃𝐶𝑃𝑀 𝑜𝑟 𝑄𝐿𝐶𝑃𝑀; (5.5) 

Where 𝑃 is the pressure and 𝑉̇ is the flow; 𝑃𝐶𝑃𝑀 is the pressure of the constant phase model 

(5.3) obtained from the pressure-volume relationship, similarly 𝑃𝑄𝐿𝐶𝑃𝑀 is quasi-linear constant 

phase model pressure (5.4) obtained from nonlinearity in the volume. 

EXPERIMENTAL PROTOCOL: The values of the parameters were defined as follows. The 

values for the Salazar and Knowles equation (equation 5.4) are found in Table 5.1 from Gibson et 

al. [35]. The values for the CPM model were adjusted/matched to the QLCPM model in order to 

obtain the same impedance at specific operating volume with specific volume amplitude and a 
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healthy case of 𝐴, 𝐵 & 𝑘 constants. The matched values with mean resistance and inertance added 

to the equation were: 

 𝑅𝐶𝑃𝑀 = 2.2 𝑐𝑚𝐻2𝑂. 𝑠/𝐿 = 𝑅𝑄𝐿𝐶𝑃𝑀; 

 𝐸𝐶𝑃𝑀 = 3.5 𝑐𝑚𝐻2𝑂/𝐿 = 𝐸𝑄𝐿𝐶𝑃𝑀;                  @𝐻~3.38𝑘𝑃𝑎 5.6) 

In this Chapter 5, we will be looking at two different frequency ranges: first, all the 

experiments were done using a frequency range of 0.2 to 5 Hz. This is a frequency range used 

previously where ventilators delivered a selection of frequencies while providing mechanical 

ventilation [79]. The second group of experiments was done at the oscillometry frequency range 

of 5 to 37 Hz respectively. Similar to Chapter 4, we explored the effect of different operating 

volumes (OV), including one near a typical end-expiratory lung volume (FRC) of 2 liters and 

matched the CPM model to it by choosing right 𝐻 value as well as two higher lung volumes of 3 

and 4 liters to explore the effect of the nonlinearity on 𝑅(𝑓). We did not choose different 

amplitudes since this general behavior was studied in Chapter 4, and normal breathing defined by 

tidal volume is typically fairly constant during measurement of respiratory mechanics while 

operating volume can be altered when on a ventilator by adjusting the positive end-expiratory 

pressure or can be elevated in disease such as in COPD.  

Table 5.1: Values of the nonlinear components to the QLM and QLCMPM model [35]. 

Diseases/Variables k (𝑐𝑚𝐻2𝑂−1) A (𝑙) B (𝑙) 

Fibrosis 0.089 2.64 0.93 

Normal 0.143 5.65 4.79 

Emphysema 0.325 7.66 6.98 

Using the values of Gibson et al. [35] for each condition altered the nonlinearity k, but also 

the constants A and B, but this is more representative of the physiological changes with disease. 

For comparison of these three cases, we also choose 3 different lung volumes, choosing volumes 

that worked well for each curve, that is, avoided the asymptotes as well as had the same 

approximate end-expiratory pressure values across conditions. These were end-expiratory volumes 

of 2, 3.3 & 6.3 𝐿 for each model. However, FRC often is increased in COPD associated with 

emphysema, so I also chose a second operating point in this model of 7.2 𝐿, which while high, was 
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chosen to explore the effects of elevated end-expiratory pressure of approximately 11 𝑐𝑚𝐻2𝑂. In 

this experiment, CPM is matched to a normal curve similar to the last experiment. 

After doing the investigations of the PV curves for the low-frequency range, we also 

examined the oscillometry frequency range. We took the same PV curves and breathing was 

simulated with sinusoidal oscillation at 0.25 𝐻𝑧. The magnitudes/amplitudes are typically 

inversely dependent on the frequency with specific phases to minimize peak-peak motion. The 

magnitudes and phases of a typical oscillometry signal used by the TremofloTM are indicated in 

table 5.2. For analysis of the impedance, the pressure and flow signals were first high pass filtered 

at 2 𝐻𝑧 using an ideal FFT domain zero phase high pass filter. The impedance was then computed 

using the Welch periodogram approach using windows of 1 second, applying Hanning windows 

also of 1 𝑠𝑒𝑐, with the overlap of 95% as described in Chapter 1, equation 1.9. 

Table 5.2: Amplitudes and phases of the oscillometry probing signal 

Frequencies Amplitudes (𝒍) Phase (𝒓𝒂𝒅) 

5 0.02504 -0.8655 

11 0.01082 -2.871 

13 0.009283 2.296 

17 0.00616 0.9318 

19 0.005471 -0.8432 

23 0.004822 2.009 

29 0.004048 -2.565 

31 0.004551 -0.9766 

37 0.004029 -2.277 

 

Figure 5.1 shows the CPM and QLCPM pressures in the time and frequency domain for a 

single one-second window. The flow is the input signal, and the pressure at the oscillation 

frequencies is roughly the same for the CPM and QLCPM at this operating amplitude (20 𝑚𝐿) and 

volume (2 𝐿). There appears to be some spectral, or artifactual leakage at non-input frequencies, 

potentially due to the windowing, but these frequencies are not part of the analysis and do not 

contribute to the measured impedance as they are not at the input oscillation frequencies. This was 

confirmed as to when a rectangular window was used (not shown here) energy was confined to the 

oscillation frequencies.  
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Figure 5.1 shows the CPM and QLCPM pressures in the time and frequency domain for a 

single one-second window. The flow is the input signal, and the pressure at the oscillation 

frequencies is roughly the same for the CPM and QLCPM at this operating amplitude (20 𝑚𝐿) and 

volume (2 𝐿) for normal matched case. There appears to be some spectral, or artifactual leakage at 

non-input frequencies, potentially due to the windowing, but these frequencies are not part of the 

analysis and do not contribute to the measured impedance as they are not at the input oscillation 

frequencies. This was confirmed as to when a rectangular window was used (not shown here) 

energy was confined to the oscillation frequencies.  

 

Figure 5.1: CPM & QLCPM Pressures time and frequency plot for 1-sec window with 500 samples, sampling 
rate of 256 𝐻𝑧 and high pass filtered alongside windowed flow signal, where on right orange is signal i.e. 
windowed using rect window and blue is signal windowed using Hanning window respectively. 

5.2 RESULTS 

The pressure-volume relationships for CMP, nonlinear QLM, and constant phase QLCPM 

model are shown in Figure 5.2 

Figure 5.3 shows the pressure-volume relationship for breathing at the different operating 

volumes. Similar to Figure 4.7, it is evident that for the CPM the behavior is linear each PV loop 

at different operating volumes with the same shape and slope, whereas, for QLCPM it can be 

seen that the loops change the slope and shape with nonlinearity. 
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Figure 5.2: Pressure volume relationship for CPM, QLM, and QLCPM models 

 

Figure 5.3: CPM & QLCPM models for a range of operating volumes 
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Figure 5.4 (left) R(f) for CPM & QLCPM for different operating volumes and (right) percentage difference of 
R(f)’ of QLCPM relative to CPM  

With different operating volumes, 𝑅(𝑓) does not change in CPM but increases for QLCPM 

in Figure 5.4. 

 

Figure 5.5 Frequency dependence of elastance (E(f)) for CPM & QLCPM for different operating volumes 

Elastance estimated as in equation 5.4 is also dependent on operating volume in the 

QLCPM model Figure 5.5. At higher frequencies, 𝐸 turns downward due to the effects of 
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inertance, and the approximation of equation 5.4 no longer is a good estimate of the elastic part of 

the impedance. 

 

Figure 5.6: 𝑅(𝑓) for stretch amplitude changing with 
1

𝑓
 and without 

1

𝑓
 for 2-4 L Operating Volumes (OV), (inset) 

shows the difference of the 𝑅(𝑓) between the respective response. 

Similar to Figure 4.6, here in Figure 5.7 we can see the response of fixed and 
1

𝑓
 amplitude 

input for 𝑂𝑉 of 2 –  4 𝐿, where 𝑂𝑉 =  2 𝐿 is matched to CPM. Figure 5.7 (Inset) clearly indicates 

that there is no difference for constant amplitude or 
1

𝑓
 amplitude input volume signals on 𝑅(𝑓). 

 

Figure 5.7: (Left) The pressure-volume relationships with different disease models from Gibson et al [35] fib is 
fibrosis, nor is normal and emp is emphysema (right), with pressure-volume loops during oscillatory input at 
the different operating volumes  
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Figure 5.7 shows pressure-volume curves that are representative of different disease cases, 

taken from Gibson et al. [35]. With the same operating pressure, but with the different PV curves, 

the slopes and shapes of the loops are very different. The fibrosis model has a larger pressure 

swing, likely larger than ordinarily would occur in-vivo, as likely a subject with this PV curve 

would move to lower lung volume and alter their breathing rate and amplitude to avoid generating 

larger pressures. On the emphysema model, we modeled two operating volumes, including a 

higher volume simulating the higher FRC typical for emphysema, which shows a shallower slope 

due to the higher stiffness at higher volumes and greater curvature.  

 

Figure 5.8: R(f) for the linear and nonlinear models including disease models.  

The size of the PV loops is determined by 𝜂, the value of which was from measurements 

of subjects while being mechanically ventilated with the optimal ventilator waveform [79]. One 

can see that the loops are slightly below the PV curves, this is due to the effect of 𝜔𝛽, the 

coefficient in the constant phase portion of the QLCPM model which reduces the mean pressure 

slightly in this frequency range.  

We found 𝑅(𝑓) was present with CPM as expected due to the viscoelastic property of the 

CPM. But we found that nonlinearity increased the 𝑅(𝑓) in QLCPM models from the CPM which 

we had matched at specific operating pressure (6 𝑐𝑚𝐻2𝑂) and volume (3.3 𝐿), achieved by 

matching the operating point and normalizing the CPM slope to match the normal PV curve from 

Gibson et al [35].  
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The greatest 𝑅(𝑓) occurred with the fibrosis model since it had the largest PV slope at the 

operating pressure modeled. In the emphysema models at the lower operating pressure (6 𝑐𝑚𝐻2𝑂), 

the 𝑅(𝑓) was lower than the normal curve from the lower PV slope, while at higher pressure the 

𝑅(𝑓) was larger than the normal curve. Thus, it can be seen that additional 𝑅(𝑓) is produced due 

to the nonlinearity and the 𝑅(𝑓) is dependent on the nonlinearity which agrees with clinical 

findings. 

 

Figure 5.9: Time-varying instantaneous stiffness of CPM and QLCPM diseased models 

Figure 5.9 shows the time-varying instantaneous stiffness obtained from the CPM and the 

QLCPM models. This illustrates that during oscillation, the mechanical properties of the model 

are changing due to the PV nonlinearities dependent on the local curve of the QLCPM models.  

 

Figure 5.10: E(f) for different diseased case 
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We also examined 𝐸(𝑓) which as expected showed some strong dependence on the disease 

model due to the changes in the slope of the PV curve, but there is also some small frequency 

dependence in 𝐸.  

 

Figure 5.11: Repeat of Figure 5.8, R(f) for the CPM & QLCPM disease models as well as 𝑋(𝑓) for optimal 
waveform ventilation frequency range 

 

Figure 5.12 R(f) for the CPM & QLCPM disease models as well as 𝑋(𝑓) for oscillometry frequency range 

Figure 5.11 shows the 𝑅(𝑓) & 𝑋(𝑓) for the CPM model matched with normal QLCPM in 

the optimal ventilator waveform frequency range, while Figure 5.12 shows the impedance in the 

oscillometry frequency range. We can see that Figure 5.12 is similar to Figure 5.11 showing the 

0.3                                        1                            3              

5 

0.3                                        1                            3              

5 
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𝑅(𝑓) & 𝑋(𝑓), however at the oscillometry range the dependance is much smaller decreasing from 

approximately 0.2 𝑐𝑚𝐻2𝑂. 𝑠/𝐿 to 0.02 𝑐𝑚𝐻2𝑂. 𝑠/𝐿 for the healthy case and similar for disease 

cases. Therefore, while 𝑅(𝑓) is predicted to be substantially affected by the nonlinearity at low 

frequencies due to time-varying lung mechanics, the effect appears to be negligible for the 

oscillometry frequency range, from the model tested here. 

5.3 DISCUSSION 

There have been several models to help understand the impedance and also to understand 

the frequency dependence of resistance. As discussed in the introduction, Otis [80], [81] showed 

that a parallel branch compartment model could produce frequency dependence over a limited 

range of frequencies if the time constants were not equal, and this is also shown over a wider 

frequency range in multi-branch models where airway diameters are heterogeneous [82]–[85]. 

Kaczka used CPM in his airway tree model, but, while complex the branching tree impedance 

model was linear. None of these models included the pressure-volume nonlinearity. Bates et. al. 

developed a recruitment model to describe the nonlinear behavior and pressure-volume 

relationship of the lung, but they did not explore the effect of the nonlinearity on 𝑅(𝑓). To my 

knowledge, no model includes the impact of time varying mechanical properties on 𝑅(𝑓) except 

for Alamdari et al. However, in their approach they arbitrarily assigned time variation to the 

elastance to show that this could be a mechanism for 𝑅(𝑓), and did not include the pressure volume 

nonlinearity. Here I coupled CPM with Salazar Knowles equation to investigate the influence on 

the nonlinearity potentially on 𝑅(𝑓) which have not been investigated before. 

Principal findings of this study are 1) higher operating volumes and alpha (𝐴, 𝐵 & 𝑘), 

similar to tissue model in the last section, results in higher nonlinearity and coincidentally 

increased time-variation resulting in higher 𝑅(𝑓); 2) time-varying stiffness of the lung results in 

𝑅(𝑓) which is substantial in diseased cases at optimal ventilator waveform frequency ranges, 

however, we lose this effect at oscillometry frequency range where 𝑅(𝑓) is negligible. 

It is evident in the whole lung nonlinearity study we achieved similar results as in lung 

tissue i.e., higher operating volume results in higher nonlinearity, similarly with increase alpha 

values for diseases we achieved higher 𝑅(𝑓). The values of alpha in the whole lung case are taken 

from published pressure-volume relationships [35]. It is evident that for emphysema which had a 
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very pronounced nonlinear PV curve, we found stronger 𝑅(𝑓). We also saw strong 𝑅(𝑓) in the 

fibrosis case due to the fact that PV curve is confined to a very narrow range, and for our choice 

of constant volume breathing, this accentuated the effect of the nonlinearity probably more than 

would occur in vivo. In each case, if there is a substantial nonlinear pressure-volume relationship 

during breathing or mechanical ventilation this can add substantially to the 𝑅(𝑓) already present 

due to the viscoelastic behavior accounted for by the constant phase model. That is this modeling 

has identified a potentially significant source of 𝑅(𝑓) over and above any tissue property and 

potentially also in addition to any heterogeneity present, although this was not modeled here. This 

finding may be useful in helping to understand the changes in mechanics of the lung in disease. 

For example, if the nonlinearity is assessed it may be possible to predict the expected 𝑅(𝑓) due to 

this mechanism, thus additional 𝑅(𝑓) can be attributed to other sources such as heterogenetiy. The 

contribution of nonlinearity and heterogeneity to 𝑅(𝑓) is assessed experimentally in the next 

chapter, but only in the oscillometry range, which we found is not expected to have significant 

contribution from tissue nonlinearity.  

𝑅(𝑓) arises from time-varying elastic lung parameters if they vary in phase with the flow 

as Alamdari showed previously. Here we also find that because of the CPM model which includes 

that out of phase pressure with oscillatory volume is determined by the constant 𝜂, which causes 

time variation in pressure that is out of phase with volume from the PV nonlinearity. We found 

that the time-varying stiffness effect from the nonlinear PV curve can only be seen when the 

oscillations that explore the nonlinearity are the ones used for estimating the mechanical properties 

as with tissue strip oscillation in Chapter 3. This occurs when measuring lung mechanics using 

mechanical ventilation as done by the optimal ventilator waveform [79]. Thus interpreting 

impedance can be challenging in this case, which was recently raised by Hantos et al [86] when 

other mechanisms such as time-variation in mechanics may be present, and here we show may 

arise from nonlinear phenomena  However, for oscillometry, the only signal which substantially 

explores the nonlinearity is breathing which occurs at frequencies below that of oscillometry, and 

. we found the contribution of the nonlinearity is negligible at the higher frequency range. This is 

likely due to two factors, the dependence diminishes with frequency, and also at the oscillometry 

range, the amplitude of the oscillations from oscillometry are far smaller than breathing tidal 

volumes. These were not sufficiently large to explore the nonlinearity of the PV curve and produce 

the addition 𝑅(𝑓). The breathing signal which we included is large, but it is at a much lower 
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frequency and thus did  not affect the measurement of impedance in our model. However, we only 

used sinusoidal breathing and actual breathing includes higher frequencies extending beyond 5 𝐻𝑧 

although  small in amplitude. These could introduce some additional 𝑅(𝑓) but this was not 

explored here. Nevertheless, lung disease alters the nonlinearity, and also can introduce time 

variation in mechanical properties that may have slightly higher effects over the 𝑅(𝑓) extending 

to the oscillometry frequency ranges.  

Limitations to this study are: 1) Only a single representative curve for an obstructive and a 

restrictive disease were studied, and compared to a representative normal PV-curve. We did not 

assess the variation amongst individuals in either normal or disease. 2) We did not include 

simulation of  real breathing waveforms which have a much wider bandwidth than the purely 

sinusoidal breathing that we used. This might affect frequencies at and perhaps somewhat above 

5 𝐻𝑧, since breathing noise does have frequency components in this range and adds to the noise in 

oscillometry measurements typically at the lower oscillometry range near 5 𝐻𝑧, and somewhat 

higher frequencies in children. However, this effect will likely be small since the magnitude of 

pressure and flow oscillation at 5 Hz in normal breathing is also small. It is possible that in diseases 

such as COPD with flow limitation, leading to very non-sinusoidal waveforms and potentially 

harmonics in this range during breathing that the effect might become important. 

This study shows that frequency dependence of mechanical resistance of lung tissue can 

arise from pressure-volume nonlinearity provided it is combined with the source of the suitable 

viscoelastic component which is here provided by CPM similar to static tissue nonlinearity 

explored in Chapter 4. This means that nonlinearity in behavior can possibly lead to 𝑅(𝑓) observed 

in the whole lung which is explored further for lung transplant patients in the next chapter along 

with the effect of heterogeneity over the 𝑅(𝑓). 

  



60 

 

CHAPTER 6: INVESTIGATING 𝑹(𝒇) DUE TO 

HETEROGENEITY OF VENTILATION IN THE LUNG 

In this chapter, we took advantage of some recent measurements in my laboratory to 

investigate the 𝑅(𝑓) and potentially relate it to measures of heterogeneity and assessed by lung 

imaging (section 6.1) as well as time-varying lung mechanics (section 6.2) in data collected from 

post-LT patients at risk of developing CLAD as introduced in Chapter 1 section 1.6. 

6.1 INVESTIGATING HETEROGENEITY IN LUNG TRANSPLANT 

PATIENTS 

6.1.1 Methods 

My lab group is conducting a study to explore measurements of heterogeneity in subjects’ 

post-lung transplants as a potentially sensitive measure to detect CLAD. I’ve helped collect 

oscillometry data in some of the patients. In this thesis, I have included data from the 9 subjects 

we have recruited thus far. Their demographic data can be seen in Table 6.1. The study protocol 

is depicted in a flow chart in Figure 6.1. Briefly, we obtain spirometry data (with the help of S. 

Fulton, the respiratory technologist) and collected the oscillometry data aided by summer students 

C. Potter, A. Brezovan, and M. Renn using the TremofloTM software.  

Table 6.1: Post-LT Patients demographics data  

Patient 9 

Years since transplant 9.25 ± 3.99 

Sex 7 𝑀 / 2𝐹 

Age (years) 61.44 ± 8.25 

Weight (kg) 79.13 ± 14.89 

Height (cm) 171.67 ± 8.57 

 Best post-LT Visit 1 

FVC (% Ref) 94 ± 14.02 90.13 ± 12.85 

FEV1 (% Ref) 92 ± 15.36 73.5 ± 22.99 

FEV1/FVC (% Ref) 78.63 ± 11.40 64.13 ± 17.08 
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Table 6.1 also shows FVC, FEV1, and FEV1/FVC the measures of the Spirometry, we can 

see that for visit one the mean is significantly low with a substantially large standard deviation 

indicating the LT patients with BOS. 

 

Figure 6.1: Flow Chart of CLAD Study 

Figure 6.1 shows the flow chart of the study protocol. In this study for each patient, there 

are 3 –  5 recordings of oscillometry in supine and upright followed by spirometry and then 

subjects inhale a bronchodilator and the measurements are repeated 20 minutes later, although for 

this study we only used pre-bronchodilator data. Oscillometry was performed according to 

ATS/ERS technical standards, with at least 3 repeated measurements with the coefficient of 

variation of resistance at 5 𝐻𝑧 of less than 0.10. The study also includes SPECT/CT imaging data 

recorded prior to the oscillometry measurements. The summer students largely conducted the 

image analysis with supervision from myself and Dr. Maksym, quantifying the heterogeneity 

measures. The inhalation protocol for the Technegas as well as the imaging method is explained 

in detail later in the chapter. 

From the CT images, the user chooses a threshold to segment the lungs from the chest wall 

(which includes the diaphragm and heart as well as larger blood vessels). The software uses 

thresholds from three separate slices through the lungs, central and two more slices each midway 

to the central surfaces and dorsal surface, and then creates a surface describing the lung chest-wall 

boundary. The summer students then manually removed any of the trachea and mainstem bronchi 

that were part of the mask in a refinement step. This mask then represents the potentially aerated 



62 

 

volume of the lungs for analysis. From the volume within the mask is computed the coefficient of 

variation of image intensity (CoV) [87] which I used as an index of ventilation heterogeneity as 

can be seen in equation  𝐶𝑜𝑉 =
𝑆𝐷(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠)

𝑀𝑒𝑎𝑛(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠)
 (6.1.  

 𝐶𝑜𝑉 =
𝑆𝐷(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠)

𝑀𝑒𝑎𝑛(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠)
 (6.1) 

I used the CoV to explore the hypothesis that heterogeneity of ventilation is related to the 

frequency dependence of resistance which has been thought to arise from heterogeneity of airway 

diameters as described in section 1.4.2. I also calculated percentage predicated 𝑅5−19 using the 

representative healthy data corresponding to individual patients from the Oostveen Database [2], 

which represents the comparison of disease. 

As mentioned previously, the imaging is done by radiology technologists at the QEII, 

supervised by Dr. A. Ross, and largely the image analysis was carried out by summer students C. 

Potter, A. Brezovan, and M. Renn under the supervision of Dr. Ross and my supervisor G Maksym. 

Patients performed a ten-second breath-hold of 555𝑀𝑞 of Technetium-99m (Technegas), 

vaporized in a carbon vessel, inhaled through a closed spirometer system until a count rate of 

1500 𝑘𝑝𝑠 or greater was reached. Briefly, patients first inhale Technegas while supine and a short 

SPECT scan is done to check if the inhaled dose is sufficient, if not, a second inhalation is done. 

Following this, CT is then obtained after exhalation and the patient is instructed to cease breathing 

for a few seconds. Then they can breathe normally, and Ventilation SPECT is obtained for approx. 

10 − 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 of normal breathing. Details regarding the imaging methodology and image 

reconstruction can be found here [88], [89] but briefly. Image segmentation of the CT is used to 

define the chest wall boundary including the diaphragm, and some smaller regions such as 

mainstem bronchi, blood vessels are also excluded from the lung tissue (parenchyma) volume. 

This was either done using Hermes software or freely available segmentation software 3D slicer. 

Differences between approaches were very small (< 35 ml not shown) likely due to the clarity in 

the chest-wall boundary by CT. The CoV of the intensity from the VSPECT images is then 

calculated after applying the mask to the VSPECT. 

During oscillometry we also collected 30 seconds of 10 Hz single frequency oscillometry 

from which the variation in impedance with time can be measured i.e., the real-time recording of 

10 𝐻𝑧 collect from lung transplant patients and tested the hypothesis the variation of 𝑋𝑟𝑠 at 10 𝐻𝑧 
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as a measure of the temporal variation of lung elastance might also be related to the frequency 

dependence of resistance, in oscillometry measurements, even though this was not predicted to be 

very strong in chapter 5. 

6.1.2 Results and Discussion 

Two examples of coronal (frontal) plane slices showing VSPECT data using the color bar 

overlayed on the CT image in pale magenta are shown in Figure 6.2. Locations, where the 

Technegas particles have been deposited in high concentration, are indicated by the red while 

where little or no particles have been deposited are indicated by dark blue. These images have been 

scaled to the maximum intensity voxel (𝑣𝑎𝑙𝑢𝑒 1.0) over all slices of the lung volume, and thus the 

maximum does not necessarily appear in the slice shown. The patient on the left is a healthier 

patient with better deposition more thoroughly in the slice, as well as with normal spirometry and 

oscillometry. While the patient on the right has highly heterogeneous deposition, and we can see 

‘hot’ spots of ventilation whereas the rest of the lung is not being ventilated indicating in the case 

of BOS i.e., CLAD. 

 

Figure 6.2: (left) Technegas deposition (red max 0.74, blue min 0) in a coronal slice of a post LT subject with 
normal mechanics, (right) Technegas deposition (red max 0.31) in a coronal slice of a post LT subject with 
Bronchiolitis Obliterans 

In order to quantify the heterogeneity from the images as mentioned earlier, CoV was 

calculated. The imaging measure (CoV) is then correlated with 𝑅5−19 which is defined as 𝑅(𝑓) 

mentioned earlier as oscillometry measure. 
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Figure 6.3: R(f) correlated with imaging variables 

In Figure 6.3 we can see 𝑅(𝑓) as well as percentage predicted 𝑅(𝑓) is correlated with CoV 

in order to study the effect of heterogeneity over the 𝑅(𝑓). It is evident that 𝑅5−19 (𝑅(𝑓)) is highly 

correlated to CoV with 𝑝 = 0.001 as well as it is correlation linearly increasing indicating that 

higher heterogeneity results in higher 𝑅(𝑓). It is also clear that there is a strong linear correlation 

between CoV and %predicted 𝑅(𝑓) (𝑝 = 0.004) indicating that the heterogeneity increases the 

𝑅(𝑓) regardless of other factors like BMI etc. 

We have investigated 𝑅(𝑓) in respiratory mechanics dependence on the heterogeneity of 

ventilation arising from diseases in lung transplant patients. This was done by exploring through 

VSPECT/CT imaging in post-LT subjects who develop heterogeneous lung dysfunction. Using 

the quantitative measures of imaging and oscillometry measurements of 𝑅(𝑓). The next section is 

the effect of time-varying lung mechanics in post-LT patients using the time variation in reactance 

at 10 Hz as an estimate of the time variation in elastance and tested by correlation with measured 

𝑅(𝑓) over 5 𝑡𝑜 37 𝐻𝑧. 

6.2 INVESTIGATING TIME-VARYING CHARACTERISTICS IN LUNG 

TRANSPLANT PATIENTS 

6.2.1 Methods 

The oscillometry data collected was collected at 10 𝐻𝑧 to obtain the time-varying lung 

mechanics parameters i.e., resistance and reactance. The reactance at 10 𝐻𝑧 was used to check the 
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correlation with 𝑅(𝑓) using the reactance as an estimate of the time-varying elastance as Alamdari 

who’s time variation in elastance leads to 𝑅(𝑓). The reactance at 10 𝐻𝑧 was first cleaned using 

the quality control standards (Appendix B). The standard deviation of reactance at 10 𝐻𝑧 was used 

to assess the variation and the correlation with  𝑅(𝑓) assessed. 

6.2.2 Results and Discussions 

 

Figure 6.4: Correlations of R(f) with STD X10 

In Figure 6.4, despite a wide range of both 𝑅5−19 and 𝑠𝑡𝑑(𝑋10) we can see that there is no 

correlation between 𝑅(𝑓) (𝑅5−19) with time-varying lung mechanics i.e., the standard deviation of 

𝑋10 for either supine (𝑝 = 0.64) or upright (𝑝 =  0.23) position. This implies that for lung 

transplant patients time-varying lung mechanics did not affect the frequency dependence of lung 

resistance. However, as we showed in Figure 6.4 heterogeneity as assessed by VSPECT imaging 

was more related to 𝑅(𝑓) from oscillometry. However, it may be that the variation in reactance at 

10 𝐻𝑧 was not a good estimate of the elastance, since it is closer to the resonance frequency where 

inertance matches elastance and reactance is zero. However, more likely is that 𝑅(𝑓) was not 

affected by any variation in reactance. As we found in Chapter 6, time variation from nonlinearity 

has only negligible effects on 𝑅(𝑓) measured during oscillometry. While we did not model the 

effects from other sources of time variation that might induce variation in the oscillatory frequency 

in Chapter 5, it might be useful to assess the variation in phase with the flow in these subjects, 

although this is likely to be quite small. However, the correlation of 𝑅(𝑓) with heterogeneity for 

volume SPECT imaging leads to this being a more likely contributing mechanism to 𝑅(𝑓) in the 

oscillometry range.  
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CHAPTER 7: DISCUSSIONS & CONCLUSIONS 

In Chapter 4 we found that nonlinearity can produce time-varying dependence of lung 

tissue mechanics that leads to 𝑅(𝑓) in the low-frequency range, which had not been demonstrated 

before. Thus, this thesis adds a new mechanism, nonlinear induced time variation of mechanics 

that can cause 𝑅(𝑓). This was found to be present at the level of the lung tissue and added to the 

underlying contribution by tissue viscoelasticity (𝜂) to 𝑅(𝑓).  

This was dependent on the degree of nonlinearity. Increasing the stretch amplitude resulted 

in higher nonlinearity and increased time-variation of mechanics that resulted in higher 𝑅(𝑓). 

Similarly, the contribution to 𝑅(𝑓) was increased at higher operating stains. The most interesting 

result we obtained was the effect of alpha which can be altered in disease increasing the tissue 

nonlinearity. We saw that when both operating strain and alpha values were increased that the 

contribution to 𝑅(𝑓) was the strongest.  

In Chapter 5 we found higher operating volumes and greater nonlinearity that is associated 

with respiratory diseases of fibrosis and emphysema each would lead to higher 𝑅(𝑓) attributed to 

increased time-varying stiffness of the lung. This was true for oscillation of the lung during 

mechanical ventilation while measuring impedance at the frequencies of ventilation. However, we 

lose this effect during oscillometry, as the oscillometry is much smaller in amplitude and at higher 

frequencies where effects on 𝑅(𝑓) are reduced. Indeed, in chapter 6 we found no evidence of 𝑅(𝑓) 

being related to time variation in mechanical properties in lung transplant patients, but a strong 

relationship to heterogeneity as assessed by VSPECT imaging.  

Thus, we show that nonlinearity in lung tissue and the PV-curve can lead to substantial 

𝑅(𝑓) independent of any other mechanism and adds to any 𝑅(𝑓) due to tissue viscoelasticity in 

the low-frequency breathing frequency range.  

These findings are potentially important for the interpretation of the number of different 

types of experiments currently done, where data is presented in the literature. These include 

measurements of mechanics for subjects on a ventilator when the waveform for ventilation is used 

to estimate the impedance of the respiratory system. A portion of the subject 𝑅(𝑓) will not only 

be due to the viscoelastic properties of the lung and chest wall tissues, but a portion of it can arise 

from the nonlinearity in the pressure-volume curve and the time variation that occurs in the 
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mechanical properties as demonstrated in Chapter 5. 𝑅(𝑓) was previously demonstrated in 

measurements of patients in the low-frequency range, and thus this mechanism may be responsible 

for some of the 𝑅(𝑓)  observed including the seminal work by Suki and Kaczka [37], [79], [90], 

[91]. In disease there would be the possibility of additional sources of 𝑅(𝑓) arising from 

heterogeneity in airway resistances in the multi-branch airway tree [70], [92], this is known to be 

a substantial contributing mechanism as demonstrated with physical models [21], [93]–[95]. 

Indeed, we found using imaging that heterogeneity by VSPECT was strongly correlated to R(f) in 

agreement with the literature. However, these mechanisms likely overlap as tissue disease alters 

the PV curve, but also introduces heterogeneity, which might thus both be present adding to 𝑅(𝑓).  

On the other hand, in the oscillometry range, the effect is much reduced. In Chapter 5 we 

showed that in the oscillometry range the effect is greatly reduced due to in theory nonlinearity 

being strongly excited/stimulated by large-amplitude oscillation such as breathing which we 

simulated at lower frequencies even though there is large amplitude breathing during oscillometry. 

However, it is not at the frequency of oscillations therefore as we found, it doesn’t affect the 

measured mechanics. The only effect of the nonlinearity on 𝑅(𝑓) comes from the small amplitude 

of oscillation being applied due to oscillometry, which produces a small but negligible effect. 

Therefore, it is likely that as long as there is little contamination to the oscillatory frequencies from 

the breathing signal that may be affected by nonlinearity or simply varying in phase with the flow, 

there will be little effect on 𝑅(𝑓) from time variation in mechanical properties. It is possible that 

with flow limitation and very non-sinusoidal breathing patterns that contamination of the 

oscillometry signal could lead to some 𝑅(𝑓) but we did not examine this.  

In Chapter 6 we have investigated 𝑅(𝑓) in respiratory mechanics dependence on the 

heterogeneity of ventilation arising from diseases in lung transplant patients. This was done by 

exploring through VSPECT/CT imaging in post-LT subjects who develop heterogeneous lung 

dysfunction. Using the quantitative measures of imaging and oscillometry measurements of 𝑅(𝑓). 

We observed strong correlations and significant results, where the increase in heterogeneity 

linearly increases 𝑅(𝑓) making it the strongest source. We also studied the effect of time-varying 

lung mechanics in post-LT patients using the time variation in reactance at 10 𝐻𝑧 as an estimate 

of the time variation in elastance and tested by correlation with measured 𝑅(𝑓) over 5 −  37 𝐻𝑧. 
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However, there was no correlation with 𝑅(𝑓) which agrees with the finding that oscillometry range 

time-variation is not likely to have much effect on 𝑅(𝑓) 

There are some limitations of this result - we only simulated breathing that was confined 

to a single frequency. Breathing does have noise energy that extends over many frequencies, and 

it is possible, particularly with flow limitation and maybe in children that the breathing oscillation 

noise might affect 5 𝐻𝑧 and might introduce some 𝑅(𝑓). Flow limitation does tend to produce 

variation in phase with the flow during breathing, but this was not studied in this thesis.  

7.2 CONTRIBUTIONS FROM THESIS 

1) A. Tahir, C. Potter, P. Hernandez, A. Ross, and G. Maksym, “Ventilation Heterogeneity 

Assessed by VSPECT and Altered Lung Mechanics Post Lung-Transplant,” BMES 2019 

Annual Meeting, Oct 2019, presented a poster in Philadelphia, USA. 

2) A. Tahir, “VSPECT/CT and FOT in Lung Transplant”, CRRN Annual 

General/Investigator Meeting, Jan 2020 presented in the lightning round presentation in 

Ottawa, Canada. 

3) A. Tahir, C. Potter, A. Brezovan, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, G. 

Mawko, S. Fulton and G. Maksym, “Heterogeneity and Altered Lung Mechanics in Lung 

Allograft Dysfunction using Ventilation SPECT/CT and Oscillometry Post-Lung 

Transplant”, Canadian Respiratory Conference 2020, April 2020, abstract got accepted 

for poster presentation in Niagara Falls, Canada. 

4) A. Tahir, A. Brezovan, C. Potter, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, G. 

Mawko, S. Fulton and G. Maksym, “Investigating Ventilation SPECT/CT and 

Oscillometry Post-Lung Transplant for Ventilation Heterogeneity as Marker for Chronic 

Lung Allograft Dysfunction”, ATS International Conference 2020, May 2020, abstract 

got accepted for ORAL presentation Mini-Symposium and also got accepted for 10th 

Annual CTS Research Poster Competition. 

5) A. Tahir, M. Renn, P. Hernandez, A. Ross, M. Chiasson, N. Morrison, and G. Maksym, 

“Investigating the Origin of the Frequency Dependence of Respiratory Resistance to 

Airflow in Post Lung Transplant Patients as a Marker for Chronic Lung Allograft 

Dysfunction”, ATS International Conference 2021, May 2021, presented an online poster. 

In addition to the above peer-reviewed contributions, I also presented in department 

seminar, October 2020 and 2 research days, June 2020, and June 2021 respectively. I also received 

2nd prize in the Master presentation category in Research Day 2021. 
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7.3 FUTURE WORK/DIRECTIONS 

To answer the question if time variation in mechanics can lead to 𝑅(𝑓) even in the 

oscillometry frequency range from harmonics in the breathing signal affecting 5 𝐻𝑧 in above, this 

needs to be assessed experimentally. This is probably best done with subjects with flow limitation 

as the variation in reactance is quite large, and the waveform is a square wave not sinusoidal as 

can be observed in the study by Dellaca et al. [34]. 

Other experiments can be done to investigate this work further. I was only able to model 

how time variation from nonlinearity in lung tissue could lead to 𝑅(𝑓). This could be done in-vitro 

with lung tissue such as proposed in chapter 3. It would be useful to also model disease using 

enzymes to alter the nonlinearity and explore if this alters 𝑅(𝑓). 

It would also be useful to explore how much additional resistance is from time variation of 

mechanical stiffness during mechanical ventilation, either in animals or in ventilated humans. This 

could be done at a single frequency or using more natural breathing waveforms from mechanical 

ventilation or the optimal ventilator waveform to validate the model.  

The magnitude of 𝑅(𝑓) from tissue nonlinearity could also be compared to effects of shunt 

and heterogeneity which can be modeled using a two-compartment model or other multi-

compartment models using several different exiting techniques presented in [17], [19], [20], [22], 

[80], [96], [97]. One could implement a model with a shunt for different patients such as children 

where shunt might be more important and also compare that to the effect of nonlinearity of PV 

curve if there is data available for pediatric PV relationships.  

Optimal Ventilator Waveform can be implemented to induce heterogeneity is another idea 

that needs attention. There is no single ideal solution because practically all the sources’ effects 

each other and have contribution together at the same time and you cannot separate them in order 

to explore individually in-vivo. For example, even in modeling, we decided to focus on 

nonlinearity contribution, however how big the contribution of heterogeneity over the 𝑅(𝑓), it is 

good to see the comparison. This can be done to quantify the magnitude of 𝑅(𝑓) in relation to 

heterogeneity in-vivo in comparison to nonlinearity with the disease. It is challenging because the 

disease can increase the effectiveness of both heterogeneity and nonlinearity. 

 



70 

 

BIBLIOGRAPHY 

[1] K. Bruce and S. Bruce, Berne & Levy Physiology - 7th Edition. Elsevier, 2018. 

[2] E. Oostveen et al., “Respiratory impedance in healthy subjects: Baseline values and 

bronchodilator response,” Eur. Respir. J., vol. 42, no. 6, pp. 1513–1523, 2013. 

[3] G. G. King et al., “Technical standards for respiratory oscillometry,” Eur. Respir. J., vol. 

55, no. 2, 2020. 

[4] H. Schulz et al., “Reference Values of Impulse Oscillometric Lung Function Indices in 

Adults of Advanced Age,” PLoS One, vol. 8, no. 5, 2013. 

[5] F. M. Ducharme, I. Jroundi, G. Jean, G. L. Boutin, C. Lawson, and B. Vinet, “Interdevice 

agreement in respiratory resistance values by oscillometry in asthmatic children,” ERJ Open 

Res., vol. 5, no. 1, 2019. 

[6] J. V. Cavalcanti, A. J. Lopes, J. M. Jansen, and P. L. Melo, “Detection of changes in 

respiratory mechanics due to increasing degrees of airway obstruction in asthma by the 

forced oscillation technique,” Respir. Med., vol. 100, no. 12, pp. 2207–2219, 2006. 

[7] C. A. Lall et al., “Airway resistance variability and response to bronchodilator in children 

with asthma,” Eur. Respir. J., vol. 30, no. 2, pp. 260–268, 2007. 

[8] G. N. Maksym, C. A. Lall, P. Hernandez, and P. Pianosi, “Respiratory System Reactance: 

a sensitive indicator of bronchodilator effect in children with asthma,” in ATS, 2005, p. 2. 

[9] D. Czövek et al., “Tidal changes in respiratory resistance are sensitive indicators of airway 

obstruction in children,” Thorax, vol. 71, no. 10, pp. 907–915, 2016. 

[10] Z. Hantos, A. Adamicza, E. Govaerts, and B. Daroczy, “Mechanical impedances of lungs 

and chest wall in the cat,” J. Appl. Physiol., vol. 73, no. 2, pp. 427–433, 1992. 

[11] Z. Hantos, B. Daroczy, B. Suki, and S. Nagy, “Low-frequency respiratory mechanical 

impedance in the rat,” J. Appl. Physiol., vol. 63, no. 1, pp. 36–43, 1987. 

[12] T. Hirai, K. McKeown, R. Gomes, and J. Bates, “Effects of lung volume on lung and chest 

wall mechanics in rats,” J. Appl. Physiol., vol. 86, no. 1, pp. 16–21, 1999. 



71 

 

[13] S. Wagers, L. K. Lundblad, M. Ekman, C. G. Irvin, and J. H. Bates, “The allergic mouse 

model of asthma: normal smooth muscle in an abnormal lung?,” J. Appl. Physiol., vol. 96, 

no. 6, pp. 2019–2027, 2004. 

[14] K. R. Lutchen, D. W. Kaczka, B. Suki, G. Barnas, G. Cevenini, and P. Barbini, “Low-

frequency respiratory mechanics using ventilator-driven forced oscillations,” J. Appl. 

Physiol., vol. 75, no. 6, pp. 2549–2560, 1993. 

[15] B. Suki, A. L. Barabasi, and K. R. Lutchen, “Lung tissue viscoelasticity: A mathematical 

framework and its molecular basis,” J. Appl. Physiol., vol. 76, no. 6, pp. 2749–2759, 1994. 

[16] B. Suki and J. H. T. Bates, “Lung tissue mechanics as an emergent phenomenon,” J. Appl. 

Physiol., vol. 110, no. 4, pp. 1111–1118, 2011. 

[17] J. Glapiński, J. Mroczka, and A. G. Polak, “Analysis of the method for ventilation 

heterogeneity assessment using the Otis model and forced oscillations,” Comput. Methods 

Programs Biomed., vol. 122, no. 3, pp. 330–340, 2015. 

[18] J. Herrmann, M. H. Tawhai, and D. W. Kaczka, “Parenchymal strain heterogeneity during 

oscillatory ventilation: Why two frequencies are better than one,” J. Appl. Physiol., vol. 

124, no. 3, pp. 653–663, 2018. 

[19] J. Bates, “The Role of Airway Shunt Elastance on the Compartmentalization of Respiratory 

System Impedance,” J. Eng. Sci. Med. Diagnostics Ther., vol. 2, no. 1, pp. 1–8, 2019. 

[20] S. A. Bhatawadekar, D. Leary, and G. N. Maksym, “Modelling resistance and reactance 

with heterogeneous airway narrowing in mild to severe asthma,” Can. J. Physiol. 

Pharmacol., vol. 93, no. 3, pp. 207–214, 2015. 

[21] B. H. Foy et al., “Lung computational models and the role of the small airways in asthma,” 

Am. J. Respir. Crit. Care Med., vol. 200, no. 8, pp. 982–991, 2019. 

[22] H. H. Alamdari, K. El-Sankary, and G. N. Maksym, “Time-Varying Respiratory Mechanics 

as a Novel Mechanism Behind Frequency Dependence of Impedance: A Modeling 

Approach,” IEEE Trans. Biomed. Eng., vol. 66, no. 9, pp. 2433–2446, 2019. 

[23] H. Hanafi, “Design Of Piezoelectric Oscillometry , Accuracy In Tracking Time-Varying 

Impedance And Implications On The Frequency Dependence Of Resistance,” 2015. 



72 

 

[24] S. Rutting, D. G. Chapman, C. S. Farah, and C. Thamrin, “Lung heterogeneity as a predictor 

for disease severity and response to therapy,” Curr. Opin. Physiol., vol. 22, p. 100446, 2021, 

doi: 10.1016/j.cophys.2021.05.009. 

[25] S. J. Dong, L. Wang, P. Chitano, H. O. Coxson, P. D. Pare, and C. Y. Seow, “Airway 

diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep 

inspiration-induced bronchodilation and bronchoprotection,” Am. J. Physiol. - Lung Cell. 

Mol. Physiol., vol. 321, no. 4, pp. L663–L674, 2021, doi: 10.1152/AJPLUNG.00208.2021. 

[26] Y. C. Fung, Biomechanics — Mechanical properties of living tissue, vol. 2. 1993. 

[27] R. L. Eddy, A. Westcott, G. N. Maksym, G. Parraga, and R. J. Dandurand, “Oscillometry 

and pulmonary magnetic resonance imaging in asthma and COPD,” Physiol. Rep., vol. 7, 

no. 1, pp. 1–12, 2019. 

[28] M. Cauberghs and K. P. Van De Woestijne, “Effect of upper airway shunt and series 

properties on respiratory impedance measurements,” J. Appl. Physiol., vol. 66, no. 5, pp. 

2274–2279, 1989. 

[29] L. A. Zadeh, “Frequency Analysis of Variable Networks,” Proc. I.R.E. Freq., vol. 27, pp. 

170–177, 1950. 

[30] B. Min, W. Welkowitz, and S. Fich, “Frequency analysis of time-varying elastance model 

of the left ventricle,” Bull Math Biol, vol. 42, no. 2, pp. 173–80, 1980. 

[31] B. Sanchez, E. Louarroudi, E. Jorge, J. Cinca, R. Bragos, and R. Pintelon, “A new 

measuring and identification approach for time-varying bioimpedance using multisine 

electrical impedance spectroscopy.,” Physiol Meas., vol. 34, no. 3, pp. 339–57, 2013. 

[32] K. Paliwal, K. Wójcicki, and B. Schwerin, “Single-channel speech enhancement using 

spectral subtraction in the short-time modulation domain,” Speech Commun., vol. 23, no. 4, 

pp. 550–565, 2010. 

[33] M. Bertha and J.-C. Golinval, “Identification of non-stationary dynamical systems using 

multivariate arma models,” Mech. Syst. Signal Process., vol. 88, pp. 166–179, 2017. 

[34] R. L. Dellacà et al., “Detection of expiratory flow limitation in COPD using the forced 

oscillation technique,” Eur. Respir. J., vol. 23, no. 2, pp. 232–240, 2004. 



73 

 

[35] G. J. Gibson, N. B. Pride, J. Davis, and R. C. Schroter, “Exponential description of the static 

pressure-volume curve of normal and diseased lungs,” Am. Rev. Respir. Dis., vol. 120, no. 

4, pp. 799–811, 1979. 

[36] D. Navajas, S. Mijailovich, G. M. Glass, D. Stamenovic, and J. J. Fredberg, “Dynamic 

response of the isolated passive rat diaphragm strip,” J. Appl. Physiol., vol. 73, no. 6, pp. 

2681–2692, 1992. 

[37] D. W. Kaczka, E. P. Ingenito, B. Suki, and K. R. Lutchen, “Partitioning airway and lung 

tissue resistances in humans: Effects of bronchoconstriction,” J. Appl. Physiol., vol. 82, no. 

5, pp. 1531–1541, 1997. 

[38] H. M. Young, F. Guo, R. L. Eddy, G. Maksym, and G. Parraga, “Oscillometry and 

pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: 

Relationship to quality of life and disease control,” J. Appl. Physiol., vol. 125, no. 1, pp. 

73–85, 2018. 

[39] D. Navajas, G. N. Maksym, and J. Bates, “Dynamic viscoelastic nonlinearity of lung 

parenchymal tissue,” J. Appl. Physiol., vol. 79, no. 1, pp. 348–356, 1995. 

[40] E. Yi et al., “Mechanical forces accelerate collagen digestion by bacterial collagenase in 

lung tissue strips,” Front. Physiol., vol. 7, no. JUL, pp. 1–12, 2016. 

[41] E. Bartolák-Suki, A. S. LaPrad, B. C. Harvey, B. Suki, and K. R. Lutchen, “Tidal stretches 

differently regulate the contractile and cytoskeletal elements in intact airways,” PLoS One, 

vol. 9, no. 4, p. e94828, 2014. 

[42] A. O. J. Singleton, C. Dev, J. Mount, and A. O. 3rd Singleton, “Respiratory function tests 

and postoperative pulmonary complications.,” Med. Times, vol. 93, no. 10, pp. 1109–1112, 

Oct. 1965. 

[43] A. B. Otis, “A perspective of respiratory mechanics.,” J. Appl. Physiol., vol. 54, no. 5, pp. 

1183–1187, May 1983. 

[44] A. D. Karakaplan, M. P. Bieniek, and R. Skalak, “A mathematical model of lung 

parenchyma,” J. Biomech. Eng, vol. 102, pp. 124–136, 1980. 

[45] D. Stamenovic and T. A. Wilson, “A strain energy function for lung parenchyma,” J. 



74 

 

Biomech. Eng, vol. 107, pp. 81–86, 1985. 

[46] T. A. Wilson, J. J. Fredberg, J. R. Rodarte, and R. E. Hyatt, “Interdependence of regional 

expiratory flow,” J. Appl. Physiol, vol. 59, pp. 1924–1928, 1985. 

[47] Y. Lanir, “Constitutive equations for the lung tissue,” J. Biomech. Eng, vol. 105, pp. 374–

380, 1983. 

[48] J. R. Ligas, J. F. P. Primiano, and G. M. Saidel, “Static mechanics of excised whole lung: 

pleural mechanics.,” Ann. Biomed. Eng, vol. 12, pp. 437–448, 1984. 

[49] E. Kimmel, R. D. Kamm, and A. H. Shapiro, “A cellular model of lung elasticity,” J. 

Biomech. Eng, vol. 109, pp. 126–131, 1987. 

[50] B. Budiansky and E. Kimmel, “Elastic moduli of the lungs,” J. Appl. Mech. Trans. ASME, 

vol. 54, pp. 351–358, 1987. 

[51] S. J. Lai-Fook, T. A. Wilson, R. E. Hyatt, and J. R. Rodarte, “Elastic constants of inflated 

lobes of dog lungs,” J. Appl. Physiol, vol. 40, pp. 508–513, 1976. 

[52] L. E. Mount, “The ventilation flow-resistance and compliance of rat lungs,” J. Physiol. 

Lond., vol. 127, pp. 157–167, 1955. 

[53] J. Mead, T. Takishima, and D. Leith, “Stress distribution in lungs: a model of pulmonary 

elasticity,” J. Appl. Physiol, vol. 28, pp. 596–608, 1970. 

[54] T. A. Wilson, “A continuum analysis of a two-dimensional mechanical model of the lung 

parenchyma,” J. Appl. Physiol, vol. 33, pp. 472–478, 1972. 

[55] R. K. Lambert and T. A. Wilson, “A model for the elastic properties of the lung and their 

effect of expiratory flow,” J. Appl. Physiol, vol. 34, pp. 34–48, 1973. 

[56] D. L. Vawter, Y. C. Fung, and J. B. West, “Constitutive equation of lung tissue elasticity,” 

J. Biomech. Eng, vol. 105, pp. 38–45, 1979. 

[57] Y. C. Fung, “A theory of elasticity of the lung,” J. Appl. Mech. Trans. ASME, vol. 41, pp. 

8–14, 1974. 

[58] D. L. Vawter, Y. C. Fung, and J. B. West, “Elasticity of excised dog lung parenchyma,” J. 

Appl. Physiol. Respir. Environ. Exerc. Physiol., vol. 45, no. 2, pp. 261–269, 1978. 



75 

 

[59] A. Frankus and G. C. Lee, “A theory for distortion studies of lung parenchyma based on 

alveolar membrane properties,” J. Biomech, vol. 7, pp. 101–107, 1974. 

[60] G. C. Lee and A. Frankus, “Elasticity properties of lung parenchyma derived from 

experimental distortion data.,” Biophys. J., vol. 15, pp. 481–493, 1975. 

[61] G. N. Maksym, “Modelling lung tissue rheology,” 1996. 

[62] Z. Hantos, B. Daroczy, B. Suki, G. Galgóczy, and T. Csendes, “Forced oscillatory 

impedance of the respiratory system at low frequencies,” J. Appl. Physiol., vol. 60, no. 1, 

pp. 123–132, 1986. 

[63] H. J. H. Colebatch, C. K. Y. Ng, and N. Nikov, “Use of an exponential function for elastic 

recoil,” J. Appl. Physiol. Respir. Environ. Exerc. Physiol., vol. 46, no. 2, pp. 387–393, 1979. 

[64] H. H. Alamdari et al., “Tracking respiratory mechanics with oscillometry: Introduction of 

time-varying error,” IEEE Sens. J., 2018. 

[65] C. Habre et al., “Radiological findings of complications after lung transplantation,” Insights 

Imaging, vol. 9, no. 5, pp. 709–719, 2018. 

[66] J. M. Gauthier, R. R. Hachem, and D. Kreisel, “Update on Chronic Lung Allograft 

Dysfunction,” Curr. Transplant. Reports, vol. 3, no. 3, pp. 185–191, 2016, doi: 

10.1007/s40472-016-0112-y. 

[67] D. Metter, M. Tulchinsky, and L. M. Freeman, “Current status of ventilation-perfusion 

scintigraphy for suspected pulmonary embolism,” Am. J. Roentgenol., vol. 208, no. 3, pp. 

489–494, 2017. 

[68] A. Voskrebenzev et al., “Detection of chronic lung allograft dysfunction using ventilation-

weighted Fourier decomposition MRI,” Am. Soc. Transplant. Am. Soc. Transpl. Surg., vol. 

18, pp. 2050–2060, 2018. 

[69] G. N. Maksym, “Computer controlled oscillator for dynamic testing of biological soft tissue 

strips Geoff,” 1993. 

[70] G. N. Maksym, R. E. Kearney, and J. H. Bates, “Nonparametric block-structured modeling 

of lung tissue strip mechanics,” Ann. Biomed. Eng., vol. 26, no. 2, pp. 242–252, 1998. 

[71] Z. Hantos, B. Suki, T. Csendes, and B. Daroczy, “Constant-phase modelling of pulmonary 



76 

 

tissue impedance.,” Bull. Eur. Physiopathol. Respir, vol. 23, 1987. 

[72] K. D. W. S. Jennifer L., “Constant-Phase Descriptions of Canine Lung, Chest Wall, And 

Total Respiratory System Viscoelasticity: Effects Of Distending Pressure,” Respir Physiol 

Neurobiol., vol. 183, no. 2, pp. 75–84, 2012. 

[73] J. J. Fredberg and D. Stamenovic, “On the imperfect elasticity of lung tissue,” J. Appl. 

Physiol., vol. 67, no. 6, pp. 2408–2419, 1989. 

[74] P. D. Pare et al., “Exponential analysis of the lung pressure-volume curve as a predictor of 

pulmonary emphysema,” Am. Rev. Respir. Dis., vol. 126, no. 1, pp. 54–61, 1982. 

[75] M. J. Thompson and H. J. H. Colebatch, “Decreased pulmonary distensibility in fibrosing 

alveolitis and its relation to decreased lung volume,” Thorax, vol. 44, no. 9, pp. 725–731, 

1989. 

[76] T. Sugihara, C. J. Martin, and J. Hildebrandt, “Length-tension properties of alveolar wall in 

man.,” J. Appl. Physiol., vol. 30, no. 6, pp. 874–878, 1971. 

[77] J. Hildebrandt, “Pressure-volume data of cat lung interpreted by a plastoelastic, linear 

viscoelastic model.,” J. Appl. Physiol., vol. 28, no. 3, pp. 365–372, 1970. 

[78] E. Salazar, J. H. Knowles, and H. Knowles, “An analysis of pressure-volume characteristics 

of the lungs An analysis of pressure- volume characteristics of the lungs,” J Appl Physiol, 

vol. c, pp. 97–104, 2013. 

[79] K. R. Lutchen, K. Yang, D. W. Kaczka, and B. Suki, “Optimal ventilation waveforms for 

estimating low-frequency respiratory impedance,” J Appl Physiol, vol. 75, pp. 478–88, 

1993. 

[80] A. B. Otis et al., “Mechanical factors in distribution of pulmonary ventilation,” J. Appl. 

Physiol, vol. 8, pp. 427–443, 1956. 

[81] A. B. Otis, “History of respiratory mechanics,” in Handbook of physiology, 1986, pp. 1–12. 

[82] R. Harris et al., “Regional Pulmonary Perfusion, Inflation, and Ventilation Defects in 

Bronchoconstricted Patients with Asthma.,” Amer J Resp Crit Care Med, vol. 174, no. 3, 

pp. 245–253, 2006. 

[83] J. Venegas et al., “Self-organized patchiness in asthma as a prelude to catastrophic shifts.,” 



77 

 

Nature, vol. 434, no. 7034, pp. 777–782, 2005. 

[84] R. Harris, H. Fujii-Rios, T. Winkler, G. Musch, M. Vidal Melo, and J. Venegas, 

“Ventilation defect formation in healthy and asthma subjects is determined by lung 

inflation.,” PLoS One, vol. 7, no. 12, 2012. 

[85] N. T. Tgavalekos et al., “Relationship between airway narrowing, patchy ventilation and 

lung mechanics in asthmatics,” Eur. Respir. J., vol. 29, pp. 1174–1181, 2007. 

[86] Z. Hantos, “Intra-breath oscillometry for assessing respiratory outcomes,” Curr. Opin. 

Physiol., vol. 22, pp. 1–7, 2021, doi: 10.1016/j.cophys.2021.05.004. 

[87] J. K. Lui, H. Parameswaran, M. S. Albert, and K. R. Lutchen, “Linking ventilation 

heterogeneity quantified via hyperpolarized 3He MRI to dynamic lung mechanics and 

airway hyperresponsiveness,” PLoS One, vol. 10, no. 11, pp. 1–15, 2015. 

[88] G. G. King, C. E. Farrow, and D. G. Chapman, “Dismantling the pathophysiology of asthma 

using imaging,” Eur. Respir. Rev., vol. 28, no. 152, pp. 1–15, 2019. 

[89] C. Farrow and G. King, “SPECT Ventilation Imaging in Asthma,” Semin. Nucl. Med., vol. 

49, no. 1, pp. 11–15, 2019. 

[90] D. W. Kaczka, E. P. Ingenito, E. Israel, and K. R. Lutchen, “Airway and lung tissue 

mechanics in asthma. Effects of albuterol,” Am J Respir Crit Care Med, vol. 159, pp. 169–

78, 1999. 

[91] D. W. Kaczka, E. P. Ingenito, and K. R. Lutchen, “Technique to determine inspiratory 

impedance during mechanical ventilation: implications for flow limited patients,” Ann 

Biomed Eng, vol. 27, pp. 340–55, 1999. 

[92] J. H. T. Bates, G. N. Maksym, D. Navajas, and B. Suki, “Lung tissue rheology and 1/f 

noise,” Ann. Biomed. Eng., vol. 22, no. 6, pp. 674–681, 1994. 

[93] S. Galant, H. Komarow, H. Shin, S. Siddiqui, and B. Lipworth, “The case for impulse 

oscillometry in the management of asthma in children and adults,” Ann. Allergy, Asthma 

Immunol., vol. 118, no. 6, pp. 664–671, 2017. 

[94] D. Postma et al., “Exploring the relevance and extent of small airways dysfunction in 

asthma (ATLANTIS): baseline data from a prospective cohort study,” Lancet Respir Med, 



78 

 

2019. 

[95] A. Bell and S. Siddiqui, “Image-based simulation and modeling: unlocking small airway 

function tests?,” J. Appl. Physiol., vol. 129, no. 3, pp. 580–582, 2020. 

[96] T. Similowski and J. H. T. Bates, “Two-compartment modelling of respiratory system 

mechanics at low frequencies: Gas redistribution or tissue rheology?,” Eur. Respir. J., vol. 

4, no. 3, pp. 353–358, 1991. 

[97] J. H. T. Bates and O. B. Allen, “The estimation of lung mechanics parameters in the 

presence of pathology: A theoretical analysis,” Ann. Biomed. Eng., vol. 34, no. 3, pp. 384–

392, 2006. 

 

  



79 

 

APPENDIX A: DESIGN REQUIREMENTS 

A.1 TISSUE BATH PERFORMANCE 

1. Keeping the porcine lung tissue alive 

2. The steady flow of Krebs solution with carbogen pumped into the liquid  

3. High sensitivity force transducer with range for tissue force capable of submersion 

4. Preconditioning and sinusoidal stretching of the lung tissue over 150% stretch and 0.03 to 

3 Hz range.  

A.2 TESTING AND CALIBRATION REQUIREMENTS 

1. Calibration of the force transducer 

a. Use of low friction pulley with known weights: 0, 15, 25, 35, 45 grams 

b. Adjust gain and offset for input data acquisition range  

2. Preconditioning 

a. Initialize software to tissue length (𝑙𝑜) 

b. Tissue stretches to twice its length (100% 𝑆𝑡𝑟𝑒𝑡𝑐ℎ = 2𝑙𝑜) and back to the original 

unstretched length with 5-10 repeated cycles, each cycle 1 min. 

c. Set appropriate velocity (VE string for the driver) 

d. Set appropriate acceleration and Deceleration for smooth turns (AC & DE strings 

for the driver) – e.g., setting 25 or 50 

3. Triangle Wave 

a. Triangle waves with frequencies of 0.5, 1, 1.5, 2, 2.5, and 3 Hz are sent 

b. Studied the optimum characteristics of the tissue 

c. Duration – 2, 1, 0.66, 0.5, 0.4, 0.33 sec 

d. Velocity (VE), acceleration, and deceleration (AC & DE) 

e. Amplitude (position of the actuator – FP, FL, or FE string control) 

4. Sinusoidal Wave 

a. Sinusoidal waves with frequencies of 0.5, 1, 1.5, 2, 2.5, and 3 Hz are sent 

b. Studied the optimum characteristics of the tissue 

c. Duration – 2, 1, 0.66, 0.5, 0.4, 0.33 sec 

d. Velocity (VE), acceleration, and deceleration (AC & DE) 

e. Amplitude (position of the actuator – FP, FL, or FE Control) 

A.3 ACTUATOR REQUIREMENTS 

1. 0.3 – 3 Hz Sinusoidal oscillations at full amplitude i.e., twice the length of tissue initial 

length. 
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2. For 100% amp with safety factor for 10%, actuator min, and max position 10% to min, and 

10% to the max – 20% for preconditioning. The performance (i.e., VE & AC) for the PC 

is low.  

3. For 20% amp, for 3 cm tissue with 10% safety factor, sinusoidal amplitude is 

0.5 × 3.3 × 0.2 =  0.33 𝑐𝑚. Velocity maximums are 2𝜋𝑓 × 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠. 

Acceleration maximums are 2𝜋𝑓 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠.  

𝒇𝒐 0.01 0.03 0.1 0.3 1 3 

Position (𝒎𝒎) 3.3 3.3 3.3 3.3 3.3 3.3 

Velocity (
𝒎𝒎

𝒔
) 0.21 0.62 2.07 6.22 20.73 62.20 

Acceleration (
𝒎𝒎

𝒔𝟐
) 0.01 0.12 1.30 11.73 130.28 1172.51 

A.4 PRINCIPAL DESIGN REQUIREMENTS 

1. The triangle wave should achieve performance the time, position, and desired 

characteristic force results 

2. The sinusoidal wave should achieve the time, position, and desired characteristic force 

results 

Theoretically, we should be able to achieve the requirements, as they were in the velocity 

specification but practically, we were not able to, because of communication delays for 

sinusoidal control and switching directions.  

A.5 IMPLEMENTED DESIGN LIMITATIONS OF THE SYSTEM 

After several stepper motor control algorithms were tested. It was possible that the 

specified velocity could be achieved but only with single ramp commands. Delays for 

communicating multiple commands for reversing direction and for the sinusoidal motion were not 

possible. The stepper motor FP command could not be interrupted for adequate control. This was 

because this was a buffered command, not immediate and there were no immediate position control 

commands. Another configuration that used the encoder was also determined to be likely limited 

in the same way as it was also a buffered command with the same time delay. Amongst the motion 

commands, only the ST (Stop Command) had a short time delay for execution. Thus, it was 

determined that position control using this stepper motor and likely most stepper motors would be 
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limited. It was decided to pursue linear actuators. Below is a table of potential actuators for tissue 

testing that were investigated.  

 

Figure A.5.1: Potential linear actuators 

Figure A.5.1 above shows the prospective actuators we could buy and achieve our desired 

requirements, however, due to COVID-19 deliveries were not being allowed due to lockdowns, 

and it was becoming clear with laboratory restrictions as well that it would be better to use 

published measurements rather than pursue measurement.  

  

SR# Speed Stroke Length Feedback Power Current Voltage AC/DC/Both Price Website

1

0.37"/sec (150 lbs); 

1.14"/sec (50 lbs); 

2.00"/sec (35 lbs)

2" - 40"

Built-in 

potentiometer 

feedback

N/A
5 – 1.3 A 

(Full Load)
12 – 48 VDC DC $173.74 

https://www.progressiveautomations.ca/pr

oducts/linear-actuator-with-potentiometer

2

3.15"/sec (33 lbs); 

5.51"/sec (22 lbs); 

9.05"/sec (11 lbs)

1" - 24" No N/A
9 - 2.3 A 

(Full Load)
12 – 48 VDC DC $181.25

https://www.progressiveautomations.ca/pr

oducts/tubular-high-speed-linear-actuator

3 10m/s 5" - 50"
Linear 

Potentiometers
N/A <1mA N/A N/A

$89.00 

USD

https://www.firgelliauto.com/products/potent

iometer

4 2"/sec (35 lbs); 1" - 30"
Optical 

Feedback
N/A 5 A  12V DC DC

$149.99 

USD

https://www.firgelliauto.com/products/opti

cal-sensor-actuators

5 2"/sec (35 lbs); 2" - 12"
potentiometer 

feedback
N/A 5 A  12V DC DC

$139.99 

USD

https://www.firgelliauto.com/products/feedba

ck-rod-actuator

6
4.5" (9" at no load) @ 

22lbs
2" - 38" No N/A 6 A  12V DC DC

$149.00 

USD

https://www.firgelliauto.com/products/high-

speed-actuator

7

No Load Speed 5000 

RPM; 2mm Travel Per 

Revolution

6” screw extended 

from the motor
No  40W 

Rated 

Current < 3A
24 V DC $230.00

https://www.anaheimautomation.com/prod

ucts/brushless/brushless-linear-actuators-

item.php?sID=842&pt=i&tID=1225&cID=

562

8

No Load Speed 4200 

RPM; 5mm Travel Per 

Revolution

12” screw extended 

from the motor
No 34W 

Rated 

Current < 

2.5A 

24 V DC $271.00

https://www.anaheimautomation.com/prod

ucts/brushless/brushless-linear-actuators-

item.php?sID=843&pt=i&tID=1225&cID=

562
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APPENDIX B: INVESTIGATING HETEROGENEITY AND 

TIME-VARIATION EFFECT ON 𝑹(𝒇) 

B.1 PUBLISHED CORRELATIONS  

In addition to the work in this thesis of chapter 6, we also published some correlations from 

the CLAD study data which I include 3 of these below.  

 

Figure B.1.1: Published figure in BMES poster 

In this Figure B.1.1, there are two oscillometry variables, and one spirometry variable, each 

linearly correlated with the coefficient of variation i.e., a variable obtained from VSPECT imaging 

as described in Chapter 6. The oscillometry variables are the percent predicted values of 𝑅5 and 

𝑋5 which are the percent of the individual patient according to their height, weight, and sex [2]. 

The oscillometry data are at 5 𝐻z for resistance and reactance of the lung showing that while 

𝑋5 (%𝑝𝑟𝑒𝑑) was correlated with CoV, 𝑅5 (%𝑝𝑟𝑒𝑑) was not. This implied that with increased 

heterogeneity the lung was stiffer to volume changes implying the loss of regions of the lung for 

ventilation which agrees with the higher levels of heterogeneity as indicated by the increased 

CoV%. Similarly, FEV/FVC% by spirometry decreases with CoV% indicating that there is a loss 

in exhaled volume in 1 second normalized to FVC, indicating some flow limitation with increased 

heterogeneity in the lung. Compared to spirometry which is the standard measure for bronchiolitis 

obliterans (BOS), the correlations appear to be better with 𝑋5 (%𝑝𝑟𝑒𝑑).  
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B.2 QUALITY CONTROL 

Here we wished to examine if our values from a single recording of 30 seconds over 

multiple breaths at a single frequency of 10 𝐻𝑧 after a quality control step were in agreement with 

our repeated measurements at multiple frequencies (5 𝑡𝑜 37 𝐻𝑧) examining the impedance values 

obtained at the closest frequency to 10 𝐻𝑧 out of the multi-frequency signal which was 11 𝐻𝑧. 

The 10 𝐻𝑧 impedance measurements first went through quality control as follows. We visually 

examined all the 𝑋10 and 𝑅10 data vs time. First, a 1 𝐻𝑧 bandpass filter centered at 10 𝐻𝑧 was 

applied then an algorithm that separated and overlapped the breaths for visualization was used. If 

any breath was abnormal to the typical breath it was eliminated. We then compared the std-dev of 

the variable either 𝑅10 or 𝑋10 before and after this quality control step for all patients (Figure B.2.1, 

left). We then also compared the correlation of 𝑋11 to 𝑋10 to see if they agreed (Figure B.2.1, 

right). The 𝑋10 values were then correlated with 𝑅5−19 to test the hypothesis presented in Chapter 

6 section 6.2.2. 

 

Figure B.2.1 Left: Standard deviations of 𝑅10 and 𝑋10 before (blue) and after (orange) quality control for each 
patient? Right: Correlations of 𝑋11 and 𝑅11 from spectral measurements vs. average 𝑋10 and 𝑅10 from single 
frequency-time course measurements after quality control. 

In Figure B.2.1 (left), the blue line represents the older standard deviation of 𝑅10 and 𝑋10 

compared with the standard deviation after quality control in orange. In a couple of subjects, the 

standard deviation changes, but not for most of the subjects. It is evident that the standard deviation 

even after the quality control has not changed significantly as it is found that a lot of data collected 

had noise added to it and even after removing redundant breaths the mean values do not change 
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significantly. In this Figure B.2.1 (right), we can see that after the quality control the impedance 

at 10 and 11 𝐻𝑧 correlate linearly, which shows that data is reliable. 

 

 

Figure B.2.2. Examples of 2 patients time domain for 𝑅10 and 𝑋10 supine (Sup) and upright (Up) pre-
bronchodilator (PreBD) 

In Figure B2.2, we can see the time domain plots for 𝑅10 and 𝑋10 for 2 post-lung transplant 

patients (4 & 8) pre-bronchodilator test for a supine and upright position in the CLAD study. We 

can see that is nice variability in 𝑋10, however, we did not get the correlation with 𝑅5−19 as seen 

in Chapter 6, section 6.2.2. We can also see the presence of noise in the data, also the variation in 

the 𝑅10 is evident, however, that does not contribute to 𝑅(𝑓). 

In conclusion, even though we employed quality control on the 𝑠𝑡𝑑 𝑋10 data, however, the 

method was not highly effective, and we did not receive a significant correlation of 𝑠𝑡𝑑 𝑋10 to 

𝑅(𝑓), might be due to the low signal-to-noise ratio. 

  



85 

 

APPENDIX C: COPYRIGHT RELEASE REQUESTS 

C.1 Figure 1.1 Permission 
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C.2 Figure 1.3 Permission 
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C.3 Figure 1.4 Permission 
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C.4 Figure 1.7 Permission 
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C.5 Figure 1.10 Permission 
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C.6 Figure 1.2 Permission 

 

C.7 Figure 1.5 Permission 

Creative Commons License for: 
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12, 2019. 

C.8 Figure 1.8 Permission 

Creative Commons License for both: 

S. A. Bhatawadekar, D. Leary, and G. N. Maksym, “Modelling resistance and reactance with 

heterogeneous airway narrowing in mild to severe asthma,” Can. J. Physiol. Pharmacol., vol. 93, 

no. 3, pp. 207–214, 2015. 
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C.9 Figure 1.9 Permission 

Creative Commons License for: 

R. L. Dellacà et al., “Detection of expiratory flow limitation in COPD using the forced oscillation 

technique,” Eur. Respir. J., vol. 23, no. 2, pp. 232–240, 2004. 


