
Towards Current-Mode Analog Implementation of

Deep Neural Network Functions

by

Shihao Wang

Submitted in partial fulfillment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

November 2021

© Copyright by Shihao Wang, 2021

i

Table of Contents

List of Tables…………………………………………………………………………………iii

List of Figures………………………………………………………………………………...iv

Abstract……………………………………………………………………………………….vi

List of Abbreviations Used…………………………………………………………………...vii

Acknowledgment……………………………………………………………………………viii

CHAPTER 1 INTRODUCTION

1.1 Background……………………………………………………………………………1

1.2 Contributions………………………………………………………………………….2

1.3 Organization…………………………………………………………………………..4

CHAPTER 2 ARCHITECTURE BACKGROUND

2.1 Definition and application…………………………………………………………….5

2.2 Architecture…………………………………………………………………………..11

CHAPTER 3 LITERATURE REVIEW

3.1 Weight multiplier function……………………………………………………………13

3.2 ReLU activation function……………………………………………………………..16

3.3 Softmax activation function…………………………………………………………..17

CHAPTER 4 PROPOSED DESIGN

4.1 Tunable weight multiplier function…………………………………………………...21

4.2 ReLU activation function based on PWL circuit…………………………………….26

4.3 Approximate Softmax activation function…………………………………………...29

ii

CHAPTER 5 CIRCUIT IMPLEMENTATION & RESULTS DISCUSSION

5.1 Tunable weight multiplier function………………………………………………….32

5.2 ReLU activation function……………………………………………………………34

5.3 Approximate Softmax activation function…………………………………………..37

5.4 Software structure……………………………………………………………………39

5.5 System level results………………………………………………………………….40

CHAPTER 6 FUTURE WORK & CONCLUSION

6.1 Future work………………………………………………………………………….43

6.2 Conclusion…………………………………………………………………………..44

BIBLIOGRAPHY…………………………………………………………………………..45

iii

List of Tables
Table 1. Equations of activation function……………………………………………………7

Table 2. Transistor size of the weight multiplier function circuit…………………………..33

Table 3. Transistor size of the Softmax function circuit……………………………………35

Table 4. Transistor size of the divider function of Softmax function circuit……………….38

Table 5. Test accuracy of different number of bits…………………………………………41

Table 6. Performance comparison with State-of-the-art……………………………………42

iv

List of Figures
Figure 1. The basic structure of the neural network………………………………………..2

Figure 2. The basic structure of the weight multiplier………………………………….….6

Figure 3. (a) Sigmoid function and Tanh function (b) derivative function of Sigmoid and Tanh

function……………………………………………………………………………………..8

Figure 4. Derivative of ReLU function……………………………………………………..9

Figure 5. The architecture of DNN design…………………………………………………11

Figure 6. DC transfer characteristics of the four-quadrant multiplier……………………...14

Figure 7. Transistor level of the existing weight multiplier………………………………..15

Figure 8. ReLU function based on source follower………………………………………...17

Figure 9. Softmax function based on mathematical transformation………………………..19

Figure 10. CM primary implementation circuit…………………………………………….22

Figure 11. Tunable 6 bits CM Output Block………………………………………………..25

Figure 12. Proposed circuit of ReLU function……………………………………………...29

Figure 13. Architecture design of Softmax function………………………………………..31

Figure 14. The overall architecture of the weight multiplier………………………………..33

Figure 15. Results of weight multiplier……………………………………………………..34

Figure 16. Corner analysis results and the ideal case of ReLU function…………………...36

Figure 17. Error function of ReLU function………………………………………………..36

Figure 18. Divider function of ReLU function……………………………………………..37

v

Figure 19. Corner analysis results and the ideal case of ReLU function…………………...38

Figure 20. Error function of the Softmax function………………………………………….39

Figure 21. Test accuracy and power consumption of different corners…………………….42

vi

Abstract

This thesis proposes a CMOS circuit design that implements various Deep Neural Network

functions. DNN has been used in different applications such as image identification and speech

recognition. However, the existing techniques suffer from the high-power consumption of

digital implementation. The proposed design presents a low power consumption analog

implementation of various DNN functions in the subthreshold region. In this thesis, the

implemented circuit blocks include the binary weight multiplier layer, Rectified Linear Unit,

and approximate Softmax layer. The proposed designs were implemented in an accurate and

efficient method.

This design is implemented using 180nm CMOS technology with a 1.5V power supply.

Furthermore, the impact of the proposed design on accuracy was simulated using the MNIST

dataset. Using a four-layer Convolutional Neural Network with an 8 bits resolution, the design

achieved an accuracy of 99.02% with 68.21uW power consumption, which is 35.65% lower

than the existing analog DNN design.

vii

List of Abbreviations Used

CMOS Complementary Metal Oxide Semiconductor

DAC Digital to Analog Converter

ReLU Rectified Linear Unit

DNN Deep Neural Network

ANN Artificial Neural Network

CNN Convolutional Neural Network

CM Current Mirror

PCB Printed Circuit Board

PWL Piecewise Linear Function

viii

Acknowledgment

I would like to give my warmest thanks to everyone who assisted me during my graduate

studies.

First and foremost, I would like to express my sincere thanks to my supervisor, Dr. Kamal El-

Sankary, who made this research work possible. His professional advice carried me through all

the stages of my project. Moreover, he encourages me when I face difficulties during my study.

I would also like to thank Dr. Karama AL-Tamimi and Dr. Issam Hammad for being my co-

supervisor and providing me with such a wonderful project.

Also, I would like to express my sincere thanks to Dr. Gu and Dr. Phillips for being my

committee members, for letting my defense be an enjoyable moment, and for your brilliant

suggestions.

Finally, I would like to thank my family for their assistance during my life; without their love,

I would not be able to achieve my goals. Best regards to all my dear friends for their continuous

support throughout my life.

1

CHAPTER 1 INTRODUCTION

1.1 Background

Neural networks are widely used in many fields, such as engineering, science, and business.

Deep neural network (DNN), which is a special kind of neural network, could be implemented

using interconnected artificial neurons to mimic the process of decision-making in the human

brain [1]-[2]. Therefore, it is one of the promising techniques in different fields, such as image

identification, speech recognition, etc. [3]-[6]. In this sense, a neural network works similarly

to the natural human brain, and it contains multiple layers to analyze a series of data. A simple

neural network consists of three layers: input layer, hidden layer, and output layer. Each layer

of the neural network contains multiple nodes, seen as “neurons” in DNN. A neuron node is a

mathematical function that collects and classifies input data information [7]. These nodes are

interconnected, and the interconnections of each node to other nodes are called weight and bias,

which means that when input is transmitted to the next layer, the weight and bias are applied.

Figure 1 shows the structure of the superficial three layers neural network. They are

transforming the sum of weight and input based on the specific activation functions. The

activation function performs non-linear operations to mimic the complex real-world property.

The ability to learn and model non-linear relationships is the key advantage of the neural

network [8]. Currently, digital design is used as a mainstream method to implement DNNs on-

chip; however, most digital implementations of DNN have the shortcoming of relatively high-

power consumption [11] – [15].

2

Figure 1. The basic structure of the neural network [9]

In Contrast to digital implementation, current-mode subthreshold analog circuit

implementation of DNNs has been gaining attention for its advantages in terms of design

simplicity, parallel processing for a significant number of signals, and low power consumption

[14][16]. DNN design consists of several functional blocks. Implementing each function using

the analog design is necessary to build the entire network in subthreshold current mode. The

proposed design includes a weight multiplier, ReLU (Rectified Linear Unit) activation function,

and Softmax activation function.

1.2 Contributions

According to the discussion above, the thesis proposes a current-mode DNN design that can

satisfy low power consumption and is highly efficient. The proposed circuit aims to satisfy

each functional layer's performance, low power consumption, and against PVT variations at

3

the circuit level. The design achieved a high accuracy at the system level when tested in an

entire DNN network [29]. The contribution of this thesis can be summarized as follow:

1. A tunable binary weight multiplier by using current mirror gain is proposed. The binary

form of weight factor can be separated as MSB bits and LSB bits. Thus, weight

multiplier results include negative parts and positive parts.

2. A ReLU function layer is proposed using a piecewise current-mode linear circuit

through the curve shifting method.

3. An approximate Softmax layer is proposed through the current-mode divider circuit

under the subthreshold region to work at low power.

4

1.3 Organization

The organization of this thesis can be summarized as follow:

In Chapter 2, the architecture background will be discussed, including definition, regular

architecture, and applications of each functional layer.

Chapter 3 focused on the literature review of various implementation methods for each

functional layer and discussed their advantages and disadvantages.

Chapter 4 introduced about proposed design based on the mathematical relationship and layout

design of the proposed DNN. Four parts will separate the proposed analog circuit design:

tunable weight multiplier, PWL ReLU activation function, and approximate Softmax function.

In Chapter 5, the discussion will concentrate on the implementation on both circuit level and

system level, and testing results of the proposed DNN design. Also, this chapter will include a

comparison with state-of-the-art.

Chapter 6 presented the future work and summed up the whole design.

5

CHAPTER 2 ARCHITECTURE BACKGROUND

This chapter will discuss the architecture background, including definition, regular architecture,

and applications of each functional layer.

2.1 Definition and application

An artificial neural network is a web that includes a series of interconnected artificial nodes,

and its theory is based on the inspiration of the human brain. In this case, many scientists

concluded that the brain's learning process is through changes of a large amount of synapse [1].

Thus, the weight factor can be referred to as synapse in DNNs. As the critical computing

element in DNN, weight exists in the connections between presynaptic neurons and

postsynaptic neurons. Expect the weight factor. The bias factor is the other learnable parameter

inside the neural network. During the training process of DNNs, weights and biases are

adjusted in the short term to respond to an immediate learning stimulus. In general, initial

weight and bias factors are random numbers in the specific range before the learning process.

During the learning process, learnable parameters are adjusted toward the desired values

simultaneously. Thus, weight factors influence the value of the output of the weight multiplier.

On the other hand, bias values compensate for the difference between the testing and ideal

values. In the proposed design, the role of the bias value can be replaced by a custom

compensating function; therefore, corresponding to the structure of the neural network, which

is the fully connected network. The basic mathematical equation of the weight multiplier layer

can be expressed as (1):

𝑦 = ∑ (𝑋௜ × 𝑊𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠ே
௜ୀଵ (1)

6

where Xi is the value of the input element, combined with equation 1, the proposed weight

multiplier aims to calculate the sum of weight by using a CMOS analog circuit. The schematic

diagram of the weight multiplier layer can be seen in Figure 2.

Figure 2. The basic structure of the weight multiplier

DNNs include various activation function layers to generate the non-linear output, which finds

the optimal performance of the loss function during the testing process. The activation function

layer aims to transform the summed weighted input signal to define a specific output signal

that helps the network learn complex patterns in the data. Therefore, the output signal of DNNs

will become the real-world information with the activation function layer, such as image, video,

and sound.

Three essential activation functions are widely used in all deep learning architectures as the

hidden layer, shown in Table 1. Compared with these three functions, the ReLU (Rectified

Linear Unit) function is the most outstanding among these basic functions. There are two main

7

reasons why the ReLU function can rapidly become the default activation function in various

neural networks. Firstly, the ReLu function has a simple mathematical relationship, which

means implementing the ReLU function can save much power by using less complex operation

blocks. Thus, ReLU function can be widely used in the low power design of DNNs. Secondly,

ReLU function can solve the vanishing gradient problem. Gradient plays a vital role in the

neural network design, which can measure variable changes and then impact the update of the

weight value. The equation related to gradient and weight can be expressed as (2):

Table 1. Equations of activation function

Function Equation

Sigmoid
𝑓(𝑥) =

1

1 + 𝑒ି௫

Tanh
𝑓(𝑥) =

2

1 + 𝑒ିଶ௫
− 1

ReLU 𝑓(𝑥) = 𝑀𝑎𝑥(0, 𝑥)

 𝑊௫ୀ 𝑊௫−∝ (
డா௥௥௢௥

డௐೣ
) (2)

where 𝑊௫ is the initial weight value, ∝ is the learning rate of the neural network. The vanishing

problem will occur when the derivative term of equation 2 is too small, which means that there

are no significant changes during the testing process. Both sigmoid and tanh functions have

saturating regions. Therefore, the derivative function of these two activation functions will

move through a region with zero gradients, called the “vanishing region”. The mathematical

performance and the relative derivate function can be seen in Figure 3.

8

(a)

(b)

Figure 3 (a) Sigmoid function and Tanh function (b) derivative function of Sigmoid and Tanh

function

The ReLU function can solve the vanishing gradient problem based on its specific

mathematical performance and related derivative function compared with these two activation

functions. For the mathematical relationship of ReLU function, if the ReLu function's input

signal is positive, the output will be a linear function. Otherwise, the output signal will remain

9

zero. Thus, ReLU function does not have the saturated region (vanishing region). Also, the

gradients function of ReLU only has two conditions: zero condition and relatively high

condition, as illustrated in Figure 4.

Figure 4. Derivative of ReLU function

By observing Fig.4, there is no vanishing problem of the ReLU activation function, and the

gradient is either 1 or 0 during the weight updating process. Therefore, as discussed above,

ReLU activation function is the better function during the activating process of the DNNs.

Meanwhile, one layer’s outputs can be seen as the input signal as the next layer. Thus,

according to the architecture, the DNNs, ReLU layer is usually used in the hidden layer and

activates the nodes after the weight multiplier layer.

10

The purpose of the output layer in DNNs is to perform the result through the whole network

design. Therefore, the result can reflect the performance of the proposed DNN design. Thus, A

suitable output layer of the DNN needs to go through the entire design and find the best

performance neuron during the iterative process; therefore, the output layer needs to satisfy

two conditions: normalizing the multi-classification model and the result can be interpreted as

a probability. Thus, Softmax functional layer can be selected as the output layer of DNNs. The

calculated output probabilities of Softmax are in the range between 0 to 1, and the sum of all

the probabilities is equal to 1. Additionally, if the input element has a high value, this input

element will contain a higher output probability after applying the Softmax function, which

follows the principle of statistics. Also, the mathematical equation of the Softmax function has

the summation term of the exponential element, which means that the Softmax function will

traversal each input element.

11

2.2 Architecture

Figure 5. The architecture of DNN design

Fig.5 shows the schematic of the architecture of the DNN design. The scheme has four distinct

layers mapped in series. The output of one layer can be seen as the input signal as the next

layer. The weight multiplier layer provides the basic multiplication operation for the input

elements and weight components. ReLU activation function can distinguish either positive

signal or negative signal and then transfer to the output layer. Finally, the Softmax layer

presents the probability of each element and defines which one contains the highest probability

during the testing process of the DNN. The following chapter will evaluate the different

12

implementation methods of each functional layer and then discuss the advantage of the

proposed design.

13

CHAPTER 3 LITERATURE REVIEW

Chapter 3 will focus on the literature review of various implementation methods for each

functional layer and discuss their advantages and disadvantages. Also, the challenges of each

functional layer are introduced.

3.1 Weight Multiplier Function

As the essential computation element of DNN, multiplication is performed between the input

layer and the corresponding weight elements in neural networks. Therefore, the results after

the multiplier will directly affect the whole system's precision and power consumption. The

analog implementation method has the advantages of low delay and low power consumption

[16][17].

The most common implementation method of the multiplier is the four-quadrant current-mode

analog multiplier. The design principle is keeping CMOS transistors operated in the

subthreshold region. Based on the mathematical relationship, the aim is to use the MOSFET

subthreshold region property to build the V-I antilog cell, which is related to the logarithm and

exponent function, to create the log-antilog multiplier [14]. The output result equation can be

expressed as:

 𝐼௢௨௧ = 𝐾 ∗ 𝐼ଵ𝐼ଶ (3)

14

Where K is the independent controller, 𝐼ଵ, 𝐼ଶ are two input current signals. Therefore, the four-

quadrant current-mode multiplier can perfectly perform the multiplication process in the neural

network. Figure 5 shows the post-layout results of the DC transfer characteristics. Besides,

equation 3 performs as PVT independent result, which means unaffected by environmental

conditions.

Figure 6. DC transfer characteristics of the four-quadrant multiplier [14]

The second standard multiplier implementation method is based on varying the widths of

CMOS transistors to control the value of weights [4]. Compared with the four-quadrant current-

mode analog multiplier, this implementation method only has one input signal, and the weight

vectors can be seen as the gain factor. The weight vectors are implemented by varying the

widths of the relevant CMOS transistor. The multiplying step is summing the current signal

through a relevant input transistor by using a diode-connected load. Figure 7 shows the

transistor schematic of implementing the published weight multiplier.

15

Figure 7. Transistor level of the existing weight multiplier [4]

where X[௜] are the input vectors, 𝑊[௜,௝] are the weight vectors of the multiplier.

This building block is followed by the common-source amplifier (CS) with a PMOS diode load.

The CS method has two main advantages. First, the weight vectors can be split into two halves,

either positive or negative. Second, the CS implementation method can provide the non-linear

characteristic between the drain-source voltage of the PMOS load and the input voltage vectors,

which is friendly in the activation function simulation of DNNs.

Inspired by the CS implementation method, the current mirror implementation method of

weight multiplier can also provide input and weight vectors separately, following the structure

of Figure 1. [18] proposed an analog vector-matrix multiplier for DNNs. In addition,

multiplication operation was implemented based on in-memory computing architecture, where

learning weights are stored in the single-poly floating-gate cells embedded in current mirrors.

Combined with these three standard implementation methods of weight multiplier in DNNs,

the tunable weight multiplier was proposed based on the current mirror theory. To simplify the

16

design process, the proposed weight multiplier unit directly performs the weight vector as the

current gain of the relevant CMOS transistor. Related to the software implementation, The

proposed weight multiplier can also be performed as quantized activation, which includes

binary representations of the weight factors. It can be separated as 3 MSB bits and 3 LSB bits.

Inspired by the CS implementation method, the proposed weight multiplier also includes

negative parts and positive parts.

3.2 ReLU Activation Function

ReLU function has a specific mathematical relationship, defined as y = max(0, x), x ∈ R.

Theoretically, the ReLU function can be implemented based on its input-output characteristics,

which means ReLU function can be seen as the PWL function during the implementation

process. Meanwhile, the output of the ReLU function will follow by the performance of the

input signal when the input signal is greater than 0. Thus, inspired by the character of the source

follower, the ReLU function can be implemented by its similar curve. The approximate

implementation method by using source follower is shown in Figure 8. To avoid the significant

shift of the input voltage of the source follower, [19] uses the suitable value of capacitor C1 to

filter out part of DC voltage.

17

Figure 8. ReLU function based on source follower [19]

In this approach, a similar curve of the ReLU function can be implemented; however, the

output curve cannot perfectly match the input signal due to the inevitable voltage loss. Also,

this approach has the saturation region when the gate-source voltage reaches a specific value.

The drain current becomes constant when the number of carriers in the transistor channel no

longer increases.

3.3 Softmax Activation Function

In general, the implementation method of the activation function relies on its specific

18

mathematical relationship. For example, as the output layer associated with probability, the

Softmax mathematical function includes a divider and exponential units.

The analog implementation of the Softmax function is different from the ReLU function

implementation method, as discussed above. Compared with the implementation of ReLU

activation function, the analog implementation of the SoftMax function is quite complex. The

straightforward design of SoftMax proposed by Yuan in [20] has two main drawbacks. It may

cause high accuracy loss and overflow problems [20]. In this case, the approximation SoftMax

function is the popular implementation method in DNNs.

The exponential unit and the normalizing ratio are the most complex and expensive calculation

elements [21]. Zunino and Gastaldo presented the Taylor series approximation method to

replace the exponential unit of the SoftMax function [22]. The relevant mathematical function

of the Taylor series of the exponential unit is defined by:

 𝑓ଶ
(்௔௬௟௢௥)

= 𝑎 + 𝑐𝑥ଶ (4)

According to the Taylor series method, the current-squaring circuit with a bias source can easily

implement the exponential unit. After achieving the approximate exponential unit, all of the

quantities are positive after the exponential unit. Therefore, the normalizing ratio can be

implemented by using the adder to sum all exponential units as a typical denominator value

and using a divider circuit to compute the relevant ratio between each input element.

19

The other standard implemented method of approximate Softmax is mathematical

transformation, which simplifies the original Softmax function. Wang et al implemented the

mathematical transformation of the SoftMax function involving exponential and logarithmic

operation [21]. Theoretically, the mathematical transformation of exponential operations is

based on the multiple multiplication operations. Therefore, the relevant exponential function

can be expressed as:

 𝑒௬೔ = 2௬೔∗ ௟௢௚మ
೐
 (5)

Where log element can be simplified by using adder and subtracter, expressed as “ADD-ADD-

SUB” operation. The proposed design of the exponential unit is shown in Figure 9.

Figure 9. Softmax function based on mathematical transformation [21]

20

These two designs are suitable for the approximate Softmax design because of the advantage

of a similar mathematical relationship as the regular Softmax function. However, these two

methods will consume long delay and high-power consumption based on multiple

transformation operations in exponential elements. Therefore, in the proposed design, the

implementation method will consider in two fields: mathematical relationship and neural

network structure relationship.

21

CHAPTER 4 PROPOSED DESIGN

This chapter presents the proposed design. Four parts will separate the proposed analog circuit

design: tunable weight multiplier, PWL ReLU activation function, and approximate Softmax

function.

4.1 Tunable Weight Multiplier Function

According to the MOSFET subthreshold region property, the source-to-drain current (𝐼ௌ஽) is

given by

 𝐼ௌ஽ = 𝐼஽௢
ௐ

௅
exp (

௏೒ೞ

௡௞்/௤
) (6)

Where 𝐼஽௢ is the leakage current of the MOSFET,
ௐ

௅
 is the transistor aspect ratio of the relevant

transistor, Vgs is the gate-source voltage, n is the subthreshold slope factor, K is the Boltzmann

constant, T is the temperature in degree Kelvin, and q is a charge of an electron.

In current-mode circuits, the weight gain can be interpreted as the scaling factor of input current.

Thus, the proposed design uses the current mirror gain principle to perform weight gain. The

CM primary implementation method is detailed in Figure 10,

22

Figure 10. CM primary implementation circuit

By considering the CM function cell, the input current and output current of cell can be

expressed in (7) and (8), respectively,

 𝐼ௌ஽,௜௡ = 𝐼஽௢ ቀ
ௐ

௅
ቁ

ଵ
exp ቀ

𝑉𝑔𝑠

௡௄்/௤
ቁ (7)

𝐼ௌ஽,௢௨௧ = 𝐼஽௢ ൬
𝑊

𝐿
൰

ଶ
exp ቆ

𝑉𝑔𝑠

𝑛𝐾𝑇/𝑞
ቇ + 𝐼஽௢ ൬

𝑊

𝐿
൰

ଷ
exp ቆ

𝑉𝑔𝑠

𝑛𝐾𝑇/𝑞
ቇ + ⋯

 + 𝐼஽௢ ቀ
ௐ

௅
ቁ

௡
exp ቀ

𝑉𝑔𝑠

௡௄்/௤
ቁ (8)

23

Where 𝑉௚௦ voltages are all the same in the CM approach, the only variable in between (7) and

(8) is the term
ௐ

௅
. To keep the proposed design analysis straightforward, the aspect ratio of each

output transistor is represented using different scaling factors of the input transistor aspect ratio

(
ௐ

௅
)ଵ. The equation can be expressed as demonstrated in (9).

 (
ௐ

௅
)௜ = ∝௜∗ (

ௐ

௅
)ଵ (9)

Where i= 2,3, . . ., n and ∝௜= a, b, c, . . . is a gain coefficient, based on (2) and (3), the ratio of

output current and input current can be obtained as:

ூೄವ,೚ೠ೟

ூೄವ,೔೙
 =

ூವ೚ቀ
ೈ

ಽ
ቁ

మ
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ ାூವ೚ቀ

ೈ

ಽ
ቁ

య
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁା⋯ା ூವ೚ቀ

ೈ

ಽ
ቁ

೙
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ

ூವ೚ቀ
ೈ

ಽ
ቁ

భ
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ

=
(

ೈ

ಽ
)మା (

ೈ

ಽ
)యା⋯ା (

ೈ

ಽ
)೙

(
ೈ

ಽ
)భ

=
௔∗(

ೈ

ಽ
)భା ௕∗(

ೈ

ಽ
)భା⋯ା ௡∗(

ೈ

ಽ
)భ

(
ೈ

ಽ
)భ

 = 𝑎 + 𝑏 + ⋯ + 𝑛 (10)

The elements in (10) are the scaling factor, we obtain K = a + b + · · · + n, then 𝐼௢௨௧ is given

as (11).

24

 𝐼௢௨௧ = 𝐼௜௡ × 𝐾 (11)

The output of the suggested weight multiplier is obtained by summing over all terms of CM

blocks.

 𝐼௢௨௧,ௐெ = ∑ 𝐼௢௨௧
௡
௜ୀଵ = ∑ (𝐼௜௡ 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡)௡

௜ୀଵ (12)

The CM approach has two significant shortcomings. First, the CM approach can provide only

one specific value of weight. Second, the CM approach cannot provide sufficient accuracy for

the output. Therefore, the CM approach is revised with the tunable current level and tunable

bulk voltage in the circuit. The proposed tunable CM output block of the weight multiplier

circuit is shown in Figure 11.

25

Figure 11. Tunable 6 bits CM Output Block

Tunable values are performed by using a switch to control the current level change in the circuit.

Meanwhile, weight can be seen as a binary number through high and low current levels. Thus,

it is accessible in coding and reduces fixed point multiplication [18]. To achieve more accurate

weight gain, three simple Digital-to-Analog Converter (DAC) were added to the circuits to

control the bulk voltage of each transistor. According to the MOSFET subthreshold equation

related to 𝑉௚௦, 𝑉௧௛, and 𝑉௕௦ :

 𝐼ௌ஽ (𝑉௚௦, 𝑉௧௛, 𝑉௕௦) = 𝐼஽௢exp (
൫௏೒ೞି௏೟೓൯ା(௡ିଵ)௏್ೞ

௡௞்/௤
) (13)

26

Where 𝑉௕௦ is the bulk-source voltage. Body effect should be considered when we provide

voltage to the bulk terminal. The body effect equation can be expressed as:

 𝑉௧௛ = 𝑉௧௛଴ + Ƴ(ඥ|2ɸ𝐹 + 𝑉௦௕| − ඥ|2ɸ𝐹|) (14)

Where 𝑉௧௛଴ is the threshold voltage for zero substrate bias, Ƴ denotes the body effect

coefficient. According to (13) and (14), it is obvious to obtain the relationship between bulk

voltage and 𝐼ௌ஽. Therefore, the additional bulk voltage will increase 𝐼ௌ஽ in the proposed design.

Thus, a simple DAC circuit is presented to the bulk terminal of the transistors. The value of

resistors are R, 2R and 4R, which correspond to the binary weights of Bit 2 (2ଶ = 4), Bit 1

(2ଵ = 2), and Bit 0 (2଴ = 1). The aim is to correct the weight gain to two decimal places. Thus,

the proposed 6 bits binary weight multiplier is composed of 3 parallel transistors and 3 DAC

circuits, where 3 parallel transistors can be seen as 3 bits MSB and 3 DAC circuits can be

interpreted as 3 bits LSB. Additionally, the proposed weight gain is a signed value to

distinguish negative or positive weight gain. 𝑁𝑀ହ in the positive multiplier circuit is keeping

a high level. In the negative multiplier circuit, 𝑁𝑀ହ is always a low level.

4.2 ReLU Activation Function Based on PWL Circuit

The implementation of the ReLu function is based on the relevant mathematical relationship.

If the input signal of the ReLu function is positive, the output will be a linear function.

Otherwise, the output signal will remain zero. It can be formulated as y = max(0,x) function.

27

The ReLu function can be seen as a piecewise linear function (PWL) with a breakpoint when

the input current is 0 [24].

The proposed current-mode PWL function in Fig.3, without the highlighted shifting block, is

a half-wave rectifier with a positive current breakpoint located at 𝐼ଵ. Thus, the mathematical

relationship can be expressed as:

 𝐼𝑜𝑢𝑡(𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢) = ൜
0, 𝐼𝑖𝑛 < 𝐼1

𝑚(𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢 − 𝐼1), 𝐼𝑖𝑛 ≥ 𝐼1
 (15)

where Iin,ReLu is the input current of the ReLu layer, which is the output current from the

previous layer (weight multiplier). m is the aspect ratio of the dimension of the output current

mirror NM9/NM8.

Based on the layer-to-layer structure of the proposed design, the input current and output

current of ReLU can be expressed in (16) and (17), respectively.

 𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢 = 𝑁 ∗ 𝐼𝑖𝑛 (16)

𝐼𝑜𝑢𝑡(𝐼𝑖𝑛) = ൜
0, 𝐼𝑖𝑛 < 𝐼1

𝑚(𝑁 ∗ 𝐼𝑖𝑛 − 𝐼1), 𝐼𝑖𝑛 ≥ 𝐼1

 (17)

Where N is the total multiplying factor of the weight multi-plier. A shift operation is used to

adjust the breakpoint to zero. The implementation method is to left-shift the original curve to

28

make a breakpoint located at (0,0). Therefore, according to curve translation theory, the

mathematical relationship of the proposed ReLU function is revised. This relationship is given

by (18):

 𝐼𝑜𝑢𝑡(𝐼𝑖𝑛 + 𝑆) = ൜
0, 𝐼𝑖𝑛 < 0

 𝑚(𝑁(𝐼𝑖𝑛 + 𝑆) − 𝐼1), 𝐼𝑖𝑛 ≥ 0
 (18)

The ReLU function’s critical coordinate is (0,0), where S is the breakpoint’s shifting unit. Thus,

it is obvious to obtain the value of S can be expressed by (19)

 𝑆 =
ூଵ

ே
 (19)

We provided an additional pmos current mirror to the circuit. The providing current is called

KI1. The ratio value of K can be given by

 𝐾 =
(

ೈ

ಽ
)ುಾల

(
ೈ

ಽ
)ುಾఱ

 (20)

A proportional relationship between K and S is existed based on the scaling factor of the

input current range α𝐼௜௡. The formula can be expressed as

ௌ

஑ூ೔೙
=

ଵ

௄
 (21)

29

From (21), the exact dimension value of the additional pmos current mirror is generated;

Therefore, the ReLu design is illustrated in Fig. 11.

Figure 12. Proposed circuit of ReLU function

4.3 Approximate Softmax Activation Function

Based on the mathematical characteristics of the Softmax function, the implementation method

includes multiple multiplications and divisions [21]. Complex mathematical operations cause

high power consumption, long delays, and difficulty to design in hardware implementation.

The proposed design provides an approximate method by using property analysis and

mathematical analysis. Softmax function contains two specific features in DNNs: nonlinearity

characteristic and limited output range. If an implementation method can simultaneously

30

satisfy these two specific features, this function will be considered the approximate SoftMax

function.

According to the mathematical characteristics of the Softmax function, the output range of

Softmax is limited between 0 and 1, which can be interpreted as probabilities of DNNs.

Therefore, the mathematical formula of Softmax can be expressed as:

 𝑓(𝑥𝑖) =
௘ೣ೔

∑ ௘ೣೕಿ
ೕసభ

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (22)

From (22), exponential unit implementation and divider unit implementation are crucial

points of the approximating Softmax design.

Based on the layer-by-layer structure of the proposed design, the ReLU layer performs as a

pre-layer of the Softmax layer. On the other hand, the curves of the exponential function and

ReLU function have similar trends. Thus, the original exponential unit is replaced with the

output of the ReLU layer, which makes the hardware implementation easy. Therefore, the

formula can be simplified as follows:

 𝑓(𝑥, 𝑦(𝑖)) =
௬(௜)ୀ௠௔௫(଴,௫)

∑ ௬(௝)ୀ௠௔ (଴,௫)ಿ
ೕసభ

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (23)

31

The hardware architecture of approximating Softmax design is shown in Fig.12. It includes an

adder and a divider unit. The hardware implementation method is supported by (23). The

divider circuit is a multiple-input version of the process insensitive divider, presented by [25],

operating under the subthreshold region to achieve the characteristic of low power consumption.

Figure 13. Architecture design of Softmax function

32

CHAPTER 5 CIRCUIT IMPLEMENTATION &

RESULTS DISCUSSION

In Chapter 5, the discussion will concentrate on the circuit implementation and testing results.

Also, this chapter will include a comparison with state-of-the-art.

5.1 Tunable Weight Multiplier Function

As discussed in the last chapters, the 6 bits tunable weight multiplier function circuit is shown

in Figure 11. The overall architecture of the weight multiplier is shown in Figure 14. The

appropriate transistor sizes of the CM block circuit and the adder circuits are shown in Table

2.

33

Figure 14. The overall architecture of the weight multiplier

Table 2. Transistor size of the weight multiplier function circuit

Transistor W/L(µ𝑚)

NM1 2/1

NM2 2/1

NM3 2/1

NM4 2/1

NM5 2/1

PM1 1/1

PM2 1/1

34

The results of the tunable weight multiplier are shown in Figure 15, which presents the output

current (in µA) as a function of the input current. Also, Figure 15 includes positive, negative

weight factors and their relevant ideal case for both factors.

Figure 15. Results of weight multiplier

5.2 ReLU Activation Function

As discussed in the previous chapter, the ReLU function based on the PWL circuit is

proposed in Figure 12. The 𝐼஻௜௔௦ is set as 100uA. The transistors' size of the shifting block is

discussed in Chapter 4. The transistor sizes of the ReLU functional circuit are presented in

Table 3.

35

Table 3. Transistor size of the Softmax function circuit

Transistor W/L(µ𝑚)

NM16 2/1

NM17 2/1

NM18 2/1

NM19 80/1

NM8 2/1

NM9 10/1

PM5 1/1

PM6 4.5/1

The output current results of the ReLU functional circuit are shown in Figure 16, which

includes five corner analysis results (SS, SF, TT, FS, FF). As shown in the plot, if the input

current is greater than 0, the output will perform as the input signal (output of the weight

multiplier). Figure 17 shows the error function between the ideal case and the TT testing case.

36

Figure 16. Corner analysis results and ideal case of ReLU function

Figure 17. Error function of ReLU function

37

5.3 Approximate Softmax Activation Function

The proposed Softmax design is discussed in the previous chapter. The overall architecture

includes the weight multiplier layer and ReLU layer, the output current from the weight

multiplier layer. After rectified by the ReLU functional layer, the sum of the output current

from the ReLU functional circuit will be sent to the divider circuit's denominator and control

the numerator part of the Softmax function. The transistor sizes of the divider function of the

Softmax functional circuit are presented in Table 4.

Figure 18. Divider function of ReLU function

38

Table 4. Transistor size of the divider function of Softmax function circuit

Transistor W/L(µ𝑚)

PM7 28/1

PM8 28/1

PM9 10/1

PM10 20/1

The output current results of the Softmax functional circuit are shown in Figure 19, which

includes five corner analysis results (SS, SF, TT, FS, FF). As shown in the plot, the output

range is between -1 to 0, which can be seen as the probability. Figure 20 shows the error

function between the ideal case and the TT case of the Softmax function.

Figure 19. Corner analysis results and the ideal case of Softmax function

39

Figure 20. Error function of the Softmax function

5.4 Software structure

The testing accuracy is an essential measurement of the effectiveness of the neural network,

and handwritten digit recognition is the primary testing application. Therefore, for the software

architecture, a suitable algorithm can provide good performance for classification in digit

recognition. [23] provides two powerful techniques to test the neural network performance: the

ANN algorithm and CNN algorithm. Also, to explore the performance of digit recognition, a

reliable dataset is an important stage during the testing process because of the dimensionality

reduction technique. Therefore, the large dataset is suitable for this operation, which is the

MNIST dataset.

40

The structure of the ANN algorithm is similar to the proposed DNN architecture, which

includes three main layers: input layer, hidden layer, and output layer. For the software design,

the loading data is implemented by the Numpy, which is the fundamental python library

package. The size of the input image is equal to the number of neurons in the input layer. The

number of classes in the MNIST dataset is 0 to 9, 10 classes, so the output layer includes ten

neurons for 10 classes. Softmax functions calculate the output value of probabilities. Thus, the

maximum value of each neuron can be easily selected.

CNN is a complex algorithm with a feature map filter for data sharing compared with the ANN

algorithm. CNN also includes three layers the convolutional layer, the pooling layer, and the

fully-connected layer. The convolutional layer can be seen as the preprocessing layer to apply

numerous filters in a binary number. The next layer is the pooling layer, which is the feature

extraction, similar to the ANN architecture's hidden layer. Because the input image has three

dimensions, CNN can reduce dimensionality between layer to layer. Thus, the output from the

fully-connected layer is the simple 1-D matrix which performs as the probabilities.

5.5 System level results

The data exported from the Cadence environment for weight multiplier, ReLU, and SoftMax

functions have been evaluated using MATLAB. In addition, the ideal mathematical equations

are included as references to demonstrate the error between ideal cases and testing cases of

activation layers. These results show that the hardware implementation of activation functions

performed exceptionally well. Therefore, for further improvement of the neural network's

41

performance, the relevant error function can be used as the custom function to improve the

performance analysis of the MNIST CNN. Table 5 shows the test accuracy of the different

quantized activation functions.

Table 5. Test accuracy of different number of bits

Quantized activation layer Test Accuracy

2 bits of activation layer 97.95%

4 bits of activation layer 98.63%

6 bits of activation layer 98.81%

8 bits of activation layer 99.02%

Figure 21 shows the performance results of five corner analyses (SS, SF, TT, FS, FF). The

design results perform stability during the process variation. The FS corner is selected for this

design, corresponding to 99.02% accuracy and 68.21uW power consumption. The presented

function layer can be seen as the baseline circuit of the proposed design. [17] presented analog

designs of a complete system with multiplier and ReLU functions. The proposed design has a

considerable power consumption advantage compared with the published multiplier layer in

[17] that consumes 496uW compared to 21.03uW in our multiplier layer design. [4] provided

an activation function with a similar shape as the proposed design. In the same dataset, power

consumed by the activation function is 1.4mW with a test accuracy of 90%. The activation

function layer of the proposed design only consumes a power of 25.05uW. For the system

performance, Table 6 shows the performance of different neural network analog designs.

Compared with the data reported in [4] and [28], the proposed design has a better power

consumption performance, about 35.65% lower. Meanwhile, the proposed design achieves a

42

high programming accuracy in MNIST. Furthermore, the data reported in [26] and [27]

achieves a high testing accuracy (99%) similar to the proposed design; however, state-of-the-

art sacrificed much more power than the proposed design. Compared with the data reported in

[30], the digital design of the neural network, the proposed design has a pretty low power

consumption. Hence, the proposed design performs the excellent potential of artificial

application with an optimum effective measurement (99.02%) and pretty low power

consumption (68.21uW).

Table 6. Performance comparison with State-of-the-art

Parameters [4] [26][27] [28] [30] Proposed

Tech(nm) 65 65 180 65 180

Supply

Voltage(V)

0.4 1.2 1.8 1.2 1.5

Circuit Type Analog Analog Analog Digital Analog

Power

Consumption

100uW 380uW 106uW 45.1mW 68.21uW

Test Accuracy 82% 99% 94.6% 98.3% 99.02%

Dataset MNIST MNIST MNIST MNIST MNIST

43

Figure 21. Test accuracy and power consumption of different corner

CHAPTER 6 FUTURE WORK & CONCLUSION

6.1 Future work

This research achieved the basic requirements of each functional layer in the neural network.

To improve the proposed design performance, there are the following recommendations for

future research.

1. Design different weight multiplier circuits, ReLU functional circuits, and Softmax

functional circuits to improve the accuracy and power consumption between testing

and ideal cases in future work.

2. Implement the proposed design in the PCB and compare it with the state-of-the-art to

observe the design performance at the system level.

44

3. Test the proposed design in different datasets to perform multi-task learning in future

work.

45

6.2 Conclusion

In this thesis, analog current-mode circuit implementation for various DNN functions has been

proposed. Also, this thesis introduced the background information and the architecture of the

DNN functions.

The proposed circuit design includes building blocks for binary weight multiplication, PWL

ReLU function, and approximate Softmax function. At the system level, the MNIST dataset

was used to evaluate the accuracy of the proposed design. As a result, the proposed design

achieved an accuracy of 99.02% with a power consumption of 68.21uW.

The design circuit is simulated in TSMC 0.18um CMOS technology under 1.5V supply voltage.

Compared with the existing application, the testing results have a great potential for artificial

application.

46

BIBLIOGRAPHY

[1] Mishra, Manish, and Monika Srivastava. "A view of artificial neural network." 2014

International Conference on Advances in Engineering & Technology Research (ICAETR-

2014). IEEE, 2014.

[2] Chen, Mingzhe, et al. "Artificial neural networks-based machine learning for wireless

networks: A tutorial." IEEE Communications Surveys & Tutorials 21.4 (2019): 3039-3071.

[3] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553

(2015): 436-444.

[4] Jayaraj, Akshay, Imon Banerjee, and Arindam Sanyal. "Common-source amplifier based

analog artificial neural network classifier." 2019 IEEE International Symposium on Circuits

and Systems (ISCAS). IEEE, 2019.

[5] Oh, Sechang, et al. "An acoustic signal processing chip with 142-nW voice activity

detection using mixer-based sequential frequency scanning and neural network

classification." IEEE Journal of Solid-State Circuits 54.11 (2019): 3005-3016.

[6] Rumberg, Brandon, et al. "Hibernets: Energy-efficient sensor networks using analog signal

processing." IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1.3

(2011): 321-334.

[7] Kouretas, Ioannis, and Vassilis Paliouras. "Simplified hardware implementation of the

softmax activation function." 2019 8th international conference on modern circuits and

systems technologies (MOCAST). IEEE, 2019.

[8] Mahanta, Jahnavi. "Introduction to neural networks, advantages and applications." Towards

Data Science 13 (2017).

47

[9] Templeton, Graham. "Artificial neural networks are changing the world." What are

they (2018).

[10] Ide, Hidenori, and Takio Kurita. "Improvement of learning for CNN with ReLU activation

by sparse regularization." 2017 International Joint Conference on Neural Networks (IJCNN).

IEEE, 2017.

[11] Sawigun, C., and W. A. Serdijn. "Ultra-low-power, class-AB, CMOS four-quadrant

current multiplier." Electronics Letters 45.10 (2009): 483-484.

[12] Tao, Xiaobing, Chao Liu, and Tao Zhao. "A four-quadrant analog multiplier under a single

power supply voltage." Analog Integrated Circuits and Signal Processing 71.3 (2012): 525-

530.

[13] Lee, Kyuho, Junyoung Park, and Hoi-Jun Yoo. "A low-power, mixed-mode neural

network classifier for robust scene classification." Journal of Semiconductor Technology and

Science 19.1 (2019): 129-136.

[14] Al-Tamimi, Karama M., and EL-Sanakary Kamal. "Body-driven log/antilog PVT

compensated analog computational block." Analog Integrated Circuits and Signal

Processing 90.3 (2017): 693-700.

[15] Mohamed, Ahmed Reda, Liang Qi, and Guoxing Wang. "A power-efficient and re-

configurable analog artificial neural network classifier." Microelectronics Journal 111 (2021):

105022.

[16] Liu, Weihsing, Shen-Iuan Liu, and Shui-Ken Wei. "CMOS current-mode divider and its

applications." IEEE Transactions on Circuits and Systems II: Express Briefs 52.3 (2005): 145-

148.

48

[17] Huang, Yucong, et al. "Analog Circuit Implementation of Neurons with Multiply-

Accumulate and ReLU Functions." Proceedings of the 2020 on Great Lakes Symposium on

VLSI. 2020.

[18] Zhou, Yuteng, Shrutika Redkar, and Xinming Huang. "Deep learning binary neural

network on an FPGA." 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS). IEEE, 2017.

[19] Geng, Chao, Qingji Sun, and Shigetoshi Nakatake. "An analog CMOS implementation

for multi-layer perceptron with relu activation." 2020 9th International conference on modern

circuits and systems technologies (MOCAST). IEEE, 2020.

[20] Yuan, Bo. "Efficient hardware architecture of softmax layer in deep neural

network." 2016 29th IEEE International System-on-Chip Conference (SOCC). IEEE, 2016.

[21] Wang, Meiqi, et al. "A high-speed and low-complexity architecture for softmax function

in deep learning." 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).

IEEE, 2018.

[22] Zunino, Rodolfo, and Paolo Gastaldo. "Analog implementation of the softmax

function." 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat.

No. 02CH37353). Vol. 2. IEEE, 2002.

[23] Beohar, Drishti, and Akhtar Rasool. "Handwritten Digit Recognition of MNIST dataset

using Deep Learning state-of-the-art Artificial Neural Network (ANN) and Convolutional

Neural Network (CNN)." 2021 International Conference on Emerging Smart Computing and

Informatics (ESCI). IEEE, 2021.

49

[24] Bhat, M. S., S. Rekha, and H. S. Jamadagni. "Extrinsic analog synthesis using piecewise

linear current-mode circuits." 19th International Conference on VLSI Design held jointly with

5th International Conference on Embedded Systems Design (VLSID'06). IEEE, 2006.

[25] Al-Absi, Munir A. "Low-voltage and low-power CMOS current-mode divider and 1/x

circuit." 2010 International Conference on Electronic Devices, Systems and Applications.

IEEE, 2010.

[26] Sayal, Aseem, et al. "A 12.08-TOPS/W all-digital time-domain CNN engine using bi-

directional memory delay lines for energy efficient edge computing." IEEE Journal of Solid-

State Circuits 55.1 (2019): 60-75.

[27] Biswas, Avishek, and Anantha P. Chandrakasan. "Conv-RAM: An energy-efficient

SRAM with embedded convolution computation for low-power CNN-based machine

learning applications." 2018 IEEE International Solid-State Circuits Conference-(ISSCC).

IEEE, 2018.

[28] Asghar, Malik Summair, Saad Arslan, and Hyungwon Kim. "A Low-Power Spiking

Neural Network Chip Based on a Compact LIF Neuron and Binary Exponential Charge

Injector Synapse Circuits." Sensors 21.13 (2021): 4462.

[29] Shihao Wang, Karama M. Al-Tamimi, Issam Hammad, and Kamal Elsankary. “Towards

Current-Mode Analog Implementation of Deep Neural Network Functions.” (under review)

[30] Sim, Jaehyeong, et al. "14.6 a 1.42 tops/w deep convolutional neural network

recognition processor for intelligent ioe systems." 2016 IEEE International Solid-State

Circuits Conference (ISSCC). IEEE, 2016.

