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Abstract 

This thesis proposes a CMOS circuit design that implements various Deep Neural Network 

functions. DNN has been used in different applications such as image identification and speech 

recognition. However, the existing techniques suffer from the high-power consumption of 

digital implementation. The proposed design presents a low power consumption analog 

implementation of various DNN functions in the subthreshold region. In this thesis, the 

implemented circuit blocks include the binary weight multiplier layer, Rectified Linear Unit, 

and approximate Softmax layer. The proposed designs were implemented in an accurate and 

efficient method.  

 

This design is implemented using 180nm CMOS technology with a 1.5V power supply. 

Furthermore, the impact of the proposed design on accuracy was simulated using the MNIST 

dataset. Using a four-layer Convolutional Neural Network with an 8 bits resolution, the design 

achieved an accuracy of 99.02% with 68.21uW power consumption, which is 35.65% lower 

than the existing analog DNN design. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Neural networks are widely used in many fields, such as engineering, science, and business. 

Deep neural network (DNN), which is a special kind of neural network, could be implemented 

using interconnected artificial neurons to mimic the process of decision-making in the human 

brain [1]-[2]. Therefore, it is one of the promising techniques in different fields, such as image 

identification, speech recognition, etc. [3]-[6]. In this sense, a neural network works similarly 

to the natural human brain, and it contains multiple layers to analyze a series of data. A simple 

neural network consists of three layers: input layer, hidden layer, and output layer. Each layer 

of the neural network contains multiple nodes, seen as “neurons” in DNN. A neuron node is a 

mathematical function that collects and classifies input data information [7]. These nodes are 

interconnected, and the interconnections of each node to other nodes are called weight and bias, 

which means that when input is transmitted to the next layer, the weight and bias are applied. 

Figure 1 shows the structure of the superficial three layers neural network. They are 

transforming the sum of weight and input based on the specific activation functions. The 

activation function performs non-linear operations to mimic the complex real-world property. 

The ability to learn and model non-linear relationships is the key advantage of the neural 

network [8]. Currently, digital design is used as a mainstream method to implement DNNs on-

chip; however, most digital implementations of DNN have the shortcoming of relatively high-

power consumption [11] – [15].  
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Figure 1. The basic structure of the neural network [9] 

 

In Contrast to digital implementation, current-mode subthreshold analog circuit 

implementation of DNNs has been gaining attention for its advantages in terms of design 

simplicity, parallel processing for a significant number of signals, and low power consumption 

[14][16]. DNN design consists of several functional blocks. Implementing each function using 

the analog design is necessary to build the entire network in subthreshold current mode. The 

proposed design includes a weight multiplier, ReLU (Rectified Linear Unit) activation function, 

and Softmax activation function. 

 

1.2 Contributions 

According to the discussion above, the thesis proposes a current-mode DNN design that can 

satisfy low power consumption and is highly efficient. The proposed circuit aims to satisfy 

each functional layer's performance, low power consumption, and against PVT variations at 
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the circuit level. The design achieved a high accuracy at the system level when tested in an 

entire DNN network [29]. The contribution of this thesis can be summarized as follow: 

1. A tunable binary weight multiplier by using current mirror gain is proposed. The binary 

form of weight factor can be separated as MSB bits and LSB bits. Thus, weight 

multiplier results include negative parts and positive parts.  

2. A ReLU function layer is proposed using a piecewise current-mode linear circuit 

through the curve shifting method.  

3. An approximate Softmax layer is proposed through the current-mode divider circuit 

under the subthreshold region to work at low power. 
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1.3 Organization 

The organization of this thesis can be summarized as follow: 

In Chapter 2, the architecture background will be discussed, including definition, regular 

architecture, and applications of each functional layer. 

Chapter 3 focused on the literature review of various implementation methods for each 

functional layer and discussed their advantages and disadvantages. 

Chapter 4 introduced about proposed design based on the mathematical relationship and layout 

design of the proposed DNN. Four parts will separate the proposed analog circuit design: 

tunable weight multiplier, PWL ReLU activation function, and approximate Softmax function. 

In Chapter 5, the discussion will concentrate on the implementation on both circuit level and 

system level, and testing results of the proposed DNN design. Also, this chapter will include a 

comparison with state-of-the-art. 

Chapter 6 presented the future work and summed up the whole design. 
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CHAPTER 2 ARCHITECTURE BACKGROUND 

This chapter will discuss the architecture background, including definition, regular architecture, 

and applications of each functional layer. 

2.1 Definition and application 

An artificial neural network is a web that includes a series of interconnected artificial nodes, 

and its theory is based on the inspiration of the human brain. In this case, many scientists 

concluded that the brain's learning process is through changes of a large amount of synapse [1]. 

Thus, the weight factor can be referred to as synapse in DNNs. As the critical computing 

element in DNN, weight exists in the connections between presynaptic neurons and 

postsynaptic neurons. Expect the weight factor. The bias factor is the other learnable parameter 

inside the neural network. During the training process of DNNs, weights and biases are 

adjusted in the short term to respond to an immediate learning stimulus. In general, initial 

weight and bias factors are random numbers in the specific range before the learning process. 

During the learning process, learnable parameters are adjusted toward the desired values 

simultaneously. Thus, weight factors influence the value of the output of the weight multiplier. 

On the other hand, bias values compensate for the difference between the testing and ideal 

values. In the proposed design, the role of the bias value can be replaced by a custom 

compensating function; therefore, corresponding to the structure of the neural network, which 

is the fully connected network. The basic mathematical equation of the weight multiplier layer 

can be expressed as (1): 

    

𝑦 =  ∑ (𝑋௜  × 𝑊𝑒𝑖𝑔ℎ𝑡) + 𝑏𝑖𝑎𝑠ே
௜ୀଵ      (1) 
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where Xi is the value of the input element, combined with equation 1, the proposed weight 

multiplier aims to calculate the sum of weight by using a CMOS analog circuit. The schematic 

diagram of the weight multiplier layer can be seen in Figure 2. 

 

Figure 2. The basic structure of the weight multiplier 

 

DNNs include various activation function layers to generate the non-linear output, which finds 

the optimal performance of the loss function during the testing process. The activation function 

layer aims to transform the summed weighted input signal to define a specific output signal 

that helps the network learn complex patterns in the data. Therefore, the output signal of DNNs 

will become the real-world information with the activation function layer, such as image, video, 

and sound.  

 

Three essential activation functions are widely used in all deep learning architectures as the 

hidden layer, shown in Table 1. Compared with these three functions, the ReLU (Rectified 

Linear Unit) function is the most outstanding among these basic functions. There are two main 
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reasons why the ReLU function can rapidly become the default activation function in various 

neural networks. Firstly, the ReLu function has a simple mathematical relationship, which 

means implementing the ReLU function can save much power by using less complex operation 

blocks. Thus, ReLU function can be widely used in the low power design of DNNs. Secondly, 

ReLU function can solve the vanishing gradient problem. Gradient plays a vital role in the 

neural network design, which can measure variable changes and then impact the update of the 

weight value. The equation related to gradient and weight can be expressed as (2): 

 

Table 1. Equations of activation function 

Function Equation 

Sigmoid 
𝑓(𝑥) =  

1

1 + 𝑒ି௫
 

Tanh 
𝑓(𝑥) =  

2

1 + 𝑒ିଶ௫
− 1 

ReLU 𝑓(𝑥) = 𝑀𝑎𝑥(0, 𝑥) 

 

 𝑊௫ୀ 𝑊௫−∝ (
డா௥௥௢௥

డௐೣ
) (2) 

where 𝑊௫ is the initial weight value, ∝ is the learning rate of the neural network. The vanishing 

problem will occur when the derivative term of equation 2 is too small, which means that there 

are no significant changes during the testing process. Both sigmoid and tanh functions have 

saturating regions. Therefore, the derivative function of these two activation functions will 

move through a region with zero gradients, called the “vanishing region”. The mathematical 

performance and the relative derivate function can be seen in Figure 3. 
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(a) 

 

 

(b) 

Figure 3 (a) Sigmoid function and Tanh function (b) derivative function of Sigmoid and Tanh 

function 

 

The ReLU function can solve the vanishing gradient problem based on its specific 

mathematical performance and related derivative function compared with these two activation 

functions. For the mathematical relationship of ReLU function, if the ReLu function's input 

signal is positive, the output will be a linear function. Otherwise, the output signal will remain 
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zero. Thus, ReLU function does not have the saturated region (vanishing region). Also, the 

gradients function of ReLU only has two conditions: zero condition and relatively high 

condition, as illustrated in Figure 4.  

 

Figure 4. Derivative of ReLU function 

 

By observing Fig.4, there is no vanishing problem of the ReLU activation function, and the 

gradient is either 1 or 0 during the weight updating process. Therefore, as discussed above, 

ReLU activation function is the better function during the activating process of the DNNs. 

Meanwhile, one layer’s outputs can be seen as the input signal as the next layer. Thus, 

according to the architecture, the DNNs, ReLU layer is usually used in the hidden layer and 

activates the nodes after the weight multiplier layer. 
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The purpose of the output layer in DNNs is to perform the result through the whole network 

design. Therefore, the result can reflect the performance of the proposed DNN design. Thus, A 

suitable output layer of the DNN needs to go through the entire design and find the best 

performance neuron during the iterative process; therefore, the output layer needs to satisfy 

two conditions: normalizing the multi-classification model and the result can be interpreted as 

a probability. Thus, Softmax functional layer can be selected as the output layer of DNNs. The 

calculated output probabilities of Softmax are in the range between 0 to 1, and the sum of all 

the probabilities is equal to 1. Additionally, if the input element has a high value, this input 

element will contain a higher output probability after applying the Softmax function, which 

follows the principle of statistics. Also, the mathematical equation of the Softmax function has 

the summation term of the exponential element, which means that the Softmax function will 

traversal each input element. 
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2.2 Architecture 

 

Figure 5. The architecture of DNN design 

 

Fig.5 shows the schematic of the architecture of the DNN design. The scheme has four distinct 

layers mapped in series. The output of one layer can be seen as the input signal as the next 

layer. The weight multiplier layer provides the basic multiplication operation for the input 

elements and weight components. ReLU activation function can distinguish either positive 

signal or negative signal and then transfer to the output layer. Finally, the Softmax layer 

presents the probability of each element and defines which one contains the highest probability 

during the testing process of the DNN. The following chapter will evaluate the different 
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implementation methods of each functional layer and then discuss the advantage of the 

proposed design. 
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CHAPTER 3 LITERATURE REVIEW 

Chapter 3 will focus on the literature review of various implementation methods for each 

functional layer and discuss their advantages and disadvantages. Also, the challenges of each 

functional layer are introduced.  

 

3.1 Weight Multiplier Function 

As the essential computation element of DNN, multiplication is performed between the input 

layer and the corresponding weight elements in neural networks. Therefore, the results after 

the multiplier will directly affect the whole system's precision and power consumption. The 

analog implementation method has the advantages of low delay and low power consumption 

[16][17]. 

 

The most common implementation method of the multiplier is the four-quadrant current-mode 

analog multiplier. The design principle is keeping CMOS transistors operated in the 

subthreshold region. Based on the mathematical relationship, the aim is to use the MOSFET 

subthreshold region property to build the V-I antilog cell, which is related to the logarithm and 

exponent function, to create the log-antilog multiplier [14]. The output result equation can be 

expressed as: 

 

 𝐼௢௨௧ = 𝐾 ∗ 𝐼ଵ𝐼ଶ (3) 
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Where K is the independent controller, 𝐼ଵ, 𝐼ଶ are two input current signals. Therefore, the four-

quadrant current-mode multiplier can perfectly perform the multiplication process in the neural 

network. Figure 5 shows the post-layout results of the DC transfer characteristics. Besides, 

equation 3 performs as PVT independent result, which means unaffected by environmental 

conditions. 

 

Figure 6. DC transfer characteristics of the four-quadrant multiplier [14] 

 

The second standard multiplier implementation method is based on varying the widths of 

CMOS transistors to control the value of weights [4]. Compared with the four-quadrant current-

mode analog multiplier, this implementation method only has one input signal, and the weight 

vectors can be seen as the gain factor. The weight vectors are implemented by varying the 

widths of the relevant CMOS transistor. The multiplying step is summing the current signal 

through a relevant input transistor by using a diode-connected load. Figure 7 shows the 

transistor schematic of implementing the published weight multiplier. 
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Figure 7. Transistor level of the existing weight multiplier [4] 

 

where X[௜] are the input vectors, 𝑊[௜,௝] are the weight vectors of the multiplier. 

This building block is followed by the common-source amplifier (CS) with a PMOS diode load. 

The CS method has two main advantages. First, the weight vectors can be split into two halves, 

either positive or negative. Second, the CS implementation method can provide the non-linear 

characteristic between the drain-source voltage of the PMOS load and the input voltage vectors, 

which is friendly in the activation function simulation of DNNs. 

 

Inspired by the CS implementation method, the current mirror implementation method of 

weight multiplier can also provide input and weight vectors separately, following the structure 

of Figure 1. [18] proposed an analog vector-matrix multiplier for DNNs. In addition, 

multiplication operation was implemented based on in-memory computing architecture, where 

learning weights are stored in the single-poly floating-gate cells embedded in current mirrors. 

 

Combined with these three standard implementation methods of weight multiplier in DNNs, 

the tunable weight multiplier was proposed based on the current mirror theory. To simplify the 
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design process, the proposed weight multiplier unit directly performs the weight vector as the 

current gain of the relevant CMOS transistor. Related to the software implementation, The 

proposed weight multiplier can also be performed as quantized activation, which includes 

binary representations of the weight factors. It can be separated as 3 MSB bits and 3 LSB bits. 

Inspired by the CS implementation method, the proposed weight multiplier also includes 

negative parts and positive parts.  

 

3.2 ReLU Activation Function 

ReLU function has a specific mathematical relationship, defined as y = max(0, x), x ∈ R. 

Theoretically, the ReLU function can be implemented based on its input-output characteristics, 

which means ReLU function can be seen as the PWL function during the implementation 

process. Meanwhile, the output of the ReLU function will follow by the performance of the 

input signal when the input signal is greater than 0. Thus, inspired by the character of the source 

follower, the ReLU function can be implemented by its similar curve. The approximate 

implementation method by using source follower is shown in Figure 8. To avoid the significant 

shift of the input voltage of the source follower, [19] uses the suitable value of capacitor C1 to 

filter out part of DC voltage. 



17 

 

 

Figure 8. ReLU function based on source follower [19] 

 

In this approach, a similar curve of the ReLU function can be implemented; however, the 

output curve cannot perfectly match the input signal due to the inevitable voltage loss. Also, 

this approach has the saturation region when the gate-source voltage reaches a specific value. 

The drain current becomes constant when the number of carriers in the transistor channel no 

longer increases. 

 

3.3 Softmax Activation Function 

In general, the implementation method of the activation function relies on its specific 
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mathematical relationship. For example, as the output layer associated with probability, the 

Softmax mathematical function includes a divider and exponential units. 

 

The analog implementation of the Softmax function is different from the ReLU function 

implementation method, as discussed above. Compared with the implementation of ReLU 

activation function, the analog implementation of the SoftMax function is quite complex. The 

straightforward design of SoftMax proposed by Yuan in [20] has two main drawbacks. It may 

cause high accuracy loss and overflow problems [20]. In this case, the approximation SoftMax 

function is the popular implementation method in DNNs. 

 

The exponential unit and the normalizing ratio are the most complex and expensive calculation 

elements [21]. Zunino and Gastaldo presented the Taylor series approximation method to 

replace the exponential unit of the SoftMax function [22]. The relevant mathematical function 

of the Taylor series of the exponential unit is defined by: 

 

 𝑓ଶ
(்௔௬௟௢௥)

= 𝑎 + 𝑐𝑥ଶ (4) 

 

According to the Taylor series method, the current-squaring circuit with a bias source can easily 

implement the exponential unit. After achieving the approximate exponential unit, all of the 

quantities are positive after the exponential unit. Therefore, the normalizing ratio can be 

implemented by using the adder to sum all exponential units as a typical denominator value 

and using a divider circuit to compute the relevant ratio between each input element. 
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The other standard implemented method of approximate Softmax is mathematical 

transformation, which simplifies the original Softmax function. Wang et al implemented the 

mathematical transformation of the SoftMax function involving exponential and logarithmic 

operation [21]. Theoretically, the mathematical transformation of exponential operations is 

based on the multiple multiplication operations. Therefore, the relevant exponential function 

can be expressed as: 

 

 𝑒௬೔ = 2௬೔∗ ௟௢௚మ
೐
 (5) 

 

Where log element can be simplified by using adder and subtracter, expressed as “ADD-ADD-

SUB” operation. The proposed design of the exponential unit is shown in Figure 9.  

 

 

Figure 9. Softmax function based on mathematical transformation [21] 
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These two designs are suitable for the approximate Softmax design because of the advantage 

of a similar mathematical relationship as the regular Softmax function. However, these two 

methods will consume long delay and high-power consumption based on multiple 

transformation operations in exponential elements. Therefore, in the proposed design, the 

implementation method will consider in two fields: mathematical relationship and neural 

network structure relationship. 
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CHAPTER 4 PROPOSED DESIGN 

This chapter presents the proposed design. Four parts will separate the proposed analog circuit 

design: tunable weight multiplier, PWL ReLU activation function, and approximate Softmax 

function. 

 

4.1 Tunable Weight Multiplier Function 

According to the MOSFET subthreshold region property, the source-to-drain current (𝐼ௌ஽) is 

given by 

 

 𝐼ௌ஽ = 𝐼஽௢
ௐ

௅
exp (

௏೒ೞ

௡௞்/௤
) (6) 

 

Where 𝐼஽௢ is the leakage current of the MOSFET, 
ௐ

௅
 is the transistor aspect ratio of the relevant 

transistor, Vgs is the gate-source voltage, n is the subthreshold slope factor, K is the Boltzmann 

constant, T is the temperature in degree Kelvin, and q is a charge of an electron.  

 

In current-mode circuits, the weight gain can be interpreted as the scaling factor of input current. 

Thus, the proposed design uses the current mirror gain principle to perform weight gain. The 

CM primary implementation method is detailed in Figure 10, 
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Figure 10. CM primary implementation circuit 

 

By considering the CM function cell, the input current and output current of cell can be 

expressed in (7) and (8), respectively,  

 

 𝐼ௌ஽,௜௡ = 𝐼஽௢ ቀ
ௐ

௅
ቁ

ଵ
exp ቀ

𝑉𝑔𝑠

௡௄்/௤
ቁ (7) 

𝐼ௌ஽,௢௨௧ = 𝐼஽௢ ൬
𝑊

𝐿
൰

ଶ
exp ቆ

𝑉𝑔𝑠

𝑛𝐾𝑇/𝑞
ቇ + 𝐼஽௢ ൬

𝑊

𝐿
൰

ଷ
exp ቆ

𝑉𝑔𝑠

𝑛𝐾𝑇/𝑞
ቇ + ⋯ 

 + 𝐼஽௢ ቀ
ௐ

௅
ቁ

௡
exp ቀ

𝑉𝑔𝑠

௡௄்/௤
ቁ (8) 
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Where 𝑉௚௦ voltages are all the same in the CM approach, the only variable in between (7) and 

(8) is the term 
ௐ

௅
. To keep the proposed design analysis straightforward, the aspect ratio of each 

output transistor is represented using different scaling factors of the input transistor aspect ratio 

(
ௐ

௅
)ଵ. The equation can be expressed as demonstrated in (9). 

 

 (
ௐ

௅
)௜ = ∝௜∗ (

ௐ

௅
)ଵ (9) 

 

Where i= 2,3, . . ., n and ∝௜= a, b, c, . . . is a gain coefficient, based on (2) and (3), the ratio of 

output current and input current can be obtained as: 

 

ூೄವ,೚ೠ೟

ூೄವ,೔೙
   =

ூವ೚ቀ
ೈ

ಽ
ቁ

మ
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ ାூವ೚ቀ

ೈ

ಽ
ቁ

య
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁା⋯ା ூವ೚ቀ

ೈ

ಽ
ቁ

೙
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ

ூವ೚ቀ
ೈ

ಽ
ቁ

భ
ୣ୶୮ቀ

ೇ೒ೞ

೙಼೅/೜
ቁ

  

=  
(

ೈ

ಽ
)మା (

ೈ

ಽ
)యା⋯ା (

ೈ

ಽ
)೙

(
ೈ

ಽ
)భ

  

= 
௔∗(

ೈ

ಽ
)భା ௕∗(

ೈ

ಽ
)భା⋯ା ௡∗(

ೈ

ಽ
)భ

(
ೈ

ಽ
)భ

 

 = 𝑎 + 𝑏 + ⋯ + 𝑛 (10) 

 

The elements in (10) are the scaling factor, we obtain K = a + b + · · · + n, then 𝐼௢௨௧ is given 

as (11). 
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 𝐼௢௨௧ =  𝐼௜௡  × 𝐾 (11) 

 

The output of the suggested weight multiplier is obtained by summing over all terms of CM 

blocks. 

  

 𝐼௢௨௧,ௐெ =  ∑ 𝐼௢௨௧
௡
௜ୀଵ =  ∑ (𝐼௜௡ 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡)௡

௜ୀଵ  (12) 

 

The CM approach has two significant shortcomings. First, the CM approach can provide only 

one specific value of weight. Second, the CM approach cannot provide sufficient accuracy for 

the output. Therefore, the CM approach is revised with the tunable current level and tunable 

bulk voltage in the circuit. The proposed tunable CM output block of the weight multiplier 

circuit is shown in Figure 11.  
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Figure 11. Tunable 6 bits CM Output Block 

 

Tunable values are performed by using a switch to control the current level change in the circuit. 

Meanwhile, weight can be seen as a binary number through high and low current levels. Thus, 

it is accessible in coding and reduces fixed point multiplication [18]. To achieve more accurate 

weight gain, three simple Digital-to-Analog Converter (DAC) were added to the circuits to 

control the bulk voltage of each transistor. According to the MOSFET subthreshold equation 

related to 𝑉௚௦, 𝑉௧௛, and 𝑉௕௦ : 

 

   𝐼ௌ஽  (𝑉௚௦, 𝑉௧௛, 𝑉௕௦) = 𝐼஽௢exp (
൫௏೒ೞି௏೟೓൯ା(௡ିଵ)௏್ೞ

௡௞்/௤
)  (13) 



26 

 

 

Where 𝑉௕௦  is the bulk-source voltage. Body effect should be considered when we provide 

voltage to the bulk terminal. The body effect equation can be expressed as:  

 

 𝑉௧௛ = 𝑉௧௛଴ +  Ƴ(ඥ|2ɸ𝐹 + 𝑉௦௕| −  ඥ|2ɸ𝐹|) (14) 

 

Where 𝑉௧௛଴  is the threshold voltage for zero substrate bias, Ƴ  denotes the body effect 

coefficient. According to (13) and (14), it is obvious to obtain the relationship between bulk 

voltage and 𝐼ௌ஽. Therefore, the additional bulk voltage will increase 𝐼ௌ஽ in the proposed design. 

Thus, a simple DAC circuit is presented to the bulk terminal of the transistors. The value of 

resistors are R, 2R and 4R, which correspond to the binary weights of Bit 2 (2ଶ = 4), Bit 1 

(2ଵ = 2), and Bit 0 (2଴ = 1). The aim is to correct the weight gain to two decimal places. Thus, 

the proposed 6 bits binary weight multiplier is composed of 3 parallel transistors and 3 DAC 

circuits, where 3 parallel transistors can be seen as 3 bits MSB and 3 DAC circuits can be 

interpreted as 3 bits LSB. Additionally, the proposed weight gain is a signed value to 

distinguish negative or positive weight gain. 𝑁𝑀ହ in the positive multiplier circuit is keeping 

a high level. In the negative multiplier circuit, 𝑁𝑀ହ is always a low level.  

 

4.2 ReLU Activation Function Based on PWL Circuit 

The implementation of the ReLu function is based on the relevant mathematical relationship. 

If the input signal of the ReLu function is positive, the output will be a linear function. 

Otherwise, the output signal will remain zero. It can be formulated as y = max(0,x) function. 
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The ReLu function can be seen as a piecewise linear function (PWL) with a breakpoint when 

the input current is 0 [24]. 

 

The proposed current-mode PWL function in Fig.3, without the highlighted shifting block, is 

a half-wave rectifier with a positive current breakpoint located at 𝐼ଵ. Thus, the mathematical 

relationship can be expressed as: 

 

 𝐼𝑜𝑢𝑡(𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢) = ൜
0, 𝐼𝑖𝑛 < 𝐼1

𝑚(𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢 − 𝐼1), 𝐼𝑖𝑛 ≥ 𝐼1
 (15) 

 

where Iin,ReLu is the input current of the ReLu layer, which is the output current from the 

previous layer (weight multiplier). m is the aspect ratio of the dimension of the output current 

mirror NM9/NM8.  

Based on the layer-to-layer structure of the proposed design, the input current and output 

current of ReLU can be expressed in (16) and (17), respectively. 

 

 𝐼𝑖𝑛, 𝑅𝑒𝐿𝑢 = 𝑁 ∗ 𝐼𝑖𝑛 (16) 

 

𝐼𝑜𝑢𝑡(𝐼𝑖𝑛) = ൜
0, 𝐼𝑖𝑛 < 𝐼1

𝑚(𝑁 ∗ 𝐼𝑖𝑛 − 𝐼1), 𝐼𝑖𝑛 ≥ 𝐼1

  (17) 

Where N is the total multiplying factor of the weight multi-plier. A shift operation is used to 

adjust the breakpoint to zero. The implementation method is to left-shift the original curve to 
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make a breakpoint located at (0,0). Therefore, according to curve translation theory, the 

mathematical relationship of the proposed ReLU function is revised. This relationship is given 

by (18): 

 

 𝐼𝑜𝑢𝑡(𝐼𝑖𝑛 + 𝑆) = ൜
0, 𝐼𝑖𝑛 < 0

 𝑚(𝑁(𝐼𝑖𝑛 + 𝑆) − 𝐼1), 𝐼𝑖𝑛 ≥ 0
 (18) 

 

The ReLU function’s critical coordinate is (0,0), where S is the breakpoint’s shifting unit. Thus, 

it is obvious to obtain the value of S can be expressed by (19) 

 

 𝑆 =  
ூଵ

ே
 (19) 

 

We provided an additional pmos current mirror to the circuit. The providing current is called 

KI1. The ratio value of K can be given by  

 

 𝐾 =  
(

ೈ

ಽ
)ುಾల

(
ೈ

ಽ
)ುಾఱ

 (20) 

 

A proportional relationship between K and S is existed based on the scaling factor of the 

input current range α𝐼௜௡. The formula can be expressed as 

 

 
ௌ

஑ூ೔೙
=  

ଵ

௄
 (21) 
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From (21), the exact dimension value of the additional pmos current mirror is generated; 

Therefore, the ReLu design is illustrated in Fig. 11.  

 

 

Figure 12. Proposed circuit of ReLU function 

 

4.3 Approximate Softmax Activation Function 

Based on the mathematical characteristics of the Softmax function, the implementation method 

includes multiple multiplications and divisions [21]. Complex mathematical operations cause 

high power consumption, long delays, and difficulty to design in hardware implementation. 

The proposed design provides an approximate method by using property analysis and 

mathematical analysis. Softmax function contains two specific features in DNNs: nonlinearity 

characteristic and limited output range. If an implementation method can simultaneously 
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satisfy these two specific features, this function will be considered the approximate SoftMax 

function. 

 

According to the mathematical characteristics of the Softmax function, the output range of 

Softmax is limited between 0 and 1, which can be interpreted as probabilities of DNNs. 

Therefore, the mathematical formula of Softmax can be expressed as: 

 

 𝑓(𝑥𝑖) =  
௘ೣ೔

∑ ௘ೣೕಿ
ೕసభ

  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (22) 

 

From (22), exponential unit implementation and divider unit implementation are crucial 

points of the approximating Softmax design.  

 

Based on the layer-by-layer structure of the proposed design, the ReLU layer performs as a 

pre-layer of the Softmax layer. On the other hand, the curves of the exponential function and 

ReLU function have similar trends. Thus, the original exponential unit is replaced with the 

output of the ReLU layer, which makes the hardware implementation easy. Therefore, the 

formula can be simplified as follows: 

 

 𝑓(𝑥, 𝑦(𝑖)) =  
௬(௜)ୀ௠௔௫(଴,௫)

∑ ௬(௝)ୀ௠௔ (଴,௫)ಿ
ೕసభ

  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (23) 
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The hardware architecture of approximating Softmax design is shown in Fig.12. It includes an 

adder and a divider unit. The hardware implementation method is supported by (23). The 

divider circuit is a multiple-input version of the process insensitive divider, presented by [25], 

operating under the subthreshold region to achieve the characteristic of low power consumption. 

 

 

Figure 13. Architecture design of Softmax function 
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CHAPTER 5 CIRCUIT IMPLEMENTATION & 

RESULTS DISCUSSION 

In Chapter 5, the discussion will concentrate on the circuit implementation and testing results. 

Also, this chapter will include a comparison with state-of-the-art. 

5.1 Tunable Weight Multiplier Function 

As discussed in the last chapters, the 6 bits tunable weight multiplier function circuit is shown 

in Figure 11. The overall architecture of the weight multiplier is shown in Figure 14. The 

appropriate transistor sizes of the CM block circuit and the adder circuits are shown in Table 

2. 
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Figure 14. The overall architecture of the weight multiplier 

 

Table 2. Transistor size of the weight multiplier function circuit 

Transistor W/L(µ𝑚) 

NM1 2/1 

NM2 2/1 

NM3 2/1 

NM4 2/1 

NM5 2/1 

PM1 1/1 

PM2 1/1 
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The results of the tunable weight multiplier are shown in Figure 15, which presents the output 

current (in µA) as a function of the input current. Also, Figure 15 includes positive, negative 

weight factors and their relevant ideal case for both factors. 

 

 

Figure 15. Results of weight multiplier 

 

5.2 ReLU Activation Function 

As discussed in the previous chapter, the ReLU function based on the PWL circuit is 

proposed in Figure 12. The 𝐼஻௜௔௦ is set as 100uA. The transistors' size of the shifting block is 

discussed in Chapter 4. The transistor sizes of the ReLU functional circuit are presented in 

Table 3.  
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Table 3. Transistor size of the Softmax function circuit 

Transistor W/L(µ𝑚) 

NM16 2/1 

NM17 2/1 

NM18 2/1 

NM19 80/1 

NM8 2/1 

NM9 10/1 

PM5 1/1 

PM6 4.5/1 

 

The output current results of the ReLU functional circuit are shown in Figure 16, which 

includes five corner analysis results (SS, SF, TT, FS, FF). As shown in the plot, if the input 

current is greater than 0, the output will perform as the input signal (output of the weight 

multiplier). Figure 17 shows the error function between the ideal case and the TT testing case. 
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Figure 16. Corner analysis results and ideal case of ReLU function 

 

 

Figure 17. Error function of ReLU function 
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5.3 Approximate Softmax Activation Function 

The proposed Softmax design is discussed in the previous chapter. The overall architecture 

includes the weight multiplier layer and ReLU layer, the output current from the weight 

multiplier layer. After rectified by the ReLU functional layer, the sum of the output current 

from the ReLU functional circuit will be sent to the divider circuit's denominator and control 

the numerator part of the Softmax function. The transistor sizes of the divider function of the 

Softmax functional circuit are presented in Table 4. 

 

 

Figure 18. Divider function of ReLU function 
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Table 4. Transistor size of the divider function of Softmax function circuit 

Transistor W/L(µ𝑚) 

PM7 28/1 

PM8 28/1 

PM9 10/1 

PM10 20/1 

 

The output current results of the Softmax functional circuit are shown in Figure 19, which 

includes five corner analysis results (SS, SF, TT, FS, FF). As shown in the plot, the output 

range is between -1 to 0, which can be seen as the probability. Figure 20 shows the error 

function between the ideal case and the TT case of the Softmax function.  

 

 

Figure 19. Corner analysis results and the ideal case of Softmax function 
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Figure 20. Error function of the Softmax function 

 

5.4 Software structure 

The testing accuracy is an essential measurement of the effectiveness of the neural network, 

and handwritten digit recognition is the primary testing application. Therefore, for the software 

architecture, a suitable algorithm can provide good performance for classification in digit 

recognition. [23] provides two powerful techniques to test the neural network performance: the 

ANN algorithm and CNN algorithm. Also, to explore the performance of digit recognition, a 

reliable dataset is an important stage during the testing process because of the dimensionality 

reduction technique. Therefore, the large dataset is suitable for this operation, which is the 

MNIST dataset. 
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The structure of the ANN algorithm is similar to the proposed DNN architecture, which 

includes three main layers: input layer, hidden layer, and output layer. For the software design, 

the loading data is implemented by the Numpy, which is the fundamental python library 

package. The size of the input image is equal to the number of neurons in the input layer. The 

number of classes in the MNIST dataset is 0 to 9, 10 classes, so the output layer includes ten 

neurons for 10 classes. Softmax functions calculate the output value of probabilities. Thus, the 

maximum value of each neuron can be easily selected. 

 

CNN is a complex algorithm with a feature map filter for data sharing compared with the ANN 

algorithm. CNN also includes three layers the convolutional layer, the pooling layer, and the 

fully-connected layer. The convolutional layer can be seen as the preprocessing layer to apply 

numerous filters in a binary number. The next layer is the pooling layer, which is the feature 

extraction, similar to the ANN architecture's hidden layer. Because the input image has three 

dimensions, CNN can reduce dimensionality between layer to layer. Thus, the output from the 

fully-connected layer is the simple 1-D matrix which performs as the probabilities. 

 

5.5 System level results 

The data exported from the Cadence environment for weight multiplier, ReLU, and SoftMax 

functions have been evaluated using MATLAB. In addition, the ideal mathematical equations 

are included as references to demonstrate the error between ideal cases and testing cases of 

activation layers. These results show that the hardware implementation of activation functions 

performed exceptionally well. Therefore, for further improvement of the neural network's 
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performance, the relevant error function can be used as the custom function to improve the 

performance analysis of the MNIST CNN. Table 5 shows the test accuracy of the different 

quantized activation functions. 

 

Table 5. Test accuracy of different number of bits 

Quantized activation layer Test Accuracy 

2 bits of activation layer 97.95% 

4 bits of activation layer 98.63% 

6 bits of activation layer 98.81% 

8 bits of activation layer 99.02% 

 

Figure 21 shows the performance results of five corner analyses (SS, SF, TT, FS, FF). The 

design results perform stability during the process variation. The FS corner is selected for this 

design, corresponding to 99.02% accuracy and 68.21uW power consumption. The presented 

function layer can be seen as the baseline circuit of the proposed design. [17] presented analog 

designs of a complete system with multiplier and ReLU functions. The proposed design has a 

considerable power consumption advantage compared with the published multiplier layer in 

[17] that consumes 496uW compared to 21.03uW in our multiplier layer design. [4] provided 

an activation function with a similar shape as the proposed design. In the same dataset, power 

consumed by the activation function is 1.4mW with a test accuracy of 90%. The activation 

function layer of the proposed design only consumes a power of 25.05uW. For the system 

performance, Table 6 shows the performance of different neural network analog designs. 

Compared with the data reported in [4] and [28], the proposed design has a better power 

consumption performance, about 35.65% lower. Meanwhile, the proposed design achieves a 
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high programming accuracy in MNIST. Furthermore, the data reported in [26] and [27] 

achieves a high testing accuracy (99%) similar to the proposed design; however, state-of-the-

art sacrificed much more power than the proposed design. Compared with the data reported in 

[30], the digital design of the neural network, the proposed design has a pretty low power 

consumption. Hence, the proposed design performs the excellent potential of artificial 

application with an optimum effective measurement (99.02%) and pretty low power 

consumption (68.21uW). 

 

Table 6. Performance comparison with State-of-the-art 

Parameters [4] [26][27] [28] [30] Proposed 

Tech(nm) 65 65 180 65 180 

Supply 

Voltage(V) 

0.4 1.2 1.8 1.2 1.5 

Circuit Type Analog Analog Analog Digital Analog 

Power 

Consumption 

100uW 380uW 106uW 45.1mW 68.21uW 

Test Accuracy 82% 99% 94.6% 98.3% 99.02% 

Dataset MNIST MNIST MNIST MNIST MNIST 
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Figure 21. Test accuracy and power consumption of different corner 

CHAPTER 6 FUTURE WORK & CONCLUSION 

6.1 Future work 

This research achieved the basic requirements of each functional layer in the neural network. 

To improve the proposed design performance, there are the following recommendations for 

future research. 

1. Design different weight multiplier circuits, ReLU functional circuits, and Softmax 

functional circuits to improve the accuracy and power consumption between testing 

and ideal cases in future work. 

 

2. Implement the proposed design in the PCB and compare it with the state-of-the-art to 

observe the design performance at the system level. 
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3. Test the proposed design in different datasets to perform multi-task learning in future 

work. 
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6.2 Conclusion 

In this thesis, analog current-mode circuit implementation for various DNN functions has been 

proposed. Also, this thesis introduced the background information and the architecture of the 

DNN functions. 

 

The proposed circuit design includes building blocks for binary weight multiplication, PWL 

ReLU function, and approximate Softmax function. At the system level, the MNIST dataset 

was used to evaluate the accuracy of the proposed design. As a result, the proposed design 

achieved an accuracy of 99.02% with a power consumption of 68.21uW.  

 

The design circuit is simulated in TSMC 0.18um CMOS technology under 1.5V supply voltage. 

Compared with the existing application, the testing results have a great potential for artificial 

application.   
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