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Abstract

Selection pressure that has acted upon proteins and amino acids can be revealed
through a ratio of nonsynonymous to synonymous codon substitutions (ω). Markov
models of codon substitution fitted to an alignment of homologous protein-coding
DNA sequences estimate an ω mixing distribution in a likelihood framework in order
to detect positive selection. Publications describing codon substitution model im-
plementations have nearly 10, 000 citations from research in a variety of fields, from
vaccine design to mammalian physiology.

The site models of codon substitution used to detect positive selection at amino
acids sites first use a pre-screening likelihood ratio (LR) test for positive selection
at the level of the protein. Due to statistical irregularity, the large-sample distribu-
tions of the LR statistic are often not justified and thresholds determined from the
distributions can give larger than expected type I error rates. Presented in Chapter
2 is a modified LR test for protein-level selection. The modified LR test is shown
to restore statistical regularity to give tractable LR statistic distributions. No mat-
ter the parameter settings of the underlying null hypothesis, the modified LR gives
approximately correct type I error probabilities when the number of codon sites is
not too small. Simulation results show that type I error rates are closer to expec-
tations without loss of power. Under certain data-generation settings, very different
estimated ω distributions can give nearly identical site likelihoods when the number
of taxa and the total tree length are not large enough.

After the pre-screening LR test, most codon substitution models use an empirical
Bayes approach to detect positive selection at individual amino acid sites. After model
parameters are estimated via maximum likelihood, they are passed to Bayes formula
to compute the posterior probability that a site evolved under positive selection.
A difficulty with the empirical Bayes approach is that estimates with large errors
can negatively impact classification. Presented in Chapter 3 is a new technique called
smoothed bootstrap aggregation (SBA) that uses bootstrapping and kernel smoothing
to accommodate uncertainty in the estimates. Simulation results show that SBA
balances accuracy and power at least as well as Bayes empirical Bayes (BEB), and
when parameter estimates are unstable, the performance gap between BEB and SBA
can widen in favour of SBA.

Branch-site models of codon substitution, like the site models, can detect posi-
tive selection at a subset of amino acid sites. Unlike the site models however, the

ix



branch-site pre-screening LR test limits positive selection to prespecified branches on
the phylogeny. Chapter 4 includes new simulation studies, which show limitations to
these widely used models. The branch-site LR distributions under the null hypoth-
esis are sometimes poorly approximated by those predicted by theory and can vary
heavily according to factors such as the branches considered for positive selection and
irregularity of certain parameter estimates. Moreover, false positives are shown to
be common when positive selection has occurred in the tree but not along on the
prespecified branches.
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Chapter 1

Introduction

Science must often be conducted without direct observation of that which we wish to

explain. The electron is hidden from the chemist, the cosmologist formulates theories

about the genesis of the universe based clues that are billions of years old, and so on.

Likewise, as the evolution of the heritable characteristics of biological populations has

occurred over billions of years and continues at a pace that spans generations, its direct

observation is typically not possible. Whether it be by studying the fossil record or

comparing the physiology of extant populations, when studying evolution, one must

also use inference techniques to understand the processes that gave rise to biological

populations. Molecular evolution is a subdiscipline of evolutionary biology in which

statistical models and computational algorithms are used to make inferences about

evolutionary processes. The field is termed molecular evolution because the questions

are related to organic molecules such as proteins and amino acids using the molecules

that store the genetic information for all life, nucleic acids. The topic of this thesis

is molecular protein evolution and the aims are twofold. First, I aim to describe

strengths and limitations of some commonly used models of molecular evolution.

Second, I build upon some of these models in order to improve the reliability of

detection of positive selection at the level of proteins and amino acids.

Access to the data that underpins the field, genetic sequence data, became avail-

able with sequencing techniques developed in the 1970s (Gilbert and Maxam, 1973;

Sanger et al., 1977) and culminated in the Human Genome Project (Watson, 1990).

The project to sequence the entire human genome and to identify all its genes was

completed in 2003 after 13 years and a multi-billion dollar budget (Hood and Rowen,
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2013). Today, faster and cheaper sequencing techniques put whole genome sequencing

within reach of small laboratories and there is an abundance of genetic data to study

(Goodwin et al., 2016). With more data and increasingly sophisticated models, the

computational demands to model molecular evolution have increased along with the

data. These demands are being met by exponential growth in computing power that

has lasted for over half a century (Mack, 2011). With an abundance of new data and

access to powerful tools, it is an exciting time to study the evolutionary history of our

world’s remarkable biological diversity. Along with the excitement, many also feel a

sense of urgency to study the history of life (e.g., Forest et al., 2015). The urgency

is due to human activities that have altered the land, oceans, and atmosphere so

profoundly that life is being re-ordered in ways not seen for millions of years (Lewis

and Maslin, 2015). Our extraction of resources, direct harvesting of species, fragmen-

tation of habitats, introduction of non-native species, and spreading of pathogens

have possibly hastened the sixth mass extinction (Barnosky et al., 2011) and led to

proposals for a new human-induced geochronological epoch called the Anthropocene

(Crutzen, 2006).

1.1 Beyond The Modern Synthesis

In the mid-nineteenth century, foundational ideas were described about biological

inheritance and the evolution of the heritable characteristics in biological popula-

tions. Darwin presented compelling evidence of adaptive evolution, i.e., heritable

traits which increase reproductive success become more common in populations.

Through his experiments with pea plants, Mendel showed that phenotype can be

determined by the inheritance of discrete trait units, which we now know are variants

of genes called alleles. It wasn’t until a half century later when these ideas were rec-

onciled in what has been referred to as the Modern Synthesis (Huxley et al., 1942).

Key to the development of the Modern Synthesis was the new field of population

genetics. The development and application of statistical models of evolution to bio-

logical population data helped to further understand the forces that drive changes in

the allele frequencies in biological populations, i.e., evolution: mutation, gene flow,

non-random mating, stochastic factors due to finite population size, and adaptive evo-

lution (Fisher, 1923, 1931; Haldane, 1927; Wright, 1931, 1942; Kimura, 1957, 1962).

In this thesis, the primary focus is on the stochastic forces called random genetic drift
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and adaptive evolution. More specifically, the aim is to detect evidence of adaptive

evolution in a background of random genetic drift.

1.2 A Brief Introduction to Molecular Evolution

1.2.1 Biochemical Fundamentals

Proteins are organic macromolecules that are a fundamental component of life. They

participate in nearly all cellular processes from catalyzing chemical reactions to trans-

porting molecules. They effect muscle contraction, form various support structures,

and can act as toxins. All proteins are composed of one or more long, linear chains

containing different forms of a molecular unit or monomer called an amino acid. The

ordering of amino acids in a chain determines how a protein folds into a functioning

three-dimensional structure (Anfinsen, 1972).

The information about the precise order of a protein’s amino acids is stored in

another class of biological macromolecule called nucleic acids. Both types of nucleic

acids involved in protein synthesis, deoxyribonucleic acid (DNA) and ribonucleic acid

(RNA), are composed of chains of monomers called nucleotides. Each nucleotide

contains a 5-carbon sugar, a phostphate group, and a nitrogen-containing base. Linear

chains of nucleotides are formed via bonds between the phostphate of one nucleotide

and the sugar of another to form a sugar-phosphate backbone. The information stored

in nucleic acids is encoded by the ordering of four different forms of nucleotides in the

chain with each form having a different nitrogen-containing base. RNA molecules are

composed, most often, of single chains of nucleotides containing four different bases:

adenine (A), uracil (U), guanine (G), or cytosine (C). DNA molecules are composed

of two nucleotide chains that are bonded via specific nucleotide base pairings, C with

G and A with thymine (T), the DNA analog of RNA’s U. The two linked nucleotide

chains of DNA form the well known double-helix structure.

The central dogma of molecular biology originally conveyed the idea that once the

protein-building information contained in nucleic acids was transferred to a protein,

that information could no longer be recovered from the protein. Nowadays, the

central dogma often refers to a more detailed flow of the information, i.e., organisms

replicate DNA, transcribe DNA to RNA, and translate RNA to protein. During

transcription, it is the protein-encoding unit of DNA, the gene, that is used as a
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template to synthesize single-stranded RNA called messenger RNA (mRNA). During

translation, three-nucleotide sequences within the mRNA called codons are bound

to by the complementary anti-codon of transfer RNA (tRNA). The tRNA molecules

continue to bind to codons along the length of mRNA, each time carrying a particular

amino acid to transfer to an elongating polypeptide chain that will become a protein.

1.2.2 The Genetic Code

The genetic code refers to the mapping of codons to amino acids during protein syn-

thesis. The code (table 1.1) was believed to be universal in that the same codon

to amino acid mappings were always employed by all organisms, however some ex-

ceptions have been discovered. For example, there are some nonstandard codons in

vertebrate mitochondrial DNA, bacteria, and the nuclear genes of protozoans. Aside

from the codon to amino acid mappings there are two types of special codons. In

the standard genetic code, the codon ATG is referred to as a start codon, because

it signals cellular machinery to start reading a gene for translation and also to begin

the polypeptide chain with the amino acid Methionine. No tRNA molecules have

anti-codons for three codons, TAA, TAG, and TGA. These three codons are called

stop codons, because they signal the end of the polypeptide chain.

1.2.3 Mutation, Fixation, and Selection

Suppose all individuals in a population carry the same version of a gene, wild-type

allele A, when a heritable error occurs in the gene of one individual introducing mutant

allele a into the population. It is generally rare for errors called mutations to occur in

genes (Nachman and Crowell, 2000), however when heritable mutations do occur, they

provide the ultimate source of variation for evolution. Mutations occur in different

forms such as insertions, deletions, or substitutions of single nucleotides to whole

chromosomes. However, for the models discussed here, only single-nucleotide changes

are considered such as the one shown in table 1.2 where a nucleotide substitution

changes codon GAG in wild-type allele A to GTG to create mutant allele a. Because

GAG and GTG encode different amino acids, Glutamate and Valine in the universal

genetic code, such a nucleotide substitution will cause a change in the protein.

In the absence of mechanisms that direct evolution such as selection, the allele

composition of the next generations can be considered the result of random sampling
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Second Codon Position
T C A G

F
ir
st

C
o
d
on

P
os
it
io
n

T

TTT F
TTC F
TTA L
TTG L

TCT S
TCC S
TCA S
TCG S

TAT Y
TAC Y
TAA STOP
TAG STOP

TGT C
TGC C
TGA STOP
TGG W

C

CTT L
CTC L
CTA L
CTG L

CCT P
CCC P
CCA P
CCG P

CAT H
CAC H
CAA Q
CAG Q

CGT R
CGC R
CGA R
CGG R

A

ATT I
ATC I
ATA I
ATG M/START

ACT T
ACC T
ACA T
ACG T

AAT N
AAC N
AAA K
AAG K

AGT S
AGC S
AGA R
AGG R

G

GTT V
GTC V
GTA V
GTG V

GCT A
GCC A
GCA A
GCG A

GAT D
GAC D
GAA E
GAG E

GGT G
GGC G
GGA G
GGG G

Table 1.1: The Standard Genetic Code. Table rows represent the first nucleotide
position, columns the second position, and cell lines the third position. The codon
CAG, which codes for the amino acid Glutamine (Q), is found in the second row
(C), third column (A), and the fourth line of the (2,3) cell. The codon ATG is both
a START codon and codes for the amino acid Methionine (M). The codons TAA,
TAG, and TGA are STOP codons. The single letter amino acid abbreviations are: A
Alanine, B Asparagine, C Cysteine, D Aspartate, E Glutamate, F Phenylalanine, G
Glycine, H Histidine, I Isoleucine, K Lysine, L Leucine, M Methionine, N Asparagine,
P Proline, Q Glutamine, R Arginine, S Serine, T Threonine, V Valine, W Tryptophan,
Y Tyrosine, and Z Glutamine.

of alleles from the current generation. Thus, whether the frequency of mutant allele

a in the population eventually goes to 0 (elimination) or to 1 (fixation) is determined

by random genetic drift, i.e., chance. Selection is one mechanism of evolution that

causes sampling of alleles for subsequent generations to be non-random. For example,

when individuals carrying mutant allele a have reduced fitness to pass on the allele,

relative to carriers of A, purifying selection acts to reduce the frequency of a in the

population. When individuals carrying a have increased fitness, positive selection

makes fixation of a more probable.

The time between the occurrence of a new mutation and its fixation can vary,
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Wild-type Allele A
ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT
Start Val His Leu Thr Pro Glu Glu Lys Ser

Mutant allele a
ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT
Start Val His Leu Thr Pro Val Glu Lys Ser

Table 1.2: The first ten codons of a gene sequence and their associated amino acids.
At the top is wild-type allele, A. Mutant allele a is a copy of A, except that a
single-nucleotide mutation changed codon GAG to GTG, substituting the amino acid
Glutamate with Valine in the protein.

but it is generally very small relative to the overall time considered in the models of

evolution discussed here, i.e., only evolution over longer time scales (macro-evolution)

is considered. Thus, polymorphisms, two or more concurrently existing alleles in a

population, are ignored and the genetic data for a taxon is considered representative

of the population.

1.3 Modelling Molecular Evolution

1.3.1 The Data

The data for the models of evolution considered in this thesis are nucleotide sequences

from protein coding genes and a bifurcating phylogenetic tree. The order of the

nucleotides for some number of homologous taxonomic units (taxa) are either obtained

directly using genetic sequencing technology or indirectly from a genetic database such

as GenBank (Benson et al., 2012). The sequences are arranged so that the data for

each taxon is a row in a data matrix, X. A goal of the alignment is to arrange

homologous characters, either nucleotides or codons, in the columns of X. With

short and highly conserved sequences this is a straightforward task, but software-

implemented alignment algorithms (e.g., Altschul et al., 1990; Buchfink et al., 2021)

are usually required because different accumulated mutations in each of the sequences,

such as deleted or inserted nucleotides, make manual alignment impractical. For all

models considered in this thesis, the aligned data at each site xh, a column in X, is

assumed to be an independent observational unit. An example four-taxon alignment

is shown in table 1.3.

Phylogenetic trees, such as those shown in figure 1.1, are structures that represent
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the inferred evolutionary relationships among taxa. Their two components are nodes

and branches. Each taxon is represented by a node, labelled 0 to 6 in figure 1.1, and

each evolutionary path between taxa is represented by a branch. The branch lengths,

labelled t1 through t6 in figure 1.1, typically represent the genetic distance between

adjoining taxa. Rooted trees have a unique internal node called the root node, which

is interpreted as the common ancestor of all other nodes. The root node is labelled 0

in subfigure 1.1a and is absent from the unrooted tree in subfigure 1.1b as unrooted

trees do not have a root node and do not define the direction of evolution. When the

tree is bifurcating, all other internal nodes have two branches that each connect to

a descendant node and a third branch that connects to an ancestral node. Sequence

data in the rows of X are only observed for external nodes (also referred to as tip or

leaf nodes). For the models considered in this thesis, evolution along a branch of the

tree is assumed to be independent of evolution along any other branch, conditional

upon some value for any unknown states at the ends of the branch.

With the assumptions of independence across both sites and branches of the tree,

the unit of evolution is simplified to substitution between states along a branch. In

addition, a property called time reversibility means, roughly, that the probability of

the data at a site is equal regardless whether either end of the branch is considered

the ancestor. Time reversibility will be discussed in further detail below.

Taxon Codon Site
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ATGTTATTTAGTTGGTTCATTTATATAATAATA ATAATAATTTTT
2 ATGCTATTTAGTTGATTTAGATATATAATGGTGTTATTGATTTTT
3 ATGTTTTTTAGTTGATTTATTTATATATTAAGGATAATAGTTTTT
4 ATGTTATTTAGTTGATTTATTAGTATAGTAGTAATAGTAATTTTT

Table 1.3: An example four-taxon sequence alignment.

1.3.2 Modelling Substitution as a Markov Process

A stochastic process is a collection of random variables that are indexed by a set T ,

which often represents time. If X(t) = i, the process X is said to be in state i at time

t. For the values i and j from some finite set of states, all t ≥ 0, and all s ≥ 0, if

P [X(t+ s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s] = P [X(t+ s) = j|X(s) = i] (1.1)
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0

5

6

(Root)

1 ATGTTA...

4 ATGTTA...

3 ATGTTT...

2 ATGCTA...

t5

t6

t4

t3

t2

t1

(a) Rooted tree

4 ATGTTA...

3 ATGTTT...

2 ATGCTA...

1 ATGTTA...

5

6

t6

t4

t3

t2

t1 + t5

(b) Unrooted tree

Fig. 1.1: A four-taxon, rooted tree (a) and the corresponding unrooted tree (b). The
rooted tree has 6 branches with lengths labelled t1 to t6, 3 internal nodes labelled 0,
5, and 6 and 4 external nodes labelled 1, 2, 3, and 4. Node 0 is the root node, which
is interpreted as the common ancestor all other nodes. The unrooted tree has no root
node. Partial sequence data is shown for the extant taxa at the external nodes.

holds, then the stochastic process is a continuous-time Markov process and equation

(1.1) is referred to as the Markov property, i.e., the conditional distribution of future

states given present and past states depends only on the present state. This makes

Markov processes well suited for modelling nucleotide substitution as only the present

nucleotides states are observable. If equation (1.1) is independent of s, the Markov

process is said to be time-homogeneous and the probability of transitioning from state

i to j in time t can be expressed as pij(t). Because transition probabilities satisfy the

Chapman-Kolmogorov theorem,

pij(t1 + t2) =
∑︂

k

pik(t1)pkj(t2), (1.2)

the probability of transitioning from state i to state j in time t1 + t2 is equal to the

probably of first transitioning to any intermediate state in time t1 before transitioning

to state j in time t2. Thus, using a Markov process to estimate, e.g., genetic divergence

accounts for unobserved nucleotide transitions.
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The Jukes and Cantor model (JC69) uses a continuous time Markov process to

model nucleotide substitution (Jukes and Cantor, 1969). The model is useful for

understanding properties that are shared with other models of molecular evolution,

including more sophisticated models that will be presented below. It assumes that

any nucleotide, i, has the same instantaneous rate, λ, of transitioning to any other

nucleotide state, j. The rate matrix for the JC69 model is

Q = {qij} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T C A G

T −3λ λ λ λ

C λ −3λ λ λ

A λ λ −3λ λ

G λ λ λ −3λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (1.3)

The probability of transitioning from nucleotide state i to state j within some small

time interval h is pij(h) = λh+ o(h) with o(h) representing some function g(h) such

that g(h)/h → 0 as h → 0. The probability of remaining in state i is pii(h) =

1−∑︁j ̸=i pij(h) = 1−3λh+ o(h), so the transition probabilities within the small time

interval h can be expressed as

P (h) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T C A G

T 1− 3λh λh λh λh

C λh 1− 3λh λh λh

A λh λh 1− 3λh λh

G λh λh λh 1− 3λh

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+o(h) = I+Qh+o(h). (1.4)

When h is 0, the current nucleotide state can not change and the transition probability

matrix is the identity matrix.

The transition probability matrix P (t), the probability of transitioning from nu-

cleotide i to j in any time t > 0, can be obtained by directly solving the Kolmogorov
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backward equation.

P (h+ t) = P (h)P (t)

= [I +Qh+ o(h)]P (t)

P (t+ h)− P (t) = QhP (t) + o(h)P (t)

[P (t+ h)− P (t)]/h = QP (t) + o(h)P (t)/h

P ′(t) = QP (t) (as h→ 0) (1.5)

A more general solution involves exponentiation ofQt. Using the Chapman-Kolmogorov

theorem, the transition probabilities can be expressed as

Pt = Ptn−1

n
Pt 1

n

=
(︂

Ptn−2

n
Pt 1

n

)︂

Pt 1
n
= Ptn−2

n

(︂

Pt 1
n

)︂2

=
(︂

Ptn−3

n
Pt 1

n

)︂(︂

Pt 1
n

)︂2

= Ptn−3

n

(︂

Pt 1
n

)︂3

...

=
(︁

Pt/n
)︁n
,

where the argument is indicated as a subscript for clarity. When n is large, the

time interval t/n is small, and from equation (1.4), the transition probabilities are

P (t) = limn→∞[I + Qt/n + o(t/n)]n. Because t is fixed, o(t/n) = o(1/n), and P (t)

can be expressed as
∑︁∞

k=0(Qt)
k/k!, a Taylor series expansion of an exponential, and

thus

P (t) = eQt. (1.6)

A common approach for solving equation 1.6 is by eigen decomposition. An N×N
matrix, A, with N linearly independent eigenvectors can be expressed in its eigen

decomposition, A = UΛU−1, where U is the N × N matrix whose ith column is the

eigenvector ui of A and Λ is the diagonal matrix whose diagonal elements are the

corresponding eigenvalues. Note that A2 = (UΛU−1)(UΛU−1) = UΛ(U−1U)ΛU−1 =

UΛ2U−1 and in general An = UΛnU−1. The eigen decomposition of the rate matrix,

Q = UΛU−1, allows P (t) to be obtained by exponentiating the diagonal matrix
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entries.

P (t) =
∞
∑︂

k=0

(Qt)k

k!

=
∞
∑︂

k=0

(UΛU−1t)k

k!

= U

[︄

∞
∑︂

k=0

(Λt)k

k!

]︄

U−1

= UeΛtU−1

= Udiag{eλ1t, eλ2t, . . . , eλct}U−1

(1.7)

The solution of P (t) for the JC69 model is

P (t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T C A G

T p0(t) p1(t) p1(t) p1(t)

C p1(t) p0(t) p1(t) p1(t)

A p1(t) p1(t) p0(t) p1(t)

G p1(t) p1(t) p1(t) p0(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, with

{︄

p0(t) =
1
4
+ 3

4
e−4λt

p1(t) =
1
4
− 1

4
e−4λt

(1.8)

Each row of the transition-probability matrix is a probability distribution, and

thus sums to 1. When t = 0 the transition-probability matrix is the identity matrix,

i.e., over time t = 0 the current nucleotide state can not change. The limiting

distribution when limt→∞ pij(t) = πj represents the probability that the process is

in state j after infinite time. For the JC69 model, the limiting probabilities, π =

(πT , πC , πA, πG) are (1/4, 1/4, 1/4, 1/4), i.e., when enough time has passed and so

many substitutions have occurred, the probably of observing any nucleotide at a site

is equal, regardless of the nucleotide state at time t = 0. When the vector of states,

π, satisfies the π = πP (t) for all t ≥ 0, π is referred to as the stationary distribution

and if such a distribution of a Markov process exists, it is unique. The stationary

distribution for the JC69 model is the limiting distribution, π = (πT , πC , πA, πG) =

(1/4, 1/4, 1/4, 1/4). Another notable property of the JC69 model is that time, t and

rate, λ are present as a product, and thus only distance, the expected number of

nucleotide substitutions per nucleotide site, d = λt, can be estimated.
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Most conventional models of evolution are time reversible. A Markov process

is said to be time reversible if the long-run rate of transitioning from state i to

state j is equal to the long-run rate of transitioning from state j to state i, i.e.,

πipij(t) = πjpji(t), for all states, i and j. There are two useful implications for

time-reversibility with respect to models of evolution. First, a time-reversible Markov

process is guaranteed to have real eigenvalues, so the transition probability matrix can

be obtained using equation (1.7). The second implication relates to site probabilities

and the evolutionary relationship of the sequences. Given two sequences, the site

probabilities are equivalent when either sequence is the ancestor, or if both sequences

are descendants of some ancestral sequence. With more than two sequences and their

evolutionary relationship described by a phylogenetic tree, time-reversibility means

the probabilities of the data do not depend on the root node.

1.3.3 An Excess of Nonsynonymous Codon Substitutions is a Signature for

Positive Selection

The JC69 and related models (e.g., Kimura, 1980; Tamura and Nei, 1993) describe

substitutions between nucleotides using a Markov process. Other models of molecular

evolution describe substitutions between either amino acids or codons. Those models

of amino acid or codon substitution follow the same Markov theory described pre-

viously, but the state space of their Markov processes are either the 20 amino acids

in proteins or the 61 sense codons of the universal genetic code. Models of codon

evolution are often more powerful for detecting positive selection, because they can

harness additional information contained in the DNA sequences about whether a

codon substitution resulted in a change in the encoding amino acid or not.

With four possible nucleotides in each of the three positions in a codon, there are

43 = 64 different codons. Of these 64 codons, the 61 codons that code for amino acids

are referred to as sense codons. There are 20 different amino acids commonly found in

proteins, thus the genetic code is redundant. In the standard code, only tryptophan

and methionine are encoded by single codons and all other amino acids are encoded

by two, four, or six different codons (table 1.1). Because of this redundancy in the

genetic code, a nucleotide substitution within a codon can either result in a change

in the amino acid (nonsynonymous substitution) or no change in the amino acid

(synonymous substitution).
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Under the assumption that natural selection acts only on proteins, all synony-

mous substitutions must be selectively neutral and will be fixed in the population by

chance alone. By contrast, because nonsynonymous substitutions cause changes to

proteins, selection may affect their fixation. Thus, a comparison of nonsynonymous

and synonymous substitutions can be used to detect selection. Consider two models,

an alternative model that permits positive selection and a null model that is nested

within the alternative model and does not permit positive selection. Under both the

alternative and null models, the ratio of the long-run proportions of nonsynonymous

and synonymous substitutions, pN/pS and p0N/p
0
S, can be determined. The ratio of

these ratios, (pN/pS)/(p
0
N/p

0
S) over a fixed period of time, often referred to as dN/dS

or the ratio of nonsynonymous to synonymous codon substitutions (ω), can be used

to infer the strength and direction of selection (Yang, 2014, pp. 43-65). If under the

alternative model ω is less than it would be under a comparable null model, this is a

signature of purifying selection (Kimura, 1986). If under the alternative model ω is

larger than it would be under a comparable null model, this is a signature of positive

selection. This is a fundamental concept considered throughout this thesis.

1.3.4 A Model of Codon Evolution

The model of codon evolution described in (Nielsen and Yang, 1998) defines the

relative, instantaneous substitution rate between codon i and j (i ̸= j) at site h as

Qij ∝

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if i and j differ at two or three codon positions,

πj, if i and j differ by a synonymous transversion,

κπj, if i and j differ by a synonymous transition,

ωπj, if i and j differ by a nonsynonymous transversion,

ωκπj, if i and j differ by a nonsynonymous transition

(1.9)

where Q is the rate matrix of a continuous-time, stationary, time-reversible Markov

process. The πj parameters are the stationary frequencies of codon j, which can be

estimated using different methods:

• Fequal: All sense codons have the frequency 1/61.

• F61: Each codon frequency is a parameter with the constraint that all frequen-

cies sum to 1 (60 free parameters)
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• F1x4: Use nucleotide frequencies such that the frequency of, e.g., codon ACG is

πACG = (1/C)π∗
Aπ

∗
Cπ

∗
G where C is a scale factor to ensure the frequencies sum

to 1 and π∗
A, π

∗
C , π

∗
G, and π

∗
T = 1− π∗

A − π∗
C − π∗

G are the nucleotide frequencies

(3 free parameters)

• F1x4MG: Use separate nucleotide frequencies for each of the three positions

within a codon such that the frequency of the target codon is the frequency

of the target nucleotide. As an example, the frequency for a substitution from

ACA to ACG would be π3
G (9 free parameters) (Muse and Gaut, 1994).

• F3x4: Use separate nucleotide frequencies for each of the three positions within a

codon such that the frequency of, e.g., codon ACG is π1
Aπ

2
Cπ

3
G (9 free parameters)

(Yang, 1997).

Nucleotides can be categorized into two different groups based on whether their

nitrogen-containing base has one or two rings. The pyrimidines, C and T, have a

nitrogen-containing base with a single ring, whereas the base of purines, A and G,

have two fused rings. Substitutions within each group, i.e., C ↔ T or A ↔ G, is

referred to as a transition, whereas substitutions between groups, i.e., C ↔ A or

G↔ T , is called a transversion. The κ parameter, the transition to transversion rate

ratio, accounts for the different rates of the two types of substitutions. In some mod-

els, κ is extended to a full generalized time reversible process (GTR) (Tavaré et al.,

1986). The ω parameter, discussed above, is the key parameter for the inference of

selection pressure.

1.3.5 Parameter Estimation using Maximum Likelihood

Maximum likelihood (ML) is a widely used method of statistical inference that is

used with all models discussed in this thesis. With data X = (x1, x2, . . . , xn)
T sam-

pled from a population with a known distribution, the likelihood function, L(θ), is

proportional to the joint density function of the data, but treated as a function of

the unknown parameter, θ. A goal of ML estimation is to determine the parameter

value, θ̂, that maximizes L(θ), i.e., to determine the parameter value that makes the

observed data most probable. The parameter may be a single value, or a vector of

values, θ = (θ1, θ2, . . . , θk)
T . The value of θ, θ̂, that maximizes L(θ) is the maximum

likelihood estimate (MLE) of θ. Some of the favourable properties of estimation by
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ML include the likelihood principle, efficiency, consistency, and asymptotic normality

(Kalbfleisch, 1985; Bickel and Doksum, 2006).

Using ML to estimate, e.g., the distance between two sequences under a JC69

model involves estimation of the single parameter, d. The probability that a site

differs between two homologous sequences separated by some distance d is p = 3p1 =

3/4 − 3/4e−4d/3, where the distance between two sequences separated by time t is

d = 3λt. The probability of observing x out of n sites showing polymorphism is

the binomial probability, L(d) =
(︁

n
x

)︁ (︁

3/4− 3/4e−4d/3
)︁x (︁

1/4− 3/4e−4d/3
)︁n−x

. The

estimate of d, d̂, is the value of d that maximizes L(d). Setting L′(d) (or equivalently

log[L′(d)]) to 0 and solving for d gives d̂ = −3
4
log
(︁

1− 4
3
x
n

)︁

. Thus, under a JC69

model, two aligned sequences of 350 nucleotides that differ at 29 positions have an

ML estimated distance of d̂ = 0.0878.

Likelihood calculation with more than two taxa is an extension of likelihood cal-

culation with a pair of taxa. The evolutionary history of the taxa is described using

a phylogenetic tree whose topology is considered fixed in the models discussed here.

Consider a codon model, such as the one described in equation (1.9), fitted to an

alignment of DNA sequences with n codon sites. Denote the codons in the sequences

at site h (h = 1, . . . , n) as xh, the site pattern at site h. Because sites are assumed to

evolve independently, the likelihood of the data is the product of site probabilities,

f(xh; θ),

L(θ) =
n
∏︂

h=1

f(xh; θ). (1.10)

It is equivalent and usually more convenient to maximize the log transformation of

the likelihood,

ℓ = log(L) =
n
∑︂

h=1

log{f(xh; θ)}. (1.11)

Consider calculation of f(xh; θ) over tree topology in figure 1.1a. To calculate site

probabilities, it is necessary to condition on all possible unknown ancestral states.

Under a codon model, this requires summation over all 61 possible codons for each

internal node. Given the ancestral state, substitution along a branch of the tree is

assumed to be independent of the substitution processes along the other branches.

This means calculation of f(xh; θ) is the product of the substitution probabilities over
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branches of the tree,

f(xh; θ) =
∑︂

x0

∑︂

x5

∑︂

x6

[πx0px0,TTA(t1)px0,x5(t5)px5,CTA(t2)px5,x6(t6)px6,TTT (t3)px6,TTA(t4)] .

(1.12)

Here xi represents the ancestral state and the h subscript is omitted. At the root node,

the stationary distribution of the substitution process is assumed. Using equations

(1.7) and (1.9) along with the universal genetic code in table 1.1, transitioning from,

e.g., GTA at node 5 to CTA at node 2 over branch length t2 is given by pGTA,CTA(t2) =

πGTAe
ωπCTAt2 . The quantity in the exponent is not scaled by κ because G is a purine

and C is a pyrimidine, but is scaled by ω because GTA and CTA do not code for the

same amino acid, i.e., this codon substitution is a nonsynonymous transversion.

Because the substitution process described in equation (1.9) is reversible and

branch length estimation is unconstrained, the likelihood calculation over the tree

is invariant to the placement of the root node (Felsenstein, 2004, p. 256). Consider

the tree in figure 1.1a and a set of model parameters. If the root node x0 were shifted,

the tree topology and branch length parameters would change, but the likelihood of

the data will remain unchanged. When the root node is shifted in either direction

until either branch length t1 or t5 is 0, the tree becomes unrooted.

Algorithms designed to obtain MLEs, such as θ̂ = (κ̂, ω̂, tî) from the model de-

scribed in equation (1.9), explore parameter space by adjusting parameter values and

recalculating the likelihood. The goal is to ascend a metaphorical likelihood landscape

to reach the peak where the parameter values maximize the likelihood function. Each

such iteration requires recalculation of the likelihood of the data (equation 1.11) which

in turn requires recalculation of the transition probabilities over the tree. In the four-

taxon tree in figure 1.1a, there are 613 unobserved codon states per site to sum over.

Increasing the number taxa quickly makes likelihood maximization a computationally

expensive task.

To economize on the computation of the likelihood over phylogenetic trees, the

pruning algorithm was developed (Felsenstein, 1973), an application of Horner’s

method. Horner’s method describes an optimal algorithm for evaluation of poly-

nomials such that a polynomial of degree n is calculated with n multiplications and

n additions. For example, calculation of a0 + a1x + a2x
2 + a3x

3 as a0 + a1 · x +
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a2 · x · x + a3 · x · x · x requires three additions and six multiplications. Calculation

following Horner’s method, a0+x · (a1+x · (a2+a3 ·x)), requires only three additions

and three multiplications. The number of computations can be similarly reduced in

equation 1.13 by pushing the summations as far right as possible,

f(xh; θ) =
∑︂

x0

[︃

πx0px0,TTA(t1)

[︃

∑︂

x5

px0,x5(t5)px5,CTA(t2)

[︃

∑︂

x6

px5,x6(t6)px6,TTT (t3)px6,TTA(t4)

]︃]︃]︃

.

(1.13)

For m terminal nodes, the number of computations is exponential in m using a naive

calculation as in equation 1.13, but is reduced to linear in m when the pruning

algorithm is followed.

Formal hypothesis tests can be conducted using the likelihoods of two competing

models, a null model and an alternative model. The likelihood under the alternative

model is found by maximizing over the entire parameter space, whereas constraints

are imposed on the null model making it a special case of the alternative model. For

example, a test for positive selection could be formulated from equation (1.9) with

the null model imposing the constraint ω = 1 and the alternative model allowing

ω ≥ 1. A standard likelihood ratio (LR) test calls for twice the difference in log

likelihoods between the null and alternative model to be compared to thresholds

from a χ2 distribution with degrees of freedom equal to the difference in the number

of parameters, ∆p, between the models,

2∆ℓ = 2[log(La)− log(L0)] ∼ χ2
∆p
, (1.14)

where L0 and La are the likelihood scores under the null and alternative models.

1.3.6 Selection Pressure at Amino Acid Sites

Because proteins subjected to positive selection must still maintain the capacity to

fold into complex structural and functional domains, most amino acid sites in a protein

will be subjected to purifying selection pressure, but a large point mass of neutral

nonsynonymous mutations is nonetheless expected in the distribution of mutational

effects (e.g., Kim et al., 2017). This means a single ω estimated as an average over
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all sites of such a protein would rarely be large enough to detect positive selection.

Including a separate ω parameter for each site would require a large number of taxa,

which is often not practical. An alternative approach is to use site classes that are

subject to different levels of selection pressure such as ω < 1, ω = 1, ω > 1 (Nielsen

and Yang, 1998). The ω at a site is treated as coming from a probability distribution,

with various distributional forms allowed (Yang et al., 2000a). A null model includes

some number of ω ≤ 1 site classes, but does not permit ω values larger than 1,

i.e., positive selection is not permitted. The probability of site pattern xh can be

expressed as a mixture over choices of ω,

p(xh; θ) =
∑︂

i

pip(xh|ωi; ζ) (1.15)

with θ denoting all model parameters including branch lengths and ζ denoting all

parameters other than those describing the ω distribution, namely pi and ωi. The

alternative model includes the ω site classes of the null model and also a site class for

ω > 1,

p(xh; θ) =
∑︂

i

pip(xh|ωi; ζ) +
(︄

1−
∑︂

i

pi

)︄

p(xh|ω > 1; ζ). (1.16)

As the null model is nested within the alternative model, a standard LR test

calls for twice the difference in log likelihoods to be compared to thresholds from

a χ2 distribution with degrees of freedom equal to the difference in the number of

parameters between the models. For the models in equations (1.15) and (1.16), one

additional ω > 1 site class in the alternative model gives two additional parameters,

pω>1 and ω > 1, which would suggest the LR statistic follows a χ2
2. However, because

certain regularity conditions of the test are not satisfied, the specific distribution is

unknown and in practice either a χ2
0/2 + χ2

1/2 or a χ2
1 is used (Wong et al., 2004;

Yang, 1997).

If the LR test for positive selection within a gene is rejected, evidence of positive

selection at each site can be gathered. To calculate the posterior probability that site

h evolved under ω site class i, the Näıve empirical Bayes (NEB) approach passes the
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MLEs to Bayes formula,

Pr(ω(h) = ωi|xh; ζ) = pif(xh|ωi; ζ)/
k
∑︂

j=1

pjf(xh|ωj; ζ). (1.17)

A large posterior probability that site h evolved under the ω > 1 site class is inter-

preted as evidence that site h evolved under positive selection.

Because the site posterior probabilities always depend on the fitted values of the

model parameters (shape parameters of the distribution, branch lengths, etc.), the

reliability of NEB inference depends on the accuracy of the fitted values. If they have

been accurately estimated, as is often the case with large, information-rich datasets,

they can simply be treated as known without errors. However, when the fitted values

are subject to large errors, the detection of positive selection according to the posterior

probabilities can be negatively impacted and in some cases the false positive rate can

be unacceptably high (e.g., Wong et al., 2004). Bayes empirical Bayes (BEB), is used

to adjust for uncertainty in the parameters of the ω distribution by assigning priors

to those parameters and using numerical integration to average over the uncertainty.

1.4 Thesis Outline

Standard likelihood theory calls for the LR test for positive selection within a gene

used by mixture models of codon evolution to compare the LR statistic to thresholds

determined from a χ2 distribution with degrees of freedom equal to the difference

in the number of parameters between the null and alternative models. This is not

justified due to a lack of statistical regularity (Anisimova et al., 2001), so the LR test

is often applied with thresholds determined from χ2 or mixture of χ2 distributions

with degrees of freedom selected to make the test more conservative with the hope

that not much power is lost.

Results from Chapter 2 show that these commonly used thresholds need not yield

conservative tests, but instead give larger than expected type I error rates. Statistical

regularity can be restored by using a modified LR test. Theoretical results are pro-

vided to prove that, if the number of sites is not too small, the modified LR test gives

approximately correct type I error probabilities regardless of the parameter settings

of the underlying null hypothesis. Simulations show that modification gives type I
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error rates closer to those stated without a loss of power. The simulations also show

that parameter estimation for mixture models of codon evolution can be challeng-

ing in certain data-generation settings with very different mixing distributions giving

nearly identical site pattern distributions unless the number of taxa and tree length

are large. Because mixture models are widely used for a variety of problems in molec-

ular evolution, the challenges and general approaches to solving them presented here

are applicable in a broader context.

To mitigate problems with classification of selection pressure at sites when pa-

rameter are estimated with large errors, BEB assigns prior probabilities to some

parameters. However, as implemented, it imposes uniform prior probabilities, which

causes it to be overly conservative in some cases. When standard regularity condi-

tions are not met and parameter estimates are unstable, inference, even under BEB,

can be negatively impacted.

In Chapter 3, an alternative to BEB called smoothed bootstrap aggregation (SBA)

is presented. SBA uses bootstrapping of site patterns from an alignment of protein

coding DNA sequences to accommodate the uncertainty in the parameter estimates.

Deriving the correction for parameter uncertainty from the data in hand along with

kernel smoothing techniques improves site specific inference of positive selection. In-

cluded is a comparison of BEB and SBA by simulation and real data analysis. Simula-

tion results show that SBA balances accuracy and power at least as well as BEB, and

when parameter estimates are unstable, the performance gap between BEB and SBA

can widen in favour of SBA. SBA is applicable to a wide variety of other inference

problems in molecular evolution.



Chapter 2

A Modified Likelihood Approach to Explore and Restore Reg-

ularity when Testing for Positive Selection

This work was previously published in the journal Bioinformatics (Mingrone et al., 2018).

2.1 Introduction

Detecting positive selection within proteins is important for understanding the pro-

cesses of molecular evolution (Nielsen and Yang, 1998). The likelihood methods used

in codon-based models developed in Yang et al. (2000a) are among the most widely

used to test for positive selection. An important component of these models is the

LR test, which is used to test for evidence of positive selection within a gene or as

a filter before testing for positive selection at amino acid sites. Standard likelihood

theory gives that, when certain regularity conditions are satisfied, the distribution

of an LR statistic under the null hypothesis is that of a chi-square random variable

with degrees of freedom equal to the difference between the number of parameters

fit under the alternative hypothesis and the number under the null hypothesis. LR

tests of positive selection usually employ two additional parameters under the alter-

native model, often an ω > 1 parameter to quantify the positive selection and another

parameter for the proportion of sites evolving under ω > 1. This suggests the LR

statistics follows a χ2
2 null distribution. However, it has long been recognized that

the regularity conditions required for standard likelihood theory are not satisfied for

such LR tests of positive selection (Anisimova et al., 2001).

Simulations suggest that a χ2
2 distribution will give 5% thresholds for the LR test

that are too large (Anisimova et al., 2001; Wong et al., 2004). Drawing upon the

21
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non-standard likelihood theory of Self and Liang (1987), Swanson et al. (2003) indi-

cate that, for model comparison they describe as M8a vs M8, theory supports a 50:50

mixture of a point mass at 0 and a χ2
1 distribution or, more concisely, a χ2

0/2 + χ2
1/2

distribution. However, Wong et al. (2004) and Anisimova et al. (2001) raised concerns

about whether this is the appropriate distribution for comparison. Nevertheless, the

χ2
0/2 + χ2

1/2 distribution and, to be more conservative, the χ2
1 distribution are the

most frequently used distributions. While there have been some simulation studies

indicating that the χ2
1 distribution is indeed conservative in the sense that LR statis-

tics generated under the null tend to be smaller than predicted by a χ2
1 distribution

(Anisimova et al., 2001; Wong et al., 2004; Berlin and Smith, 2005), some of these

same studies have found settings where the false positive rates are larger than 5%

(Wong et al., 2004; Berlin and Smith, 2005).

That the null distribution of the LR statistic is neither χ2 nor a mixture of χ2

distributions is a theoretical possibility, even with large samples, because of a reg-

ularity condition violation in both standard likelihood theory and the non-standard

likelihood theory of Self and Liang. If the only regularity condition violation were

that parameters are on the boundary of the parameter space, the Self and Liang

theory would hold and the LR test using the mixture of χ2 distributions would be

conservative. An explanation is provided for why a lack of identifiability under the

null hypothesis makes it possible that the LR test will be anti-conservative (under the

null, LR statistics tend to be larger than is predicted by a χ2
0/2 + χ2

1/2 distribution).

The anti-conservative behaviour is confirmed through simulation.

A dramatic illustration of how a lack of this type of identifiability with mixture

models can cause LR tests to be anti-conservative is provided by Hartigan (1985)

(see also Chen, 2017). The setting was a test of N(0, 1) against the alternative

hypothesis of a mixture of N(0, 1) and N(θ, 1). The testing problem suffers from a

similar irregularity problem to the one described here: a lack of identifiability of the

full model under the null hypothesis. When a mixing weight is 0 any θ gives the

null hypothesis and Hartigan (1985) shows that the LR statistic approaches ∞ with

probability 1.

To obtain tractable limiting χ2
0/2 + χ2

1/2 null distributions, a modified LR test

was developed. The modified likelihood, a type of penalized likelihood, borrows from
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similar methods in mixture model tests of heterogeneity (Chen et al., 2001). The test

statistic is obtained as it is for the standard LR test, but with the likelihood replaced

by one that penalizes small mass on ω > 1 relative to ω = 1. This strategy has been

effective under a variety different mixture settings (cf. Chen et al., 2001, 2004; Fu

et al., 2009, and references therein).

2.2 Theory and Methods

The base model of Yang et al. (2000a) is a conventional stationary time-reversible

Markov model of codon sequence evolution described in Goldman and Yang (1994)

with instantaneous rate matrix for transitions from codon i to j given by

Qij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if i and j differ at two or three nucleotide positions

πj if i and j differ by one synonymous transversion

κπj if i and j differ by one synonymous transition

ωπj if i and j differ by one nonsynonymous transversion

ωκπj if i and j differ by one nonsynonymous transition

where κ is the transition/transversion parameter, πj is the stationary frequency of

codon j and ω is the parameter quantifying selection pressure as purifying (ω < 1),

neutral (ω = 1) or positive (ω > 1). To model varying selection pressure at sites,

the ω at a site is treated as coming from a probability distribution, referred to here

as the mixing distribution, with various distributional forms allowed (Yang et al.,

2000a). The null hypothesis of interest is that there is no positive selection, which

corresponds to the distribution of ω having all of its mass between 0 and 1. The

alternative is that the distribution allows some positive probability of an ω > 1. For

example, following the naming conventions of Yang et al. (2000a) and Berlin and

Smith (2005), null model M1a uses a distribution with mass at an ω0 < 1 and at

ω1 = 1. The corresponding alternative model, M2a, adds an ω2 > 1 to the M1a

distribution.

For any of the models considered, the probability of a site pattern x can be

expressed as a mixture over choices of ω of the following form

p(x; β, p+) = p0p(x|ω < 1; ζ, λ)+(1−p+)(1−p0)p(x|1; ζ)+p+(1−p0)p(x|ω+; ζ) (2.1)
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with β denoting all model parameters other than p+. Theoretical derivations are sim-

pler with this unconventional parameterization and it allows consideration of different

models listed in supplementary table 6.1 in the same setting. Usually the weights on

ω values are parameters. For instance, model M2a replaces (1 − p+)(1 − p0) and

p+(1 − p0) with p1 and p2. For both models M1a and M2a there is a single ω0 < 1,

so p(x|ω < 1; ζ, λ) = p(x|ω0; ζ). Here ζ denotes parameters common to each ω and

includes edge-lengths and substitution model parameters. The parameter ω+ is re-

stricted to be at least 1 and the parameters in λ are those involved in the mixture

model under purifying selection. For instance, for model M8a, λ gives the parameters

of the beta distribution. Let ψ = (ζT , λT , p0)
T be the parameters that are common

to both null and alternative models. The LR statistic is

2{l(p̂+, ω̂+, ψ̂)− lH(ψ̂H)} (2.2)

where l and lH denote the log likelihoods under the alternative and null models, and

p̂+, ω̂+, ψ̂, and ψ̂H denote the MLEs under the alternative and null hypotheses.

The likelihood theory of Self and Liang (1987) gives appropriate null distributions

in a number of cases where usual regularity conditions do not hold, but it does not

generally apply to (2.2). This is because there can be multiple parameter values under

the alternative hypothesis that give the null model. Any ω+ > 1 and p+ = 0 gives the

null model. Also, if the alternative model allows mass at ω = 1, then ω+ = 1 and any

p+ gives the null model. The M8a vs M8 comparison considered in Swanson et al.

(2003) finesses this difficulty by not allowing the alternative model to have mass at

both an ω = 1 and an ω+ > 1. Because of this restriction, whenever the true null

generating model has mass on ω = 1, the only alternative model parameterization

giving the generating distribution has ω+ = 1; p+ = 0 and ω+ > 1 no longer gives the

generating model. The Swanson et al. (2003) approach restores regularity, but may

make it more difficult to model settings where the alternative is true but there is also

appreciable mass near ω = 1. In what follows, the model is allowed to have mass at

ω = 1 under both the null and alternative model, with additional mass at an ω+ > 1

under the alternative hypothesis.

The regularity problems for the Self and Liang theory do not arise if ω+ > 1 is
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fixed, in which case the LR statistic is

2{l(p̂+(ω+), ω+, ψ̂(ω+))− lH(ψ̂H)} (2.3)

where p̂+(ω+) and ψ̂(ω+) denote the MLEs of p+ and ψ holding ω+ fixed. With

ω+ fixed, the only parameter giving a null model is p+ = 0. Because that value is

on the boundary of the parameter space, standard chi-square results for the limiting

distribution of the LR statistic do not apply. However, case 5 of Self and Liang

(1987) gives that the large sample distribution is χ2
0/2+χ

2
1/2. This allows something

to be said about the distribution of the usual LR statistic (2.2). Because (2.2) can be

obtained by maximizing (2.3) over ω+ ≥ 1, it is sure to be larger than any test statistic

(2.3) that uses a fixed ω. Thus, since (2.3) has a χ2
0/2 + χ2

1/2 distribution, usual LR

statistic values (2.2) will tend to be larger than values predicted by the χ2
0/2 + χ2

1/2

distribution. How much larger LR statistic values tend to be depends upon how

much (2.3) tends to vary over ω+ > 1 which in turn likely depends on how much of

the mass of the generating distribution is near ω = 1. Thus, using a χ2
0/2 + χ2

1/2

distribution to calculate thresholds for the LR test can generally be expected to give

an anti-conservative test: the null hypothesis is rejected too frequently when it is

true.

The main reason that the null distribution of the LR statistic is intractable is that

p+ = 0 and any ω+ > 1 gives the null model. A similar difficulty arises when testing

for mixture structure or heterogeneity in mixture models. The distribution for the

data, x, is γp(x; θ1) + (1 − γ)p(x; θ2) where p(x; θ) is a parametric distribution. A

hypothesis of particular interest is that the data corresponds to a single distribution

p(x; θ). If this is the case, the population might be considered homogeneous when it

is otherwise heterogeneous with γ× 100% of the individuals having parameter θ1 and

the rest having parameter θ2. As with tests for positive selection, the reason for a

non-standard LR statistic distribution in mixture models is that multiple parameter

settings correspond to the null hypothesis: (i) γ = 0 and any θ1 or (ii) θ1 = θ2

and any γ. To restore simple limiting distributions while maintaining a test statistic

similar to the LR statistic, Chen et al. (2001) replace log likelihoods with modified

log likelihoods that add a term, C log[γ(1 − γ)] where C > 0 is a tuning parameter.

Because this term gets very large in magnitude but negative when γ is close to 0 or 1,
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the modified log likelihood is maximized by values with γ away from these boundaries,

implying that the only way modified MLEs under the null can approach true values

is if θ̂1 ≈ θ̂2, which restores the sort of regularity needed for chi-square or mixture

of chi-square distributions. The strategy has been effective in a number of different

settings (cf. Chen et al., 2001, 2004; Fu et al., 2009, and references therein) and a

similar approach here is presented here.

The modified log likelihood under the alternative hypothesis is

l̃(p+, ω+, ψ) = l(p+, ω+, ψ) + C log(p+) (2.4)

and the modified LR statistic is then

2{l̃(p̂+, ω̂+, ψ̂)− lH(ψ̂H)} (2.5)

where now the estimates denote the maximizers of the modified log likelihood. Shown

in Appendix II (section 6.2) is that for C > 0 the large sample distribution of (2.5)

under the null hypothesis is χ2
0/2+χ

2
1/2. Here C > 0 is a tuning parameter. While the

theory holds for any C > 0, choosing C too small makes the modified LR statistic too

similar to the LR statistic, leading to similar difficulties in behaviour. The sensitivity

to C through simulations is investigated.

Simulation is used to estimate LR and modified LR statistic cumulative distribu-

tion functions (CDFs) under the null hypothesis. For each of six simulation scenar-

ios, 10,000 sequence alignments 500 codons long were generated using 5-, 10-, and

32-taxon trees with branch lengths summing to 3, 6, and 9. The 5-taxon tree (figure

2.1a) was the same one used in the simulation studies of Wong et al. (2004) and

Mingrone et al. (2016) and the 10- and 32-taxon trees have caterpillar (figure 2.1b)

and balanced (figure 2.1c) topologies. Sites were simulated to evolve under the M1a

model (described in Wong et al., 2004; Yang et al., 2005), which places weight p0 on

a single ω0 < 0, with the remaining weight, 1− p0, placed on ω = 1; thus, the mixing

distribution is determined by (p0, ω0). Each simulation scenario used κ = 1 and equal

codon frequencies, but (p0, ω0) varied over scenarios.

To determine the effect of likelihood modification on power, sequence alignments

500 codons long were simulated under the M2a alternative model (Wong et al., 2004;



27

1

2

3

4

5

x

x

x

2x

2x

2x

(a) 5-taxon tree

1

2

3

4

5

6

7

8

9

10

x

x

x

x
x

x

2x

3x

4x

x

x

x

x
x

x

2x

3x

4x

(b) 10-taxon tree

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

(c) 32-taxon tree

Fig. 2.1: Phylogenetic tree topologies used in simulation studies, with relative edge
lengths shown for the 5- and 10-taxon trees. All edge lengths are equal in the rooted
32-taxon tree.
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Yang et al., 2005), which, by comparison with the M1a mixing distribution, has

an additional component, ω2 > 1. The mixing distributions used in simulations had

(p0, ω0) = (0.45, 0.5) with (p2, ω2) varying over simulation settings. Codon frequencies

were 1/61 and κ = 1, as was the case for simulations under the null hypothesis and the

tree toplogies also matched those used in the simulations under the null. For each ω-

distribution scenario, 10, 000 alignments were generated for the 5- and 10-taxon trees

and 1000 alignments for the 32-taxon tree. To ensure that comparisons of power with

and without likelihood modification corresponded to the same false positive rate, the

thresholds for significant LR statistics were calibrated to an error rate of 0.05. For

this, 10, 000 sequences were generated under the null with the weight on ω > 1 under

the alternative settings added to ω = 1. The 95th percentiles of these LR statistic

distributions under both M1a/M2a (C=0) and M1a/M2a (C=2) were used as the

thresholds for calculating power.

2.3 Results and Discussion

2.3.1 Modified LR Distribution Approximations are Accurate for Most Set-

tings

Figure 2.2 shows the estimated LR and modified LR statistic CDFs for the M1a/M2a

nested model pair for the simulations under the null using the 32-taxon tree with

branch lengths summing to 9. With likelihood modification, a tuning parameter of

C = 2 was used. Other tuning parameters were tested, but the LR statistic CDFs

for values of C between 2 and 5 were indistinguishable from those with C = 2, and

CDFs for values of C < 2 were always between the one for C = 2 and the one for

the unmodified LR statistics. CDFs for χ2
0/2 + χ2

1/2 are also included in each plot.

For all of the CDFs in Figure 2.2, the modified LR statistic distributions are better

approximated by a χ2
0/2 + χ2

1/2 distribution than the corresponding distributions

without likelihood modification. Tree topology made little difference as both the LR

statistic and modified LR statistic CDFs were similar when data were simulated with

different topologies. Figure 2.3 and supplementary figures 6.1 - 6.7 contain the LR

statistic CDFs for the remaining simulation scenarios.
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Fig. 2.2: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 32-taxon tree topology with branch lengths summing to 9. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 2.3: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
5-taxon tree topology with branch lengths summing to 3. The value of ω0 and its
weight, p0, used to generate the data are shown as column and row labels. CDFs for
χ2
0/2 + χ2

1/2 are also included.
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2.3.2 False Positive Rates are too Large Without Modified LR Tests

The false positive rates for each of the LR tests of positive selection under nested

models M1a/M2a with and without likelihood modification are shown in Table 2.1.

The threshold used to reject each LR test was determined from the 95th percentile

of the χ2
0/2 + χ2

1/2 distribution. Thus, when the χ2
0/2 + χ2

1/2 does well to approxi-

mate the LR statistic distribution, the expected false positive rate is 0.05. For each

simulation setting under the null hypothesis, the rates were closer to the expected

value using the modified likelihood than with the unmodified likelihood. Excluding

the simulation scenario with 5 taxa and (p0, ω0) = (0.25, 0.5) where parameters are

almost unidentifiable (discussed below), the false positive rates were between 0.06 and

0.1 (average 0.09) without likelihood modification and between 0.05 and 0.07 (aver-

age 0.06) with likelihood modification. While the false positive rate of the modified

LR statistic was usually close to 0.05, there is a small sample bias using sequences of

length 500. Analyzing datasets simulated under the same settings, but with sequences

1500 codons long confirms this bias. All but one of the false positive rates that were

0.06 with sequences 500 codons long dropped to 0.05 with sequences 1500 codons

long and the false positive rate for the simulation setting with (p0, ω0) = (0.25, 0.5)

dropped to 0.06 with the longer sequences.

2.3.3 Power of the Modified LR Tests is Comparable to Re-calibrated LR Tests

LR tests are generally expected to have power that is in some sense optimal (cf

Section 5.4.4 of Bickel and Doksum, 2006). By modifying the LRs, it is possible that

some loss of power will accrue. Figure 2.4 shows the power curves, using a threshold

calibrated to have Type I error rate 0.05, with and without likelihood modification.

The plots suggest that likelihood modification has minimal impact on power.

2.3.4 Modified Likelihood Improves Estimation for Difficult Real Data Set-

tings

The same 16 genes described and analyzed in Mingrone et al. (2016) were analyzed

and the results are summarized in Table 2.2. For each of the genes Mingrone et al.

(2016) described as regular cases, meaning there were no indications of departures

from the limiting properties predicted by ML theory, estimation showed no evidence

of instabilities, and bootstrap parameter distributions had low variance (lysin, nuoL3,
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Table 2.1: False positive rates.

Tree Length 3

5 taxa 10 taxa 32 taxa

ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5

Model p0 = .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75

M2a (C=0) .10 .09 .09 .10 .08 .07 .09 .09 .08 .09 .08 .06 .09 .08 .08 .08 .08 .07
M2a (C=2) .06 .06 .05 .08 .06 .06 .06 .06 .05 .07 .06 .05 .06 .06 .05 .07 .06 .06

Tree Length 6

5 taxa 10 taxa 32 taxa

ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5

p0 = .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75

M2a (C=0) .10 .09 .08 .10 .09 .08 .10 .09 .08 .10 .08 .07 .09 .10 .09 .09 .09 .07
M2a (C=2) .06 .06 .05 .08 .06 .07 .06 .05 .05 .07 .06 .05 .05 .06 .06 .07 .07 .05

Tree Length 9

5 taxa 10 taxa 32 taxa

ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5 ω0 = .25 ω0 = .5

p0 = .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75 .25 .5 .75

M2a (C=0) .10 .09 .08 .10 .09 .07 .09 .09 .08 .10 .08 .06 .09 .09 .08 .09 .09 .08
M2a (C=2) .07 .05 .06 .08 .07 .06 .06 .06 .05 .06 .06 .05 .05 .05 .05 .06 .06 .06

False positive rates for LR tests of positive selection under nested models M1a/M2a with and without likelihood modification.
For each of six simulations scenarios with varying weights and values for two site classes, ω < 1 and ω = 1, 10,000 sequence
alignments 500 codons long were generated using 5-, 10-, and 32-taxon tree topologies with branch lengths summing to 3, 6,
or 9. The value of ω0 and its weight, p0, used to generate the data are shown in column and row labels. Modified likelihood
tuning parameters of C = 0 (no likelihood modification) and C = 2 were used. The LR statistics were compared to the 95th
percentile of the χ2

0/2 + χ2
1/2 distribution.
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Fig. 2.4: Comparison of power under model M2a without (C=0) and with (C=2)
likelihood modification. For each simulation setting, 10,000 (5 and 10 taxa) or 1,000
(32 taxa) alignments were generated with 500 codons and 45% weight on ω = 0.5, p2
weight on ω2 and the remaining weight on ω = 1.
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pol, RafL, TrbL-VirB6 3, and vif ), the LR statistics, p̂2, and ω̂2 are comparable with

and without likelihood modification. On the other hand, for 4 of the 5 irregular

genes, genes for which the ω distribution had been poorly estimated in Mingrone

et al. (2016) (CDH3, mivN, pgpA, tax, and TrbL-VirB6 2 ), the results are very dif-

ferent with and without likelihood modification. Without likelihood modification,

an estimated p̂2 = 0.006 of the sites in pgpA were estimated to have evolved under

ω̂2 = 34.7 and the LR test was rejected. With likelihood modification, (p2, ω2) was

estimated to be (0.09, 1.00), the likelihoods under both the null and alternative mod-

els are the same, and the LR test was not rejected. With the exception of tax, the

estimates of p2 were always larger using modified likelihoods and the corresponding

estimates of w2 were always smaller with average decreases in the estimated ω2 equal

to 16.85, 2.22, and 0.29 for the genes described in Mingrone et al. (2016) as irregular

(excluding tax ), uncategorized, and regular, respectively. Differences in the branch

length and κ estimates were minor in all cases. The only irregular gene with esti-

mates that did not vary between the two likelihood approaches was the well-known

tax gene (Suzuki and Nei, 2004; Yang et al., 2005). Its highly unusual site-pattern

distribution gives extreme MLEs with 100% weight (p̂2 = 1) placed on ω > 1. Because

the modified likelihood penalizes against small weight on ω > 1, it is not surprising

that likelihood modification has no impact on likelihood estimation for the tax gene.



35

Table 2.2: Genes analyzed under models M1a and M2a without (C=0) and with (C=2)
likelihood modification.

p-value Tree Length p̂2/ω̂2

Gene Nt Nc C=0 C=2 C=0 C=2 C=0 C=2

CDH3 11 176 1.40e-04 8.39e-03 0.56 0.54 0.00/24.57 0.08/2.01

mivN 5 504 1.54e-01 5.00e-01 1.62 1.60 0.00/5.95 0.07/1.00

pgpA 5 198 2.33e-02 5.00e-01 2.93 2.06 0.01/34.70 0.09/1.00

TrbL-VirB6 2 5 657 4.03e-01 5.00e-01 2.12 2.11 0.00/6.17 0.11/1.00

lysin 25 134 0.00e+00 0.00e+00 8.81 8.92 0.26/3.25 0.27/3.24

nuoL3 5 499 8.26e-14 9.63e-14 4.58 4.75 0.04/12.53 0.04/12.03

pol 23 947 4.33e-15 5.61e-15 1.31 1.32 0.02/5.59 0.02/5.14

RfaL 5 403 6.20e-06 7.89e-06 3.46 3.50 0.07/4.34 0.08/3.94

TrbL-VirB6 3 5 938 2.05e-09 2.36e-09 3.06 3.12 0.03/5.99 0.04/5.76

vif 29 192 2.86e-13 3.47e-13 2.90 2.95 0.08/3.56 0.10/3.43

β-globin 17 144 3.69e-03 5.84e-03 8.40 8.62 0.03/2.94 0.05/2.72

ccmF 5 635 2.54e-05 4.40e-05 3.41 3.28 0.01/15.47 0.03/8.41

ENAM 11 1142 7.66e-04 9.73e-04 0.46 0.46 0.02/5.69 0.08/3.41

env 13 91 2.59e-05 1.33e-04 2.04 2.03 0.18/3.63 0.33/2.79

perM 5 351 1.71e-01 2.16e-01 1.78 1.77 0.02/2.57 0.04/1.89

tax 20 181 4.17e-03 4.17e-03 0.13 0.13 1.00/4.87 1.00/4.87

Nt: number of taxa; Nc: sequence length in number of codons; p-value of the LR test for the

presence of positive selection using a χ2
0/2+χ2

1/2 distribution; estimated total tree length; estimated

proportion of sites evolving under ω > 1: p̂2/ω̂2. The top genes represent irregular estimation, the

middle regular, and the bottom genes are uncategorized.

2.3.5 Real Data Results Show that Using Modified Likelihood Improves Esti-

mation and Detection of Sites Under Positive Selection

Although site classification was not a focus of this study, evidence of positive se-

lection at individual sites was checked in order to assess differences using the two

likelihood approaches and three site classifiers. Spearman correlations for the site

posteriors are summarized in Table 2.3 for NEB, BEB (Yang et al., 2005) and SBA,
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Table 2.3: Spearman rank correlations of site posterior probabilities for different
methods of classification under model M2a.

Gene N*/N N*/B N*/S B*/N B*/B B*/S N/B N/S B/S

CDH3 0.40 1.00 1.00 0.40 1.00 1.00 0.40 0.40 1.00
mivN 0.76 0.99 0.97 0.77 1.00 0.96 0.77 0.78 0.96
pgpA 0.71 0.99 0.99 0.72 1.00 0.98 0.72 0.73 0.98
TrbL-VirB6 2 0.72 1.00 0.98 0.72 1.00 0.98 0.72 0.72 0.98
lysin 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
nuoL3 1.00 0.99 0.90 0.99 1.00 0.93 0.99 0.90 0.93
pol 0.94 0.96 0.79 0.91 1.00 0.85 0.91 0.76 0.85
RfaL 1.00 1.00 0.97 1.00 1.00 0.97 1.00 0.96 0.97
TrbL-VirB6 3 0.98 0.98 0.91 1.00 1.00 0.93 1.00 0.93 0.93
vif 1.00 1.00 0.97 1.00 1.00 0.98 1.00 0.97 0.98
β-globin 0.96 0.94 0.85 0.90 1.00 0.90 0.90 0.82 0.90
ccmF 0.93 0.93 0.87 0.86 1.00 0.96 0.86 0.80 0.96
ENAM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
env 0.99 1.00 0.99 1.00 1.00 0.99 1.00 0.98 0.99
perM 0.99 1.00 0.92 0.99 1.00 0.93 0.99 0.91 0.93

N: NEB; B: BEB; S: SBA; *: parameter estimation with modified likelihood. The top
genes represent irregular estimation, the middle regular, and the bottom genes are uncat-
egorized.

the smoothed bootstrap method (Mingrone et al., 2016, Chapter 3), each with and

without likelihood modification. Site classification was nearly identical using BEB

with both likelihood approaches. This is to be expected since BEB integrates over

the uncertainties in the estimates of the ω distribution using discretized uniform and

Dirichlet priors. Thus, the only parameters under BEB that differ with or without

modified ML estimation are the edge-lengths and some parameters in the rate matrix,

which tended to change much less than the parameters of the mixing distribution.

By contrast, NEB directly uses the ML estimates of the mixing distribution, which

differ considerably with and without likelihood modification. Consequently, site clas-

sification differs substantially under NEB with and without the modified likelihood.

Given that previous studies have indicated that BEB and SBA do better than NEB

at balancing accuracy and power for identifying sites under positive selection (e.g.,

Anisimova et al., 2002; Mingrone et al., 2016), the stronger agreement between BEB

and SBA with NEB using modified likelihood than NEB without modified likelihood

suggests modified likelihood is beneficial for detecting sites under positive selection.
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2.3.6 Investigation of a Problematic Setting

Estimation and inference becomes more challenging with smaller evolutionary dis-

tances or fewer taxa, but, perhaps surprisingly, the results show that the true mixing

distribution is at least as important for determining whether a setting is challenging.

This is most evident in the CDFs for the null simulation settings using a 5-taxon tree

of length 3 (figure 2.3). Note that the mixing distribution for all of these scenarios is

determined by (p0, ω0). Overall, except for the (p0, ω0) = (0.25, 0.5) case, the modified

LR statistic distribution is still well approximated by a χ2
0/2+χ2

1/2 distribution, but

for this one setting, neither the LR statistic nor the modified LR statistic distribution

is well approximated by the χ2
0/2 + χ2

1/2 distribution.

Histograms of the ω0 estimates under models M1a and M2a with modified like-

lihood show the largest variation when (p0, ω0) = (0.25, 0.5) (figure 2.5). Of the

10, 000 sets of modified likelihood MLEs, under M2a 2315 had 90% or more weight

on an ω̂0 ≥ 0.65. Since the true mixing distribution had two well-separated ω values,

ω0 = 0.5 and ω1 = 1, the expectation was that the estimated distribution would also

have well-separated components with appreciable weight. The theory leading to the

χ2
0/2 + χ2

1/2 approximation relies on this being highly likely with sufficiently large

sequence lengths. It is clear from the simulations that sequence lengths of 500 are

not long enough to guarantee well-separated components, which lead to the discrep-

ancy for (p0, ω0) = (0.25, 0.5) in Figure 2.3. After removing the 2315 sets of modified

MLEs that had 90% or more weight on an ω̂0 ≥ 0.65, the χ2
0/2 + χ2

1/2 CDF provides

a good approximation to the actual CDF of the modified LR statistic (figure 2.6).

This indicates that the estimates with p̂0 ≥ 0.9 and ω̂0 ≥ 0.65 were the source of

anomalously larger than expected LR statistics.

Whether a pre-screen would be useful for filtering out datasets with p̂0 ≥ 0.9

and ω̂0 ≥ 0.65 was tested. The pre-screen considered was to ignore datasets failing to

reject M1a in an M0 versus M1a test. While this was effective in that it filtered all the

2315 datasets described above, it also filtered many other datasets. Consequently, the

distribution of M1a/M2a LR statistics remaining after the pre-screen was not as well

approximated by the χ2
0/2 + χ2

1/2 CDF as the one with the 2315 datasets manually

filtered (supplementary figure 6.9). As a second check, the data was re-simulated

under the same settings, but with codon frequencies derived from abolone sperm lysin
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Fig. 2.5: MLEs of the ω0 parameter under model M2a using a modified likelihood
parameter of C = 2 for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
5-taxon tree topology with branch lengths summing to 3. The value of ω0 and its
weight, p0, used to simulate the data are shown as column and row labels.
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Fig. 2.6: CDF of filtered, modified LR statistics (C=2). The modified LR statistics
were calculated under the nested model pair M1a/M2a for 10,000 simulated sequence
alignments. The alignments were simulated with 25% of the sites evolving under
ω = 0.5 and the remaining sites evolving under ω = 1 using a 5-taxon tree topology
with branch lengths summing to 3. A modified likelihood tuning parameters of C = 2
was used and 2315 LR statistics associated with ML estimates with greater than 90%
of the sites estimated in the ω < 1 site class were excluded from the plot. A χ2

0/2+χ
2
1/2

CDF is also included.
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(Yang et al., 2000b), however the M1a/M2a LR statistic distribution was, again, not

well approximated by a χ2
0/2 + χ2

1/2 CDF.

2.3.7 Parameters can be Almost Unidentifiable for Codon Models

To further investigate why (p0, ω0) = (0.25, 0.5) was a difficult setting, Kullback-

Leibler divergences (KLs) were approximated between 5-taxa pattern distributions

coming from (p0, ω0) = (0.25, 0.5) and pattern distributions from other mixing dis-

tributions (figure 2.7). When KL = 0, two mixing distributions give exactly the

same pattern probabilities and the mixing distributions are said to be unidentifiable.

When KL > 0 but small, distinguishing between the two mixing distributions will be

difficult. Calculation of site likelihoods for all 615 site 5-taxa patterns is not feasible,

so the KL values were approximated with 10, 000 simulated sites. Some of the ap-

proximated KLs in Figure 2.7 are close to 0, including those for (p0, ω0) = (0.5, 0.7)

and (p0, ω0) = (0.75, 0.8). To determine whether the KL was indeed 0, attention was

restricted to all site patterns for pairs of taxa to give tractable calculations. Calcula-

tion of all 612 site patterns is feasible and the KLs, KL calculated using site pattern

distributions for a subset of the 5 taxa, satisfies KLs ≤ KL. Thus, if any pair of taxa

gives KLs > 0, then the KL for all 5 taxa must be positive. For (p0, ω0) = (0.5, 0.75)

this gives KL > 0.00018, the maximum KL over pairs.

Consideration of KLs for mixing distributions (p0, ω0) = (1, 0.75) and (p0, ω0) =

(0.5, 0.5) allows it to be shown that there are ranges of distributions that are almost

unidentifiable. The maximum KL over pairs of taxa from the 5-taxon tree was small

(0.00085), thus

p(x;ω = 0.75, ζ) ≈ p(x;ω = 0.5, ζ)/2 + p(x;ω = 1, ζ)/2.

Multiplying this equation by p
′

0 and rearranging, one can show

p(x;ω = 0.75, ζ)p
′

0+p(x;ω = 1, ζ)(1−p′

0) ≈ p(x;ω = 0.5, ζ)p
′

0/2+p(x;ω = 1, ζ)/(1−p′

0/2).

Thus, mixing distributions (p0, ω0) = (p
′

0, 0.75) give pattern probabilities that are

difficult to distinguish from (p0, ω0) = (p
′

0/2, 0.5). This holds for the range of mixing

distributions with 0 ≤ p
′

0 ≤ 1 (figure 2.7).
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Fig. 2.7: Approximations of the Kullback-Leibler divergences between the distribu-
tions of site likelihoods for the generating model and other mixing distributions. The
approximations were obtained as the mean lnL difference between 10,000 site patterns
generated under model M1a using a 5-taxon tree with branch lengths summing to
3 and the mixing distribution (p0, ω0) = (0.25, 0.5), and other mixing distributions
with varying weights on values of ω ranging from 0 to 1. Error bars for two standard
errors (sKL/

√
10000) above and below each Kullback-Leibler estimate are included.

Points missing from each plot are above the visible range.
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While it has been shown that there are regions of mixing-distribution parameter

space that can make estimation and inference difficult, the results also show that

there are regions where distinguishing between mixing distributions is not difficult,

even for the (p
′

0, 0.75) ≈ (p
′

0/2, 0.5) comparison above. This is because p
′

0/2 ≤ 0.5,

so pattern probabilities generated from any (p0, ω0) = (p
′

0, ω = 0.75) can not be

consistent with e.g., (p0, ω0) = (0.75, ω = 0.5) (supplementary figure 6.10). Finally,

the good behaviour of the modified LR statistic when used with trees with more

taxa and longer branch lengths (e.g., figure 2.2) suggests these problems are likely

restricted to trees with fewer taxa and shorter branch lengths.

2.3.8 Concluding Remarks

Challenging issues have been described with mixture models of codon evolution that

result in null distributions of LR statistics that are not tractable when testing for

positive selection. A common violation of the regularity conditions under the widely

employed M2a model is for small weight to be placed on ω > 1. This results in LR

statistics that, when compared to thresholds predicted by a χ2
0/2+χ

2
1/2 distribution,

tend to give inflated false positive rates. By including a penalty in likelihood calcu-

lations for small weight on ω > 1, in most cases, LR statistic distributions are well

approximated by a χ2
0/2 + χ2

1/2 distribution and false positive rates are adequately

controlled. Simulations under the alternative hypothesis show that modifying the LR

statistic has minimal impact on power.

The likelihood modification may introduce small positive bias to the estimated

weight on ω > 1. But, the results here show that when there is signal in the data for

the weight to be close to 0 and the sample size or the number of taxa are large, the

contribution from the likelihood overwhelms the penalty term. In small sample cases,

it may be difficult to overwhelm the penalty term in the modified LR test. However,

when the weight on ω > 1 is estimated to be close to 0 and the sample size is small,

the standard LR tests are unreliable. Thus, whether samples sizes are small or large,

and whether the weight on ω > 1 is actually close to 0 or not, the modified LR test

is appropriate.

For values of the tuning parameter, C, substantially smaller than 2, the behaviour

of the modified LR statistic was too similar to that of the standard LR statistic. As

values of C larger than 2 and up to 10 gave indistinguishable LR statistic CDFs to
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those with C = 2, a simple, default value of C = 2 was used. Further improvements

might be obtained with different data-dependent choices of C; the optimal choice is a

topic for future research. A possible approach for making an optimal, data-dependent

choice is cross-validation. One would choose C to make the average likelihood on test

samples as large as possible.

The problematic behaviour of LR statistics discussed here arises more broadly with

mixtures and is not usually amenable to solutions like those discussed in Self and Liang

(1987). For instance, Chernoff and Lander (1995) outline a class of problems using a

mixture of binomial distributions to evaluate genetic markers for genes representing

heterogeneous traits. Similar to how any ω2 > 1 with a weight of p2 = 0 gives the

null under model M2a, any mixing distribution gives the null when the parameters of

the two binomials are estimated to be the same. For many of the settings considered,

no closed form expression for the distribution was available and, by contrast with

usual χ2 distributions, depended on unknown parameters in the true model under the

null hypothesis. Generally, it appears that when dealing with mixtures in molecular

evolution settings, simple limiting distributions like those of Self and Liang (1987)

are not likely without some modification to the likelihood.

A possible alternative to using a modified likelihood is to estimate the LR statis-

tic distribution using a parametric bootstrap. Parameters estimated from the data

are used to simulate B parametric bootstrap samples. The LR statistic distribu-

tion is then estimated from the B bootstrap samples and P (XLR ≤ x; θ̂0), the

probability that the LR statistic is less than a threshold determined from the es-

timated LR statistic distribution is calculated, where θ̂0 are the MLEs under the

null hypothesis. As a function of θ, P (XLR ≤ x; θ) is expected to be continuous

because the probabilities of individual site patterns are continuous functions of θ.

So if the null hypothesis is true and θ0 is the true parameter, then when θ̂0 ≈ θ0,

then P (XLR ≤ x; θ0̂) ≈ P (XLR ≤ x; θ0), the appropriate null distribution for the

LR statistic. There are potential issues using the parametric bootstrap. With small

samples, θ̂ might occasionally be far from θ0. The extent to which this is a problem

depends upon how much P (XLR ≤ x; θ) varies as a function of θ. An additional, more

serious difficulty when P (XLR ≤ x; θ0) varies with θ0, is that when the alternative

hypothesis is true, the value of θ̂0 is not clearly meaningful. This is one reason for
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preferring a test statistic like the modified LR that is expected to have a distribution

that does not vary too much under the null hypothesis.

The simulation results expose an additional difficulty. For certain generating

mixing distributions like (p0, ω0) = (0.25, 0.5) under model M2a, there are other

mixing distributions that can give very similar pattern probabilities when the number

of taxa is small and edge lengths are short. Models that are almost unidentifiable

will give flat likelihood surfaces for subsets of parameters. Perturbations caused by

unwanted influences such as sequencing error and model misspecification will be more

pronounced than on peaked likelihood surfaces. Thus, the identifiability problems

exposed when edge lengths are short might, for instance, help to explain the elevated

false positive rates found by Schneider et al. (2009) in the presence of sequencing

error and short edge lengths, and the finding of Venkat et al. (2018) that model-

misspecification in the human lineage led to higher false positives.

That some models were found to be almost unidentifiable suggests that there

may be mixing distributions and trees that lead to a complete lack of identifiability.

There has been some work to explore identifiability of mixture models of molecular

evolution (e.g., Allman et al., 2008; Allman and Rhodes, 2009; Chai and Housworth,

2011), but none of these results apply directly to codon models. Determining the

extent to which these types of issues affect codon models of evolution will be a topic

for future research.

Implementation of a similar modified likelihood approach to other models is straight-

forward and can be expected to offer similar advantages. As there is an abundance of

mixture models used to solve a variety of problems in the field of molecular evolution,

potential candidates are numerous and include models used to 1. identify function-

ally divergent protein residues, 2. detect pattern-heterogeneity in gene sequence or

character-state data, 3. infer protein phylogenies, and 4. identify across-site hetero-

geneities in the amino-acid replacement process (Gaston et al., 2011; Pagel et al.,

2004; Wang et al., 2008; Lartillot and Philippe, 2004).



Chapter 3

Smoothed Bootstrap Aggregation

This work was published in the journal Molecular Biology and Evolution (Mingrone et al.,

2016).

3.1 Introduction

Identifying positively selected amino acid sites is a challenging statistical task that is

important for investigating the functional consequences of molecular change (Yang,

2005). Several approaches have been developed to detect positive selection within a

protein (reviewed in Pond and Frost, 2005; Anisimova and Kosiol, 2009), but their

reliability varies according to the properties of the data in hand. The most widely

used methods employ a codon model to detect an excess in the rate of nonsynonymous

substitutions relative to synonymous substitutions (dN/dS = ω > 1), which is an

indication of evolution by positive selection. Proteins evolving under positive selection

must retain the capacity to fold into complex structural and functional domains, so

the majority of amino acid substitutions will be subject to purifying selection pressure,

with ω < 1 (Kimura, 1968). From extensive surveys of positive selection in real genes,

the expectation is that only a small fraction of amino acid sites will be subject to

adaptive change and exhibit an ω > 1 (e.g., Anisimova et al., 2007; Ge et al., 2008).

The sparseness of these sites makes them challenging to identify.

Two general categories of methods for detecting positively selected amino acid

sites include counting and fixed-effect methods. Counting methods employ ancestral

reconstruction of codon states for all internal nodes of a phylogenetic tree to obtain

counts of the synonymous and nonsynonymous changes along each of its branches.

The counts inferred for a given site are used to test if ω ̸= 1. Some counting methods

45
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use parsimony (Fitch et al., 1997; Bush et al., 1999; Suzuki and Gojobori, 1999),

and others likelihood (Suzuki, 2004; Nielsen, 2002; Nielsen and Huelsenbeck, 2002;

Suzuki and Nei, 2004; Pond and Frost, 2005) to infer the ancestral codon states.

The reconstructions are often similar, but under the likelihood approach uncertainty

about the inference can be summarized via the posterior probabilities of the ancestral

states. Thus, the parsimony based methods must assume that these uncertainties

are irrelevant to the statistical test. While this makes the approach attractive for

very large datasets where reliable reconstructions can be obtained relatively quickly

(Lemey et al., 2012), widespread use is hindered by a lack of power when the level of

divergence is too low or by the negative impact of substitutional saturation when the

level of divergence is too high (Pond and Frost, 2005).

An alternative approach is to treat each site as independently relevant to the

question of evolution by positive selection, and attempt to fit an ω parameter to the

data at each site. Thus, the effect of each site on the task of ω inference is fixed. Model

based testing for ω ̸= 1 can be carried out via a standard LR test, and no assumptions

are required about the distribution of selection pressure, ω. Although ω is treated

as a site-specific variable, other important variables in the codon model (e.g., branch

lengths) are shared among sites, with their values estimated jointly from the complete

set of sites. Results obtained by using these modelling ideas (Pond and Frost, 2005;

Massingham and Goldman, 2005) are encouraging, and it is expected that this family

of methods will continue to have a role in real data analyses (Scheffler et al., 2014).

However, χ2 approximations to the distribution of the test statistic assume relatively

large numbers of taxa, which is often not the case. The lack of independence of data

across taxa that is due to phylogeny creates further difficulties for χ2 approximations.

A third approach for detecting positive selection at amino acid sites, which is

the focus of this chapter, treats the value of ω at a site as the realized value of a

random variable. A particular model for the distribution of ω is chosen and ML is

used to fit the distribution to the data as part of an explicit model of codon evolution.

There are recommendations (e.g., Yang and Nielsen, 1998) to use a pre-screen that

fits two models: one with a distribution that excludes values of ω > 1, and another

with the same distribution, except with weight on values of ω > 1 permitted. This

nested-model pre-screening is used to test if the data conveys any evidence of positive
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selection. When the null hypothesis of no positive selection is rejected using a LR

test, site-wise analysis is warranted. Site-wise analysis is carried out using Bayes rule

to calculate the posterior probability that a site h evolved under some estimated value

of ω, given the data at site h. This approach is referred to as empirical Bayes (EB)

because the marginal distribution of ω is determined from the data. Conclusions

regarding the evolution at a site are made based on the estimated ω-values along

with their associated posterior probabilities conditioned on the data at the site. For

example, when the largest posterior probability for a site is associated with a value

of ω > 1, this is taken as evidence of positive selection at that site.

Because the marginal distribution of ω is determined from the data and the site

posterior probabilities always depend on the fitted values of the model parameters

(shape parameters of the distribution, edge lengths, etc.), the reliability of EB in-

ference depends on the accuracy of the fitted values. If they have been accurately

estimated, as is often the case with large, information-rich datasets, they can simply

be treated as known without errors. This approach is known as the NEB (Nielsen

and Yang, 1998). However, when the fitted values are subject to large errors, the

detection of positive selection according to the posterior probabilities can be nega-

tively impacted and in some cases the false positive rate can be unacceptably high

(Wong et al., 2004). BEB has been used to adjust for uncertainty in the parameters

of the ω distribution by assigning priors to those parameters and using numerical

integration to average over the uncertainty represented by the priors (Yang et al.,

2005). Because this tactic can substantially reduce the false positive rate relative to

NEB in problematic datasets, BEB has become a popular method for inferring the

action of selection at individual sites. A fully Bayesian approach that also assigns

priors to edge-lengths and other parameters is available for the inference of positive

selection at sites (Aris-Brosou, 2003; Huelsenbeck and Dyer, 2004), but it is not as

widely employed as EB because it is available for a limited set of models.

BEB does have limitations. As currently implemented, the BEB approach only

accommodates uncertainty in the parameters of the ω distribution, leaving all others

fixed to their fitted values. Furthermore, only uniform priors are used, which means

the adjustment for uncertainty is independent of the signal in the data. Although

these will not be serious limitations for many analyses of real data, it is shown here
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through simulation and real data analysis that deriving the adjustment for param-

eter uncertainty from the data can improve inference for some datasets. To avoid

the need for priors, a new approach is presented here that uses bootstrapping (Efron,

1979, 1982) of site patterns to simulate dataset variability and adjust for the uncer-

tainty in the data. From bootstrap datasets, the distribution of the MLEs can be

estimated. The posterior probabilities for positive selection at a site is then obtained

using an aggregate value coming from MLEs over bootstrapped data sets, rather than

according to a single posterior probability obtained under NEB or BEB. In principle,

bootstrap-based methods should use as many replicates as possible to approximate the

infinite-sample bootstrap distribution. As this is computationally expensive, smooth-

ing techniques borrowed from kernel density estimation (Silverman and Young, 1987;

Davison and Hinkley, 1997, Section 3.4) are used to obtain an approximation with

less computational cost. I refer to this new approach as SBA. Simulation results show

that SBA balances accuracy and power at least as well as BEB.

The behaviour of ML estimation is also investigated when standard regularity

conditions, such as the requirement for true parameter values to be in the interior

of the parameter space, are not met. Codon models fit ω distributions that, for

some data-generating settings, violate regularity conditions, which leads to substantial

instability in parameter estimation. These instabilities have a negative impact on the

inference of positive selection under EB, and it is shown here that the new approach

is an improvement over both NEB and BEB in such cases. Also shown here is that

results previously reported for the tax gene of HTLV (Suzuki and Nei, 2004) are likely

a consequence of such instabilities. The tax gene is a well known example where EB

is widely considered unreliable, and the results obtained for the tax gene have been

used to criticize the overall approach. An explanation is provided for the past results

obtained under EB methods for the tax gene. The SBA method can help diagnose

such dubious inferences.

3.2 New Approaches

A new approach for classifying sites called SBA is presented here. SBA uses boot-

strapping and kernel smoothing techniques to accommodate uncertainties in MLEs.

Site patterns from a sequence alignment are sampled with replacement to create

a number of bootstrap sequence alignments. For each of the bootstrap sequence
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alignments, MLEs are calculated. The usual bootstrap distribution is the empirical

distribution of the calculated MLEs. To avoid difficulties due to 1) low information

content in the data, 2) necessarily limited bootstrap sampling and 3) instabilities in

the parameter estimates, a kernel density estimate of the bootstrap distribution com-

ing from the MLEs is instead used. The smoothness of the distribution is controlled

by a bandwidth parameter, which is set larger than conventional values to give greater

smoothing.

While typical applications of bootstrapping use MLEs to calculate confidence

intervals and standard errors, we, instead, use the bootstrap to accommodate uncer-

tainty in the posterior probabilities of positive selection at sites. For any given site

in the original sequence alignment, many parameter values are generated from the

smoothed bootstrap distribution and substituted into posterior probability formulas

to give a distribution of posterior probabilities which reflects parameter uncertainty.

The mean or median of these posteriors is a more stable estimate of the true posterior

and is used for classification. See figure 3.1 for an overview of SBA.
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Fig. 3.1: Bootstrapping site patterns in a codon sequence alignment to classify selec-
tion pressure at codon sites. From an alignment of protein coding DNA sequences, x,
with n codon sites, site patterns are randomly sampled with replacement to obtain

a bootstrap sample, x∗b with n sites. MLEs, θ̂
∗b
, are then estimated for bootstrap

sample x∗b. Using θ̂
∗b
and x, the posterior probability Prh(ω > 1|xh; θ̂

∗b
), that site h

is under positive selection is calculated. These steps are repeated B times to calculate
B sets of posterior probabilities. An aggregate posterior probability that site h is un-
der positive selection is calculated by, for instance, averaging posterior probabilities

over bootstrap replicates,
∑︁B

b=1 Prh(ω > 1|xh; θ̂
∗b
)/B.
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3.3 Results

3.3.1 Non-standard ML Estimation Behaviour

Parameter estimation by ML has attractive statistical properties, including consis-

tency, efficiency, and asymptotic normality, when certain regularity conditions hold

(Kalbfleisch, 1985; Bickel and Doksum, 2006). For settings where regularity condi-

tions hold, I verified that I could obtain well-behaved estimates of the parameters

of the ω distribution under two commonly used codon models: M2a (Nielsen and

Yang, 1998; Yang et al., 2005) and M8 (Yang et al., 2000a). I simulated 100 datasets

representing a regular estimation problem with an ω distribution having at least 10%

weight on each site class (45% ω = 0, 45% ω = 0.5, and 10% ω = 5). As expected,

MLEs obtained from these data under both M2a and M8 have unimodal and sym-

metric distributions (figure 3.2a,b). For the estimates in this regular case, there are

no indications of departures from the limiting properties predicted by ML theory.
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Fig. 3.2: MLE distributions of the pω>1 and ω>1 parameters under M2a and M8.
Histograms are over 100 simulated (a,b,e,f) and bootstrap (c,d,g,h) datasets with the
bootstrap datasets generated by sampling from one simulated dataset. Data were
simulated under regular (a - d) and irregular (e - h) conditions.
regular simulation conditions: 5 taxa, 45% ω=0, 45% ω=0.5, and 10% ω=5
irregular simulation conditions: 5 taxa, 100% ω=1
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The regularity condition requiring true parameter values to be in the interior

of the parameter space is sometimes violated when using codon models. For such

parameter settings, instabilities or departures from the expected limiting properties

of ML estimation can arise including non-Gaussian and over-dispersed distributions

of estimates. To investigate instabilities under models M2a and M8, I simulated 100

datasets representing an irregular estimation problem with sparse information, i.e.,

100% of the sites at the threshold for positive selection, ω = 1. In figure 3.2e,f, in

contrast to the results presented in figure 3.2a,b, there are instabilities in the MLEs

for the parameters representing the proportion of sites under positive selection, pω>1.

The pω>1 parameter distributions under both models have mass concentrated on both

the lower and upper boundaries of the parameter space, and the distributions of the

corresponding ω>1 parameters are concentrated on the lower boundary. Application

of the LR test to filter datasets that convey no evidence of positive selection did not

prevent instabilities. The null hypothesis of no positive selection was rejected for 10

datasets under M2a and 9 under M8, however, the MLE distributions after applying

this pre-screening step remained unstable (supplementary figure 6.11).

Some of the model M2a MLE instabilities shown in figure 3.2e,f are due to the

discrete ω distribution. True discrete distributions of interest can lie on the boundary

of the parameter space, which is a regularity condition violation that gives rise to MLE

instabilities. For instance, consider data generated from an ω distribution with no

mass on ω > 1. Estimates of the ω distribution will tend to approximate the true

distribution and one way this can occur under M2a is when ω̂>1 ≈ 1. When this

happens, the likelihood will remain approximately constant over all choices of pω=1

and pω>1, giving a sum, pω>1 + pω=1, that is approximately the same as that of the

MLE. Consequently, estimates of pω=1 + pω>1 are stable, but estimates of pω=1 and

pω>1 are not, because many different choices give the same sum. Likewise, when a

pω>1 parameter is estimated near 0, the corresponding ω>1 can take on almost any

value without changing the likelihood. For example, two M2a and six M8 biologically

unrealistic estimates of the ω>1 parameter (e.g. ω>1 = 999) occurred when the

corresponding pω>1 parameters were estimated to be 0. These estimates were excluded

from the ω>1 histograms. For the data representing an irregular estimation problem

with all sites simulated with ω = 1, two other problematic M2a parameterizations
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that fit the data equally well occurred often. First, all the weight was put on the

w1 category and second, all the weight was put on the w>1 category when it was

estimated very close to 1. Although there is virtually no difference in the likelihood

scores between the two parameterizations, the NEB posterior probabilities for positive

selection were 0 and 1 respectively. These different MLE instabilities arose with two

general types of simulation settings: 1) when fewer site classes were simulated than

exist in the fitted model, and 2) when different site classes were simulated with similar

levels of selection pressure.

When working with real data, often only a single sample is available and alter-

native techniques must be used to approximate distributions of parameter estimates.

One such technique is the bootstrap. I used the new bootstrap-based approach with

sequence alignments to investigate properties of the MLE distributions and to detect

settings where inference tends to be problematic (see Methods). While sampling with

replacement from a single sample leads to a bootstrap parameter distribution that

is a jagged estimate of a smooth distribution, I found the bootstrap, in many cases,

can effectively estimate the distributions of MLEs. Figure 3.2c,d shows the distribu-

tion of the ω MLEs associated with positive selection generated over 100 bootstrap

samples of a regular dataset. Note the resemblance of the bootstrap distributions in

figure 3.2c,d to the analogous distributions over simulated datasets in figure 3.2a,b.

A comparison of figures 3.2e,f and 3.2g,h illustrates that when the distribution over

multiple samples is problematic, so too is the distribution over bootstrap samples.

Among the 100 bootstrap MLE distributions obtained from the datasets simulated

under irregular model conditions, I identified 91 of the M2a and 95 of the M8 pω>1

parameter distributions as unstable using the criterion that at least 5% mass lies both

below 0.2 and above 0.8. These distributions indicate that the mixture distribution

for ω “flip-flops” between few and many sites in a positive selection class. Recall

that under the generating model for these data, no sites are under positive selection.

Plots of the other parameters of the ω distributions can be found in supplementary

figure 6.12. Scenarios when the bootstrap distribution is not a good estimate of the

true distribution of parameter estimates has been described in other settings, e.g.,

Efron and Tibshirani (1994, p. 81). So, while the bootstrap alone can be helpful for

identifying problems, it is not always a robust solution for deriving a correction for
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parameter uncertainty.

3.3.2 Kernel Smoothing Improves the Bootstrap-based Method for Approxi-

mating MLE Distributions

To avoid results that are a consequence of randomness due to bootstrapping, it is

beneficial to choose the number of bootstrap samples, B, large enough so that the

finite-sample bootstrap distribution approximates the infinite-sample bootstrap dis-

tribution well. However, when regularity conditions are violated there is no guarantee

that even the infinite-bootstrap distribution provides an adequate assessment of the

variability of an MLE. I tested this assertion under codon models where the distri-

butions of the pω>1 parameters were unstable over simulated and bootstrap datasets.

For the data representing irregular model conditions described above, I generated

10,000 bootstrap datasets for each of the first 10 simulated datasets. The instabilities

that characterize these 10 bootstrap distributions were largely unchanged by increas-

ing B (supplementary figure 6.13). Similar difficulties arise in a variety of bootstrap

applications. As a simple example of the phenomenon, suppose interest is in θ from

a binomial distribution with small n and small θ. It is possible to sample almost all

zeros, in which case the variance of the bootstrap distribution of θ estimates will be

too small. Such boundary issues related to small samples can similarly be problematic

for ω distributions when estimated weights are close to 0.

I used kernel smoothing along with bootstrapping to characterize the uncertainty

in MLEs under difficult estimation conditions. Kernel smoothing is typically used

to approximate the infinite-sample distribution more effectively when using a smaller

number of bootstrap samples. However, the standard application of this technique

(Davison and Hinkley, 1997, p. 79) was not sufficient when the MLEs were unstable.

For such cases, over smoothing (i.e., using a larger than typically considered optimal

bandwidth) was necessary to obtain conservative estimates of the MLE distributions

with larger variance that suppressed the influence of the instabilities (supplementary

figure 6.14). By over-smoothing the p parameters of codon models M2a and M8 with

a uniform kernel I compensated for 1) low information content in the data, 2) fewer

bootstrap samples, and 3) instabilities in the parameter estimates. For this reason I

included over-smoothing of the p parameters in all applications of SBA.
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3.3.3 Simulation Results

I used simulation to compare the performance of SBA with BEB and NEB. The

design of the studies was motivated by the more challenging schemes of Wong et al.

(2004) and Yang et al. (2005), however it extends theirs to investigate performance

under progressively more model misspecification. The design is divided into three

scenarios covering three levels of model misspecification. The Correct Model Scenario

is comprised of four simulation studies (studies 1-4) where the nuisance parameters of

the generating model were freely estimated by the fitted model. The ω distributions

used to generate the datasets are listed in the third column of table 3.1.

Table 3.1: Simulation design and false positive rates under NEB, BEB, and SBA each
with models M2a and M8.

Study Misspec. ω distribution NEB BEB SBA

M2a M8 M2a M8 M2a M8

1 None 100% 1 0.34 0.35 0.00 0.00 0.00 0.00
2 None 50% 0.5, 50% 1 0.00 0.00 0.00 0.00 0.00 0.00
3 None 50% 1 50% 1.5 0.35 0.37 0.00 0.05 0.00 0.02
4 None 45% 0, 45% 1, 10% 5 0.00 0.00 0.00 0.01 0.00 0.00

5 Mild 100% 1 0.20 0.37 0.00 0.24 0.00 0.13

6 Mild 50% 0.5, 50% 1 0.00 0.13 0.00 0.11 0.00 0.02
7 Mild 50% 1, 50% 1.5 0.30 0.30 0.00 0.39 0.00 0.12

8 Mild 45% 0, 45% 1, 10% 5 0.00 0.04 0.00 0.12 0.00 0.00

9 Heavy 100% 1 0.71 0.71 0.55 0.62 0.13 0.52

10 Heavy 50% 0.5, 50% 1 0.53 0.50 0.00 0.00 0.00 0.01

Each study used 100 simulated alignments and a 5-taxon tree with branch lengths summing
to 3. A posterior probability threshold of 0.95 was used for classifying sites to be under
positive selection. Under SBA, B = 100 bootstrap samples were generated and smoothing
was carried out using a uniform kernel with a bandwidth parameter h = 0.4.

This scenario design matches selected schemes in Yang et al. (2005). The Mild

Misspecification Scenario uses the same ω distribution as the first scenario as the

basis of four additional studies (studies 5-8), but includes mild misspecification of

the nuisance parameters (see Methods). Lastly, the Heavy Misspecification Scenario,

includes two studies (studies 9-10) with heavy misspecification for the fitted model,

which represents a more plausible scenario for the analysis of real sequences. In one
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study (study 9) the data were simulated using the highly biased codon frequencies

from the Drosophila GstD1 gene (Bielawski and Yang, 2005). In the second study

(study 10), the generating model is based on a 50/50 mixture of two heterogeneous

classes of sites. One class was generated using equal codon frequencies, κ = 1, and

ω = 0.5, while the other used the Drosophila GstD1 gene codon frequencies, κ = 8,

and ω = 1. For all 10 simulation studies I simulated 100 alignments, each having

500 codons, using the same 5-taxon tree from Wong et al. (2004). Under SBA,

B = 100 bootstrap samples were generated and smoothing was carried out using

a uniform kernel with a bandwidth parameter h = 0.4. The studies in the Correct

Model Scenario were repeated under model M2a with the 30-taxon tree from the same

paper.

Table 3.1 lists the false positive rates (proportion of sites inferred positively se-

lected among those that are not) using a posterior probability cutoff of 0.95 for NEB,

BEB, and SBA under models M2A and M8. In study 1 (no misspecification of the

nuisance parameters and all sites simulated using ω = 1) under NEB there is false

positive detection of positive selection, whereas under BEB and SBA there is none.

This is expected; NEB is known to yield unreliable posterior probability calculations

in small datasets (e.g., Anisimova et al., 2002; Yang et al., 2005). Because the condi-

tions of study 1 yield unstable parameter estimates (figure 3.2e-h), the false positives

under NEB reflect more than mere sampling errors. MLE instabilities cause large pω>1

to occur too often and these values lead to high posterior probabilities for positive

selection under M2a and M8. The posterior probability calculations under SBA and

BEB are reliable because those approaches do not assume the MLEs have been esti-

mated without error. Yang et al. (2005) suggests that with more data, the problems

with NEB controlling false positives can be mitigated. However, the MLE instabilities

persisted in study 1 using a tree topology with 30 taxa (supplementary figure 6.15),

indicating that large sample sizes do not always ensure accurate predictions.

Relative to simulations with a single ω = 1 (study 1), when the ω distribution was

50% ω = 0.5 and 50% ω = 1 (study 2), the overall signal for positive selection was

diminished and all false positive rates were 0. Conversely, when the ω distribution

was 50% ω = 1 and 50% ω = 1.5 (study 3) there was a slight increase in the NEB

false positive rates relative to study 1. Under M2a the false positive rates were 0
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using BEB and SBA, but under M8 they increased to 0.05 using BEB and to 0.02

using SBA. For study 4, because the simulated ω values for the three sites classes

were far enough apart, the false positive rates were well controlled.

The introduction of mild model misspecification of the nuisance parameters did

not result in higher false positive rates under M2a, but did under M8. For studies 5-8,

the BEB false positive rates (using a 0.95 posterior probability threshold) under M8

increased in all four cases relative to the corresponding studies (1-4) in the Correct

Model Scenario. The same SBA false positive rates only increased in two cases and by

smaller amounts than with BEB. When heavy model misspecification was introduced

in the third scenario, NEB failed to adequately control false positives with rates

between 50 and 71% under both M2a and M8. BEB and SBA also did not control

the false positive rates in study 9, but did in study 10.

The results in table 3.1 are over all sites in all simulated datasets. After applying

LR tests at the 0.05 level to filter datasets that convey no evidence of positive se-

lection, none of the false positive rates under BEB or SBA changed. Supplementary

table 6.3 gives the false positive rates under NEB after the adjustment. With the

exception of two cases, the effect is minimal. Interestingly, under the null hypothesis,

the false positive rates of the LR tests were larger than expected, particularly with

model misspecification.

When testing for positive selection, we aim for large true positive rates, the pro-

portion of sites truly under positive selection that are correctly identified, sometimes

referred to as power. A difficulty in comparing methods for detecting positive selec-

tion is the choice of threshold. Lower thresholds tend to increase the true positive

rate, but tend to also increase the false positive rate. To ensure that comparisons

of power for different methods correspond to the same false positive rate I used re-

ceiver operator characteristic (ROC) curves, a convenient way to visualize the balance

between accuracy and power for classification problems. Each point on a curve repre-

sents a threshold for the posterior probability of positive selection. Figure 3.3 shows

ROC curves for each of the simulations that included positive selection in the gener-

ating model (studies 3, 4, 7, and 8). Curves are also included for the classification

of sites using the generating parameters, i.e., the MLEs are fixed to the simulated
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values. These curves represent an expected upper limit in performance of site clas-

sification (supplementary section 6.4). The lower limit for classification, when each

site is randomly identified to be under positive selection, is represented by a y = x

line.
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Fig. 3.3: ROC curves for the detection of sites under positive selection for BEB,
NEB, and SBA analyses of data generated under two different simulation scenarios:
without model misspecification (Correct Model, studies 3 and 4) and with mild model
misspecification (Mild Misspecification, studies 7 and 8). The data were simulated
using a 5-taxon tree topology. In studies 3 and 7, 50% of the sites were simulated
under neutral evolution (ω = 1) and 50% of the sites under positive selection (ω =
1.5). In studies 4 and 8, 45% of the sites were simulated under purifying selection
(ω = 0), 45% under neutral evolution (ω = 1) and 10% under positive selection
(ω = 5). Each plot includes a line for the lower bound (y=x) and an expected upper
bound (OPT) when classification is made using the generating model parameters.
Curves for NEB do not always cover the whole range of false positive rates, because
NEB sometimes estimates the ω distribution with all mass on ω > 1. In these cases,
even with a posterior probability cut-off of 1, NEB still incorrectly classifies sites to
be under positive selection.

The introduction of mild misspecification made the task of detecting sites under

positive selection more difficult in study 8. This is evident from the shifting of the

ROC curves down and to the right (lower rates of true positives for a given false

positive rate) in study 8 relative to the corresponding simulations without the mis-

specification of the nuisance parameters in study 4. The same effect was not observed
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between the ROC curves of studies 3 and 7.

In all cases, the SBA curves were at least as close as the BEB curves to the

expected upper limit. In studies 3 and 7 (50% ω = 1, 50% ω = 1.5), under M2a,

where the estimates of the pω>1 and ω>1 parameters were unstable (supplementary

figure 6.17), the gaps between the curves for BEB and SBA were the largest, even

when the number of taxa was increased from 5 to 30 (figure 3.4). This indicates that

SBA, for a given false positive rate, had more power to detect sites under positive

selection than BEB.
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Fig. 3.4: ROC curves for the detection of sites under positive selection for BEB,
NEB, and SBA analyses of data generated under Correct Model, study 3 (50% ω = 1,
50% ω = 1.5). The data were simulated using a 30-taxon tree topology. The plot
includes a curve for the lower bound (y=x) and an expected upper bound (OPT) when
classification is made using the generating model parameters. The curves for NEB
do not always cover the whole range of false positive rates, because NEB sometimes
estimates the ω distribution with all mass on ω > 1. In these cases, even with a
posterior probability cut-off of 1, NEB still incorrectly classifies sites to be under
positive selection.

In studies 4 and 8 (45% ω = 0, 45% ω = 1, 10% ω = 5), where the parameters

of the ω distribution were well estimated, all approaches (NEB, BEB, and SBA)



60

performed well and the ROC curves were all close to the expected upper limit. Taken

together, the results suggest that SBA balances accuracy and power at least as well

as BEB and may be preferable to BEB when parameter estimates are unstable.

3.3.4 Real Data Analysis

I began the analysis of the 16 real datasets (described in Methods and summarized

in table 2.2) by using the bootstrap distributions of the MLEs to investigate their

properties. I examined the unsmoothed distributions of the parameters of the ω dis-

tribution. These distributions indicate that the MLEs for a given model can have

very different properties in different real datasets (supplementary figures 6.18, 6.19,

6.20, 6.21). Although the real data represent different degrees of regular and irregular

model properties, I was able to identify groups of genes that represent both extremes.

The regular cases had no clear evidence of MLE instabilities and low bootstrap vari-

ance (e.g., lysin; figure 3.5a,b). I determined that the ω distributions had been well

estimated for 6 genes (pol, vif, lysin, nuoL3, RafL, and TrbL-VirB6 3 ). In contrast,

I uncovered evidence of MLE instabilities in other genes (e.g., CDH3 ; figure 3.5c,d).

I determined that the ω distributions had been poorly estimated for 5 genes (CDH3,

mivN, pgpA, tax, and TrbL-VirB6 2 ) under at least one model. Because no single

summary statistic (number of taxa, sequence length, tree length) was generally pre-

dictive of irregular model properties, I recommend visual inspection of the bootstrap

distributions for all real data analyses (supplementary figures 6.20, 6.21).
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Table 3.2: Genes analyzed under models M2a and M8 using NEB, BEB, and SBA approaches for site classification.

-lnL

Gene Nt Nc M1a/M2a M7/M8 p-value TTL Ns

β-globin 17 144 3716.14/3712.55 3697.22/3686.13 0.0275/1.53e-5 8.40/8.57 0(0)/3(4)
ccmF 5 635 6121.78/6113.57 6127.62/6116.48 2.72e-4/1.46e-5 5.60/3.03 3(2)/3(5)
CDH3 11 176 5629.97/5623.37 5630.66/5623.88 1.35e-3 /1.14e-3 0.56/0.56 1(1)/1(1)
ENAM 11 1142 7514.30/7509.28 7609.16/7605.74 6.61e-3/0.0327 0.46/0.56 1(1)/2(1)
env 13 91 1114.64/1106.45 1115.40/1106.39 2.76e-4/1.23e-4 2.04/2.04 2(2)/2(4)
lysin 25 134 4472.65/4410.28 4472.16/4410.57 2.86e-14/0.00 8.81/8.82 22(22)/23(23)
mivN 5 504 3383.45/3832.93 3834.69/3831.44 0.595/0.0388 1.62/1.60 0(0)/1(1)
nuoL3 5 499 5006.16/4978.97 5011.37/4977.19 1.56e-12/1.44e-15 4.58/4.49 9(8)/10(10)
perM 5 351 2619.88/2619.43 2621.64/2617.94 0.638/0.0247 1.78/1.80 0(0)/2(0)
pgpA 5 198 1541.27/1539.29 1542.65/1538.91 0.138/0.0238 2.93/2.23 1(0)/1(1)
pol 23 947 9394.05/9363.96 9405.74/9365.88 8.52e-14/0.00 1.31/1.30 6(6)/10(13)
RfaL 5 403 3964.89/3955.34 3970.38/3955.44 7.16e-05/3.23e-7 3.46/3.46 2(1)/4(3)
tax 20 181 895.50/892.02 895.50/892.02 0.0309/0.0309 0.13/0.13 181(0)/181(21)
TrbL-VirB6 2 5 657 5492.55/5492.52 5301.23/5286.43 0.976/3.74e-7 2.12/2.10 0(0)/1(0)
TrbL-VirB6 3 5 938 8305.65/8288.36 8307.06/8269.09 3.09e-8/0.00 3.06/3.02 3(2)/18(11)
vif 29 192 3393.83/3367.86 3400.45/3370.66 2.29e-06/1.16e-13 2.90/2.91 10(8)/10(10)

Nt: number of taxa, Nc: sequence length in number of codons, -lnL: -log likelihood for each nested model pair, p-value of
the LR test for the presence of positive selection, TTL: total tree length estimated under M2a/M8, Ns: number of sites
classified to under positive selection using a posterior probability threshold of 0.95 under M2a/M8 for NEB(BEB).
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Fig. 3.5: MLE distributions over bootstrap datasets for the lysin and CDH3 genes.
The distributions of the pω>1 and ω>1 parameters associated with positive selection
were estimated under models M2a and M8 for each of 100 bootstrap datasets.

Next I investigated the degree to which the real data results obtained under BEB,

NEB, and SBA were consistent with each other. This is challenging, because the

posterior probability thresholds for site classification are not calibrated to give com-

parable false positive rates. One way to compare the results is to measure the rank

correlations of the site-specific posterior probability scores for positive selection be-

tween methods (BEB, NEB, and SBA). As there are a large number of pairwise

comparisons, I took the mean relationship between methods for both the genes rep-

resenting regular and irregular model estimation (table 3.3).
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Table 3.3: Spearman rank correlations be-
tween site posterior probabilities for different
forms of classification.

Regular Irregular

mean SD mean SD

M2a
NEB/BEB 0.98 0.04 0.65 0.17
NEB/SBA 0.94 0.09 0.66 0.17
BEB/SBA 0.96 0.05 0.98 0.02

M8
NEB/BEB 0.99 0.01 0.84 0.30
NEB/SBA 0.96 0.04 0.81 0.27
BEB/SBA 0.98 0.03 0.98 0.02

The mean and standard deviation (SD) of the
correlations are for real genes displaying regular

and irregular estimation properties.

I found that when MLEs are well estimated (regular genes), there is stronger

agreement among all three methods in the ranking of sites according to the signal

for positive selection. In contrast, when the ω distributions are poorly estimated

(genes representing irregular estimation), BEB and SBA are generally consistent in

their rankings, but differ from NEB. These results suggest that NEB’s inability to

accommodate MLE uncertainty in such datasets has the largest effect on the posteri-

ors. However, the problem of calibration remains. The simulation studies reveal that

using a common posterior probability threshold for classification does not guarantee

a similar trade-off between accuracy and power for different methods. Indeed, I see

evidence of this in the real data. Comparing the counts of positively selected sites

identified in the genes using thresholds of 0.50 and 0.95 reveals differences between

BEB and SBA (table 3.4), despite large rank correlations.



64

Table 3.4: Number of sites identified to be under positive selection for
the real data.

M2a M8

Gene NEB BEB SBA NEB BEB SBA

CDH3 1/1 12/1 46/0 1/1 22/1 117/5
mivN 1/0 7/0 1/0 4/1 12/1 28/0
pgpA 1/0 4/0 4/0 5/1 5/1 17/0
tax 181/181 181/0 181/0 181/181 181/21 181/21
TrbL-VirB6 2 0/0 16/0 0/0 11/1 18/0 59/0

pol 12/6 19/6 94/4 22/10 33/13 83/16
lysin 33/22 32/22 42/5 37/23 37/23 41/11
nuoL3 18/9 18/8 85/18 19/10 20/10 83/20
RfaL 20/2 20/1 70/1 33/4 41/3 74/3
TrbL-VirB6 3 28/3 27/2 73/9 45/18 44/11 134/48
vif 13/10 13/8 31/6 15/10 19/10 37/10

β-globin 4/0 5/0 11/0 8/4 8/4 17/4
ccmF 7/1 11/1 112/0 15/3 79/5 114/5
ENAM 9/1 21/1 184/0 44/2 31/1 78/1
env 14/3 16/3 21/3 16/3 22/5 24/3
perM 4/0 6/0 0/0 6/2 6/0 36/3

The posterior probability thresholds are 0.5/0.95. The top genes represent
irregular estimation, the middle regular, and the bottom genes are not cate-
gorized.

Under M2a, there was a stark difference between the irregular genes and all other

genes. ROC curves for simulations studies are better suited for comparing methods,

because they give direct comparisons of power at the same false positive rate.

I also used rank correlation to investigate the robustness of the methods (BEB,

NEB, and SBA) to the chosen model (M2a versus M8). I did this by computing the

rank correlation, between models, of the site posterior probabilities obtained by the

same method (table 3.5).
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Table 3.5: Spearman rank correlations
between site posterior probabilities for
models M2a and M8.

Regular Irregular

mean SD mean SD

NEB 0.98 0.04 0.81 0.13
BEB 0.99 0.01 1.00 0.01
SBA 1.00 0.00 0.99 0.00

The mean and standard deviation (SD)
of the correlations are for real genes dis-
playing regular and irregular estimation
properties.

For the regular genes, all three methods had high correlations with low variabil-

ity. For the genes representing irregular estimation, the correlation was lower and

the variability larger for NEB as compared to BEB and SBA. The similarity across

models that I observed for SBA may be a consequence of using nonparametric boot-

strapping, which should show robustness to model misspecification. It seems that

BEB’s application of uniform priors to the ω distribution achieved a similar effect.

Up to this point, bootstrapping has been used to obtain surrogates for posteriors.

An alternative use of bootstrapping is to construct posterior probability confidence

intervals to quantify the uncertainty at any given site about the true posterior prob-

ability of positive selection. Constructed from the 5 and 95% quantiles of the site

posterior probabilities for positive selection, these 90% confidence intervals differed

substantially between M2a and M8, highlighting differences between the two mod-

elling frameworks. For sites having a posterior of at least 0.9 under one or more

methods, the M8 confidence intervals for those sites were never wider than the cor-

responding M2a intervals (table 3.6). The interval widths are strongly dependent on

the MLE estimates of the ω distribution. In the extreme case, if weight on the ω > 1

site class is 0 for some bootstrap samples and 1 for others, the site posteriors will also

be 0 and 1.
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Table 3.6: Average width of 95% confi-
dence intervals for SBA posterior probabil-
ities. Only sites with at least one method
having a posterior probability of at least
0.9 are included.

Gene M2a M8 Difference

CDH3 0.95 0.46 0.49
mivN 1.00 1.00 0.00
pgpA 1.00 1.00 0.00
tax 0.87 0.31 0.56
TrbL-VirB6 2 1.00 1.00 0.00

pol 0.78 0.78 0.00
lysin 0.70 0.49 0.20
nuoL3 0.26 0.21 0.05
RfaL 0.68 0.48 0.19
TrbL-VirB6 3 0.66 0.10 0.57
vif 0.36 0.14 0.21

β-globin 1.00 0.22 0.78
ccmF 1.00 0.49 0.51
ENAM 0.53 0.43 0.10
env 0.51 0.27 0.24
perM 0.91 0.14 0.77

The top genes represent irregular estimation
properties, the middle regular, and the bot-
tom genes are not categorized.

This result reflects broad differences between the MLE distributions obtained un-

der these two models; MLE distributions under M8 tend to be tighter, and more

likely located away from a boundary (supplementary figures 6.20, 6.21). I believe this

represents empirical support for the commonly held notion that M8 is more powerful

than M2a (Wong et al., 2004). However, this relationship should not be assumed to

hold when the MLEs are poorly estimated. Confidence interval widths were at the

maximum (1.0) for both M8 and M2a in three of the five genes representing irregu-

lar estimation. These findings highlight the importance of (1) inspecting bootstrap

distributions to gain insights into the challenges posed by the data in hand, and

(2) using SBA to accommodate MLE uncertainties (especially when they are poorly

estimated).
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Lastly, I interpret the results for the tax gene of the human T-cell lymphotropic

virus. This gene warrants special attention because it has a highly unusual site-

pattern distribution, extreme MLEs, and has been employed as a boundary case in

several studies of the NEB and BEB classifiers (Suzuki and Nei, 2004; Yang et al.,

2005). The dataset has 20 taxa and 181 sites, 158 (87%) of which are invariant across

all 20 lineages. At each of the 23 variable sites, there is just one codon that differs

from all the others with 21 of the 23 codon changes coding for a different amino acid.

This atypical site-pattern distribution corresponds to a relatively large number of

nonsynonymous substitutions over very short branch lengths (mean branch length:

0.0064 under both M2a and M8). A very high probability of positive selection (i.e.,

large values for both the pω>1 and ω>1 parameters) is required to account for the

nonsynonymous substitutions when the branch lengths are so short. In fact, both

models M2a and M8 estimate 100% of the sites to be in the ω > 1 class. This result

belies the fact that considerable instability is associated with those parameter esti-

mates, as revealed by bootstrapping (supplementary figures 6.20, 6.21). Since NEB

ignores parameter value uncertainty, it must assign a conditional posterior probabil-

ity of ω > 1 (Pr = 1.0) for all sites, including those that are invariant. In contrast,

the site posteriors for BEB and SBA were similar and depended on the site patterns

(supplementary table 6.4). As expected, the SBA signal for positive selection was

strongest at the 21 sites with nonsynonymous changes (M2a: 0.87 < Pr < 0.89;

M8: 0.99 < Pr < 0.99), as compared to all other sites (M2a: 0.55 < Pr < 0.60;

M8: 0.76 < Pr < 0.80). The SBA confidence intervals under M8 revealed that the

estimates of Pr for the 21 sites with a nonsynonymous change were more reliable

(average width: 0.028) than for the invariant sites (average width: 0.418). I suggest

this result is appropriate for these data. Almost all the signal in this dataset is con-

tained in those 21 sites, and it is difficult to reconcile this amount of nonsynonymous

change over such short branches without strong positive selection. Moreover, when

branch lengths are very short, an invariant site can only be viewed as carrying no

signal about whether the ω value would be small or large over longer evolutionary

periods. This leads to very wide 95% SBA Pr confidence intervals for these sites.
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3.4 Discussion

I have presented an approach, based on an unconventional use of the nonparamet-

ric bootstrap, for evaluating MLE instabilities and improving site-specific inference

of positive selection. For any given site in an alignment, conclusions about positive

selection are based on the aggregation and distributions of many estimates of ω and

many posterior probabilities. An important step in the approach involves smooth-

ing the bootstrap distributions of the parameter estimates using techniques borrowed

from kernel density estimation. This step is critical for overcoming instabilities in pa-

rameter estimation. Kernel smoothing also has the benefit of reducing computational

costs relative to procedures that use full bootstrap sampling to obtain comparable

numbers of MLEs.

Application of BEB, NEB, and SBA using models M2a and M8 to 100 simu-

lated datasets in each of 10 different simulation scenarios showed that, under diffi-

cult simulation conditions when regularity conditions have not been met, NEB often

poorly controls false positive classification of sites, even when the number of taxa

is large. This is in contrast to past recommendations, which suggested NEB does

well at controlling false positive rates when analyzing large datasets (many taxa and

long sequences) (e.g., Yang et al., 2005). By accounting for variability of estimation,

both BEB and SBA achieve better control of the false positive rates. However, SBA

provided consistently better control under M8 when there was mild model misspec-

ification (studies 5-8 under in table 1), and this was unaffected by pre-screening via

the LR test. I note that all real data are expected to be affected, to some degree, by

model misspecification.

By accounting for variability of estimation, both BEB and SBA achieve good

power relative to NEB as is evidenced by their tending to be closer to the expected

upper limit of performance in the ROC curves. Some of the simulation results suggest

that M2a is a better-performing model. For instance, M2a gave 1) ROC curves closer

to the expected upper bound in some cases (figure 3.3) and 2) lower false positive

rates (table 3.1). This may, however, be a consequence of the simulations conditions

being more suitable for M2a than M8. For example, in studies 3 and 7, half the

sites were simulated with ω = 1, and M2a has a site class with ω = 1 fixed. On

the other hand, considering sites with larger posteriors in the real data analysis, the
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95% posterior confidence intervals were usually narrower (and never wider) for M8

than M2a. This supports previous results that suggest M8 has more power to detect

sites under positive selection (Wong et al., 2004). The β-globin gene serves as a good

example. Of the five sites in this gene where either NEB or BEB gave a posterior

of at least 0.9, the SBA confidence interval widths were all 1 for M2a, but averaged

0.129 for M8. Moreover, the ω>1 parameter distributions tended to be wider for M2a

than M8, particularly for the genes that displayed properties suggesting regularity

conditions were met. This is probably because the beta distribution used by M8 to

model ω < 1 has more flexibility in real data conditions compared to an M2a model

with the same number of parameters.

An appealing attribute of BEB, relative to SBA, is its limited use of computational

resources. Each SBA bootstrap analysis may use similar computational resources

as BEB does for the one original dataset. However, SBA’s greater computational

requirements is a trade-off for a more rigorous assessment of the parameter estimation.

For example, SBA adjusts for the uncertainty in all model parameters, including

branch lengths, while BEB does not. A new BEB implementation that integrated

over branch lengths would require costlier techniques because numerical integration

does not scale well with higher dimension. Moreover, because SBA estimates each

set of bootstrap parameters independently, they can be estimated in parallel. On a

computing cluster with as many cores as bootstrap samples generated, the wall-clock

times for BEB and SBA are comparable.

There are a limited number of BEB implementations for different models. By

contrast it is comparatively trivial to apply SBA to new models once the basic ca-

pacity for bootstrapping and parameter smoothing are in place. This could facilitate

the application of SBA to a wider variety of inference problems in molecular evo-

lution than has occurred with BEB. SBA for the popular branch-site codon model

A (Yang and Nielsen, 2002; Zhang et al., 2005) was implemented as a demonstra-

tion of the feasibility of SBA implementations for new models. A new, prelimi-

nary implementation, which was completed within a few hours, can be found at

https://github.com/Jehops/codeml sba. An overview of the analysis of the NR1D1

gene (Baker et al., 2016) under SBA can be found in the supplementary section 6.6.
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There are useful by-products of the SBA approach for classifying sites. The his-

tograms of the distributions of the MLEs over bootstrap samples provide insight into

the degree of irregularity of the estimation. For several of the datasets, most notably

the tax gene dataset, these histograms provided a clear indication that the MLEs

were unstable. In such cases, site classifications should be accepted with caution.

Even when regularity conditions have been met, the confidence intervals of the pos-

teriors provide an additional tool for assessing the certainty about the strength of the

signal for positive selection at an individual site. I suggest that future analyses of

real data should include both visual inspection of bootstrap distributions and report-

ing of SBA-derived confidence intervals of the posterior probabilities associated with

positive selection.

Bootstrapping has been shown to provide effective adjustments to EB methods in

other settings. For example, Laird and Louis (1987) studied the application of boot-

strapping with EB methods for random effects models where both the observations

and random effects distributions were Gaussian. They argued that confidence inter-

vals produced from bootstrap posteriors were frequently narrower than they should

be and that bootstrap averaging helped to ameliorate problems. They speculated

that bootstrapping would produce good EB inferences for a broad class of EB prob-

lems. In a prediction setting, a procedure that aggregates predictors generated from

bootstrap replicates was proposed by Breiman (1996), which was shown to move some

unstable predictors closer to optimality. The bagging procedure used in that paper is

equivalent to using the median posterior to classify sites under SBA. My experiments

(data not shown) indicated that the average is a better measure of the middle of the

distribution of site posterior probabilities.

While using the data in hand to account for errors in MLE estimation is helpful

for detecting sites under positive selection, refinements of the SBA approach are war-

ranted. Like other approaches, I have avoided the difficult process of calibrating for

type I errors in real data. Choosing an optimal bandwidth parameter for smoothing

a distribution is also a difficult process. Under-smoothing will leave spurious bumps

and irregularities in the distribution and over smoothing will remove useful informa-

tion and increase bias. There are different theoretical suggestions for the size of the

bandwidth parameter, but these can be challenging to apply as they may depend
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on the unknown density (Venables and Ripley, 2013, p. 176). SBA uses bootstrap

distributions to highlight problems when MLEs fall on or close to their boundaries.

It does well to accommodate the variance in a parameter estimate, however, when

estimates are very small, the variance, even under bootstrapping, may be underesti-

mated. This may be a problem encountered with the branch lengths of the tax gene.

Some preliminary experiments show that perturbing the very small branch length

estimates of the tax gene can cause large differences in the MLEs of the parameters

of the ω distribution. This suggests that applying kernel smoothing to parameters

other than those defining the ω distribution may be helpful.

SBA can be applied to a wide variety of problems in molecular evolution where

uncertainties or instabilities in MLEs impact inference based on empirical Bayes.

Examples where the method can be directly applied, with little or no modification,

include: classification of sites into general rate categories (e.g., Mayrose et al., 2004),

identification of positively selected sites in non-coding DNA (e.g., Haygood et al.,

2007), identification codon sites subject to episodic change in selection pressure (e.g.,

Yang and Nielsen, 2002), detection of Type-I functional divergence in protein se-

quences (e.g., Gaston et al., 2011), detection of amino acid sites having shifts in the

pattern of exchangeabilities (e.g., Le et al., 2012), and detection of amino acid sites

evolving under a covarion-like evolutionary process (e.g., Penn et al., 2008). With

some modification, SBA could be applied to the task of ancestral state reconstruc-

tion. As the field moves towards increasingly more complex models, there will be

increasing demand for methods such as SBA that can account for parameter-estimate

uncertainties.

3.5 Theory and Methods

3.5.1 Bootstrap Methods to Adjust for Uncertainty

To construct confidence intervals for a parameter, θ, and correct bias, Efron (1979)

devised the bootstrap. A bootstrap sample, x∗, is obtained by drawing the values,

x∗1, . . . , x
∗
n, with replacement from a random sample, x. For each of b = 1 . . . B

bootstrap samples, the bootstrap estimate can then be calculated, θ̂
∗b
, to obtain

the bootstrap distribution of θ̂. Bootstrap distributions are commonly used with

phylogenetic data to test the topology of a proposed tree. I applied the bootstrap
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to site patterns in a sequence alignment to adjust for the uncertainty in parameter

estimates in EB classification. The procedure is illustrated in figure 3.1:

1. From an alignment of protein coding DNA sequences, x, with n codon sites,

randomly sample site patterns with replacement to obtain a bootstrap sample,

x
∗b, with n sites.

2. Estimate the MLEs, θ̂
∗b
, for bootstrap sample x

∗b.

3. Use θ̂
∗b

and x to calculate posterior probabilities, Prh(ω > 1|xh; θ̂
∗b
), that each

site, h, is under positive selection.

4. Repeat steps 1 through 3 B times to calculate B sets of posterior probabilities

for each codon site.

5. Calculate an aggregate posterior probability that each site is under positive

selection by, e.g., averaging posterior probabilities over bootstrap replicates,
∑︁B

b=1 Prh(ω > 1|xh; θ̂
∗b
)/B.

A preliminary implementation of the SBA method supporting codon models M2a,

M8, and branch-site model A, built upon the codeml application from the PAML

package (Yang, 2007), can be found at

https://github.com/Jehops/codeml sba.

3.5.2 Kernel Smoothing to Approximate the Bootstrap Distribution

Kernel smoothing (Akaike, 1954; Parzen, 1962; Rosenblatt et al., 1956; Wand and

Jones, 1994) is class of nonparametric techniques that can improve estimation of

a distribution. The kernel density estimator for a continuous density f , f̂(x;h) =

(nh)−1
∑︁n

i=1K([x − Xi]/h), includes a kernel density (probability) function, K, to

locally average or smooth observations and the amount of smoothing is controlled by

a bandwidth parameter, h. For small h, each of the h−1K([x−Xi]/h) contributions

are large only for x close to some Xi giving rise to a bumpy distribution, whereas for h

large the h−1K([x−Xi]/h) contributions overlap giving a much smoother distribution

(Silverman and Young, 1987). I used kernel density estimation to create smoothed

bootstrap distributions for the p parameters of the ω distributions under models M2a

and M8 using a uniform kernel.
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Kernel density estimation requires a bandwidth parameter as input. One method

for determining h is using leave-one-out cross validation (Venables and Ripley, 2013,

p. 184),

f̂ (−k)(x;h) = (n− 1)−1h−1
∑︂

i ̸=k

K([x−Xi]/h).

In this approach, h is chosen to maximize the sum of the logged density estimates
∑︁

k log f̂ (−k)(xk;h), where f̂ (−k)(x;h) is the kernel density estimate constructed from

all of the xi except xk. However, my experiments using leave-one-out likelihood

to choose an optimal bandwidth parameter for the p parameters of M2a and M8

merely resulted in smoothed estimates of the biased bootstrap distributions. To

obtain conservative estimates of the p parameters that suppressed the influence of

instabilities I chose to over smooth by using a bandwidth parameter of h = 0.4 for

all applications of SBA.

Adding kernel smoothing to the bootstrap algorithm increases the number of

parameter estimates used in step 5 of the unsmoothed algorithm by sampling from a

smoothed bootstrap distribution. The adjustment is in step 2 of the algorithm. The

ML parameters estimated from bootstrap sample b, θ̂
∗b
, are replaced by θsb sampled

from the smoothed bootstrap distribution. The rest of the algorithm proceeds as in

the unsmoothed version, but using θsb in place of θ̂
∗b
.

For model M8, the step 2 adjustment is as follows. For each θ̂
∗b
, psbω<1 samples are

repeatedly drawn from a univariate uniform distribution centered at p̂∗bω<1 with width

2h. If necessary, the minimum and maximum points of the distribution are truncated

to 0 and 1. Let θsb denote θ̂
∗b

with psbω<1 replacing p̂∗bω<1 (psbω>1 = 1 − psbω<1). The

same procedure is used under model M2a, however, with three weight parameters,

the sampling is done on a bivariate uniform distribution with the following additional

restrictions: i) psbω<1+p
sb
ω=1 ≤ 1, ii) (p̂∗bω<1−h) ≤ psbω<1 ≤ (p̂∗bω<1+h), and iii) (p̂∗bω=1−h) ≤

psbω=1 ≤ (p̂∗bω=1 + h). As with M8, if necessary, the minimum and maximum points of

the distribution are truncated at 0 and 1, and psbω>1 = 1− psbω<1 − psbω=1.

3.5.3 Simulation Studies

Datasets were simulated using EvolverNSSites from the PAML 4.8a package (Yang,

2007) and Indelible (Fletcher and Yang, 2009) following some of the settings described

in Wong et al. (2004). To compare the relative performance of BEB, NEB, and SBA
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for predicting sites under positive selection, 10 different simulation studies, divided

into three scenarios, were used. Table 3.1 gives an overview of the ω distributions used

to simulate the data. The Correct Model Scenario included four simulation studies

where the nuisance parameters, κ = 1 and πi = 1/61, matched the fitted model. The

Mild Misspecification and Heavy Misspecification scenarios included four simulation

studies with mild misspecification and two studies with heavy misspecification of

the fitted model, respectively. The data in the Mild Misspecification Scenario was

simulated using κ = 8 and empirical codon frequencies derived from application of

the general time-reversible model (Yang, 2006, p. 33) to the TrbL-VirB6-3 plasmid

conjugative transfer protein of Rickettsia. In the fitted model, κ was estimated,

while the misspecification was introduced by using F3x4 (expected codon frequencies

calculated using the nucleotide frequencies at the three codon positions). For the

Heavy Misspecification Scenario, study 9 used the heavily biased codon frequencies

from the Drosophila GstD1 gene and κ = 8 to simulate the data. In study 10, there

were two heterogeneous classes of sites. Half the sites were simulated using equal

codon frequencies, κ = 1, and ω = 0.5, while the other half with the Drosophila

gsTD gene codon frequencies, κ = 8, and ω = 1. For both studies in this scenario,

analysis was carried out using a single set of codon frequencies (set equal to 1/61)

and a single κ parameter estimated for all sites in the data set. For all studies in

the three scenarios, 100 alignments, each having 500 codons, were simulated with the

same 5-taxon tree from Wong et al. (2004). The studies in the Correct Model Scenario

were repeated under model M2a with the 30-taxon tree from the same paper.

3.5.4 Real Data Analysis

Table 2.2 describes the real data sequences analyzed under models M2a and M8

using NEB, BEB, and SBA. Of the 16 genes, eight code for transmembrane proteins

in Rickettsia (ccmF, mivN, perM, pgpA, RfaL, TrbL-VirB6 2, and TrbL-VirB6 3 ) and

were previously analyzed in Bao et al. (2008). Three genes from the HIV-1 virus (env

pol, and vif ) and a β-globin gene were described and analyzed in Yang et al. (2000a),

two primate genes (CDH3 encoding cadherin and ENAM encoding enamelin), a lysin

gene from Yang et al. (2000b), and the tax gene from the human T-cell lymphotrophic

virus (HTLV) that was analyzed by Suzuki and Nei (2004). All data is available at

https://github.com/jehops/sba real data.



Chapter 4

Unrecognized Statistical Difficulties with Tests of Positive Se-

lection under the Branch-Site Family of Codon Models

4.1 Introduction

Early models of evolution had limited power to detect positive selection that acted

upon proteins and amino acids. A challenge is that positive selection, relative to

purifying selection and neutral evolution, is a rare occurrence and often acts only

upon a small proportion of sites (Petersen et al., 2007; Studer et al., 2008). A single

ω averaged over all sites would rarely be estimated large enough (i.e., ω > 1) to reject

the null hypothesis of no positive selection, even for proteins that were subjected to

positive selection. By treating ω at a site as the realized value of a random variable,

and thus allowing ω to vary over sites, the power to detect positive selection increases

(Wong et al., 2004). The site models, however, do not allow ω to vary over time.

Another challenge to detect positive selection is that it often acts episodically

(Kosiol et al., 2008; Studer and Robinson-Rechavi, 2009). Early methods to de-

tect episodic positive selection, such as those of Messier and Stewart (1997) and

Zhang et al. (1997), inferred ancestral sequences to compute and compare the rates of

nonsynonymous and synonymous substitutions at particular lineages of a phylogeny.

Yang (1998) avoided the problems with ancestral sequence reconstruction (Collins

et al., 1994) in the branch models. The branch models use likelihood methods that

condition upon all unknown ancestral states and allowed ω to vary over lineages to

capture episodic positive selection. However, the branch models assume no variation

in ω among sites, so positive selection is detected along a lineage of the tree only if

75
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the average ω over sites is sufficiently large.

To increase the power to detect positive selection at a subset of sites along pre-

specified lineages of a phylogenetic tree, referred to as the foreground of the tree,

branch-site codon models were developed (Yang and Nielsen, 2002; Forsberg and

Christiansen, 2003; Bielawski and Yang, 2004; Zhang et al., 2005). The first branch-

site model A (Yang and Nielsen, 2002) used an LR test that was shown, through

simulation, to be susceptible to high false positive rates (Zhang, 2004). Changes were

later made (Zhang et al., 2005) and new simulations showed that the updated LR

test of branch-site model A did not suffer from high false positive rates when selec-

tion was relaxed in the foreground. Suzuki (2008) and then (Nozawa et al., 2009)

reported that false positive rates were still excessively high, however most of these

claims were dismissed due to faulty statistical interpretation (Yang et al., 2009; Yang

and Dos Reis, 2010; Zhai et al., 2012). Yang and Dos Reis (2010) provided new

simulation results, which suggest that the asymptotic theory is sound and the large-

sample null distribution is reliable. Work has also shown that the branch-site LR test

is normally conservative (Gharib and Robinson-Rechavi, 2013), not misled by positive

selection in background branches (Zhang et al., 2005; Gharib and Robinson-Rechavi,

2013; Fletcher and Yang, 2010), and robust to insertions and deletions, as long as the

sequence alignment is correct (Fletcher and Yang, 2010).

The updated branch-site model A has provided a basis for other codon models of

episodic selection. Guindon et al. (2004) developed what they referred to as a stochas-

tic branch-site model, which does not require the phylogenetic tree to be divided a

priori into background and foreground branches. They employ two Markov processes,

the usual process for codon states, and another for the unobservable ω class, which

can change along any branch of the tree. Lu and Guindon (2013) showed through

simulation that both branch-site models are conservative under null conditions, but

branch-site model A is more powerful when the foreground is correctly chosen. On

the other hand, when too few or too many foreground branches are chosen, the power

of branch-site model A decreases. If prior information about the foreground is un-

available, each branch can be individually tested under branch-site model A using

corrections for multiple tests (Anisimova and Yang, 2007). Lu and Guindon (2013)

determined that the stochastic branch-site model is better suited for such exploratory
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experiments.

Kosakovsky Pond et al. (2011), Murrell et al. (2012), and (Murrell et al., 2015)

developed a class of models that relax the constraints of the selection arrangements

in branch-sites model A by allowing each branch-site combination to have different

ω values. Kosakovsky Pond et al. (2011) showed that branch-site model A can give

excessive type I or type II errors when the data strongly deviate from the constrained

ω distributions for background and foreground branches. They reported that their

random-effects method consistently matched or outperformed branch-site A tests in

terms of power and error rates.

Smith et al. (2015) developed an adaptive feature to the random effects method,

which determines the optimal number of rate categories for each branch using small-

sample Akaike Information Criterion. This is a welcome advancement as others have

reported problems with codon models when the number of mixture classes is too large

(e.g. Mingrone et al., 2018). Davydov et al. (2019) argued that branch-site model A

erroneously detects positive selection in real genes at a rate greater than 70%. They

developed a modified branch-site model, which includes a separate site parameter for

the synonymous rate, thus accounting for nucleotide sequence selection and mutation

rate. Like Baele and Lemey (2013) and Gil et al. (2013), the synonymous rate at each

site is the realized value of a discretized unit gamma distribution, but unlike those

models, they allow ω to vary over both branches and sites.

Among the branch-site models in this family, branch-site model A employs the

most restrictive constraints on its parameter values. The constraints allow the model

to serve as an explicit test of positive selection for a priori hypotheses about specific

branches. Despite the sophistication and claimed improvements of newer methods

for detecting episodic positive selection, branch-site model A remains widely used,

because such tests are believed to have the highest power when a priori information

about the foreground branches are tested.

Branch-site model A has recently been used to describe, e.g., the molecular mech-

anisms of immunity, longevity, and cancer-resistance in bats (Scheben et al., 2020)

and the North American beaver (Zhang et al., 2020), tumor suppressor in cetaceans

(Martinez et al., 2020), and the antagonistic insect-plant interaction between swallow-

tail butterflies and birthworts (Allio et al., 2020). With such wide use, it is important



78

to fully understand its tendencies and limitations and when it or other models are

appropriate. Here I perform new simulations studies to reassess the properties of the

updated branch-site model A. By assessing the statistical properties of a base form of

a branch-site model, I aim to provide insight for the model and related models that

implement extensions (e.g., Davydov et al., 2019).

4.2 Theory and Methods

The parameters of the ω distribution under the alternative model of updated branch-

site model A described in Zhang et al. (2005) are shown in table 4.1. For the null

model, Yang and Nielsen (2002) originally constrained ω0 = 0 and permitted only sites

classes 0 and 1, which is equivalent to sites model M1 (Yang et al., 2000a). Using

data simulated under the null hypothesis, Zhang (2004) found positive selection in the

foreground was erroneously detected in 19%—54% of cases. Zhang et al. (2005) used

an updated null model, which was shown through simulation to resolve the problem

of inflated false positive rates. This updated null model includes all four ω site classes

of the alternative model, but constrained ω2 = 1. In addition, Zhang et al. (2005)

relaxed the constraint on ω0 by allowing it to take on values between 0 and 1.

Table 4.1: The ω distribution under the alternative model of branch-
site model A, described in Zhang et al. (2005). Under the null model,
the constraint ω2 = 1 is imposed.

Site Class Proportion Background Foreground

0 p0 ω0 < 1 ω0 < 1
1 p1 ω1 = 1 ω1 = 1
2a (1− p0 − p1)p0/(p0 + p1) ω0 < 1 ω2 > 1
2b (1− p0 − p1)p1/(p0 + p1) ω1 = 1 ω2 > 1

Here I conduct simulation studies to explore how the asymptotic null distribution

of the updated branch-site A LR test (Zhang et al., 2005) may vary from the rec-

ommended χ2 distributions. Codon sequence data were simulated using the Indelible

simulation software (Fletcher and Yang, 2009). For each of three simulation scenarios

covering 23 distinct simulations studies, 1000 sequence alignments 500, 5000, or 10000

codons long were generated using a symmetric, 8-taxon tree (figure 4.1) with the total

of all branch lengths summing to 3 or 6. All sequence alignments were simulated with
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a transition to transversion rate ratio, κ = 2 and equal codon frequencies. Table 4.2

provides an overview of the simulation conditions, including the ω distributions used

to simulate the data.

A

B

C

D

E

F

G

H

Fig. 4.1: Phylogenetic tree topology used in branch-site model simulations.

The Single Foreground Branch Scenario was comprised of 12 studies with each

sequence alignment simulated using a single terminal foreground branch leading to

taxon A or an internal foreground branch at the base of the tree in figure 4.1. The

sequence lengths, total branch lengths, and foreground branch length varied between

studies in this scenario. The Half Tree Foreground Scenario was comprised of 5

simulations studies, each with half of the 8-taxon tree in the foreground. Four of

the studies in this scenario used 5000-codon sequences and one used 10000. The

Misspecification of ω Distribution Scenario was comprised of 6 studies with sequences

generated using codon model M3 (k=3) (Yang et al., 2000a), i.e., the number of

simulated ω site classes does not match the number of ω site classes in the fitted

model.

Table 4.3 describes simulation studies conducted under the Confounding Fore-

ground Scenario. Confounding here means that any foreground branches specified

under simulation do not match the foreground branches of the fitted model. For each

study in this scenario, data were simulated under both the null (ω2 = 1 in foreground

branch) and the alternative (ω2 ≥ 1 in the foreground) models. This was done to
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Table 4.2: Design of branch-site model A simulation studies for assessing estimated
LR distribution under null hypothesis conditions.

Study Nc Nf TTL ω distribution

Single Foreground Branch
1a 500 1(t) 3 p0=0.7 p1=0.2 ω0=0.3
1b 5000 1(t) 3
1c 5000 1(t)* 3
1d 5000 1(t)** 3
2a 500 1(t) 3 p0=0.75 p1=0.25 ω0=0.3
2b 5000 1(t) 3
3a 500 1(t) 3 p0=0.25 p1=0.75 ω0=0.3
3b 5000 1(t) 3
4a 5000 1(t)* 6 p0=0.5 p1=0.5 ω0=0
4b 5000 1(t)** 6
4c 5000 1(i)* 6
4d 5000 1(i)** 6

Half Tree Foreground
5 5000 h 6 p0=0.375 p1=0.375 ω0=0
6 5000 h 6 p0=0.475 p1=0.475 ω0=0
7a 5000 h 3 p0=0.5 p1=0.5 ω0=0
7b 5000 h 6
7c 10000 h 3

Misspecification of ω Distribution
8a 500 1(t) 3 [p0, p1, p2]=[0.4, 0.4, 0.2] [ω0, ω1, ω2]=[0.1, 0.5, 0.9]
8b 5000 1(t) 3
8c 500 h 3
8d 5000 h 3
9a 500 h 3 [p0, p1, p2]=[0.4, 0.2, 0.4] [ω0, ω1, ω2]=[0.1, 0.5, 1]
9b 5000 h 3

Nc: sequence length in number of codons, Nf : number foreground branches (t: terminal
branch, i: internal branch, h: half tree, *: foreground is 1/10 length or other branches,
**: foreground branch is 10 times length of other branches), TTL: total tree length.
Note, under the Misspecification of ω Distribution scenario, the generating model was
M3 (k=3).

compare LR statistic CDFs with and without confounding foreground branches. The

goal of the studies in this scenario is to determine whether confounding foreground

branches may cause false detection of positive selection under the fitted model.
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Table 4.3: Design of branch-site model A simulation studies
for assessing estimated LR distribution under confounding fore-
ground branch conditions.

Study Nc Nf TTL ω distribution

10 5000 1(i) 3 p0=0.5 p1=0.4 ω0=0.75 ω2=2.0
11 5000 1(i) 6 p0=0.475 p1=0.475 ω0=0 ω2=3.0
12 5000 h 6 p0=0.475 p1=0.475 ω0=0 ω2=3.0

Nc: sequence length in number of codons, Nf : number foreground
branches (t: terminal branch, i: internal branch, h: half tree, *:
foreground is 1/10 length or other branches, **: foreground branch
is 10 times length of other branches), TTL: total tree length.

4.3 Results and Discussion

4.3.1 LR Tests Tend to be Conservative when Information Content is Low

Figure 4.2 shows the LR statistic CDFs for branch-site model A when a single branch

is specified in the foreground. Studies 1a - 1d differ from the other studies in this

scenario in that p0 + p1 < 1. Consequently, alternative hypotheses parameters that

give the true generating model have positive weight on the 2a and 2b classes in

Table 4.3. Because they have positive weight, ω2 must equal 1 to give the true

generating distribution. Thus the parameters are identifiable under the alternative

model, which implies that the non-standard likelihood theory of Self and Liang (1987)

will apply with large samples. That theory suggests that the large sample LR statistic

distribution is well approximated by a χ2
0/2+χ

2
1/2 distribution. However, the results

of studies 1a and 1c indicate that the sparseness of information contained in a single

foreground branch may not be sufficiently influential to draw all or most weight away

from p0 or p1. Histograms of 1 − p0 − p1 for studies 1a - 1d in figure 4.3 show that

too often all, or nearly all, weight is placed on sites classes ω0 and ω1 in studies 1a

and 1c. With increased information content in the foreground branch, whether by

longer sequences lengths as in study 1b, or a longer foreground branch as in study 1d,

the χ2
0/2 + χ2

1/2 distribution does well to approximate the large-sample LR statistic

distribution.

For the remaining studies in the Single Foreground Branch Scenario, with sequence
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Fig. 4.2: CDFs of LR statistics under branch-site model A for data simulated in the
Single Foreground Branch Scenario. For each simulation study, 1,000 sequence align-
ments were generated using a balanced, 8-taxon tree topology with branch lengths
summing to 3 or 6. The simulated parameter values of the ω distribution are shown in
each panel. Studies 1c, 4a, and 4c have foreground branches that are 1/10 the length
of the other branches in the tree. Studies 1d, 4b, and 4d have foreground branches
that are 10 times the length of the other branches in the tree. Sequences are 500
codons long in studies 1a, 2a, and 3a and 5000 codons long in all other studies in this
scenario. Refer to table 4.2 for detailed simulation conditions. CDFs for χ2

0/2+χ2
1/2

and χ2
1 are also included.

data simulated with all weight on the ω < 1 site classes (p0 + p1 = 1), the non-

standard likelihood theory of Self and Liang (1987) is not expected to apply. The
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Fig. 4.3: Histograms of the weight MLEs as 1−p0−p1 for studies 1a - 1d of the Single
Foreground Branch Scenario. Refer to table 4.2 for detailed simulation conditions.

regularity condition of Self and Liang (1987) that is violated is identifiability. Because

p0 + p1 = 1, alternative hypothesis parameters with p2a = p2b = 0 and arbitrary

w2 give the true generating model. Unlike the results of Mingrone et al. (2018),

which showed violations of the conditions of the non-standard likelihood theory gave

anti-conservative LR statistic distributions in site models, studies 2-4 resulted in

conservative LR statistic distributions. The conditions are however similar to those

described in Mingrone et al. (2018) where it was argued that if ω2 were fixed under the

alternative model, only p2 = 0 would give the null model. These conditions match case

5 of Self and Liang (1987), which gives a χ2
0/2 + χ2

1/2 LR distribution. In Mingrone

et al. (2018) the alternative maximized over ω2 would always give a larger likelihood

than with ω2 fixed, so the theoretical large-sample expectation is anti-conservative
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behaviour for LR tests involving sites model M2a. A similar theoretical argument

for large-sample anti-conservative behaviour is expected for branch-site model A, but

the argument is complicated, because positive weight must remain on ω2.

4.3.2 LR Tests are Anti-conservative when Information Content is High

In theHalf Tree Foreground Scenario, the estimated LR distributions are anti-conservative

relative to a χ2
0/2+χ

2
1/2 and not well estimated by either a χ2

0/2+χ
2
1/2 or χ

2
1 distribu-

tion, and more so when the total tree length is increased or the number of generated

sites is increased to 10, 000 (figure 4.4). With more of the tree in the foreground,

the anti-conservative LR distribution behaviour observed in Mingrone et al. (2018) is

also observed under branch-site model A. In studies 7b and 7c, 7.1% and 7.4% of the

LR statistics were beyond 2.71, the 5% threshold of the χ2
0/2 + χ2

1/2 distribution. I

speculate that as the information content increases with more of the tree in the fore-

ground, the alternative model does better to explain nonsynonymous changes evident

in several locations. That extra freedom leads to anti-conservativeness. Note that

anti-conservativeness increases as p0+p1 increases, in line with expectations based on

the violation of Self and Liang (1987) regularity conditions when p0 + p1 = 1 (figure

4.5).

In many circumstances, anti-conservative behaviour is more concerning than lack

of power, so recommendations have been to simply use thresholds from a χ2
1 distribu-

tion to make the test conservative. However, if LR statistics become large with larger

ω2 values, tests based on a χ2
1 distribution could also pose risks of anti-conservative

behaviour. For few foreground branches, this is not expected, but with more of the

tree in the foreground, the LR statistic could vary more with larger ω2 values.

4.3.3 LR Tests are Extremely Conservative when the ω Distribution is Mis-

specified

Data in the simulation studies of the Misspecification of ω Distribution Scenario were

simulated with two different ω distributions from an M3 k=3 model (Yang et al.,

2000a). Studies 8a − 8d placed weights [p0,p1,p2] = [0.4, 0.4, 0.2] on [ω0, ω1, ω2] =

[0.1, 0.5, 0.9] and studies 9a and 9b puts weights [p0, p1, p2] = [0.4, 0.2, 0.4] on [ω0, ω1, ω2] =

[0.1, 0.5, 1.0]. Note that the ω2 of sites model M2a is not ω2 of branch-sites model A.

Regardless whether a single branch or half of the tree is part of the foreground, LR
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Fig. 4.4: CDFs of LR statistics under branch-site model A for data simulated in the
Half Tree Foreground Scenario. For each simulation study, 1,000 sequence alignments
were generated using a balanced, 8-taxon tree topology with branch lengths summing
to 3 or 6. The simulated parameter values of the ω distribution are shown in each
panel. Refer to table 4.2 for detailed simulation conditions. CDFs for χ2

0/2 + χ2
1/2

and χ2
1 are also included.

statistic distributions are highly conservative when the ω is misspecified (figure 4.6).

Under the null model, site class 2a is less constrained relative to the other sites

classes, because it can model sites using two ω values, ω0 < 1 in the background and

ω = 1 in the foreground. This additional flexibility and perhaps near unidentifiability
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Fig. 4.5: Histograms of the weight MLEs as 1 − p0 − p1 for studies 5 and 7b of the
Half Tree Foreground Scenario. Refer to table 4.2 for detailed simulation conditions.

results reported in Mingrone et al. (2018) makes site class 2a best able to fit sites

generated under ω = 0.5. However, there is little additional flexibility under the

alternative model since all the generating ω values are less than 1. Thus, differences

in likelihood scores under the null and alternative models are often small, resulting in

the highly conservative LR distribution. When half of the tree is in the foreground,

only 8 of the 1000 LR tests are rejected with using the 5% χ2
0/2 + χ2

1/2 distribution

threshold of 2.71, and only 2 tests are rejected using the 1% threshold of 5.41.

4.3.4 Confounded Foreground Branches May Cause False Detection of Posi-

tive Selection

Figure 4.7 shows estimated LR statistic CDFs under branch-site model A for simu-

lation studies 10, 11, and 12 in the Confounding Foreground Scenario. In studies 10

and 11, the LR statistics are conservative and distributions are comparable with or

without confounding. By contrast, in Study 12, strong anti-conservative behaviour

is seen. The more anti-conservative behaviour under the null by comparison with

Studies 10 and 11, suggests that part of the reason is simply the additional informa-

tion content in the alternative model when more of the tree is in the foreground. It

is surprising that the results are so anti-conservative with confounding as the non-

synonymous changes are expected primarily outside of the foreground specified in

the fitted model. Perhaps the ability of the alternative components of the model to
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Fig. 4.6: CDFs of LR statistics under branch-site model A for data simulated in
the Misspecification of ω Distribution Scenario. For each simulation study, 1,000
sequence alignments were generated using a balanced, 8-taxon tree topology with
branch lengths summing to 3 or 6. The simulated parameter values of the ω distribu-
tions are shown in each panel. Refer to table 4.2 for detailed simulation conditions.
CDFs for χ2
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1 are also included.

explain at least one nonsynonymous change when many occur due to the confounding

leads to much more explanatory value under the alternative.
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Fig. 4.7: CDFs of LR statistics under branch-site model A for data simulated in the
Confounding Foreground Scenario. For each simulation study, 1,000 sequence align-
ments were generated using a balanced, 8-taxon tree topology with branch lengths
summing to 3 or 6. All sequences are 5000 codons long. Under the Null simulation
conditions no foreground branches were specified and under the confounding simu-
lation conditions, the foreground is shown in the right panel, which does not match
the foreground under the fitted model. Refer to table 4.3 for detailed simulation
conditions. The simulated parameter values of the ω distribution are shown for each
study. CDFs for χ2
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1 are also included.

4.3.5 Summary

The simulation results show that LR distributions under the null hypothesis are

sometimes poorly approximated by those predicted by theory. The LR distributions
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can vary heavily according to factors such as the branches considered for positive

selection and the irregularity of certain parameter estimates. In some cases, the test

is so lacking in power, that a re-calibration of the null LR distribution should be

considered. In other scenarios, when more of the tree is in the foreground, excessively

high false positive rates were observed.

Other simulation results show that when positive selection has occurred in back-

ground locations of the phylogeny, detection of positive selection in the foreground

can be strongly influenced and in some cases, excessive false detection of positive

selection may occur.



Chapter 5

Concluding Remarks

Some assumptions made in models of molecular evolution are extremely unrealistic.

Assuming equal selection pressure over all amino sites in a protein is one example.

As most proteins must maintain the capacity to fold into complex structures to com-

plete some biological function, the majority of amino acid substitutions are selected

against. Estimating a single ω parameter averaged over all sites in the protein will

usually lack sufficient power to detect the relatively few sites that may be subjected to

positive selection. By modelling each site as the realized value from an ω distribution,

the increased power to detect a few sites under positive selection made the models

practical for wider use. However, increasing model complexity to account for more

of the complex evolutionary processes that give rise to the diversity in homologous

proteins can have both favourable and unfavourable consequences.

Mixture models of codon evolution, such as those described in Chapter 2, vio-

late regularity conditions required for standard likelihood theory. Indeed, likelihood

theory does not support any particular large sample null distribution and the correct

distribution is dependent on parameter values of the generating null distribution. An-

other difficultly with mixture models of codon evolution that have been described in

Chapter 2 is near unidentifiability. With few taxa and small branch lengths, two very

different ω distributions can give nearly the same site pattern probabilities, making

estimation and inference challenging.

The modified likelihood approach, described in Chapter 2, adds a penalty for

small weight on ω > 1 to likelihood calculations. Simulation results show that this

modification, in many cases, gives tractable LR statistic distributions that are well

90
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approximated by a χ2
0+χ

2
1/2 distribution and helps to adequately control false positive

rates with minimal impact on power. Potential future work related to the modified

likelihood approach is (i) calculation of an optimal likelihood penalty using, e.g., a

cross-validation procedure and (ii) application to other models of molecular evolution.

When the null hypothesis of no positive selection at the protein level is rejected

by the LR test, a determination whether positive selection has acted upon particular

amino acid sites is warranted. This site-wise analysis, carried out using Bayes rule,

is dependent on the ML-estimated model parameters. Parameter values that are

estimated with high error can lead to unacceptably high levels of false detection of

positive selection at amino acid sites. The BEB approach adjusts for uncertainty in

some parameter estimates, but the approach has limitations.

In Chapter 3, SBA, a new alternative to BEB that accommodates uncertainty in

all MLEs, is described. For each amino acid site, many parameter values are generated

from a smoothed bootstrap distribution and substituted into the posterior probability

calculation to give a distribution of posterior probabilities which reflects parameter

uncertainty. By accounting for errors associated with all model parameters, SBA,

relative to BEB, has advantages. Simulations under model M8, using data simulated

to reflect many real data conditions with mild model misspecification, showed that

SBA provided consistently better control of false positive rates than BEB. Other

advantages of SBA are: (i) MLE distributions over bootstrap samples offer the ability

to visually inspect the degree of regularity or irregularity of the estimation and (ii)

it is comparatively simple to implement for new models. A proof-of-concept SBA

implementation for branch-site model was completed within a few hours and can

be found at https://github.com/Jehops/codeml sba/. An implementation in a well

developed software package such as PAML (Yang, 1997) is a future goal. Some

potential refinements to the SBA approach are left for future work such as determining

an optimal bandwidth parameter for smoothing. Under-smoothing will not correct

irregularities in the bootstrap parameter distributions and over smoothing will remove

useful information and increase bias.

Branch-site models, such as those described in Chapter 4 have been purported

to have more power to detect instances of episodic positive selection that has acted

upon some sites along particular lineages of the tree. Through simulation studies,
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I have identified challenges with the model. With low information content in the

foreground of the tree, e.g., when there is a single, shorter branch in the foreground,

or when the generating model does not match well to the fitted model, the test for

positive selection can be very conservative. Real data may often involve one or few

true foreground branches or may have more complex ω distributions over sites. As

both of these conditions have been shown to cause the LR test to be conservative,

this may explain why the test is viewed as valuable by practitioners. That is, they

tend to find that the model does not give spurious results, because it is most often

used under conditions that we now expect to be conservative.

On the other hand, when there is more information content in the foreground, the

LR test can be anti-conservative. Application of the modified likelihood approach

described in Chapter 2 to branch-site model A would likely be beneficial for obtaining

tractable LR distributions when more of the tree is in foreground. Perhaps of most

concern are the results when the foreground of the generated model does not match

with the foreground of the fitted model. Despite past reports that the model is not

misled by positive selection in background branches (Zhang et al., 2005; Gharib and

Robinson-Rechavi, 2013; Fletcher and Yang, 2010), a simulation result from Chapter 4

strongly contradicts this assertion. While some potential pitfalls have been identified

with branch-site model A, more work is warranted to better understand why, e.g.,

the model can be so strongly misled by positive selection in other parts of the tree.
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6.1 Appendix I: Codon Models

6.1.1 Sites Models

Table 6.1: Codon models that allow ω to vary over amino acid sites. These models, imple-
mented in the PAML software program (Yang, 1997), were used in simulations and real data
analyses throughout the thesis.

Model Parameters of ω Distribution Notes References

M0 ω Single ω over sites Nielsen and Yang (1998)
M1a p0, ω0<1, ω1=1 Null in M1a/M2a test Yang et al. (2005)
M2a p0, p1, ω0<1, ω1=1, ω2>1 Alt. in M1a/M2a test Yang et al. (2005)
M3 p0, p1, ω0, ω1, ω2 Unconstrained ωs Yang et al. (2000a)
M7 p, q Discretized Beta Yang et al. (2000a)
M8 p, q, p0, ωs>1 Discretized Beta + ω>1 Yang et al. (2000a)

6.1.2 Branch-Site Model A

Table 6.2: The ω distribution under the alternative model of branch-
site model A, described in Zhang et al. (2005). Under the null model,
the constraint ω2 = 1 is imposed. Branch site model A was used in
the simulation studies of Chapter 4.

Site Class Proportion Background Foreground

0 p0 ω0 < 1 ω0 < 1
1 p1 ω1 = 1 ω1 = 1
2a (1− p0 − p1)p0/(p0 + p1) ω0 < 1 ω2 > 1
2b (1− p0 − p1)p1/(p0 + p1) ω1 = 1 ω2 > 1
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6.2 Appendix II: Proof of the Limiting Distribution of the Modified Like-

lihood

We prove below that the limiting distribution of the modified likelihood ratio statis-
tic is χ2

0/2 + χ2
1/2. Assumed without proof is that the codon model considered is

identifiable: for a fixed tree, no two distinct sets of parameters give exactly the same
distribution of site patterns. Such results have not been established for codon mod-
els. However, there are a number of identifiability results for similar rates-across-sites
(Allman et al., 2008) and covarion models (Allman and Rhodes, 2009) that suggest it
is a plausible assumption. Also assumed is that third partial derivatives of the proba-
bility of a site pattern, over any set of parameters, is bounded in a neighbourhood of
the true parameter values. Finally, the covariance matrix V defined below is assumed
to be positive definite.

Taylor’s Series

Let β = (ω+, ψ
T )T and let β0 = [1, (ψ0)T ]T where ψ0 denotes the true generating

parameter under the null hypothesis. It follows similarly as in Chen et al. (2004)
that β̂ → β0 where β̂ is the modified ML estimator. Since the convergence of the
modified ML estimator p̂+ of p+ is at present unclear, modified likelihood ratios
are approximated through Taylor’s series approximation of the log likelihoods, with
respect to β at β0, holding p+ fixed:

l̃(p+, ω+, ψ)− lH(ψ
0) = L(β0; p+) +Q(β0; p+) + C(β∗; p+) + C log(p+) (6.1)

where L, Q and C denote the linear, quadratic and cubic terms and β∗ is some value
between β and β0.

Linear Term

The linear term is

L(β0; p+) = (β − β0)T
∑︂

h

∂

∂β
log p(xh; β

0, p+)

It is not difficult to show that the collection, S(xh)ψ, of derivatives of log p(xh; β
0, p+)

with respect to ψ are independent of p+. The other derivative is

∂

∂ω+

log p(xh; β
0, p+) = p+(1− p0)

∂

∂ω
p(x|1; ζ)/p(xh; β0, p+) =: p+S(xh)ω+

(6.2)

so that S(xh)
T = [S(xh)ω+

, S(xh)
T
ψ ] is independent of p+. Standard likelihood theory

gives that E[S(Xh)] = 0, so by the Central Limit Theorem, n−1/2Sn = n−1/2
∑︁

S(Xh)
is approximately normal with mean 0 and a covariance matrix denoted by V . Let
δTn =

√
n[p+(ω+ − 1), (ψ − ψ0)T ]. Then

L(β0; p+) = n−1/2STn δn (6.3)
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Quadratic Term

The quadratic term in (6.1) is

Q(β0; p+) =
1

2
(β − β0)T l(2)(β0)(β − β0) (6.4)

where

l(2)(β0) =
∑︂

h

Q(1)(xh; β
0, p+) +

∑︂

h

∂

∂β
log p(xh; β

0, p+)
∂

∂β
log p(xh; β

0, p+)
T (6.5)

and pH(xh)Q
(1)(xh; β

0, p+)ij is the partial derivative of p(xh; β
0, p+) with respect to

βi and βj. It is not difficult to see that pH(xh)Q
(1)(xh; β

0, p+)ij is independent of
p+ unless i = j = 1, in which case it equals p+ times a partial derivative of the
form ∂2p(x|1; ζ)/∂ω2. Standard likelihood theory gives that E[Q(1)(Xh; β

0, p+)] = 0.

Thus the Central Limit Theorem gives that Q
(1)
n :=

∑︁

Q(1)(xh; β
0, p+) = OP (n

1/2)

for any fixed p+. Since Q
(1)
n depends linearly on p+, Q

(1)
n = Op(n

1/2) uniformly in p+.
Substituting in (6.5), then (6.4) and using the relationships between derivatives of
log p(xh; β

0, p+) and S(xh) established earlier,

Q(β0; p+) =
1

2
(β − β0)TQ(1)

n (β − β0) +
1

2n
δTn
∑︂

h

S(xh)S(xh)
T δn (6.6)

Let Q
(2)
n =

∑︁

h S(xh)S(xh)
T − nV . Since E[S(xh)S(xh)

T ] = V , the Central Limit

Theorem gives that Q
(2)
n = OP (n

1/2). Since

Q(β0; p+) =
1

2
(β − β0)TQ(1)

n (β − β0) +
1

2n
δTnQ

(2)
n δn −

1

2
δTnV δn (6.7)

for δn = OP (1) we have that

Q(β0; p+) = −1

2
δTnV δn +OP (n

−1/2) (6.8)

Cubic Term

The cubic term in (6.1) is

C(β∗; p+) =
1

6

∑︂

ijk

l(3)(β∗; p+)ijk(β − β0)i(β − β0)j(β − β0)k (6.9)

where l(3)(β∗; p+)ijk denotes the third partial derivative of the log likelihood with
respect to βi, βj and βk. Since third partial derivatives of log p(xh; β

0, p+) are assumed
to be bounded in a neighbourhood of β0 by, say, M(xh), |l(3)(β∗; p+)|/n is bounded
by n−1

∑︁

hM(Xh). It follows by the Law of Large Numbers that l(3)(β∗; p+) = OP (n)
and consequently that for β − β0 = OP (n

−1/2), C(β∗; p+) = Op(n
−1/2). Combining
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(6.3) and (6.8) in (6.1) gives that for δn = OP (1),

l̃(p+, ω+, ψ)− lH(ψ
0) = n−1/2STn δn −

1

2
δTnV δn + C log(p+) +OP (n

−1/2) (6.10)

Approximation with the modified MLE

Since δ̂ has not been shown to be equal to Op(1), (6.10) does not immediately apply.

However, since bn = δ̂/|δ̂| = Op(1), the argument for (6.10) gives that

l̃(p̂+, ω̂+, ψ̂)−lH(ψ0) = |δ̂|2{n−1/2STn bn/|δ̂|−
1

2
bTnV bn+OP (n

−1/2)}+C log(p̂+) (6.11)

Since V is positive definite, the right-hand side of (6.11) becomes negative if |δ̂|
diverges. However, since β̂ is a maximizer, the difference in (6.11) is always positive.
Thus it must be the case that δ̂ = Op(1). This implies that ψ̂ − ψ0 = OP (n

−1/2) and
that p̂+(ω̂+ − 1) = OP (n

−1/2). Similarly as in Lemma 1 of Chen et al. (2004), with
probability, converging to 1, p̂+ ≥ ϵ for some ϵ > 0, so that ω̂+ − 1 = OP (n

−1/2).

Thus the approximation (6.10) applies with β = β̂:

l̃(p̂+, ω̂+, ψ̂)− lH(ψ
0) = n−1/2STn δ̂n −

1

2
δ̂
T

nV δ̂n + C log(p̂+) +OP (n
−1/2)

≤ max
δ,p+

{n−1/2STn δ −
1

2
δTV δ + C log(p+)}+OP (n

−1/2)(6.12)

The inequality (6.12) holds when maximization is restricted so that the maximizing
δ and p+ correspond to a valid β and p+: δω+

≥ 0 and p+ ≤ 1. If the corresponding

β and p+ are denoted as β̃ and p̃+, since the maximizing δ and p+ are OP (1), the

expression in (6.12) is the same as l̃(p̃+, ω̃+, ψ̃) − lH(ψ
0) up to the order indicated.

Since l̃(p̂+, ω̂+, ψ̂)− lH(ψ
0) is larger than l̃(p̃+, ω̃+, ψ̃)− lH(ψ

0), the reverse inequality
holds in (6.12) as well, implying that it is an equality. The maximized value of
C log(p+) is C log(1) = 0. Thus (6.12) is

l̃(p̂+, ω̂+, ψ̂)− lH(ψ
0) = max

δ
{n−1/2STn δ −

1

2
δTV δ}+OP (n

−1/2) (6.13)

The log likelihood under the null

No modification of the likelihood is considered under the null, so standard ML results
gives that

lH(ψ)− lH(ψ
0) = (n−1/2Snψ)

TV −1
ψψ (n

−1/2Snψ) +OP (n
−1/2) (6.14)
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The difference between (6.12) and (6.14) gives that the modified likelihood ratio
satisfies that

l̃(p̂+, ω̂+, ψ̂)−lH(ψ) = max
δ

{2n−1/2STn δ−δTV δ}−(n−1/2Snψ)
TV −1

ψψ (n
−1/2Snψ)+OP (n

−1/2)

(6.15)

Maximization under the alternative

Omitting details, after simplification, maximizing over δ with δω+
fixed gives

max
δ

{2n−1/2STn δ − δTV δ} = (n−1/2Snψ)
TV −1

ψψ (n
−1/2Snψ) + 2δω+

n−1/2Scnω+
− δ2ω+

V c
ω+

(6.16)
where

Scnω+
= Snω+

− Vω+ψV
−1
ψψ Snψ, V c

ω+
= Vω+ω+

− Vω+ψV
−1
ψψ Vψω+

(6.17)

If Scnω+
< 0 in (6.16) the right hand side is decreasing in δω+

and so, subject to
the restriction that δω+

≥ 0, the maximizing δω+
= 0. Otherwise the maximizer is

n−1/2Scnω+
/
√︁

V c
ω+
. Substituting in (6.16) and (6.15) gives

l̃(p̂+, ω̂+, ψ̂)− lH(ψ) = [n−1/2Scnω+
/
√︂

V c
ω+
]2+ +OP (n

−1/2) (6.18)

Distribution of Scnω+

Because n−1/2Scnω+
is a linear transformation of n−1/2Sn which has an approximate

normal distribution with mean 0 and covariance matrix V , it too has a normal dis-
tribution. It has mean 0 and variance

Var(n−1/2Scnω+
) = Var(n−1/2Snω+

)− 2Vω+ψV
−1
ψψ Cov(n

−1/2Snψ, n
−1/2Snω+

)

+ Vω+ψV
−1
ψψVar(n

−1/2Snψ)V
−1
ψψ Vψω+

= Vω+ω+
− 2Vω+ψV

−1
ψψ Vψω+

+ Vω+ψV
−1
ψψ VψψV

−1
ψψ Vψω+

= V c
ω+

Thus n−1/2Scnω+
/
√︁

V c
ω+

is approximately standard normal. It follows from Z ∼
N(0, 1) giving Z2 ∼ χ2

1 and Z2 being independent of the event that Z > 0, that
the limiting distribution of W is χ2

1/2 + χ2
0/2.
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6.3 ModL Supplementary Figures
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Fig. 6.1: CDFs of likelihood (C=0) and modified likelihood (C=2) ratio statistics
under the nested model pair M1a/M2a for six simulation settings. For each simulation
setting, 10,000 sequence alignments were generated with two site classes, ω < 1 and
ω = 1 using a 5-taxon tree topology with branch lengths summing to 6. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.2: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
5-taxon tree topology with branch lengths summing to 9. The value of ω0 and its
weight, p0, used to generate the data are shown as column and row labels. CDFs for
χ2
0/2 + χ2

1/2 are also included.
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Fig. 6.3: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 10-taxon tree topology with branch lengths summing to 3. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.4: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 10-taxon tree topology with branch lengths summing to 6. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.5: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 10-taxon tree topology with branch lengths summing to 9. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.6: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 32-taxon tree topology with branch lengths summing to 3. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.7: CDFs of LR (C=0) and modified LR (C=2) statistics under M1a/M2a
nested model pairs for six simulation settings. For each simulation setting, 10,000
sequence alignments were generated with two site classes, ω < 1 and ω = 1 using a
balanced, 32-taxon tree topology with branch lengths summing to 6. The value of
ω0 and its weight, p0, used to generate the data are shown as column and row labels.
CDFs for χ2

0/2 + χ2
1/2 are also included.
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Fig. 6.8: MLEs of the ω0 parameter under model M1a for six simulation settings.
For each simulation setting, 10,000 sequence alignments were generated with two site
classes, ω < 1 and ω = 1 using a 5-taxon tree topology with branch lengths summing
to 3. The value of ω0 and its weight, p0, used to simulate the data are shown as
column and row labels.
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Fig. 6.9: CDFs of LR statistics without (C=0) and with (C=2) likelihood modification
after pre-screening the data with M0/M1a LR tests. The modified LR statistics
were calculated under the nested model pair M1a/M2a for 4987 simulated sequence
alignments that were rejected under the M0/M1a null hypothesis of only one ω site
class. The alignments were simulated with 25% of the sites evolving under ω = 0.5
and the remaining sites evolving under ω = 1 using a 5-taxon tree topology with
branch lengths summing to 3. A modified likelihood tuning parameters of C = 2 was
used. A χ2

0/2 + χ2
1/2 CDF is also included.
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Fig. 6.10: Approximations of the Kullback-Leibler divergences between the distribu-
tions of site likelihoods for the generating model and other mixing distributions. The
approximations were obtained as the mean lnL difference between 10,000 site patterns
generated under model M1a using a 5-taxon tree with branch lengths summing to
3 and the mixing distribution (p0, ω0) = (0.75, 0.5), and other mixing distributions
with varying weights on values of ω ranging from 0 to 1. Error bars for two standard
errors (sKL/

√
10000) above and below each Kullback-Leibler estimate are included.

Points missing from each plot are above the visible range.
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6.4 Optimality of ROC curve using the true mixing distribution

Established here is that the ROC curve using posterior probabilities calculated with the
true distribution of ω across sites is optimal in the sense that for any x-axis value, its y-axis
value is always the largest attainable. The result is a consequence of the Neyman-Pearson
Lemma (Neyman and Pearson, 1933) which was used to establish optimality of likelihood
ratio tests in the case of simple null and alternative hypotheses where all parameters of the
model are known.

For a given site, let φ(X,W ) denote a test for positive selection at that site. Specifically,
φ(X,W ) = 1 when the test finds in favour of positive selection and is 0 otherwise. It depends
on X, which represents the data at the site and possibly on random W, independent of the
data at the site; for all tests considered in the paper, W is data from all other sites. For
instance, the test, φ1(X), using posterior probabilities calculated with the true distribution

of ω, uses only the data at the site and sets φ
(k)
1 (X) = 1 if P (ω > 1|X) > k for threshold k.

In obtaining the ROC curve, each choice of k gives a different false positive rate (the x-axis
value). The true positive rate for a given k is the corresponding y-value. Since

P (ω > 1|X) > k ⇐⇒ p(X|ω > 1)P (ω > 1)

p(X|ω > 1)P (ω > 1) + p(X|ω ≤ 1)P (ω ≤ 1)
> k,

a brief argument can be given to show that the test rejects when

p(X|ω > 1)P (ω > 1)/{p(X|ω ≤ 1)P (ω ≤ 1)} > c. (6.1)

where to simplify notation, c = [1/k − 1]−1 > 0 is set. This test is denoted as φ
(c)
1 .

The ROC curve for φ
(c)
1 is optimal if, for any other test, φ

(t)
0 , the y-axis value (true

positive rate) for φ
(c)
1 at least as large as that of φ

(t)
0 whenever the x-axis values (false

positive rates) for the two tests are the same. Much like with codon frequencies, which
can refer to observed or population frequencies, the ROC curve for a test sometimes refers
to the random quantity that varies from data set to data set depending upon the number
of true and false positives for that data set. According to this definition it is impossible

to guarantee that φ
(c)
1 always gives a uniformly better ROC curve. For instance, there is

always some small probability of unusual data sets where the positively selected sites show
only synonymous changes, in which case even poor tests may give better ROC curves. The
population version of an ROC curve refers to the curve with the limiting proportions of false
positives on the x-axis and true positives on the y-axis; values that can be approximated
by averaging over many simulated data sets. It is for the population version of the ROC
curve that the optimality property holds.

The limiting false positive rate of φ
(c)
1 , is the same as φ

(t)
0 , if c and t are chosen so that

P (φ
(c)
1 (X) = 1, ω ≤ 1) = P (φ

(t)
0 (X,W ) = 1, ω ≤ 1). (6.2)

The aim is to show that when (6.2) holds, meaning that the x-axis values of the ROC curve

are the same, the probability of a true positive for φ
(c)
1 (y-axis value) is at least as large as

that of φ
(t)
0 :

P (φ
(c)
1 (X) = 1, ω > 1)− P (φ

(t)
0 (X,W ) = 1, ω > 1) ≥ 0 (6.3)

In using the Neyman-Pearson Lemma, it is convenient to express the true positive proba-
bility as an expectation of an indicator function. For any event, A, P (A) = E[I{A}] where
I{A} is 1 or 0 depending upon whether A is true or not. Since φ

(c)
1 (X)I{ω > 1} = 1 or 0,
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according to whether the event φ
(c)
1 (X) = 1, ω > 1 holds or not, (6.3) can be expressed as

E[φ
(c)
1 (X)I{ω > 1}]− E[φ

(t)
1 (X,W )I{ω > 1}] ≥ 0 (6.4)

As a final simplification, let φ
(∗t)
0 (X) = E[φ

(t)
0 (X,W )|X]. Then

E[φ
(t)
0 (X,W )I{ω > 1}] = E[E[φ

(t)
0 (X,W )I{ω > 1}|X]]

= E[I{ω > 1}E[φ
(t)
0 (X,W )]|X]] = E[I{ω > 1}φ(∗t)

0 (X)].(6.5)

Substituting (6.5) in (6.4), it is obtained that φ
(c)
1 is optimal φ

(t)
0 if

E[φ
(c)
1 (X)I{ω > 1}]− E[φ

(∗t)
0 (X)I{ω > 1}] ≥ 0. (6.6)

whenever (6.2) holds. With this simplification the result follows immediately from the proof
of the Neyman-Pearson Lemma as now shown.

E[φ
(c)
1 (X)I{ω > 1} − φ

(∗t)
0 (X)I{ω > 1}] =

∑︂

x,ω′

{φ(c)
1 (x)− φ

(∗t)
0 (x)}I{ω′ > 1}P (X = x, ω = ω′)

=
∑︂

x

{φ(c)
1 (x)− φ

(∗t)
0 (x)}

∑︂

ω′>1

P (X = x, ω = ω′)

=
∑︂

x

{φ(c)
1 (x)− φ

(∗t)
0 (x)}P (X = x, ω > 1)

=
∑︂

x

{φ(c)
1 (x)− φ

(∗t)
0 (x)}p(x|ω > 1)P (ω > 1). (6.7)

For any x such that the test φ
(c)
0 (x) rejects, by (6.1)

p(x|ω > 1)P (ω > 1) > cp(x|ω ≤ 1)P (ω ≤ 1) (6.8)

Since 0 ≤ φ
(∗t)
0 (x) ≤ 1 and since the test rejects when φ

(c)
1 (x) = 1

{φ(c)
1 (x)− φ

(∗t)
0 (x)} = 1− φ

(∗t)
0 (x) ≥ 0. (6.9)

Combining (6.8)-(6.9) gives that

{φ(c)
1 (x)− φ

(∗t)
0 (x)}p(x|ω > 1)p(ω > 1) ≥ c{φ(c)

1 (x)− φ
(∗t)
0 (x)}p(x|ω ≤ 1)p(ω ≤ 1) (6.10)

Consider now x such that φ
(c)
0 does not reject. Then

p(x|ω > 1)P (ω > 1) ≤ cp(x|ω ≤ 1)P (ω ≤ 1) (6.11)

and since φ
(∗t)
0 (x) ≥ 0 and φ

(c)
1 (x) = 0,

{φ(c)
1 (x)− φ

(∗t)
0 (x)} = −φ

(∗t)
0 (x) ≤ 0. (6.12)

Combining (6.11)-(6.12) gives (6.10). In short, (6.10) is satisfied for all x. Substituting in
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(6.7),

E[φ
(c)
1 (X)I{ω > 1} − φ

(∗t)
0 (X)I{ω > 1}] ≥ c

∑︂

x

{φ(c)
1 (x)− φ

(∗t)
0 (x)}p(x|ω ≤ 1)p(ω ≤ 1)(6.13)

Now

∑︂

x

φ
(c)
1 (x)p(x|ω ≤ 1)p(ω ≤ 1) =

∑︂

x

φ
(c)
1 (x)P (X = x, ω ≤ 1)

=
∑︂

x,ω≤1

φ
(c)
1 (x)p(x, ω)

=
∑︂

x|φ
(c)
1 (x)=1,ω≤1

p(x, ω) = P (φ
(c)
1 (X) = 1, ω ≤ 1)(6.14)

Similarly,
∑︂

x

φ
(∗t)
0 (x)p(x|ω ≤ 1)p(ω ≤ 1) = P (φ

(t)
0 (X) = 1, ω ≤ 1) (6.15)

Substituting (6.14)-(6.15) in (6.13) and using (6.2) gives the desired result that

E[φ
(c)
1 (X)I{ω > 1} − φ

(∗t)
0 (X)I{ω > 1}] ≥ c{P (φ

(c)
1 (X) = 1, ω ≤ 1)− P (φ

(t)
0 (X) = 1, ω ≤ 1)} = 0
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6.5 SBA Supplementary Figures and Tables

Table 6.3: False positive rates for each simulation study after application of the like-
lihood ratio (LR) test. The LR Test column lists the proportion of significant tests.
False positive rates are only included when they differ from the corresponding rates
without the LR Test. All rates under BEB and SBA remained the same with and
without the LR test. Values in parentheses denote the change in the rate after ap-
plying the LR Test. A posterior probability threshold of 0.95 was used for classifying
sites to be under positive selection.

Study Misspecification ω distribution LR Test NEB

M2a M8 M2a M8

1 None 100% 1 0.10 0.09 0.05 (-0.29) 0.04 (-0.31)
2 None 50% 0.5, 50% 1 0.08 0.17
3 None 50% 1 50% 1.5 0.94 0.94 0.33 (-0.02) 0.35 (-0.02)
4 None 45% 0, 45% 1, 10% 5 1.00 1.00

5 Mild 100% 1 0.23 1.00
6 Mild 50% 0.5, 50% 1 0.13 1.00
7 Mild 50% 1, 50% 1.5 0.92 1.00 0.26 (-0.04)
8 Mild 45% 0, 45% 1, 10% 5 1.00 1.00

9 Heavy 100% 1 1.00 0.00
10 Heavy 50% 0.5, 50% 1 0.71 0.74 0.36 (-0.17) 0.38 (-0.12)
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Table 6.4: Analysis of the tax gene. Shown are the estimated total tree lengths (TL),
maximum likelihood parameters (MLEs), -log likelihoods (-lnL), and the range of
site posterior probabilities (Pr) under models M2a and M8 using BEB and SBA to
classify sites. The range of posterior probabilities are shown for three categories of
sites: invariant, single synonymous substitution (SSS), and single nonsynonymous
substitution (SNS).

M2a M8

TL 0.128 0.128
MLEs pω>1 = 1.0, ω>1 = 4.87 pω>1 = 1.0, ω>1 = 4.87
-lnL 892.0 892.0
Invariant Sites (159)

BEB Pr Range 0.552, 0.607 0.689, 0.732
SBA Pr Range 0.543, 0.596 0.761, 0.799

SSS Sites (2)
BEB Pr Range 0.589, 0.590 0.718, 0.719
SBA Pr Range 0.578, 0.579 0.787, 0.787

SNS Sites (21)
BEB Pr Range 0.911, 0.927 0.961, 0.968
SBA Pr Range 0.871, 0.892 0.990, 0.991
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Fig. 6.11: MLE distributions of the pω>1 and ω>1 parameters under M2a and M8.
Histograms are over simulated datasets for which the null hypothesis of no positive
selection was rejected by a likelihood ratio test (10 of 100 under M2a and 9 of 100
under M8). Data were simulated under irregular conditions: 5 taxa, 100% ω = 1.
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Fig. 6.12: MLE distributions of the pω<1, ω<1, and pω=1 parameters under M2a.
Histograms are over 100 simulated and bootstrap datasets with the bootstrap
datasets generated by sampling from one simulated dataset. Data were simulated
under regular and irregular conditions.

regular simulation conditions: 5 taxa, 45% ω=0, 45% ω=0.5, and 10% ω=5
irregular simulation conditions: 5 taxa, 100% ω=1
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Fig. 6.13: Distributions of the pω>1 and ω>1 parameters associated with positive
selection estimated under models M2a and M8. Histograms are over 10,000 bootstrap
datasets drawn from a dataset simulated under difficult conditions (5 taxa, 100%
ω = 1). Under M2a 1000 of the ω>1 values estimated to be biologically unreasonable
were capped at 10.
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Fig. 6.14: MLEs of the pω<1 and pω=1 parameters under model M2a before and
after smoothing using a uniform kernel with different bandwidth parameters. The
parameters were estimated over 100 bootstrap samples under irregular simulation
conditions (5 taxa, 100% sites ω = 1).
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Fig. 6.15: Distributions of the pω>1 and ω>1 parameters associated with positive
selection and estimated under model M2a. Histograms are over 100 simulated datasets
simulated under difficult conditions (100% ω = 1) and using a 30-taxon tree.
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Fig. 6.16: MLE distributions of the pω>1 and ω>1 parameters under models M2a and
M8 for two different simulation scenarios: without model misspecification (Correct
Model, studies 3 and 4) and with mild model misspecification (Mild Misspecification,
studies 7 and 8). The data were simulated using a 5-taxon tree topology. In studies
3 and 7, 50% of the sites were simulated under neutral evolution (ω = 1) and 50% of
the sites under positive selection (ω = 1.5). In studies 4 and 8, 45% of the sites were
simulated under purifying selection (ω = 0), 45% under neutral evolution (ω = 1)
and 10% under positive selection (ω = 5).
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Fig. 6.17: ROC curves for the detection of sites under positive selection for BEB,
NEB, and SBA analyses of data generated under two different simulation scenarios:
without model misspecification (Correct Model, studies 3 and 4) and with mild model
misspecification (Mild Misspecification, studies 7 and 8). Likelihood ratio tests were
performed prior to site-wise analyses. The data were simulated using a 5-taxon tree
topology. In studies 3 and 7, 50% of the sites were simulated under neutral evolution
(ω = 1) and 50% of the sites under positive selection (ω = 1.5). In studies 4 and
8, 45% of the sites were simulated under purifying selection (ω = 0), 45% under
neutral evolution (ω = 1) and 10% under positive selection (ω = 5). Each plot
includes a line for the lower bound (y=x) and an expected upper bound (OPT) when
classification is made using the generating model parameters. The curves for studies 4
and 8 and study 7 under M8 are identical to those without pre-screening because the
null hypotheses of likelihood ratio tests were rejected for all simulated datasets. The
curves for NEB do not always cover the whole range of false positive rates, because
NEB sometimes estimates the ω distribution with all mass on ω > 1. In these cases,
even with a posterior probability cut-off of 1, NEB still incorrectly classifies sites to
be under positive selection.
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Fig. 6.18: Distributions of the pω<1 and ω<1 parameters for the real data under model
M2a. Histograms are over 100 bootstrap datasets.
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Fig. 6.19: Distributions of the pω=1 parameters for the real data under model M2a.
Histograms are over 100 bootstrap datasets.
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Fig. 6.20: Distributions of the pω>1 and ω>1 parameters for the real data under model
M2a. Histograms are over 100 bootstrap datasets.
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Fig. 6.21: Distributions of the pω>1 and ω>1 parameters for the real data under model
M8. Histograms are over 100 bootstrap datasets.
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6.6 SBA Branch-Site Model A - Analysis of NR1D1

SBA for branch-site codon model A (Zhang et al., 2005) was implemented to demon-
strate the feasibility of SBA implementations for new models. The new implementa-
tion, which was completed within a few hours, can be found at
https://github.com/Jehops/codeml sba. The nuclear receptor gene, NR1D1 (Baker
et al., 2016), was analyzed under NEB, BEB, and SBA methods. The branch-site
test of positive selection on the foreground branch leading to the human lineage
was rejected at the 1% level (LRT test statistic: 10.26612, p-value: 0.00135). The
MLEs of the ω-distribution parameters are shown in table 6.5. Because the estimated
weights of the positive selection classes are very small, the estimates of ω > 1 were
unreasonable.

Under both NEB and BEB, the same site had a posterior probably of positive
selection larger than 0.99, whereas the posteriors were well below 0.5 for all other
sites. On the other hand, the mean posterior under SBA for the same site was 0.879.
Plots of the maximum likelihood estimates (MLES) of the ω-distribution parameters
are shown in figure 6.22.
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Table 6.5: Estimates of the ω-distribution parameters for the NR1D1 gene under
branch-site model A.

Site Class 0 1 2a 2b

weight 0.95058 0.04751 0.00183 0.00009
background ω 0.03702 1.00000 0.03702 1.00000
foreground ω 0.03702 1.00000 999.00000 999.00000



126

pω<1

0.80 0.85 0.90 0.95 1.00

pω=1

0.01 0.03 0.05 0.07

pω>1

0.00 0.04 0.08 0.12

pω<1 (smoothed)

0.4 0.5 0.6 0.7 0.8 0.9

pω=1 (smoothed)

0.0 0.1 0.2 0.3 0.4 0.5

pω>1 (smoothed)

0.0 0.1 0.2 0.3 0.4

ω<1

0.025 0.035 0.045 0.055

ω>1

0 200 400 600 800 1000

Fig. 6.22: Branch-site model A ω distribution parameter estimates over bootstrap
samples. A bandwidth parameter of 0.4 was used to smooth the p estimates.



Bibliography

Akaike, H. (1954). An approximation to the density function. Ann I Stat Math,
6(2):127–132.

Allio, R., Nabholz, B., Wanke, S., Chomicki, G., Pérez-Escobar, O. A., Cotton,
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