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Abstract

This thesis investigates the time-invariant and time-varying formation tracking con-
trol strategies for multi-agent systems (MASs). The time-invariant formation tracking
control strategies are studied for multi-robotic systems with general linear agent dy-
namics under sampled-data-based event-triggered communication settings. Unlike
traditional time-triggered communication strategies, event-triggered communication
strategies (event generators) are designed in this thesis to adaptively regulate the
inter-agent communication with the goal to reduce unnecessary communication while
maintaining acceptable system performance. The formation tracking controllers are
then designed based on the event-regulated information so that the formation control
problem can be transformed into a stability analysis problem of the closed-loop for-
mation error dynamics. Sufficient conditions in the form of linear matrix inequalities
(LMIs) that ensure asymptotic convergence of the closed-loop formation error dynam-
ics are derived for systems with an autonomous leader using Lyapunov-based stability
analysis methods, and the event generator and controller gains are co-designed such
that the derived conditions are feasible. Under a similar structure, a new event gen-
erator and a controller are then developed for systems with a non-autonomous leader
to enable more general and practical formation maneuverings. A novel edge-based
event-triggering strategy is further investigated to reduce communication resources
while maintaining comparable system performance. Sufficient conditions that ensure
an exponential convergence of the formation error dynamics are derived, where the
convergence rate is explicitly expressed and can be tuned based on convergence speed
requirements. The developed formation controllers and event generators are validated
in simulations and experiments using a group of mobile robots with linearized dynam-
ics. This thesis also studies the time-varying formation control problem for a group of
quadcopters with experimentally identified dynamics using a two-layer affine forma-
tion control strategy, where a linear affine formation controller is designed based on
the virtual translational dynamics in the formation layer and a finite-time controller

is designed to track the virtual inputs in the local control layer.
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Chapter 1

Introduction

1.1 Research Background

MASs are large-scale systems consisting of multiple intelligent autonomous agents
that can achieve coordinated tasks by interacting with each other through exchanging
information. The word “agent” can represent a mobile robot, an aerial robot, or a
sensor node depending on the control context. MASs can potentially offer higher
efficiency, lower cost and more operational capability than a single agent system in
achieving tasks that are difficult for a single agent to complete such as search and
rescue, border surveillance, payload transportation (as in Fig. 1.1a) and assembly (as

in Fig. 1.1b).

(a) Payload transportation [2] (b) Assembly [3]

Figure 1.1: Applications of MASs

Coordination between the agents is mandatory for the MAS to achieve tasks as a
group. Traditionally, coordinating algorithms in MASs are developed using central-
ized structures where a central computer is responsible for collecting information and
scheduling control tasks for all agents; however, the computation and communication
power required by centralized structures can grow rapidly as the number of agents

increases. Centralized structures are also susceptible to unanticipated failures in the
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network, where whole system fails if there is a failure in the central agent. Recently,
a substantial amount of work has been conducted on developing distributed coordi-
nation control strategies for MASs. In distributed structures, each agent is equipped
with microprocessors, sensors and actuators, which enables it to collect data from
networks, plan its own tasks, and execute control actions.

Consensus and formation control are two fundamental coordination problems in
the study of MASs. A consensus control problem refers to the design of a controller
for each agent only based on the information locally available (locally-computable)
such that the group of agents can reach an agreement on certain quantities of interest
(e.g. position, velocity, and heading). Formation control aims to design distributed
controllers that drive the whole group to achieve and maintain a certain geometric
pattern of interest. If there is a group reference, the formation control design can
generally be classified as a formation tracking design, otherwise it is referred to as a
formation producing design.

Continuous information exchange is often assumed in the conventional consen-
sus and formation control studies in MASs; however, this assumption is unrealistic
in practical applications since all communication networks have a limit on band-
width. One possible strategy is to use a periodic communication mechanism (PCM)
(time-triggered) where inter-agent communication occurs at regular equally-spaced
sampling instants. This strategy can often lead to unnecessary consumption of both
network and computation resources, especially as the system approaches its equilib-
rium and there are no external disturbances. Event-triggered communication mech-
anisms (ECMs) have recently received considerable attention among researchers due
to their potential advantages in saving communication network resources while still
maintaining comparable control performances. The underlying idea in event triggered
broadcasting is to have agents broadcast and update their sampled states only when
necessary. The following sections provide a detailed literature review on formation

control, and event-triggered control (ETC).

1.2 Literature Review on Formation Control

Formation strategies, such as birds migrating in a V-shaped formation to improve

aerodynamic efficiency [4], have been observed in many biological systems. In recent
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years, these formation tactics have also been applied to robotic systems by many
researchers in the control and robotics communities to accomplish various tasks in-

cluding payload transportation [2], object search [5], and forest fire monitoring [6].

Early formation control approaches, such as virtual-structure [7] and behavior-
based [8] have been found to be successful in accomplishing many complicated for-
mation control tasks with complex agent dynamics and constraints. In the virtual-
structure approach, robots are treated as particles in a physical rigid body, and the
geometric relationship (virtual structure) between robots are enforced by human made
control systems. Group motion is enabled when a virtual force field is exerted on the
virtual structure and individual robot will then move in the direction of the force;
however, this approach requires a centralized formulation, and therefore it is difficult
to control the robots in a distributed manner. In a behavior-based formation control
approach, several behaviors are prescribed for each agent, and the final control input
can be determined as a weighted average of the control input from each behavior.
This approach is relatively straightforward to implement, but the convergence of the
whole system is not guaranteed and stability analysis is very challenging. Fig. 1.2
shows an illustrative example of a behavior-based control strategy, where the control
objective for the group of robots is to move from their initial positions to some desired
positions while maintaining the triangular formation. Each robot in the system has
two behaviors: move to the goal, and maintain the formation. The final control input

is then computed as the weighted average of the inputs from these two behaviors.

Trajectory

: ..
Desired formation.”

------------------- O
Final positions
Initial positions

Figure 1.2: An illustrative example of the behavior-based formation control strategy
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Distributed formation controllers that can guarantee the overall system conver-
gence have received increased attention from researchers given the early success of
applying distributed consensus-based control approaches to the formation control of
mobile robots [9,10]. For MASs with simple integrator-type agents, consensus-based
formation controllers can generally be categorized as displacement-based [11,12],
distance-based [13,14], or bearing-based [15,16] in accordance with the constant inter-
agent displacement, distance, or bearing constraints that are employed to establish the
desired group formation. The group formation maneuverability is largely dependent
on the constraints imposed on the system. For example, displacement-based forma-
tion controllers can only be applied to track formations with time-varying translations
since the constant displacement constraint also implicitly imposes constant orienta-
tion and scale constraints on the group formation. In comparison, distance-based
controllers are applicable to tasks where both time-varying translations and orienta-
tions are desired, but not applicable to tasks that require time-varying scales, while
bearing-based controller can be applied to track formations with time-varying trans-
lations and scales, but not with time-varying orientations. Table 1.1 summarizes the
constant constraints imposed on the group formation along with the common tools
used to develop the control algorithm among these three types of formation con-
trollers. Modifications of these controllers have been carried out to overcome some
of the limitations induced by the constant formation constraints in the literature.
For instance, |17| incorporated a formation scaling factor for the formation size in a
displacement-based setup. The scaling factor is only known to a subset of the agents
(leaders), and can be estimated by the remaining agents though a formation-scale
estimation mechanism. In the distance-based control scheme, [18] demonstrated that
it is possible to achieve a resized formation by only changing the desired distance
of the leader edge. Nevertheless, additional sensing or communication abilities are
often required in order to apply these modifications, and the resultant controller or

estimator is usually complicated.

Recently, new time-varying formation controllers have been developed in the lit-
erature based on various constraints such as barycentric coordinates [19]|, complex

Laplacians [20], graphical Laplacians [21]|, and stress matrices [22] that define the
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Table 1.1: Constraints and tools among displacement-, distance-, and bearing-based
formation controllers (p; and p; denote the position vectors of two neighboring agents)

Formation Controllers | Constant Constraint | Theoretical Tools

Displacement-based Di — Dj Connected graphs
Distance-based lpi — ;| Rigid graphs
Bearing-based Hi ’f:Z L Bearing Laplacians

i —Pj

target formations. Among these new formation controllers, affine formation con-
troller |23], which is based on constant stress matrices, is a promising method to
solve general time-varying formation control problems. In an affine formation control
design, the group target formation is defined as an affine transformation (translation,
rotation, scaling, shear, or combinations of them) of the nominal formation, and the
controllers are designed based on the property that the stress matrices (determined
from nominal configuration and underlying communication structure) are invariant
to affine transformations. In addition, leader-follower strategies are often adopted in
affine formation control design, and the followers’ desired positions can be uniquely

determined from the leaders’ position if the leaders are properly chosen.

Formation control problems for MASs with general linear dynamic agents have also
been investigated in the literature. The time-invariant formation producing problem
(leaderless) for MASs with linear agents was initially studied in [24] using the Nyquist
stability criterion. The more general time-varying formation producing problem was
investigated in [25-28] under various settings. A distributed time-delayed formation
controller was designed in [25] considering the existence of constant delays in the com-
munication channels. The authors in [26] developed sub-formation controllers based
on the solutions from algebraic Riccati equations for general linear MASs that can
be partitioned into sub-groups. Sufficient and necessary formation feasibility condi-
tions along with a time-varying formation protocol were presented in [27] for MASs
under switching directed communication topologies. Fully distributed time-varying
formation controllers were studied using adaptive gain scheduling techniques in [28] for
MASs with directed and undirected communication topologies. Apart from formation
producing problems, the formation tracking problems (leader-follower) where the en-

tire group is expected to track certain reference trajectories have also been researched.
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The authors in [29] studied robust time-varying formation tracking control for a gen-
eral homogeneous linear MAS in the presence of parameters uncertainties and external
disturbances. In particular, controllers were designed such that the closed-loop sys-
tem is asymptotically stable and the control gains were adaptively adjusted using the
o-modification method to avoid potential unbounded gains. This research was later
extended to robust output formation tracking control of heterogeneous linear MASs
in [30]. It should be noted that the group formation in [25-30] are defined based on
some prespecified time-based formation vectors. Defining time-varying group target
formations that can dynamically adapt to changes in the environment for high-order

linear MASs is still an open research problem.

1.3 Literature Review on ETC

Different from the traditional time-triggered control (TTC) scheme where sampling
and control updates are executed at a fixed period, ETC schemes provide an adaptive
way of determining when to sample the system and when to update the control input.
This process is usually governed by some pre-designed triggering conditions that de-
pend on system states and performance levels, which are continuously monitored or
periodically checked. Although ETC strategies have been historically presented under
different names (adaptive sampling, minimum attention control), it is only over the
past decade that they have gained their popularity especially in the MAS communi-
ties. This section mainly reviews E'TC strategies in the context of consensus control
of MASs.

1.3.1 ETC Consensus Control

The research in ETC consensus control can generally be categorized based on: agent
dynamics, interaction topology, trigger response, event detection, and trigger depen-
dence [31]. ETC was initially studied for single-integrator MASs with asymptotic
convergence speed in |32], and a finite-time consensus controller was proposed in [33]
using nonlinear ETC strategies. A less conservative triggering function (allowing for
larger inter-event time) was proposed in [34] using an integral based Lyapunov ap-
proach. The authors in [35] soon extended ETC strategies to double-integrator MASs

using a time-dependent triggering function. In addition, the method proposed in [35]
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also eliminates the requirements of continuous state information as in [32-34]. To ex-
pand the applications and to include more realistic physical system dynamics, ETC
strategies have been developed for general linear MASs with [36] or without [37-39]
external disturbances, and MASs with Euler-Lagrange agents [40]. In general, devel-
oping ETC strategies for nonlinear MASs is very challenging and only a few results
are available in the literature. Interaction topologies between agents play important
roles in the consensus control of MASs. It is acknowledged that the consensus design
for MASs under directed topologies is generally harder than that for MASs under
undirected topologies. Early works [32-34, 41| of ETC consensus control were pri-
marily conducted for MASs under undirected topologies. The authors in [42] studied
the ETC average consensus problem under a weight-balanced directed communica-
tion topology. Results of ETC under more general directed topologies were presented
in [43]. In addition to fixed-topologies, some preliminary studies on ETC design for

MASs with time-varying topolgies were published in [44,45].

Trigger response, event detection, and trigger dependence are related to the event
generator design and the assumptions placed on the agents’ communication/compu-
tation abilities. Trigger response refers to what action will be triggered if an event
is detected. There are generally three different communication actions: information
push [32-36,38,40], information pull [46,47|, and information exchange [48,49]. In the
information push scheme, an agent broadcasts its state information to neighboring
agents and it is assumed that all neighbors can successfully receive the broadcasted
information. This communication action is the most common trigger response in
ETC studies. The information pull scheme is closely related to the self-triggered
formulation [46] where an agent determines its next triggering instant based only on
information currently available, and the agent sends a request to its neighbors for
new information when a trigger is activated. The information exchange scheme is
often assumed in edge-based ETC design, where triggering functions are designed for
the communication links and agents connected by a link exchange/swap information
when the link triggering condition is violated. Trigger detection refers to how the trig-
gering function evaluations (events) are monitored. Most of the early studies in ETC
design assumed that the triggering function can be monitored continuously, which

is not practical from an implementation point of view. To eliminate the constraint
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of continuous monitoring in hardware implementation, periodic monitoring schemes,
where triggering functions are periodically checked, have been developed in [50, 51]
by using sampled-data system formulations, or artificially forcing a minimum posi-
tive inter-event time. Aperiodic monitoring methods have also been proposed recently
in [52] to alleviate the requirement of synchronization from periodic monitoring meth-
ods. Trigger dependence refers to how a triggering function is designed and what
information is required. In general, triggering functions can be static or dynamic.
The static triggering functions can further be classified as state-dependent [32,34| or
time-dependent [35,36,48|. Dynamic triggering functions [53,54| depend on internal
dynamic variables with their own dynamics that can be designed separately to satisfy
certain design requirements.

Alternatively, research in ETC of MASs may be classified into four types of
schemes [55]: event-based sampling [32]|, model-based [37], sampled-data-based [50],
and self-triggered [46]. In event-based sampling schemes, systems sample the current
measurement only when pre-designed events are triggered. The main drawback of this
scheme is that continuous monitoring of events is usually required. Furthermore, this
scheme cannot be generalized for agents with time-varying equilibrium trajectories. In
model-based schemes, state estimators are designed using model knowledge, and the
estimated states are used instead of the true states in the triggering evaluation. This
scheme can eliminate the requirements of continuous monitoring; however, the main
disadvantage is that an explicit and accurate system model (e.g. system matrix A in
linear systems) must be known a priori. The sampled-data-based scheme is similar
to the periodic event detection method, and the main drawback is the requirement of
sampling synchronization across all agents. The self-triggered scheme overlaps with
the information pull scheme classified by trigger response. The main disadvantage is

that the self-triggered rule design is very complex and is usually system specific.

1.3.2 Zeno Behavior and Zeno-free Approaches

ETC systems are special types of switching systems where they are discontinuous at
triggering instants and continuous otherwise. As byproducts of switching systems,
Zeno behaviors where infinite switches (jumps/triggers) take place in a finite time

interval can also occur in ETC systems. In other words, Zeno behavior can cause an
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accumulation point (deadlock) in the system. Therefore, it is of utmost importance
to theoretically rule out Zeno behaviors for a valid ETC design. Tt should be noted
that simply enforcing positive inter-event time (¢,,1 — ¢ > 0) does not necessarily
exclude Zeno behaviors. In addition, ruling out Zeno behavior does not guarantee a
minimum inter-event time (MIET) (tg11—tx > ¢, Vk € 250, where ¢ is a small positive
constant value). Nevertheless, a positive MIET is required for an ETC algorithm to
be fully implementable since all devices have a limit on operating frequency. To

clearly demonstrate these concepts, consider the following examples [31]:

Example 1.1. Consider a sequence of triggering instants defined by

k
1
t]gzzi—Q, kGZZO

i=1
It is clear that tyy 1 —t — 0 as k — oo. Further analysis reveals that the sequence

{tx} actually has an accumulation point (Zeno behavior occurs) as ty, — %2 as k — oo.

Example 1.2. Consider a sequence of triggering instants defined by

k
1
tk:Z;, keZZO

=1

It can be observed that Zeno behavior does not occur since t, — oo as k — oo, and

there does not exist a positive MIET because of tyy1 —t, — 0 as k — oo.

Example 1.3. Consider a sequence of triggering instants defined by

k
1
tk:Z;‘i‘Ck', kEZEO,

i=1
where ¢ is a small positive constant. It can be observed that the inter-event time is
lower bounded as ti 1 — ty > c. Therefore, this triggering sequence has a positive

MIET and the Zeno behavior is naturally excluded.

Zeno-free methods have been developed in the literature. The first method involves
modifying the triggering function f(¢) by adding a strictly positive time-dependent

continuous function h(t) (e.g. an exponential decay function) [35,56]. Then the Zeno
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behavior can be excluded by showing that the inter-event time is lower bounded by a
positive function dependent on h(t); however, this method does not generate a MIET.
Similarly, a strictly constant ¢ can be integrated in the triggering function design [57,
58]. There usually exists a MIET by using this method, but the system performance
is deteriorated since the system can only achieve consensus with bounded error that
is dependent of the value of c¢. These two methods are often used together in the
literature [59]. Another method uses a time-regulated trigger condition [46,60]. The
next triggering instant ¢y, is defined as tx41 = t, +max{d, 7}, where t; is the latest
triggering instant, d is a positive constant, and 7, is generated from a regular triggering
function. This method simply enforces a MIET of d between two consecutive events
and therefore rules out Zeno behavior when the inter-event time computed from the
regular triggering function is less than d. Notwithstanding this straightforward idea to
exclude Zeno behavior, determination of d that ensures overall system convergence is
very challenging especially for MASs with complex agent dynamics or communication
topologies. Theories from hybrid systems [61| have also been adopted in [54,62] to
study Zeno-free controllers. In particular, the ETC system is reformulated as a hybrid
system and the triggering function is designed based on an internal dynamic variable.
The asymptotic system convergence can be proved using the invariance principle for
hybrid systems, and this method guarantees a MIET. Nevertheless, this method is
mainly developed for average consensus of single-integrator MASs and whether it can
be extended to MASs with more complex agent dynamics still remains as an open
problem. The last method uses a sampled-data-based scheme [50,63|, where triggering
functions are only evaluated at each sampling instant. A positive MIET is inherently
guaranteed as the sampling period, thus the Zeno behavior is completely ruled out.
This method inherits the drawbacks from sampled-data systems. For example, some

useful information may be ignored when a large sampling interval is used.

1.4 Thesis Objectives

Based on the literature review, it should be noted that the ETC formation control
problem is still new and few results are available in the literature. The event-triggered
formation producing problem for general linear MASs has been investigated in [64].

Although the event-triggered consensus tracking problem — which is closely related to
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the formation tracking problem — has been studied in [65] and [66], the ETC formation
tracking problem has not yet been addressed in the literature.

Therefore, the objectives of this thesis are mainly to achieve the time-invariant
formation tracking of general linear MASs (which includes the popular single- and
double-integrator type agents in formation control studies) with an autonomous and a
non-autonomous leader using sampled-data-based ETC strategies applied to wheeled
mobile robots. In addition, this thesis also conducts some preliminary affine formation

control studies applied to a multi-quadcopter system.

1.5 Thesis Outline and Contributions

This chapter provided a general literature review of the research topics in this thesis
along with the thesis objectives. Chapter 2 presents the background theories needed
throughout this thesis, along with the research problems studied in this thesis, while
Chapter 3 introduces the hardware and software used for conducting experiments in
this thesis. Chapter 4 studies ETC formation tracking control for general linear MASs
with an autonomous leader. Chapter 5 extends the work from Chapter 4 and studies
the ETC formation tracking control for general linear MASs with a non-autonomous
leader. Chapter 6 studies the same ETC formation tracking control problem as in
Chapter 5 using an edge-based triggering strategy. Chapter 7 studies affine formation
control strategies for a multi-quadcopter system, while Chapter 8 summarizes the
main results of this thesis and suggests areas for future research.

The main contributions of this thesis are summarized as follows:

1. While conventional formation controllers [25-30] assume continuous data com-
munication, this thesis studies the formation tracking problem using sample-
data-based ETC strategies. As a result, the network communication load is

significantly reduced.

2. The developed triggering condition and formation protocols use combined mea-
surement of all neighbors’ states as opposed to a specific neighbor’s information
(as used by [59,65]) when the agent does not have direct access to the leader’s
information. Consequently, the formulated sufficient conditions for the con-

troller and event generator design can be equivalently decomposed into a set
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of low-dimensional conditions, thereby greatly reducing the complexity of the

computations.

3. The dynamic non-autonomous leader is taken into consideration when designing
the formation protocols in Chapter 5. As a result, the proposed method can

accomplish more general and practical leader-follower group formations.

4. A new estimate-error-based triggering condition is developed to effectively re-
duce the unnecessary communication events that often occur when using a state-
error-based triggering condition [64]. A new closed-loop state estimator along
with a new tracking controller are proposed to cope with the introduction of a
non-autonomous leader in Chapter 5. New sufficient feasibility conditions based

on the proposed controller that ensure an asymptotic convergence are derived.

5. A novel edge-based ETC strategy, as opposed to the conventional node-based
approaches, is proposed in Chapter 6 to reduce the consumption of communi-
cation resources while maintaining comparable performance. New controllers
and event generators that are based on the edge-triggered states are proposed.
Sufficient conditions that guarantee both asymptotic and exponential conver-
gences are derived. In addition, the exponential convergence speed is explicitly

formulated in the derived sufficient conditions.

6. For the first time, this thesis applies the affine formation control strategies to
study the time-varying formation control problem for a group of quadcopter
agents. A two-layer (affine formation layer and local control layer) affine forma-
tion control design scheme given by the underactuated nature of quadcopters is
proposed in Chapter 7. The affine formation control tasks can then be achieved

by properly designing the controller gains in both layers.

Note that the author’s publications are listed in Appendix A, where jounal papers

1-4 and conference papers 1-3 are related to this thesis.



Chapter 2
Preliminary Theory and Problem Formulation

In this Chapter, preliminary theories used in the thesis are introduced. The problem
formulations on event-triggered formation control and affine formation control needed

for Chapter 3 to Chapter 7 are presented with the MAS formulation.

2.1 Graph Theory

Directed or undirected graphs are naturally adopted to model the information ex-
change between interacting agents in MASs. A directed graph (digraph) is usually
denoted by G(V, &) where V = 1,--- | N denotes the node set which symbolizes the
agents, and & C {(i,7) : 1,7 € V,j # i} represents the edge set which symbolizes
the available communication channels. The edges in digraphs are unidirectional such
that an edge (j,7) € & indicates that agent ¢ (child node) can receive information
from agent j (parent node) but not necessarily vice versa. In addition, the node j is
called a neighbor of node i and N; = {j € V| (j,i) € £} denotes the neighboring set
of node 7. In contrast to digraphs, edges in undirected graphs are bidirectional, i.e.
(1,7) € € implies (j,i) € £. Thus an undirected graph can be viewed as a special case
of directed graphs. A directed path from nodes i; to ; is a sequence of ordered edges
of the form (i;,4;41), l = 1,--- ,k — 1. A digraph has a directed spanning tree if it
contains at least one node called the root which has no parent node and has directed

paths from that node to every other node [10].

2.1.1 Laplacian Matrix

The adjacency matrix A = [a;;] of a graph is defined such that a;; is a positive weight
if (7,4) € € and a;; = 0 otherwise. Note that a; = 0 since a self-edge is not allowed.
Throughout this thesis, we assign a,; = 1if (j,7) € £. The associated in-degree matrix
D is a diagonal matrix with its diagonal entry given by d;; = Zjvzl a;j,1=1,---,N.
The Laplacian matrix of the graph G is then defined as £ = D — A, which is always

13
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symmetric for an undirected graph. Leader-follower-type communication topologies
are adopted throughout this thesis and the following assumption holds if not explicitly

stated hereafter. Example 2.1 shows the Laplacian matrix for an undirected topology.

Assumption 2.1. The leader agent has a directed path to all follower agents but does
not receive information from any of them. In addition, the communication among

follower agents are assumed to be bidirectional.

It follows that the Lapalacian matrix £ for a leader-follower-type topology with

one leader (agent 0) and N followers (agent 1,---, N) has the following form
. 010
;- 1xN (21)

where the element d; in d is 1 if agent ¢ can receive information from the leader and
d; is 0 otherwise. Moreover, L;; = L + diag{d;,--- ,dn}, where L characterizes the

communication among follower agents.

Lemma 2.1. [67| For a leader-follower-type communication topology under Assump-
tion 2.1, Ly is positive definite.

2.1.2 Oriented Incidence Matrix

Incidence matrices are often used to encode the relation between edges and node-
node pairs in graph theory. The oriented incidence matrix of a directed graph is

denoted as I, € RM™*N, where M and N are the numbers of available edges and

nodes, respectively. An incidence matrix can then be defined such that I;,.[ij] = 1
if node j is the head of edge i, L, [ij] = —1 if node j is the tail of edge i, and
Lnc[ij] = 0 if edge i and node j are not incident. In addition, the head incidence

matrix Iy € RM*¥ is defined such that Ip[ij] = 1 if node j is a head of edge i and
Iy[ij] = 0 otherwise. The tail incidence matrix Iy € RM*" is defined in the same
manner. Clearly, I;,,. = Ig—1I7. Moreover, it can be verified that the Laplacian matrix

L for a bi-directional communication topology can be expressed as 317 I, [68].

Example 2.1. For the bidirectional communication topology shown in Fig. 2.1, the

head incidence matriz, tail incidence matriz, and orientated incidence matriz are
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Figure 2.1: A bi-directional communication topology with three agents as an example

given as
(1.0 0 (0 1 0] [ 1
1 00 001 1
010 100 -1
IH = ) IT = ) Iinc =
010 0 01 0
0 01 1 00 —1
0 0 1] [0 1 0] | 0
In addition, the Laplacian matriz can be obtained as
2 -1 -1
1
-1 -1 2

2.1.3 Stress Matrix

The stress matrix € for an undirected graph G(V, £) is defined such that Q;; = —w;; if
i #3,(1,5) € E, Qi = D e, Wij, and €2 = 0 otherwise. From a mechanical system

perspective, w;; > 0 can be interpreted as an attracting force between node 7 and

node j, whereas w;; < 0 represents a repelling force. Different from the Laplacian

matrix where the weight on an edge is usually positive or zero, the weight (stress)

can be positive, negative, or zero in a stress matrix. A stress matrix is in equilibrium

T
for a configuration P = [pf, fe ,p%] if > cn, wij(p; —pi) =0, €V [69]. The key



16

property of a stress matrix is that it is invariant to any affine transformation (such

as rotation, scaling and shearing) of the nominal formation configuration.

Example 2.2. Fig. 2.2 shows a graph with configuration

o[ e[

and an equilibrium stress matrix

In addition, the stress matrix for a formation with multiple leaders and multiple

followers can be partitioned as

(2.2)

—
Attraction

—p

Repulsion

Figure 2.2: An illustrative example of a stress matrix with four agents in the unit
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Definition 2.1. [69,70] Two formations (G, P), (G, P') in R? are equivalent if
I = pill = llp; = pyll for all (i, j) € E, and congruent if [|p; — p;|| = ||p; — p;ll for all
i,7 € V. The formation (G, P) is globally rigid if its equivalent formations are also
congruent to it. The formation (G, P) is universally rigid if it is globally rigid in any
R where d; > d.

Definition 2.2. A set of points p1,--- ,pn in RY affinely span RY if their affine span
defined by

S = {zn:aipi :Va; € R and Zn:ai = 1}
i=1 i=1

has a dimension of d.

Assumption 2.2. For a nominal formation (G,r), we assume the communication
graph G is universally rigid and the leader configuration set {r;}icy, (V; denotes the
leader node set) in R% affinely span R

Lemma 2.2. [23| For a multi-leader-multi-follower formation (G, r) under Assump-

tion 2.2, Qs in (2.2) is positive definite.

2.2 Matrix Theory

This section introduces matrix notations and properties commonly used throughout

this thesis.

2.2.1 Kronecker Product

For A € R™*" B € RP*Y, the kronecker product of A and B, A® B, is a mp X nq

matrix defined as

an B apB -+ a1, B

anB axB - a9, B
A®B— 2.1 2? 2'

amlB &mgB amnB
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The Kronecker product satisfies the following rules of calculation [71]:

(kA)® B=A® (kB) = k(A® B)
(A+B)@C=AC+BaC
A9 (B®C)=(A®B)®C
(A® B)(C® D) = (AC) ® (BD)
(A® B)T = AT @ BT
(A B '=A"1'® B,

where k is a constant and the last property holds if and only if both A and B are
invertible. In addition, the eigenvalues of A ® B can be fully characterized as A\;u;,

where )\; denotes an eigenvalue of A and p; is an eigenvalue of B.

2.2.2 Useful Matrix Inequality and Property

Lemma 2.3. For a full column rank matric B € R"™™, there exists a non-singular

- _ 1T ~ _
matriz Y = [BT BT} € R™™ such that BB = 1,,, and BB = 0(;—m)xm-

Proof. Since B has full column rank, there exists an elemental matrix E such that

T . .
EB = [Iﬁ or } . We can choose B as [Im Omx(n_m)] E to get BB = 1,,,

(n—m)xm

and choose B as [Omx(n_m) L) x (n—m)

} FE to get BB = On—m)xm- The matrix ¥

can then be written as

Im Om n—m
Y = =) g
O(n—m)xm Infm
Since F is non-singular, we can conclude that Y is non-singular. O]

Lemma 2.4 (Schur Complement Lemma). [72| Consider a symmetric block matriz

A B
BT D

M =

if D < 0, then the Schur complement of M given by A — BD™1BT is negative semi-
definite if and only of M < 0.
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Lemma 2.5. For matrices A > 0 and B > 0, the matriz inequality p? AT BA —2pA +

B~1 > 0 holds for any positive constant p.

Proof. The positive semi-definiteness comes from the fact the term p? AT BA —2pA +
B! can be written as (pBzA — B~2)T(pBz A — B3). O

Lemma 2.6 (Generalized Quadratic Inequality). For arbitrary matrices A, B, and a

positive definite matriz F' with compatible dimensions, the matriz inequality AT F B +

BTFA < pATFA + p~'BTFB holds for any positive constant p.

Proof. This Lemma can be proved by showing (\/pA—+/p~'B)'F(\/pA—+/p~'B) >
0. [

2.3 Problem Formulation

Two formation control problems have been studied in the thesis with simulation and

experimental results.

2.3.1 Event-Triggered Formation Control

We consider a MAS consisting of N homogeneous linearized mobile-follower-robot

agents with dynamics given by

and an autonomous leader

5(0 = AXO, (24)

or a non-autonomous leader

5(0 = AXO + BUQ, (25)

where x; € R" is the state of follower 7, xy € R™ denotes the leader’s states, u; € R™
represents the followers’ control inputs to be designed, and ug is leader’s control
input. A, B are known system and control matrices with compatible dimensions. In

addition, B is assumed to have full rank.
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Definition 2.3. The formation control problem for a leader-follower MAS is solved
asymptotically if the formation error vectors n; = x; — f; — Xq satisfy the following

condition:

lim g =0, i =1, ,N. (2.6)

The formation control problem is solved with bounded error if
i | < =1 .
i [l;f| <o, i=1,--- N, (2.7)

where o 1s a small positive tunable parameter, and f; is a pre-designed formation
vector that characterizes the desired relative position of agent © with respect to the

leader.

Remark 2.1. In the special case that f; = 0 for all i € V, the formation tracking

control problem can be reduced to a leader-follower consensus tracking problem.

The formation control problem is studied in this thesis under a sampled-data
environment. While the individual agents’ control system is sampled at a periodic rate
(having regular equally-spaced sampling instants), the inter-agent communication is
governed by some pre-designed triggering conditions, which are evaluated at each
sampling instant. In other words, an agent broadcasts its sampled states to neighbors
only when certain conditions are satisfied. The event-triggered formation control

problems studied in this thesis can be summarized as follows:

Research Problem 2.1. Develop distributed controllers as well as locally-computable
event-triggering communication mechanisms such that the formation control problem
for the MAS (2.3)-(2.4) with a communication topology satisfying Assumption 2.1

can be achieved.

Research Problem 2.2. Under the same conditions as in Research Problem 2.1,
develop controllers and event-triggering mechanisms for the MAS with followers (2.3)

and a non-autonomous leader (2.5).

Remark 2.2. Note that event-triggered formation controllers in this thesis are de-
signed for linear follower agents. The developed method can also be implemented to

systems where the agents dynamics are nonlinear through linearization.
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2.3.2 Affine Formation Control

Definition 2.4. (23] The target formation of the nominal formation (G,r) in R?
can be defined as

P (t)
p}(t)

where A(t) € R™?, b(t) € R and v = [r],77]" (the subscript | denotes leader set

", @), (2.8)

] = [L, @ A(t)]

Ty

and f denotes follower set) is the nominal configuration. p* = [pZ‘T,p’}T]T represents

a time-varying affine transformation of the nominal formation.

The affine formation control objective is then to design controllers for a formation
(G,p) such that p(t) — p*(t), as t — oo. Since the leader set is usually small
and may be directly controlled by human operators or other high-level intelligent
controllers, we assume p;(t) = p;(t) can be realized at all times. Therefore, the affine
formation control objective becomes to design controllers for follower agents such that
ps(t) — p}(t), as t — oo. Note that the desired follower target configuration p}(t)
for a nominal formation under Assumption 2.2 can be uniquely determined from the

leader configuration pj () as

pi(t) = =1 Qppy (1), (2.9)

where fo = fo ®Id and Qfl = Qﬂ ®Id

Definition 2.5. The affine formation control problem for a multi-leader-multi-follower

MAS is achieved if the affine formation error vector
Sp(t) = pr(t) + Qi (1), (2.10)

satisfies limy_, ||9,(t)|| = 0.

The objective of the affine formation control problems studied in this thesis can

be summarized as follows.

Research Problem 2.3. Design controllers such that the affine formation control
problem for a multi-quadcopter system satisfying the conditions in Assumption 2.2

can be achieved.



Chapter 3

Experimental Hardware and Software

This Chapter introduces the hardware and software used for conducting the experi-

ments in this thesis.

3.1 Pioneer Mobile Robots

Two Pioneer P3-DX! robots and one Pioneer P3-AT? robot from the Advanced Con-
trol and Mechatronics Lab (ACM Lab) at Dalhousie University are used in experi-
ments described in Chapters 4 to 6. The P3-DX shown in Fig. 3.1a is a two-wheel
two-motor differential drive robot (with a caster), and it can reach a maximum linear
speed of 1.2 m/s and a maximum angular speed of 300 deg /s. In addition, it has a
maximum payload of 17 kg. The Pioneer P3-AT shown in Fig. 3.1b is a four-wheel
four-motor skid-steer robot. It can reach a maximum linear speed of 0.7 m/s and a
maximum angular speed of 140 deg /s and has a maximum payload of 12 kg. Both
robots have onboard micro-controllers that can communicate with external computers
through serial ports. Moreover, these robots come with a software development kit
which include a set of software applications. ARIA? is a core open-source software
that provides a platform for controlling and receiving data from all Pioneer robots.
MobileSim? is the native simulation environment that enables simulating multiple

Pioneer robots simultaneously.

'https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf

’https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf

Shttps://www.eecs.yorku.ca/course_archive/2009-10/W/4421/doc/pioneer/aria/main.
html

‘http://vigir.missouri.edu/~gdesouza/Research/MobileRobotics/Software/MobileSim/
README.html

22
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(a) Pioneer P3-DX (0.46 x 0.38 x 0.24 (b) Pioneer P3-AT(0.51 x 0.50 x 0.28
in meters) in meters)

Figure 3.1: Pioneer P3-DX and P3-AT robots

The kinematic model of a Pioneer robot can be given as

& = vcos(f)
y = vsin(0) (3.1)

0 =w,

where z, y represent the position in X and Y-directions, # denotes the robot orien-
tation, and v, w are the linear and angular velocity inputs, respectively. Note that
(3.1) is an under-actuated non-holonomic system and there exists no smooth static
stabilizing controllers at a point [73|. To simplify the networked formation controller
design in MASs, we linearize (3.1) around a hand position P, = [P,m Phy]T that is
d m away from the robot centroid as shown in Fig. 3.2. The hand position can then
be expressed as

Pp, =z + dcos(0)

Py, =y +dsin(h),

and their time derivatives are given as

_ [cos(&) —dsin(@)] [v] . (3.2)
sin(f) dcos(f) | |w

P hx
Py,
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a

(Prx) Pry)

v S/

> X

Figure 3.2: Hand position of a differential drive Pioneer robot

By designing

[v] _ [ cos(f) sin(0) ] [%]
w —<sin(0) 5cos(0)] |u, ’

(3.2) becomes the following linear system
Ug
— " (33)
Uy

which can be generalized by the linear state-space equation x = Ax + Bu with

00 10
B =

0 0 0 1

Remark 3.1. The kinematic model of the hand position is holonomic (can move in all

P hx
P,

Ph;r

X =

Py,

directions). Formation controllers will be developed based on the hand position model
(3.3) in this thesis. It is possible to design formation controllers based on the robot
centroid by choosing small d; however, there may exist a singularity in computing the

actual inputs if the hand position is infinitely close to the centroid.
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3.2 Crazyflie Aerial Robot

The Crazyflie® aerial robot is used for the simulation work carried out in Chapter 7.
As shwon in Fig. 3.5, Crazyflie is an open-source (both hardware and software) nano-
quadcopter platform that can be integrated into third-party software such as Matlab®
and Robot Operating System (ROS). It has a battery life around seven minutes at
a weight of 27 grams. Its small size makes it suitable for indoor flight and dense
formations. It has high survivability in crashes and poses little risk for humans
because of its miniature size; the author had several crashes from a height of 2 m to
a concrete floor with only damage to the replaceable propellers and motor mounts.
In addition, it has a 10 degree-of-freedom (DOF) inertial measurement unit (IMU)
and contains a 32-bit, 168-MHz ARM microcontroller with floating-point unit that
is capable of performing significant computations onboard. Communication between
the Crazyflie client in Fig. 3.3a and Crazyflie is enabled through a 2.4 GHz USB
radio in Fig. 3.3b that transmits up to 2 Mb/s in 32-byte packets. Moreover, reliable
communication can be established by properly adjusting the communication channel
and data rate using the Crazyflie client. Table 3.1 summarizes the main technical

specifications of Crazyflie, and the hardware architecture is shown in Fig. 3.4.

Not connected = o x
File Connect Inputdevice Settings View Help
| I sty [ Junkauare [

| Select an interface
TR <] [ Auo Reconnect
Flight Control  Console  LED  logBlocks  LogTOC  Parameters  Plotter  Loco Posttioning
Basic Flight Control Flight Data
Flight mode Normal

Assist mode

Rol Trim [o-00 =
Pitch Trim (000 2
Ci

Advanced Flight Control

Max angle/rate [30 =
Max Yaw angle/rate [200 2]
Max thrust (%) |s0.00 =
Min thrust (%) [25.00 =
SlewLimit (%) [45.00 gl

Thrust lowering ﬁ‘ Target Actual Thrust M1 M2 M3 M4
slevirate (%/sec) 2 = Thrust [0.00 %

Expansion boards

Fitch  [1.20
Roll  [1.03
LED-ring effect Yaw  [0.00

Height

LED-ring headlight
—
.

Using Normal mux with XInput Controller #1 (xbox360_mode1)

(a) Crazyflie client 6 (b) Crazyradio PA

Figure 3.3: Communication devices of Crazyflie

Shttps://www.bitcraze.io/products/old-products/crazyflie-2-0/
Shttps://www.bitcraze.io/2018/03/crazyflie-clients/
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Table 3.1: Technical specifications of Crazyflie

STM32F405 | main microcontroller, used for state-estimation, control, and handling extensions
nRF51822 radio and power management microcontroller
MPU9250 9-axis inertial measurement unit
LPS25H pressure sensor
USB charging and wired communication

T - 3-axis accelerometer
- 3-axis gyro
RF power - 3-axis magnetomer

Always ON power domain Power switched by nRF51 (VCC)

10DOF IMU

amplifier - Pressure sensor
I L
Push PWM
button }UART Motor driver
12C
i SPI/I12C/GPIO/PWM
y WKUP/OW/GPIO
+5V Power supplies ; , EEPROM
and battery charger Charge/NBAT/VCC Expansion port

USB Data
HUSB port —— Jcru3;

Figure 3.4: Crazyflie architecture [1]

A Crazyflie with the coordinate system defined in Fig. 3.5 can be modeled using

Newton-Euler equations [74] or Euler-Lagrange equations [75]. An ideal Newton-

Euler model without considering external disturbances and gyroscopic forces is then

given as

E 0 CySoCly + 545,
il =-g0 +% SypSeCy — CySy | (3.4a)
1 CoCy
Iyyl;fzzqr-l- %
= | Loy + 2o | (3.4b)
A e

where x,y,z are the linear positions defined in the inertial frame and ¢, 6,1 are
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the roll, pitch, and yaw Euler angles defined using the current-frame Yaw-Pitch-Roll
convention [76]. States p, q,r correspond to the angular velocities along the Xpg, Yz,
and Zp body frame axes, respectively. Parameter ¢ is the gravity constant, m denotes

the mass, and I, I,,, I.. are the moments of inertia with respect to their principal

vy
axis in the body frame. T, 74, 79, 7y are the external thrust force and rolling, pitching,
and yawing moments, respectively. In addition, the Euler rates and the angular

velocities are related by the following equation

(ﬁ 1 S¢T9 C¢T9 P
ol=10o ¢, -5, ||q ,97&%, (3.5)
¥ 0 S,/Cs Cy/Cal |r

where C,, S,, T, represent cos(z), sin(x) and tan(x). Note that quaternions [77]| can

also be applied to represent quadcopter orientations.

Figure 3.5: The inertial(XY Z) and body(XpYpZp) frames of Crazyflie 2.0 (9 ¢cm
between diagonal rotors)

Cascade control structures are often employed to fully stabilize a quadcopter in
real-world implementations because of a quadcopter’s highly nonlinear and unstable
behaviors |78]. Most cascade structures consist of an attitude controller for stabilizing
orientations and a position controller for stabilizing positions. Attitude controllers are

typically implemented on-board and use the feedback from an on-board IMU for fast
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control updates. Position controllers, which can be either on-board or off-board, often
use the feedback from exteroceptive sensors, such as GPS and on/off-board cameras.
In our system, a cascade on-board PD controller was provided for attitude control
by the vendor, and we design off-board position controllers using measurements from
the OptiTrack MoCap available in the host lab. Fig. 3.6 shows Crazyflie’s onboard

control architecture, where ¢, 0., 1., ). denote the desired inputs to the on-board

controller.
e o
S S [ |
M@’ éAt;tILti:;s:r p;i St:k?itliezer A¢ > COI.‘ltI"O| > Actuators
250Hz  |4c 500Hz |Qa, Ay [ MIXEr (4 motors)
®,0 p,q,T

Gyroscope

250 Hz Fusion
A

Accelerometer

|
|
|
|
|
|
|
|
|
|
|
|
|
: Sensor | 500 Hz
|
|
|
|
|
|
|
|
|
|
|

On-board controller Crazyflie Hardware

Figure 3.6: Control architecture of Crazyflie’s on-board controller

To obtain an explicit attitude model (including the onboard controller) for con-
troller design of the multiple quadcopter system, we assumed small operating angle
conditions and independently identified the attitude dynamics in roll, pitch and yaw
directions using a closed-loop system identification method. It was discovered that
first-order dynamics, which are relatively simple for controller design, could suffi-
ciently capture Crazyflie’s roll and pitch dynamic behavior. The predicted roll and
pitch angle responses using the identified first-order dynamics are superimposed on
the actual experimentally measured response in Fig. 3.7 and Fig. 3.8, respectively.
The experimental data collected in first 15 seconds was used for model identification
while the data in the last 15 seconds was used for model validation. Fig. 3.9 shows the
open-loop predicted (simple integrator) and closed-loop actual (under proportional-

integral-derivative (PID) controller) system responses from a 20-degree step yaw angle
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input. It can be concluded that a simple integrator can approximately represent the

yaw dynamics. More details can be found from the author’s publication in [79].
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Figure 3.7: Identification and validation results for roll dynamics
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Figure 3.8: Identification and validation results for pitch dynamics



30

25 T T T T

20 F TN s
= \ s

15 |

Yaw angle (deg)
=

) —
e Direct integration
Actual result

0 1 2 3 4 5 6 7 8 9
Time (s)

10
Figure 3.9: Validation results for yaw dynamics

The identified attitude dynamics are then summarized as

0= (=0 + ksde),
6 = L (=0 + kob.),
1/.} = 77ch7

where 7, = 0.1993, ks = 1.043, 7y = 0.1967, and ky = 1.085.

3.3 Motion Capture Systems

A MoCap system measures the position and orientation of objects in a physical space.
The OptiTrack” MoCap system used in this thesis consists of multiple cost-effective
Flex 13% cameras to measure the position and orientation of Crazyflie for control
purposes. The Flex 13 camera has a resolution of 1.3 megapixels and a capturing rate
of 120 frames per second, and uses USB 2.0 for connectivity. Note that OptiTrack is
an optical-passive system, where reflective markers are placed on an object of interest

and the position for each marker is triangulated with the measurements from multiple

"https://optitrack.com/
8https://optitrack.com/cameras/flex-13/
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fixed high speed cameras. Fig. 3.5 shows a Crazyflie with reflective markers.

The OptiTrack system comes with a Motive® software interface for camera calibra-
tion and data streaming. Calibration is essential for OptiTrack to achieve accurate
position and orientation readings. The calibration process roughly consists of five
steps: preparing and optimizing the setup, masking in grayscale mode (Fig. 3.10a),
wanding in precision mode (Fig. 3.10b), analyzing results (Fig. 3.10c), and grounding
(Fig. 3.10d). After calibration, the rigid body data can be streamed into various
client applications (Matlab® /Simulink® /ROS) from Motive (server).

(a) Grayscale image of a rigid body (b) Precision mode

(c) Collect wanding samples (d) Ground plane

Figure 3.10: OptiTrack MoCap calibration steps

3.4 Communication and Control System

The distributed algorithms developed in this thesis are validated using centralized
realizations in the ROS environment. ROS!Y is an open-source software platform for
robot software developers with the intention to ease some significant challenges, such

as distributed computation, software reuse, and rapid testing [80]. Components, such

“https://optitrack.com/software/motive/
Onttp://wiki.ros.org/
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as controllers and sensors, in a control system are abstracted as nodes (executables) in
ROS and the communication between nodes are enabled through Topics (broadcast)
or Services (request-reply).

ROS also provides a graphical way of viewing the relationship between nodes and
topics. Fig. 3.11 shows a typical communication graph of hovering control of a single
Crazyflie. The node /crazyflie/joy takes human input from a joystick controller
and publishes messages to the topic /crazyflie/joy. The node /crazyflie/vrpn
publishes the camera measurement to the topic /tf and then to the controller node
/crazyflie/controller. The desired hovering control inputs are computed in the
controller node and published to the topic /crazyflie/cmd_vel, which then sends
to node /crazyflie_server to communicate with the Crazyflie though Crazyradio.

More comprehensive materials about ROS can be found in [81] and [82].

Joystick node

,

[crazyfiieivrpn

Camera node

Figure 3.11: Communication graph of the hovering control of Crazyflie

The following ROS libraries are used in this thesis.

e crazyflie_ros!!' [83]: ROS communication driver for Crazyflie.

e ROSARIA!?: provides a ROS interface (receiving control commands and publish

sensor measurements) for Pioneer robots.

e vrpn_client_ros!?: streams rigid body data (position and attitude) to ROS.

In all experiments, controllers are coded in Simulink® and then directly compiled

and deployed to the target hardware as ROS nodes using the Matlab® ROS toolbox!*

"https://github.com/whoenig/crazyflie_ros
2http://wiki.ros.org/ROSARIA
Bhttp://wiki.ros.org/vrpn_client_ros
Mnttps://www.mathworks.com/products/ros.html
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by appropriately setting the network properties (e.g. IP address of the ROS Master
device). Fig. 3.12 shows an interface for setting the ROS and network properties
under Hardware Implementation in Simulink®, and Fig. 3.13 illustrates a typical

quadcopter control framework in ROS.

¥ Target hardware resources

Groups
Package information g4 action: [Build and run | >
Device parameters :
ROS folder: |/optiros/melodic
Build options
ROS time Catkin workspace: |~/catkin_ws
External mode Edit

Figure 3.12: Network settings for deploying a controller node

:3:ROS

SIMULINK
Controller

Figure 3.13: Quadcopter control framework in ROS



Chapter 4

Event-Triggered Formation Control with an Autonomous

Leader

This Chapter is dedicated to solving Research Problem 2.1 as described in the problem
formulation section of Chapter 2. In particular, a locally-computable state-estimate-
based ECM along with a distributed controller are designed for the leader-follower
MAS (4.1) under a sampled-data setting.

Xi :AXZ+Bul,Z:1,,N,
(4.1)

5(0 = AXO .

The formation control problem is transformed into a stability analysis problem of a
closed-loop system under the proposed formation protocol and ECM. Sufficient con-
ditions that guarantee the co-existence of a valid formation controller and an event-
triggered communication mechanism are derived using a Lyapunov-based method and
LMTI techniques. In addition, equivalent low dimensional (agent-sized) sufficient con-
ditions are obtained to reduce the computational complexity. Lastly, the developed
controller and ECM are analyzed in numerical simulations and validated in experi-

ments using a group of three Pioneer mobile robots.

The following Lemma, which is a direct consequence of Jensen’s inequality [84] and
the reciprocal convexity lemma [85], is useful in the sufficient condition formulation

in this thesis.

Lemma 4.1. Given a positive definite matrix R € R™", if there exists an arbitrary

matriz S € R™" such that

(4.2)
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then for any T € [0, h], the following inequality holds

—h/ 7" (v)Ix @ R)p(v)dv < —¢f (Iy @ R)p1 — ¢3 (Iy @ R)¢ps
t—h

—¢1(Iv ® S)d2 — ¢ Iy @ ST, (4.3)
where ¢y = n(t — 1) —n(t), and ¢po = n(t — h) —n(t — 7).

4.1 Controller and Event Generator Design

A distributed controller as well as an ECM are proposed to address Research Prob-
lem 2.1 in this section. The controller and event generator are co-designed based on

the sufficient LMI conditions that ensure system convergence.

4.1.1 Controller Design

For t € [vh, (v + 1)h), the distributed control input for agent ¢ is proposed as

W=~ + KO aij(%i(vh) — X;(vh) = fi + f;) + di(%i(vh) — fi = x0)),  (4.4)
JEN;

where 41, is the formation compensation input to be determined, x;(vh) and X;(vh) are
the estimated states of agents ¢ and j at the latest sampling instant vh. It is assumed
that the state estimate evolves following the dynamics %;(t) = eA¢~%Mx,(tih) and
x;(t) = eA(t_tih)xj(téh) where t.h and téh represent the latest released (available
to their neighbors) sampling instants for agents i and j, respectively. Therefore, the
estimates follow the dynamics x;(t) = A%;(t) and x;(t) = Ax;(t) and the estimates at
each sampling instants may be evaluated as %;(vh) = A" tMx,(t h) and %x;(vh) =
eA(”h_tih)xj (t;h) In addition, K is a static gain matrix that will be designed based
on the sufficient conditions that ensure system stability. In addition, there exists a

matrix B such that BB = I,, from Lemma 2.3. The formation compensation input

1; can then be designed as BAf;.

Remark 4.1. Note that the formation controller (4.4) reduces to a conventional
consensus controller where f; = 0. Therefore, the proposed method in this Chapter

can also be applied to solve conventional consensus problems of general linear MASs.
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4.1.2 Closed-loop Dynamics

The closed-loop dynamics of follower agent i under control input (4.4) are, therefore

% = Ax+BE()  aij(Xi(vh) =% (vh) = fit+ f;) +di(Xi(vh) = fi=%o(vh))) = Bpui. (4.5)

JEN;

The closed-loop formation error dynamics are then given as

M = A+ BK () aij(%:(vh) =X, (vh) = fi+f;)+d;(%:(vh) — fi—xo(vh)))+(Afi— Bps).
JEN;

(4.6)
The purpose of the formation compensation input p; in (4.6) is to compensate for the
effect of the formation vector f;. Different from the formation protocols for MAS with
low-order agents (single/double-integrators), it was shown in [86] that distributed
formation protocols may not exist in general linear agent cases given certain desired
formations. In this work, we assume the following assumption on the formation

vectors f; holds true.
Assumption 4.1. BAf; = 0 is satisfied for all formation vectors.

Under Assumption 4.1, we have BAf; — BBu; = 0, and BAf; — BBu; = 0.
Therefore, the term Af; — Bu; in (4.6) is nullified and the closed-loop formation error

dynamics (4.6) are therefore reduced to

JEN;
Definition 4.1. Define an estimate error vector for agent i as e;(vh) = x;(vh) —

x;(vh), where vh represents the last sampling instant. Similarly, we define e;(vh) =

x;(vh) — x;j(vh). Then, X;(vh) = e;(vh) + x;(vh), and %;(vh) = e;(vh) + x;(vh).

Definition 4.2. An artificial delay 7(t) is defined as 7(t) = t—vh, t € [vh, (v + 1)h),

which is a time-varying sawtooth-type delay with a constant slope of 1.

Remark 4.2. The artificial delay in Definition 4.2 is commonly used in analyzing
sampled-data systems [87]. With this definition, the last sample instant vh can be

represented as t — 7(t), and analysis methods in delay systems can be adopted to
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analyze the stability of the formation control problem. Note T(t) will be simply written

as T for brevity hereafter.

Under the assumptions and definitions stated above, the closed-loop formation

error dynamics for the it follower agent can be rewritten as

M= Ani+ BK(Y ay(ni(t — ) = ni(t — 7) + ei(t — 7) — e;(t — 7))

JEN;

+di(e;(t —7) +ni(t —71)). (4.8)

Then, the overall system can be written as
n=(IN® AN+ (L @ BK)n(t —7)+ (Lsf @ BK)e(t — 1), (4.9)

where 1, n(t — 7), and e(t — 7) are the stacked form of n;, n;(t — 7), and e;(t — 7),

respectively.

4.1.3 Event Generator Design

Event generators are designed to regulate the communication among agents. In brief,
agents do not transmit their sampled state information to their neighbors unless cer-
tain triggering conditions are met (node-based broadcast scheme). Fig. 4.1 shows the
structure of the proposed formation controller with event-triggered communication.
Similar to the idea of combined measurement [88], we define the combined formation

error for agent ¢ as follows

ai(vh) =) ay(Xi(vh) — %;(vh) = fi + f;) + di(%:(vh) — fi — Xo(vh)

JEN;

=) ai(ni(vh) + e;(vh) — n;(vh) — e;(vh)) + di(ni(vh) + e;(vh)).  (4.10)

JEN;

Then, a quadratic triggering function can be designed as
Fi(vh) = e;(vh)"We;(vh) — qi(vh)T ®q;(vh) — €2, (4.11)

where U and & are positive definite matrices to be determined, and € is a small

positive constant. The next event release instant for agent 7 can then be determined
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Sensor 1
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Latest-triggered
self-state

\ 4

“Communication Network

Figure 4.1: Schematic diagram of the 7** agent: formation control with event triggered
communication

as follows
i1h = inf{vh > t;h| F;(vh) > 0}. (4.12)

Note that inter-agent communications are only enabled when the triggering rules
are activated, at which point the error estimate e; will be reset to zero. Therefore,
F;(vh) < 0 can be enforced for all agents at all sampling instants, and Y. | Fj(vh) <

0. This inequality can be rewritten in the following quadratic form

T
[e(vh)] Iy ® \I’T— LiLiy®® . * e(vh)] < Né. (4.13)
n(vh) LT Lyp® LY L@ @] [n(vh)

Remark 4.3. The small positive threshold € is introduced to account for the numeri-
cal error associated with the triggering condition evaluations. It is expected that larger
values of € will result in fewer triggering instants—at the expense of system perfor-
mance. In addition, asymptotic convergence can be obtained theoretically if we choose
e = 0. There will be more discussions on the effects of € when the simulation results

are presented in Section 4.2.

4.1.4 Main Results

Sufficient conditions that ensure the existence of a valid event generator and formation

controller for Research Problem 2.1 are established in Theorem 4.1.

Theorem 4.1. The system (4.1) achieves formation with bounded error under control
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law (4.4) and communication regqulation condition (4.12) if, for given positive scalars
p, B, and €, there exist symmetric positive definite matrices d, U, P, Q, R e R,

as well as arbitrary matrices S € R™™ and Y € R™ ", such that

S ) (4.14)
ST R
-[:Iin * * * * |
f]m ﬁm * * *
Hi= |Hy, Hy Hy, * o+ | <0i€l,-- N, (4.15)
L Ai51 Hi52 Ai53 ]:11’54 ﬁi55_
where
H;,, = PAT + AP +Q — R+ f1,, H;,, = \®,
Hy, =\Y"'BT+ R— ST, Hy, = —U+ X\
Hi, = —2R+ S5+ ST + )29, H;., = hAP,
H,, =57, H,., = h\;BY,
H,, =R— 57 H;., = h\;BY,
f{iss = —Q — R, FL% = p2R — 2pf~’
H;,, = NYTBT

and \; is the i™ eigenvalue of the matriz Ly; in an ascending order. Then, the con-
troller gain K can be computed as Y P~ and the matrices ® and U in the triggering
conditions are obtained as P*®P~ and P~'¥ P, respectively. In addition, the

formation error is ultimately bounded by

Il < \/ge. (4.16)
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Proof. Consider the following continuous Lyapunov functional candidate on the in-

terval ¢ € [vh, (v + 1)h) for the lumped formation error dynamics
V(1) = Vi(t) + Va(t) + Va(t),
where

Vi(t) = n(t)" Iy @ P)n(t),

w@=/‘ T(5)(Iy ® Q)n(s)ds

—h/th/ 0)(Iy @ R)ij(v)dvds.

(4.17)

(4.18)

(4.19)

(4.20)

and P,Q), R € R™™" are symmetric positive definite matrices. Taking the time deriva-

tive of the Lyapunov functional candidate along the closed-loop formation error dy-

namics (4.9) yields,

Vi =29"(t — ) (L}, @ K"B"P)n(t) + 2" (t — 7)(L],; ® K" BT P)n(t)
+0(t)" (Iy @ (A" P + PA))n(t),

Ve =17 ()(Iv ® Q)n(t) — " (t — h)(In @ Q)(t — h),

t
V3:—h/ i (0)(Iy ® R)i dv+h/ / )Ly ® R)i(v)dvds
t—h that

:“%[hfme®mmmw+mﬁme®mmw

If there exist an arbitrary matrix S with compatible dimension such that

>0

- I

ST R
then, from Lemma 4.1 we have

Vs < —¢'(Iy @ R)p1 — ¢2 (Iy @ R)py — ¢F (Iy @ S)o
— ¢8Iy @ ST)py + P27 (1) (Iy ® R)n(t).

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Define £(t) and ¢ as

[0 = B e )]

Iv®A Ly®BK 0 Ly®BK|.

§(t)
¢

Then the closed-loop dynamics (4.9) can be expressed as 7(t) = C£(t), and Vj is upper
bounded by

Vs < — ¢ (In @ R)1 — é3 (In @ R)po — 7 (I @ S)¢ho
— 5 (In ® STy + R2E(1)" (T (Iy @ R)QE(L). (4.26)

Combining results from Vi, Va, Vs, we have

V= Vi Va4 Vs < €7 (006(0) + W% (T (Iy © RQOEWD),  (4.27)
where _ -
VTR * 0k

g |t P2oxox , (4.28)

Q31 Q30 Q33 *
Qun O 0O O

with 0 denoting a zero matrix with compatible dimensions and

V1 =Iy®(ATP+PA+Q - R), Q3 = Iy ® (R - 57),
Qo =L}, @ K"B"P+ 1y ® (R— S7), g = —Iy ® (Q+ R),
Qo =Iy® (—2R+ S+ 57), Qu =L}, ® K"'B"P,
Qy =Iy® 57,

In addition, the triggering enforced inequality (4.13) can be rewritten as

N (t)0E(t) < Neé, (4.29)
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where _ -
0 * x =
_ 0 Qp *
0= . , (4.30)
0 0 0 =
0 Qu 0 Qu
with
Qup = —Li; Ly @9,
Quo = —Li; Ly @9,
Qu=Iy®V—Li;Li; Q.
Then, using (4.29), V in (4.27) can be enlarged and rewritten as
V < E)TEE(E) + N2 — By, (4.31)
where 3 is a small positive number and
E=Q-Q+r"(Iy ® R)C+ BE]E, (4.32)

with By = [In 00 O} . It can be shown that the formation error n will be ultimately

bounded as ||n|| < \/ge if Z <0, which is equivalent using Lemma 2.4 to

< 0. (4.33)
h(In ® R)C -Iv®R

We pre- and post-multiply the inequality (4.33) by diag{Ixy ® P,Iy@ P, Iy@ P, Iy ®
P, Iy ® R}, where P = P~'. In addition, define Q = PQP. R,S, ¥, ® are defined
analogously. Then the inequality in (4.33) is equivalent to

Q *

) <0, (4.34)
[hC(IN ®P) —Iy®R™!

where,
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O =Iy® (PAT+ AP+ Q — R+ 8L,), Qay = —In® (Q + R),
Qg = Lj; @ PKTBT + 1y ® (R - 57), Qu =L}, ® PK'B",
Qop =In® (—2R+ S+ 5") + (L, Ly @ @), Quo = (L};Ls; @ ®),
Qp =TIy @S, Qu=-Iy® U+ (LE L ® ).

Qgg == IN ® (é - ST),

To address the nonlinear term —Iy® R~! in (4.34), we apply Lemma 2.5 and conclude
that —Iy @ R~ < p?Iy ® R —2p(Iy ® P) for any positive constant p > 0. Therefore,

it is sufficient to ensure the inequality in (4.34) if

Q *

= 5 5 _ | <0, (4.35)
hC(IN(X)P) p21N®R—2p(IN®P)

is satisfied. In what follows, the inequality (4.35) will be equivalently decomposed into
a set of inequalities with lower dimensions corresponding to the size of a single agent.
Since Ls; > 0, there exists an orthonormal matrix U such that UAU”, where A =
diag{\1, -+, Ay} with \; denoting the i" eigenvalue of matrix L in an ascending
order. Then define a non-singular matrix W =1, ® (U ® I,), and note that H < 0 is
equivalent to

H=wWHWT <o, (4.36)

where

Hy =Iy® (PAT + AP +Q — R+ f1,),
Hy =A@ PKTBT +1y ® (R—S7),
Hy=Ixn® (—2R+S+S5") + A’ ® @,

[:131:IN®5’T, FI44I—IN®¢/—|—A2®(T),
FISZZIN®(R_ST), FI51 :h(IN®AP),
Hy = -Iy® (Q + R), Hs, = h(A ® BKP),
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I:—,41:A®pKTBT, H54:h(A®BKp),
Hp=MNo Hss = p*(Iy ® R) — 2p(Iy © P),

and terms in H not specified are all zeros. In addition, since all elements in H are
block diagonal, it follows that H<0& H, < 0,forallt=1,---, N, where the terms
in H; are defined as in (4.15) with Y = K P. Then we can solve for the control gain
matrix as K = Y P!, and positive definite matrices ¥, ® in the triggering condition

can be obtained as P~1W P~ p-1pp-1L. O

Remark 4.4. From (4.16), smaller N, € and larger  could result in a smaller ulti-
mate formation error bound; however, smaller € tends to induce more frequent trigger-
ing instants, and larger B and N can reduce the feasibility of the developed sufficient
LMT conditions in (4.15).

Remark 4.5. It can be verified that the set of LMIs is convex in \; € [\, Ay]. There-
fore, H, < 0,2=1,---, N is equivalent to H, < 0and Hy < 0. This property implies
that only two low-dimensional LMI conditions need to be evaluated as opposed to a
single high-dimensional LMI conditions as in [65] and [59], thus significantly reducing
the numerical complexity when considering a large group formation. It should be noted
that, while the developed method also applies to MASs with directed communication
topologies, the resultant LMI condition will possess a very large amount of decision

variables and can become intractable rapidly when the number of agents increases.

Remark 4.6. The results developed in this section can be further extended to time-
varying communication topology cases where finite arbitrary topology switches can
occur within a set of connected topologies in a finite-time interval. Specifically, in
addition to the communication events governed by triggering conditions, an agent
would also broadcast its information to all of its neighbors whenever a new neighboring
agent is introduced. One limitation of the method proposed in this thesis is that it
requires the lower and upper bounds of the eigenvalues of Ly, which may not always
be available. Nevertheless, the eigenvalue estimation methods in [89,90] can be possibly

used to estimate those eigenvalue bounds.

Remark 4.7. The underlying assumption of the synchronized sampling scheme poses

a limitation of the developed method. In practical applications, distributed clock
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synchronization algorithms can be applied to synchronize the clocks across multiple

agents [91].

4.2 Simulation Results

In this section, the newly-developed event-triggering formation control algorithm is
applied in numerical simulations to a group of four Pioneer robots (one virtual leader
denoted as node 0 and three followers as nodes 1,2, 3) with linearized dynamics (3.3)
under the communication shown in Fig. 4.2. Note that a static leader was cho-
sen from (4.1) and the system matrix in (3.3) is a zero matrix. The desired group

T
formation (triangle formation) is defined by the formation vectors f; = [1 0] ,

T T
fa = [_0,7 0,7] , and f3 = [—0,7 —0_7} . The sampling interval is chosen as
h = 0.1 sec and the triggering threshold € is 0.0005. It can be verified that Assump-
tion 2.1 and Assumption 4.1 are satisfied with the selected communication topology

and formation vectors.

Figure 4.2: Communication topology of a mobile robot system with an autonomous
leader

The control gain matrix K and event generator gain matrices ® and ¥ can be
obtained by evaluating the feasibility of (4.15) given parameters p and (3. Therefore,
the controller and event-generator design largely depend on the selections of p and
B. It is observed in simulations that inappropriate selections of p and 3 often result
in poor system performances or even infeasible controllers. In this Chapter, the

parameter selection problem is formulated as an optimization problem. In particular,

a cost function is defined as \/fotm IIn()||?dt (I2 norm of formation error) if a feasible
controller exists, whereas a large penalty is assigned to the cost function in scenarios

with no feasible controllers. Then, p and [ are optimized such that the cost function
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is minimized. For the simulation conditions stated above, the optimal parameters are
obtained using Matlab®’s fmincon® solver as p = 0.6082 and 3 = 0.2839. Simulations
are then carried out using the selected parameters. The control gain matrix K and

the event generator gain matrices ¥ and ® can be computed as

~1.1483 0 702332 0 0.0277 0
K = U= P = .
0 —1.1483 0  70.2332 0 0.0277

(4.37)

In a 10 sec simulation run, Fig. 4.3 shows the time evolution of the system that,
in conjunction with the formation error profile in Fig. 4.4, clearly illustrates that
the desired group formation can be achieved with bounded error with the formation
controller (4.4), the event triggering rule (4.12) and the control gains in (4.37). Fig. 4.5
demonstrates the snapshots of the group formation (desired formations in solid lines
and actual formations in dashed lines) in the X-Y plane at t = 0 sec, 3.3 sec, 6.6 sec,
and 10 sec, respectively. Fig. 4.6 shows the communication instants on each agent
over the span of the simulation. In addition, the average triggering percentage for

followers 1-3 are computed as 78%, 75%, and 75%, respectively.
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0 . . > 25 3 3.8

X (m)

Figure 4.3: Simulation results of the evolution of the team with ¢ = 0.0005

'https://www.mathworks.com/help/optim/ug/fmincon.html
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Figure 4.5: Simulation results of snapshots of the system (4.1) in the X-Y plane at:
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Figure 4.6: Simulation results of triggering instants

4.2.1 Effect of Communication Mechanisms

Note that the system matrix A for a linearized mobile robot is a zero matrix and the
estimated state X;(vh) is equal to the latest triggered state x;(tih) for agent i, and the
estimate-error-based event generator becomes a traditional state-error-based genera-
tor as in [64]. Therefore, for this case the developed estimate-error-based ECM need
only be compared with (not compared with the state-error-based ECM) a PCM where
communication occurs at regular equally-spaced sampling instants at a frequency of
10 Hz. To compare the system performances under these two communication mecha-
nisms, simulations are conducted under the same conditions except that the triggering

rule is discarded in the PCM case.

The [5 norms of the formation errors of each follower agent under different commu-
nication mechanisms are summarized in Table 4.1. The indistinguishable /5 norms of
each follower under the estimate-error-based ECMs and the PCM indicate that simi-
lar formation performance can be achieved. Nevertheless, the corresponding average
communication frequencies which are listed in Table 4.2 indicate that the newly-

developed estimate-error-based ECM requires reduced communication resources.



Table 4.1: Simulation results of [ norm of formation error (m)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 1.08 2.21 2.21
PCM 1.06 2.21 2.21

Table 4.2: Simulation results of triggering percentage (%)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 78 75 75
PCM 100 100 100

49

4.2.2 Effect of Triggering Threshold ¢

Simulations are conducted to study the effects of different communication triggering
threshold values on both system performance and communication demand. The av-
erage communication frequency results for the proposed estimate-based ECM with
respect to different threshold values are summarized in Table 4.3. It can be con-
cluded that using a larger threshold generally results in less network communication
resources (7.6 Hz with € = 0.0005, 1.3 Hz with € = 2). However, as seen by the sys-
tem evolution under a triggering threshold € = 2 shown in Fig. 4.7, larger thresholds
can lead to a degraded system performance (compare to the system evolution with a
threshold of 0.0005 as shown in Fig. 4.3). Therefore, there is a trade-off between com-
munication resources and system performance when choosing a triggering threshold

€.

Table 4.3: Simulation results of average communication frequency (Hz) of all agents
in (4.1) under 10 Hz sampling frequency with different triggering thresholds

For threshold e—
0.0005 0.001 0.01 0.1 2
Estimate-error-based ECM | 7.6 | 6.8 | 44 [28] 1.3

Mechanisms
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Figure 4.7: Simulation results of the evolution of the team with € = 2

4.3 Experimental Results

Additional simulations were carried out using high-fidelity robotics simulators such as
MobileSim? and V-REP (currently known as CoppeliaSim) [92] prior to implementing
the proposed contol approach on the hardware. Experimental validation was then
conducted using a group of Pioneer robots (shown in Fig. 3.1) each driven by a
Raspberry Pi?® in the ROS environment.

Fig. 4.8 shows the system evolution of the Pioneer robots in a 20 sec experiment
run under the proposed controller (4.4), communication triggering rule (4.12), and
gains in (4.37). Fig. 4.9 shows screenshots of the initial and final positions of the
Pioneer robots. It can be observed from the experimental results that two follower
robots momentarily moved away from the desired formation before reaching the for-
mation during the transition phase. This is largely because of the overshot in the
Y-direction resulting from large control inputs. Fig. 4.11 depicts the snapshots of
the Pioneer group formation at ¢t = 0 sec, t = 6.6 sec, t = 13.3 sec and t = 20 sec,

respectively. Fig. 4.10 illustrates the formation error evolution for each agent in the

*http://vigir.missouri.edu/~gdesouza/Research/MobileRobotics/Software/MobileSim/
README.html
*https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
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X and Y directions. The communication instants on each Pioneer robot are given
in Fig. 4.12. The system evolution, formation error profile, group formation snap-
shots, and triggering instants for the Pioneer robot system under PCM are shown in
Figs. 4.13 to 4.16, respectively. The l5 norm of formation errors and communication
triggering percentage of all Pioneer robots under the proposed estimate-error-based
ECM and PCM are summarized in Table 4.4 and Table 4.5, which conclude that the
proposed method is able to produce a comparable system performance (l; norms are
slightly larger) while using reduced communication resources (only requires around
60% of the resources). It can be observed from the experimental results of trigger-
ing instants in Fig. 4.12 that there is a short period of time at the beginning of the
experiment where no communication triggered. This result is different from the sim-
ulations where communication triggering started immediately at the beginning of the
simulation as shown in Fig. 4.6. The reason for this discrepancy is that the motor
dynamics were neglected in the simulations and the system can therefore achieve the
commanded velocities immediately, whereas motor dynamics (inertia) exist in the
actual hardware that can introduce a lag between the commanded input and actual
motor output. The same reason can explain why there were more oscillations observed

in the experiments (Fig. 4.10) than in the simulations Fig. 4.4.
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Figure 4.8: Experimental results of the evolution of the team with ¢ = 0.0005



(a) Initial positions

(b) Final positions

Figure 4.9: Initial and final positions of Pioneer robots
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Figure 4.10: Experimental results of formation error profile

Table 4.4: Experimental results of [y norm of formation error (m)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 1.71 3.04 3.04
PCM 1.69 3.00 3.00

Table 4.5: Experimental results of triggering percentage (%)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 61 65 65
PCM 100 100 100
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4.4 Conclusion

This chapter proposed a novel distributed formation tracking controller for general
linear MASs consisting of one autonomous leader and multiple homogeneous followers.
First, a new locally-computable state-estimate-based event-triggering communication
condition was proposed for each agent. Then, the formation tracking problem was
formulated as a stability analysis, controller gain and event-generator gain design
problem of the closed-loop formation error dynamics. Sufficient conditions that guar-
antee the co-existence of a valid formation controller and an ECM were derived using
a Lyapunov-based method and LMI techniques. In addition, equivalent low (agent-
sized) dimensional sufficient conditions were obtained to reduce the computational
complexity. The proposed method was validated in simulations and experiments us-

ing a group of unicycle-type mobile robots with linearized dynamics.



Chapter 5

Event-Triggered Formation Control with a Non-autonomous

Leader

This Chapter is dedicated to solving Research Problem 2.2 as described in the prob-
lem formulation section of Chapter 2. Compared with an autonomous leader, a
non-autonomous leader in a MAS described by (5.1) can vastly increase group func-

tionalities.

x; =Ax;+Bu;,i=1,---,N,

(5.1)

Xg = Axg+ Buyg.
For instance, a human operator can remotely control a large group of robots by only
directly controlling the leader. Therefore, this chapter extends the results from Chap-
ter 4 to enable event-triggered formation control with a non-autonomous leader and
develops a new ECM for regulating data transmission. A new distributed formation
controller will also be proposed based on the regulated information. In addition,
the controller and event generator gains will be co-designed based on the formulated
sufficient LMI conditions that ensure the ultimate boundedness of the closed-loop
formation error dynamics. Numerical simulations as well as experimental implemen-
tations for multiple mobile robots are then conducted to demonstrate the effectiveness

and advantages of the proposed formation control method.

5.1 Distributed Event-Triggered Formation Control Strategy

In this section, a distributed formation controller along with a node-based communication-

triggering mechanism will be developed to solve Research Problem 2.2.

57
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5.1.1 Controller Design

For t € [vh, (v+ 1)h), a locally-computable formation control input for follower agent

1 can be proposed as

w0 = 7] Z“”"”’h X,(0h) = i+ )+ an(a(uh) = i — %o

Z;’V:I Qij (tj h) ) (vh) i
NG| Vil [N

+ 72.:1a"'7Na (52)

where p; is the formation compensation input to be determined, x;(vh) and x;(vh) are
the estimated states of agents ¢ and j at the latest sampling instant vh. For Follower
agents i = 1,---, N, the state estimators follow the dynamics 2; = AZ; + Bui(t%h)7
t € |toh, (tt + 1)h> and &;(tth) = x;(tth), where tth and (¢ + 1)h represent the
latest released and next triggering (available to their neighbors) sampling instants
for agents i, respectively. K is a static gain matrix that will be designed based on
the sufficient conditions that ensure the system stability. Moreover, from Lemma 2.3

there exists a matrix B such that BB = I, for a full column rank matrix B. pu; can
then be designed as BA Z;.V:O ai;(fi — f5)-

Remark 5.1. In addition to the formation tracking controller proposed in [95], the
controller (5.2) also wutilizes the control input information from neighboring agents.
As a result, the final group formation error bound will be independent of the bound of

leader’s input.

5.1.2 Closed-loop Dynamics

The networked closed-loop dynamics of agent i under the formation input (5.2) sat-

isfies the following equation for ¢ € [vh, (v + 1)h)

N N

> aiBui(t) — w;(t)) =Y ai; BK (ei(vh) — e;(vh)) + Y _ aij BK (n;(vh) — n;(vh))
i— j=0 Jj=0

N
+ ) aije;(vh) — B, (5.3)
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where e;(vh) = %X;(vh) — x;(vh) and e;(vh) = X;(vh) — x;(vh) denote the state esti-
mation error for agents ¢ and j at the sampling instant vh, respectively. In addition,
é;(vh) = u;(tih) — u;(vh) denotes the self control input error at the sampling instant
vh. Substitute the system dynamics (5.1) into (5.3) to obtain

N N

N
> aij(di(t) — i5(t) =Y ay; BK (ei(vh) — ej(vh)) + > ay BK (ni(vh) — n;(vh))
7=0

J=0 Jj=0

N N
+ Z a,-jéj(vh) + Z aij(A:ri(t) — A.%'j(t) — Afz + Af])
=1 =0

N
+Y aii(Afi — Afj) — Bui. (5.4)

5=0
Note that f; is constant for all ¢ = 1,--- | N, we have @; — @; = 1; — 1);. Therefore,

(5.4) can be rewritten as

N N N
> aii(0:(t) = 0;(t) =Y agBK (ei(vh) — ej(vh)) + ) _ ayy BK (mi(vh) — n;(vh))
=0 =0 =0
N N
+ 3 ayej(wh) + 3 aizAlni(t) — n;(t)
j=1 j=0
N
+Y " aij(Afi — Afj) — Bu. (5.5)
j=0

We assume that Assumption 4.1 holds, and it can be verified that Af; = BBAf; and
the term Z;'V:O a;;(Afi — Af;) — Bp; in (5.5) is nullified. Therefore, (5.5) is reduced

to

N N N
> ai(ni(t) = (1)) =Y aiy BK (es(vh) — ej(vh)) + Y ai; BK (ni(vh) — n;(vh))
i=0 =0 =0
N
+ ) aijej(vh) + ) aiiAni(t) — n;(t)). (5.6)
j=1 =0

The augmented overall system dynamics are then given as

(Lyp@Ln(t) = (L @ A)n(t) + (L ® BK)e(vh) + (Lyy @ BK)n(vh)
+ (A; ® B)e(vh), (5.7)
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where A; denotes the Adjacency matrix among the follower agents, and n(t), n(t),
n(vh), e(vh), and e(vh) are the stacked form of n;(t), n;(t), n;(vh), e;(vh), and €;(vh),
respectively. Considering Assumption 2.1 and Lemma 2.1, Ly; ® I,, is nonsingular,

and the overall formation error dynamics can be obtained as
n(t) = Iy @ A)n(t) + (Iyn ® BK)e(t — 1) + (In ® BK)n(t — 1)
+ (L7} Ar ® B)e(t — 1), (5.8)

where, n(t — 1), e(t — 7), and €(t — 7) are the stacked form of n;(t — 7), e;(t — 7), and

é;(t — 1), respectively.

5.1.3 Event Generator Design

We define the combined formation error for agent ¢ as

qi(vh) = Zaij@i(vh) — &j(vh) — fi+ f;) + ao(Zi(vh) — fi — o)

Jj=1

= 3" ayy(m(vh) + e (vh) — ny(0h) — ¢;(vh)). (5.9)

J=0

Then, a node-based triggering function for agent ¢ at instant vh can be designed as
fi(vh) = e;(vh) " Wye;(vh) + & (vh)Uqe! (vh) — qi(vh) ®g;(vh) — €, (5.10)

where Uy, U,y and ® are positive definite matrices to be determined and e is a small
positive design parameter. The next event release instant for agent ¢ can then be

determined as follows
thorh = inf{vh > th| fi(vh) >0}, i=1,---, N. (5.11)

It should be noted that the state estimate error e;(vh) and control input error &;(vh)
are reset to zero whenever inter-agent communications are enabled, which happens
when triggering rules (5.11) are activated. Therefore, f;(vh) < 0 can be enforced for
all agents at all sampling instants, which implies Zl]\il fi(vh) <0 is always satisfied.
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Note that,

Mz

Zfz Uh =

(e;(vh)T W e;(vh) + &l (vh)Wael (vh) — qi(vh)T ®q;(vh) — €2)

=1

N
Zel \Illez vh) +

=1

T(vh)Wael (vh) — Né?

||M2

N

B Z [Z aij(ni(vh) + ei(vh) —n;(vh) — e;(vh)") | @

[Z aij(ni(vh) + ei(vh) — n;(vh) — ej(vh))] . (5.12)

=0

Therefore, 321V, fi(vh) < 0 can be rewritten in the following matrix form

e(vh) Iy®@V, - Li;Lijp@® * * e(vh)
n(vh) —Li L@ ® —LiiLi @ ® * n(vh)| < Né,
e(vh) 0 0 In®@Wy| |e(vh)
(5.13)
By using the notation vh =t — 7 from Definition 4.2, we have
T
e(t—r7) Iy®@W, — Li;Lijp@® * * e(t—r)
n(t —7) —Li; Ly ® —Li; Ly @@ * n(t—71)| < Ne.
e(t—1) 0 0 Iy®WUs| |e(t—T7)
(5.14)

Remark 5.2. State errors have been commonly used in triggering condition design in
the literature [59], [64]. However, state-error-based event generators tend to produce
frequent communication instants in the presence of a dynamic leader in formation
control even when the desired formation has been achieved. An estimate-error-based
event generator is developed in this section with the aim to reduce triggering instants
while still guaranteeing comparable formation performance. It is observed in the sim-
ulations of formation control with a dynamic leader that the estimate error based
triggering conditions generally introduce less triggering instants than the state error

based ones while still guaranteeing comparable formation performances.
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The following Theorem provides sufficient conditions for the event generator and

formation controller design for Research Problem 2.2.

Theorem 5.1. Under the control law (5.2) and the communication regulation con-

dition (5.11), the system (5.1) achieves formation with bounded error if, for given

positive scalars p, 3, there exist symmetric positive definite matrices o, Uy, Uy, P,

Q, R € R™", as well as arbitrary matrices S € R™" and Y € R™ ", such that

where

with

R x .
| >0, H<0,ic1,-- N,
ST R
_HH * * * * * ]
Hyy Hap o % * * *
Hsy Hs» Hss * *
Hyy Hio Onp Hyg * x|
Hs1 Onn Onn Onp Hss % *
Her Heza Onn Hes Onn Hes %
| H71 Onn Onn Onn Onn Onn Hir
Hy =1y ® (PAT + AP+ Q - R)
Hy =Iy® (YT'BT + R ST)
Hy=Iy®(—2R+S+S")+Li;Ly®®
H3 =Iy® ST Hss = —Iny @ Uy
H3y =1y @ (R—ST) Hg = h(Iy ® AP)
Hy=-Iy® (Q+R) Hgy = h(Iy ® BY)
Hy =IyoYTBT Hgy = h(Iy ® BY)
Hyp=Lj;Li®d Hgs = h(L;; A® BP)
Hy=-In®@WU +Li;Li®d Hgs = p*(Iy ® R) — 2p(Iy @ P)
Hs1 = A"L; [ ® PB" Hpy=Iy®P
Hr7 = !

51

(5.15)
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Then, the controller gain matriz K can be computed as Y P!, and the matrices @,
U, and Uy in the triggering conditions are obtained as P~*®P~1, P2, P!, and

P10, P! respectively. In addition, the formation error is ultimately bounded as

IN
. _ N
Jim 7] < 5¢ (5.16)

Proof. Consider the following continuous Lyapunov functional candidate on the in-

terval ¢ € [vh, (v + 1)h) as

V(t) = Vi(t) + Va(t) + V(1) (5.17)
where
Vi(t) = n(t)" (Iy ® P)n(t), (5.18)
i) = [ )0 @ Qnts)as, (519
Vi(t) = h /tth / " (0) Ly © RYi(w)duds. (5.20)

and P,Q), R € R™™" are symmetric positive definite matrices. Taking the time deriva-
tive of the Lyapunov functional candidate along the augmented formation error dy-

namics (5.8) yields,

Vi =i(t)" Iy @ P)n(t) +n(t)" (Iy @ P)n(t)
=n(t)"(Iy ® (ATP + PA))y(t) + 2n(t — 7)" (Iy ® K" B"P)n(t)
+2e(t —7)"(Iy ® K" B"P)n(t) + 2e(t — )" (A} L;; @ B P)n(t)
Vo =" (t)(In ® Q)n(t) — 0" (t — h)(Ix ® Q)n(t — h),
V= —h / i @)L ® B)i(w)do + B (1) Ly © R)i()

Then, from Lemma 4.1 we have

Vs < — ¢l (In ®@ R)p1 — ¢ (Iy @ R)pa — ¢ (Iy @ S) by
— ¢ (In ® ST)r + B*0" () (In @ R)n(t).
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Define £(t) and ¢ as

€)= [y (e =" n - BT el —)T et -]

(=|lv®A IyeBK 0 IyoBK LijA;@B|.

Then, the closed-loop dynamics (5.8) can be expressed as 7(t) = C£(t), and Vj is
upper bounded by

Vs < =6 (Iy © R)dy — 63 (In @ R)s — 6] (In © S)hs — 65 (In @ S¥)
+ )T (T Iy @ R)CE(R).

Combining results from Vi, Va, Vs, we have

V< €T (0)Q6() + h()T (T (I @ R)IQE(?), (5.21)
where _ -
Oy % * ok x
921 QQQ k E S 3
Q= |z Qo Uz * #|, (5.22)
941 0 0 0 =
Q51 0 0O 00
with

Oy =Iy @ (ATP+ PA+Q — R),

oy = L%, @ KTBTP + 1y ® (R — S7),
Qg = Iy @ (2R + S + S7),

Q31 =1y ® 87T,

Qo =Iy® (R—S7),

Q33 = Iy @ (Q + R),

Qu =Iy® K'B"P,

s = A7 L) @ B'P,
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In addition, the matrix inequality (5.14) can be rewritten as

M (H)0E(t) < Né, (5.23)
where _ _

0 * *x % *

0 QQQ * * *

Q=10 0 0 = x|, (5.24)

0 Q42 0 Q44 *

0 0 0 0 Qs
with

Qup = —Li; Ly @9,
Quo=—Li;Lip @9,
Qu=Iy®@ ¥, — L?fof ® P,
Qs5 = Iy @ Vs

Then, using (5.23), V in (5.21) can be enlarged and rewritten as
V < E()TEE(t) — Bn"n + Né (5.25)
where [ is a positive constant and
E=Q-Q+r"(Iy ® R)C+ BELE, (5.26)

with £y = |Inn, Onn Onn Onn Ownnl|- It can be shown that the formation error
n will be ultimately bounded as (5.16) if = < 0, is by repeatedly using Lemma 2.4

which is equivalent to

Q-Q * *
E, 0 —%INH

We pre- and post-multiply the inequality (5.27) by diag{Ixy ® P,Iy@ P, Iy @ P, Iy ®
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P IN®P, Iy®R ", Iy, }, where P = P~'. In addition, define Q = PQP. R, S, Uy, U,
®, M are defined analogously. Then, by applying Lemma 2.4 again, the inequality in
(5.27) is equivalent to

Q * *
MIyvoP) —-IyoR' x| <0, (5.28)
E(Iy ® P) 0 —+1vn

where
Oy =Iy® (PAT + AP+ Q - R),

Qg =Iy® PKTBT + Iy ® (R - S7),
Qoo =Iy @ (—2R+ S+ ST) + (L}, Ly @ D),

Qy =Iy® 57, Qup = LisLgr ® )

Qs =Iy® (R—S7), Q44:_IN®\I~/1+L?fof®é7
Qs = —Iy @ (Q + R), 05 = ATL;T © PBT,

Qu =1y PKTBT, Qs = —Iy ® Ws.

Furthermore, we have —Iy ® R™' < p*Iy ® R — 2p(Iy ® P) for any positive
constant p > 0 from Lemma 2.5. Therefore, it is sufficient to ensure the inequality in
(5.28) if

Q * *
H=|(Iy®P) pPPIn@R—-2p(Iy®P) x | <0, (5.29)
Ei(Iy ® P) 0 —+Tn
is satisfied. In addition, the terms in H are defined in as (5.15). O

5.2 Simulation Results

Numerical simulations are carried out on a group of three follower mobile robots
and a leader defined by (5.1) under the same communication topology as in Fig. 4.2
to validate the proposed formation tracking algorithm. The formation vectors are

chosen as f; = [1 O}T, fo= [—0,7 0,7}T, and f3 = [—0,7 —0,7}T. The sampling
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interval is h = 0.1 sec and the triggering threshold ¢ is empirically chosen as 0.0005.
In a 14-sec simulation run, the virtual leader moves at a constant speed of 0.3 m/s
in the X-direction from the origin, and all followers are initially distributed near the
origin. The LMI parameters are optimized using the method described in Section 4.2
as p = 1.5198, and 8 = 1.0657. The control gain matrix K and event generator gain

matrices ¢, P and ¥ can then be computed as

—1.0347 0 0.0011 0
K = , @ = )
0 —1.0347 0 0.0011

0.4087 0 1.8022 0
\Ill = 7\112 = )
0 0.4087 0 1.8022

from evaluating the feasibility of inequality (5.15).

Fig. 5.1 shows the simulated evolution of all agents under the proposed estimate-
based controller (5.2) and event generator (5.11). Fig. 5.2 illustrates the formation
error profiles of all agents in the X- and Y-directions, which clearly shows that a solu-
tion to Research Problem 2.2 has been achieved. Fig. 5.3 demonstrates the snapshots
of the group formation in the X-Y plane at t = 0 sec, 4.6 sec, 9.3 sec, and 14 sec, re-
spectively. The triggered communication events for all agents are depicted in Fig. 5.4,
which shows that the communication events are relatively sparsely distributed as the
system approaches the desired formation. In addition, the average communication

triggering percentage on agents 1-3 are 41%, 74%, and 74%, respectively.

5.2.1 Effect of Communication Mechanisms

To compare with other communication mechanisms and to show the advantage of the
proposed estimate-error-based ECM (e;(vh) = x;(vh) — x;(tih), where X; is defined
below (5.2)), similar simulations are also conducted using the state-error-based ECM
(e;(vh) = x;(vh) —x;(tih)) and a 10 Hz PCM. The Iy norms of the formation errors of
each follower agent under these different communication mechanisms are summarized
in Table 5.1. It can be observed that the state-error-based ECM generally produces
the largest [y norms (thus the worst performance) under similar simulation condi-

tions. In addition, Table 5.2 summarizes the communication triggering percentage on
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Figure 5.1: Simulation results of the formation evolution (5.1) with ¢ = 0.0005
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Figure 5.2: Simulation results of formation error profile
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each agent under different communication mechanisms and shows that the proposed

estimate-error-based ECM entails the least amount of communication resources.
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Figure 5.3: Simulation results of snapshots in the X-Y plane at: a) t=0 sec, b) t=4.6
sec, ¢) t=9.3 sec, d) t=14 sec
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Figure 5.4: Simulation results of triggering instants



Table 5.1: Simulation results of l; norm (m) of formation error

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 0.89 2.18 2.18
State-error-based ECM 0.90 2.32 2.32
PCM 0.88 2.17 2.17

Table 5.2: Simulation results of triggering percentage (%)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 41 74 74
State-error-based ECM 69 72 72
PCM 100 100 100
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5.2.2 Effect of Triggering Threshold ¢

The average communication frequency results for both state-error-based ECM and
estimate-error-based ECM under the same simulation conditions with respect to dif-
ferent threshold values are summarized in Table 5.3. It can be observed that using
a larger threshold in both communication mechanisms generally results in a smaller
average communication triggering frequency; however, as shown in Table 5.4, a larger
triggering threshold can generally induce a large [y norm of the formation error. In
addition, a smaller /s norm of the system formation error can be obtained under
the estimate-error-based ECM in comparison with the state-error-based ECM for all
triggering thresholds in Table 5.4.

Table 5.3: Simulation results of average communication frequency (Hz) of all agents
in the team under 10 Hz sampling frequency with different triggering thresholds

Mechanisms For threshold e=
0.0005 0.001 0.01 0.1 1
Estimate-error-based ECM 5.1 4.4 2.6 2 2.1
State-error-based ECM 7.5 5.1 3.6 [ 1.6 |0.93
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Table 5.4: Simulation results of l norm (m) of formation error in the team under
different triggering thresholds

For threshold e=
0.0005 0.001 0.01 0.1 1
Estimate-error-based ECM | 3.22 3.20 | 3.32 | 4.45 | 5.59
State-error-based ECM 3.40 3.41 | 3.61 | 3.82 | 10.15
PCM 3.32 3.32 | 3.32 (332 3.32

Mechanisms

5.3 Experimental Results

The experimental validation was conducted using the same setup as in Section 4.3.
Fig. 5.5 shows the system evolution of the Pioneer robots in a 14 sec experiment
under the newly-developed formation controller (5.2) and communication triggering
rule (5.11). Fig. 5.6 illustrates the formation error evolution for each agent in the X
and Y directions. Fig. 5.7 depicts the snapshots of the Pioneer group formation at
t =0sec, t = 4.6 sec, t = 9.3 sec and t = 14 sec, respectively. The communication
instants on each Pioneer robot are given in Fig. 5.8, which clearly shows that the
communication events are sparsely distributed as the system approaches the desired
formation. The system evolution, formation error profile, group formation snapshots,
and triggering instants for the Pioneer robot system under the state-error-based ECM
and PCM are shown in Figs. 5.9 to 5.12, and Figs. 5.13 to 5.16, respectively.

Note that, different from the triggering instants shown in Fig. 5.8, the communica-
tion instants under the conventional state-error-based ECM in Fig. 5.12 and PCM in
Fig. 5.16 were still densely gathered (corresponding to unnecessary communication)
when the desired group formation was approached. In addition, the experimental
results of the [, norm of formation errors and communication triggering percentage
of all Pioneer agents under the three communication mechanisms are summarized
in Table 5.5 and Table 5.6. The results show that the experimental results follow
the same trends as the simulation results—with the proposed estimate-error-based
ECM able to produce comparable performance while requiring the least amount of

communication resources.



Table 5.5: Experimental results of [y norm of formation error (m)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 1.01 2.08 2.08
State-error-based ECM 1.12 2.37 2.40
PCM 1.01 2.04 2.05

Table 5.6: Experimental results of triggering percentage (%)

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 30 H4 57
State-error-based ECM 80 70 70
PCM 100 100 100
2r A Agent1
N O Agent2
15[ AN O  Agent3
N *  Leader
N < T Desired formation
1r N\ — — — Actual formation

X (m)

Figure 5.5: Experimental results of the formation evolution under estimate-error-

based ECM
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Figure 5.6: Experimental results of the formation error under estimate-error-based
ECM

Figure 5.7: Experimental results of snapshots under estimate-error-based ECM in the
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Figure 5.10: Experimental results of the formation error under state-error-based ECM
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5.4 Conclusion

This chapter studied the leader-follower formation tracking control problem for linear
MASs with a non-autonomous leader. A new estimate-error-based ECM was devel-
oped to account for the heterogeneity introduced by the leader’s control input. The
formation tracking controller was then designed based on the event-generator regu-
lated state information and the neighboring control input information. Sufficient LMI
conditions that guarantee an asymptotic convergence to the neighborhood of the of
the desired formation were derived. Simulation and experiment show that the pro-
posed ECM generally requires less communication resource than the state-error-based

ECM and PCM while maintaining comparable performance.



Chapter 6
Edge-Triggered Formation Control

This Chapter addresses Research Problem 2.2 as described in the problem formulation
section of Chapter 2 using a novel edge-based ECM. Recall that the ECMs developed
in Chapter 4 and Chapter 5 are all node-based, where a triggering function is de-
signed for each agent (node) and agents broadcast their state and control information
to all of their neighbors when the triggering rules are activated. However, in the
edge-based ECM developed in this Chapter, the triggering functions are designed for
communication edges, where an agent transmits its sampled information to a specific
neighboring agent that is connected to a specific edge when an edge triggering rule is
activated. Therefore, systems under edge-based ECM can potentially maintain com-
parable performance while consuming reduced communication resources compared
with node-based ECMs. Fig. 6.1 illustrates a node-triggered and an edge-triggered
scheme. In addition to the LMI conditions for an asymptotic system convergence
rate, conditions that guarantee an exponential convergence rate are derived by utiliz-
ing an extended Wirtinger’s inequality [94]. Moreover, the exponential convergence
rate is explicitly expressed in the derived conditions and can be tuned based on design
requirements. Numerical simulations and hardware implementations are carried out
to validate the proposed method. The exponential form of the extended Wirtinger

inequality is summarized in the following lemma.

l

a) node-triggered scheme b) edge-triggered scheme

Figure 6.1: Node and edge triggered schemes (red arrow denotes a communication
edge is enabled)
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Lemma 6.1. [95] Let n : [a,b] — R" be an absolutely continuous function with a
square integrable first order derivative and n(a) = 0, or n(b) = 0. Then, for any

positive constant a and positive definite matriz W € R™™", the following inequality

holds:

b 2 b
O —ap [ i Wis)ds - T [l Wneds =0, (61

6.1 Edge-Triggered Formation Control Strategy

An edge-based ECM along with a distributed formation controller utilizing the edge-

triggered state are proposed in this section.

6.1.1 Edge-states-based Formation Controller Design

For t € [vh, (v + 1)h), an edge-state-estimate-based control input for follower agent i

is proposed as

N N
1 . . ij
uz(t) = =N [K Z Qg5 (in(Uh) — Xij (’Uh) - fl + f]) + Z aijuij(tk]/ h)]
Dm0 @ij j=1 j=1
1 S ajiksi(vh)

T =5 [aiouo(vh) — i + aip K (

Z ZN —fi—Xo(Uh))},
j=0 ij =1 @i

i=1,---,N, (6.2)

where p; is the formation compensation input which is the same as the one designed
in Section 5.1.1, %x;;(vh) and %x;;(vh) are the estimated states of agents j and ¢ on
edges &; € € and &;; € £. In addition, the state estimates x;;(vh) for all &; € &
follow the dynamics X;; = A%y + Buy(t9h), t € [t7n, (1Y + 1)h), where /7 and
(tg + 1)h are the latest released and next releasing communication events for the

edge &;;, respectively. K is a static gain matrix to be determined.
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6.1.2 Closed-loop Formation Error Dynamics

The closed-loop system dynamics under the controller (6.2) satisfies the following

equation for t € [vh, (v + 1)h)

Z a;;Bu;(t) = BK Z a;j(eji(vh) —e;;(vh) — fi + f; + xi(vh) — x;(vh))

+ Z a;; B(e;;(vh) + uj(vh)) + aBug(vh) — B,
+ aioBK(ijl “ﬁ(ejjgvh) + x;(vh)) hxo(wh)), (63)

Zj:l @ji

where e;;(vh) = X;;(vh) — x;(vh) and ej;(vh) = %X;;(vh) — x;(vh) denote the state
estimation error for agents j and i on edges &; and &;; at sampling instant vh,
respectively. In addition, €;;(vh) = u;; (tzjh) — u,(vh) denotes the control input error

at sampling instant vh. Note that (6.3) can be rearranged as

N
ZaijBui( — a;oBug(vh) — Za”BuJ (vh) — Zaw (€;5(vh))

— BK Z aij(€i(vh) — eij(vh) — fi + f; + xi(vh) — x;(vh))
N aiOBK<Zj=1 aji(eji(vh) +x;(vh)) b~ xo(oh)) — B, (6.4)

N
Zj:l @ji

Since a sampled-data setting is adopted in this study, we assume that the control
inputs are held constant for each sampling interval. Therefore, we have ug(vh) =
uo(t), and u;(vh) = u,(t) for t € [vh, (v + 1)h), and (6.4) can be rewritten as

N
1 ;€44 vh
Zaw u;(t) —uy(t)) = BKZ% eji(vh) — e (vh)) +aiOBKZJ—1 jieji(vh)
=1 j=1 i
N N
+ BKZ aij(ni(vh) —n;(vh)) + B Z ai;j€;;(vh) — Bu;.  (6.5)
j:O j:1
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Substituting system dynamics (5.1) into (6.5), we can obtain

D ay (i) = %5(1) = D ai(Ani(t) — Any(1))

j=0 j=0
N N
= BK ) _aij(e;i(vh) — ej;(vh)) + BK Y~ ai;(ni(vh) — n;(vh)) — By
j=1 Jj=0
N N N
.2 ;€5 vh
+ B Z aijéij (?)h) + aioBKZj_l N] ! ( ) + Z Qi (Afz - Afj) (66)
j=1 j=14ji 5=0

Note that the formation compensation input p; is designed such that the term Bpu; —
Z;V:U a;;j(Af; — Af;) is nullified. In addition, from the definition of formation error,
we have x;(t) — x;(t) = 1;(t) — 1j;(t). Therefore, (6.6) can be rewritten as

Z aii(n:(t) —n;(t)) — Z ai;(Ani(t) — An;(t))

Jj=0

= BK ) ai;(e;i(vh) — e;(vh)) + BK Y~ ay;(n;(vh) — n;(vh))

j=1 Jj=0
N N
1 A5;€45; vh
+ B Z aijéij (Uh) + aioBKZJil N] ; ( ) (67)
j=1 j=1471

Now, we define 71(t), n(t), n(vh), e(vh), and e(vh) as the stacked form of ;(t), n;(¢),
ni(vh), e;j(vh), and €;;(vh), respectively. Then (6.7) can be compactly written as

(Lyps(iy ) @ L)n(t) — (Lys(i,:) @ A)n(t)
= (Lys(i,:) ® BK)n(vh) + (I (i,:)" ® BK)e(vh)
+ (Iy(i,:)" ® B)e(vh) + —e—(Ip(i,:)" ® BK)e(vh)

j=1 Qji

— (Ir(i,:)" ® BK)e(vh), (6.8)
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where L;;(i,:) represents the i row of the matrix Ly, with Iy(i,:) and Ir(i,:)

defined analogously. The augmented overall closed-loop dynamics are then given as

(L @IL)n(t) — (Lry @ A)n(t)
= (Ls; ® BK)n(vh) + (I}; ® BK)e(vh) — (I ® BK)e(vh)

aio

N
Zj:l ajs1

+ (I}, ® B)e(vh) + ( I ® BK) e(vh),  (6.9)

aNQ
N
Z]‘:1 ajN

which can be more compactly written as

(Ls @ L)i(t) = (Lyy @ A)n(t) + (Lyy ® BK)e(vh) + (L& BK)n(vh)
+ (I, ® B)e(vh), (6.10)

where T = 17 + diag{aio,--- ,ano}D~'I%. In addition, considering Definition 4.2

together with Lemma 2.1, we conclude that (Lyy ® I,,) is invertible and the overall

formation error dynamics for ¢t € [vh, (v + 1)h) can be obtained as

i(t) = (Iy ® A)n(t) + (Iy ® BK)e(t — 7) + (L;j1® BK)n(t — 7)
+ (L1 @ B)e(t — 1), (6.11)

where, n(t — 1), e(t — 7), and €(t — 7) are the stacked form of n;(t — 7), e;(t — 7), and

éi(t — 1), respectively.

6.2 Edge Event Generator Design

A novel asynchronous edge-based event-triggered communication mechanism will be
designed in this section. In essence, when an edge-event is detected, only the node
that is incident to the edge will update the corresponding state-estimate using the
triggered states. Inspired by the edge-triggering function designed for continuous

systems [48], we propose an edge-triggering function for the edge &; € £ as

fij(vh) = el (vh)®1e;;(vh) + el;(vh)Dse;;(vh) — 75 (vh) Wij;; (vh), (6.12)
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where 7;;(vh) = x;;(vh) — x;i(vh) — f; + fi, and @, @y, and ¥ are positive definite
matrices to be designed. From the definition of e;;(vh) and ej;;(vh), 7;;(vh) can be

expressed as e;;(vh) — e;;(vh) + n;(vh) — n;(vh) and (6.12) can be rewritten as

fii(vh) =ej;(vh)®1rey;(vh) — (ei;(vh) — eji(vh) +n;(vh) — mi(vh))"
U(e;j(vh) — ej;(vh) + nj(vh) — ni(vh)) + éiTj(vh)Cbgéij (vh). (6.13)

Note that from the Lemma 2.6, we have

—(eij(vh) — eji(vh) + nj(vh) — i (vh)) "W (e (vh) — eji(vh) + nj(vh) — ni(vh))
= —(esj(vh) — eji(vh)) " W(es;(vh) — eji(vh)) — (nj(vh) — ni(vh))"
U(nj(vh) —ni(vh)) — 2(ei;(vh) — eji(vh)) ¥ (n;(vh) — ni(vh))
> —2(eij(vh) — eji(vh))" ¥ (e (vh) — eji(vh))
—2(nj(vh) = ni(vh)) "W (n;(vh) — ni(vh)). (6.14)

Apply Lemma 2.6 again, we obtain

(6.15)

Since our communication is bi-directional, we have

Z —4e,;(vh)We;(vh) — dej;(vh)Wej(vh) = —8e” (vh)(Iy ® W)e(vh).  (6.16)
Eije€

In addition,

= 2(n;(vh) = n;(vh))" ¥ (n;(vh) — ni(vh))
= —2n(vh)" (Line(i, )" @ L)W (Line(i,:) ® L,)n(vh), (6.17)
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and

S —2(n(vh) — ni(vh) W (n,(vh) — ny(vh)

Ei€E

= —2n(vh T(

\\Mg

L) ¥ (Lnc(i,) © 1) )n(vh)

=1

g

Line(is ) Tineliy ) @ 1) (Ty @ W) )y (0h)

=1

= _277 T inc ch ® In) (IN ® ‘;[j)n(vh)

= —2n(vh) T<
)" (L,
= —2n(vh)T (I, Line @ W)n(vh). (6.18)

Therefore, by combining (6.13)-(6.18) we have
Z fii(vh) >e™ (vh)(Iy ® ®1)e(vh) + " (vh)(Iy ® ®y)e(vh)

gij eg

— 8e” (vh)(Iy @ ¥)e(vh) — 2n(vh)" (I}, Line ® U)n(vh).  (6.19)

The next event release instant for edge &;; € £ can then be determined as follows
ty b = inf{vh > t/h| f;;(vh) > 0}. (6.20)

Note that the state estimate error e;;(vh) and control input error €;;(vh) will be reset
to zero whenever the communication on the edge &;; is triggered. For this reason,
fij(vh) <0 can be enforced for all edges at all sampling instants, which implies that
> e, ee Jij(vh) < 0 is always satisfied. Therefore, under the triggering rule (6.20), the
inequality (6.19) can be enlarged as

0> )" fij(vh) >e” (vh)Iy ® ®1)e(vh) + & (vh)(Ly @ Ds)e(vh)
Eije€

— 8e” (vh)(Iy @ W)e(vh) — 2n(vh)" (I}, dine ® U)n(vh), (6.21)

which can be rearranged as

— e (vh)(Iy; @ ®1)e(vh) — &’ (vh) (1 @ y)e(vh)
+ 8e” (vh) (I ®@ W)e(vh) + 2n(vh)" (I}, L. @ ¥)n(vh) > 0, (6.22)
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Therefore, Zf\il fi(vh) <0 can be compactly rewritten in the following matrix form

T
n(h) || 207, Line @ ¥) * * n(vh)
e(vh) Orrnx Nn S(IM &® ‘I/) — (IM &® (I)l) * e(vh) >0,
é(vh) OmeNn OmeMn —IM X \IJQ é(vh)
(6.23)
Using the notation vh =t — 7 from Definition 4.2, we have
T
n(t =7 |2fLine ® V) * * n(t—7)
e(t—T) OrnxNn 8(IM®‘II) —(IM®(I)1) * e(t—T) > 0.
e(t—1) OrMmxNn OrMmx Mn Iy @Wy| |e(t—r1)
(6.24)

6.3 Main Results

The following Theorems present sufficient LMI conditions for co-designing event gen-
erator and controller gains that provide asymptotic and exponential convergence to

the desired formation, respectively.

Theorem 6.1. Under the control law (6.2) and the edge-based communication reg-

ulation condition (6.12), the system (5.1) achieves formation asymptotically if, for

gien positive scalars p, there exist symmetric positive definite matrices @, \ifl, \112,

P, Q, R € R™" as well as arbitrary matrices S eR™™ and Y € R™", such that

R

a5l 20 H <0, (6.25)

where

H21 HQQ * * * *
H31 H32 H33 * * *

He1 Hea 0 Hgqy Hes Heg |

with
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Hy =1y ® (PAT+ AP+ Q - R) Hs = (IgL;}) ® PB"

Hy =Iy @ (YTBT + R— ST) Hss = Ty @ 0,

Hy =Iy® (—2R+ S+ ST+ 20 1,,. ® ®) Hg = h(Iy @ AP)

Hy =Iy® ST Hg, = h(Iy ® BY)

Hyy =Ty ® (R—ST) Hgy = h(L;[1® BY)

Hy = Iy ®(Q + R) = h(L;1}; ® BP)
Hy=(1"L;[)@Y"B" Hgs = p*(Iy @ R) — 2p(Iy @ P).

Hy=-Ty®WU, + 8(In ® &))7

Then, the controller gain matriz K can be computed as Y P!, and the matrices @,
U, and Uy in the triggering conditions are obtained as P~1®P~1, P2, P!, and
P, P 1 respectively.

Proof. Rewrite the closed-loop dynamics (6.11) as 7(t) = (£, where

£(t) = [n(t)T nt—7)1 nit—-hnt et—-71)" et— T)T]T, (6.26)

¢ = [1N®A IyeBK 0 L;i®BK L; 1IT®B] (6.27)

The proof can then be completed by utilizing the Lyapunov functional candidate

(5.17) and following the same procedures as in the proof of Theorem 5.1. O

Theorem 6.2. Under the control law (6.2) and the edge-based communication reg-
ulation condition (6.12), the system (5.1) achieves formation exponentially with a
convergence rate of a if, for given positive scalars py, ps, and «, there exist symmet-
ric positive definite matrices ®, Uy, Uy, W, P, Q, R € R™™, as well as arbitrary
matrices S € R™™ and Y € R™" such that

R

e H <0, (6.28)




where

with

-HH * *
Hy Hyp o %
H3y H3y Hss
0 Hy O 0
Hs; 0 0
0 0 0
H7zy Hpp O
| Hg1 Hg; 0

0 H66 * *
H75 0 H77 *
Hgs O 0

* * * *
* * * *
* * * *
* * * *
Hys  x * w |

H88_

Hyy =Iy® (PAT + AP +Q — R+ 2aP — e ')
Hy =Iy @ (YTBY 4+ e 2R — ST))
Hyy =Ty ® (2" (=28 + S+ 87)) + 2(I], Linc © D),

Hg = e "Iy @ ST)

Hyp =TIy ® (e72"(R — S7))
Hy = —Iy® (e72*"(Q + R))
Hy=(I"L;[)oy"B"
Hy=-Ty®W, + 8(In ® (13)
Hs = (IyL;]) ® PBT

Hss = 1y ® \112
2

T ~
H66 - —Z(IN ® W)

H7 = h(Iy ® AP),

wmc

Hzy = h(Iy ® BY)

Hyy =h(L;{1® BY)

Hzs = h(L; {1 ® BP)

Hrr = pi(Iy © R) — 2p1(Iy ® P)
Hg = h(Iy ® AP)

Hg, = h(Iy ® BY)
Hyy = h(L;{1® BY)
Hgs = h(L;}1}; © BP)

Hgg = e p3(Iy @ W)
—2e7" py(Iy ® P).
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Then, the controller gain matriz K can be computed as Y P, and the matrices @,

U, and Uy in the triggering conditions are obtained as P~*®P~t, P~YU,P~! and

P10, P! respectively.

Proof. Consider the following Lyapunov functional candidate on the interval t €
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[vh, (v + 1)h)
V(t) = Vi(t) + Va(t) 4 Va(t) + Vi(t, vh), (6.29)

where

Vi(t) = n(t)" Iy @ P)n(t),

Valt) = [ @07 (5) (L @ Q)i

t t
t)=nh / / 2T () Iy @ R)\(v)duds,
t—h Js
t
Vi(t,vh) = h2620‘h/ 20T (5)(Iy @ W)n(s)ds
vh

——/ =T () (Iy @ W)n(s)ds,

and P,Q,R,W € R"™™ are symmetric positive definite matrices, and « is positive
constant. Taking the time derivative of the Lyapunov functional candidate along the

formation error dynamics (6.11) yields,

Vi +2aVy = 0" (t)(Iy ® P)n(t) + n(t)" (Iv @ P)n(t) + 2an" (t)(In @ P)n(t)
=) An @ Pn(t) +n(t)" (Iy @ P)né(t) + 2an” (t)(In ® P)n(t), (6.30)

t
V + 2aVs = 7 (1) (Iy © Q)n(t) — 2a / () Iy @ Q)
s

- e (= )Ty @ Qe — ) 20 [ ()T @ Q)n(s)ds

=" () Iy ® Q)n(t) — e **"n" (t — h)(Ix ® Q)n(t — h),
(6.31)

V3 +2aV3 = —h / R D" (0)(In @ R)i(v)dv + h*)" () Iy @ R)i(t)
/ / J(Ix ® R)n(v)e2e®@—1(—20)dvds
t—h

+ 20 / / v)(Iy ® R)n(v)e?* V=D duds
t—h

—h [ DT ) Iy @ Ryiw)dv + KT (0) Iy © R)i(),  (6.32)



91

t

Vi+2aV, = —h262°‘h/ 202 DT (6)(Iy @ W)i(s)ds
vh
t

+2ah262ah/ 27T () (Iy @ W)n(s)ds

h
+7f t2ae 200077 (5) (Ly @ W)ii(s) + B2 (8) (Ly © W)i(t)
71'2
— 20T / 205051 () (T @ Wii(s)ds — - (8) (L © W)(1
= R2e2ehgT (1) (Iy @ W)i(t) — W—QﬁT(t)(IN ® W)i(t), (6.33)

4
where 7(t) = n(t) — n(vh) and 7(s) = n(s) — n(vh). Note that 2=t > e2a(t=h~t) —
e 2%h for v € [t — h,t], and by combining the results from Lemma 4.1, (6.32) can be

enlarged as

t
Vs 4+ 20V < —he=20 / 7T (0)(Ty @ R)i(v)dv + W27 (1) (Ty © R)i(t)
t—h

< —he (= ¢] (In ® R)¢1 — ¢3 (In @ R)2 — ¢1 (In @ S) o
— ¢5 (In @ ST)1) + 10" (1) Iy ® R)n(t), (6.34)

given that ¢, = n(t — 7) — n(t), and ¢ = n(t — h) — n(t — 7) and there exists an
arbitrary matrix S such that
R x

> 0.
ST R

In addition, for ¢ € [vh, (v + 1)h) and from Lemma 6.1, we have

t
}2p20h / 6204(5*'5)7?T(s) (In ® W)n(s)ds
vh

t
> (t o Uh)2 2a(t—vh) / 2a(s—t)ﬁT(S) (IN ® W)n(s)ds

2—/ 22T () (Iy ® W)n(s)ds,

which implies V; > 0, and therefore V is a valid Lyapunov candidate. Moreover, V}

vanishes at each sampling instant, therefore Vy(vh™) > Vy(vh) and V(vh™) > V(vh).
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Defining € and ¢ as

[n(t)T nt -7 nit—-nt et—71)" e(t—-7)T ﬁT(t)]T ; (6.35)

[IN ®A Iy®BK 0 Ljl®BK L;j1;®B o] : (6.36)

§(t)
¢

and combining the results from (6.30), (6.31), (6.33), and (6.34) yields

V+2aV <& (CAn @ R)C+ A2 {(Iy @ W)Q)E(t) +EX(Q+Q+Q+Q)E, (6.37)

where ) -
Iy ® (PA+ ATP +2aP) x x % x
Iy ® (K'BTP) 0 * * * x
Q- 0 0 0 % * x
(I"L;7)® (K™B™P) 0 0 0 % *|
(IxL;]) ® (BTP) 0000 =
i 0 000 0 0f
_IN ®Q * * ok k]
0 0 * * %k
& — 0 0 —e2MIy®Q) * * *
0 0 0 0 * =
0 0 0 0 0 =
0 0 0 0 0 0
—e2h(Iy @ R) * * —_—
e 2"y ® (R—ST) ey @ (—2R+ S + S7T) * * kk
a_ e 20h(Iy @ ST) e 2"y @ (R — ST) —e Iy @ R) * x |
0 0 0 0 * %
0 0 0 0 0 =
I 0 0 0 00 0
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and
-0 * * * * * ]
0 2(IF7 1 @ @) = * * *
~ 0 0 0 * * *
Q=
0 0 0 —Iy®VU;+8(Iy®?) * *
0 0 0 0 —Iy ® ¥y *
0 0 0 0 0 —Z(Iy@W)]
We now define
== h*(Iy ® R+ "Iy @ W)+ Q+Q+Q+ Q. (6.38)

It is clear that when 2 < 0, we have V 4 2aV < 0 for t € [vh, (v + 1)h), where
v is a non-negative integer. In addition, since Vj, V5, V3 are continuous and the
discontinuous term Vj does not grow at each sampling instant (in fact, Vj vanishes),
the Lyapunov functional candidate V' does not grow at sampling instants, that is

lim; - V(t) > V(vh). Therefore, by the Comparison Lemma [96],
V(t) < V(vh)e 22Ut it ¢ [vh, (v + 1)h). (6.39)

By repeatedly applying (6.39), we have

V(t) < V(vh)e =M < V(ph™)e 20wh)
< V((v — 1)h)e 2ewh=(ml)h) g=2a(t=vh)
< V((v— 1)h~)e 22@h=(0=Dh) g=2alt=vh) < . < (0)e-20t, (6.40)

A schematic illustration of the steps used to obtain (6.40) is given in Fig. 6.2. From
the definition of the Lyapunov functional candidate (6.29), we have

efat

(0 < 15

V(0), (6.41)

where A\ (+) denotes the minimum eigenvalue of a matrix. If we further assume

that the formation error function 7(t) is bounded and its first order derivatives are
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square integrable on the interval [—h,0), then it can be shown that /1 (0) is finite.
Therefore, ||n(t)|| converges to the origin (system converges to the desired formation)

at an exponential convergence rate of «.

V(t)

Exponential decay

V(v—1)h7)

V(v =-1h)

V(@ + k™)

V(@ +1)h) +\

(v—-Dh vh (w+1h

Figure 6.2: A schematic illustration of the steps in (6.40)

It remains to show that (6.28) implies = < 0. To proceed, it can be shown by
repeatedly applying Lemma 2.4 that = < 0 is equivalent to

Q+Q+Q+0Q X %
hIy®@ R} —IN®R * < 0. (6.42)
h(Iy @ W)( 0 —e 2N Iy @ W)

We pre- and post-multiply the inequality (6.42) by the non-singular matrix diag{Iy®
PIy®PIy®@PIy®PIy®PIy®P Iy R Iy® W'}, where P = P
In addition, define Q = PQP. R,S,U;, Uy, &, W are defined analogously. Then, the
inequality (6.42) is equivalent to

v

Q * *
hW(Iy® P) —(Iy® R)™! * <0, (6.43)
h(Iy ® P) 0 —e 2 (Iy @ W)™
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where

Q= Iy @ (PAT + AP + Q — R+ 2aP — e ' R)

O = Iy ® (PKTBT + ¢ 2"(R — §7))

Opp =Ty @ (e7>"(—2R+ S+ 7)) + 2(I}, L. ® )
2ah(I ® ST)

Qup = Iy ® (e "(R — S7))

Qa3 = ~Iy @ (e7*M(Q + R))

Oy =(1"L;])® PK'B"

O = Iy @0, +8(I; @ )

51 = (IgL;}) ® PB"

6255 = —IM X @2
2

o T ~
Qe = _Z<IN ® W),

and Qij = 0 if not specified. Moreover, from Lemma 2.5 we have

~Iy@ R <pily @ R—2pi(Iy @ P),
—Iy@ W < pily @ W = 2py(Iy @ P),

for any positive constants p;, and ps. Therefore, it is sufficient to ensure = < 0 if

%

0 . §
W(Iy® P) Iy @R —2p(Ixy @ P) * < 0.
h((Iy @ P) 0 e 20 p2(Iy @ W — 2py(Iy @ P))

(6.44)

Clearly, (6.44) is equivalent to (6.28) by denoting Y = K P. O

Remark 6.1. Note that if we choose a = 0 and exclude the Lapunov functional term
Vi, the LMI conditions in Theorem 6.2 are equivalent to that in Theorem 6.1. There-
fore, Theorem 6.2 is more general than Theorem 6.1. In addition, the inclusion of the
positive constant o in Theorem 6.2 provides explicit knowledge about the convergence

speed of the system.
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Remark 6.2. Although more decision variables (increasing complexity) are introduced
from the inclusion of the discontinuous Lyapunov functional Vi, less conservative

conditions (allowing for larger sampling intervals) can often be derived [97], [98].

Note that a small positive number €? can usually be introduced in the triggering
function to reduce the numbers of unnecessary triggers. In this case, the triggering

function (6.12) can be modified as
fw’(Uh) = ez;- (vh)@leij(vh) + ég;(l)h)q)gé”(vh> — ’F]ZJ<Uh)T\I/T~]W(Uh) - 62. (645)

Theorem 6.3. Under the control law (6.2) and the edge-triggered communication
requlation condition (6.45), the system (5.1) exponentially converges to a neighborhood
of the desired formation with a convergence rate of « if all the conditions stated in
Theorem 6.2 are satisfied. In addition, the neighborhood is defined by {n € R™"|||n|| <
M
2a,\mm(P)€}'

Proof. From the triggering function (6.45) and the triggering rule (6.20), we have

2n(t — 1) (I, Line @ U)n(t — 7) — €' (t — 7)(Ins ® O1)e(t — 1)
—el(t— 1)y @ Pr)e(t —7) +8e’ (t — 7)(Iyy @ W)e(t — 7) + Me* > 0. (6.46)
We propose the same Lyapunov function as in (6.29) and follow the proof of The-

orem 6.2. It can be verified that if the LMI conditions in (6.28) are satisfied, we

have
V(t) 4+ 2aV(t) < M, Vt € [vh, (v+1)h). (6.47)

By the Comparison Lemma [96], for t € [vh, (v + 1)h)

V(t) < (Vwh) - 5 ) ;; 2> + o .
€ €
< V(vh™)e 2elt=vh) o ~2a(t—vh) oo (6.48)
Then by applying (6.47) on the interval [(v — 1)h, vh™|, we have
V(vh™) < (V((v—1)h) — M—EQ)e—Qa(vh*—(v—l)h) LM < (6.49)

20 200
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Substitute (6.49) into (6.48) to obtain,

2
V(t) < V((U . 1>h>6—2a(vh’—(v—l)h)e—Qa(t—Uh) . Me 6—204(7}]1’—(U—l)h)e—Qa(t—vh)

200
Me* Me? Me?
—2a(t—vh) —2a(t—vh)
* 2c ‘ 2 c * 2a
Meé? Meé?
_ —1h —2a(t—(v=1)h) —2a(t—(v—1)h)
V((v = 1h)e ¢ + =
Meé? Meé?
< V -1 h— —2a(t—(v=1)h) —2a(t—(v—1)h) 6.50
< V(v - Dh)e 2 - (6.50)
Again, from applying (6.47) on the interval [(v — 2)h, (v — 1)h~], we have
Meé? - Meé?
V((v—1)h") < (V((v—2)h) - “rollvm D=2 6.51
(0= D7) < (V{(0—2)h) — e S e
We then substitute (6.51) into (6.50) to obtain
Me? Me?
V(t) S V((’U . Q)h—)e—Qa(t—(v—2)h) . _Ee—Qa(t—(v—Z)h) + € (652)

200 200

Then, by repeating the same procedures from above for intervals [(v — 3)h, (v — 2)h™],

(v —4)h,(v—=3)h7], ---, [0,h7], we can conclude that

Me ., n Me?
_e —

V(t) < V(0)e 2 — .
()_ ()e 2a 2a

(6.53)

Follow the discussions below (6.41), we have a finite V(0). In addition, since V (t) >
Amin(P)[In(t)]?, thus

Meé? T Me?

Amin(P)[n(8)]* < V(0)e~2*" — 6.54

(P < Vo) — ¢ < (6.54)

which reveals that ||7(¢)]| is ultimately bounded with an ultimate bound of %e.
[

Remark 6.3. Large o gives a faster convergence rate and implies a smaller neigh-
borhood of the desired formation; however, it introduces more positive definiteness
to the term Hyy in the LMI conditions (6.28), which can potentially render the LMI
conditions infeasible (so that no feasible controllers can be obtained). Therefore, there

is a trade-off between choosing large o values (better performance) and guaranteeing
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the existence of feasible controllers.

6.4 Simulation Results

In this section, the proposed edge-state-based controller (6.2) and event generator
(6.20) with the gains computed from evaluating (6.28) are applied in numerical simu-
lations to a group of four networked (one leader and three followers) linearized mobile
robots under the topology shown in Fig. 6.3. The formation vectors are chosen as
fi= [1 0] T, fo= [—0,7 0_7] T, and f3 = [—0,7 —O,?]T. In all simulations, the
sampling frequency is 10 Hz and the triggering threshold e is selected as 0.0005, and
the virtual leader moves at a constant speed of 0.3 m/s in the X-direction from the
origin. The parameters p1, p2, and « in (6.28) are optimized using the methods dis-
cussed in Section 4.2 as p; = 0.7348, p, = 0.0094, and o = 0.1541. The control gain

matrix K and edge event generator gain matrices ®;, ®5 and ¥ are then computed

—0.9121 0 0.0002 0
K = , P = ,

as

0 —0.9121 0 0.0002

0.2391 0 0.4645 0
‘Ifl - ,‘PQ - .
0 0.2391 0 0.4645

Figure 6.3: A leader-follower communication topology with edges labeled

In a 20 sec simulation run, Fig. 6.4 shows the simulated evolution of all agents.
Fig. 6.5 illustrates the formation error profiles of all agents in the X- and Y-directions,
which clearly shows that a solution to Research Problem 2.2 has been achieved using
the newly-proposed edge-state based formation controller and event generator. The

snapshots of the group formation in the X-Y plane at t = 0 sec, 6.6 sec, 13.3 sec,



99

and 20 sec are depicted in Fig. 6.6, which also demonstrates the achievement of
the desired group formation. Fig. 6.7 demonstrates the communication instants of
each communication edge over the span of the simulation. It can be observed that
all the edges tend to trigger less frequently (with less communication events after
t = 10 sec) as the system approaches the desired group formation. In addition, the
average communication triggering percentage on edges &o, €13, o1, Ea3, E31, E30 are

computed as 56%, 56%, 14%, 14%, 56%, and 56%, respectively.

2 -
| A Agent 1
I O Agent2
151 AN O Agent3
! \ *  Leader
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I \\ — — — Actual formation
|
0.5r |
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— I
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> i}
e
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I
I
-1r [
|
I
1.5 }
I
-2 I
-1 0 1 2 3 4 5 6 7 8

X (m)

Figure 6.4: Simulation results of the formation evolution of the system (5.1) under
edge-triggered ECM

6.4.1 Feasibility Region Analysis

As discussed in Remark 6.3, a large « (fast convergence) can potentially cause the LMI
condition in (6.28) to be infeasible (so that no controller and event generator exist).
Therefore, the author investigated the feasible regions spanned by the parameters py,
p2, and a. In the following, the conditions in (6.28) are tested for the region specified
by p1, p2,a € [0,2] with a resolution of 0.1 in all directions. Fig. 6.8 shows the 3-D
feasibility region (yellow region) over the specified testing region. It can be observed
that the LMI conditions in (6.28) tend to be less feasible (blue region) as a grows

larger regardless of the values in p; and ps. Fig. 6.9 shows the feasible region over p;
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Figure 6.5: Simulation results of the formation error profile of the system (5.1) under
edge-triggered KCM
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Figure 6.6: Simulation results of snapshots of the system (5.1) under edge-triggered
ECM in the X-Y plane at: a) t=0 sec, b) t=4.6 sec, c¢) t=9.3 sec, d) t=14 sec

and ps when « is fixed at 1. It is tempting to conclude that (6.28) is feasible for any
p2 > 0 given that o = 1 and p; > 0.9. Nevertheless, supplementary tests reveal that
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Figure 6.7: Simulation results of triggering instants of the system (5.1) under edge-
triggered ECM

(6.28) can become infeasible with either large p; or large ps.

Feasibility Region FeusihEeT 1

0.5
e 0 o ]

Figure 6.8: Feasibility region of (6.28) over py, p2, @ € [0, 2]
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Figure 6.9: Feasibility region of (6.28) over py, ps € [0,2] when oo = 1

6.4.2 Effect of Communication Mechanisms

Extensive simulations were carried out by the author to study the effect of different
communication mechanisms. Table 6.1 summarizes the simulation results of triggering
percentages of all communication edges in Fig. 6.3 under estimate-error-based ECM,
state-error-based ECM, and PCM, while Table 6.2 summarizes the corresponding
formation error [y norms. It is evident that, among these three ECMs, the proposed
edge-triggered estimated-error-based ECM demands the least amount of triggering

on all edges while still being able to produce comparable formation performance.

Table 6.1: Simulation results of triggering percentage (%) of edges in Fig. 6.3 under
three ECMs

Mechanisms 512 513 521 523 531 532
Estimate-error-based ECM | 56 | 56 | 14 | 56 | 14 | 56
State-error-based ECM 62 | 62 | 58 | 60 | 58 | 60
PCM 100 | 100 | 100 | 100 | 100 | 100




Table 6.2: Simulation results of [ norm (m) of formation error of system (5.1) under

three ECMs
Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 0.86 2.13 2.13
State-error-based ECM 0.82 2.10 2.10
PCM 0.82 2.11 2.11

6.4.3 Effect of Triggering Threshold ¢

To study the effects of the triggering threshold and to compare with the node-triggered
ECM from Chapter 5, the control and event generator from the node-triggered case
has been applied to the simulations with edge-triggered ECMs for threshold values
from 0.0005 to 1. To quantify the communication usages, we define a communication
event as communication between any of two neighboring agents. For instance, one
trigger on the edge & in Fig. 6.3 counts for one communication event, whereas one
trigger on the node 1 counts for two communication events (since the communication
event is broadcast to two neighbors). Table 6.3 summarizes the total communica-
tion events for system (5.1) under edge-triggered ECM and node-triggered ECM with
respect to different triggering thresholds, and (6.4) summarizes the corresponding
formation error [, norms. Simulation results show that large triggering thresholds
can generally reduce the number of communication events at the cost of performance
using both ECMs. In addition, it can be observed that, under the same simulation
conditions, the proposed edge-based triggering algorithm generally generates fewer
triggering events than the node-based triggering algorithms while maintaining com-
parable performances over the span of the simulation.

Table 6.3: Simulation results of total communication events in system (5.1) under

edge-triggered ECM and node-triggered ECM with respect to different triggering
thresholds

Mechanisms For threshold e=
0.0005 0.001 0.01 0.1 1
Edge-triggered ECM | 412 398 | 272 | 192 | 222
Node-triggered ECM | 608 524 | 316 | 244 | 256
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Table 6.4: Simulation results of [, norm of formation error of system (5.1) under
edge-triggered ECM and node-triggered ECM with respect to different triggering
thresholds

For threshold e=
0.0005 0.001 0.01 0.1 1
Edge-triggered ECM | 3.14 | 3.17 | 3.23 | 3.41 | 6.53
Node-triggered ECM | 3.22 3.20 | 3.32 | 445 | 5.59

Mechanisms

6.5 Experimental Results

Experimental validation was conducted using the edge-triggered estimate-error-based
ECM, the state-error-based ECM, and the PCM, on the same setup as in Section 4.3.
The system evolution, formation error profile, group formation snapshots, and edge
triggering instants for the Pioneer robot system under the edge-triggered estimate-
error-based ECM, the state-error-based ECM, and the PCM are shown in Figs. 6.10
to 6.13, Figs. 6.14 to 6.17, and Figs. 6.18 to 6.21, respectively. It is observed that the
solution to Research Problem 2.2 can be achieved under all three ECMs. Moreover,
Table 6.5 summarizes the experimental results of the triggering percentages of all
communication edges under these three ECMs, and Table 6.6 summarizes the corre-
sponding experimental results of the formation error /s norms. It can be concluded
from the experimental results that, with similar formation performances, the proposed
edge-triggered ECM in this chapter demands the least amount of communication re-

sources (matching the observations from simulations) among the three ECMs.

Table 6.5: Experimental results of triggering percentage (%) of edges in Fig. 6.3 under
three ECMs

Mechanisms 812 813 521 523 531 532
Estimate-error-based ECM | 43 | 45 | 16 | 43 | 16 | 41
State-error-based ECM 7|74 62 | 71| 62 | T4
PCM 100 | 100 | 100 | 100 | 100 | 100
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Table 6.6: Experimental results of I, norm (m) of the formation error of the system
(5.1) under three ECMs

Mechanisms Agent 1 | Agent 2 | Agent 3
Estimate-error-based ECM 1.01 2.19 2.21
State-error-based ECM 1.02 2.19 2.21
PCM 0.99 2.16 2.18
2r | A Agent1
| N O Agent2
15 | N O Agent3
I \\ *  Leader
‘ N - Desired formation
r } \\ — — — Actual formation
|
'

X (m)

Figure 6.10: Experimental results of formation evolution of system (5.1) under the
edge-triggered estimate-error-based ECM
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Figure 6.11: Experimental results of the formation error system (5.1) under the edge-
triggered estimate-error-based ECM
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Figure 6.12: Experimental results of snapshots of the system (5.1) under edge-
triggered estimate-error-based ECM in the X-Y plane at: a) t=0 sec, b) t=4.6 sec,
¢) t=9.3 sec, d) t=14 sec
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Figure 6.13: Experimental results of triggering instants of the system (5.1) under the
edge-triggered estimate-error-based ECM
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Figure 6.14: Experimental results of the formation evolution of the system (5.1) under
the edge-triggered state-error-based ECM
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Figure 6.15: Experimental results of the formation error of the system (5.1) under
the edge-triggered state-error-based ECM
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Figure 6.16: Experimental results of snapshots of the system (5.1) under the edge-
triggered state-error-based ECM in the X-Y plane at: a) t=0 sec, b) t=4.6 sec, c)
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Figure 6.17: Experimental results of triggering instants of the system (5.1) under the
edge-triggered state-error-based ECM
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Figure 6.18: Experimental results of the formation evolution of the system (5.1) under
the edge-based PCM
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Figure 6.20: Experimental results of snapshots of the system (5.1) under the edge-
based PCM in the X-Y plane at: a) t=0 sec, b) t=4.6 sec, ¢) t=9.3 sec, d) t=14 sec
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6.6 Conclusion

The leader-follower formation tracking control problem for a networked linear MAS
consisting of one non-autonomous leader was investigated in this chapter. A novel
locally-computable asynchronous edge-based ECM was proposed to regulate the inter-
agent communication. A new distributed formation tracking controller was then
designed based on the edge-event-generator-regulated information. Sufficient LMI
conditions that ensure the formation error signals converge to a neighborhood near the
origin asymptotically or exponentially were derived using Lyapunov-based methods.
Simulation and experiment show that the developed edge-based ECM can generally
generate less communication events than a node-based ECM while still providing a

comparable performance.



Chapter 7

Affine Formation Control for Multiple Quadcopters

This Chapter investigates Research Problem 2.3 as described in the problem formu-
lation section of Chapter 2. It is important to note that the desired formations in the
previous chapters are specified by a set of pre-designed constant formation vectors
(i.e. fi, ---, fn), and the developed formation control strategies are not adapted to
changes in the environment (e.g. obstacle avoidance). In contrast, the desired group
formation is a time-varying transformation (i.e. rotation, scaling, and shear) of a
nominal formation in affine formation control designs, and the transformations are
completely specified by a subset of agents (leaders). Therefore, the leaders (equipped
with intelligent decision making programs and advanced sensors) can influence the
followers (without advanced decision making abilities) to dynamically respond to the
environment by properly designing the affine formation control strategies. In this
chapter, we design affine formation controllers for a group of quadcopters with theo-
retical translational dynamics (7.1a) and experimentally identified attitude dynamics
(7.1b) for the '™ agent as follows (note the translational dynamics and attitude dy-

namics are taken from Section 3.2)

E3 0 Cy,56,Cly, + S, S,

Ui| =—9 (0| + % Sy90,Cp; — CuiSey | (7.1a)
i 1 Co.Co,

(1] T;_ (=i + ko, bei)

0; | = %(_Qi + ko, 0;) | - (7.1b)
_¢i_ Yei

113
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7.1 Affine Controller Design

Note that the Z-dynamics (7.1a) and yaw-dynamics (7.1b) are fully-actuated and
controllers (e.g. PID controllers) can be designed to independently stabilize them.
To simplify the affine formation control design, we only consider the coupled dynamics

in the XY-plane as

—ii- o Z sz'S@iC(bi + SWS@ (7 23)
_yi_ m S’Z’iS@iO@' - Cw7;5¢1-, 7
L )

i (= 0i + ko, fci
. o, 01 o0 (7.2b)
_ei_ %<—01 -+ /{?91.96@')

In the following development, we propose a two-layer (formation layer and local con-
trol layer) affine formation control design. In the formation layer, we define the virtual

affine formation control input for (7.2a) as

Usi _ T CT/JiS@iC@ + S%'S(Zﬁi (7 3)
in m S¢i59ic¢i - C%Sdh' | ‘
Therefore, (7.2a) can be rewritten as a virtual double-integrator system
[.. = (7.4)
Yi in
We further define U;, p;, v; and a; for the i agent as
Ui: yPi = , Uy = X , Ap = B )
yi Yi Yi Yi
and propose an affine formation controller as
1
Up=—— > wij[kp(pi — pg) + k(v — v3) — a5, (7.5)

JEN;

where 7; = [€;;] (€ is the diagonal term in a stress matrix), and k,, k, are positive
gains. In addition, from Lemma 2.2, the matrix €2 is positive definite and thus r; > 0

((7.5) is well-defined) for a group nominal formation (G, r) satisfying Assumption 2.2.
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Then the augmented closed-loop system can be obtained as
fo’(.]f + Qfﬂ)l - —kaﬂpl — ]Cprfpf - k‘WQﬂ’Ul - kUfoUf, (76)

where Q; is defined as Q ® I with Q from (2.2). Q;r, Qp, Q;; are defined analo-
gously. pr/vs denotes the stacked follower position/velocity vector and ps/v; denotes
the stacked leader position/velocity vector. The dyanmics of the affine formation

error in Definition 2.5 can then be represented using (7.6) as

op| 5y
HE |

which is stable for k, > 0 and k, > 0. Note that the desired pitch and roll angles

induced by the virtual control inputs can be computed from (7.1a) as

¢d = arcsm( ([]mSw2 inC¢i)), (78&)

Umcwi + UyiSy,
Uzi + g

04 = arctan( ) (7.8b)

where U,; denotes the virtual control input in Z-direction. In addition, it can be
verified that U2 + UyQZ- + (g + Uy)? = (%)2 Therefore, ¢4 and 6y can be further
simplified as
= arcsin ( (UsiSy, inC’w)’ (7.9a)
\/ U2+ Uz + g
UviCy, + UyiSy,
g

04; = arctan ( ). (7.9b)

Then, finite-time controllers will be proposed to track ¢4 and 6,4 in the local control
layer. To proceed, we define the tracking error in the roll-direction as ey, = ¢4 — @

and propose the following Lyapunov function candidate

1
Vy, = 563)1_. (7.10)
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Take the time derivative of Vy, to obtain

. . 1
V¢i = €¢i(¢di - 7¢>'<€¢i — ¢ai + k¢>¢¢ci))7 (7'11)

7

which is bounded as

v¢1ﬁ < _<U¢i - |¢dl|)’e¢z ) (712)
by designing
1 .
Pei = k_(_e¢z‘ + ¢ai + T¢U¢iszgn(e¢i)) (713)
In addition, (7.12) can be rewritten as
V¢i + (U¢i - |¢d1|) 2V, < 0. (714)

It can be concluded that Vj, — 0 in finite time [99] if we choose oy, > max |dg|. A

similar finite-time tracking controller can be designed for the pitch motion as

1
Qci = k_(_eéi + edi + TeaeiSign(60i>>’ (715)
0;

where 0y, max |édi |.

7.2 Simulation Results

In this section, we study the developed two-layer affine formation controller with a
group of six quadcopter agents (three followers and three leaders) under a nominal
formation configuration (G,r) shown in Fig. 7.1. Note that the affine formation
controllers will only be applied to the XY-plane and each agent is independently
controlled in Z- and yaw-directions using well-tuned PID controllers. In addition,
three leaders are selected in the nominal formation in order to satisfy the affine-
span-condition in Assumption 2.2 since at least three leaders are required to affinely
span a 2-D space. It can be verified that the communication graph in Fig. 7.1 is
universally rigid based on Definition 2.1. Therefore, all the conditions stated in
Assumption 2.2 are satisfied and the resultant 2y matrix is positive definite. The

nominal configuration r is designed as



117

€4

€7

Figure 7.1: Nominal formation configuration with three leaders (in red) and three
followers (in blue)

0.5 0 0 —0.5 —0.5 -1
r = , g = , '3 = y g = yI's = yTe = .
[ 0 ] lo.J [—0.5] [ 05 ] [—0.5] [ 0 ]

The normalized equilibrium stress vector for edges €;,--- , €9 can then be computed

based on the nominal configuration as
w=10.3254 0.3254 —-0.2169 0.4881 —-0.1627 —-0.1627 0.4881 0.3254 0.3254],

and the corresponding stress matrix is given as

[ 04330 —0.3254 —0.3254 0 0 0.2169 |
—0.3254  0.6508 0  —0.4881 0.1627 0
o_ |708254 0 0.6508 0.1627 —0.4881 0
0  —0.4881 0.1627  0.6508 0  —0.3254
0 0.1627 —0.4881 0 0.6508 —0.3254
| 0.2169 0 0  —0.3254 —0.3254 0.4339

Moreover, in all simulations, the controller parameters are chosen as k, = 10, &k, =
7.05, 04, = 0p, = 7.31, and the Sign functions in (7.13) and (7.15) are replaced by a

Sigmoid function to reduce the chattering effect that may occur.

Fig. 7.2 shows the simulated evolution of all agents under the proposed two-layer
affine formation controller in the X-Y plane. The leaders’ trajectories are planned in

advance, and all leaders are initially moving at a constant speed in the X-direction and
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then they try to scale down to a tighter formation in order to pass through a narrow
passage. The leaders will then scale back to the nominal formation when successfully
leaving the passage. Note that leaders may generate desired trajectories online based
on the task requirements and surrounding conditions in real life applications. Fig. 7.3
depicts the system affine formation error over the duration of the simulation, which
validates that a solution to Research Problem 2.3 has been accomplished in simulation.
The snapshots of the group formation in the X-Y plane at t = 0 sec, 10 sec, 20 sec,

and 30 sec are given in Fig. 7.4, and Fig. 7.5 demonstrates the group evolution in 3D.
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Figure 7.2: Simulation results of the formation evolution in X-Y plane
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Figure 7.3: Simulation results of the affine formation error
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Figure 7.4: Simulation results of snapshots of the group formation in the X-Y plane
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7.3 Conclusion

This chapter investigated the affine formation control of a group of qaudcopters with
experimentally identified dynamics. A two-layer formation control structure was pro-
posed to account for the underactuated nature of quadcopter dynamics. A linear affine
formation controller was designed based on the networked virtual double-integrator
agents in the formation layer, and a finite-time controller was developed to track the
desired virtual inputs in the local controller layer. The developed two-layer affine for-
mation control method was validated in X-Y plane using a group of six quadcopters

in simulations.



Chapter 8

Conclusions and Future Research

8.1 Conclusions

Chapter 4 investigates the leader-follower formation tracking control problem for
MASSs consisting of one autonomous leader and multiple general linear homogeneous
followers with a sampled-data-based ECM using Lyapunov-based LMI methods. In
particular, the formation control problem was transformed into a stability analysis
problem of a closed-loop time-delayed system under the proposed formation pro-
tocol and ECM. The communication event generator and the controller were then
co-designed based on the formulated sufficient conditions that ensure an asymptotic
convergence to the neighborhood of the desired formation. Numerical simulations and
experimental implementations were conducted using a group of unicyle-type mobile

robots with linearized dynamics to validate the proposed method.

The leader-follower formation tracking control problem for linear MASs with a
non-autonomous leader was studied in Chapter 5. A novel state-estimate-based event
generator was established for each follower agent to regulate the inter-agent com-
munication at each sampling instant. A new formation tracking controller was then
designed based on the event generator regulated information, and new LMI conditions
that guarantee the ultimate boundedness of the closed-loop formation error dynam-
ics were derived. It was observed in both simulation and experiment that, for the
conditions used in this research, the developed estimate-error-based ECM introduces
fewer communication instants than the traditional state-error-based mechanisms or

PCM without any notable differences in the formation control performance.

The same formation control problem from Chapter 5 was studied in Chapter 6

using a novel locally-computable asynchronous edge-based ECM. A new distributed
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formation tracking controller was then designed based on the edge-event-generator-
regulated information. Sufficient LMI conditions that guarantee asymptotic and ex-
ponential convergence are derived, respectively. In addition, the exponential conver-
gence rate is explicitly expressed in the derived exponential convergence conditions
and can be tuned based on design requirements. Simulation and experimental results
show that, for the conditions used in this research, the newly-proposed edge-based
ECM can, in general, generate less triggering events than the node-based ECMs.
Chapter 7 studies the time-varying formation control problem of a multi-quadcopter
system using affine formation control strategies. Given the underactuated nature of
quadcopters, a two-layer (formation layer and local control layer) formation control
design is proposed. In the formation layer, a quadcopter is treated as a virtual double-
integrator and affine formation controllers were designed based on the networked vir-
tual double-integrator agents. The resultant virtual affine formation control inputs
were then converted to the desired attitudes based on the quadcopter dynamics, and a
sliding mode controller was then proposed to ensure finite-time tracking convergence
to the desired attitude in the local control layer. Simulations were conducted in the

XY-plane to successfully validate the proposed controllers.

8.2 Future Research

Although collision avoidance and obstacle avoidance are important for practical im-
plementable formation controllers, they are not explicitly considered in this thesis.
Control barrier functions have been found to be successful in several collision avoid-
ance scenarios [100,101]. The main idea involves designing a safety controller that
ensures the forward invariance of a pre-designed safety set, and the safety controller
can then be united with other nominal formation controllers using quadratic pro-
gramming to achieve safety-critical formations. Centralized formulation is the main
drawback of this method, thus it would be interesting to investigate the application
of control barrier functions in collision avoidance using a distributed manner.

It should be noted that the formation controllers in Chapters 5 and 6 require
absolute velocity information from neighboring agents; however, velocity information
is not easily obtained (more communication load) in practical MAS settings. It would

be interesting to design formation controllers without using velocity measurements.
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Alternatively, velocity estimators could be designed based on the information locally
available.

As mentioned in Chapter 1, the requirement of sampling synchronization across
all agents imposes a major limitation on the sampled-data-based ETC design. In
addition to distributedly synchronizing the agents’ clocks, it is also possible to design
formation controllers that are robust to sampling asynchronization. In particular,
measurements from an agent with asynchronized sampling may be modeled as mea-
surements with constant long-delays, and tools from delayed-systems can possibly be
applied to analyze system stability.

Other interesting future research directions include: experimental validation of
the two-layer affine formation controllers developed in Chapter 7, affine formation
control for MASs with more complex agent dynamics (e.g. general linear dynamics
and Euler-Lagrange dynamics), event-triggered affine formation control, and fully
distributed (without explicit knowledge of the communication topology and total

number of agents) sampled-data-based formation tracking controller design.
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