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ABSTRACT

Phytoplankton fuel biogeochemical processes in the ocean and are key players influencing

the global climate. All biogeochemical processes mediated by microbes are ultimately

underpinned by gene expression. In this thesis, I aim to connect gene expression to

biogeochemically important cellular processes in Southern Ocean phytoplankton. First,

I identify and model pervasive biases in metaproteomic analyses and develop methods

for overcoming them, leading to more robust inferences (Chapter 2 and Chapter 3). In

Chapter 2, I develop a computational model for predicting cofragmentation bias and

use this model to study how cofragmentation impacts inferences in metaproteomics. In

Chapter 3, I delineate ‘proteomic traits’ across microbial taxa in an Antarctic phytoplankton

bloom, connecting differences in gene expression patterns to ecological strategies. I also

highlight the importance of database choice and quantify its implications for metaproteomic

conclusions. In Chapter 4, I develop a proteomic allocation model to quantify trade-offs

associated with iron and manganese bioavailability, and reframe micronutrient-controlled

growth in the ocean as a function of cellular costs and constraints. This model offers

a novel framework for leveraging metaproteomic data to learn about cellular processes

in phytoplankton and for inferring taxon-specific rates and biogeochemical metrics. A

key unknown in this model is the various antioxidant systems used by phytoplankton. I,

therefore, review various antioxidant mechanisms and synthesize their contributions to

cellular elemental stoichiometry in phytoplankton (Chapter 5). Finally, in Chapter 6, I use

metaproteomics to determine environmental controls on ribosomal mass fraction across

two taxonomic groups in the Amundsen Sea Polynya.
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CHAPTER 1

INTRODUCTION

Microbes are critical players in the transformation of elements in the ocean, forming the

heart of marine biogeochemical cycles. Many biogeochemical processes are fundamentally

powered by gene expression: nitrogen fixation is mediated by the enzyme nitrogenase; iron

(Fe) uptake is a function of the production of Fe transporter proteins; and carbon fixation

occurs via the protein RuBisCO. Yet, this connection (from gene expression to microbial

behaviours) has rarely been represented in models of biogeochemical cycles. This is due

to both technological challenges and a historical focus on the emergent outcomes of gene

expression that are biogeochemically relevant.

For an oceanographer attempting to model the fluxes and transformations of elements

in the ocean, perhaps it is sufficient to only focus on outcomes of gene expression (e.g.

elemental stoichiometric ratios, carbon fixation rates, resource-growth relationships, etc.).

These emergent outcomes are highly important, for example the ratio of nitrogen to

phosphorus in phytoplankton ‘protoplasm’ controls the eventual supply of these elements

to the surface ocean, therefore influencing global primary production (Redfield, 1958).

Many biogeochemical models predict these quantities using phenomenological equations

with inputs of environmental variables like light, temperature, and nutrient concentrations

(not so different from the equations in Riley, 1946). In doing so, they bypass the connection

between cellular behaviours and gene expression. There is nothing inherently wrong with

using these phenomenological relationships, but are these ‘conventional’ predictions (i.e.

those ignoring gene-level processes) ‘good enough’?

Some biogeochemical models have sufficient predictive abilities for their intended

uses, while others are failing. I will only briefly highlight the successes of biogeochemical
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modelling (but in general it is remarkable that a complex system can be simplified in this

way). The first global biogeochemical model, developed by Bacastow and Maier-Reimer

(1991), was able to predict the broad distributions of phosphate and oxygen in different

regions. Just over a decade later, Aumont et al. (2003) predicted general patterns in

primary productivity across ocean basins using a global biogeochemical model. Using

an ecological approach, Follows et al. (2007) showed that a simple trait-based model can

recapitulate biogeographic trends in phytoplankton functional types. Some biogeochemical

models built from thermodynamic principles can make accurate predictions, particularly

in marine sediments (Vallino, 2010; Vallino and Algar, 2016; Vallino and Huber, 2018;

Algar and Vallino, 2014; Hardison et al., 2015), and with few free parameters. Anecdotally,

predictions that are more reliant on geochemistry tend to be better than those more reliant

on biological parameterizations. For example, Xue et al. (2016) modelled pCO2 in the

Gulf of Mexico and found good correspondence between observations and predictions.

However, this is partly due to constraints; there are fewer biological observations to

constrain models compared to chemical and physical observations (Fennel et al., 2019).

There are many challenges with modern biogeochemical models. For example, even

simple interactions between nutrients (e.g. colimitation) are rarely included in many

biogeochemical models. Interactions are typically represented using Liebig’s Law of

the Minimum, which predicts abrupt changes in resource limitation, i.e. ‘tipping-point’

behaviour (Equation 1.1). In this case, growth-resource functions are the minimum of a set

of Michaelis-Menten dependencies, for example:

µ = min(
R1

R1 +K1

,
R2

R2 +K2

) (1.1)

where µ is the growth rate, R1 and R2 represent different resources, and K1 and K2

are different resource-specific half saturation constants. However, tipping points have not

been realized in empirical observations (e.g. Hillebrand et al., 2020), and there is evidence

from gene expression data that microbes do not experience stress from only one nutrient at

a time (Saito et al., 2014). For certain biogeochemical cycles, for example the Fe cycle,

models have extremely divergent predictions (Tagliabue et al., 2016). Tagliabue et al.

(2020) showed that parameterizations of the biology can have dramatic, cascading effects

on predictions. In a striking example for the nitrogen cycle, Wrightson and Tagliabue

(2020) showed that there is large variation in the magnitude and direction of nitrogen
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fixation predictions in nine earth system models. In general, much of the uncertainty that

underpins variation in predictions across models is related to how microbes are represented.

Perhaps, as a field, we should be including more mechanistic details of microbial growth

to improve these representations. Specifically, we should look further into how gene

expression directly impacts biogeochemical cycling, to ultimately build biogeochemical

models that are more flexible and have better predictions. Encouragingly, studies that have

bridged the gap from genes to biogeochemical processes have offered new ways to flexibly

model complex processes (e.g. Reed et al., 2014; Coles et al., 2017; Haas et al., 2021).

From another perspective, there is a wealth of gene expression data from complex

marine microbial communities (e.g. Cohen et al., 2021). Yet, these data are rarely used

to quantify cellular processes. Connecting gene expression measurements to growth for

marine microbes can be used for dual purposes, in 1) creating better biogeochemical

models and 2) quantifying cellular processes in environmentally important microbes.

How does gene expression impact cellular-level outcomes like growth rates, elemental

stoichiometry, or elemental quotas? Everything an organism does is because of gene

expression. Beginning in the 1950s, Schaechter and others identified that the number of

ribosomes per cell increases linearly with growth rate (Schaechter, Maaløe and Kjeldgaard,

1958). More recently, Scott et al. (2010) used phenomenological equations to relate

ribosomal mass fraction to growth rate, demonstrating the interdependence of growth

and gene expression. Others have taken a machine learning approach to predict growth

rate from gene expression profiles (Wytock and Motter, 2018). The relationship between

elemental quotas and gene expression has received less attention. Consider the relationship

between iron quotas and transporter proteins: Fe transporters can be used to increase Fe

uptake rate, therefore increasing incorporation of free Fe into proteins, and ultimately

increasing cellular Fe quotas. More directly, Saito et al. (2011) estimated micronutrient

quotas by measuring protein abundance profiles in Crocosphaera watsonii. Two main

challenges for including gene expression in models of biogeochemical processes are that

1) we do not always understand how gene-level processes directly connect to cellular level

processes, and 2) quantitative relationships between gene expression and cellular processes

have rarely been established, particularly for non-model organisms.

Gene expression can be broadly defined as ‘the appearance in a phenotype of a

characteristic attributed to a particular gene’ (Oxford Languages). Which method is optimal
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for measuring gene expression? This partially depends on what the target phenotype is,

which also depends on the question and the system. In humans, it might be a disease state.

For microbes, a common target phenotype is the collection of reaction rates occurring

in the cell (e.g. rates of uptake, translation, etc.). One might argue that in some cases,

even detecting a gene can be used as a proxy for gene expression (for example when

said gene is constitutively expressed). However, in most cases it would be beneficial to

more directly measure the processes that underpin a given phenotype: quantifying mRNA

(transcriptomics), protein (proteomics), or metabolites (metabolomics).

Transcriptomics has several advantages: it is comparatively inexpensive to achieve a

very high depth of sequencing, identifying lowly abundant transcripts. However, mRNA

transcripts do not directly act on the phenotype (i.e. they do not mediate chemical transfor-

mations). Furthermore, mRNA abundance only weakly correlates with protein abundance

(on a transcript-to-protein basis; Liu, Beyer and Aebersold, 2016; Bender et al., 2017).

At the process-level however, transcript allocation has a high correlation with proteomic

allocation (0.87 Pearson correlation coefficient using GO-slim processes; Yu et al., 2020).

Variants of transcriptomics, like ribosomal profiling, offer quantification accuracy surpass-

ing that of untargeted proteomics by estimating protein synthesis rates (Li et al., 2014b;

Mori et al., 2021). Conceptual advances in transcriptomics are fundamentally those that

get closer to measuring proteins, so why not measure proteins more directly?

Proteomics can be used to measure the abundance of a collection of proteins, the

molecular machines that underpin many phenotypes. For example, many proteins mediate

specific chemical reactions. Proteomics therefore has major theoretical advantages for

measuring the outcomes of gene expression – it is conceptually close to reaction rates in

a cell because protein abundance can influence reaction rates directly. Further, proteins

make up a dominant fraction of cellular mass compared to other biomolecules (Liefer

et al., 2019), also imposing important constraints on growth because of protein synthesis

(Molenaar et al., 2009). Despite these advantages, proteomics typically cannot achieve

the characterization depth that transcriptomics offers. (Note that this is partially because

transcript abundance has a lower dynamic range than protein abundance; Yu et al. (2020).)

Metabolomics is one step closer, in that the collection of metabolites are essentially the

proximate end products of gene expression. However, there are three major disadvantages

for metabolomics. 1) Metabolites can have very different chemical properties, making
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relative quantification across metabolites daunting, and preventing a global picture of

metabolite abundance (at least using untargeted metabolomics). 2) Metabolites do not

have sequence-specificity, so it is sometimes impossible to attribute a metabolite to a

particular gene (unlike proteomics and transcriptomics). This is a major hindrance to

applying metabolomics to characterize gene expression in a microbial community. 3) Many

end-products of protein-transformations are not possible to measure using metabolomics,

for example proteins that transform reactive oxygen species. Overall, proteomics is an ideal

approach for characterizing gene expression (and therefore metaproteomics for studying

assemblages of microbes). In practice, however, metaproteomics has serious challenges

that prevent it from being a widespread tool.

In this thesis, I address current problems in metaproteomics, with the ultimate goal

of connecting gene expression of marine microbes to biogeochemically-relevant emer-

gent properties. In particular, I consider how the essential micronutrients Fe and man-

ganese (Mn) influence phytoplankton gene expression. Below, I give some background on

metaproteomic methods, the challenges in this field, and trace metal biogeochemistry to

contextualize the thesis.

1.1 Metaproteomics Overview: A Method for Observing
Gene Expression In Situ

Metaproteomics, the identification and quantification of proteins from different species,

is a powerful tool for learning about microbial behaviours. The term ‘metaproteomics’

was first coined in 2004 (Rodrı́guez-Valera, 2004), and Wilmes and Bond (2004) were the

first to characterize a metaproteome of activated sludge. Since then there have been many

advances. Here I will first describe a general, modern methodological approach for many

metaproteomics experiments, and then I will discuss overarching challenges.

Microbes are collected from their environment and promptly stored at -80 ◦ C. Proteins

present in the microbes are then extracted, and then digested into peptides. This type of

proteomics is referred to as ‘bottom-up’ proteomics, and is done because peptides ionize

more easily than whole proteins. This complex mixture of peptides is then ‘simplified‘ prior

to mass spectrometry using liquid chromatographic separation, which typically separates

peptides based on their hydrophobicity (i.e. with reversed-phase chromatography). Once

the peptides leave the chromatographic separation column, they are ionized using a ‘soft
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ionization’ approach, such that the peptide molecules mostly stay intact.

The mass spectrometer (MS) then measures the quantity of a given ion, and data

from the MS can be used to infer the likely identity of an ion. Most of the work presented

in this thesis uses a discovery-based approach (also known as ‘shotgun’, or ‘untargeted’

proteomics), specifically using a data-dependent acquisition strategy (DDA). In DDA

experiments, whole ions (i.e. peptides) are selected for fragmentation based on their

intensity relative to other ions. During this stage (the MS1 or ‘precursor ion’ scan) the

mass-to-charge (m/z) ratio is determined for ions eluting from the column. Once an ion is

selected, it is then fragmented and then the m/z for subsequent fragments are measured

(known as the MS2 scan). This scan of peptide fragments’ m/z is called the peptide mass

spectra, and can be used to identify the amino acid sequence of the intact peptide (described

below).

Peptides can also be quantified using several different methods. One common method

is called ‘spectral counting’, which sums all MS2 spectra corresponding with a certain

amino acid sequence. Another method, which is mostly used in this thesis, is called ‘ion

intensity integration’. The intensity of an ion is proportional to the number of molecules of

that ion. In this second approach, the intensity of the peak in the MS1 scan is used to infer

the abundance of a certain ion. For all quantification methods, the abundance of a peptide

is normalized to some metric of total peptide abundance (e.g. the sum over all spectral

counts, or the sum of peptide intensities).

Peptide sequences are identified in several ways as well, in this thesis I mostly used

‘database searching’. In database searching, the user provides a list of potential proteins, in

the form of amino acid sequences (gene sequences can also be used). From this, theoretical

mass spectra of peptides are generated in silico, and this large set of theoretical mass

spectra are compared to observed mass spectra. There are a multitude of ways to score

and match mass spectra, but at the heart of all these methods is simply a distance metric

that searches for the theoretical spectra with the lowest distance. After correcting for a

user-defined false discovery rate, a set of peptide-spectrum matches (PSMs) are produced.

At this stage, there are many different approaches used in metaproteomics to go from the

set of PSMs to biological inference (e.g. MetaGOmics, MetaproteomeAnalyzer; Riffle

et al., 2018; Muth and Renard, 2017), which largely depend on the biological question

(note that there is contention in metaproteomics over whether biological inferences should
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be peptide- or protein-centric).

1.2 Current Challenges in Metaproteomics

Metaproteomics has improved immensely over the last decade: Wilmes and Bond (2004)

confidently identified 3 proteins in their activated sludge! As a field, it has had a similar

progression like other high-throughput ‘omics fields. For example, the Human Genome

Project’s first goal was to sequence a human genome, and only after that has the technology

been used to learn about human genetics. For ‘meta’-omics, there is an additional challenge.

Laboratory and computational tools used for meta-omics typically begin as the same,

or derived from, those from single-organism ‘omics. Metaproteomics is no exception.

A lot of challenges the field of metaproteomics faces are because some of the basic

assumptions that are obviously true for single-organism proteomics, are probably not true

for metaproteomics. These challenges can be categorized into either laboratory-based or

bioinformatic. In this thesis I focus on the latter, so I will briefly overview these challenges.

Some assumptions for single-organism proteomics are: observed spectra are found

in the database of potential peptides, the sample complexity does not shift significantly

across samples, and proteins all come from the same organism. Many of these assumptions

have not been rigorously assessed or are obviously broken in metaproteomics. Yet, they

are foundational, and could bias all observations in perverse ways. For example, Bergauer

et al. (2017) compare protein expression across very different ocean regions, and observe

an increase with depth of a specific protein group. But, their database mostly comes from

one region. Do they observe an increase in protein expression because protein expression

is actually increasing, as the authors suggest? One plausible alternative explanation for

their observation is that the database used was increasingly poorly matched, which would

artificially inflate their normalization factor. It is clear that simple issues like these must be

studied. Throughout this thesis I use previously published data, simulation models, and

my own data to quantify and evaluate these types of biases.

1.3 Trace Metal Biogeochemistry

Trace metals limit primary production in large swathes of the ocean, with broad conse-

quences for carbon sequestration and fisheries (Tagliabue et al., 2020). Since the 1990s,
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Fe has been recognized as an important limiting nutrient (Martin, Gordon and Fitzwater,

1991). The biogeochemical cycling of Fe in the ocean has several notable characteristics.

First, dissolved Fe is present in various chemical species: as inorganic free Fe (Fe’), and

bound to ligands (FeL) of varying strength. FeL is typically further classified into various

forms depending on the binding strength of the ligand. The chemical speciation of Fe is

complex, and also includes various colloidal and particle forms (see Tagliabue et al., 2017).

Fe is an essential micronutrient for photosynthetic phytoplankton, used for a variety of cel-

lular processes: photosynthesis, reactive oxygen species metabolism, nitrogen metabolism,

etc. (Raven, Evans and Korb, 1999). Various ocean regions have been deemed Fe-limited,

and in this thesis I particularly focus on the Southern Ocean. The Southern Ocean, or the

ocean wrapping around Antarctica, is also strongly influenced by light availability. Other

less-studied micronutrients, like manganese, have more recently come to light as playing

an important role in limiting primary production (Browning et al., 2021; Wu et al., 2019;

Middag et al., 2013).

Manganese is required for all photosynthesis in the ocean because it is a cofactor in

Photosystem II (PSII). Since the 1990s, researchers have explored the impact of Mn on

primary production in the Southern Ocean, with varied observations (Martin, Fitzwater and

Gordon, 1990; Buma et al., 1991). More recently, there have been clear responses of Mn

addition to Southern Ocean water in the form of bottle incubation experiments (Wu et al.,

2019; Browning et al., 2021). These experiments point to Mn as a relatively understudied

micronutrient. Yet, it does appear to play a secondary role compared to Fe, given the

variability in response and from seminal calculations by Raven (1990). Colloquially, one

Antarctic researcher referred to Mn bottle incubation experiments saying: ‘it’s not that

we haven’t looked for a response, we did and just didn’t find anything’. This highlights

one of the challenges in comparing Mn and Fe responses in the ocean: bottle incubation

experiments that do not show any differences are not always published. So it is challenging

to compare the relative extent of Mn versus Fe limitation in the Southern Ocean using

bottle incubations from the literature alone.

Some researchers have also hypothesized that Fe and Mn interactively influence

growth. Peers and Price (2004) hypothesize that under low Fe, Mn requirements increase.

The mechanism of this interaction is further described and studied in Chapter 4. From

an oceanographic perspective, given that there is evidence both Mn and Fe influence
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phytoplankton growth in situ, it is important to predict the combined effect on Southern

Ocean productivity. Furthermore, it is completely unknown how Mn might change in

the changing ocean and the impacts Mn limitation might have on longer time-scales (e.g.

Keith Moore et al., 2018).

1.4 Structure of Thesis

In this thesis I aim to quantify cellular processes that underpin phytoplankton growth

and metabolism by combining metaproteomic observations with models. Specifically, I

focused on Fe and Mn controls on phytoplankton growth. In Chapters 2 and 3, I tackle

several methodological challenges associated with metaproteomics. In Chapter 2, I develop

a computational model to predict the effects of cofragmentation in metaproteomics. I then

use this model to study the general effects of cofragmentation, which informed later data

analysis choices in all subsequent thesis chapters. In Chapter 3, I use metaproteomics

to identify and quantify proteomic traits across diverse marine microbes in an Antarctic

phytoplankton bloom. In this chapter I also examined how database choice, normalization,

and protein group inference can be leveraged for metaproteomics with eukaryotic organ-

isms. In Chapter 4, I developed a proteomic allocation model of a diatom to study the

interaction between Fe and Mn, using the metaproteomic observations to inform the model

parameters. This novel connection with metaproteomic data also enabled inferences about

in situ, taxon-specific growth rates (and other biogeochemically important characteristics).

In Chapter 5, I reviewed a key unknown identified in studying the interaction between Fe

and Mn: antioxidants in phytoplankton. In this chapter, I synthesized how antioxidants

influence phytoplankton elemental stoichiometry. In Chapter 6, I identify the environ-

mental controls on the ribosomal mass fraction across Fragilariopsis and Phaeocystis

spp., connecting protein synthesis to growth using metaproteomic observations from the

Amundsen Sea Polynya. Finally, I conclude the thesis with an overarching view for using

gene expression data to learn about biogeochemical processes.
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CHAPTER 2

PREDICTION AND CONSEQUENCES OF
COFRAGMENTATION FOR
METAPROTEOMICS

This work was published previously in Journal of Proteome Research (McCain and

Bertrand, 2019).

2.1 Abstract

Metaproteomics can provide critical information about biological systems, but peptides

are found within a complex background of other peptides. This complex background

can change across samples, in some cases drastically. Cofragmentation, the co-elution of

peptides with similar mass to charge ratios, is one factor that influences which peptides

are identified in an LC-MS/MS experiment: it is dependent on the nature and complexity

of this dynamic background. Metaproteomics applications are particularly susceptible to

cofragmentation-induced bias; they have vast protein sequence diversity and the abundance

of those proteins can span many orders of magnitude. We have developed a mechanistic

model that determines the number of potentially cofragmenting peptides in a given sample

(called cobia, https://github.com/bertrand-lab/cobia). We then used previously published

datasets to validate our model, showing that the resulting peptide-specific score reflects

the cofragmentation ‘risk’ of peptides. Using an Antarctic sea ice edge metatranscriptome

case study, we found that more rare taxonomic and functional groups are associated with

higher cofragmentation bias. We also demonstrate how cofragmentation scores can be

used to guide the selection of protein- or peptide-based biomarkers. We illustrate potential
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consequences of cofragmentation for multiple metaproteomic approaches, and suggest

practical paths forward to cope with cofragmentation-induced bias.

2.2 Introduction

Metaproteomics is a powerful tool for examining microbial community function in situ.

However, microbial communities are metabolically and phylogenetically diverse, and

contain protein amounts ranging many orders of magnitude (Koziol et al., 2013; Zubarev,

2013). This diversity and dynamic range lead to immense and variable sample complexity,

a fundamental challenge of the ‘proteomic pipeline’ (i.e. from sample to biological infer-

ence) and a central issue in each pipeline stage. High sample complexity influences sample

preparation, liquid chromatography (LC), mass spectrometry (MS), and bioinformatic

analyses (Schneider and Riedel, 2010; Muth, Renard and Martens, 2016; Heyer et al., 2017;

Schiebenhoefer et al., 2019). Determining how different aspects of metaproteomic charac-

terization impact our biological conclusions is important for interpreting metaproteomic

results, and more broadly for understanding microbial community metabolism.

One of the most significant challenges associated with high sample complexity is when

multiple peptides of similar mass to charge ratio (m/z) elute from the chromatographic

separation and are introduced into the mass spectrometer simultaneously. Co-eluting

and similar m/z peptides interfere with charge state assignment, and thus may not be

selected for fragmentation during data dependent acquisition experiments. If selection

and fragmentation do occur, these cofragmenting peptides generate mass spectra that

are typically of low quality, leading to decreased probability of detection (Houel et al.,

2010). (Herein, we describe peptides of similar m/z and elution times as ‘cofragmenting’.)

In addition, a significant portion of peptides are susceptible to cofragmentation because

of their low ion intensity (Michalski, Cox and Mann, 2011). Decreased probability of

detection may also lead to inaccurate peptide quantification, either via fewer peptide

spectrum matches (i.e. for spectral counting), or as interference with feature detection (i.e.

for ion intensity integration). Bioinformatic methods have been developed to deconvolute

mixtures of mass spectra (Wang, Bourne and Bandeira, 2011; Zhang et al., 2014; Wang,

Bourne and Bandeira, 2014; Dorfer et al., 2018), to estimate the extent chimaeric spectra

influence proteomics (Houel et al., 2010), and to predict unique peptide transitions for

targeted proteomics (Röst, Malström and Aebersold, 2012). Yet, we are not aware of any
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computational approaches that predict cofragmentation bias for a given peptide or protein.

While it is clear that cofragmentation has consequences for peptide identification in

metaproteomics, predicting cofragmentation-induced bias is inherently challenging. This

is because there are many processes that lead to successfully identifying a peptide, and

the effects of these processes are difficult to differentiate. For example, it is difficult to

distinguish between a peptide that is not observed because cofragmentation reduces MS2

spectral quality, a peptide that is subject to ion suppression during ionization from another

co-eluting peptide, or a peptide that is simply not in the sample.

Our main objective is to determine how cofragmentation biases metaproteomics,

and to develop a score that reflects peptide-specific cofragmentation risk. Thus, we

(1) developed a mechanistic model to predict cofragmentation, (2) examined whether

cofragmentation risk was an important driver of peptide detection, (3) assessed potential

consequences of cofragmentation at both coarse and fine-scale taxonomic and functional

levels, and (4) suggest practical steps forward to address this issue in metaproteomics. To

do so, we developed a computational tool to simulate each of the steps of the proteomic

pipeline – from sample preparation to LC-MS/MS – to predict peptides that are most

at-risk of cofragmentation. The input of our simulation is the ‘potential’ metaproteome

(i.e. a metatranscriptome or metagenome). Thus, we hypothesize that cofragmentation

can be approximated by simply counting the number of potentially cofragmenting ions.

We validate this approach by examining how predicted cofragmentation is associated with

the probability of detection in five datasets from three studies, of coupled metagenomic,

metatranscriptomic, and metaproteomic datasets. We also use three single-organism

proteomes to examine the influence of cofragmentation on less complex samples.

2.3 Methods

We developed a computational model to simulate each aspect of the proteomic pipeline

(called ‘cobia’ for cofragmentation bias). There are three stages of the approach all of

which are in silico: (1) protein digestion and peptide modification, (2) liquid-chromatography

elution time prediction, and (3) tandem mass spectrometry. There are two required inputs,

(1) predicted protein sequences (in a .fasta file format) and (2) liquid chromatography

and mass spectrometry parameters (Fig. 2.1). The entire model can be used from the

command line as a series of modular command line functions, and is written in Python 2.7
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Figure 2.1: Conceptual schematic of cofragmentation bias prediction. The left side
indicates where cobia fits in a proteomics pipeline and what the main required input is (a
predicted protein sequence file). The right side indicates how cobia works conceptually.
Peptides are shown as grey bars in a retention time and m/z map. Three key parameters
required for input are shown: α, representing the ion peak width (in minutes, constant for
all peptides); β, the precursor selection window (m/z); and γ, the maximum injection time,
a discretized bin representing an ion packet injection.

(for installation and instructions see https://github.com/bertrand-lab/cobia). All code is

open source and available under an MIT license.

2.3.1 Protein Digestion and Peptide Modification

A predicted protein sequence file either from a metatranscriptome or metagenome is the

first input. Proteins are digested in silico using trypsin, assuming complete digestion.

Peptides under five amino acids are removed at this stage to improve computational speed,

as they are typically uninformative for protein inference. Peptides with unknown amino

acids (‘X’ or ‘*’) or selenocysteine (‘U’) were removed from the simulation, as the liquid

chromatography prediction could not accommodate these (described below), and they were

a very small proportion of peptide sequences. Peptides with uncertain amino acids (‘Z’ for

glutamic acid or glutamine, and ‘B’ for aspartic acid or asparagine) were converted to one

amino acid deterministically (glutamine and asparagine, respectively). We also applied
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fixed modifications for methionine and cysteine (oxidation and carbamidomethylation,

respectively); cysteine carbamidomethylation is a typical consequence of alkylation and

methionine oxidation is due to oxygen exposure during sample preparation. All peptide

modifications done in silico used the pyteomics Python module (Goloborodko et al., 2013).

2.3.2 Liquid Chromatography Elution time Prediction

We used two different retention time prediction approaches for different datasets, (1) a

thermodynamic model of peptide behaviour (BioLCCC; Gorshkov et al., 2006; Perlova

et al., 2010), and (2) a machine learning model trained on retention times of observed

peptides (RTModel; Pfeifer et al., 2007). Our choice of retention time prediction approach

depended on the type of liquid chromatography used. For example, BioLCCC cannot

predict elution times of a two-dimensional separation. Different retention time prediction

approaches can be easily used to replace these, as future retention time prediction methods

become more accurate.

For the first approach (BioLCCC), retention times are predicted solely using liquid

chromatography column characteristics. These column characteristics are set up in our

simulation as a separate input file requiring the following: column length, column diam-

eter, column pore size, solvent concentrations, gradient parameterization for non-linear

gradients, and flow rate.

The second approach (RTModel) is fundamentally different, in that a support vector

machine (SVM) is trained on observed peptides from a mass spectrometry experiment.

The challenge with this approach is the explicit use of a biased training set. Therefore,

we expect peptides that are unlikely to be observed via mass spectrometry (for example,

because of poor ionization efficiency), to also have biased predictions. We used three

different SVM kernels: a sequence-specific SVM kernel (Pfeifer et al., 2007) (‘OLIGO’ in

RTModel), a radial basis function (RBF), and a linear kernel.

2.3.3 Tandem Mass Spectrometry simulation

Peptides are ionized with electrospray ionization and ion charge state depends on the

peptide sequence. In our model, peptides are assigned a charge state of two, except if

they contain a histidine or a lysine/arginine followed by a proline, where we then assign a

charge state of three. We also only consider peptides between 50–2000 m/z, replicating

typical limits of precursor ion scanning.
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The injection and scanning mechanism of mass spectrometers lends itself to a simple

way of simulating MS behaviour. In an Orbitrap VelosPRO (Thermo Fisher Scientific),

ions accumulate in the C-trap and subsequently are injected into the Orbitrap. To simulate

this, we can discretize retention times based on this accumulation-and-injection method

(Fig. 2.1). Based on MS/MS ion injection times and recommended settings for an Orbitrap

Elite (Kalli et al., 2013), we used a time of 500ms for binning all peptide elution times (γ,

the ‘maximum injection bin’, in Fig. 2.1), and a precursor selection window of 3 m/z (β in

Fig 2.1). The number of cofragmenting peptides is calculated by summing all peptides

within the same ‘injection bin’ (i.e. similar elution times) and within the same precursor

selection window.

We also simulated the behaviour of a peptide eluting off a column over a given period

of time, the ‘ion peak width’ (Fig. 2.1). This value will change as a function of the

chromatography parameters, and represents the continuous nature of peptide elution. This

is a user-defined parameter, and can either be examined from raw data, or, approximated

using a simple linear model of mean ion peak width as a function of gradient and column

length (Hsieh et al., 2012).

An important component of this simulation is the explicit ignorance of ion intensity.

We hypothesize that the number of potentially cofragmenting ions, as determined from

the predicted protein sequence input file and the predicted retention times, relates to

the probability of peptide identification. Ignoring ion intensity is necessary, as it is not

possible to assign intensities to all peptides a priori. Those peptides that could be assigned

intensities would be a biased subset; they are identified peptides, so were not impacted by

cofragmentation. In addition, we do not simulate automatic gain control, instead simulating

a constant ion injection time.

We compute a ‘cofragmentation score’, which is the average number of cofragmenting

ions across all injection bins that a given peptide is present in (Fig. 2.1). Note that the sum

of unique peptides potentially cofragmenting with a given peptide is typically much higher

than the score, due to the overlap of cofragmenting peptide ion peaks across different

portions of the target ion peak.

2.3.4 Computational Approach

We employed two methods to improve run time. First, we used sparse sampling of injection

bins. Ion peak width is a much longer time interval than injection bin (i.e. α>γ), so if we
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only calculate number of cofragmenting ions in every nth injection bin, we can approximate

the exhaustive sampling of every injection bin. We found that given a fixed ‘maximum

injection time’ (500ms), if each ion is sampled at least 14 times (i.e. the ratio of nth

sampling : ion peak width = 14), cofragmentation scores maintain high similarity to the

exhaustive approach (>0.99 coefficient of determination of predicted cofragmentation

with sparse vs. exhaustive sampling). We also implemented a parallel-computing option,

specified in the input parameter file. Either a global or targeted approach can be designated

in the input parameter file; a global approach predicts cofragmentation scores for every

peptide, while a targeted approach predicts cofragmentation scores for a subset of peptides.

2.3.5 Model Validation and Datasets: Metaproteomics

To validate our model, we assessed whether the cofragmentation score could explain

variation in the presence or absence of a peptide observed with mass spectrometry. In total,

we used five different datasets from three different studies that paired metagenomic or

metatranscriptomic sequencing with MS-based metaproteomics (Table 2.1, proteomic data

retrieved from PRIDE; Vizcaı́no et al., 2013; Perez-Riverol et al., 2019). We used these

metagenomes and metatranscriptome as the predicted protein sequence input file for cobia.

We then use an additional validation approach on a subset of two of these metaproteomic

datasets.

The first study characterized the metaproteome of diseased oak trees to examine

microbial gene expression in situ (Broberg et al., 2018). The authors paired metaproteomic

work with sample-specific metagenomes and metatranscriptomes. The authors performed

a 2D-LC peptide separation, with offline, high pH reversed-phase chromatography as

the first dimension, collected in four fractions. For our LC prediction, we only used

the characteristics of the second dimension, as the majority of peptides were collected

within one fraction (Supplementary Table S33 from Broberg et al., 2018)). We used

BioLCCC (Gorshkov et al., 2006) for peptide retention time prediction, replicating their

non-linear gradient. We used the metagenome and metatranscriptome of one diseased

sample (sample A4) separately as predicted protein sequence input files to cobia. Sample-

specific metagenomic and metatranscriptomic protein identifications were obtained from

Supplementary Table S36 (additional file 39; Broberg et al., 2018), and Swissprot feature

lists were converted to protein sequences. Finally, we used peptide identifications from the

Supplementary Table (S33) for additional validation, as described below.
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The second study used metaproteomics as a method to determine biomass contribu-

tions from different microbial taxa (Kleiner et al., 2017). Here we used two different MS

experiments which studied a mock microbial community (Kleiner et al., 2017). These

experiments used different chromatography run times (260 and 460 minutes; Run 1 and 4,

sample C4, PRIDE Project PXD006118). We identified peptides by repeating the mass

spectra preprocessing (baseline removal, Savitzky-Golay filtering, and peak picking) and

database searching (with MSGF+ and OpenMS; Kim and Pevzner, 2014; Röst et al., 2016;

Weisser et al., 2013). The metagenomic database used for their peptide identifications was

used as our predicted protein sequence input file for our LC RTModel model training to

produce cofragmentation scores (also retrieved from PRIDE Project PXD006118).

Lastly, we used data from a study that paired metagenomics and metaproteomics

of a fungal ant garden (Aylward et al., 2012). The authors isolated the bacterial fraction

for metagenomics and we used the resulting dataset as our predicted protein sequence

file. So, similar to the oak tree study, the predicted protein sequence file (aggregated

metagenomes IMG/M taxon subject ID 2029527004, 2029527005, 2029527006) contains

only a subset of the sequences expected to be in the mass spectrometry sample. While the

authors used two separate mass spectrometry approaches, we used data only from their one-

dimensional LC separation and used RTModel for peptide retention time predictions. We

trained RTModel from peptide observations across all samples with the same LC methods

(identified using Orbitrap). We used all peptide identifications from their supplementary

material (Supplementary Dataset 5; Aylward et al., 2012) for subsequent validation.

For each of these studies, we determined cofragmentation scores for all tryptic pep-

tides using the metagenome or metatranscriptome-derived predicted protein sequence

file. We then examined which predicted peptides were actually observed with mass spec-

trometry, and assessed whether low cofragmentation scores are associated with increased

probability of peptide detection by MS. To assess the explanatory power of our cofragmen-

tation score, we used a generalized linear model (GLM) with a binomial error distribution

and a logit link function (Nelder and Wedderburn, 1972), with cofragmentation score as the

only explanatory variable. Note that for some of the datasets, peptides were found by the

authors that we did not consider (e.g. peptides with missed trypsin cleavages; Fig. 2.2). To

compare the influence of cofragmentation scores across validation datasets, we needed to

account for variation in sequencing depth, as higher sequencing depth would lead to higher
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cofragmentation scores overall. So, we also used GLMs with a scaled cofragmentation

score as an explanatory variable (transforming all scores from 0–100), instead of the raw

score.

We wanted to further test the explanatory value our cofragmentation score: perhaps

there are other characteristics of peptides that better explain presence/absence? For

example, larger peptides would have a higher probability of identification, simply because

there is more sequence variation in longer peptides. Thus, we tested if m/z and retention

time also explain variation in presence-absence, in addition to our cofragmentation score.

We repeated the above GLMs, except with three explanatory variables – cofragmentation

score, m/z, and retention time.

In addition to the approach above, we further examined data collected by Broberg

et al. (2018). Peptide identifications are used to infer proteins present in a sample (i.e.

protein inference). The collection of proteins inferred to be present in a sample can be

used to determine a set of ‘inferred peptides’ by digesting these proteins in silico. Only a

subset of these inferred peptides was detected; perhaps the other portion was not detected

because of cofragmentation. Thus, we expect that the identified peptides should have

lower cofragmentation scores than non-identified peptides. Further, we hypothesized that

cofragmentation scores have more explanatory power when we only consider this smaller

pool of ‘inferred peptides’, compared to when using the entire predicted protein sequence

file. As above, we used a GLM with presence/absence of a peptide as the response variable

and cofragmentation score as the only explanatory variable.

2.3.6 Model Validation and Datasets: Single-Organism Proteomics

After examining whether cofragmentation scores could explain variation in the presence

and absence of peptides in highly complex, metaproteomic samples, we wanted to deter-

mine whether these scores had the same explanatory power in less complex samples. We

used three datasets of single-organism proteomes to determine the explanatory power of our

cofragmentation scores. For each single-organism proteome we examined, we 1) trained

a support vector machine (RTModel) using observed peptides and retention times with

the sequence-specific SVM kernel ‘OLIGO’, 2) used the protein sequence database from

each study to predict peptide-specific cofragmentation scores (their databases were the

predicted protein sequence file for cobia), and 3) assessed whether higher cofragmentation

scores were associated with decreased probability of identifying a peptide.
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The first dataset we used was an examination of human prostate cancer biomarkers

in urine (Davalieva et al., 2018). We used observed peptides and retention times (PRIDE

Project PXD008407), and trained a retention time model using RTModel. We used the

corresponding human protein-coding genome that was these authors’ database for the

predicted protein sequence input file to cobia.

The second dataset we used looked at Escherichia coli across growth conditions

(Schmidt et al., 2016). We used observed peptides and retention times reported in mzid files

(PRIDE Project PXD000498). These authors used different chromatographic separations,

so we only included those that were observed with 1D separation. We used the E. coli

protein coding genome from UniProt, used by these authors as a protein sequence database,

for the predicted protein sequence input file.

The third single organism dataset we used examined the influence of space flight on

the mouse liver proteome (Anselm, Novikova and Zgoda, 2017, hereafter we refer to this

as ‘Space Mouse’). We used all observed peptides and associated retention times (PRIDE

Project PXD005102) to train the retention time model (RTModel), and the mouse protein

coding genome from UniProt as the predicted protein sequence input file.

We used a similar approach as above to assess the explanatory power of our cofragmen-

tation score for single-organism proteomes. Again, we used a GLM with a binomial error

distribution and a logit link function (Nelder and Wedderburn, 1972), with cofragmentation

score as the only explanatory variable.

2.3.7 Comparing Metaproteomic and Single-Organism Mass Spec-
trometry Data

We examined mass spectrometry data associated with the metaproteomic and single-

organism proteomic data, to determine if there were differences in sample complexity

evident in the raw data. One way to compare sample complexity is to count the number

of peaks detected in the MS1 scan, as the number of MS1 peaks is proportional to the

number of peptides in a sample. We examined a subset of the studies above (where raw

data were available), and computed the average number of MS1 peaks per MS1 scan using

pyOpenMS (Röst et al., 2014). When necessary, we converted raw mass spectrometry files

into mzML files using ThermoRawFileParser (Hulstaert et al., 2020).
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2.3.8 Assessing Cofragmentation Bias at Coarse Functional and Tax-
onomic Levels

We hypothesized that coarse taxonomic or protein functional groups would be differen-

tially impacted by cofragmentation bias. For example, highly conserved proteins may be

comprised of similar peptides and therefore may cofragment. We used a metatranscriptome

from the Antarctic sea ice edge as an input, simulating typical levels of sample complexity

in surface seawater. This metatranscriptome has previously been used to examine mi-

cronutrient colimitation of phytoplankton and the microbial interactions that underpin that

colimitation (Bertrand et al., 2015). Note that we do not have corresponding mass spectra

for these samples.

In order to assess potential taxonomic and functional biases, we compared cofrag-

mentation scores across groups. We examined the distribution of cofragmentation scores

at the taxonomic group level to test for biases. We also examined the distribution of cofrag-

mentation scores in different EuKaryotic Orthologous Groups (KOG) classes to examine

biases in protein functional groups. For both the taxonomic groups and KOG classes, we

selected peptides that uniquely correspond to a given grouping. We then aggregated these

peptides and present cofragmentation risk at the protein level using the minimum peptide

cofragmentation score per protein. If there were stronger bias in a given taxonomic or

functional grouping, we would observe a distribution of protein cofragmentation scores

within that group that is different from the global distribution of cofragmentation scores

for the whole dataset. We employed the Kullback-Leibler (KL) divergence to quantify the

difference between the score distribution in a given taxonomic group or KOG class and the

global score distribution. High KL divergence values mean that two probability distribu-

tions are dissimilar. Therefore, if a taxonomic or functional protein group is differentially

impacted by cofragmentation scores (i.e. they exhibit cofragmentation bias), we would

observe high KL divergence when comparing this grouping to the global distribution of

cofragmentation scores. We then calculated bootstrapped confidence intervals for each

grouping. We randomly sampled proteins in the dataset n times, where n is the number of

assigned protein sequences or open reading frames (ORFs) in a given grouping, and with

each sample KL divergence was recalculated. We recalculated KL divergence with 1000

bootstrapped samples to construct confidence intervals.
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2.3.9 Examining the Influence of Cofragmentation on Biomarker
Peptides in Complex Communities

We employed a case study to identify how cofragmentation might influence conclusions

of a metaproteomic study that examines biomarkers. Protein biomarkers can be used as

indicators of nutrient-stress in the ocean (Saito et al., 2014). These biomarker proteins can

be powerfully profiled in a taxon-specific manner, with the aim of identifying nutritional

status or metabolic activity of specific members of the community. Given that this approach

requires interpretation of a limited number of peptides within a complex mixture, this

approach may be particularly susceptible to problems arising from cofragmentation bias.

As an example, we examined vitamin B12-independent methionine synthase (MetE), a

protein that has been used as a robust vitamin B12 starvation indicator (Bertrand et al.,

2013). We limited our peptide choice to just those uniquely identifying MetE derived from

Fragilariopsis cylindrus, a dominant phytoplankton in the Southern Ocean.

We employed the same Antarctic metatranscriptomic dataset as above, and determined

peptide-specific cofragmentation scores for the peptides of interest. We used the retention

time prediction model settings applied as above (Broberg et al., 2018). Fragilariopsis

cylindrus-specific peptides were identified as previously described (Bertrand et al., 2015)

and verified using NCBI non-redundant BLASTP, to ensure that the peptides were present

in protein coding genes from the published F. cylindrus genome (Mock et al., 2017). We

only searched for tryptic peptides, and limited the selection to peptides with sequence-

modified m/z from 300-2000 assuming a charge state of two (as above). Lastly, we used

CONSeQuence to score peptide detectability based on physicochemical properties rather

than susceptibility to cofragmentation (Eyers et al., 2011), in order to consider additional

variables important for biomarker peptide choice.

2.4 Results

2.4.1 Validation: Metaproteomics

We found that higher cofragmentation scores were associated with a lower probability of

observing a peptide in four of five metaproteomic datasets (Fig. 2.2). From these datasets,
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Figure 2.2: Histograms of cofragmentation scores for peptides indicate that higher cofrag-
mentation scores are associated with a lower probability of observing a peptide. In light
grey, the distribution of all peptides’ cofragmentation scores is shown. In dark grey, the
cofragmentation score of observed peptides in the paired metaproteomics experiment is
shown. Note panels have different axis scales, and the y-axis is log-transformed (base 10).
Different histogram binning represents variation in x-axis scales.
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Figure 2.3: Coefficient estimates of generalized linear models for each dataset, describing
the effect of cofragmentation score on the probability that a peptide is observed in the mass
spectrometry experiment. Left panel shows coefficient estimates for absolute cofragmenta-
tion scores used for prediction, right panel shows coefficient estimates calculated when
using cofragmentation scores are first scaled from 0–100 (to compare across datasets).

coefficient estimates were all negative (-0.028 – -0.20, Fig. 2.3), indicating that higher

cofragmentation scores are associated with lower probability of identification. However,

the overall probability of observing a random peptide from all potential peptides was low,

given the immense number of potential peptides in a sample (Supplementary Table 2.1).

The range in coefficient estimates is also in part due to the range in cofragmentation score.

For example, in the diseased oak tree metatranscriptome, cofragmentation scores ranged

from 1–300, and the coefficient estimate was -0.02 (Fig. 2.3, left panel). To compare

across datasets, we then scaled cofragmentation scores to range from 0–100 and refit the

GLMs. We found that scaling accounts for variation in absolute cofragmentation score

due to different amounts of sequencing (different diseased Oak Tree coefficient estimates

became similar).

Scaled coefficient estimates from the mock community datasets were lower than

other metaproteomic datasets, suggesting a lower overall influence of cofragmentation on

peptide observability (Fig. 2.3, right panel). The lower overall cofragmentation risk is

also reflected in the range of raw cofragmentation scores (mock community scores ranged

from 0–8). Further, the choice of retention time prediction method plays a large role in the

range of cofragmentation scores.

In the ant fungus garden metaproteomic dataset, cofragmentation scores did not

explain variation in presence/absence of a peptide (Fig. 2.2, Fig. 2.3). Notably, we
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had low statistical power for this dataset due to the low total number of tryptic peptides

without missed cleavages identified (63 peptides, of the 242 identified for the Orbitrap

mass spectrometry experiments).

We also sought to examine other peptide characteristics that may more easily explain

peptide identification: m/z and retention time. For both the 260 and 460 minute LC

mock community datasets, adding in these two other explanatory variables increased the

coefficient estimate by approximately 50% (Supplementary Fig. 2.7). For all other datasets,

adding these additional explanatory variables did not result in significant changes to the

cofragmentation score coefficient estimate (Supplementary Fig. 2.7). While including

additional explanatory variables decreased the explanatory power of cofragmentation score,

this score continued to explain significant variation in peptide presence/absence.

For our second validation approach that examined just ‘inferred peptides’, we found

that higher cofragmentation scores were also associated with decreased probability of

detecting a peptide (Fig. 2.4). However, cofragmentation scores had only slightly higher

explanatory power (i.e. similarly negative coefficient estimates with overlapping confidence

intervals) when using just the inferred peptides rather than the entire set of potential

peptides (Fig. 2.4, bottom).

Qualitatively, the distribution of cofragmentation scores differed between retention

time prediction methods (Supplementary Fig. 2.8), which is likely related to the distribution

of retention times. For the mock community datasets and the ant fungus garden, we

used RTModel and RTPredict, a support vector machine trained on the specific mass

spectrometry experiment. The distribution of retention times for these studies more closely

resembled a Gaussian distribution, while the distribution of retention times for datasets

with peptides predicted from BioLCCC has a mass of observations at the beginning and

end of the retention time distribution (Supplementary Fig. 2.8). The SVM kernel choice

did not appear to have a large effect on predicted retention times or cofragmentation

coefficient estimates; except for the ant fungus garden (Supplementary Fig. 2.7). In this

dataset, the number of observed peptides was small, leading to very different retention

time predictions across SVM kernels (Fig. 2.7).

2.4.2 Validation: Single-Organism Proteomics

In contrast to the metaproteomes, higher cofragmentation scores were not significantly

associated with a lower probability of identification for two of the three single-organism
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Figure 2.4: Histograms of cofragmentation scores for peptides indicate that higher cofrag-
mentation scores are associated with a lower probability of observing a peptide, using a
smaller subset of potential ‘inferred’ peptides (see Methods). ‘Inferred peptides’ are all
peptides produced by proteins that were detected via observation of one or more peptides.
We hypothesized that by using this more accurate representation of peptides present in
the sample, cofragmentation scores would have stronger explanatory power. Coefficient
estimates of generalized linear models (bottom panel) show that cofragmentation scores
for inferred peptides are similar to coefficients from GLMs with all potential peptides.
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proteomes we examined (Fig. 2.3, 2.5). Further, the range of cofragmentation scores

observed were lower than those in the metaproteomes, indicating a lower overall sample

complexity (Fig. 2.5). As above, we added two additional explanatory variables to the

GLMs to see if other peptide characteristics could better explain peptide presence/absence.

We did not find that cofragmentation scores explanatory value significantly changed with

these additional explanatory variables (Fig. 2.7).

2.4.3 Comparing Metaproteomic and Single-Organism Mass Spec-
trometry Data

Overall we observed higher sample complexity in the metaproteomic mass spectrometry

data compared with the single-organism data (Table 2.1). The average number of MS1

peaks per MS1 scan was 1–2 orders of magnitude higher for the metaproteomic datasets

compared to the single organism datasets (Table 2.1).
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Figure 2.5: Histograms of cofragmentation scores for peptides indicate that higher cofrag-
mentation scores are not significantly associated with a lower probability of observing a
peptide for single organism proteomes, except for the E. coli dataset. In light grey, the
distribution of all peptides’ cofragmentation scores is shown. In dark grey, the cofrag-
mentation score of observed peptides in the paired proteomics experiment is shown. Note
panels have different axis scales, and the y-axis is log-transformed (base 10). Different
histogram binning represents variation in x-axis scales.
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2.4.4 Assessing Cofragmentation Bias at Coarse Functional and Tax-
onomic Levels

At a coarse level, we observed similar distributions of cofragmentation scores at the protein

level across broad taxonomic and functional groupings in our Antarctic sea ice edge

metatranscriptome case study. (Figures S2.3, S2.4 display actual distribution comparisons

between all taxonomic and functional groups and the overall group distribution). However,

we did observe a general trend showing that groupings with fewer protein members had

higher KL divergence values (Fig. 2.6), suggesting that they tended to exhibit more

cofragmentation bias relative to the full dataset. For example, viruses had 394 protein

coding open reading frames (ORFs) assigned to them; this taxonomic group was dissimilar

to the global distribution of cofragmentation scores (i.e. the highest KL divergence

values). Therefore, in these samples, viruses would be the most differentially impacted by

cofragmentation bias. These results suggest that taxonomic or functional rarity confers

more cofragmentation bias.

2.4.4.1 Examining the Influence of Cofragmentation on Biomarker Peptides in
Complex Communities

We used the same Antarctic metatranscriptome and searched for peptides that would

uniquely identify MetE derived from the diatom F. cylindrus, in order to (1) illustrate a

potential workflow for selecting peptides from environmental samples for robust, in-depth

interpretation within metaproteomic datasets and (2) show potential consequences of

cofragmentation-induced bias for interpreting taxon-specific protein expression patterns

in mixed communities. Overall, we found twelve candidate peptides that would uniquely

identify MetE derived from F. cylindrus. We additionally examined which of these peptides

would be likely detectable via mass spectrometry by using peptide CONSeQuence scores

(Eyers et al., 2011), i.e. how likely are they to sufficiently ionize? We found that eight

of these twelve peptides would be likely detectable using mass spectrometry (Table 2.2,

CONSeQuence score greater than 2). For each of these peptides, there are multiple

potential peptides that are of similar elution time and similar mass (i.e. their ion peaks

overlap and they are within the same precursor selection window). The cofragmentation

scores ranged from 13.55–256.43 (Table 2.2).
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Figure 2.6: Taxonomic and functional groups with fewer assigned open reading frames
(ORFs) have greater cofragmentation bias. Kullback-Leibler divergence was calculated
by comparing the distribution of all cofragmentation scores calculated from an Antarctic
metatranscriptome, with the distribution of cofragmentation scores for each functional
(KOG class; left) and taxonomic (right) grouping. Grey area represents 5% and 95%
bootstrapped confidence intervals (see Methods).

Table 2.2: Peptides derived from Fragilariopsis cylindrus vitamin B12 independent me-
thionine synthase. Cofragmentation scores associated with each peptide, calculated from a
metatranscriptomic dataset, are shown with the CONSeQuence score, representing peptide
detectability.

Peptide Sequence Cofragmentation Score CONSeQuence Score
AVIYGPVTIIR 24.28 3
FAHLDAGIDR 33.69 3
QAYPSI 43.98 1
FALLAELIPIYQK 256.43 3
WFTTNYHYLPSEVDTK 28.49 4
FQTATLGLSR 35.37 3
LIQDLSDMGVK 35.06 3
GVDGATALGLK 39.26 2
HSTFAQTEGSIDVQR 33.83 4
AQAVEELGWSLQLADDK 36.37 4
FVGADK 195.14 0
LLPLYK 13.55 0
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2.5 Discussion

We have shown that cofragmentation influences which peptides are observed in metapro-

teomics, and developed a computational model to calculate peptide-specific scores repre-

senting the risk of cofragmentation. We validated this model on multiple datasets, showing

that higher cofragmentation scores are associated with decreased probability of identi-

fying a peptide. Our results suggest that metaproteomic samples are influenced more

by cofragmentation compared to single organism proteomics. Further, we found that

functional or taxonomic rarity is associated with greater cofragmentation risk, such that

biological conclusions drawn based on relatively few peptides are more susceptible to

cofragmentation bias.

Cofragmentation is a challenging phenomenon to predict because it is one of many

factors that influence peptide observability. Despite this, we found that the average number

of potentially cofragmenting peptides (i.e. the cofragmentation score) is predictive of

cofragmentation risk in metaproteomics. Our testing datasets also demonstrated that,

in order to generate the most informative cofragmentation scores, the predicted protein

sequence input file should accurately reflect the proteins contained in the actual sample.

This was not the case for our validation dataset from the ant fungal garden, where it appears

that the majority of protein injected into the mass spectrometer was not microbial while

the predicted protein sequence input file was almost entirely of microbial origin. Notably,

of all the metaproteome samples interrogated, cofragmentation scores for this dataset

had the least explanatory power for peptide observability. Therefore, we anticipate our

approach to have optimal predictions with sample-specific sequencing where the nucleic

acid sequencing targets the same organisms that are included in the proteomic profiling.

Our analysis of ‘inferred peptides’ did not support our hypothesis that cofragmentation

scores would have substantially increased explanatory power with this subset of peptides.

However, we anticipate that improvements in retention time prediction would improve

cofragmentation scoring (Moruz and Käll, 2016). To that end, we have built cobia in a

modular way, and demonstrate the use of different retention time predictors (BioLCCC

and RTModel).

Single-organism proteomics appears to be less influenced by cofragmentation com-

pared with metaproteomics. Our cofragmentation scores were not significantly associated

with observed peptides in two of the three single organism proteomics studies we tested.
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Our examination of the raw mass spectrometry data further suggested that metaproteomic

samples are much more complex (when assessed using MS1 peaks). While further analysis

of single organism proteomes is needed, particularly to compare the impact of cofragmenta-

tion in single-celled and multicellular organisms, our results suggest that cofragmentation

is of elevated concern in metaproteomic experiments.

Our Antarctic metatranscriptome case study suggested that cofragmentation does

not differentially bias biological conclusions that are based on coarse taxonomic and

functional groupings when those taxonomic and functional groupings are assessed through

the detection of large numbers of peptides. As the grouping becomes more granular or

represented by smaller numbers of peptides, for example, examining taxon-specific protein

biomarkers or looking at specific microbial strains, cofragmentation bias can play a larger

role. This was demonstrated at the coarse level, where we showed that there was greater

cofragmentation bias associated with smaller taxonomic and functional groupings (fewer

open reading frames per grouping). Methods and types of analyses that aggregate peptides

into larger groups, or examine more coarse aspects of metaproteomes, are more robust to

cofragmentation bias. For example, we would not expect cofragmentation to significantly

influence conclusions from Morris et al. (2010), who examined the distribution of trans-

porter proteins at a coarse level across an oceanographic gradient. Aggregation of peptides

into larger groups (‘protein group inference’, i.e. as ‘MetaProteins’ in MetaProteomeAna-

lyzer (Muth, Renard and Martens, 2016), or into Gene Ontology groups in MetaGOmics

(Riffle et al., 2018)), are also likely to be robust to cofragmentation bias across diverse

samples.

Rare taxa or protein functional groups are more susceptible to cofragmentation bias.

Taxon-specific biomarkers represent an extreme level of rarity (i.e. expression levels of

very few peptides are interpreted). We have highlighted one example of this to illustrate

potential consequences of cofragmentation examining MetE derived from F. cylindrus

to determine vitamin B12 nutritional status in this biogeochemically important diatom.

Peptides derived from different organisms may disrupt the identification and quantification

of these candidate peptides. If we examine only the most detectable peptides in terms of

ionization efficiency (i.e. CONSeQuence score of 4), a subset of peptides are less suscepti-

ble to cofragmentation bias based on our cofragmentation scores. Our model could thus be

used to guide peptide choice for in-depth biological interpretation within metaproteomics
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experiments. We would therefore choose WFTTNYHYLPSEVDTK and AVIYGPVTIIR

peptides as robust markers of F. cylindrus MetE protein rather than FALLAELIPIYQK

and FVGADK peptides due to their lower risk of cofragmentation bias. Cofragmenting

peptides may influence biological conclusions; for example, a bacterial-derived metal ion

ATP binding cassette (ABC) transporter-derived peptide is of similar m/z and elution time

to the candidate biomarker peptide AQAVEELGWSLQLADDK. Such proteins are often

more highly expressed under low metal availability conditions (Bertrand et al., 2015).

Thus, different indicators of nutrient starvation (i.e. a metal ABC transporter and MetE, for

iron and vitamin B12 respectively) would mutually influence observability and therefore

be confounded. For example, an increase in the bacterial metal ABC transporter might

alter quantification estimates of MetE through prevention of precursor ion selection or

interference with spectral counts. Accurately characterizing nutrient starvation indicators

is important for quantifying and modelling carbon fixation and microbial interactions in

the ocean. However in this case, peptide biomarkers might be obscured, potentially lead-

ing to spurious conclusions about nutrient stress and limitations of primary productivity.

Cofragmenting peptides may interfere with peptide identification, but they also may hinder

accurate quantification within a discovery-based approach (or even a targeted approach

if there are conserved transitions between the peptides). With this example we illustrate

one potential consequence of cofragmentation in metaproteomics, and also show how our

model could guide peptide selection or weighting in metaproteomics.

It is also clear that cofragmentation could influence biological conclusions in other

fields. For example, in a study of the human microbiome, 61% of bacterial ‘species’

were only inferred from one or two peptides (Zhang et al., 2018). Further, strain-specific

peptides were used to examine microbiome compositional differences between patients

with and without Crohn’s disease (Zhang et al., 2018). Human neutrophil peptides have

also been used to describe inflammatory bowel disease in humans in complex microbial

community samples (Li et al., 2016). Our results suggest that all of these scenarios are

susceptible to cofragmentation bias across samples; this could have consequences for

inferring relationships between microbial communities and human disease states. Lastly,

as we have shown that rarity is associated with greater cofragmentation bias, we caution

researchers studying the ‘rare microbiome’ (Lynch and Neufeld, 2015; Jousset et al., 2017)

using metaproteomics. Even though proteotypic and taxon-specific peptides are susceptible
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to cofragmentation bias, they can be effective tools for asking particular questions. We

do not doubt the importance of rare organisms in both human health and environmental

microbiology – on the contrary, they can and do contribute critical functions and diagnostic

potential. Therefore, the use of techniques susceptible to cofragmentation bias is still

warranted and predicting this bias, as we do here, is necessary.

Several complementary approaches to ours have been previously developed. The

most relevant and advanced approach is used in SRMCollider, a method for targeted pro-

teomics that considers the uniqueness of a peptide transition, given a particular anticipated

proteomic background (Röst, Malström and Aebersold, 2012). SRMCollider, however,

would be a more appropriate choice for targeted proteomics peptide and transition selection

compared with cobia, which was built for modelling discovery-based mass spectrometry

and additionally offers explicit prediction of cofragmentation bias at the peptide level. MS

simulation tools are becoming increasingly close to replicating peptide fragmentation and

ion elution profiles (Bielow et al., 2011; Noyce et al., 2013; Goldfarb, Wang and Major,

2016), which may be used to improve cofragmentation scores. Adapting these aforemen-

tioned computational tools may improve the prediction of cofragmentation-induced bias in

metaproteomics.

Discovery mass spectrometry has vastly improved in recent years, and, future ap-

plications may be more robust to cofragmentation. For example, decreasing precursor

ion selection windows may reduce this bias. However, reducing this window results in

a loss of sensitivity, and in practice a range of 2–4 m/z is optimal (Kalli et al., 2013).

Data-independent acquisition (DIA) strategies embrace cofragmentation of many precur-

sor ions, subsequently disentangling the chimaeric fragmentation spectra (Gillet et al.,

2012; Chapman, Goodlett and Masselon, 2014). While we are currently unaware of

any published uses of DIA in metaproteomics, we anticipate that our model predictions

would be useful for such studies. To apply cobia to DIA, the only adjustment required

would be increasing the ‘precursor selection window’ (Fig. 2.1). Another area of rapid

advancement in mass spectrometry bioinformatics is de novo peptide sequencing, which is

also particularly susceptible to ‘mixture’ spectra (Gorshkov et al., 2016). Improvements

in liquid chromatography separation (i.e. using longer separation times or orthogonal

separations) can reduce the total amount of cofragmentation. In particular, using orthogo-

nal chromatographic separation techniques would lead to variations in elution times and
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therefore produce a different set of cofragmentation scores. Similarly, additional mass

spectrometry approaches for ion filtering, such as ion mobility mass spectrometry, would

also provide an additional separation. Despite improvements in mass spectrometry and

bioinformatics, we anticipate peptide cofragmentation to be a persistent issue.

2.5.1 Recommendations and Conclusions

There are several ways of handling cofragmentation bias in metaproteomics, and several

use-cases of cobia. At a coarse level, cofragmentation bias is unlikely to influence

biological conclusions for abundant taxa or functional groupings. At a more fine taxonomic

or functional level, more caution should be used to interpret peptide presence or spectral

counts. Choosing peptides as indicators for specific taxa and metabolic processes could

incorporate the prediction of cofragmentation scores using our model, as illustrated in

the MetE F. cylindrus example. Or, cofragmentation scores could be employed to weight

evidence of peptide quantifications in a high-throughput MS experiment. To that end, we

include a series of functions for programmatically predicting cofragmentation scores for

metaproteomics (for instructions see www.github.com/bertrand-lab/cobia). If a peptide is

not selected for fragmentation, it would still be detected in the MS1 scan. So, pragmatically,

peptides of high importance as diagnostics could be manually examined in the m/z-to-

retention time map. Future work will incorporate an automated examination of the m/z to

retention time map to determine if a corresponding MS1 peak was present in the sample.

Regardless of the method chosen for handling cofragmentation-induced bias, we encourage

researchers using metaproteomics to be cognizant of this issue, particularly while probing

individual taxa in complex samples using limited numbers of peptides.

We also suggest that peptides with a cofragmentation score above a given threshold

should not be used to infer protein abundance across diverse samples. However, this

threshold will vary depending on the question being asked and the researchers’ tolerance

for cofragmentation risk. A simple way to determine a reasonable threshold is to: 1)

examine cofragmentation scores of peptides observed in mass spectrometry experiment,

2) determine the 95% percentile of scores, and 3) assume that peptides not detected that

are above this cutoff may not have been detected because of cofragmentation. This has

consequences for using peptides to determine trends across large numbers of samples and

for imputing missing data, as it would perhaps be inappropriate to impute missing values

for peptides with high cofragmentation scores above a set cutoff.
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Lastly, we suggest that low abundance taxa should be removed when comparing

community composition across diverse samples. Or, that particular care should be taken to

identify and remove from analyses peptides that are particularly susceptible to cofragmen-

tation bias. This has particular importance for researchers studying the rare microbiome

using metaproteomics, and for comparing community composition and metabolism.

As the field of comparative metaproteomics grows, more and more dissimilar samples

will be compared. Our study has shown that complexity in the m/z-retention time landscape,

resulting in peptide cofragmentation, may influence biological conclusions. Broadly, we

believe accounting for this dynamic landscape in metaproteomics is among the most

significant (but surmountable) technical challenges facing the field.
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2.7 Supplementary Information

2.7.1 Supplementary Table

Estimate SE z value p Value Dataset Name Variable

-5.06239 0.02378 -212.882 0 Mock Community, LC 260, OLIGO kernel (Intercept)

-0.15495 0.015304 -10.1244 4.30E-24 Mock Community, LC 260, OLIGO kernel Mean Cofrag. Score

-5.44449 0.040223 -135.358 0 Mock Community, LC 260, Additional Explanatory, OLIGO kernel (Intercept)

-0.07921 0.016316 -4.85486 1.20E-06 Mock Community, LC 260, Additional Explanatory, OLIGO kernel Mean Cofrag. Score

-1.19E-06 2.07E-06 -0.57654 0.564254 Mock Community, LC 260, Additional Explanatory, OLIGO kernel Retention Time

0.000403 2.62E-05 15.37643 2.36E-53 Mock Community, LC 260, Additional Explanatory, OLIGO kernel m/z

-5.21734 0.011518 -452.969 0 Mock Community, LC 260, Rescaled, OLIGO kernel (Intercept)

-0.01195 0.001181 -10.1244 4.30E-24 Mock Community, LC 260, Rescaled, OLIGO kernel Rescaled Cofrag. Score

-5.10448 0.024323 -209.862 0 Mock Community, LC 260, Linear kernel (Intercept)

-0.13071 0.01622 -8.05842 7.73E-16 Mock Community, LC 260, Linear kernel Mean Cofrag. Score

-5.55233 0.037593 -147.695 0 Mock Community, LC 260, Additional Explanatory, Linear kernel (Intercept)

-0.04866 0.01686 -2.88595 0.003902 Mock Community, LC 260, Additional Explanatory, Linear kernel Mean Cofrag. Score

6.28E-06 1.81E-06 3.464356 0.000532 Mock Community, LC 260, Additional Explanatory, Linear kernel Retention Time

0.00042 2.60E-05 16.14871 1.16E-58 Mock Community, LC 260, Additional Explanatory, Linear kernel m/z

-5.23518 0.011338 -461.72 0 Mock Community, LC 260, Rescaled, linear kernel (Intercept)

-0.01046 0.001298 -8.05842 7.73E-16 Mock Community, LC 260, Rescaled, linear kernel Rescaled Cofrag. Score

-5.04146 0.024445 -206.234 0 Mock Community, LC 260, RBF kernel (Intercept)

-0.17431 0.016288 -10.7014 1.00E-26 Mock Community, LC 260, RBF kernel Mean Cofrag. Score

-5.4349 0.039198 -138.653 0 Mock Community, LC 260, Additional Explanatory, RBF kernel (Intercept)

-0.09536 0.017087 -5.58082 2.39E-08 Mock Community, LC 260, Additional Explanatory, RBF kernel Mean Cofrag. Score

8.69E-07 1.95E-06 0.446791 0.655026 Mock Community, LC 260, Additional Explanatory, RBF kernel Retention Time

0.000398 2.61E-05 15.26819 1.25E-52 Mock Community, LC 260, Additional Explanatory, RBF kernel m/z

-5.21577 0.011374 -458.578 0 Mock Community, LC 260, Rescaled, RBF kernel (Intercept)

-0.01693 0.001582 -10.7014 1.00E-26 Mock Community, LC 260, Rescaled, RBF kernel Rescaled Cofrag. Score

-5.5788 0.037126 -150.268 0 Mock Community, LC 460, OLIGO kernel (Intercept)

-0.25774 0.027045 -9.53014 1.57E-21 Mock Community, LC 460, OLIGO kernel Mean Cofrag. Score

-6.14109 0.054093 -113.528 0 Mock Community, LC 460, Additional Explanatory, OLIGO kernel (Intercept)
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Estimate SE z value p Value Dataset Name Variable

-0.12736 0.027878 -4.56833 4.92E-06 Mock Community, LC 460, Additional Explanatory, OLIGO kernel Mean Cofrag. Score

-1.98E-06 1.17E-06 -1.69076 0.090883 Mock Community, LC 460, Additional Explanatory, OLIGO kernel Retention Time

0.000588 3.41E-05 17.21351 2.10E-66 Mock Community, LC 460, Additional Explanatory, OLIGO kernel m/z

-5.83655 0.015134 -385.667 0 Mock Community, LC 460, Rescaled, OLIGO kernel (Intercept)

-0.01901 0.001995 -9.53014 1.57E-21 Mock Community, LC 460, Rescaled, OLIGO kernel Rescaled Cofrag. Score

-5.60371 0.035221 -159.101 0 Mock Community, LC 460, Linear kernel (Intercept)

-0.23358 0.024923 -9.37194 7.12E-21 Mock Community, LC 460, Linear kernel Mean Cofrag. Score

-6.19954 0.053106 -116.738 0 Mock Community, LC 460, Additional Explanatory, Linear kernel (Intercept)

-0.1092 0.025687 -4.25136 2.12E-05 Mock Community, LC 460, Additional Explanatory, Linear kernel Mean Cofrag. Score

8.74E-07 1.13E-06 0.775986 0.437757 Mock Community, LC 460, Additional Explanatory, Linear kernel Retention Time

0.000587 3.42E-05 17.18159 3.65E-66 Mock Community, LC 460, Additional Explanatory, Linear kernel m/z

-5.83728 0.015175 -384.665 0 Mock Community, LC 460, Rescaled, linear kernel (Intercept)

-0.01693 0.001807 -9.37194 7.12E-21 Mock Community, LC 460, Rescaled, linear kernel Rescaled Cofrag. Score

-5.58552 0.036042 -154.974 0 Mock Community, LC 460, RBF kernel (Intercept)

-0.24867 0.025762 -9.65252 4.80E-22 Mock Community, LC 460, RBF kernel Mean Cofrag. Score

-6.15499 0.052805 -116.56 0 Mock Community, LC 460, Additional Explanatory, RBF kernel (Intercept)

-0.1196 0.026578 -4.4999 6.80E-06 Mock Community, LC 460, Additional Explanatory, RBF kernel Mean Cofrag. Score

-1.30E-06 1.22E-06 -1.07001 0.284613 Mock Community, LC 460, Additional Explanatory, RBF kernel Retention Time

0.000587 3.42E-05 17.13311 8.40E-66 Mock Community, LC 460, Additional Explanatory, RBF kernel m/z

-5.83418 0.015197 -383.905 0 Mock Community, LC 460, Rescaled, RBF kernel (Intercept)

-0.01851 0.001918 -9.65252 4.80E-22 Mock Community, LC 460, Rescaled, RBF kernel Rescaled Cofrag. Score

-6.03304 0.098171 -61.4544 0 Diseased Oak Tree Metagenome (Intercept)

-0.05688 0.012751 -4.46105 8.16E-06 Diseased Oak Tree Metagenome Mean Cofrag. Score

-5.46366 0.18841 -28.9988 6.82E-185 Diseased Oak Tree Metagenome, Additional Explanatory (Intercept)

-0.07014 0.013637 -5.14319 2.70E-07 Diseased Oak Tree Metagenome, Additional Explanatory Mean Cofrag. Score

-0.01069 0.00257 -4.16104 3.17E-05 Diseased Oak Tree Metagenome, Additional Explanatory Retention Time

0.000225 0.000342 0.659215 0.509758 Diseased Oak Tree Metagenome, Additional Explanatory m/z

-6.08992 0.090473 -67.3118 0 Diseased Oak Tree Metagenome, Rescaled (Intercept)

-0.06378 0.014297 -4.46105 8.16E-06 Diseased Oak Tree Metagenome, Rescaled Rescaled Cofrag. Score

-6.13683 0.058372 -105.133 0 Diseased Oak Tree Metatranscriptome (Intercept)

-0.02775 0.003271 -8.48501 2.16E-17 Diseased Oak Tree Metatranscriptome Mean Cofrag. Score

-5.50598 0.121935 -45.1552 0 Diseased Oak Tree Metatranscriptome, Additional Explanatory (Intercept)

-0.03439 0.003645 -9.43518 3.90E-21 Diseased Oak Tree Metatranscriptome, Additional Explanatory Mean Cofrag. Score

-0.01056 0.001563 -6.75869 1.39E-11 Diseased Oak Tree Metatranscriptome, Additional Explanatory Retention Time

0.000127 0.000207 0.611851 0.540636 Diseased Oak Tree Metatranscriptome, Additional Explanatory m/z

-6.16459 0.056419 -109.265 0 Diseased Oak Tree Metatranscriptome, Rescaled (Intercept)

-0.09527 0.011228 -8.48501 2.16E-17 Diseased Oak Tree Metatranscriptome, Rescaled Rescaled Cofrag. Score

-10.4756 0.294744 -35.5414 1.13E-276 Ant Fungus Garden, OLIGO kernel (Intercept)

-0.14729 0.184471 -0.79843 0.424622 Ant Fungus Garden, OLIGO kernel Mean Cofrag. Score

-10.8235 0.451033 -23.9971 2.98E-127 Ant Fungus Garden, OLIGO kernel, Additional Explanatory (Intercept)

-0.08738 0.154869 -0.56419 0.572624 Ant Fungus Garden, OLIGO kernel, Additional Explanatory Mean Cofrag. Score

-7.11E-05 9.54E-05 -0.74516 0.456175 Ant Fungus Garden, OLIGO kernel, Additional Explanatory Retention Time

0.000569 0.000326 1.74458 0.081058 Ant Fungus Garden, OLIGO kernel, Additional Explanatory m/z

-10.6229 0.150318 -70.6695 0 Ant Fungus Garden, OLIGO Kernel, Rescaled (Intercept)

-0.2022 0.253252 -0.79843 0.424622 Ant Fungus Garden, OLIGO Kernel, Rescaled Rescaled Cofrag. Score

-10.6299 0.322634 -32.9474 4.60E-238 Ant Fungus Garden, Linear kernel (Intercept)

-0.05142 0.213677 -0.24065 0.809826 Ant Fungus Garden, Linear kernel Mean Cofrag. Score

-11.2002 0.49889 -22.4501 1.28E-111 Ant Fungus Garden, Linear kernel, Additional Explanatory (Intercept)

0.078957 0.221474 0.356508 0.72146 Ant Fungus Garden, Linear kernel, Additional Explanatory Mean Cofrag. Score

-4.55E-05 8.29E-05 -0.54914 0.582906 Ant Fungus Garden, Linear kernel, Additional Explanatory Retention Time

0.000662 0.000334 1.979459 0.047764 Ant Fungus Garden, Linear kernel, Additional Explanatory m/z

-10.6814 0.151057 -70.7107 0 Ant Fungus Garden, Linear Kernel, Rescaled (Intercept)

-0.00331 0.013736 -0.24065 0.809826 Ant Fungus Garden, Linear Kernel, Rescaled Rescaled Cofrag. Score

-10.1329 0.343927 -29.4625 8.72E-191 Ant Fungus Garden, RBF kernel (Intercept)

-0.41029 0.242038 -1.69513 0.09005 Ant Fungus Garden, RBF kernel Mean Cofrag. Score

-10.4334 0.530273 -19.6756 3.49E-86 Ant Fungus Garden, RBF kernel, Additional Explanatory (Intercept)

-0.32493 0.251594 -1.29149 0.196534 Ant Fungus Garden, RBF kernel, Additional Explanatory Mean Cofrag. Score

-7.77E-05 9.17E-05 -0.84727 0.396844 Ant Fungus Garden, RBF kernel, Additional Explanatory Retention Time

0.000468 0.000334 1.401402 0.161094 Ant Fungus Garden, RBF kernel, Additional Explanatory m/z

-10.5432 0.148163 -71.1596 0 Ant Fungus Garden, RBF Kernel, Rescaled (Intercept)

-0.02989 0.017634 -1.69513 0.09005 Ant Fungus Garden, RBF Kernel, Rescaled Rescaled Cofrag. Score

-6.55858 0.097396 -67.3391 0 Prostate Cancer Biomarkers, OLIGO kernel (Intercept)

-0.07111 0.072623 -0.97912 0.32752 Prostate Cancer Biomarkers, OLIGO kernel Mean Cofrag. Score

-6.83305 0.152543 -44.7943 0 Prostate Cancer Biomarkers, OLIGO kernel, Additional Explanatory (Intercept)

-0.01151 0.075737 -0.15192 0.87925 Prostate Cancer Biomarkers, OLIGO kernel, Additional Explanatory Mean Cofrag. Score

1.10E-05 2.46E-05 0.445544 0.655927 Prostate Cancer Biomarkers, OLIGO kernel, Additional Explanatory Retention Time
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Estimate SE z value p Value Dataset Name Variable

0.000263 9.45E-05 2.786246 0.005332 Prostate Cancer Biomarkers, OLIGO kernel, Additional Explanatory m/z

-6.62969 0.038291 -173.139 0 Prostate Cancer Biomarkers, OLIGO kernel, Rescaled (Intercept)

-0.0034 0.00347 -0.97912 0.32752 Prostate Cancer Biomarkers, OLIGO kernel, Rescaled Rescaled Cofrag. Score

-4.21048 0.032596 -129.173 0 Space Mouse, OLIGO kernel (Intercept)

-0.0503 0.025878 -1.94374 0.051927 Space Mouse, OLIGO kernel Mean Cofrag. Score

-4.25968 0.045884 -92.8355 0 Space Mouse, OLIGO kernel, Additional Explanatory (Intercept)

-0.0395 0.026913 -1.46773 0.142177 Space Mouse, OLIGO kernel, Additional Explanatory Mean Cofrag. Score

2.92E-05 4.00E-06 7.300709 2.86E-13 Space Mouse, OLIGO kernel, Additional Explanatory Retention Time

-9.78E-05 3.04E-05 -3.21472 0.001306 Space Mouse, OLIGO kernel, Additional Explanatory m/z

-4.26078 0.011374 -374.612 0 Space Mouse, OLIGO kernel, Rescaled (Intercept)

-0.00239 0.001229 -1.94374 0.051927 Space Mouse, OLIGO kernel, Rescaled Rescaled Cofrag. Score

-1.85061 0.08546 -21.6548 5.47E-104 E. coli, OLIGO kernel (Intercept)

-0.02915 0.083418 -0.34947 0.726736 E. coli, OLIGO kernel Mean Cofrag. Score

-1.77988 0.089999 -19.7765 4.74E-87 E. coli, OLIGO kernel, Additional Explanatory (Intercept)

-0.04868 0.083829 -0.58074 0.561417 E. coli, OLIGO kernel, Additional Explanatory Mean Cofrag. Score

-3.26E-06 2.39E-06 -1.36247 0.17305 E. coli, OLIGO kernel, Additional Explanatory Retention Time

-5.52E-05 2.67E-05 -2.06542 0.038883 E. coli, OLIGO kernel, Additional Explanatory m/z

-1.87977 0.009436 -199.218 0 E. coli, OLIGO kernel, Rescaled (Intercept)

-0.00052 0.001483 -0.34947 0.726736 E. coli, OLIGO kernel, Rescaled Rescaled Cofrag. Score

Table 2.3: Generalized linear model output from different datasets, support vector machine
kernels, explanatory variable sets, and re-scaled cofragmentation scores.

2.7.2 Supplementary Figures
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Figure 2.7: Coefficient estimates of generalized linear models describing the effect of
cofragmentation score on the probability that a peptide is observed in the mass spectrometry
experiment. Coefficients are shown for different retention time prediction methods (y-
axis, OLIGO: sequence specific kernel; RBF: radial basis function; Linear; linear kernel);
either using RTModel and RTPredict (mock communities and ant fungus garden) or using
BioLCCC (diseased oak metagenome and metatranscriptome). For each retention time
prediction method, three coefficients are shown: cofragmentation score coefficient as the
only explanatory variable (red), cofragmentation score coefficient where scores are first
scaled from 0–100 (orange), and cofragmentation score coefficient where other explanatory
variable terms are included in the model structure (m/z and retention time; blue).
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Figure 2.8: Histograms of predicted retention times for all peptides within a database. For
panels A, B, and E, RTModel and RTPredict were used and trained on data from the asso-
ciated mass spectrometry experiments (OLIGO kernel presented here). For panels C and
D, BioLCCC was used to predict retention times based only on LC column characteristics.
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Figure 2.9: Distributions of minimum cofragmentation score by open reading frame from
an Antarctic metatranscriptome. Each panel shows a cofragmentation score distribution
for a given taxonomic group, with the grey background in each panel showing the cofrag-
mentation score of all groups. Numbers within each panel show the Kullback-Liebler
divergence value, representing the dissimilarity between the taxonomic group distribution
and the overall distribution.
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Figure 2.10: Distributions of minimum cofragmentation score by open reading frame from
an Antarctic metatranscriptome. Each panel shows a cofragmentation score distribution
for a given protein functional group (KOG class), with the grey background in each panel
showing the cofragmentation score of all groups. Numbers within each panel show the
Kullback-Liebler divergence value, representing the dissimilarity between the KOG class
distribution and the overall distribution.
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CHAPTER 3

PROTEOMIC TRAITS VARY ACROSS
TAXA IN A COASTAL ANTARCTIC
PHYTOPLANKTON BLOOM

This work was published previously in The ISME Journal (McCain, Allen and Bertrand,

2021).

3.1 Abstract

Production and use of proteins is under strong selection in microbes, but it’s unclear how

proteome-level traits relate to ecological strategies. We identified and quantified proteomic

traits of eukaryotic microbes and bacteria through an Antarctic phytoplankton bloom using

in situ metaproteomics. Different taxa, rather than different environmental conditions,

formed distinct clusters based on their ribosomal and photosynthetic proteomic proportions,

and we propose that these characteristics relate to ecological differences. We defined and

used a proteomic proxy for regulatory cost, which showed that SAR11 had the lowest

regulatory cost of any taxa we observed at our summertime Southern Ocean study site.

Haptophytes had lower regulatory cost than diatoms, which may underpin haptophyte-to-

diatom bloom progression in the Ross Sea. We were able to make these proteomic trait

inferences by assessing various sources of bias in metaproteomics, providing practical

recommendations for researchers in the field. We have quantified several proteomic

traits (ribosomal and photosynthetic proteomic proportions, regulatory cost) in eukaryotic

and bacterial taxa, which can then be incorporated into trait-based models of microbial

communities that reflect resource allocation strategies.
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3.2 Introduction

Microbes are constantly faced with an optimization problem: which proteins should be

produced, when, and how many? The solutions to this problem dictate metabolic rates,

cell stoichiometry, and taxonomic distribution (Reimers et al., 2017; Toseland et al., 2013;

Twining and Baines, 2013; Saito et al., 2014; Morris et al., 2010). Yet, it’s unclear what

these solutions actually are in terms of proteome composition, and if different microbes

have arrived at different solutions. Microbes are typically compared based on their unique

repertoires of potential proteins (e.g. Kashtan et al., 2014; Giovannoni, Cameron Thrash

and Temperton, 2014; Braakman, Follows and Chisholm, 2017), but taxa have shared

proteins as well – are these shared proteins produced in similar amounts? Or, do taxa

produce distinct amounts under identical conditions? Diverse taxa produce proteins in

strikingly similar ratios within some pathways (Lalanne et al., 2018), but is stoichiometry

conserved between pathways? The answers to these questions will direct future efforts for

modelling microbial communities. Perhaps microbes can be represented as collections of

genes (Reed et al., 2014; Coles et al., 2017), or, perhaps variation in proteome composition

will shed light on the underpinnings of their ecological strategies and biogeochemical

contributions.

Ecological strategies are ultimately tied to cellular functions and thus gene expression

(Scott et al., 2010), and models can experimentally test hypotheses to evaluate such

connections. Material models (i.e. cultures) have clearly demonstrated that selection

acts strongly on protein production (Dekel and Alon, 2005; Parker et al., 2020; O’Malley

and Parke, 2018). While powerful, these approaches are limited to only a few culturable

organisms, which can overlook core differences found in less-studied organisms (e.g.

Johnson et al., 2020). Computational models have also characterized trade-offs and

metabolic behaviours in microbes (e.g. Molenaar et al., 2009; Faizi et al., 2018; Jahn et al.,

2018). While models are critical from a reductionist perspective, characterization and

prediction of microbial activity in their environments remains a central research goal.

Observing and measuring gene expression in microbes in situ can also link resource

allocation to ecological strategies (e.g. Hu et al., 2018; Gifford et al., 2013; Alexander

et al., 2015b,a; Morris et al., 2010; Sowell et al., 2009). For example, diatom and hap-

tophyte transcriptional dynamics reflect their distinct growth strategies, inferred using

metatranscriptomics (Alexander et al., 2015b,a). Metaproteomics has similarly identified
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increased abundance of transporter proteins across an oceanographic gradient of decreasing

nutrients (Morris et al., 2010). Both of these meta-omic approaches can quantify in situ

resource allocation, but proteins cost more to produce and therefore better reflect resource

allocation (Russell and Cook, 1995). To our knowledge, metaproteomics has not been

used to quantify variation in resource allocation strategies across microbial groups.

Our objective was to identify and quantify proteomic “traits” for various eukaryotes

and bacteria, by examining microbial proteome composition through a four-week time

series at the Antarctic sea ice edge. We define a proteomic trait as a characteristic of an

organism at the proteome-level, that includes both the abundance and identity of a protein

(or group of proteins), and is connected to organismal fitness or performance (McGill et al.,

2006). Metaproteomics is confronted by several methodological issues and biases, which

we rigorously assess in order to characterize these proteomes. We subsequently provide

practical recommendations for researchers using metaproteomics to examine microbial

resource allocation. Our analyses suggest examining “coarse-grained” proteomes provides

a host of conceptual and technical advantages (coarse-grained defined as a grouping of

functionally or taxonomically (Phylum, Class, Order) related proteins). Next we use this

approach to connect proteomic resource allocation to the ecology of these plankton. Lastly,

we suggest that characterizing coarse-grained proteomes may be useful for assessing

nutrient deficiency in the ocean.

3.3 Methods

3.3.1 Field Sampling

We collected samples once per week over four weeks at the Antarctic sea ice edge, in

McMurdo Sound, Antarctica (December 28, 2014 “GOS-927”; January 6 “GOS-930”, 15

“GOS-933”, and 22 “GOS-935”, 2015; as previously described in Wu et al., 2019). Sea

water (150–250 L) was pumped sequentially through three filters of decreasing size (3.0,

0.8, and 0.1 µm, 293 mm Supor filters). Separate filter sets were acquired for metagenomic,

metatranscriptomic, and metaproteomic analyses, over the course of ∼3 h, each week

(36 filters in total). Filters for nucleic acid analyses were preserved with a sucrose-based

buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 8.0) with

RNAlater (Life Technologies, Inc.). Filters for protein analysis were preserved in the same

sucrose-based buffer but without RNAlater. Filters were flash frozen in liquid nitrogen in
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the field and subsequently stored at -80 ◦C until processed in the laboratory.

3.3.2 Metagenomic and Metatranscriptomic Sequencing

We used metagenomics and metatranscriptomics to obtain reference databases of potential

proteins for metaproteomics. We additionally used a database assembled from a similarly

processed metatranscriptomic incubation experiment (Jabre et al., 2021), conducted with

source water from the January 15, 2015 time point (these samples were collected on a 0.2

µm Sterivex filter and processed as previously described).

For samples from the GOS-927, GOS-930, GOS-933 and GOS-935 filters, RNA

was purified from a DNA and RNA mixture (Rusch et al., 2007). 2 µg of the DNA and

RNA mixture was treated with 1 µl of DNase (2 U/µl; Turbo DNase, TURBO DNase,

ThermoFisher Scientific), followed by processing with an RNA Clean and Concentrator

kit (Zymo Research). An Agilent TapeStation 2200 was used to observe and verify the

quality of RNA. 200 ng of total RNA was used as input for rRNA removal using Ribo-Zero

(Illumina) with a mixture of plant, bacterial, and human/mouse/rat Removal Solution in a

ratio of 2:1:1. An Agilent TapeStation 2200 was used to subsequently observe and verify

the quality of rRNA removal from total RNA. rRNA-deplete total RNA was used for cDNA

synthesis with the Ovation RNA-Seq System V2 (TECAN, Redwood City, USA). DNA

was extracted for metagenomics from the field samples (GOS-927, GOS-930, GOS-933

and GOS-935) according to Rusch et al. (2007). RNase digestion was performed with 10

µl of RNase A (20 mg/ml) and 6.8 µl of RNase T1 (1000 U/µl), which were added to 2

µg of genomic DNA and RNA mixture in a total volume of 100 µl, followed by 1 hour

incubation at 37 ◦C and subsequent ethanol precipitation in -20 ◦C overnight.

Samples of double stranded cDNA and DNA were fragmented using a Covaries E210

system with the target size of 400 bp. 100 ng of fragmented cDNA or DNA was used as

input into the Ovation Ultralow System V2 (TECAN, Redwood City, USA), following the

manufacturer’s protocol. Ampure XP beads (Beckman Coulter) were used for final library

purification. Library quality was analyzed on a 2200 TapeStation System with Agilent

High Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA,

USA). 12 DNA and 18 cDNA libraries were combined into two pools with concentration

4.93 ng/µl and 4.85 ng/µl respectively. Resulting library pools were subjected to 1 lane of

150 bp paired-end HiSeq 4000 sequencing (Illumina). Prior to sequencing, each library

was spiked with 1% PhiX (Illumina) control library. Each lane of sequencing resulted in
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between 106,000 Mbp and 111,000 Mbp total and 6,900 Mbp – 12,000 Mbp and 4,800

Mbp - 6,900 Mbp for individual DNA or cDNA libraries respectively.

3.3.3 Metagenomic and Metatranscriptomic Bioinformatics

Metagenomic and metatranscriptomic data were annotated with the same pipelines. Briefly,

adapter and primer sequences were filtered out from the paired reads, and then reads were

quality trimmed to Phred33. rRNA reads were identified and removed with riboPicker

(Schmieder, Lim and Edwards, 2011). We then assembled reads into transcript contigs

using CLC Assembly Cell, and then we used FragGeneScan to predict open reading frames

(ORFs; Rho, Tang and Ye, 2010). ORFs were functionally annotated using Hidden Markov

models and blastp against PhyloDB (Bertrand et al., 2015). Annotations which had low

mapping coverage were filtered out (less than 50 reads total over all samples), as were

proteins with no blastp hits and no known domains. For each ORF, we assigned a taxonomic

affiliation based on Lineage Probability Index taxonomy (Podell and Gaasterland, 2007;

Bertrand et al., 2015). Taxa were assigned using two different reference databases: NCBI

nt and PhyloDB (Bertrand et al., 2015). Unless otherwise specified, we used taxonomic

assignments from PhyloDB, because of the good representation of diverse marine microbial

taxa.

ORFs were clustered by sequence similarity using Markov Clustering (MCL; Enright,

Van Dongen and Ouzounis, 2002). Sequences were assigned MCL clusters by first running

blastp for all sequences against each other, where the query was the same as the database.

The MCL algorithm was subsequently used with the input as the matrix of E-values from

the blastp output, with default parameters for the MCL clustering. MCL clusters were then

assigned consensus annotations based on KEGG, KO, KOG, KOG class, Pfam, TIGRfam,

EC, GO, annotation enrichment (Jabre et al., 2021; Bertrand et al., 2015; Kanehisa and

Goto, 2000; Kanehisa et al., 2016; Tatusov et al., 2003; Mistry et al., 2021; Haft, Selengut

and White, 2003). Proteins were assigned to coarse-grained protein pools (ribosomal and

photosynthetic proteins) based on these annotations. For assignment, we used a greedy

approach, such that a protein was assigned a coarse-grained pool if at least one of these

annotation descriptions matched our search strings (we also manually examined the coarse

grains to ensure there were no peptides that mapped to multiple coarse-grained pools). For

photosynthetic proteins, we included light harvesting proteins, chlorophyll a-b binding

proteins, photosystems, plastocyanin, and flavodoxin. For ribosomal proteins, we just
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included the term “ribosom*” (where the * represents a wildcard character), and excluded

proteins responsible for ribosomal synthesis.

3.3.4 Sample Preparation and LC-MS/MS

We extracted proteins from the samples by first performing a buffer exchange from the

sucrose-buffer to an SDS-based extraction buffer, after which proteins were extracted

from each filter individually (as previously described Wu et al., 2019). After extraction

and acetone-based precipitation, we prepared samples for liquid chromatography tandem

mass spectrometry (LC-MS/MS). Precipitated protein was first resuspended in urea (100

µL, 8 M), after which we measured the protein concentration in each sample (Pierce

BCA Protein Assay Kit). We then reduced, alkylated, and enzymatically digested the

proteins: first with 10 µL of 0.5 M dithiothreitol for reduction (incubated at 60 ◦C for 30

minutes), then with 20 µL of 0.7 M iodoacetamide (in the dark for 30 minutes), diluted with

ammonium bicarbonate (50 mM), and finally digested with trypsin (1:50 trypsin:sample

protein). Samples were then acidified and desalted using C-18 columns (described in detail

in McCain et al., 2021).

To characterize each metaproteomic sample, we employed one-dimensional liquid

chromatography coupled to the mass spectrometer (VelosPRO Orbitrap, Thermo Scientific,

San Jose, California, USA; detailed in McCain et al., 2021). For each injection, protein

concentrations were equivalent across sample weeks, but different across filter sizes. We

had higher amounts of protein on the largest filter size (3.0 µm) and less on the smaller

filters, so we performed three replicate injections per 3.0 µm filter sample, and two replicate

filter injections for 0.8 and 0.1 µm filters. We used a non-linear LC gradient totaling 125

minutes. For separation, peptides eluted through a 75 µm by 30 cm column (New Objective,

Woburn, MA), which was self-packed with 4 µm, 90 A, Proteo C18 material (Phenomenex,

Torrance, CA), and the LC separation was conducted with a Dionex Ultimate 3000 UHPLC

(Thermo Scientific, San Jose, CA).

3.3.5 LC-MS/MS Bioinformatics – Database Searching, Configura-
tion, and Quantification

Metaproteomics requires a database of potential protein sequences to match observed mass

spectra with known peptides. Because we had sample-specific metagenome and meta-

transcriptome sequencing for each metaproteomic sample, we assessed various database
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configurations, including those that we predict would be suboptimal, to examine potential

options for future metaproteomics researchers. We used five different configurations,

described below. In each case, we appended a database of common contaminants (Global

Proteome Machine Organization common Repository of Adventitious Proteins). We evalu-

ated the performance of different database configurations based on the number of peptides

identified (using a peptide false discovery rate of 1%).

In order to make these databases (Table 3.1), we performed three separate assemblies

on 1) the metagenomic reads (from samples GOS-927, GOS-930, GOS-933 and GOS-935),

2) metatranscriptomic reads (from samples GOS-927, GOS-930, GOS-933 and GOS-935)

and 3) metatranscriptomic reads from a concurrent metatranscriptomic experiment, started

at the location where GOS-933 was taken (Jabre et al., 2021). Database configurations

were created by subsetting from these assemblies. The first configuration was “one-sample

database”, constructed to represent the scenario where only one sample was used for

metagenomic and metatranscriptomic sequencing (we chose the first sampling week).

Specifically, this was done by subsetting and including ORFs from the metagenomic and

metatranscriptomic assemblies if reads from this time point were present in that sample

(reads mapped as in Jabre et al., 2021), and then removing redundant protein sequences (P.

Wilmarth, fasta utilities). The second configuration was the “sample-specific database”,

where each metaproteomic sample had one corresponding database (prepared from both

metagenome and metatranscriptome sequencing completed at the same sampling site),

also done by subsetting ORFs from the metagenomic and metatranscriptomic assemblies

as described above. The third configuration was pooling databases across size fractions

– such that all metagenomic and metatranscriptomic sequences across the same filter

sizes (e.g. 3.0 µm) were combined. ORFs were subsetted from the metagenomic and

metatranscriptomic assemblies as above. The fourth and fifth configurations were from the

concurrent metatranscriptomic experiment (Jabre et al., 2021). The fourth configuration

(“metatranscriptome experiment (T0)”) was the metatranscriptome of the in situ microbial

community (i.e. at the beginning of the experiment). This database was created by

subsetting from the “metatranscriptome experiment (all)” assembly. Finally, the fifth

configuration was the metatranscriptome of all experimental treatments pooled together

(two iron levels, three temperatures; “metatranscriptome experiment (all)”). The overlap

between databases (potential tryptic peptides) in different samples is presented graphically
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Database Configuration Filter Size Number of Protein Sequences in the Database*
One-Sample Database 0.1 664521
One-Sample Database 0.8 642132
One-Sample Database 3 334394

Sample-Specific Databases 0.1 713153*
Sample-Specific Databases 0.8 633756*
Sample-Specific Databases 3 440990*

Pooled-across-sizes Databases 0.1 836620
Pooled-across-sizes Databases 0.8 855430
Pooled-across-sizes Databases 3 723057

Metatranscriptome Experiment (T = 0) 0.2 443681
Metatranscriptome Experiment (all) 0.2 2185747

Table 3.1: Characteristics of the five different database configurations we used for metapro-
teomic database searches. For the “One-Sample Database”, the first time point was
used, and all samples were matched according to filter sizes. For the “Sample-Specific
Databases”, each database was matched with the corresponding metaproteomic sample.
For the “Pooled-Across-Sizes Databases”, databases were pooled across every time point
and matched according to filter size. For these aforementioned databases, the metagenomic
and metatranscriptomic protein coding sequences were pooled. For the “Metatranscrip-
tome Experiment (T = 0)”, only the first sampling point from the metatranscriptome
experiment was included. For the “Metatranscriptome Experiment (all)” configuration, all
protein coding sequences were included from the treatment outcomes as well as the T = 0.
*Averages are presented for Sample Specific Databases

in Supplementary Figs. 3.5, 3.6, 3.7.

After matching mass spectra with peptide sequences for each database configuration

(MSGF+ with OpenMS, with a 1% False Discovery Rate at the peptide level; Kim et al.,

2014; Röst et al., 2016), we used MS1 ion intensities to quantify peptides. Specifically, we

used the FeatureFinderIdentification approach, which cross-maps identified peptides from

one mass spectrometry experiment to unidentified features in another experiment – increas-

ing the number of peptide quantifications (Weisser and Choudhary, 2017). This approach

requires a set of experiments to be grouped together (i.e. which samples should use this

cross-mapping?). We grouped samples based on their filter sizes (including those samples

that are replicate injections). First, mass spectrometry runs within each group were aligned

using MapAlignerIdentification (Weisser et al., 2013), and then FeatureFinderIdentification

was used for obtaining peptide quantities.

After peptides were identified and quantified, we mapped them to proteins or MCL

clusters of proteins, which have corresponding functional annotations (KEGG, KO, KOG,

Pfams, TIGRFAM; Jabre et al., 2021; Bertrand et al., 2015; Kanehisa and Goto, 2000;

Kanehisa et al., 2016; Tatusov et al., 2003; Mistry et al., 2021; Haft, Selengut and White,
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2003). Functional annotations were used in three separate analyses. 1) Exploring the

overall functional changes in microbial community metabolism, we mapped peptides to

MCL clusters – groups of proteins with similar sequences. These clusters have consensus

annotations based on the annotations of proteins found within the clusters (described in

detail in Jabre et al., 2021). For this section, we only used peptides that uniquely map to

MCL clusters. 2) We restricted the second analysis to two protein groups: ribosomal and

photosynthetic proteins. For this analysis, we mapped peptides to one of these protein

groups if at least one annotation mapped to the protein group (via string matching with

keywords). This approach is “greedy” because does not exclude peptides if they also

correspond with other functional groupings, but this is necessary because of the difficulties

in comparing various annotation formats. 3) The last analysis for functional annotations

was for targeted proteins, and we only mapped functions to peptides where the peptides

uniquely identify a specific protein (e.g. plastocyanin).

Code for the database setup and configuration, database searching, and peptide

quantification is open source (https://github.com/bertrand-lab/ross-sea-meta-omics).

3.3.6 LC-MS/MS Bioinformatics – Normalization

Normalization is an important aspect of metaproteomics: it influences all inferred peptide

abundances. Typically, the abundance of a peptide is normalized by the sum of all identified

peptide abundances. We use the term normalization factor for the inferred sum of peptide

abundances. Note that the apparent abundance of observed peptides is dependent on the

database chosen. In theory, if fewer peptides are observed because of a poorly-matching

database, this will decrease the normalization factor, and those peptides that are observed

will appear to increase in abundance. It is not known how much this influences peptide

quantification in metaproteomics.

For each database configuration, we separately calculated normalization factors. We

then correlated the sum of observed peptide abundances with each other. To get a database-

independent normalization factor, we used the sum of total ion current (TIC) for each

mass spectrometry experiment (using pyopenms; Röst et al., 2014), and also examined

the correlation with database-dependent normalization factors. If normalization factors

are highly correlated with each other, that would indicate database choice does not impact

peptide quantification. Using TIC for normalization may have drawbacks, particularly if

there are differences in contamination, or amounts of non-peptide ions across samples.
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3.3.7 Defining Proteomic Mass Fraction

Protein abundance can be calculated in two ways: 1) the number of copies of a protein

(independent of a proteins’ mass), or 2) the total mass of the protein copies (the sum of

peptides). We refer to the latter as a proteomic mass fraction. For example, to calculate a

diatom-specific, ribosomal mass fraction, we sum all peptide abundances that are diatom-

and ribosome-specific, and divide by the sum of peptide abundances that are diatom-

specific. Note that this is slightly different to other methods, like the Normalized Spectral

Abundance Factor, which normalizes for total protein mass (via protein length; Zybailov

et al., 2006).

3.3.8 Combining Estimates across Filter Sizes

Organisms should separate according to their sizes when using sequential filtration with

decreasing filter pore sizes. In practice, however, organisms can break because of pressure

during filtration, and protein is typically present for large phytoplankton on the smallest

filter size and vice-versa. We used a simple method for combining observations across filter

sizes, weighted by the number of observations per filter. We begin with the abundance of a

given peptide, which was only considered present if it was observed across all injections

of the same sample. We calculated the sum of observed peptide intensities (i.e. the

normalization factor), and divided all peptide abundances by this normalization factor.

Normalized peptide abundances are then averaged across replicate injections. If we are

estimating the ribosomal mass fraction of the diatom proteome, we first normalize the

diatom-specific peptide intensities as a proportion of diatom biomass (i.e. divide all

diatom-specific peptides by the sum of all diatom-specific peptides). We then summed

all diatom-normalized peptide intensities that are unique to both diatoms and ribosomal

proteins, which would give us the ribosomal proportion of the diatom proteome. Yet,

we typically would obtain multiple estimates of, for example, ribosomal mass fraction

of diatoms, on different filters. We combined the three values by multiplying each by a

coefficient that represents a weight for each observation (specific to a filter size). These

coefficients sum to one, and are calculated by summing the total number of peptides

observed at a time point for a filter, and dividing by the total number of peptides observed

across filters (but within each time point). For example, if we observed 100 peptides that

are diatom- and ribosome-specific, and 90 of these peptides were on the 3.0 µm filter and

only 10 were on the 0.8 µm filter, we would multiply the 3.0 µm filter estimate by 0.9
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and the 0.8 µm filter by 0.1. This method uses all available information about proteome

composition across different filter sizes (similar to Dupont et al., 2015).

When we estimate the proteomic mass fraction of a given protein pool, we do not

need to adjust for the total protein on each filter. This is because this measurement is

independent of total protein. However, for merging estimates of total relative abundance of

different organisms across filters, we needed to additionally weight the abundance estimate

by the amount of protein on each filter. Therefore, in addition to the weighting scheme

described above, we multiplied taxon abundance estimates by the total protein on each

filter divided by the total protein across filters on a given day.

3.3.9 LC-MS/MS Simulation

We used simulations of metaproteomes and LC-MS/MS to 1) quantify biases associated

with inferring coarse-grained proteomes from metaproteomes, and 2) to mitigate these

biases in our inferences. Specifically, we asked the question: how does sequence diversity

impact quantification of coarse-grained proteomes from metaproteomes? Consider a three

organism microbial community. If two organisms are extremely similar, there will be

very few peptides that can uniquely map to those organisms, resulting in underestimated

abundance. The third organism would also be underestimated, but to a lesser degree,

unless it had a completely unique set of peptides. A similar outcome is anticipated with

differences in sequence diversity across protein groups, such that highly conserved protein

groups will be underestimated.

Our mass spectrometry simulations offer a unique perspective on this issue: we know

the “true” metaproteome, and we can compare this with an “inferred” metaproteome. We

simulated variable numbers of taxonomic groups, each with different protein pools of

variable sequence diversity. From this simulated metaproteome, we then simulated LC-

MS/MS-like sampling of peptides. Complete details of the mass spectrometry simulation

are available in McCain and Bertrand (2019) and the supplementary materials. The only

difference between this model and that presented in McCain and Bertrand (2019) is here

we include dynamic exclusion. The ultimate outcomes from these simulations were 1)

identifying which circumstances lead to biased inferences about proteomic composition,

and 2) determining the underpinnings of these biases.
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3.3.10 Cofragmentation Bias Scores for Peptides

We recently developed a computational model (“cobia”) that predicts a peptides’ risk for

interference by sample complexity (more specifically, by cofragmentation of multiple

peptides; McCain and Bertrand, 2019). This study showed that coarse-grained taxonomic

and functional groupings are more robust to bias, and that this model can also be used

to estimate bias. We ran cobia with the sample-specific databases, which produces a

“cofragmentation score” – a measure of risk of being subject to cofragmentation bias.

Specifically, the retention time prediction method used was RTPredict (Pfeifer et al., 2007)

with an “OLIGO” kernel for the support vector machine. The parameters for the model

were: 0.008333 (maximum injection time); 3 (precursor selection window); 1.44 (ion peak

width); and 5 (degree of sparse sampling). Code for running this analysis, as well as the

corresponding input parameter file, is found at https://github.com/bertrand-lab/ross-sea-

meta-omics.

3.3.11 Description of Previously Published Datasets Analyzed

We leveraged several previously published datasets to compare our metaproteomic results.

Specifically, we used proteomic data of phytoplankton cultures of Phaeocystis antarctica

and Thalassiosira pseudonana (Wu et al., 2019; Nunn et al., 2013), and of cultures of

Escherichia coli under 22 different culture conditions (Schmidt et al., 2016). Coarse-

grained proteomic estimates were also compared with previously published targeted

metaproteomic data (Wu et al., 2019).

3.4 Results and Discussion

We characterized proteomic traits of eukaryotic and bacterial taxa at the Antarctic sea

ice edge. To do so, we have leveraged a combination of sample-specific nucleic acid

sequencing and metaproteomics, assessing various assumptions and challenges with

metaproteomics. Below, we first discuss our methodological results, and then we examine

observations of different proteomic traits across microbial taxonomic groups. Finally, we

touch on using coarse-grained protein pools for measuring nutrient stress in the ocean.
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3.4.1 Database Choice Influences Peptide Identifications and Quan-
tification

The sequence databases from the metatranscriptome experiment conducted on our third

sampling week (January 15, 2015) outperformed sample-specific databases and other

configurations (in terms of number of peptide spectrum matches, Supplementary Fig.

3.8; Table 3.1). Specifically, we identified 14 455 unique peptides using the “metatran-

scriptome experiment T0” database, while 8022 unique peptides were identified with

the “sample-specific database” (Supplementary Fig. 3.8). We identified a core set of

5127 peptides, regardless of the database chosen (Supplementary Fig. 3.8). The database

pooled across time points identified more peptides than the “sample-specific database”,

similar to previous work (Tanca et al., 2016). The metatranscriptomic experiment (both

“metatranscriptomic experiment (T0)” and “metatranscriptomic experiment (all)”) were

more valuable in identifying larger, primarily eukaryotic organisms (Supplementary Fig.

3.8, 3.9, 3.10, 3.11). Overall, the two metatranscriptomic experiment databases performed

similarly in terms of number of identified peptides. All subsequent analyses use the

identified peptides from the “metatranscriptome experiment (all)” database. Importantly,

a difference between the metatranscriptomes of sample-specific filters and the metatran-

scriptomic experiment databases was sequencing depth (Supplementary Table 3.1). This

difference likely influenced the metatranscriptomic read assembly, improving the assembly

of eukaryotic-protein sequences and therefore creating a better database (i.e. in terms

of peptides identified). Note that databases were constructed after assembly, and then

subsetted to create individual databases (Methods). Overall, deep metatranscriptomic

sequencing appears to be a promising avenue for metaproteomics with tailored databases

(Supplementary Table 3.1).

Database choice influenced peptide quantification due to normalization. We quantified

this by correlating sample-specific normalization factors with each other and with the total

ion current (i.e. a database-independent normalization, Supplementary Figs. 3.12, 3.13,

3.14). Examining the correlation between the best- and worst performing databases, there

was a range of R2 values, from 83–99% (Supplementary Figs. 3.12, 3.13, 3.14). If we

consider a peptide observed in a mass spectrometry experiment with an intensity value of

100, we expect variation in the inferred value to range from 92 to 108, reflecting variation

in the normalization factor of 16%. This has significant consequences for comparative
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metaproteomics: consider two samples, one with a perfectly matched database and a second

that uses the same database, but is poorly matched. Using standard methods, the peptides

identified in the second sample will appear to increase in abundance, even if the abundance

is constant. We anticipate that database choice would similarly affect quantification when

other mass spectrometry methods are employed (e.g. labelled untargeted metaproteomics,

or experiments using data-independent acquisition). Note that our worst performing

database was still well-matched to the community, so for researchers studying very distinct

communities it is vital to address this issue by using database-independent normalization,

or ensuring bias across samples is minimal. We provided methods for doing both.

One simple alternative is to use a database-independent metric of total peptide abun-

dance: total MS1 ion current (TIC). We found that TIC is well correlated with the total

peptide abundance inferred from the best performing database (with correlation coeffi-

cients 0.98, 0.95, and 0.91 for the 3.0, 0.8, and 0.1 µm filter sizes, Supplementary Fig.

3.12, 3.13, 3.14, respectively). This result has two consequences: 1) it suggested that

TIC may be a viable alternative for normalization in comparative metaproteomics. 2) It

validated the use of our best-performing database, as we identified most of the abundant

peptides in our sample. Given that these two approaches were highly correlated, we used

the “metatranscriptome experiment (all)” database for all subsequent analyses.

3.4.2 Taxonomic and Functional Composition Shifted through the
Season at the Antarctic Sea Ice Edge

Taxonomic abundance shifted through the season at the Antarctic sea ice edge (Fig.

3.1a). The microbial community was dominated by Phaeocystis antarctica (Haptophyta)

early in the season, with diatoms increasing in relative abundance later (predominantly

Fragilariopsis sp. and Pseudonitzschia sp.). The phytoplankton bloom progression and

high dinoflagellate biomass contribution were both consistent with previous observations

in the Ross Sea (Smith et al., 2013; Andreoli et al., 1995). Bacterial taxa had relatively

lower protein biomass and more consistent relative biomass values through time compared

with eukaryotic taxa. Of the bacterial taxa we observed, Rhodobacterales was the most

abundant group, with abundances being mostly stable though the season.

We identified shifts in protein abundance by mapping peptides to de novo protein

clusters (irrespective of taxonomic assignments) – including protein clusters with no

known function. Earlier in the season there was a high relative abundance of Chlorophyll
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A-B binding proteins and ATP synthase alpha/beta family proteins (Fig. 3.1b), which is

anticipated because of the higher levels of dissolved iron (Wu et al., 2019). Demonstrating

the importance of de novo protein group assignment, the most abundant protein group in

our entire dataset had no functional annotations (Fig. 3.1b, Unknown Protein Cluster 2818,

mostly belonging to Ciliates). Further examination of a representative protein sequence

within this cluster found no functionally similar proteins within the NCBI non-redundant

database. We suggest that these unknown, highly abundant proteins should be targets for

functional characterization.

3.4.3 Eukaryotic and Bacterial Taxa have Taxon-Specific Proteomic
Allocation Strategies

We quantified two simple proteomic traits of microbes: the ribosomal protein mass fraction

and the photosynthetic protein mass fraction (using a combined estimate across filter sizes,

Supplementary Fig. 3.15). Eukaryotic taxa formed unique clusters based on these two

traits, with more variation across taxa than across time points (Fig. 3.2a). For example,

haptophytes had relatively high proportions of both ribosomal and photosynthetic protein

fractions. Examining the five most abundant bacterial taxa, we also observed distinct

proteomic compositions, with Gammaproteobacteria exhibiting the highest ribosomal

protein mass fraction (Fig. 3.2b).

Before examining the underpinnings of these proteomic traits, we first scrutinized

these inferences using mass spectrometry simulations and additional data sources. Our

analysis was limited to coarse-grained protein functions and taxa, which is robust to

bias arising from variable sample complexity (McCain and Bertrand, 2019). Our mass

spectrometry simulations suggested that low sequence diversity in taxa or protein groups

can lead to underestimation (Supplementary Fig. 3.16), but this bias is mitigated by

examining abundant proteins or taxa. Identifying ∼50 peptides or more is evidence that

there is sufficient sequence diversity in a protein group to avoid this type of underestimation

(Supplementary Fig. 3.16). We identified greater than 50 taxon-specific peptides for each

protein group, indicating that these observations are not subjected to significant biases

arising from sequence diversity. We therefore restricted our analyses to taxa and protein

groups that are relatively abundant. Note that for dinoflagellates, we observed relatively

few peptides in the photosynthetic proteomic mass fraction, so our observations are likely

underestimating the true value (Supplementary Discussion, Supplementary Fig. 3.16).
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Figure 3.1: a, Measurements of relative change in protein biomass identified a taxonomic
shift at the Antarctic sea ice edge. Protein biomass is calculated as the sum of taxon-
specific peptide intensities, weighted by the protein mass per filter for each sampling
time. b, relative change in protein functional clusters shows that unknown protein clusters
contribute greatly to in situ protein biomass, and also identifies a functional shift across
weeks.
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Figure 3.2: a, photosynthetic protein mass fraction and ribosomal protein mass fraction
(normalized by total amount of a given taxon at a each time point) identifies clear taxonomic
subgroupings. b, examining bacteria only shows variation in ribosomal mass fraction
across groups. Note that Thiotrichales are an order within Gammaproteobacteria, so
Gammaproteobacteria here refers to all non-Thiotrichales Gammaproteobacteria. c, Ratios
of ribosomal protein mass fraction to photosynthetic protein mass fraction derived from
metaproteomic observations and compared with phytoplankton proteomes observed in
culture (Phaeocystis antarctica, Thalassiosira pseudonana Wu et al., 2019; Nunn et al.,
2013).
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Despite this underestimation, the true value is probably quite low (discussed below).

We provided two additional estimates of ribosomal and photosynthetic protein mass

fraction from cultured phytoplankton (Fig. 3.2c). Metaproteomics can underestimate

taxon-specific protein mass when taxonomically uninformative peptides are not used. For

example, we might identify a highly conserved peptide produced by a diatom, but are

unable to map it to diatoms because it also corresponds to other taxa, and this peptide would

be excluded from the quantification of diatoms. Therefore, we compared the ratios of

ribosomal to photosynthetic protein mass fraction from the metaproteomic observations to

cultured diatoms and haptophytes. Ratios were similar in cultures compared to populations

sampled in situ (Fig. 3.2c), despite such culturing experiments occurring under different

environmental conditions. Trends observed in the proportion of transcripts mapped to

ribosomal proteins in different groups of bacteria also mirrored our estimates of ribosomal

protein mass fraction (high for Gammaproteobacteria and low for SAR11; Gifford et al.,

2013).

We examined coarse-grained taxonomic groups. It is possible that within these coarse

groupings, different taxa included in these groupings employ different allocation strategies.

We therefore sought to determine whether taxonomic sub-groupings displayed similar

expression patterns. This issue is challenging to assess, because as subgroupings are

further examined, there is increased susceptibility to several biases (as outlined above).

We therefore examined one subgrouping, diatoms, that contained two dominant species:

Fragilariopsis sp. and Pseudonitzschia sp. The taxonomic assignments for these two

diatoms were from the NCBI nt database. We observed similar proteome estimates for

both ribosomal and photosynthetic proteins amongst both these subgroups of diatoms

(Supplementary Fig. 3.17), suggesting they are functionally similar based on these pro-

teomic traits. However, we cannot exclude the possibility that for other taxonomic groups

the trends observed are due to a diversity of underlying microbial strategies. Yet at this

coarse taxonomic level, we concluded that different microbial taxa exhibited distinct

coarse-grained proteomes.

We now turn to the ecological relevance of these protein expression patterns. Protein

synthesis is the primary energy sink in cells (Russell and Cook, 1995), and photosynthesis

or respiration is the primary energy source in cells. Why do dinoflagellates have relatively

low photosynthetic protein mass fractions? This taxonomic group is typically mixotrophic
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or heterotrophic (Jeong et al., 2010), which would require larger investment in respiratory

proteins for energy production. Haptophytes and diatoms had similar amounts of photosyn-

thetic proteins, but very different amounts of ribosomal proteins (Fig. 3.2), so there was no

direct trade-off between producing ribosomal versus photosynthetic machinery (i.e. they

do not form Pareto front; Sheftel et al., 2013; Hart et al., 2015). Gammaproteobacteria had

the highest ribosomal mass fraction within the observed bacterial taxa, and haptophytes

had higher ribosomal mass fractions compared to diatoms. Gammaproteobacteria riboso-

mal mass fraction decreased through the season, perhaps corresponding with a decreased

growth rate as micronutrients are depleted by the phytoplankton bloom.

What are the ecological implications of having more ribosomes? If we assume

constant translation rate per translational apparatus (but see Dethlefsen and Schmidt,

2007), taxa then had different total protein synthesis output. Growth rate is directly related

to total protein synthesis output, because protein comprises a large portion of cell mass.

To have a faster growth rate, microbes’ need to increase protein synthesis (see Scott et al.,

2010, for derivation and assumptions). We hypothesize that high total protein synthesis

output (via high ribosomes) is more advantageous under high nutrient regimes, as it would

allow an elevated growth rate. Indeed, haptophytes and Gammaproteobacteria were more

abundant earlier in the season (which had higher concentrations of dissolved Fe and Mn;

Wu et al., 2019). Another interpretation is that these early-abundant taxa are better suited

to a dynamic environment. Perhaps these early-abundant taxa (Gammaproteobacteria,

haptophytes) increased investment in ribosomes as a form of bet hedging, which enables a

faster growth rate in a dynamic environment (Mori et al., 2017).

3.4.4 Environment-Independent Proteomic Fraction Varies across
Taxa

What is the cost of responding quickly to a dynamic environment? We hypothesized that

there is a regulatory cost for producing proteins that are optimal for a set of environmental

conditions. Constitutive protein production does not incur this regulatory cost at the risk of

being mismatched to environmental conditions. If the proteome is mostly constant across

conditions, this indicates a low regulatory cost, and vice versa. We propose a proteomic

trait that reflects regulatory cost: the proteomic fraction that is environment-independent.

This proteomic trait is quantifiable using metaproteomics, and due to the dynamic nature

of the ocean, is likely an important selective force for marine microbes.
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We classified peptides that are relatively constant across different environmental

conditions, and then summed their average intensities to get an environment-independent

peptide mass fraction (Fig 3.3b and c). Note that 1) peptide intensities were first normalized

by total taxon-specific peptide intensity (they therefore sum to one for each taxon), and 2)

estimates of environment-independent peptide mass fraction were combined across filter

sizes. Using previously published proteomic data from replicate cultures of E. coli under

identical conditions, we chose a cut-off point distinguishing environment-dependent versus

-independent peptides (represented with vertical lines Fig. 3.3; Supplementary Fig. 3.18

Schmidt et al., 2016). This cut-off point was calculated by examining the distribution of

protein-level coefficients of variation for each E. coli culture condition, determining the

third quartile, and then taking the mean across all culture conditions (Schmidt et al., 2016).

We then can determine the proportion of the proteome that is environment-independent

and -dependent (using the mean abundance value per peptide). There are potential biases

in this novel method. We address the impact of these biases using published data and by

making comparisons with other estimates of regulatory costs across taxa from previously

published work (see Supplementary Discussion, Supplementary Fig. 3.18, 3.19).

SAR11 had the highest environment-independent peptide mass fraction across all eu-

karyotic and bacterial taxa we examined (3.3a and b, Supplementary Fig. 3.20), consistent

with previous work suggesting SAR11 has reduced regulatory investment (Giovannoni,

2017). Within eukaryotes, dinoflagellates exhibited the highest environment-independent

peptide mass fraction, and dinoflagellates in other oceanic regions also exhibited lower

regulatory cost (Alexander et al., 2015b; Hu et al., 2018).

Diatoms had a lower environment-independent proteomic fraction compared with

haptophytes, suggesting they have higher regulatory costs. Recall the previous result that

diatoms had a lower proportion of ribosomes compared with haptophytes (but similar

proportions of photosynthetic proteins; Fig. 3.2a). We speculate that two proteomic

traits comprise a trade-off for these two taxa: higher total protein synthesis via more

ribosomes (i.e. leading to fast growth under high nutrient conditions), but at a cost of

being less able to dynamically regulate their proteomes. This suggests that in a high

nutrient environment (that is also dynamic), dynamically responding to the environment

is not the optimal strategy. Instead, a better strategy is constitutively expressing proteins

that are favourable for rapid growth (e.g. high ribosomal production in haptophytes).
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Figure 3.3: a, the distribution of peptide-specific coefficients of variation can be used to
identify if a peptide is significantly changing across environmental conditions. Peptide
abundance is first divided by the total taxon-specific peptide intensity. Diatoms and SAR11
represent two extremes within this dataset – diatoms have a highly variable proteome
while SAR11 has a relatively constant protein expression. The cutoff point was chosen
using replicate cultures of E. coli protein expression (vertical line Schmidt et al., 2016).
b, c, after classifying peptides by their coefficients of variation, we categorized peptides
as independent of their environment and those that are not. Points represent the sum
of peptide intensities that are environment independent across eukaryotic and bacterial
taxa. d, a comparison of protein functional clusters that have peptides classified mostly as
environment-dependent or environment-independent. The values plotted are the number of
environment-dependent peptides minus the number of environment-independent peptides.
Note that some MCL clusters had the same consensus annotation, and therefore sometimes
have multiple corresponding points. Positive values indicate that more peptides observed
within this protein cluster were dependent on their environment (light green), while negative
values indicate more peptides were identified as environment-independent (dark green).

63



The lower ribosomal mass fraction observed in diatoms would limit their growth in

higher micronutrient environments but make them more successful in lower micronutrient

environments. Ross Sea phytoplankton blooms typically progress from haptophyte- to

diatom-dominated, as micronutrients stocks (e.g. Fe and Mn) transition from replete to

deplete (Smith et al., 2013; Mangoni et al., 2017; Noble et al., 2013; Peloquin and Smith,

2007). There is also evidence that Phaeocystis has a higher Fe requirement (Sedwick

et al., 2007), which may be related to these proteomic traits. We posit that differences in

regulatory cost and ribosomal mass fraction between diatoms and haptophytes may help

explain their ecological succession.

Are some protein functions more often categorized as environment-independent

or environment-dependent? Highlighting some examples, the actin protein cluster was

often classified as environment-dependent (Fig. 3.3c). Actin is involved in endocytosis,

and inorganic Fe uptake occurs via an endocytotic mechanism (with phytotransferrin;

McQuaid et al., 2018). Perhaps variable expression of actin is related to the amount

of bioavailable Fe, and previously published proteomic experiments also showed that

actin was differentially expressed due to Fe (Bertrand et al., 2012; Cohen et al., 2018).

ATP synthase-peptides and chlorophyll A-B binding protein-peptides were also mostly

classified as environment dependent, likely reflecting higher primary production earlier

in the season (Fig. 3.3c). In contrast, the ketol-acid reductoisomerase protein cluster

(involved in branched-chain amino acid synthesis) was mostly classified as environment-

independent. It is unclear what the mechanistic basis for constitutive expression of this

protein might be, but several proteomic studies of diatoms also suggest similar expression

across conditions (Nunn et al., 2013; Bertrand et al., 2012; Cohen et al., 2018). Using

this extensible approach to identify constitutively expressed proteins across a wide array

of taxa would shed light on these mechanisms. With vastly more metaproteomic data

being generated (e.g. Cohen et al., 2021), identifying constitutively expressed proteins

across diverse taxa would help answer the question: what are the features of constitutively

expressed proteins? For example, perhaps there are certain protein functional groupings

that are often constitutively expressed.

3.4.5 Coarse-Grained Proteomes can Assess Nutrient Stress

Proteomics is also used in marine microbiology to assess stress corresponding to a deficient

nutrient (e.g. Saito et al., 2014). For example, expression of the protein plastocyanin
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may reflect Fe deficiency, because plastocyanin does not contain Fe and performs a

similar function as the Fe-containing protein cytochrome c (Strzepek and Harrisson,

2004). Biomarkers of physiological stress are increasingly nuanced (e.g. Wu et al., 2019),

sometimes taxon specific, and can require targeted mass spectrometry approaches. Coarse-

grained approaches may be a complementary method for assessing stress or nutrient

deficiency. We compared using coarse-grained proteomes with single-protein biomarkers.

Previous bottle incubation work and targeted metaproteomics showed that there was a

transition to Fe- and Mn-stress at this sampling location in the Ross Sea, so we focus on

Fe-stress indicators (Wu et al., 2019). We first solely examined the photosynthetic protein

mass fraction compared to the mass fraction of peptides assigned to the plastocyanin, for

diatoms and haptophytes (Fig. 3.4a and b). This approach is biased by variable complexity

across samples (McCain and Bertrand, 2019), but we predicted the degree of bias with

a quantitative metric (the “cofragmentation score”). This score reflects the expected

number of peptides with similar m/z and retention times. Overall, there were relatively few

potential cofragmenting peptides (≈3), indicating low bias (peptides with high bias can

have upwards to 300 cofragmenting peptides, for example; McCain and Bertrand, 2019).

We observed a negative relationship between the photosynthetic protein mass fraction

and the plastocyanin mass fraction (note that these two variables are not independent, as

plastocyanin is considered as part of the photosynthetic mass fraction). We also examined

Phaeocystis antarctica-specific peptides measured with previously published targeted

mass spectrometry, and identified a negative correlation between the abundance values

of plastocyanin and the coarse-grained estimates of photosynthetic proteins (Fig. 3.4c).

We conducted this analysis as a proof-of-concept for using coarse-grained proteomes

to assess nutrient deficiency, as coarse-grained proteomes are amenable for untargeted

metaproteomic analyses. These preliminary analyses suggest that coarse-grained proteome

composition may be a useful tool for assessing nutrient deficiency. More analyses are

required to assess the robustness of this relationship, and also to assess if coarse-grained

proteomic signatures are nutrient specific (i.e. would a coarse-grained marker be able to

distinguish between Fe and Mn stress?).
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Figure 3.4: a-b, comparison of the single-protein biomarker plastocyanin with the photo-
synthetic protein mass fraction for diatoms and haptophytes (using discovery proteomics).
Points are coloured with their corresponding, sample-specific cofragmentation score (the
number of potentially cofragmenting peptides). Cofragmentation scores were calculated
using the sample-specific nucleic acid sequencing, and points coloured in grey correspond
to peptides that were identified and quantified with the “Metatranscriptome experiment
(all)” database, but were not present in the sample-specific databases. c, comparison of the
single-protein biomarker (using targeted proteomics) plastocyanin with the photosynthetic
protein mass fraction for haptophytes. Two peptides for plastocyanin are shown, and each
point represents one technical replicate measurement. Phaeocystis plastocyanin abundance
is normalized to Phaeocystis RuBisCO small subunit abundance, where we used the mean
of two taxon-specific peptides (AKPNFYVK and QIQYALNK) to calculate RuBisCO
abundance (Wu et al., 2019).
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3.5 Conclusion

We conclude that different microbial taxa have distinct coarse-grained proteomic composi-

tion, and this composition is more similar across taxa than across environmental conditions.

The stoichiometry of proteins within pathways is conserved (Lalanne et al., 2018) – but

our results show that this is not the case across pathways. Variation in pathway-to-pathway

stoichiometry may indeed underpin ecological strategies, in addition to differing gene

repertoires. Connecting in situ proteomes to ecological strategies will delineate proteomic

traits, which can then be adopted into a trait-based approach for modelling microbial

communities. Genomic trait-based approaches have successfully explained large-scale bio-

geochemical processes (Reed et al., 2014; Coles et al., 2017), but they first had to identify

genes that are metabolically important. Therefore, identifying and quantifying proteomic

trait variation across taxa will connect protein production to ecological strategies, and

ultimately enable modelling of microbial communities by representing proteomic traits

and trade-offs in large scale models (e.g. as in Follows et al., 2007).

3.6 Data Availability

The metagenomics and metatranscriptomics data reported here have been deposited in the

NCBI sequence read archive (BioProject accession no. PRJNA074702; BioSample acces-

sion nos. SAMN18057468-SAMN18057479 (metagenomics) and BioSample accession

nos. SAMN18057480-SAMN18057497 (metatranscriptomics). The mass spectrometry

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE

partner repository with the dataset identifier PXD022995 (Perez-Riverol et al., 2019). All

other data products (the cobia analysis output, formatted databases, peptide abundances for

each database search, targeted proteomics data, culture proteomics data, metaproteomic

simulation output) are available in Dryad at doi:10.5061/dryad.vt4b8gtrz.

3.7 Author Contributions

J.S.P.M., E.M.B., and A.E.A. conceived the study. J.S.P.M. wrote the code, conducted anal-

yses and metaproteomic lab work, with input from E.M.B. and A.E.A. E.M.B. and A.E.A.

collected the Antarctic samples and conducted metagenomic and metatranscriptomic lab
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and computational work. J.S.P.M. wrote the paper with input from E.M.B. and A.E.A.

3.8 Supplementary Information

3.8.1 Supplementary Methods

We simulated metaproteomes in silico to examine biases arising from inferring taxon-

specific proteomes. The primary challenge of inferring taxon-specific coarse-grained

proteomes is that not all coarse-grained pools (groups of proteins performing some func-

tional role) are equally identifiable. This also extends to taxa – some taxa are more closely

related, and therefore have fewer unique peptides. For example, some coarse-grained pools

are easily mapped to a given taxon while others have very few taxon-specific peptides.

To address these expected biases, we created in silico metaproteomic datasets (gener-

ative model), and sampled the data similar to how a mass spectrometer would (sampling

model). We then compared the sampled data to the known dataset and evaluated which

conditions biases would arise.

3.8.1.1 Generative Model

We generate p unique peptides, assigned to k coarse grained pools, belonging to an

organism j. We simulate peptides rather than proteins, as peptides are injected into

a mass spectrometer with bottom-up mass spectrometry. To simulate different levels

of sequence diversity present across protein pools, we generate k sequence ‘banks’ of

different sizes. Peptide sequences banks are created by randomly sampling from all amino

acids, generating a sequence ranging in length from 5–15 amino acids per peptide. An

organism-specific peptide profile is created, which randomly samples from each ‘sequence

bank’. So a smaller ‘sequence bank’ would represent a coarse grained protein pool with

low sequence diversity, and vice-versa.

We then assign abundances to each peptide. Peptide abundance is generated using

a random sample from a gamma distribution with the shape parameter of 0.15 and the

scale parameter of 10. We chose this distribution as it is similar to the distribution of

peptides observed in single-organism proteomics (specifically it has overdispersion, non-

zero values only, and is continuous). We then multiply each peptide abundance by a

taxonomic abundance unique to each taxon j, and by the abundance within a given coarse

grained pool k. Both the taxonomic abundance and the coarse-grained pool abundance
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values are similarly drawn from a gamma distribution, except with a shape value of 1. For

example, to calculate peptide abundance we first draw a value for an organism abundance

(e.g. 100) and multiply that by a value drawn for a coarse-grained pool abundance (e.g. 5).

Lastly, we generate a value for all peptides from within this organism and coarse-grained

pool (e.g. 2), and multiply these three values. In this case, the intensity of the peptide

would be 1000. Once the ‘true’ dataset is generated, we then filter this dataset to create

an ‘observed’ dataset, because peptides that are the same from the ‘true’ dataset should

be summed. From this observed dataset, we calculate peptide mass and assume a peptide

charge state of 2.

3.8.1.2 Sampling Model

Mass spectrometers sample and fragment peptides for identification, and there is some

stochasticity in this sampling process, particularly when using data-dependent acquisition

(DDA). Using DDA, peptides are sampled according to their intensity. We subsample our

‘observed dataset’ using a simplistic model of a mass spectrometer. Our model assumes a

constant ion peak width, and randomly assigns elution times to peptides from a uniform

distribution. A similar version of this model has been extensively validated (McCain and

Bertrand, 2019), but the key difference here is including dynamic exclusion and top-N

sampling.

We describe sampling model algorithmically below (Algorithm 1). We begin by

sorting and then binning elution times for all peptides (steps 1–2). We then loop through

every nth elution time bin, where n represents the number of ions selected for Top n DDA

(step 4). So with more ions selected for ‘fragmentation’ the mass spectrometer would have

less time to scan intact peptides, as is true for instruments that move between scanning

MS1 in an Orbitrap and fragmenting peptides in a linear ion trap. Then, if a peptide is on

the dynamic exclusion list and it has been on the list for longer than the dynamic exclusion

time, it is removed from the dynamic exclusion list (step 4–5). All of the m/z windows

belonging to a peptide on the dynamic exclusion list are then blocked for sampling (steps

6–7). Of the remaining peptides, we select the top n in terms of abundance, and assume

that these peptides are identified (step 8). The final step is adding the identified peptides

to the dynamic exclusion list (step 9), which prevents those m/z regions from being
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subsequently sampled for a short period of time (the dynamic exclusion time).
Algorithm 1: Mass spectrometry sampling model.

Result: Sampling peptides generated from the observed dataset similar to how a

mass spectrometer would sample.

1. Sort peptides by elution time;

2. Bin peptides by elution times;

3. for Elution T ime Bin do
4. if Retention T imePeptidej,k >

Elution T ime Bin +Dynamic Exclusion T ime then

5. Remove Peptidej,k from Dynamic Exclusion List ;

end

6. if m/zPeptidej,k ∈ Dynamic Exclusion List then

7. Remove Peptidej,k;

end

8. Select Top n Peptides by Abundance;

9. for Peptidej,k ∈ Top n do

10. Add to Dynamic Exclusion List;

end

end

3.8.1.3 Model Parameters

We generated 15 datasets with the following characteristics. Each dataset contained 30

distinct taxa with four coarse-grained protein groups of varying diversity. As above, diver-

sity is modeled using varying sizes of sequence ‘banks’ (we used sizes of 15000, 50000,

100000, 250000, and 500000). From each protein group (represented by these different

sequence banks of peptides), each organism has 2000 peptides, which are randomly drawn

from these sequence banks. Retention times are assigned from a uniform distribution

ranging from 0–90 minutes.

The maximum injection time, which is used as the width of the elution time bin, is

500 ms (or 0.00833 minutes), following from McCain and Bertrand (2019). We assign a

constant ion peak width of 0.5 minutes, independent of ion intensity. We use a Top n of

12 ions. Our precursor selection window is set to 3 m/z and our dynamic exclusion time

span is set to 0.5 minutes.
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3.8.2 Supplementary Discussion
3.8.2.1 Underestimation of Coarse-Grained Protein Groups

Our simulations showed that abundant protein groups have good estimates (close to

the 1:1 line, Supplementary Fig. 3.16), while low abundance protein groups tend to

be underestimated. Each point in Supplementary Fig. 3.16 represents an estimate of

taxon-specific coarse-grained protein pool, with the “true” value compared with the

“observed” value. This relationship of underestimation with abundance is because of the

data-dependent acquisition sampling method that mass spectrometers use. Data-dependent

acquisition specifically targets the highly abundant peptides, so lower abundance groups

tend to get sampled less. The method we (and others) typically use is to sum the peptide

intensities to obtain an abundance estimate. With fewer peptides quantified, the sum will

be lower (Supplementary Fig. 3.16). Note that sequence diversity can also influence these

estimates (represented with blue colour gradient, Supplementary Fig. 3.16), but only until

there is extremely low diversity (darkest colour), corresponding with only a few peptides

identified and mapped to a taxon. Note that we are considering the proteomic mass fraction,

and quantified this using peptide intensities. Protein quantification typically adjusts for the

length per protein, but if this adjustment was not made, it would be equivalent to how we

are calculating the proteomic mass fraction.

3.8.2.2 Sequence Diversity

Our conclusions about the ribosomal and photosynthetic proteomic mass fractions, as

well as the environment-independent proteomic mass fraction, are potentially influenced

by varying degrees of biodiversity within each taxonomic group. Yet, we restricted our

analyses to these taxonomic groups due to the robustness of estimation with higher numbers

of peptides (above simulations, and McCain and Bertrand, 2019). Further, this level of

taxonomic resolution is typically used to compare ecological strategies across marine

microbes, so we reasoned it would be useful to introduce these proteomic traits at the same

level (e.g. Alexander et al., 2015b).

Here we outline the challenges in comparing taxonomic groups with varying biodiver-

sity within each group, focusing on the environment-independent mass fraction proteomic

‘trait’. Biodiversity could influence the environment-independent mass fraction in several

ways, depending on the exact meaning of ‘biodiversity’ in this context. The source of

this variation could be due comparisons between taxonomic groups with varying levels
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of biodiversity (in terms of sequence diversity), or it could be due to a shift in commu-

nity composition within taxonomic groups across samples (for example from one diatom

species to another). These different mechanisms lead to different potential problems. For

example, if community composition is constant across time, but one grouping is more

biodiverse than another, our estimates could be interpreted as an average across subgroups

(note this is not necessarily the case). But if there are significant shifts in community

composition, then this might correspond with an apparent increase in peptide variability

that arises from the change in community composition rather than changes in protein

expression.

How could varying degrees of diversity be adjusted for? Simply correcting for total

peptide diversity (in terms of numbers of peptides unique for a taxonomic group) is an

obvious first step. Consider, however, the relationship between the total number of unique

peptides for a species with a high regulatory cost (many regulatory proteins). There would

be a causal connection between the number of unique peptides and the exact trait we are

examining – regulatory cost – so ‘adjusting’ for peptide diversity would not be appropriate.

Another approach to assess variable biodiversity across taxa is to examine finer taxo-

nomic resolution, and then estimate and compare the environment-independent proteomic

mass fraction at that finer resolution with our original, coarse resolution estimates. This is

problematic for two reasons: 1) peptides used for a finer taxonomic resolution are unlikely

to be a random subsample, and certain protein functions are most likely enriched. If these

protein functions are more or less likely to be constitutively expressed, estimates will

not be comparable across taxonomic resolution. 2) Subsampling in mass spectrometry is

explicitly biased towards highly abundant peptides. Peptides that are more abundant tend

to have lower coefficients of variation (Supplementary Fig. 3.18). So, a subsample will

systematically bias the environment-independent mass fraction upwards. We have outlined

some of the principal challenges associated with using metaproteomics to estimate this

proteomic trait, and future work is needed to address these issues. However, we think that

this trait is still worth examining, because it likely underpins key aspects of ecological

variability (e.g. as examined theoretically and experimentally in E. coli; Mori et al., 2017).

3.8.2.3 Abundance-Noise Relationship

Another potential bias in studying the environment-independent protein mass fraction is

that less abundant proteins have more variation across identical conditions, as the mean
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protein coefficient of variation is negatively correlated with mean protein abundance in

cultures (Supplementary Fig. 3.18; Schmidt et al., 2016). So, identifying more peptides

would increase the average coefficient of variation. However, we did not observe a negative

correlation between the peptide-specific coefficient of variation and the mean peptide

abundance (Supplementary Fig. 3.19), suggesting that this bias does not influence our

estimated environment-independent peptide mass fraction.

3.8.3 Supplementary Table
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Table 3.2: Sequencing and assembly characteristics for the three assemblies (one metage-
nomic and two metatranscriptomic) used for databases of potential proteins for searching
mass spectra. The first four columns correspond to the metagenomic and metatranscrip-
tomic sequencing conducted on the GOS-927, GOS-930, GOS-933 and GOS-935 filters
(see Methods). The last two columns correspond to the metatranscriptomic experiment
described in the Methods. All statistics are based on contigs of size >= 500 bp, unless
otherwise noted (e.g., ”# contigs (>= 0 bp)” and ”Total length (>= 0 bp)” include all
contigs). N50 is the length for which the collection of all contigs of that length or longer
covers at least half (50%) the total base content of the Assembly. It serves as a median
value for assessing whether the Assembly is balanced towards longer contigs (higher N50)
or shorter contigs (lower N50). N75 is used for the same purpose but is the length is set at
75% of total base content instead of 50%. L50 is the number of contigs equal to or longer
than the N50 length. In other words, L50, is the minimal number of contigs that contain
half the total base content of the Assembly. L75 is used for the same purpose in reference
to the N75 length. Columns labelled ‘Assembly’ refer to assembled contigs, and columns
labelled ‘Assembly ORF’ refer to predicted ORFs from contigs.

3.8.4 Supplementary Figures
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Figure 3.8: Representation of the overlap between different database configurations and
the number of peptides identified with each. Bar graphs on top (with numbers above)
represent the number of peptides identified with a given set of databases (i.e. overlapping
databases). The set of overlapping databases is represented below with points and lines.
For example, the first column on the left represents peptides uniquely identified using
the database ‘Metatranscriptome Experiment T0’, where 1540 peptides were uniquely
identified. The side bar plot, next to the database configuration name, is the total number of
peptides identified using each database. In this figure, all filter sizes are summed together.
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Figure 3.9: Representation of the overlap between different database configurations and
the number of peptides identified with each. Bar graphs on top (with numbers above)
represent the number of peptides identified with a given set of databases (i.e. overlapping
databases). The set of overlapping databases is represented below with points and lines.
The side bar plot represents the total number of peptides identified using each database. In
this figure, only the largest filter size is shown (3.0 µm).
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Figure 3.10: Representation of the overlap between different database configurations and
the number of peptides identified with each. Bar graphs on top (with numbers above)
represent the number of peptides identified with a given set of databases (i.e. overlapping
databases). The set of overlapping databases is represented below with points and lines.
The side bar plot represents the total number of peptides identified using each database. In
this figure, only the middle filter size is shown (0.8 µm).
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Figure 3.11: Representation of the overlap between different database configurations and
the number of peptides identified with each. Bar graphs on top (with numbers above)
represent the number of peptides identified with a given set of databases (i.e. overlapping
databases). The set of overlapping databases is represented below with points and lines.
The side bar plot represents the total number of peptides identified using each database. In
this figure, only the smallest filter size is shown (0.1 µm).
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Figure 3.12: The sum of peptide intensities (i.e. normalization factors) are against each
other for different database configurations, as well as against total ion current (TIC). Points
represent different mass spectrometry experiments. Correlation values (coefficient of
determination) are represented in corresponding locations. Only the largest filter size is
shown here (3.0 µm).
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Figure 3.13: The sum of peptide intensities (i.e. normalization factors) are against each
other for different database configurations, as well as against total ion current (TIC). Points
represent different mass spectrometry experiments. Correlation values (coefficient of
determination) are represented in corresponding locations. Only the middle filter size is
represented here (0.8 µm).
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Figure 3.14: The sum of peptide intensities (i.e. normalization factors) are against each
other for different database configurations, as well as against total ion current (TIC). Points
represent different mass spectrometry experiments. Correlation values (coefficient of
determination) are represented in corresponding locations. Only the smallest filter size is
represented here (0.1 µm).
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Figure 3.15: Demonstrating how various estimates across filters are collapsed into one
estimate, based on the number of peptides identified within each filter size. Grey points
represent the different filter sizes, while the size per grey point is the number of peptides
observed in that filter, corresponding to a given taxa or a coarse-grained proteomic pool
(P is photosynthetic protein pool, R is ribosomal protein pool). Dark blue squares are
the weighted estimates. Numbers in the vertical direction (right side) correspond to the
different sampling weeks.
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Figure 3.16: Results from the metaproteomic sampling simulation suggest that restricting
analyses to protein groups and taxa that are abundant will prevent bias due to different
amounts of diversity. a, varying degrees of simulated diversity (colour of points), demon-
strates that low diversity pools are underestimated (i.e. far away from 1:1 line). Yet,
if many peptides are observed (i.e. above 50 peptides), then the estimates are linearly
correlated with the 1:1 line, with only slight underestimates due to diversity. b, the number
of photosynthetic and ribosomal protein specific peptides that are also taxon-specific across
different filter sizes (estimates across filter sizes were weighted and merged). At least one
filter for each protein pool has greater than 50 peptides, except Dinoflagellate photosyn-
thetic proteins. The dotted horizontal line corresponds with 50 unique peptides. These
data suggest that our estimates of ribosomal and photosynthetic protein mass fraction not
susceptible to diversity-induced bias. 87



Figure 3.17: Proteomic proportions of two taxonomic groups of diatoms, Fragilariopsis sp.
and Pseudo-nitzschia sp. Ribosomal and photosynthetic proportions were similar across
groupings, and also similar to the larger grouping of diatoms.
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Figure 3.18: Protein-level summary statistics derived from a comprehensive proteomic
characterization of E. coli (Schmidt et al., 2016). a. the distribution of protein-level coeffi-
cients of variation, using all 22 experimental treatments described in Schmidt et al. (2016).
The vertical line was calculated by first determining the third quartile of the distribution of
coefficients of variation for each condition, and then calculating the mean of these third
quartiles. These coefficients of variation should presumably lead to mostly constant protein
expression, but there are some proteins that have intrinsic noise in expression levels. We
chose an arbitrary cut-off to classify protein expression as constant or not. b. Plotting the
relationship between the mean protein abundance across conditions with its coefficient of
variation shows a negative correlation between the two summary statistics at the protein
level (Spearman’s ρ = -0.55).
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Figure 3.19: Weak relationships between the peptide abundance coefficient of variation
and the mean peptide abundance for the prokaryotic and eukaryotic taxa we observed
(Spearman’s ρ = -0.09 and 0.18, respectively).
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Figure 3.20: Distributions of peptide-specific coefficients of variation for each taxa we
examined. In the main manuscript, only SAR11 and diatom distributions are shown.
Methods for calculating this distribution are given in the main manuscript.
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CHAPTER 4

CELLULAR COSTS UNDERPIN
MICRONUTRIENT LIMITATION IN
PHYTOPLANKTON

This work was published previously in Science Advances (McCain et al., 2021).

4.1 Abstract

Micronutrients control phytoplankton growth in the ocean, influencing carbon export and

fisheries. It is currently unclear how micronutrient scarcity affects cellular processes, and

how interdependence across micronutrients arises. We show that proximate causes of

micronutrient growth limitation and interdependence are governed by cumulative cellular

costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation

model of a polar diatom focused on iron and manganese, we demonstrate how cellular

processes fundamentally underpin micronutrient limitation, and how they interact and

compensate for each other to shape cellular elemental stoichiometry and resource interde-

pendence. We coupled our model with metaproteomic and environmental data, yielding

a novel approach for estimating biogeochemical metrics including taxon-specific growth

rates. Our results show that cumulative cellular costs govern how environmental conditions

modify phytoplankton growth.
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4.2 Introduction

Marine phytoplankton are responsible for approximately half of global net primary produc-

tivity, supporting key ecosystem services (Field et al., 1998). Micronutrients, such as iron,

are often depleted in the ocean, limiting phytoplankton growth and therefore impacting

fisheries productivity and carbon export globally (Tagliabue et al., 2017, 2020; Assmy et al.,

2013). These resources are cofactors for enzymes that catalyze intracellular reactions, and

unlike the macronutrients nitrogen and phosphorous, they comprise a negligible fraction

of biomass. Cellular micronutrient stoichiometry is highly variable (Twining and Baines,

2013) and elements can conditionally substitute for one another (Saito, Goepfert and Ritt,

2008). Therefore traditional approaches that simply link growth rate to resource scarcity

may not apply.

Growth is the emergent outcome of a range of internal cellular processes competing

for shared resources (Kafri et al., 2016) that are governed by costs (e.g. number of

amino acids per protein or energetic requirements; Dekel and Alon, 2005; Basan et al.,

2015; Jahn et al., 2018) and constraints (e.g. limits of protein density in a membrane;

Szenk, Dill and de Graff, 2017). Protein synthesis capacity has been identified as a key

growth-limiting process in model heterotrophic organisms with various carbon sources

(Schaechter, Maaløe and Kjeldgaard, 1958; Scott et al., 2010). Only recently have other

non-carbon macronutrients been considered and additional complexities have been revealed

(e.g. Li et al., 2018; Kafri et al., 2016). Currently, we lack knowledge regarding which

internal processes limit growth under micronutrient deficiency. Further, while we know

that multiple nutrients can simultaneously impact growth rate (Browning et al., 2017), the

mechanisms by which they interact appear to vary for each nutrient pair (Saito, Goepfert

and Ritt, 2008).

The overriding conceptual view in oceanography is not sufficient to mechanistically

represent micronutrient limitation and resource interdependence. Currently, external

resource scarcity (e.g. bioavailable forms of nitrogen, phosphorus, iron, etc.), relative

to fixed requirements, is assumed to control growth and carbon fixation rates (Moore,

Doney and Lindsay, 2004; Laufkötter et al., 2015). However, this ignores the role of

internal processes in limiting growth. It also prevents general mechanisms of resource

interdependence, which may arise because different internal processes compete for shared

cellular resources, from being included in large-scale ocean models. While external
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resource scarcity is clearly the ultimate cause of limitation, the proximate causes drive the

sensitivity to environmental change. For example, temperature-driven changes in ribosomal

translation rates might influence cellular nitrogen to phosphorous ratios because ribosomes

are a large portion of phosphorous quotas (Toseland et al., 2013). Currently, ocean models

used for climate change projections parameterize growth as a simple function of the single

most limiting resource (Laufkötter et al., 2015), which introduces substantial uncertainties

in a changing environment (Tagliabue et al., 2020). While some phytoplankton models

have leveraged quantitative, mechanistic insights into cellular processes (Loladze and

Elser, 2011; Toseland et al., 2013; Bonachela et al., 2013; Talmy et al., 2013; Nicholson,

Stanley and Doney, 2018; Inomura et al., 2019), none have examined interactions between

micronutrients or used in situ gene expression data to resolve cellular processes.

In this study, we quantify the proximate costs and constraints associated with mi-

cronutrient limitation via a novel coupling of cellular modelling and metaproteomics from

the Southern Ocean. By deriving a phenomenological model, we identify key factors

controlling interdependence across micronutrients. Finally, we demonstrate a framework

for inferring critical biogeochemical metrics, such as growth rates, by coupling in situ gene

expression and geochemical data with cellular modelling. Taken together, this framework

quantifies cellular costs and constraints to examine the mechanistic underpinnings of

phytoplankton growth in the ocean.

4.3 Results and Discussion

4.3.1 Estimating Cellular Costs and Constraints with a Diatom Pro-
teomic Allocation Model

We estimated the cellular costs and constraints of micronutrient limitation in phytoplankton

by developing a mechanistic, proteomic allocation model for the polar diatom Fragilari-

opsis cylindrus (Mock et al., 2017; Faizi et al., 2018). Our model considers the essential

micronutrients iron and manganese, which both influence primary productivity in the

Southern Ocean (Assmy et al., 2013; Buma et al., 1991; Browning et al., 2014; Wu et al.,

2019), and represents the various processes underlying cellular growth, like photosynthesis

and translation (Molenaar et al., 2009; Weiße et al., 2015; Faizi et al., 2018; Zavřel et al.,

2019). The model is comprised of several ‘coarse-grained’ protein pools (i.e. proteins
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grouped together with related functions, Fig. 4.1a): iron- and manganese-specific trans-

porters, photosystem units, nitrogen uptake and metabolism (from nitrate to amino acids),

and antioxidants (represented here by manganese superoxide dismutase, MnSOD). Each

protein pool has an associated cost, which is proportional to the number of amino acids per

pool (estimated using the F. cylindrus genome; Mock et al., 2017). Ribosomes are assumed

to be allocated to maximize the steady-state specific growth rate, and each protein pool,

metabolite, and internal free pool of Fe and Mn is described by an ordinary differential

equation (ODE). The system of ODEs are connected by various stoichiometric coefficients

obtained from the literature, for example Mn atoms per MnSOD or the total number of

Fe atoms within all proteins involved in converting nitrate into amino acids. We then

integrated the system of ODEs forward in time to obtain steady-state estimates of each

state variable, from which we calculate the specific growth rate. In our model we define

the specific growth rate as the rate of biosynthesis of amino acids relative to the average

protein per cell (Faizi et al., 2018). We used Bayesian optimization to determine the

optimal ribosomal allocation under a given set of dissolved Mn (dMn), Fe (dFe), and light

conditions (Methods). Iron and Mn interact via oxidative stress, where under low dFe,

electrons leak more frequently from electron transport (Niyogi, 1999) thus increasing the

requirement for the Mn-containing antioxidant superoxide dismutase (MnSOD Peers and

Price, 2004). Under low antioxidant availability, the cell must replace proteins damaged

by reactive oxygen species by increasing protein synthesis. Accordingly, the mismatch be-

tween superoxide production and its consumption via MnSOD leads to a protein synthesis

rate penalty in our model (see Methods).

We then leveraged proteomic and metaproteomic data to estimate three key costs

and constraints: (i) internal Fe and Mn protein cost, (ii) available membrane space for

transporters (Lis et al., 2015), and (iii) catalytic efficiency of MnSOD (Methods). (i) refers

to all proteins required for acquiring, shuttling and storing Fe within the cell (e.g. ferritin;

Marchetti et al., 2009), which is dynamic such that Fe protein cost increases with Fe

quota (an identical cost is applied for Mn, Supplementary Discussion). (ii) refers to the

proportion of membrane space available for metal transporters (Lis et al., 2015; Szenk,

Dill and de Graff, 2017), for which we extended a mechanistic nutrient uptake model

(Aksnes and Egge, 1991; Aksnes and Cao, 2011; Fiksen, Follows and Aksnes, 2013),

accounting for competition for membrane space between iron and manganese transporters.
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Figure 4.1: A polar diatom-based proteomic allocation model combined with metapro-
teomic observations reproduces expected cell behaviour. (A), schematic of proteomic
allocation model. Micronutrients are taken up via nutrient-specific protein transporters
(left). Internal pools of Mn and Fe (black boxes) are then accessible for protein synthesis.
Photosystems require both Fe and Mn, and are the source of energetic equivalents (‘e’;
black box), which are then used by protein synthesis, micronutrient uptake and nitrogen
metabolism (latter two are not shown with arrows). Protein pools are synthesized via
ribosomes and represented with circle-ended lines. All model runs were conducted with
nitrate at saturating levels. (B), growth rates across a range of Fe and Mn concentrations
are quantitatively similar to growth rates in culture (Supplementary Fig. 4.9). (C), Fe
transporters decrease with increased Fe concentrations (dMn = 500 pM), a commonly
observed phenomenon in cultures (Sunda and Huntsman, 1985; Hudson and Morel, 1990).
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(iii) represents the effectiveness of a single MnSOD unit.

Model parameters were estimated using Approximate Bayesian Computation (ABC)

in a novel combination with diatom proteomes inferred from a metaproteomic time series

(Wilkinson, 2013). The metaproteome characterisation coupled peptide mass spectrometry

with metatranscriptomics (Jabre et al., 2021) to examine protein expression over time at

the Antarctic sea ice edge, where concurrent bottle incubations indicated a transition into

micronutrient stress (cobalamin, Mn, Fe; Bertrand et al., 2015; Wu et al., 2019). Coarse-

grained diatom protein pool biomass was estimated using the sum of diatom-specific

peptide intensities (Supplementary Fig. 4.6; Kleiner et al., 2017). Coarse-graining is

necessary to prevent biases in peptide detectability and quantification across complex

samples (McCain and Bertrand, 2019). Finally, we combined the inferred diatom proteome

observations with two previously published diatom proteomic datasets to estimate each

parameter (Methods, Supplementary Fig. 4.7; Cohen et al., 2018; Nunn et al., 2013). We

have assessed various forms of biases and developed methods for connecting environmental

gene expression data to quantitative models of cellular processes (Methods), providing a

path forward to leverage large-scale datasets in this way.

Our model reproduces expected cellular behaviour across a range of dFe and dMn

concentrations (Fig. 4.1b, 4.1c; Supplementary Fig. 4.8; using posterior modes for

estimated parameters, Supplementary Fig. 4.7). For example, the model quantitatively

reproduces growth rates (Jabre and Bertrand, 2020), Mn and Fe cellular quotas (Twining,

Baines and Fisher, 2004; Peers and Price, 2004), and dFe uptake rates within observational

constraints (McQuaid et al., 2018), despite no prescribed parameterisation or model

training on these data types (Supplementary Figs 4.9, 4.10, 4.11, 4.12). We are also able

to reproduce the observed increase in transporters under low dFe and dMn (Fig. 4.1c,

Supplementary Fig. 4.13; Sunda and Huntsman, 1985; Bonachela et al., 2013), the expected

interaction between light and Fe quota (Supplementary Fig. 4.14 and Supplementary

Discussion; Sunda and Huntsman, 1997), and the increase in ribosomes with growth

rate (Supplementary Fig. Fig. 4.13, Fig. 4.2; Waldron and Lacroute, 1975; Scott et al.,

2010). Interestingly, our analysis suggests dMn and dFe interactively influence growth

more at high dFe, rather than at low dFe, and a reframing of previous results supports

this conclusion (Supplementary Fig. 4.15, Supplementary Discussion). Overall, these

results show that our model is able to represent how diatom cells respond in different
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environments and is consistent with a variety of empirical observations.

4.3.2 Multiple Internal Processes, Governed by Cellular Costs and
Constraints, Control Growth

Internal processes, which are a function of cellular costs, are the proximate causes of limi-

tation. We conducted a set of computational experiments by systematically increasing each

model parameter, which allowed us to examine the effect of different internal processes on

growth (Fig. 4.2a, Supplementary Figs 4.18, 4.19). As expected, increasing stoichiometric

coefficients for micronutrients (e.g. Fe per photosystem unit) had large, negative impacts

on growth rates (Fig. 4.2a). However, protein costs (in terms of amino acids), internal

rates, and energetic costs also had similarly large impacts (Fig. 4.2a). Moreover, the

magnitude by which a given process affected growth differed depending on both dMn

and dFe concentrations, illustrating the inadequacy of a simple ‘single-resource scarcity’

view that underpins many ocean models. Indeed, our results highlight the need to reframe

growth as the emergent outcome of internal cellular processes (Fig. 4.2b). This concept

is well known in cell systems biology (e.g. Kafri et al., 2016), but it is rarely represented

in oceanography (Moore et al., 2013). In our model, growth rate is proportional to the

number of biosynthetic pathway units per cell (i.e., all proteins involved in converting

nitrate into amino acids; Fig. 4.1a; Faizi et al., 2018), which is, in turn, controlled by (i)

available Fe for incorporation as cofactors, (ii) available ribosomes, (iii) sufficient amino

acids for protein synthesis, and (iv) sufficient energy (Fig. 4.2c, Supplementary Fig. 4.18).

This suite of internal processes simultaneously control growth rate, and the strength of

their influence varies under different dFe and dMn concentrations.

The multiplicity of internal processes controlling growth can have significant con-

sequences for cellular stoichiometry and gene expression. For example, under low Mn

conditions, synthesis of Mn-containing antioxidants was impeded leading to more ox-

idative stress (Fig. 4.3a). In our model, the consequence of oxidative stress is damaged

proteins. This resulted in increased ribosomes per cell, which maintains total protein

synthesis under high oxidative stress (Fig. 4.3a). Ribosomes are a large portion of phy-

toplankton phosphorus quotas (Elser et al., 1996) and they increase by ∼150% as Mn is

lowered from 3 nM to 1 nM suggesting that antioxidant allocation and the dynamics of

oxidative stress can influence cell macronutrient demands and cellular stoichiometry. This

interaction between Fe, Mn and phosphorus around oxidative stress arises because our
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Figure 4.2: Cellular costs and constraints influence growth rate across a range of Fe and
Mn concentrations. (A), model experiments showing how a five-fold increase in each
parameter value influences growth rate, relative to the base model. Note that the parameter
‘Fixed Proteome Percentage’ is divided by five. (B), micronutrient-controlled growth
is the outcome of a range of internal processes, simultaneously controlling growth rate
(proximate processes controlling growth rate are shown with black arrows). These internal
processes are a function of cellular costs and constraints. (C), one internal, modelled
process directly controlling growth is the number of ribosomes per cell, shown across iron
and manganese concentrations.

99



Figure 4.3: Internal processes rearrange to maximize growth rate. (A), depletion of
dissolved Mn leads to fewer antioxidants. To maintain a sufficient pool of undamaged
proteins, the number of ribosomes consequently increased (with constant dFe = 1000
pM). (B), examining the distribution of multiple optimization runs revealed a diversity of
strategies with similar growth rates (with constant dMn = 1000 pM, n = 20 replicate model
runs, and variable dFe displayed as shapes). (C), bimodal distributions of total Fe quota
per cell, generated from the same optimization runs shown in (B), demonstrate another
dimension of this antioxidant-allocation strategy (kernel density of distribution shown).

model is able to explicitly represent the internal processes that compensate for each other

under micronutrient limitation, which in turn, influences the cellular stoichiometry of Fe,

Mn and phosphorus.

Under certain conditions (i.e. low dFe and low dMn, Fig. 4.3b), a diversity of protein

allocation strategies to counteract oxidative stress still resulted in similar growth rates in

our model. We observed two sources of variation across predictions. First, under low

dFe (e.g. at or below 50 pM dFe), there was a trade-off between allocating ribosomes to

synthesize ribosomes or antioxidants (Fig. 4.3b). Either approach maintains similar total

protein synthesis and growth rates. Second, cells sometimes allocate more ribosomes to Fe

transporters and therefore increase the total Fe quota, alleviating electron leakage. This

led to a bimodal distribution of Fe quota across these low dFe and dMn conditions (Fig.

4.3c). We predicted a range of strategies with similar growth rates, despite explicitly using

an optimization model to explore adaptive hypotheses about protein expression (Parker

and Smith, 1990). We speculate that this range of strategies may underlie the diversity of

antioxidant systems seen across microbes (Mishra and Imlay, 2012). Furthermore, some

variation in microbial metabolic strategies may be due to different configurations of gene

expression (with similar cellular costs), yielding similar cellular level outcomes.
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4.3.3 Nutrient Interdependence is Influenced by both Nutrient-Specific
Costs and Background Costs

We quantified how different cellular processes contribute to interdependence between

Mn and Fe, in addition to the explicit interaction via oxidative stress (described above,

Methods). Resources such as micronutrients can be considered independent if only a

single nutrient controls growth rate and altering the availability of another resource has

no impact on the growth rate (in accordance with Liebig’s Law of the Minimum). In con-

trast, interdependence between resources occurs when there are multiple, simultaneously

limiting nutrients whose availability affects growth. We used the parameter perturbation

experiments conducted at different concentrations of dMn and dFe (as above), and quan-

tified how every parameter influences the strength of interactivity between Fe and Mn

(see Methods). Two parameters that exhibited high interactivity were amino acids per

ribosome and internal Mn protein cost (Supplementary Fig. 4.19). A higher protein cost

per ribosome decreases the growth rate across all conditions, while internal Mn protein

cost is only directly related to Mn.

We derived a simple model of an idealized proteome to examine mechanisms of

resource interdependence related to these parameters. In this idealized proteome, there

are only ribosomes and Mn- and Fe-related proteins (Methods) wherein dFe and dMn

control growth by regulating how much of the proteome can be allocated to ribosomes

(rather than the micronutrient-specific components). This revealed two mechanisms

of interdependence: (i) the global background cost, and (ii) the ratio of Fe and Mn

cellular costs. By only increasing the global background cost (analogous to the amino

acids per ribosome parameter), interdependence across nutrients is strongly altered by

depressing the growth rate across all conditions (Fig. 4.4a-c). In our proteomic allocation

model, increasing the amino acids per ribosome parameter led to lower available cellular

resources overall, resulting in more interdependence between Fe and Mn. Similar to an

ecosystem, when resource availability decreases, competition for this smaller pool of

resources increases. In addition to protein synthesis capacity, we hypothesize that this

extends to other shared cellular resources (e.g. available membrane space).

Examining the ratio of cellular costs for Mn and Fe showed that maximum interdepen-

dence occurs when the cellular costs of Fe and Mn are equal (Fig. 4.4d-f, Methods). For
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Figure 4.4: Interdependence across micronutrients arises from background cellular costs
and the ratio of nutrient-specific costs. (A), a phenomenological model of a three-
component proteome comprised of ribosomes (R), Mn-related proteins (Mn) and Fe-related
proteins (Fe). Growth rate is proportional to dFe and dMn concentrations, and micronu-
trients influence growth rate by removing potential resources allocated to ribosomes (see
Methods for equations). (B-C), the background cost of growth (independent of Fe or Mn)
can influence the apparent interaction between Mn and Fe (ΨFe equal to 0.5, see Methods
for equations). Growth rate is lower overall in (B) compared with (C) because the pie
charts represent ribosomal mass fraction (total protein mass in ribosomes), not number of
ribosomes, and this corresponds to the parameter perturbation ‘amino acids per ribosome’
(Supplementary Fig. 4.19). (D), the ratio of micronutrient-specific protein costs impacts
the apparent interaction between micronutrients (K equal to 5), as shown in (E-F). In
(B-C) and (E-F) units are given as relative concentrations, arbitrarily ranging from 0–50.
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example, the internal Mn protein cost parameter had a high interaction index (Supplemen-

tary Fig. 4.19); when increased, it led to more similar protein costs between Fe and Mn.

When cellular costs are similar across resources, then they place similar demands on the

pool of shared resources, which consequently increases their interdependence. These two

mechanisms provide a tractable means to include interdependence in global ocean models

because they suggest that estimating cellular costs for individual nutrients is sufficient

to parameterize the overall interaction strength. We speculate that considering relative

costs across resources may also apply to other nutrient pairs and help to explain previously

observed patterns of interdependencies. For instance, the independent relationship between

cobalamin and phosphorus (Droop, 1974) implies large differences in their cellular costs,

whereas similar cellular costs between nitrogen and phosphorus may contribute to their

interdependence (Harpole et al., 2011).

4.3.4 Inferring In Situ Rates and Quotas by Coupling Cellular Mod-
elling with Metaproteomics

While our modeling framework can be combined with proteomic data to estimate the

costs and constraints associated with micronutrients, this coupled approach can also be

used to predict in situ biogeochemical metrics (Fig. 4.5a). In this way, our model is able

to quantitatively reproduce growth rates under high and low dFe from a diatom culture

(despite no model training on growth rate data, Fig. 4.5b). Using in situ dMn and dFe

concentrations, and metaproteomes from field samples at the Antarctic sea ice edge, in

situ diatom-specific growth rates (Fig. 4.5c), Fe cellular quotas (Fig. 4.5d), and Fe uptake

rates can be estimated (Fig. 4.5e). These metrics are typically difficult or impossible to

measure from in situ microbial communities directly, but have important consequences for

ocean biogeochemistry and ecosystem services. Our approach connects these rates and

quotas directly with resource allocation strategies employed by diatoms, highlighting a

decrease in protein allocated to photosynthesis and an increase in protein allocated to iron

acquisition in the transition into micronutrient stress (Supplementary Fig. 4.20), resulting

in decreased growth rates and iron quotas (Fig. 4.5c-d). These process-based insights

are critical for characterizing the role of micronutrients in Southern Ocean phytoplankton

bloom progression and fate (Deppeler and Davidson, 2017).
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Figure 4.5: By combining cellular modelling with metaproteomic data we inferred in
situ rates and quotas. (A), schematic for combining environmental parameters (e.g. light,
dFe), cellular modelling, and metaproteomic observations, to infer rates and elemental
quotas. (B), we first demonstrated that the proteomic allocation model quantitatively
reproduces growth rates from the cultured diatom Thalassiosira pseudonana (Nunn et al.,
2013) under low and high Fe (culture data do not correspond to a posterior probability,
error bars represent the standard deviation across four replicate cultures). (C-E), coupling
the metaproteome-derived diatom proteome with the cellular model, we can quantitatively
infer the growth rates, iron quotas, and iron uptake rates of diatoms in these two time
points from a complex microbial community. Week 1 corresponds to higher dFe and dMn,
and Week 3 corresponds to lower dFe and dMn (concentrations shown in C).
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4.3.5 Outlook

We combined mechanistic, proteomic modelling with metaproteomics to estimate the

costs and constraints associated with micronutrient-controlled growth in a polar diatom

for the first time. Our results highlight the role of cellular costs rather than environmental

scarcity in shaping growth, with two key factors: the internal protein cost associated

with micronutrient use and the available membrane space for transporters. Identifying

the differences in protein cost for vacuolar versus ferritin-based Fe storage, and other

micronutrient-associated costs, would further connect ecological strategies with gene

expression. Available membrane space has an established temperature dependence and

is an important constraint on nutrient uptake kinetics (via membrane saturation; Holton,

Blecker and Onorb, 1964; Lis et al., 2015; Held et al., 2020; Casey and Follows, 2020),

making it critical to quantify in a changing ocean. Our approach relied on rich in situ gene

expression datasets to estimate parameters, highlighting a means to quantify cellular costs

and constraints.

Parameterizations of phytoplankton growth in global ocean models can have dramatic

consequences for projections of ecosystem services in the context of changing upper ocean

resource availability (Tagliabue et al., 2020). Embedding a mechanistic representation of

resource limitation within global ocean models will leverage rapidly expanding ‘omics’

datasets to improve predictions of growth responses to environmental change. Developing

phenomenological models to represent the outcomes of mechanistic cellular models is

a tractable next step. In this way, mechanistic modelling can provide the biological

flexibility and realism (e.g. Levine et al., 2016) necessary for predicting potential tipping

points in ecosystem services. Mechanistic cellular models, in conjunction with in situ

gene expression measurements and biogeochemical models, will improve projections

of ecosystem services and further characterize the biological underpinnings of nutrient

limitation in the changing ocean.

4.4 Materials and Methods

4.4.1 Model Description

We developed a coarse-grained model of intracellular protein allocation in the polar diatom

Fragilariopsis cylindrus (Mock et al., 2017), extending coarse-grained, kinetic models
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previously developed for a range of prokaryotes (Molenaar et al., 2009; Faizi et al., 2018;

Weiße et al., 2015; Zavřel et al., 2019). Uniquely, we considered micronutrient controls

on proteomic allocation, and applied these principles to a eukaryotic phytoplankton. We

used Bayesian optimization to determine the optimal proportion of ribosomes synthesizing

different coarse-grained proteomic pools to maximize the steady-state specific growth

rate. The cost of producing a given coarse grained pool is a function of the protein length

or the sum of protein lengths (in units of amino acids) within a pool. Specifically, the

rate of synthesizing one unit of a protein pool is inversely related to the number of amino

acids per pool. The units of each intracellular variable (metabolites, proteins, free metal

pools) are in molecules per cell. As in Faizi et al. (2018); Zavřel et al. (2019), we used a

photosynthetic model (Han, 2001) to parameterize energy production rate, and similarly

calculated a biosynthesis specific growth rate. We first provide a high-level overview of

the model structure, and then give detailed descriptions of parameterizations.

4.4.1.1 System of Equations

The dynamics of each internal metabolite and protein pool are described using a differ-

ential equation, all with growth rate as a loss term (Faizi et al., 2018). The internal free

manganese pool (Mni) increases with Mn uptake rate (VMn), and decreases with PSU

protein synthesis (photosystem unit, γP ) at a fixed stoichiometry (ϕMn,P ), and antioxidant

protein synthesis (γA) at a fixed stoichiometry (ϕMn,A). We solve this system of equations

by integrating them forward in time to a pseudo-steady state (described in more detail in

the Supplementary Materials).

dMni
dt

= VMn − ϕMn,PγP − ϕMn,AγA − µ[Mni] (4.1)

The internal free iron pool (Fei) is controlled by protein synthesis of Fe-containing

protein pools: PSUs and nitrogen metabolism. The fixed stoichiometric coefficient for

PSUs is larger for Fe compared with Mn reflecting the higher Fe demand for photosynthesis

(ϕFe,P ). Also, the nitrogen metabolism pathway (γN ) requires a fixed Fe stoichiometry

per pathway (ϕFe,N ).
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dFei
dt

= VFe − ϕFe,PγP − ϕFe,NγN − µ[Fei] (4.2)

The internal free energy pool e increases with photosynthetic energy production ve,

multiplied by a stoichiometric coefficient that implies a fixed number of ATP and NADPH

(reduced form of nicotinamide adenine dinucleotide phosphate) molecules produced per

photosynthetic activation (ϕe). There is a small amount of energy required for Mn and Fe

uptake (ϕTMn, ϕTFe), and a large energetic requirement for nitrogen metabolism (ϕN ).

The total rate of conversion of nitrate into amino acids, Vn, is subsequently used to calculate

a biosynthesis-specific growth rate, where Vn is the product of TNO3 and kcat,TN . Energy is

also consumed through protein synthesis. We used the sum of protein synthesis rates for

each protein pool multiplied by the amino acids per pool (ηj), and multiplied the entire

sum by mγ , the energetic requirement per amino acid elongation.

de

dt
= ϕeve,adjusted − ϕTMnVMn − ϕTFeVFe − ϕNVN −mγ

∑
j

ηjγj − µ[e] (4.3)

Amino acids are produced via nitrogen metabolism (Vn); we multiplied this rate by

the inverse of the average number of nitrogen atoms within each amino acid. Amino acids

are then consumed by protein synthesis and diluted by growth.

daa

dt
= mnVn −

∑
j

ηjγj − µ[aa] (4.4)

All protein pools are governed by similar dynamics, such that an increase can only

arise from protein synthesis (γj) and a decrease from dilution by growth.

dProteinj
dt

= γj − µ[j] (4.5)

j ∈ A,P, TMn, TFe, TNO3 , R (4.6)

107



4.4.1.2 Internal Protein Cost of Iron and Manganese

We represented the internal cost of iron and manganese by dynamically changing the

Fe uptake cost per transporter (nTFe) as a function of dFe uptake rate, scaled by growth

rate (i.e. VFe
µ

), and multiplied by a constant coefficient (θ). This approach was similarly

applied to Mn uptake and Mn transporter cost. nTFe and nTMn are the uptake and internal

management protein costs.

nTFe = nTFe,unadjusted + θ
VFe
µ

(4.7)

nTMn = nTMn,unadjusted + θ
VMn

µ
(4.8)

4.4.1.3 Nutrient Uptake Kinetics

We modeled nutrient uptake rates of dFe and dMn to include both a variable maximum

uptake rate and a diffusion layer (Aksnes and Egge, 1991; Aksnes and Cao, 2011; Fiksen,

Follows and Aksnes, 2013; Berg and Purcell, 1977; Zwanzig, 1990). A flexible maximum

uptake rate (i.e. Vmax) has been observed experimentally (Sunda and Huntsman, 1985) and

predicted theoretically (Aksnes and Egge, 1991; Bonachela, Raghib and Levin, 2011), and

the diffusion layer impacts the total diffusive flux to the cell surface at low bulk substrate

concentrations. At high substrate concentrations (i.e. nutrient replete), the nutrient uptake

rate approaches the total transporters divided by the ‘handling time’ (h). Note that handling

time (seconds per substrate) is equivalent to the inverse of the maximum turnover rate

(kcat) – a commonly measured parameter in enzyme kinetics.

As the substrate concentration decreases (i.e. nutrient deplete), the uptake rate

approaches the product of cellular affinity (α) and substrate concentration (S). Affinity is

a function of cellular radius, the molecular diffusivity coefficient, and the proportion of

cellular area covered by transporters (Aksnes and Cao, 2011). We assumed that Fe and Mn

uptake can only be from the dissolved phase, and used a molecular diffusivity coefficient

of 0.9 · 10−9m2s−1 for both (Völker and Wolf-Gladrow, 1999). For nitrate, we used a

molecular diffusivity coefficient of 1.17 · 10−8m2s−1(Ploug, Stolte and Jørgensen, 1999),

with a transporter radius of 1 · 10−9m (Aksnes and Egge, 1991).

For modelling multiple nutrient uptake rates simultaneously, we adjusted the nutrient
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uptake model above by multiplying the diffusive flux term (4Dπr) by the proportion of

surface area covered by other transporters not corresponding to nutrient i (ξ), where D is

the diffusivity coefficient, and r is the cellular radius. Given that approximately 50% of a

lipid membrane must consist of phospholipids to maintain membrane integrity (Kadner,

1996), and there is a significant requirement for macronutrient transporters, we also restrict

the ‘available’ area for iron and manganese transporters, hypothesizing that a subset of

membrane area is available (κ). To model the proportion of membrane space available,

we modified the diffusive flux term using the original derivation (Berg and Purcell, 1977).

Below, S is the bulk concentration of nutrient i, ni is the number of transporters for

nutrient i, s is the radius of the transporter for nutrient i. Transporters are modelled as

circular planes with constant radii on a sphere (Saito, 1968). In addition to the (Aksnes

and Cao, 2011) uptake model, we included an additional Michaelis-Menten term of energy

dependence.

Nutrient Uptake Rate = Vi =
b

2a

(
1−

√
1− 4a

b2

)(
[e]

Ke + [e]

)
(4.9)

b =
1

αS
+
h

ni
(4.10)

a =
h

4πDrSni

(
1− πrp

nis

)
(4.11)

p =
niπs

2

4πr2
(4.12)

ξ =

(
1−

∑
j 6=i

njπs
2

4κπr2

)
(4.13)

ξ =

1 · 10−5, if ξ < 0

ξ, otherwise
(4.14)

α = 4Dπrξκ
nis

nis+ κξπr(1− p)
(4.15)

i ∈ [Mn], [Fe] (4.16)
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4.4.1.4 Iron Speciation

At low concentrations, dFe uptake is bound by physical limits of diffusion to a cell

membrane (Hudson and Morel, 1990; Sunda and Huntsman, 1995). Under these conditions,

cells are under ‘diffusion limitation’, as dFe uptake rates are close to the diffusive flux.

These studies considered Fe uptake when only Fe’ (free, inorganic Fe) was bioavailable and

Fe-EDTA is not significantly taken up by eukaryotic phytoplankton (Shaked, Kustka and

Morel, 2005). Yet, in the ocean, the majority of dissolved Fe is organically complexed (FeL;

Gledhill and Buck, 2012), which is to some extent bioavailable for uptake. We therefore

included both sources of iron for uptake. While a large portion of the dFe pool is likely

bioavailable, not all dFe species are equally bioavailable (Shaked and Lis, 2012; Shaked

et al., 2020). Ligand-bound Fe has maximum uptake rates roughly 3 orders of magnitude

lower than Fe’ (Shaked, Kustka and Morel, 2005; Shaked and Lis, 2012; McQuaid et al.,

2018). We modelled dFe uptake by splitting the dFe pool into subcomponents of Fe’ and

FeL, and then summing the uptake rates. This formulation assumes that phytoplankton

in the ocean are simultaneously under diffusion and ‘ligand exchange’ limitation (Sunda

and Huntsman, 1995). This can be extended to any number of distinct dFe pools with

corresponding uptake rate characteristics. Fe’ would primarily be controlled by diffusion

limitation, and is limited by the chemistry and physics of diffusion to the cell surface, and

therefore only affected by α (which is a function of the cell radius, r, diffusivity coefficient

of dFe, D, and the proportion of cell surface area covered by transporters). FeL uptake

(ligand exchange limitation) is limited by the rate constants of uptake (i.e. the handling

time) and the number of transporters.

We first split the dFe pool into Fe’ and FeL, by multiplying the bulk concentration

of dFe by 2% and 98% respectively (Sunda and Huntsman, 1995). We then use separate

kinetic constants, where the maximum turnover rate per transporter of the FeL pool is

kcat,Fe′ · 10−3.

4.4.1.5 Consequences of Reactive Oxygen Species

Reactive oxygen species (ROS) can hamper photosynthesis by negatively impacting pro-

tein synthesis (Nishiyama, Allakhverdiev and Murata, 2011). We aimed to capture an

overrarching consequence of ROS in phytoplankton cells in this model – damaged proteins.

Cells can combat ROS production by producing antioxidants like superoxide dismutase

(e.g. Mn/FeSOD), or alternatively manage the consequences by re-synthesizing damaged

110



proteins. We represented this trade-off in the model by ‘leaking’ a proportion of energy

synthesis from PSUs into superoxide. Superoxide is represented implicitly in the model

structure, and not as an internal pool. Superoxide is produced from electrons leaked by

photosynthetic energy production and consumed by MnSOD. Excess superoxide that is not

consumed by SOD then penalizes the maximum protein synthesis rate, while overinvest-

ment in SOD diverts protein synthesis away from other protein pools. We also model the

relationship between electron leakiness and Fe quota (proportion of electrons ‘leaked’ is εp
below), as previous work suggests the tendency of an electron to be donated to molecular

oxygen increases under Fe stress.

Oxidative stress can result from a mismatch between ROS consumption rate (via

antioxidants) and production rate (electron transport). We modeled ROS consumption rate

as the product of the maximum turnover rate of manganese superoxide dismutase (kcatROS ,

MnSOD) and the number of MnSOD copies per cell (A). The rate of ROS production is a

proportion (εp, see below) of energy production (ve). Higher rates of energy production

require increased investment in MnSOD. The εa parameter represents the efficacy per

MnSOD, and is empirically estimated (described below).

vROS = kcatROS · [A] (4.17)

ωu =
εpve − εavROS
εpve + εavROS

(4.18)

ω =

ωu if ωu > 0

0 if ωu < 0
(4.19)

An imbalance between production of ROS and available MnSOD (ω) decreases the

maximum protein synthesis. We represented this phenomenologically by multiplying the

protein synthesis rate by a value ranging from 0 – 1 (pw). A phenomenological variable

R0 is used here with a value of 10.
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pω = 2
R−ω0

R−2ω0 + 1
(4.20)

Electrons that are ‘leaked’ not only produce ROS, but they decrease energy production

(fewer electrons can be used to create ATP or NADPH). We therefore modified the

photosynthetic electron production term above by the proportion of leaked electrons:

ve,adjusted = (1− εp) · ve (4.21)

4.4.1.6 Photosynthetic Energy Production

We used a previously published photosynthetic model (Han, 2001; Faizi et al., 2018). This

model assumes a two-state configuration of photosystem units. We obtained an expression

for energy production (as in Faizi et al., 2018), by writing this model as a system of two

ordinary differential equations, where the inactivated PSUs are synthesized (γP ), and both

inactivated (P 0) and activated PSUs (P ∗) are diluted via growth (µ). The rate of PSU

activation is v1 and the rate of switching back to an inactive PSU is ve.

dP 0

dt
= γP − v1 + ve − µ · [P 0] (4.22)

dP ∗

dt
= v1 − ve − µ · [P ∗] (4.23)

The rate of PSU activation is a function of the absorption cross section (σ), the

amount of irradiance (I), and the amount of inactivated PSUs. The rate of conversion from

activated to inactivated PSUs is a function of electron turnover rate (τ ).

v1 = σ · I · [P 0] (4.24)

ve = τ [P ∗] (4.25)

We can then assume a pseudo-steady state between the inactivated and activated PSUs,

and solve for the energy production rate (ve).
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ve = [P ] · τ · (σ · I)

σ · I + τ + µ
(4.26)

4.4.1.7 Calculating Growth Rate

We calculated growth rate as in Faizi et al. (2018) with some slight modifications. We

calculated a biosynthesis-specific growth rate (Faizi et al., 2018; Weiße et al., 2015; Scott

et al., 2010), by calculating the rate of biosynthesis relative to the average protein mass

per cell. We assumed a fixed average protein mass per cell (MCell), using data from

Supplementary File S1 in Finkel, Follows and Irwin (2016) for the median picograms

of protein per cell from Pseudonitzschia, which is converted to amino acids per cell. In

our model, biosynthesis rate is represented as the conversion of nitrate into amino acids.

Total biosynthesis rate (Vn) is equal to the number of biosynthetic pathways multiplied by

rate-limiting enzyme maximum turnover rate (see Model Parameterization).

Vn = TNO3 · kcat,TN (4.27)

A proportion of the proteome is considered growth rate independent (Hui et al., 2015).

We included a fixed proteomic pool (Λ) in our model which represents ‘maintenance

metabolism’ – respiration, lipid biosynthesis, etc. This is modeled by multiplying the total

protein per cell by a constant proportion. We assumed 20% of the proteome is growth rate

independent (Metzl-Raz et al., 2017), although future research is required to determine

this value in eukaryotic phytoplankton.

µ =
VN ·mn

MCell · (1− Λ)
(4.28)

4.4.1.8 Relationship between Fe Quota and Electron Leakage

Previous research suggests that the tendency of an electron to be donated to molecular

oxygen increases under Fe stress (Niyogi, 1999). We represented this increased ‘leakiness’

by designating the proportion of electrons leaked to molecular oxygen, εp, as a function

of the total cellular Fe quota. We constrained this from 5% to 30%; using observations
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of total Fe to carbon ratios observed in the SOFEX cruise (Twining, Baines and Fisher,

2004), with a range of 5.5–30 µmol Fe:mol C. By then using carbon-to-volume ratios from

(Menden-Deuer and Lessard, 2000), we converted the lower and upper bounds of µmol

Fe:mol C to a total cellular quota (Fe atoms per model cell). A linear relationship between

εp and total Fe quota was assumed, when the Fe quota is within these observationally

constrained bounds. Below the minimum Fe cell quota, εp is fixed at 30%, above the

maximum Fe cell quota, εp is fixed at 5%. This corresponds to the following relationship:

εp =


0.3 if Fei ≤ 7173653

0.05 if Fei ≥ 39129014

3.561E-1− 7.823E-9 · Fei else

(4.29)

Protein Synthesis

Protein synthesis connects the internal pools of metabolites and free micronutrients to

proteins:

Temperature Adjusted Protein Synthesis = γT = γmax ·Q
T−20

10
10 (4.30)

ROS Adjusted Protein Synthesis = γROS = γT · pω (4.31)

Protein Synthesis = γj = βj
γROS
ηj

[R]
[e]

Ke + [e]

[aa]

Kaa + [aa]

(4.32)

γN = γj
[Fei]

KFei + [Fei]
(4.33)

γP = γj
[Fei]

KFei + [Fei]

[Mni]

KMni + [Mni]
(4.34)

γA = γj
[Mni]

KMni + [Mni]
(4.35)

j ∈ A,P, TMn, TFe, TNO3 , R (4.36)

In the equations above, γmax refers to the maximum protein synthesis rate, which is a

function of temperature (degrees Celsius) with a Q10 value of 2 (Toseland et al., 2013).

We calculate a ROS-adjusted protein synthesis rate, γROS , by multiplying the temperature-

adjusted protein synthesis rate by pω (ranging from 0 – 1). Protein synthesis to protein pool
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j (γj) is a function of the proportion of ribosomes allocated (βj), the protein cost (ηj; larger

protein pools have a slower rate of synthesizing one unit), the number of ribosomes (R),

and the availability of energy (e) and amino acids (aa). Further, those protein pools that

have co-factor requirements have an additional Michaelis-Menten term. All half-saturation

constants (Ke, Kaa, KFei, KMni) used for internal metabolites were set to an arbitrarily

low value of 104 molecules per cell (implying efficient allocation of resources within the

cell).

4.4.2 Model Parameterization

We used the BRENDA database to search for kinetics constants. For the protein lengths,

we examined the F. cylindrus genome (Mock et al., 2017) and searched for protein coding

genes with Gene Ontology terms corresponding to our coarse-grained pools. Generally,

the protein cost reflected the length of all proteins within a coarse-grained protein pool.

Photosynthetic-specific parameters were taken from previously published datasets.

4.4.2.1 Ribosomal Proteins

To estimate the total proteomic cost per ribosome, we used data from the model alga

Chlamydomonas reinhardtii. In C. reinhardtii, 96 proteins were estimated for cytosolic

ribosomes (Manuell et al., 2005). These proteins ranged in size from 12-54kDa. Assuming

an average size of 33kDa, this converts to a protein cost of 3168kDa (3168000Da), or

28800 amino acids (using the average molecular mass per amino acid, 110Da). We

therefore used 28800 amino acids per ribosome as the fixed protein cost.

4.4.2.2 Photosynthetic Proteins

Our protein cost per photosystem unit was taken as 12177 amino acids per PSU (Wollman,

Minai and Nechushtai, 1999), assuming a 1:1 architecture of PSII:PSI. We used the

reported approximate molecular mass per photosystem unit (1339.5 kDa) and converted

that to amino acids using the average molecular mass per amino acid (110 Da).

4.4.2.3 Fe and Mn Transporters

We searched the F. cylindrus genome for Gene Ontology term ‘iron ion transport’ (GO:0006826).

We used the sum of unique proteins identified with this search, excluding ferritin, as we

explicitly model that protein (see above). We acknowledge that this approach crudely
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approximates the protein requirements for Fe uptake, as the exact protein stoichiometry

and the specific combination of proteins required is still unclear. We also included the

average of the four copies of FBP1 identified in F. cylindrus (Coale et al., 2019). The total

cost per transporter for Fe uptake was 4028 amino acids.

Four natural resistance-associated macrophage proteins (NRAMPs) were identified

as manganese transporters in the F. cylindrus genome (Blaby-Haas and Merchant, 2017).

The average protein length per NRAMP was 372 amino acids.

4.4.2.4 Nitrate Uptake and Amino Acid Biosynthesis

We represented the transformation pathway from nitrate to amino acids as the core iron-

dependent biosynthetic cellular pathway. This pathway is represented in our model as a

single unit with high protein, energetic, and iron costs. We combined the protein lengths

of nitrate transporters (NRT2 transporters), nitrate reductase (represented as a homodimer),

nitrite reductase, glutamine synthetase, and glutamate synthase, which sums to 5893 amino

acids per pathway.

At substrate saturating conditions assuming fixed pathway stoichiometry, the enzyme

in a pathway with the lowest maximum turnover rate (kcat) determines the upper bound on

pathway flux. We used this ‘kinetic bottleneck’ approximation to describe the conversion

of nitrate into glutamine. For the enzymes described above, we found that glutamine

synthetase had the lowest kcat for NH4 (2.96sec−1, Enzyme Commission number 6.3.1.2.;

Ishiyama et al., 2006), and we therefore use this value to represent the rate limiting step.

We approximated the energetic requirement for the entire conversion by summing

up the ATP and NADPH cofactors required for each step in the synthesis of glutamine

from imported nitrate. We accounted for 1 ATP from nitrate uptake, 1 NADPH for nitrate

reduction, 1 NADPH for nitrite reduction, 1 ATP for glutamine synthetase, and 1 NADPH

for glutamate synthase. Assuming an interconversion ratio of 2.6 ATP to 1 NADPH, the

total energetic cost was 9.8 e.

For the Fe requirement in this pathway, we summed up the per-enzyme atoms of

Fe. We accounted for 2 Fe atoms in nitrate reductase (one per subunit, but it exists as a

homodimer), 5 Fe atoms in nitrite reductase in total (1 siroheme cofactor and 4 in 4Fe-4S

cluster), and 3 Fe atoms in glutamate synthase. Thus the total stoichoimetric coefficient

for this pathway is 10 Fe atoms (ϕFe,N ).
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4.4.2.5 Uptake Rate Kinetic Constants

To obtain kinetic constants for Fe transporters, we leveraged previously published data

and methods for inferring maximum uptake rate per transporter. Hudson and Morel

(1990) derive a kinetic constant for the maximum turnover rate per transporter, equivalent

to the inverse of the handling time, by using pulse chase experiments with labelled

Fe. They assume that the whole-cell response of uptake kinetics approximates that of

the kinetic constant of the transporter, which, in other words, means that there is no

downstream regulation of Fe uptake beyond that of the transporter (i.e. internalization

kinetics and saturation). Yet, enzyme kinetics can be regulated at the pathway level

(Button, 1998), therefore we challenge the assumption of no downstream regulation

from Fe uptake. Indeed, comparing the magnitude of the maximum turnover rate per

transporter reported in Hudson and Morel (1990) to other nutrient transport kinetics,

but derived differently (Fiksen, Follows and Aksnes, 2013), suggests that using pulse

chase experiments to estimate transporter kinetic constants underestimates these constants

because of downstream inhibition. However, Hudson and Morel (1990) still provides

invaluable measurements of cell-specific uptakes rates that can be used to infer kinetic

constants.

We leveraged published uptake rate data (Hudson and Morel, 1990), and recalculated

the maximum turnover rate using a method described in Fiksen, Follows and Aksnes

(2013), equation 16 in this reference. This resulted in a kin value approximately 3 orders

of magnitude higher than inferred in Hudson and Morel (1990), which was much more

similar to values estimated for macronutrient transporters (Fiksen, Follows and Aksnes,

2013). We used the following values from Hudson and Morel (1990) to recalculate the

handling time: maximum uptake rate (Vmax) of 180 amol cell−1 hour−1; half saturation

constant (Km) of 3.1 nM; diffusion coefficient (D) of 5.4 · 10−8 m2 minute−1; a cell radius

(r) of 5.6 · 10−6 m, and transporter size (s) of 1−9m.

4.4.2.6 Protein Synthesis Parameters

We used the translation rate from Thalassiosira weissflogii at 20 ◦C of 1.9 amino acids per

ribosome per second (Toseland et al., 2013). Assuming a temperature dependence given by

a factor of Q10 equal to 2 (Toseland et al., 2013), protein synthesis rate is adjusted in the

model according to the input temperature (-1 ◦C for the metaproteomic conditions). For

the energy required per amino acid elongation we used the equivalent of 3 e units (Faizi
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et al., 2018).

4.4.2.7 Photosynthetic Parameters

We needed two parameters for the photosynthetic energy production model: the absorption

cross section, and the rate of returning from an activated PSU to an inactivated PSU (τ ).

For the absorption cross section we used a value of 0.01 m2 µE−1 (Strzepek et al., 2012),

for the PSU turnover rate we used a value of 6000 minute−1 (Strzepek, Boyd and Sunda,

2019).

4.4.3 Culture Diatom Comparison

We used two published diatom datasets that examined how Fe influence the proteome

(Nunn et al., 2013; Cohen et al., 2018). The observed protein data from both datasets were

manually binned into our corresponding model coarse grains. For Nunn et al. (2013), we

used the sum of spectral counts per peptide as an approximation for the mass per protein

group. For Cohen et al. (2018), we used the reported Normalized Spectral Abundance

Factors (NSAF values) per protein. Note that while both of these datasets used diatoms,

the studied diatoms were Thalassiosira pseudonana and Pseudo-nitzschia granii, and our

model is based off of the polar diatom Fragilariopsis cylindrus.

To compare the model predictions under these laboratory conditions, we also modi-

fied the temperature and light level inputs to the model to reflect the culture conditions.

Importantly, the Fe levels in culture were set with EDTA, and most Fe taken up in culture

with FeEDTA is inorganic free Fe. Therefore, we changed the Fe speciation input to reflect

this, such that there is only a small available FeL pool (1%) while the inorganic free Fe

pool was set to 99% of total dFe.

4.4.4 Southern Ocean Mn, Fe, and Light Conditions
4.4.4.1 FISH Data

Surface seawater (approximately 3 m depth) was pumped from a tow FISH into a clean

container using a Teflon diaphragm pump (Almatec A15) connected to a clean oil-free air

compressor (JunAir) and GEOTRACES cruise JR274 (Achterberg et al., 2001).

Concentrations of trace metals were determined by isotope dilution inductively cou-

pled mass spectrometry (ID-ICP-MS), whilst the mono-isotopic elements Co and Mn were

analysed using a standard addition approach followed by ICP-MS detection; all according
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to methods described in Rapp et al. (2017). The ICP-MS analyses were conducted fol-

lowing an off-line preconcentration/matrix removal step Rapp et al. (2017) on a WAKO

chelate resin column (Kagaya et al., 2009).

4.4.4.2 GEOTRACES Data

We used the GEOTRACES intermediate data product (Schlitzer et al., 2018) to determine

average Mn and Fe concentrations within the mixed layer for cruise stations in the Southern

Ocean. To calculate the mixed layer depth, we calculated the potential density at 10 m,

and determined the depth at which this 10 m potential density is 0.03 kg m−3 more dense

(de Boyer Montegut et al., 2004). For each station, we used the discrete data product and

averaged the Fe and Mn concentrations above the mixed layer depth.

We also calculated the median light level (Photosynthetically Active Radiation, PAR)

within the mixed layer. We used monthly climatology of surface PAR and diffuse attenu-

ation coefficient (Kd490) from the Ocean Color database from 2002–2018. The median

mixed layer light levels were determined using the surface PAR, Kd490, and mixed layer

depth (Behrenfeld et al., 2005):

Ig = I0 · exp(−Kd490 ·MLD/2) (4.37)

Where MLD is the inferred mixed layer depth and I0 is the surface irradiance.

4.4.5 Metaproteomic Sampling and LC-MS/MS

We sampled the microbial community at the sea ice edge in McMurdo Sound, Ross Sea

at the same location (-77.62S, 165.41E) for four weeks (as described in Wu et al., 2019).

We had four sampling dates corresponding to weeks 1 to 4: December 28 2014, January

6, 15, and 22 2015. Large volumes of water (150–250 L) were filtered from 1 m depth at

the sea ice edge, and passed through three filters sequentially (3.0, 0.8, and 0.1 µm, each

293 mm Supor filters). Filters with collected biomass were then placed in tubes with a

sucrose-based preservative buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM

Tris-HCl, pH 8.0) and stored at -80 ◦C until sample processing. We extracted proteins after

buffer exchange into a 3% SDS solution as previously described (Wu et al., 2019).

To prepare samples for LC-MS/MS, the precipitated protein was resuspended in 100

µL 8 M urea, and then we ran a Pierce bicinchoninic acid Protein Assay Kit (Thermo
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Fisher Scientific) to quantify the protein concentration in each sample. We then reduced

the protein sample using 10 µL of 0.5 M dithiothreitol, and incubated the sample for

30 minutes at 60 ◦C. Samples were then alkylated using 20 µL 0.7 M iodoacetamide in

the dark for 30 minutes, diluted with 50 mM ammonium bicarbonate, and digested with

trypsin using a 1:50 trypsin:protein ratio. We then acidified (1.5 µL trifluoroacetic acid

(TFA) and 5 µL formic acid added) and desalted samples. We desalted the samples by first

conditioning the solid-phase columns with methanol (1 mL), then 50% acetonitrile (ACN)

and 0.1% TFA, and then 2x 1 mL of 0.1% TFA. Samples were loaded onto columns that

were subsequently washed 5x with 1 mL 0.1% TFA. Finally, peptides were eluted from

the columns with 2x 0.6 mL 50% ACN 0.1% TFA, and 1x of 0.6 mL 70% ACN and 0.1%

TFA.

We used a one-dimensional liquid chromatography tandem mass spectrometry to

characterize the metaproteome. For the largest filter size (3.0 µm) we used three injections

per sample, and two injections per sample for the 0.8 and 0.1 µm filters. We ensured that

the protein concentration in each urea-resuspended sample was equivalent across sampling

weeks and within each filter size. We used a LC gradient from 0 to 10.5 minutes with

0.3 µL per minute flow of 5% solution B, from 10.5 minutes to 60 minutes the flow was

0.25 µL per minute and solution B increased to 25.0%, from 60–90 minutes %B increased

to 60%, from 90–97 minutes %B increased to 95%, from 97–102 minutes %B remained

at 95%, from 102–105 the flow rate increased to 0.3 µL per minute and %B decreased

to 5% for 20 minutes. Solution A is 0.1% formic acid in water, and solution B is 0.1%

formic acid in ACN. Peptides were injected onto a 75 µm × 30 cm column (New Objective,

Woburn, MA) self-packed with 4 µm, 90 Å, Proteo C18 material (Phenomenex, Torrance,

CA), and then online LC was performed using a Dionex Ultimate 3000 UHPLC (Thermo

Fisher Scientific, San Jose, CA).

We used a data-dependent acquisition approach with a VelosPRO Orbitrap mass

spectrometer (MS; Thermo Fisher Scientific, San Jose, CA) to characterize the metapro-

teome for each sample. We used an MS method with the following parameters: dynamic

exclusion enabled, with an exclusion list of 500 and an exclusion duration of 25 seconds;

a m/z precursor mass range from 300–2000 m/z; and a resolution of 60000. MS2 scans

were collected with a TopN method (N = 10), using Collision-Induced Dissociation with a

normalized collision energy of 35.0, an isolation width of 2.0 m/z, a minimum signal of
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30000 required, and a default charge state of 2. Ions with charge states less than 2 were

rejected, and those above 2 were not rejected. Lastly, we used polysiloxane as a lock mass.

For a database of potential proteins present, we used a metatranscriptome obtained

from a nutrient incubation experiment conducted using water collected during week

2 of protein sampling (Jabre et al., 2021). Prior to database searching we removed

all redundant protein sequences (P. Wilmarth, fasta-utilities), and appended the Global

Proteome Machine Organization common Repository of Adventitious Proteins database

of common laboratory contaminants. We then applied a Savitzky-Golay noise filter,

a baseline filter, and applied a high-resolution peak picking approach to centroid the

MS data (Weisser et al., 2013). To identify peptides, we conducted a database search

with MSGF+ (Kim and Pevzner, 2014). We used a 1% False Discovery Rate at the

peptide-spectrum match level. Once we had identified peptides within each MS injection,

we quantified these peptides at the MS1 level using the ‘FeatureFinderIdentification’

approach (Weisser and Choudhary, 2017), where peptides identified in one injection can

aid identifying peptides in a different injection without a corresponding MS2 spectra. In

this approach, the user must identify a group of samples across which peptides can be

cross-mapped. We grouped our samples by filter sizes, with replicate injections also within

each group for cross-mapping. Mass spectrometry mzML files within each group were

then aligned using MapAlignerIdentification (Weisser et al., 2013), and then we applied

FeatureFinderIdentification to obtain peptide-specific MS1 intensities. Once peptides were

quantified for each injection, we then obtained a sample-specific peptide quantity, which

was the average peptide-specific intensity across injections. We only used this quantity if a

given peptide was observed across all injections.

We then mapped peptides to taxa and to protein functions. Peptides were mapped

to taxa only if they uniquely correspond to a given taxonomic group. Coarse taxonomic

groups (presented at the Phylum level) were chosen, because coarse-graining is robust

to various MS-induced biases (McCain and Bertrand, 2019). We suggest that the sum of

taxon-specific peptide abundances (MS1 intensities in this case) can be used as a proxy for

biomass. To evaluate this approach, we used a previously published, artificially assembled

metaproteome (Kleiner et al., 2017). In this dataset, we identified all taxon-specific

peptides, and then examined the correlation between the amount of protein used for a

taxonomic group and the sum of peptide intensities that correspond to that taxa. We found a
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high correlation between the sum of peptide intensities and the total protein (Supplementary

Fig. 4.6). Additionally, we examined different mass spectrometry chromatographic

methods (data files ‘Run1and2 U1.pep.xml’ and ‘Run4and5 U1.pep.xml’ from Kleiner

et al., 2017). We show that there is a high correlation between the amount of protein and

the sum of peptide intensities across three orders of magnitude (Supplementary Fig. 4.6),

and this correlation is higher in the longer chromatographic run.

Mapping peptides to taxon-specific functional groups has additional challenges be-

cause there can be multiple functional labels for a given protein, and the functional label

can differ based on the annotation used. To address this issue, we used five different func-

tional annotations (KEGG, KO, KOG, Pfams, and TIGRFAM annotations; Kanehisa and

Goto, 2000; Kanehisa et al., 2016; Tatusov et al., 2003; Mistry et al., 2021; Haft, Selengut

and White, 2003), and mapped coarse-grained functional associations by matching a list of

strings, i.e. keywords (which were identified in the construction of the model). In addition,

we manually examined the matched proteins to ensure we were not capturing incorrectly

mapped proteins to coarse-grains.

4.4.6 Approximate Bayesian Computation for Parameter Estimation
4.4.6.1 Metaproteomic-to-Model Data Comparison

To infer parameters of the model given the proteomic data, we need to determine how

similar the observations are to the model predictions. However, there are several challenges

associated with comparing the proteomic data with the protein allocation model output.

The main challenge with doing a direct comparison of model output (i.e. with protein

mass fraction) are the components of the observed proteome that we are not modelling.

For example, we do not include DNA synthesis proteins in our cellular model, yet we

anticipate this protein mass fraction to vary with growth rate. The consequence of this

issue is a poor model fit, which can hamper parameter inference.

We propose a general approach to address this challenge using the ratio of the protein

pool abundance from the two conditions observed. By using this ratio, we can still capture

the change in protein expression across conditions, but we bypass the issue of the non-

modelled proteome. Specifically, we used the ratio of protein group abundance from the

low Fe to high Fe condition in the culture diatom proteomes, and the third sampling point

to the first sampling point from the metaproteomic time series. This general approach for

model-to-metaproteome comparisons might be useful in other contexts, as we anticipate
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this issue would be pervasive, because no proteomic allocation model can explicity include

all proteins synthesized.

There are also several transformations and considerations required to make compar-

isons between the model and the observations. The first transformation is to calculate

protein mass fraction from the model. The true mass fraction from our model considers

the free amino acid pool, yet this pool would not be observed using typical proteomic

methods. Thus, we first re-calculate the total observable protein mass from the model.

This is done by multiplying all protein abundances by the amino acids per protein pool

– for Fe and Mn uptake, this cost is dynamic, so we re-calculate the dynamic cost per

transporter and internal machinery first. Once we have re-calculated protein mass, the next

consideration is the observed proteins. This is straightforward for all the protein pools

except for Fe and Mn uptake and internal cost. This is because the observed proteins for

this protein pool can be considered part of the internal or external protein pool (or both).

For each of the datasets, we examined the Fe transporters and internal Fe cost proteins and

determined if it is appropriate to use the external or internal protein pool from the model

as a comparison. We did not observe ferritin in any dataset, the main protein observed

for this protein pool was phytotransferrin (ISIP2a). We considered phytotransferrin to be

both an internal and an external cost, given that the protein is endocytosed (McQuaid et al.,

2018). These transformations for each dataset enabled a careful comparison between the

data and the observations.

4.4.6.2 Approximate Bayesian Computation for Parameter Inference

We used Approximate Bayesian Computation to draw inferences about the three uncon-

strained parameters in the model: the efficacy per MnSOD, εa; the available space on the

membrane for Mn and Fe transporters, κ; and the internal Fe and Mn cost coefficient, θ.

Note that we assumed that θ is constant for both Mn and Fe, although with additional data

we would be able to further discriminate across these costs.

We used ABC to obtain posterior distributions for parameters and predictive distribu-

tions for observed data. The stochastic model was combined with our cellular model to

allow for errors in approximation. To obtain a posterior distribution for each parameter,

we accounted for error in the model and observations. Specifically, our cellular model (f )

generates observations (yi) from a vector of parameters (νi = (εai, κi, θi)). We included an

error term (ei), which we assume is normally distributed with a common standard deviation
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(h).

yi = f(νi) + ei (4.38)

ei ∼ N(0, h2) (4.39)

We treated the standard deviation h as fixed; and estimation of the posterior distribu-

tion is described below. The prior for the elements of ν = (εa, κ, θ) were independently

uniform, εa ∼ U(0.00001, 0.1), θ ∼ U(0.001, 16) and κ ∼ U(0.001, 0.15). For εa, we

drew from a uniform bounded by 0.00001 and 0.1, because initial tests suggested that this

range resulted in a Mn:Fe ratio, and a Mn-PSU:Mn-SOD ratio consistent with empirical

observations (Nunn et al., 2013). For θ, we drew from a uniform bounded by 0.001 and 16.

The upper bound is assuming all internal Fe is stored in ferritin – which would result in

a very high internal Fe cost. The lower bound represents an arbitrarily low protein cost.

For κ, we used a lower bound of 0.001 and an upper bound of 0.15. We hypothesized that

the proportion of membrane space available for Fe and Mn transporters is likely within

these bounds – considering that only approximately 50% of the membrane can even have

transporter proteins (Kadner, 1996), and there must be a large proportion dedicated to

macronutrient transporters.

We used an ABC algorithm to approximate the exact posterior (Fearnhead and Prangle,

2012; Wilkinson, 2013). The approach simulates ν1, . . . , νB from the uniform priors and

then generates y1 = f(ν1), . . . , yB = f(νB) from the cellular model. For each yi, a weight

wi(h) ∈ {0, 1} is generated from a Bernoulli distribution (ai(h)) where:

ai(h) = exp[
−||yi − y0||2

2h2
] (4.40)

For any function g(ν), its posterior expectation is approximated by:

E[g(ν)|y0] ≈
∑B

i=1 g(νi)wi(h)∑B
i=1wi(h)

(4.41)

We can determine P (νj ≤ t|y0) at each point along the grid, and then convert these
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estimates from a cumulative distribution to a probability density. We do so by calculating

the height of the kth bin [tk−1, tk] as:

P (νj ≤ tk|y0)− P (νj ≤ tk−1|y0) (4.42)

Intuitively, if the Euclidean distance of a simulated dataset yi to y0 is very low, then it

is very likely that the parameter vector νi would be included in the posterior. This approach

gives an approximation of E[g(ν)|y0] with a fixed and known h. We then conducted

the posterior sampling M times to infer the approximate posterior distribution at fixed

intervals (i.e. the posterior as a histogram, with M = 400000). Overall, this method allows

for a probabilistic sampling of the posterior, as we transform our deterministic model

output to a stochastic model, with the stochasticity coming from the error term (Wilkinson,

2013). Without this step, our posterior variance estimates would solely be a function of the

tolerance that we use for inclusion in an approximate posterior (Alahmadi et al., 2020).

After sampling from the prior distribution (182171 samples drawn), we ran the cellular

model and generated a set of model outputs for each of three datasets: the metaproteome-

derived diatom proteome at two time points with corresponding in situ dMn and dFe

concentrations, Thalassiosira pseudonana proteome under high and low Fe (Nunn et al.,

2013), and Pseudonitzschia granii diatom proteome under high and low Fe (Cohen et al.,

2018). We then compared the model output with each of these datasets, and the success

probabilites given above are calculated by combining observations and model predictions

across all three datasets. We combined these datasets to estimate the first order effects,

however it is possible that the parameters included are environment dependent. For

example, the temperature is different across each dataset, yet we assume the membrane

space parameter (κ) is from a single distribution. Numerical integration and optimization

parameters were adjusted to enable faster sampling of parameter space, specifically, we

shortened the integration time to a length of 1x106 (with steps of 10). Optimization settings

are given in the Supplementary Materials.

4.4.6.3 Estimating Standard Deviation of the Error Term: h

The standard deviation of the error term, h, is an important parameter for conducting ABC.

This error term encompasses error from mass spectrometry, sample processing, and natural
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biological variability. We empirically estimated this parameter by using culture replicates

from Nunn et al. (2013). We calculated the average standard deviation of the ratio of

protein pools across replicates. To do so, we randomly paired biological replicates and

determined the sample standard deviation:

h =

√∑N
i=1 (yi − y)2

N − 1
(4.43)

We inferred an average sample standard deviation (across all pairs of biological

replicates) of 0.007. However, with such a low standard deviation, our ABC approach was

not feasible because the probability of acceptance was so low across all parameter vectors.

We therefore increase the value of h to a conservative value of 2, likely overestimating the

standard deviation of the error distribution.

4.4.7 Model Settings, Parameter Perturbation Experiments, and In-
teraction Index

We generated model output for a range of dFe and dMn values: 1, 50, 100, 500, 1000, 2000,

and 3000 pM in a full factorial combination, with light levels set to 50 µE m−2s−1. For

the three unconstrained parameters (described above), we used the modes of their posterior

probability distributions for the inferred parameter value. We then conducted 20 replicate

model runs for each unique combination of dFe and dMn with the following settings:

nitrate at saturating conditions (input nitrate set to arbitrarily high concentration of 1x109

nM, note that our ‘kinetic bottleneck’ approximation is satisfied only under saturating

conditions), and an integration time 3x106 for the second stage of optimization (with steps

of 10, see Supplementary Materials for additional details on optimization settings).

We multiplied every parameter individually by five and examined the change in growth

rate (except the ‘Fixed Proteome Percentage’ parameter, which was divided by five because

the base value was 20%). Each perturbation experiment was conducted three replicate

times, and the average growth rate of these three was then divided by the base model (i.e.

with no parameters altered, also run three times). Four environmental conditions were

chosen for parameter perturbation experiments, corresponding to high and low dFe and

dMn (all combinations of these conditions). The high dFe and dMn conditions were set to

3000 pM. The low conditions were determined by fitting a Monod-style growth function to
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modelled growth rates (Supplementary Figs 4.16, 4.17), and then using the half-saturation

constants. For dMn, this corresponded to 1.42 pM, for dFe, this corresponded to 88.9 pM.

We used the parameter perturbation experiments and the following equation to obtain

a quantitative metric of how different cellular processes contribute to interdependence

between dFe and dMn (µ corresponds to the growth rate):

Interaction index = min(µHighFe,LowMn, µLowFe,HighMn)− µLowFe,LowMn (4.44)

4.4.8 A Phenomenological Model of Nutrient Interdependence

Scott et al. (2010) develop a phenomenological model connecting growth rate with gene

expression. We extended a similar framework to micronutrients, and explored interdepen-

dence across elemental metabolisms using this framework. Consider a three-component

proteomic model, φR (ribosomal mass fraction), φFe (Fe-metabolism protein mass frac-

tion), and φMn (Mn-metabolism protein mass fraction). Scott et al. (2010) suggest that:

µ ∝ φR (4.45)

Under high micronutrient concentrations, we anticipate that the proteomic mass

fraction required to acquire these nutrients decreases, such that φFe and φMn are inversely

proportional to the amount of dFe and dMn:

φFe ∝
1

dFe
(4.46)

φMn ∝
1

dMn
(4.47)

It follows that the increased mass fraction required for processing and obtaining Fe

and Mn negatively influences the growth rate via decreasing the ribosomal mass fraction

(φR):

µ ∝ 1− φFe − φMn (4.48)
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If we then assume a saturating function of the proteomic mass fractions (φFe,Mn)

dependent on the micronutrient concentration:

φFe = 1− dFe

dFe+K
(4.49)

Where K is the half saturation constant for Fe, and is equivalent (for simplicity) to

the half saturation for Mn. We then obtain an expression for the growth rate:

µ ∝ 1−
(

1− dFe

dFe+K

)
−
(

1− dMn

dMn+K

)
(4.50)

However the expression above requires some proteomic cost weighting factor, other-

wise the expression could result in negative growth rates. If we define the proteomic cost

weight for Mn and Fe to be ψMn and ψFe, we obtain:

µ ∝ 1− ψFe
(

1− dFe

dFe+K

)
− ψMn

(
1− dMn

dMn+K

)
(4.51)

ψMn + ψFe = 1 (4.52)

We found that when protein costs have similar values for Fe and Mn (i.e. ψFe is 0.5),

the apparent amount of interdependence is greatest. This is demonstrated by looking at the

gradient of the growth rate function with respect to dMn and dFe:

∇µ =


dµ

d(dFe)

dµ
d(dMn)

 =


KψFe

(dFe+K)2

−1 K(ψFe−1)
(dMn+K)2

 (4.53)

If we then assume that both dFe and dMn are at concentrations equivalent to their

half-maximal growth (i.e. K), the gradient function then simplifies to:

∇µ =

⌈
ψFe
4K

−1 (ψFe−1)
4K

⌉
(4.54)
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From this function, we can then show that the direction which corresponds to the

most elemental interdependence is when the slope is closest to one, or, that the elements of

the gradient with respect to dFe and dMn are equivalent. When we equate the elements of

the gradient, evaluated when dFe and dMn are at half maximal growth, we find that the

iron cost parameter is equivalent to 0.5 and therefore so is the manganese cost parameter.

This phenomenological model suggests that when the ratio of proteomic costs are similar,

the extent of elemental interdependence is greatest. Note that ‘proteomic’ cost in this case

can be extended to other cellular costs, for example available membrane space.

4.5 Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the

Supplementary Materials, and all data are publicly available. Model runs, experiments,

and output from metaproteomic bioinformatics are deposited with in Dryad and can be

found at https://doi.org/10.5061/dryad.xd2547dfs. Model parameters used are provided

in a table (Supplementary Table 4.1) in addition to being described in the Methods and

Supplementary Information. The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset

identifier PXD022995 (Perez-Riverol et al., 2019). Code for all metaproteomic analyses is

available from https://github.com/bertrand-lab/ross-sea-meta-omics, and code for all other

analyses is available from https://github.com/bertrand-lab/mn-fe-allocation.
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4.7.1 Model Parameters

Table 4.1: Mathematical symbols, names, units, numerical values, and detailed descriptions
for all the parameters in the proteomic allocation model described in the main text.

Parameter Symbol Parameter Name Units Value Description

ηTNO3
Nitrogen

Metabolism

Protein

Complex

Size

AminoAcids
Molecule

5893 There are nine NRT2 transporters found in the F. cylindrus genome. The

average length is 512. There are three proteins in the F. cylindrus genome

that are associated with the GO term ’Nitrate reductase activity’. After

pBLAST, these proteins were further identified as one nitrate reductase

and two cytochrome b5. There is one cytochrome b5 domain in nitrate

reductase, and nitrate reductase also functions as a homodimer. We take

the average length of the two cytochrome b5 proteins (136 and 122 amino

acids), added with the nitrate reductase protein length (862), to a amino

acid total of 991 (multiplied by two, 1982). There are four enzymes

associated with nitrite reductase activity (three with ferredoxin-nitrite

reductase and one with NADPH dependent nitrite reductase). We took

the average length of all NiR proteins (832 amino acids). There are five

proteins in the F. cylindrus genome that associate with the GO term ’Glu-

tamine biosynthetic process’ (GO Term: 0004356). After pBLAST, two

appear to be glutamine synthetase/quinado kinase, two are plastid glu-

tamine synthetase II, and one is glutamine synthetase type. The average

protein length is 450. Glutamine is converted to glutamate by glutamate

synthase, and we found 10 proteins with ’glutamate synthase activity’

via GO terms. These proteins were then searched using pBLAST, and of

them, there were four hypothetical proteins, two FMN-linked oxidoreduc-

tases, two ’glutamate synthase family proteins’, one glutamate synthase

(NADPH) large chain protein, and one NADH-glutamate synthase small

subunit. We took the average length of the glutamate synthase family

proteins and large subunit (1596), and summed it with the small subunit

protein (521), to a total of 2117 amino acids. The total amino acid count

fo protein complex size is 512 + 1982 + 832 + 450 + 2117 = 5893.

ηR Ribosome

protein

complex

size

AminoAcids
Molecule

28800 96 proteins estimated for cytosolic ribosomes in Chlamydomonas rein-

hardtii (Manuell et al., 2005). These proteins range in size from 12-

54kDa. Assuming an average size of 33kDa, this converts to a protein

cost of 3168kDa (3168000Da), or 28800 amino acids (assuming an

average of 110 Da per amino acid).

ηTMn,Unadjusted
Manganese

uptake

protein

complex

size

AminoAcids
Molecule

372 There are four NRAMPs identified in the F. cylindrus genome (protein

ID 137845, 173050, 172829, 197170) and subsequently checked with

BLASTp and confirmed to be divalent metal tranporter 1 or an NRAMP.

The average protein size is (422, 314, 398, 355 for the above protein IDs,

respectively) is 372.
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Table 4.1: Mathematical symbols, names, units, numerical values, and detailed descriptions
for all the parameters in the proteomic allocation model described in the main text.

Parameter Symbol Parameter Name Units Value Description

ηTFe,Unadjusted
Iron

uptake

protein

complex

size

AminoAcids
Molecule

4030 GO:0006826 (iron ion transport) was used. Ferritin (protein ID 249610,

201 amino acids), iron permease FTR1 family (PF03239; protein ID

243554, 371 amino acids), ISIP1 (protein ID 241515, 594 amino acids)

(ISIPs included because of putative role in iron transport and ubiquitous

role in iron response), protein ID 236396 (102 amino acids), periplasmic

ABC transporter (GO:0005381 iron ion transmembrane transporter activ-

ity, GO:0006827 high-affinity iron ion transmembrane transport; protein

ID 193804, 301 amino acids, protein ID 195906, 206 amino acids, pro-

tein ID 197108 301 amino acids, protein ID 202747 207 amino acids,

protein ID 172711 1733 amino acids, not included because sequence

gaps impacts gene model), iron transporter Ferroportin1 (PF06963) pro-

tein ID 147624 493 amino acids, ABC transporter periplasmic Fe3+

hydroxamate transport system (protein ID 209416, 348 amino acids),

ZIP Zn/Fe transporter (KOG1558, protein ID 184218 296 amino acids,

protein ID 268016 179 amino acids), Ferric reductase / NADH/NADPH

oxidase and related proteins (Protein ID 232972 824 amino acids, Pro-

tein ID 246292 917 amino acids, Protein ID 259423 1321 amino acids,

Protein ID 227601 761 amino acids, Protein ID 235878 818 amino acids,

Protein ID 252645 599 amino acids, Protein ID 184052 728 amino acids),

sideroflexin (protein ID 140510 367 amino acids, Protein ID 216838

290 amino acids, Protein ID 226433 347 amino acids). The sum of all

these proteins is 201 + 371 + 594 + 102 + mean(c(301, 206, 301, 207)) +

493 + 348 + mean(c(296, 179)) + mean(c(824, 917, 1321,761, 818, 599,

728)) + mean(c(367, 290, 347)) = 3787. We exclude Ferritin (201 amino

acids), as we explicitly include this protein elsewhere. We also include

the four copies of FBP1 identified by Coale et al. (2019), in F. cylindrus,

which have the average length of 442 (556, 235, 531, 449) thus the final

cost is 4029 (rounded to 4030 in the model).

ηP Photosystem

unit size

AminoAcids
Molecule

12177 Data from Wollman, Minai and Nechushtai (1999), and we assume a 1:1

ratio of PSII:PSI.

ηA Manganese

super-

oxide

dismutase

size

AminoAcids
Molecule

227 Protein ID 185706 (232 amino acids), 239458 (223 amino acids).

GO:0004784, GO:0006801.

θ Dynamic

Fe up-

take cost

coefficient

AminoAcids
Fe

1.469 Determined using Approximate Bayesian Computation.

θ Dynamic

Mn up-

take cost

coefficient

AminoAcids
Mn

1.469 Determined using Approximate Bayesian Computation.

r Radius Metres 3.952 x 10−6 Inferred from Figure 1a in Mock et al. (2017).

s Transporter

complex

radius

Metres 1.00E-09 From Berg and Purcell (1977).

MCell Amino

acids per

cell

AminoAcids
Cell

1.4E+11 From Finkel, Follows and Irwin (2016), data from Supplementary File

S1. The median picograms of protein per cell from Pseudo-nitzschia

(Fragilariopsis cylindrus not in dataset) was 15.53692pg. Converted to

grams per cell (1/1e12), then to amino acids per cell.

Λ Proportion

of the pro-

teome that

is inde-

pendent

of growth

rate

Dimensionless 0.2 Estimated using calculations from Metzl-Raz et al. (2017).
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Table 4.1: Mathematical symbols, names, units, numerical values, and detailed descriptions
for all the parameters in the proteomic allocation model described in the main text.

Parameter Symbol Parameter Name Units Value Description

κ Available

space on

the mem-

brane for

Mn and

Fe trans-

porters

Dimensionless 0.1484 Determined using Approximate Bayesian Computation.

mγ Energy

use per

amino

acid

elongation

e
AminoAcid

3 From Faizi et al. (2018).

ϕN Energy

use per

NO3 con-

version

into amino

acids

e
NO3

9.8 1 ATP for import + 1 NADPH for nitrate reduction + 1 NADPH for

nitrite reduction + 1 ATP for glutamine synthetase + 1 NADPH for

glutamate synthase. Assuming an interconversion ratio of 2.6 ATP to 1

NADPH, the total cost is: 1ATP + 2.6ATP + 2.6ATP + 1ATP + 2.6ATP

= 9.8e.

ϕFe,P Iron per

PSU

Fe
PhotosystemUnit

20 From ref. (Raven, 1990).

ϕFe,N Iron per N

uptake and

synthesis

Fe
NitrogenPathway

10 2 Fe in nitrate reductase (one per subunit, but it exists as a homodimer),

5 Fe in nitrite reductase in total (1 siroheme cofactor and 4 in 4Fe-4S

cluster), 3Fe in glutamate synthase. Total is 10 Fe.

ϕMn,A Manganese

per Mn-

SOD

Mn
MnSOD

1 From ref. (Sheng et al., 2014).

ϕMn,P Manganese

per PSU

Mn
PhotosystemUnit

4 From ref. (Raven, 1990).

ϕe Energy

produced

per PSU

activation

e
PSUActivation

8 From Faizi et al. (2018).

ϕTMn
Energy

used for

Mn uptake

e
Mn

2 Set to an arbitrarily low value to ensure Mn uptake is not possible with

zero energy.

ϕTFe
Energy

used for

Fe uptake

e
Fe

2 Set to an arbitrarily low value to ensure Fe uptake is not possible with

zero energy.

mn Inverse of

nitrogen

per amino

acids

AminoAcid
Nitrogen

6.99E-01 Averaged across all amino acids.

kcat,TN
Maximum

turnover

rate of

the rate-

limiting

enzyme

in the

nitrogen

assim-

ilation

pathway

1
minute

178 At substrate saturating conditions, the enzyme with the lowest maximum

turnover rate in a pathway determines the upper bound on flux through

the pathway, assuming constant total amount of a enzyme (as it is rep-

resented in the model as an entire protein pool). Nitrate reductase is

sometimes referred to as the rate limiting step in nitrogen assimilation

(kcat = 12 1
second

in spinach). Lambeck et al. (2010) estimated the

nitrate reductase kcat equal to 20 1
second

in Arabidopsis thaliana.

We note that for glutamine synthetase, there was a lower kcat for

NH4
+ at 2.96 1

second
. We therefore used this as the rate limiting

step in nitrogen assimilation to amino acids.

γmax Protein

synthesis

rate

AminoAcids
Minute·Ribosome 1.14E+02 Thalassiosira weissflogii translation rate at 20 ◦C is 1.9

AminoAcid
Ribosome·second . Assuming a temperature depence given

by a factor ofQ10 = 2 (Toseland et al., 2013), protein synthesis rate is

adjusted in the model. (Protein synthesis rate temperature adjusted =

114 · 2 (T/10−20/10) , where T is temperature and equal to -1 C).
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Table 4.1: Mathematical symbols, names, units, numerical values, and detailed descriptions
for all the parameters in the proteomic allocation model described in the main text.

Parameter Symbol Parameter Name Units Value Description

kcat,Fe Maximum

turnover

rate, Fe

trans-

porter

1
Minute

352 Discussed in text. Hudson and Morel (1990) values, using Fiksen,

Follows and Aksnes (2013) calculation of handling time.

kcat,Mn Maximum

turnover

rate, Mn

trans-

porter

1
Minute

352 Kinetic constants for Fe uptake are assumed to be equivalent to Mn

transporters, but further work is required for distinct parameterizations

across micronutrients.

kcat,ROS Maximum

turnover

rate,

MnSOD

1
Minute

10000 Taken from a range of BRENDA Database of kinetic constants for su-

peroxide dismutases and from other publications (lower end was conser-

vatively chosen consistent with argument from (Peers and Price, 2004),

as a lesser efficiency would correspond with more demand, and a higher

potential interaction between MnSOD production and oxidative stress).

Note that this parameter is multiplied in the model by εa , making it

have a more phenomenological interpretation.

KFei,P Half sat-

uration

constant

for Fei

to Photo-

systems

Molecules
Cell

10000 Set to an arbitrarily low value.

KMni,P Half sat-

uration

constant

for Mni

to Photo-

systems

Molecules
Cell

10000 Set to an arbitrarily low value.

KMni,A Half sat-

uration

constant

for Mni

to Antioxi-

dants

Molecules
Cell

10000 Set to an arbitrarily low value.

KFei,N Half sat-

uration

constant

for Fei

to Tn (N

uptake and

biosynthe-

sis)

Molecules
Cell

10000 Set to an arbitrarily low value.

Ke Half sat-

uration

constant

for energy

Molecules
Cell

10000 Set to an arbitrarily low value.

εa Efficacy

per Mn-

SOD

Dimensionless 0.00001 Determined using Approximate Bayesian Computation.

σ Absorption

Cross Sec-

tion

m2

uE
0.01 From Strzepek et al. (2012).

τ Activated

photo-

system

turnover

rate

1
Minute

6000 We obtained the values from the mean shown in Figure 2e for phyto-

plankton in Strzepek, Boyd and Sunda (2019), of 0.1 ( 1
ms

). Converting

to minutes, this results in an value of 6000 ( 1
Minute

).
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Table 4.1: Mathematical symbols, names, units, numerical values, and detailed descriptions
for all the parameters in the proteomic allocation model described in the main text.

Parameter Symbol Parameter Name Units Value Description

R0 Shape of

the ROS

mismatch

penalty

function

Dimensionless 10 Arbitrarily chosen.

4.7.2 Supplementary Methods
4.7.2.1 Optimization

Our model optimizes the set of parameters that describe the proportion of ribosomes

translating for a given protein pool (~β), and we used the steady-state growth rate as the

objective function (Faizi et al., 2018). We used several techniques to improve the accuracy

and speed of optimization.

The computational problem can be broken down into two stages. The first stage is

solving for the steady state growth rate, and the second stage is determining which set

of parameters lead to the optimal growth rate. We chose to set up the first problem as a

system of ordinary differential equations (ODEs), and numerically integrate these ODEs to

a pseudo-steady state (Faizi et al., 2018). The rates within the ODEs are a function of the

proportion of ribosomes translating each proteomic pool (~β). So, in order to determine the

optimal ~β we need integrate the system of ODEs to a steady state to evaluate the growth

rate (µ). To perform the numerical integration, we used the python module SciPy odeint,

which accesses the LSODA algorithm in ODEPACK (Hindmarsh, 1983). The integration

time step varied, depending on whether it was used for the ABC analysis or the parameter

perturbation experiments. However, the maximum number of internally defined time steps

(mxstep in odeint) was kept at 1E6.

In order to determine the optimal ~β, we used Sequential Least Squares Quadratic

Programming (SLSQP, SciPy), a method used for non-linear, constrained, and bounded

optimization problems. However, we found that the minimization was highly start-point

dependent due to the nature of the optimization problem. We developed a three-component

optimization protocol to approach this problem. In the first component (‘the drunkards

walk’), we used SLSQP initialized with a random ~β with a high error tolerance, performed

n times. For all model experiments (parameter perturbations), and for the baseline model,

we set this value to n = 20. For running the ABC, we used n = 10, because it is slightly

faster. During this stage, the integration time for determining the steady-state growth rate
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was set to 5E5 (with a time step of 10). The ‘high error‘ tolerance corresponded with a

value of 1E-4 for the ftol parameter in SciPy minimize, which is the precision goal for the

growth rate value in the stopping criterion. We also set the maximum iterations parameter

(maxiter) to 200 for the minimize function in SciPy. For all other parameters we used

default settings.

The second component is an empirical Bayesian optimization using Gaussian Process

Regression, informed from the original set of n random guess. Conceptually, this approach

is improving the sampling of parameter space because it is not dependent on randomly

generated ~β, but a guided search. After the first component, we use the SLSQP determined
~β, paired with their steady state growth rates, to train a Gaussian Process Regression (GPR)

model. We use this approach because evaluating our objective function is computationally

expensive. The GPR model covariance function is an additive combination of the dot

product and White kernel. Once we have trained the GPR model, we generate p random
~βP , evaluate all ~βP using the trained GPR model, and then determine which ~βP would

have the highest growth rate. For all model experiments and the baseline model runs, we

set p = 1000. For the ABC analysis, we set p = 300. We then use the top 20% p values (as

ranked by their GPR-predicted µ) as initial starts for the SLSQP approach. After these ~β

values are evaluated with the objective function, we re-train the GPR model with these

additional observations k times. For all model experiments and baseline model runs, we

set k = 10, for the ABC analysis we set k = 2.

The third component is a refined optimization with lower error tolerance (‘the sober

walk’). We begin by taking the top 10% of ~β, ranked by their growth rate. From this

sub-group, we use a k-means clustering of these parameter sets. We then take the j

centroids from the k-means clustering, and use these as inputs for the ‘sober walk’.

This last component uses the k-means clustering centroids as start points for the SLSQP

optimization, with a lower error tolerance compared to above. The ‘low error‘ tolerance

corresponded with a value of 1E-6 for the ftol parameter in SciPy minimize. The optimal
~β is the parameter set, from this component, which resulted in the highest steady-state

growth rate.

We found that these steps above improved both the computational speed and accuracy

of the optimization. Additionally, we used the square-root of the growth rate, which

flattens the optimization surface and we found to improve the accuracy of our optimization.
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We also used a shorter steady-state time during the ‘drunkards walk’, which is a good

approximation of the steady state growth rate, but it is much more efficient because the

time-length of integration is much smaller.
Algorithm 2: Optimization algorithm description. n is the number of initial

random parameter guesses. εf is fixed proteomic fraction. SLSQP: Sequential

Least Squares Quadratic Programming, a constrained optimization protocol.

Result: ~βOpt

for n do

Generate random ~β such that
∑

j βj = 1;

High error tolerance SLQSP using ~β as initial value and
√
µ as objective

function;

Generate initial optimized ~βi and corresponding µi;

end

Train a Gaussian Process Regression (GPR) model using all ~βi and corresponding

µi;

for k do

Generate p, ~βp such that
∑

j βj = 1;

for p do

Predict µ using trained GPR;

end

Subset which ~βp had the highest GPR-predicted µ;

Evaluate these subsetted ~βp using a high error tolerance SLQSP, determine

corresponding µp;

Re-train GPR model with new, appended set of ~βp and corresponding µp;

end

K-means clustering of top 10%, ranked by µ.

for i do
Low error tolerance SLQSP using K-means cluster centroids as initial values

and
√
µ as objective function;

end
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4.7.3 Supplementary Discussion
4.7.3.1 Model Parameter Posteriors Interpretation

We estimated three key, unconstrained model parameters, each corresponding to different

cellular processes: (1) internal Fe protein cost, (2) available membrane space for trans-

porters, and (3) the catalytic efficiency of MnSOD. Below we provide a detailed discussion

of their interpretation. The first parameter represents the strength of this internal cost in

our model by multiplying the cellular Fe quota by a coefficient, which is interpretable

as the amino acids required for managing each Fe atom. If all Fe was bound to ferritin,

for example, this coefficient would be the total amino acids per ferritin protein complex

divided by the total amount of Fe per ferritin protein complex. This parameter significantly

increases the protein cost per transporter.

The second key parameter was the available membrane space for Mn and Fe trans-

porters. Note that our estimate of available membrane space corresponded with the

upper-bound of our prior distribution for this parameter – a wider prior distribution may

have resulted in a higher value. We chose this upper bound (15% of membrane surface area)

because approximately 50% of the membrane can be allocated to proteins to maintain lipid

bilayer integrity (Kadner, 1996). There is also a membrane requirement for macronutrient

transporters (e.g. phosphate, nitrate, or silicate). We therefore reasoned that Fe and Mn

transporters took up a maximum of 15% of the membrane space. Yet, targeted work on

membrane protein dynamics, particularly in eukaryotic phytoplankton, is clearly required

to obtain a more accurate upper bound for available area for membrane transporters.

The last unconstrained parameter was the catalytic efficiency of MnSOD. Superoxide

dismutases are incredibly efficient enzymes (Sheng et al., 2014). If we constructed this

model to simply minimize steady-state concentrations of superoxide (assuming a well

mixed compartment), only a few copies of MnSOD would be required. Yet, that is not

observed in field-based proteomes (our data presented here) or in cultured diatoms (e.g.

Nunn et al., 2013). There is also evidence that MnSOD is associated with the chloroplastic

membrane directly suggesting some degree of producing this critical protein at levels

higher than would be suggested from kinetic-based reasoning (Pilon, Ravet and Tapken,

2011; Ogawa et al., 1995; Regelsberger et al., 2002). In other words, an overproduction of

MnSOD would prevent free superoxide from diffusing and interacting with biomolecules.

Yet, the degree of overproduction is uncertain – this is one way this parameter may be

interpreted.
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4.7.3.2 Iron-Light Interactions in the Southern Ocean

Recently, some evidence suggesting that Southern Ocean phytoplankton have a unique

relationship between Fe and light levels has emerged, which is mediated by low tempera-

tures (Strzepek, Boyd and Sunda, 2019). We predicted an inverse relationship between

light levels and cellular Fe quotas, consistent with previous work (Sunda and Huntsman,

1995). It is unsurprising that we do not predict the relationship observed in Strzepek, Boyd

and Sunda (2019), as it was not included within our photosynthetic model. Future work is

required to address how various temperature-dependent mechanisms (e.g. photosynthetic

processes, translation rate, Fe uptake kinetics, membrane saturation, etc.) integrate to

influence the complex relationship between Fe, Mn, temperature, and light.

4.7.3.3 Iron and Manganese Interactions

A key mechanism of interdependence between Mn and Fe was included in our model

(Peers and Price, 2004). Briefly, under low Fe, electrons leak more from electron transport,

increasing the requirement for MnSOD. Therefore, under low Fe, Mn should have a

relatively larger impact on growth rate than at high Fe. Despite explicitly including an

interaction between Mn and Fe in our model, we found that these two micronutrients

influenced growth rate mostly independent of each other.

Antioxidants are produced to counteract ROS production via leaked electron flux.

There are two controls on total leaked electron flux: 1) the proportion of electrons leaked

and 2) the total electron flux. Low Fe increases the proportion of electrons leaked, but it

also decreases the total electron flux. Therefore, while the requirement of MnSOD per PSU

increases under low Fe, the total requirement for MnSOD decreases. These observations

challenge the result that Fe and Mn interact under low Fe – seemingly inconsistent with

the observed increase in Mn quota under low Fe (Peers and Price, 2004). However,

several lines of evidence from Peers and Price (2004) are actually consistent with our

predictions and newer observations. Our model also predicts an increase in Mn quota

under low Fe, yet the source of this increased quota is an increased internal free Mn pool,

not MnSOD. Increased reactive oxygen species observed under low Fe (Peers and Price,

2004) is consistent with superoxide secreted to increase bioavailability of ligand-bound Fe

(Rose, 2012), or with a recently discovered mechanism relating superoxide production with

photosynthetic health (Diaz et al., 2014). Our model results suggest that Mn actually has a

larger role in influencing growth rate under high Fe, rather than low Fe, and a reframing
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of previous growth rate data provides some support for this conclusion (Supplementary

Fig. 4.15). Yet, these geochemical conditions are infrequently encountered in the Southern

Ocean (Supplementary Fig. 4.8), so it is unclear how much Mn and Fe interact to control

phytoplankton growth in the Southern Ocean. Furthermore, it is unclear how to reconcile

observations suggesting Mn limits primary productivity (Buma et al., 1991; Browning

et al., 2014; Wu et al., 2019; Middag et al., 2011; Sherrell et al., 2015; Browning et al.,

2021). Perhaps a more complex, community-interaction is at play, or other organisms (e.g.

haptophytes) are contributing to this phenomenon.

4.7.3.4 Proteomic Allocation Model Predictions compared with Field-Based Diatom
Proteomes

Our model captures trends in fold change for most protein pools from the two weeks

with both proteomic observations and geochemical data. It did not capture the trends in

expression of nitrogen metabolism and uptake, and antioxidants. We observed a decrease in

photosystem units (PSUs) and ribosomes from Week 1 to Week 3 in both the experimental

metaproteomic time series (dotted vertical lines, Supplementary Fig. 4.20) and the model

predictions. However, the model did not capture the trend in abundance change for

the nitrogen metabolism protein pool. We hypothesize that the lack of correspondence

is because our model only considers nitrogen uptake from nitrate, whereas concurrent

experiments suggested diatoms were using ammonium (Jabre et al., 2021) which is more

Fe efficient (Raven, 1988). The posterior distribution for antioxidant expression did not

clearly indicate one direction of expression (i.e. increase or decrease). Thus, more targeted

work examining the expression of this key protein pool is required.

4.7.4 Supplementary Figures
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Figure 4.6: Correlation between sum of taxon-specific peptide intensities per taxonomic
group and total protein used for each taxa using the Kleiner et al. (2017) artificial metapro-
teome. The sum of peptide intensities per group is a valid proxy of biomass across both
the ‘Long’ and ‘Short’ chromatographic runs (right and left panels). Values from both axes
are rescaled such that they vary from 0–1. The 1:1 line of y = x is plotted in black, and the
blue line represents a linear model. Point size reflects the number of peptides observed for
a given taxa.
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Figure 4.7: Posterior probability distributions for each of the three unconstrained, estimated
parameters. Parameters were estimated using Approximate Bayesian Computation (see
Methods). The modes of each distribution were used for the inferred parameter value.
Each bar represents the posterior probability for a given cellular parameter within that
interval (Methods).
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Figure 4.8: Southern Ocean concentrations of dFe and dMn from two data sources (Meth-
ods). Circles represent concentrations derived from a surface Tow-FISH on GEOTRACES
cruise JR274. Squares are median mixed layer concentrations of dMn and dFe from
GEOTRACES cruises in the Southern Ocean, GEOTRACES Intermediate Data Product
(Schlitzer et al., 2018). Corresponding light levels were calculated using the Ocean Color
database (NASA, 2014).
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Figure 4.9: Histogram of growth rates from the cellular model (left, 1–3000 pM dFe,
1–3000 pM Mn) are within the same range of observed growth rates of Fragilariopsis
cylindrus across a range of iron and temperatures (Jabre and Bertrand, 2020).

Figure 4.10: Histogram of Fe uptake rates from the cellular model (left, 1–3000 pM
dFe, 1–3000 pM Mn) are within the observed range of Fe uptake rates of Phaeodactylum
tricornutum (McQuaid et al., 2018).
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Figure 4.11: Model Fe and Mn quotas (histograms, 1–3000 pM dFe, 1–3000 pM dMn)
overlap with the observed range of cellular quotas from Thalassiosira pseudonana (dotted
lines, Peers and Price, 2004).
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Figure 4.12: Model Fe and Mn quotas (histograms, 1–3000 pM dFe, 1–3000 pM dMn)
overlap with the observed range of cellular quotas from diatoms collected on the SOFeX
expedition to the Southern Ocean (dotted lines, Twining, Baines and Fisher, 2004).
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Figure 4.13: Model runs across a wide range of iron and manganese concentrations
typically observed in the Southern Ocean. Light levels were 50 µEinm−2s−1. (A-F),
proteomic mass fractions for each proteomic pool from the cellular model. (G), growth
rate across a wide range of Fe and Mn concentrations. (H-I), total cellular quotas of Fe
and Mn, including the free Mn and Fe pools.

146



Figure 4.14: Light and cellular Fe quota from the cellular model have an inverse relation-
ship. Two dFe concentrations (100 and 1000 pM) are shown (left and right panels), with
two concentrations of dMn (100 and 1000 pM), across a range of light levels.
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Figure 4.15: Model (A) and culture (B-D) growth rates under low and high Fe and low and
high Mn. Manganese concentrations are given as the colour of the points (and the labels
on the points). The proteomic allocation model and two datasets support the conclusion
that Mn has a bigger impact on growth rate under high Fe than under low Fe (Peers and
Price, 2004; Pausch, Bischof and Trimborn, 2019).
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Figure 4.16: Monod growth kinetics for dFe and dMn. Inset parameter values were
found using nonlinear-least squares. For both Fe and Mn (top and bottom, respectively),
saturating concentrations of the non-varying nutrient were used (saturating concentrations
= 3000pM). Monod-type functions fit dMn well, but dFe poorly, but this approach was
used to simply choose concentrations for testing parameter changes.
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Figure 4.17: Change in growth rate under four different concentrations of dMn and dFe.
Concentrations were chosen using Monod-functions, with the ‘Low’ value as the half
saturation constant, and the ‘High’ value as an arbitrarily high, saturating, concentration
(3000 pM). Parameter values were multiplied by a factor of five, and the resulting growth
rate after three replicate model runs was then divided by the base model (no parameters
altered). *Note that the ‘Fixed Proteome Percentage’ parameter was divided by five, not
multiplied, because the base value is 20%.
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Figure 4.18: Extended version of additional internal cellular processes that are the proxi-
mate causes of growth rate. (A), the internal, modelled processes directly inhibiting growth
vary across iron and manganese concentrations. (B), internal limitation proxy of iron varies
across the growth rate and external concentration of manganese (dFe ranges from 1 pM to
3 nM, three dissolved Mn levels are shown: 1, 50, and 1000 pM). Internal Fe status (inset
equation) influences the synthesis of proteins in the nitrogen metabolism pathway. (C),
variation in ribosomes per cell with growth rate, (D), the total amount of available amino
acids (inset equation) impacts the growth rate.
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Figure 4.19: A parameter-specific interaction index based on the influence a parameter
perturbation had on growth rate under high and low dMn and dFe concentrations (the same
conditions in Fig. 4.4a; description of interaction index equation in the Methods). Shown
here are the parameters from the proteomic allocation model with the highest interaction
index (top 20%).
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Figure 4.20: Posterior probability distributions of fold change from two weeks of diatom
protein expression, inferred from a metaproteome. Week 1 corresponds with higher Fe and
Mn, and Week 3 corresponds with lower Fe and Mn. Five of six protein pools are shown,
with model posterior probability distributions given as green histograms (Mn transporters
were not observed from the metaproteome). The empirical observations are shown as grey,
vertical dashed lines.
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Figure 4.21: Graphical description of transformations for calculating the protein synthesis
penalty, specifically described in equations 4.17, 4.18, and 4.19. Panel A shows equation
4.17 and 4.18, while panel B shows equation 4.19 graphically.
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CHAPTER 5

PHYTOPLANKTON ANTIOXIDANT
SYSTEMS AND THEIR CONTRIBUTIONS
TO CELLULAR ELEMENTAL
STOICHIOMETRY

This work was accepted for publication in December, 2021 at Limnology and Oceanogra-

phy Letters.

5.1 Abstract

Oxidative stress plays a role in many aspects of cellular metabolism, and as a result,

antioxidants have the potential to impact cellular stoichiometry and biogeochemical cycles.

We reviewed how antioxidant systems influence macro- and micronutrient stoichiometry in

marine phytoplankton, and identified that antioxidant systems have important implications

for micronutrient stoichiometry. By leveraging diatom proteomic data, we empirically

estimated the level of micronutrient quota variation that can be attributed to antioxidant sys-

tems. Fe-containing antioxidant expression may contribute to 3.3–10 µmol:mol variation

in Fe:C, and superoxide dismutases appear to be important contributors to variation in Mn,

Ni, Zn, and Cu quotas in phytoplankton. Critical next steps for the study of phytoplank-

ton antioxidant systems are to 1) distinguish between oxidative stress and redox-based

gene regulation, and 2) determine how antioxidants influence variation or consistency in

micronutrient quotas under various environmental conditions.
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5.2 Introduction

Elemental stoichiometry connects individual organisms to earth-scale processes, and un-

derpins the connections between all biogeochemical cycles. Redfield (1958) famously

connected ratios of nitrogen and phosphorus in surface phytoplankton to dissolved con-

centrations in the deep ocean, describing a homeostatic system. Comparatively less focus

has been on exactly why nutrients have specific stoichiometric ratios. Early work by Elser

et al. (1996) connected biochemical composition to life history, providing a causal link of

between life history and stoichiometry (the biochemical foundations of stoichiometry have

been further characterized since then, for example in Geider and LaRoche, 2002; Elser

et al., 2000; Sterner and Elser, 2002). Expanding on this body of work, Loladze and Elser

(2011), suggest that the ratio of nitrogen to phosphorus is ∼16 because of fundamental

constraints on protein synthesis by phosphorus-rich ribosomes. Which other cellular

processes impact deviations from, and consistency with, the Redfield ratio? In addition to

macronutrients, micronutrients like iron (Fe) can play a large role in influencing primary

productivity and biogeochemical cycling (Martin and Fitzwater, 1987; Tagliabue et al.,

2017). Yet, attempts to extend the Redfield ratio to micronutrients has uncovered enormous

variability. For example, Sunda and Huntsman (1995) found that Fe:C varies by as much

as two orders of magnitude, and much of this variability is likely due to high Fe uptake

(often called luxury uptake), rather than biochemical responses (e.g. protein production).

Which other cellular mechanisms lead to variability in micronutrient stoichiometry?

Oxidative stress influences many aspects of cellular function and metabolism, and thus

has the potential to influence cellular stoichiometry. For example, cells invest significant

resources in protecting against oxidative stress, shown by the proportion of proteomes

invested in antioxidant enzymes (Müller et al., 2020). These resources also include

protein chaperone networks (Santra, Dill and Graff, 2018), protective biomolecules (e.g.

glutathione, polyphosphate), and protein synthesis (Nishiyama, Allakhverdiev and Murata,

2011). Numerous components of metabolism are influenced by oxidative stress. For

example, glycolysis is controlled by oxidative stress due to peroxide-induced inactivation

of the key protein glyceraldehyde-3-phosphate dehydrogenase (Shenton and Grant, 2003).

In addition to its influences on cellular stoichiometry, oxidative stress also has large

consequences for eco-evolutionary dynamics (Laman Trip and Youk, 2020; Morris et al.,

2011), cell signalling (Mittler et al., 2004, 2011; Mittler, 2017; Wood, Poole and Karplus,
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2003; Rosenwasser et al., 2014; Fomenko et al., 2011; Petrov and Van Breusegem, 2012),

circadian rhythms (Edgar et al., 2012), marine viruses (Sheyn et al., 2016), and marine cell

gravitaxis (Carrara et al., 2021).

Our central goal is to examine how antioxidant systems influence cellular stoichiome-

try. In doing so, we ask: how might oxidative stress contribute to consistency and variation

in cellular stoichiometry? We use the term ‘contribution’ because antioxidants can influ-

ence cellular stoichiometry through the processes they mediate, but they themselves form

a portion of cellular elemental quotas. We focus on marine phytoplankton, as they are key

players in global biogeochemical cycles (Falkowski, Fenchel and Delong, 2008), and there

is motivation to move beyond model organisms and explore oxidative stress in diverse

environments (Imlay, 2019).

We begin with some definitions and a brief review of conditions that lead to oxidative

stress in situ, and then we highlight different antioxidant systems present in phototrophic

phytoplankton, and their mechanisms. In discussing these mechanisms, we point to specific

examples from different research fields that may have oceanographic relevance. In the

following section, we ask: under increased oxidative stress, would increased production of

a given antioxidant increase or decrease elemental ratios to carbon? Lastly, we assess the

magnitude by which different systems could influence phytoplankton stoichiometry using

previously published proteomic data.

5.3 What is Oxidative Stress, and Which Conditions
Lead to it In Situ?

An antioxidant can be defined as “any substance that delays, prevents, or removes oxidative

damage to a target molecule” (Halliwell and Gutteridge, 2007). We use the definition from

Sies (1991) for oxidative stress, to be associated with “a disturbance in the prooxidant-

antioxidant balance in favour of the prooxidant”. Many antioxidant systems are directly

involved in gene regulation (Mittler et al., 2011; Sies, 2017). In other words, “a disturbance

in the prooxidant-antioxidant balance” does not necessarily equate irreversible damage,

and this disturbance may directly influence gene expression. Indeed, many ROS (except

hydroxyl radicals) have been invoked in some signalling context (singlet oxygen, hydrogen

peroxide, and superoxide: Triantaphylidès and Havaux, 2009; Sies, 2017; Case, 2017,

respectively). Therefore, the definition of oxidative stress we use is consistent with gene
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regulatory functions of antioxidants.

In phytoplankton, oxidative stress is typically experienced when photosynthetic

electron transport is in excess of that required for CO2 fixation and nitrate assimilation

(Asada, 2006). In situ, oxidative stress may correspond with low CO2, high light, or low

Fe. All of these conditions impact the rate of photosynthetic electron transport, more

specifically, they typically increase the proportion of electrons leaking from the electron

transport chain (producing superoxide). Superoxide is produced via reduction of molecular

oxygen mostly at the reducing side of photosystem I (PSI; Asada, 2006). Oxygen can

therefore act as a sink of electrons, which otherwise would have been donated to NADP+.

Photosynthetic electron transport is such a dominant source of ROS that even predators

of photosynthetic cells have unique adaptations to their preys’ photosynthetic oxidative

stress (Uzuka et al., 2019).The unique reactions of different ROS with biomolecules are

described in more detail below.

High exogenous hydrogen peroxide is also a direct source of oxidative stress (Cooper,

Saltzman and Zika, 1987; Shaked, Harris and Klein-Kedem, 2010). However, hydrogen

peroxide (H2O2) concentrations within cells are not identical to those outside of cells

(Seaver and Imlay, 2001; Sies, 2017), so it is uncertain how much exogenous H2O2 (e.g.

via rainfall) actually contributes to oxidative stress. These definitions of antioxidants and

oxidative stress are broad, which reflects the broad uses (e.g. signalling, protective, etc.)

of various antioxidant molecules.

For Fe specifically, it is unclear if there is more oxidative stress under low or high Fe.

Under low Fe, photosynthetic electron transport is restricted, thus making the production

of superoxide more likely (Niyogi, 1999). But, the dominant negative consequences of

superoxide and H2O2 on biomolecules arise mainly through interactions with Fe (Anjem

and Imlay, 2012; Imlay, 2013), therefore one might expect more oxidative stress under

high Fe. Consistent with high Fe leading to oxidative stress, Anand et al. (2019) observed

convergent evolution in several bacteria in the oxidative stress regulator OxyR under a high

Fe treatment. Strikingly, Graff van Creveld et al. (2016) showed that chronic Fe starvation

leads to more resistance to exogenous H2O2 than Fe replete conditions. They also showed

that the chronic-Fe starved proteomic profile resembled in situ conditions observed using

metatranscriptomics from Ocean Station Papa (Marchetti et al., 2011), suggesting that

an exogenous ROS-tolerant phenotype under low Fe is the norm in iron-limited ocean
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regimes.

5.4 Antioxidants

5.4.1 Enzymatic Consumers
5.4.1.1 Superoxide Dismutases

Superoxide dismutases (SODs) are ubiquitous enzymes with metal cofactors (Miller, 2012;

Wolfe-Simon et al., 2005). They are incredibly efficient enzymes, converting superoxide

into dioxygen and H2O2 (Equation 1) with first order rate constants approaching diffusion-

limited rates:

2 O2 · −+ 2 H+ −−→ H2O2 + O2 (5.1)

In addition to being kinetically fast, they are also broadly distributed throughout

organisms on earth and evolved billions of years ago (Case, 2017). There are three families

of SODs containing distinct metal cofactors: nickel SODs (NiSOD); copper / zinc SODs

(CuZnSODs); and manganese / iron SODs (MnFeSODs) (Miller, 2012).

SODs protect against the deleterious effects of superoxide – but what are the exact

effects of superoxide? Interestingly, superoxide reacts with most biomolecules at slow

rates (Halliwell and Gutteridge, 2007; Winterbourn and Metodiewa, 1999). The main

targets of superoxide are Fe-S clusters and mononuclear Fe enzymes (Imlay, 2013). Gu

and Imlay (2013) elegantly showed that superoxide can abstract Fe from mononuclear

Fe-containing enzymes in vitro (reversibly), which are then replaced by Zn resulting in a

non-functional protein. This then requires re-metallating mononuclear Fe enzymes. SODs

are therefore central to mitigating superoxide-induced mismetallation. We hypothesize

that SODs play an important role in Southern Ocean phytoplankton in particular, where

dissolved Zn levels are high (Vance et al., 2017), and Fe and Mn concentrations can be

very low as well (Middag et al., 2011). Mismetallation could therefore strongly influence

an organism’s fitness, particularly given low Mn (Imlay, 2014). The expression of SOD

can also lead to increased levels of H2O2 (Equation 1; Mittler et al., 2011), which can then

have distinct deleterious effects (discussed below). Superoxide also can react directly with

H2O2, which produces the hydroxyl radical, but the reaction of superoxide with H2O2 is
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unlikely under physiological conditions (Haber and Weiss, 1932; Wardman and Candeias,

1996; Imlay, 2003).

SODs also have an atypical relationship with temperature, with higher rates of super-

oxide dismutation under colder temperatures (Perelman, Dubinsky and Martı́nez, 2006),

which could increase requirements for trace metal in rapidly warming polar regions. Dif-

ferential regulation of superoxide dismutases under various conditions has suggested that

superoxide itself is a signalling molecule (Case, 2017). So, regulation of SODs may

not solely be due to repression of superoxide levels alone, but rather the modulation

of superoxide consumption and H2O2 production. Various viruses even encode SODs

(e.g. Cao et al., 2002), which may alter the hosts’ regulatory program by interfering with

redox signalling. It would be beneficial to empirically quantify the drivers of the SOD

expression-fitness landscape. In other words, is superoxide mostly a toxic byproduct of

metabolism, or is it used for cell signalling? If phytoplankton SODs are mostly being used

to prevent superoxide toxicity, there might be increased metal cofactor requirements in a

warming ocean.
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Table 5.1: Summary table of antioxidant systems in phytoplankton and their stoichiometric
composition. Stoichiometric composition of proteins are given with respect to nitro-
gen. Proteins were subsetted from photosynthetic phytoplankton metagenome assembled
genomes (Delmont et al., 2021), and then categorized using their Enzyme Commission
(E.C.) numbers. Stoichiometry of macronutrients was determined from the amino acid
sequence using pyteomics (Goloborodko et al., 2013). For micronutrient stoichiometry,
we examined literature sources and the Protein Data Bank for structural information on
ligands. On the right side of the table, we indicate the direction that various antioxidant
systems might influence cellular stoichiometry, by asking how increased production of
a given antioxidant would change stoichiometric composition (see text for rationale). a

Sheng et al. (2014), b Protein Data Bank structure 1V0H, c Navrot et al. (2015), d Borges
et al. (2014), e (Poole and Nelson, 2016), f Protein Data Bank structure 2VHD, g Formula
for alpha-tocopherol is given, h (Marchetti et al., 2009); we did not use this E.C. number
for assessing protein stoichiometry, but rather this Pseudo-nitzschia multiseries specific
protein.

5.4.1.2 Catalases and Catalase-Peroxidases

Catalases (CATs) are ancient H2O2 metabolizing enzymes that dismutate two molecules of

H2O2 (which is mostly generated from photosynthesis), with overall reaction stoichiometry

(Zamocky, Furtmüller and Obinger, 2008; Zámocký et al., 2012; Tehrani and Moosavi-

Movahedi, 2018; Vlasits et al., 2010):

2 H2O2 −−→ 2 H2O + O2 (5.2)

Monofunctional catalases use haem to catalyze the above reaction. Peroxidase-

catalases and Mn-catalases have similar catalytic mechanisms, except peroxidase-catalases

can use an external reductant to reduce the active site (Tehrani and Moosavi-Movahedi,

2018; Vlasits et al., 2010). For peroxidases, the overall stoichiometry follows (where R

denotes a reductant):

H2O2 + 2 RH −−→ 2 H2O + 2 R · + (5.3)

Catalases are extremely efficient enzymes that are not saturated by H2O2 within most

physiological concentration ranges (Aebi, 1984), and therefore do not display typical

Michaelis-Menten kinetics (described further in Tehrani and Moosavi-Movahedi, 2018).
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Peroxidase-catalases, however, can rely on an external reductant, and have a lower half

saturation coefficient (i.e. a higher affinity; Vlasits et al., 2010). This difference in affinity

provides a hypothesis for why bacteria have multiple enzymes that metabolize H2O2

(Mishra and Imlay, 2012). Catalases are typically inhibited by light, although inhibition

can be protected against by chlorophyll (Feierabend and Germany, 1986).

How does H2O2 damage cells? H2O2 sluggishly reacts with most biomolecules

(Halliwell and Gutteridge, 2007; Imlay, 2013; Winterbourn and Metodiewa, 1999). Its

toxicity mainly derives from the interaction with Fe (or other metals with Fenton chemistry

like copper), where the highly oxidizing hydroxyl radical is formed via Fenton chemistry.

Fenton chemistry refers to the reaction of a reduced form of a metal reacting with an

oxidant like H2O2, to produce an oxidized metal, a hydroxyl radical, and a hydroxide ion

(Wardman and Candeias, 1996). No known enzyme ‘metabolizes’ hydroxyl radicals, and

these ROS react at diffusion-limited rates. Notably, Mn does not have Fenton chemistry

(Cheton and Archibald, 1988), and several hypotheses have been put forward suggesting

that Mn-containing antioxidants have evolved because they lack the ability to produce

hydroxyl radicals via this mechanism (Aguirre and Culotta, 2012).

5.4.1.3 Ascorbate Peroxidases and Glutathione Peroxidases

Catalases and peroxidase-catalases are complemented by several other H2O2 metabolizing

enzymes. Glutathione peroxidases (GPxs) are thiol-based and ascorbate peroxidases are

haem-based enzymes. These two enzyme groups are tied together through a common set

of reductants. Ascorbate and glutathione are used as reductants (as in Equation 3). The

concentrations of ascorbate and glutathione are critical for the kinetics of these two enzyme

groups. For example, insufficient ascorbate will lead to rapid deactivation of ascorbate

peroxidase (under 0.1 µM ascorbate; Miyake, Michihata and Asada, 1991). Detailed

descriptions of these systems have been previously reviewed (Asada, 2006). The degree of

coupling between glutathione-based and ascorbate-based antioxidant systems is complex,

but modelling studies showed that coupling is partially dependent on the activity of a key

enzyme, monodehydroascorbate radical reductase (Polle, 2001; Tuzet, Rahantaniaina and

Noctor, 2019). Overall, there is incredible redundancy between these systems, catalases,

and other H2O2 metabolizing systems (Tuzet, Rahantaniaina and Noctor, 2019; Mhamdi

et al., 2010).
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5.4.1.4 Peroxiredoxins

Peroxiredoxins (Prxs) metabolize H2O2 as above, they also first reduce H2O2 to water,

and then are reduced by an external reductant (Karplus, 2015; Perkins et al., 2015). This

reductant typically comes in the form of reduced thioredoxin (e.g. in Synechocystis;

Pérez-Pérez et al., 2009). Peroxiredoxins are unique because they are oxidized at moderate

concentrations of H2O2; and this oxidation-inactivation has been suggested to mediate

barrier-free compartmentalization (Wood, Poole and Karplus, 2003; Perkins et al., 2015).

Prxs also display chaperone behaviour (Jang et al., 2004). There is ample evidence that Prxs

modulate H2O2 concentrations to control gene expression in highly localized sub-cellular

regions (Brown et al., 2013; Perkins et al., 2015).

5.4.1.5 Cytochrome c Peroxidases

Cytochrome c peroxidases (CCPs) are haem-containing and they convert H2O2 into water

using reduced cytochrome. In Escherichia coli, CCPs can donate electrons to H2O2 to be

used as a terminal electron acceptor in respiration, and likely do not metabolize a large

fraction of H2O2 (Khademian and Imlay, 2017). Jamers et al. (2006) showed that CCP

in Chlamydomonas reinhardtii is differentially expressed under various copper stressors.

Compared to the aforementioned antioxidant systems, the role of CCPs in photosynthetic

microbes has received much less attention.

5.4.2 Non-Enzymatic Consumers

Non-enzymatic consumers of ROS are important factors in the defense and modulation of

redox status in cells (Noctor, 2006). We should not only consider reaction rates between

these compounds and ROS directly, but more importantly, the rate constants of regenerating

oxidized compounds. Davies and Holt (2018) concluded this exact issue underpins why

dietary antioxidants have failed clinical trials for their antioxidative effect – they require a

kinetically fast system for regenerating the oxidized compound (also described in Imlay,

2013). This same argument may be applied to enzymatic antioxidant systems described

above that require a reductant (e.g. ascorbate peroxidase).

5.4.2.1 Ascorbate and Glutathione

Ascorbate and glutathione (AsA and GSH) are both small molecule antioxidants. Yet, they

are both key players in reducing antioxidative enzymes, and therefore essential components
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of different antioxidant systems. Are these two small molecules important in reacting with

ROS alone? It seems unlikely, because the first order reaction rate constants of ascorbate

and glutathione are several orders of magnitude lower than those of enzymes which directly

metabolize H2O2 or superoxide (Rahantaniaina et al., 2013).

There are many unknowns regarding the in situ role of GSH in particular – even in

highly studied systems, the main routes of GSH oxidation are unclear (Rahantaniaina

et al., 2013). Several studies have shown intriguing results. For example, GSH can chelate

metals like Cu, therefore inhibiting production of hydroxyl radicals via Fenton chemistry

(Halliwell and Gutteridge, 2007). Perhaps GSH can modulate Fe-induced oxidative stress

in this manner, similar to ferritin. GSH is intertwined in multiple antioxidant enzyme

systems (glutathione peroxidase, ascorbate peroxidase, peroxiredoxins). This may explain

why GSH displays diurnal variations in concentration in phytoplankton (Dupont et al.,

2004), with higher concentrations during the day.

5.4.2.2 Tocopherols and Carotenoids

Tocopherols and carotenoids protect against singlet oxygen, a unique ROS. This ROS is

produced from the transfer of energy from a photosensitized chlorophyll to ground-state

triplet dioxygen to form highly reactive singlet dioxygen. This transfer of energy changes

the electron configuration of oxygen, which then substantially alters its reactivity (Laing,

1989). There are no known enzymes that metabolize singlet oxygen, but tocopherols

and carotenoids can protect cells from singlet oxygen through two mechanisms: physical

and chemical quenching (Krieger-Liszkay and Trebst, 2006; Ledford and Niyogi, 2005).

Physical quenching occurs after the transfer of energy from singlet oxygen to a carotenoid,

after which the energy is dissipated as heat. Chemical quenching is simply the reaction of

singlet oxygen with either tocopherols or carotenoids (Ramel et al., 2012). After chemical

quenching, the oxidized molecule is typically resynthesized (Ramel et al., 2012).

5.4.2.3 Other

Several other compounds have received some attention as antioxidants. For example, the

highly studied marine metabolite DMSP displays antioxidant activity (Sunda et al., 2002).

Manganous phosphate can also act as a superoxide dismutase (albeit with lower catalytic

activity; Barnese et al., 2008). Interestingly, cobalamin (a cobalt-containing micronutrient)

can also act as a superoxide dismutase with rates similar to SODs (Suarez-Moreira et al.,
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2009). As above, antioxidant activity in vitro does not necessarily equate with activity

in vivo, and it is unclear how these various compounds contribute to antioxidant system

capacity in marine phytoplankton. However, these three examples may play important

roles in sulfur, manganese, and cobalt quotas in photosynthetic microbes.

5.4.3 Protective Biomolecules

Several other antioxidant biomolecules have evolved that prevent reactions of ROS with

target biomolecules, rather than destroying ROS. Protein chaperones, for example, act as

protectors of unfolded proteins, which are particularly sensitive to oxidative stress (Santra,

Dill and Graff, 2018; Dahl, Gray and Jakob, 2015). Ferritin, a large multi-unit protein

that sequesters Fe, can play an important role in preventing interactions between H2O2

and Fe (Marchetti et al., 2009). Polyphosphates, which contribute varying amounts to

total cell P (Lin et al., 2016) and have roles in phosphate and energy storage, can also

protect proteins from ROS (Dahl, Gray and Jakob, 2015). Previous estimates suggest that

polyphosphates can comprise of up to 40% of total P (Rhee, 1974; Geider and LaRoche,

2002). The requirement for polyphosphates as a protective antioxidant may specifically

contribute to high variation in P quotas (Galbraith et al., 2013).

5.5 Antioxidant Influences on Cellular Stoichiometry

How do antioxidants impact macronutrient stoichiometry? If oxidative stress leads to

increases in total protein per unit of cell biomass (via increased enzymatic antioxidants),

this would increase N per cell, as protein is a large proportion of cellular N (therefore

increasing N:C in cells, Geider and LaRoche, 2002). However, it is also possible that only

the proportion of protein in antioxidants is shifted, which would then lead to no change

in C:N:P ratios, but could influence metal or sulphur stoichiometry (depending on the

composition and function of the antioxidant). This uncertainty is shown in Table 1, where

we hypothesize how oxidative stress would influence stoichiometric ratios with carbon

(only directions of influence are considered here). For other macronutrients, non-protein

antioxidants may influence cell stoichiometry. For example, beta-carotenes might alter

C per cell, polyphosphate might alter P per cell, and glutathione might alter S per cell

(Table 1). Overall, antioxidants would probably have the largest impacts on micronutrient

stoichiometry, because previous work has suggested they are a large fraction of the total
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quota (for example MnSOD and NiSOD impacts on Mn and Ni quotas; Wolfe-Simon et al.,

2006; Twining and Baines, 2013). The focus from this point on is specifically looking at

antioxidant impacts on micronutrient quotas.

We expect that increased oxidative stress would result in increased expression of

antioxidants (Table 1). For example, increased oxidative stress resulting from excess light

would produce a saturated electron transport chain and increased superoxide production.

This superoxide increase would then be met with increased amounts of NiSOD (for

example). In this case, oxidative stress would increase the cellular Ni quota. Using a

similar logic, we predicted how increased oxidative stress would change total cellular

stoichiometry of N, P, S, Fe, Mn, Cu, Zn, and Ni (Table 1). An increase in superoxide

production could be met with no change in antioxidant production, but we posit that this

would eventually lead to deleterious effects from excess superoxide. The responses of

antioxidants to oxidative stress are complex, and here we only aim to make first-order

predictions.

For each antioxidant system, we estimated macronutrient stoichiometry from amino

acid composition with a large dataset of photosynthetic phytoplankton metagenome assem-

bled genomes (Delmont et al., 2021). Protein sequences (n = 2767) were subsetted using

their Enzyme Commission numbers (Table 1), and then stoichiometric composition was

empirically estimated, summarized using median values (Table 1, Figure 1; Goloborodko

et al., 2013). Notably, there were no large differences in H:N, O:N, C:N, or even S:N ratios

across antioxidants. Therefore, the major connections between antioxidant system use

and cellular stoichiometry would arise from antioxidants that have unique cofactors. For

example, glutathione peroxidases and catalases were quite similar in their macromolecular

stoichiometry, but differ because catalase contains Fe (as haem). This analysis also showed

that thiol-based antioxidant systems were not enriched in sulphur compared to non-thiol

based antioxidant systems (Figure 1, Table 1).
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Figure 5.1: Distributions (kernel densities) of stoichiometric ratios for different enzymatic
antioxidants. a, H:N; b, C:N; c, O:N; d, S:N. Data for protein lengths and stoichiometric
composition are from photosynthetic phytoplankton metagenome assembled genomes
(Delmont et al., 2021), and were subsetted using Enzyme Commission numbers from
EggNogg annotations (Huerta-Cepas et al., 2019). The ticks on the vertical axis correspond
with various enzymatic antioxidants: superoxide dismutase (SOD), peroxiredoxin (PRX),
glutathione peroxidase (GPX), cytochrome c peroxidase (CCP), catalase (CAT), and
ascorbate peroxidase (APX). Vertical lines correspond to the first, second, and third
quartiles of the distribution.
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5.6 Quantifying Antioxidant Contributions to Cellular
Stoichiometry

5.6.1 Methods for Quantifying Antioxidant Contributions to Cellular
Stoichiometry

How much variation in micronutrient stoichiometry is due to antioxidants, or more specifi-

cally to metal containing antioxidant enzymes? In this section, we use several data sources

and some simplifying assumptions to examine the range of stoichiometric contributions

antioxidants could have, with a focus on diatoms. Note that the range estimates we pro-

duce are not necessarily realized, as antioxidant expression could contribute to either the

variation or consistency in micronutrient stoichiometry.

To illustrate these calculations (see Figure 2), consider the example: how much does

FeSOD expression contribute to Fe:C variation? Fe:C ratios are particularly variable (e.g.

Sunda and Huntsman, 1995; Twining et al., 2020), but it’s unclear what underpins this

variability. FeSOD is a dimeric protein, with each monomer containing one Fe cofactor.

This is divided by the number of amino acids per enzyme molecule, converting this to Fe

per amino acid. These two parameters (metal cofactor atoms per antioxidant molecule and

amino acids per antioxidant molecule) are well constrained using genomic data and data

on protein cofactors. We then multiply this value by the proportion of the proteome that is

made up by FeSOD (details given below), now with units of Fe (from FeSOD) per total

protein. Converting protein to N, we divide by the average number of N atoms per amino

acid, and then multiply this value by the ratio of N in protein to N total. We incorporate

variation in the ratio of N in protein:total N by sampling from a uniform distribution

bounded by 0.5 and 0.85 (Geider and LaRoche, 2002). Lastly, we convert this ratio to Fe:C

by multiplying by the Redfield ratio (16N:106C Redfield, 1958), but variation in N:C is

incorporated by sampling from a truncated normal distribution (mean = 16, SD = 5, lower

bound at 0 and no upper bound), and then adjusting the numerator, assuming a constant

denominator.

One key parameter is the proportion of the proteome attributable to a given antiox-

idant protein. We used two previously published pennate diatom proteomes (Fragilari-

opsis cylindrus, Phaeodactylum tricornutum; Kennedy et al., 2019; Müller et al., 2020),

and re-analyzed their data to obtain a range of proteomic proportion estimates for each

micronutrient-containing enzymatic antioxidant. In brief, we converted mass spectrometry
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Figure 5.2: Illustrating the equation for obtaining distributions of Fe:C in antioxidants.
Each coloured fraction represents a parameter. Fe per antioxidant is the number of Fe atoms
per antioxidant, amino acids per antioxidant is the length of the protein. The antioxidant
per total protein is empirically estimated from two previously published proteomes, and
multiplied by the empirical distribution of fold change expression values. This entire
value is converted into Fe:N in protein by dividing by the average number of nitrogen
atoms per amino acid, and then converted to Fe:total N by multiplying by a value drawn
from a uniform distribution of observed values (Geider and LaRoche, 2002). Lastly, we
incorporate variation in N:C by adjusting just the numerator (N) by sampling from a
truncated normal distribution with a bound at zero, and then dividing that value by 106.

raw files with ThermoRawFileParser (Hulstaert et al., 2020), appended a database of

common contaminants (Global Proteome Machine Organization common Repository of

Adventitious Proteins), searched mass spectra against a database of proteins (using pub-

lished genomes, with MSGF+ and OpenMS; Mock et al., 2017; Bowler et al., 2008; Kim

et al., 2014; Röst et al., 2016), and then quantified proteomic mass fraction by summing

quantified peptides (quantified at the MS1 level with FeatureFinderIdentification; Weisser

and Choudhary, 2017; Weisser et al., 2013). We then obtained the mean expression value

across taxa to give a representative proteomic proportion for these pennate diatoms. One

disadvantage of averaging over different diatoms is that their repertoire of antioxidants

are slightly different. This becomes particularly important for the MnFeSOD family,

because our predictions are different if the protein considered contains an Mn or an Fe

cofactor. To address this, we show all calculations assuming that the observed MnFeSOD

expression value is from a MnSOD or from a FeSOD. Code for all analyses is provided at:

https://github.com/bertrand-lab/antiox-review.

Ideally, we would have antioxidant proteomic proportions observed across all realistic

environmental conditions, which would give the exact contribution to variation in elemental

stoichiometry. These data are currently unavailable (if they did exist, these calculations

wouldn’t be necessary!). However, we can estimate how most proteins vary using the

distribution of fold changes for proteins across different environmental conditions. In
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other words, how much might antioxidant expression change across all environmental

conditions? We compared protein expression data from high and low Fe treatments in

the coastal diatom Thalassiosira pseudonana (Nunn et al., 2013), and then examined

the distribution of fold-changes. This distribution showed that most proteins (∼75%)

change between 2- and 20-fold across different environmental conditions (from 0.05-2

times). In using this distribution of fold changes, we make two key assumptions: 1)

High and low Fe treatments with T. pseudonana represent typical variation in protein fold

changes across taxa and conditions; and 2) antioxidants can be considered as ‘average’

proteins following this distribution. To assess the former assumption, we re-analyzed

the fold-change distribution from an E. coli proteomic experiment which examined 22

different growth conditions (ranging from pH, to media, to growth phase; Schmidt et al.,

2016). By comparing every condition with every other condition to calculate fold changes,

we intriguingly found an almost identical distribution of fold changes. Using protein

concentrations inferred from protein synthesis rates in E. coli under three conditions also

revealed a similar distribution (Li et al., 2014a). Without specific data on antioxidant

expression in phytoplankton across environmental gradients, the second assumption is

difficult to rigorously assess. Of the antioxidants Nunn et al. (2013) observed varying

across Fe concentrations, the median fold change was 1.75 (compared with a median of

0.97 for all proteins).

Conservatively, we moved forward by sampling from the empirical fold-change

distributions (Nunn et al., 2013; Li et al., 2014a; Schmidt et al., 2016). So, we included this

factor in the Monte Carlo sampling to estimate contributions from expression variability

by sampling from each empirical distribution of fold changes (with equal probability of

sampling from each of these three datasets). We then multiplied this sampled value by the

average expression value across the two diatom taxa, which ends with a final estimate of

antioxidant expression variation that contributes to Fe:C ratios in diatoms. We repeated

the Monte Carlo sampling 1x106 times to obtain distributions of metal:C.

5.6.2 Antioxidants Can Contribute Important Variation to Micronu-
trient:C

5.6.2.1 Fe-containing Antioxidants

Overall, we estimated that Fe-containing antioxidant expression can account for variation

in Fe:C of between 3.3–10 (µmol:mol; depending on whether FeSOD or MnSOD is
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present; Fig. 2, 2.5-97.5 quantile range). Median values of antioxidant contribution to

Fe:C ratios were 0.7–2.2 (again dependent on MnSOD vs. FeSOD; Fig. 5.3). Fe:C can

vary even greater than 100 µmol:mol (Twining et al., 2020), but this magnitude of variation

is uncommon. Most Fe:C ratios vary around 30 Fe:C (µmol:mol; Twining et al., 2020;

Strzepek et al., 2011, 2012; Sunda and Huntsman, 1995, however see Twining et al., (2020)

for estimated variation across a wide gradient in the South Pacific Ocean). There are two

main conclusions from this analysis: antioxidant contributions to Fe:C may explain some

variation (11–33.3%, based on the effective range of 30 Fe:C). But, antioxidant systems

are unlikely to explain the enormous variation sometimes observed (for example the >100

µmol:mol changes in Fe:C for some taxonomic groups; Twining et al., 2020).

Is this calculated range of antioxidant Fe:C important? In many areas of the ocean,

Fe is a limiting resource, and it would seem reasonable to assume that 11–33.3% variation

in the cellular Fe:C ratio would significantly affect growth. In low-Fe conditions, Fe-

containing antioxidant expression would play a larger role in influencing Fe:C compared

to high-Fe conditions. For example, diatoms in low Fe conditions can have Fe:C below

10 µmol:mol, and therefore Fe-containing antioxidants would impart a very significant

stoichiometric signal. However, remember that antioxidant systems display extreme

redundancy. All of these Fe-containing antioxidants have non-Fe counterparts: for example

Mn-, CuZn-, or NiSOD instead of FeSOD, or glutathione peroxidase instead of ascorbate

peroxidase. However, it is unclear how interchangeable these enzymes are, particularly

given some of them are only expressed in certain subcellular compartments (see section on

antioxidant system redundancy). Perhaps organisms retain these different antioxidants to

respond to environmental conditions, such that these non-Fe counterparts would be used

under low Fe conditions.

Antioxidants are important in mediating the negative effects of a high Fe quota, which

would be particularly relevant with dramatic changes in Fe:C (Twining et al., 2020). This

magnitude of change is likely due to high uptake of Fe, sometimes referred to as ‘luxury’

uptake (Twining et al., 2020). However, high uptake of Fe comes with a cost – free Fe

can react with H2O2 to produce hydroxyl radicals (as discussed above). So high amounts

of Fe must be met with either a system for metabolizing H2O2 to limit this reaction, or

storing Fe to prevent contact with H2O2 sources (or both). In this case, antioxidant systems

indirectly influence Fe stoichiometry.
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Figure 5.3: The potential contribution of antioxidant expression to Fe:C ratios, showing
the kernel density estimates. a. cytochrome c peroxidase, b. catalase, c. MnFeSOD, and d.
ascorbate peroxidase are all shown individually. e. The distribution of each Fe-containing
antioxidant is summed. Two distributions are shown: 1) assuming the MnFeSOD is FeSOD,
and 2) assuming it is MnSOD. Calculation underpinning the Monte Carlo estimates is
shown in Fig. 5.2.
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Figure 5.4: The potential contribution of antioxidant expression to Ni:C, Cu:N, and Zn:N
ratios, showing the kernel density estimates. a. NiSOD, b. CuZnSOD. Calculation
underpinning the Monte Carlo estimates is shown in Fig. 5.2.

5.6.2.2 Ni, Cu, Zn, and Mn-containing Antioxidants

Other micronutrients (Ni, Cu, Zn, and Mn) play important roles in global biogeochemistry

(e.g. Twining et al., 2012; Richon and Tagliabue, 2019), and there is increasing evidence

that some limit primary production (e.g. Mn; Buma et al., 1991; Wu et al., 2019; Browning

et al., 2021). Comparing across cultures and field observations, Mn and Zn displayed

similar amounts of variation across conditions compared to Fe (Twining, Baines and Fisher,

2004). We found that MnSOD contributions are unlikely to exceed 8.7 Mn:C (µmol:mol;

2.5–97.5 quantile range). Considering a range of Mn:C observations (3.4–46.7 µmol:mol

for diatoms; Twining, Baines and Fisher, 2004), the variation in MnSOD expression that

we calculated could account for ∼20% in Mn:C variation. Despite using very different

approaches, our calculations complemented Wolfe-Simon et al. (2006) who found that

chloroplast MnSOD accounted for 10-20% of cellular Mn. As with Fe, the contribution

of MnSOD to Mn:C ratios would be even more important under low Mn. Consider the

investment of Mn in MnSOD versus PSII (two dominant components of the Mn cellular

quota in diatoms; Peers and Price, 2004; Wolfe-Simon et al., 2006). Under low Mn,

we hypothesize that this SOD can be replaced by another SOD with a different metal

cofactor, as there is no replacement for the Mn in PSII (see section on antioxidant system

redundancy).

Moving to the other micronutrients we considered, NiSOD is likely to play a dominant

role in Ni cell stoichiometry in diatoms (Fig. 4; Twining et al., 2012). Twining, Baines

and Fisher (2004) observed that the maximum variation in Ni:C within taxa was 1.6 Ni:C
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(µmol:mol), and we can attribute up to 1.37 Ni:C (µmol:mol; 2.5–97.5 quantile range)

to NiSOD. It is interesting to note that some SODs are membrane associated (Ogawa

et al., 1995; Regelsberger et al., 2002), so perhaps the high Ni content of diatom frustules

is related to frustule-associated NiSOD (Twining et al., 2012). Another important Ni-

dependent metalloenzyme is urease (Boer, Mulrooney and Hausinger, 2014). As with the

MnSOD and PSII pair, we hypothesize that under low Ni conditions, NiSOD could be

replaced with a different SOD but urease would not be.

5.6.2.3 Antioxidant System Redundancy and the Implications for Cellular Elemen-
tal Stoichiometry

Antioxidant systems display a lot of functional redundancy; what are the implications

for cellular elemental stoichiometry? If various antioxidants are interchangeable, then

environmental scarcity of an element would cause the production of another similar an-

tioxidant that does not contain this scarce element. For example under low Fe, as occurs

in much of the ocean, MnSOD might replace FeSOD, therefore implicating both Fe and

Mn cellular stoichiometry. This prediction requires two assumptions: 1) ‘nutritional

coherence’ and 2) functional similarity. We define ‘nutritional coherence’ as a charac-

teristic of protein expression, such that environmental availability of an element would

negatively correlate with protein expression, if a given protein uses this element as a

cofactor. Are these reasonable assumptions? Page et al. (2012) provide evidence that

FeSOD behaves in a nutritionally incoherent fashion. They found that FeSOD expression

in Chlamydomonas reinhardtii increased under low Fe rather than decreased. Functional

similarity is somewhat easier to assess. For example, all SODs catalyze the same reaction.

However, even SOD isoforms with the same cofactors display unique expression patterns

(e.g. Najmuldeen et al., 2019; Gallie and Chen, 2019), suggesting that even though func-

tionally similar proteins can mediate the same reaction, that doesn’t mean they actually

do in vivo. Furthermore, this suggests that protein expression patterns, at least for SODs,

are entrenched (Shah, McCandlish and Plotkin, 2015; Lalanne, Parker and Li, 2021) and

perhaps less interchangeable than would be anticipated. Overall, the degree to which

different antioxidants are functionally interchangeable in phytoplankton is a key unknown.

We require empirical observations of antioxidant protein expression to first determine if

a given antioxidant behaves in a ‘nutritionally coherent’ way. Then, we would be able

to assess if functionally similar proteins are interchanged under conditions of elemental
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scarcity. These types of observations would 1) help determine the relative costs of Mn in

PSII versus MnSOD, or Ni in urease versus NiSOD, etc., and 2) determine the elemental

stoichiometric consequences of antioxidant system redundancy.

5.6.3 Conclusions and Next Steps

We reviewed the central antioxidant systems present in phytoplankton, and used several

approaches to identify and quantify how antioxidant system use may contribute to phyto-

plankton cell stoichiometry. Throughout, we have discussed various ways that antioxidant

systems could influence cell stoichiometry, and concluded that they most likely have the

largest impacts on micronutrient quotas.

Our original goal was to outline how antioxidant systems contribute to both variation

and consistency in elemental stoichiometry. Using a series of simulations, we quantified

how antioxidant systems may contribute to variation in trace metal quotas. A critical

next step is quantifying how these systems are behaving in situ, to then determine the

exact contribution under various environmental conditions. We were unable to assess how

antioxidants influence consistency in elemental stoichiometry, and large-scale proteomic

characterization of phytoplankton across diverse environmental conditions would achieve

this goal. In terms of macronutrient stoichiometry, it is less likely that antioxidant systems

play a dominant role, but a notable exception is polyphosphates for P quotas.

This leads us to synthesize two major unknowns and next steps for studying antioxi-

dant systems in phytoplankton:

1. Is differential production of antioxidants a sign of oxidative stress in phytoplankton

leading to damaged biomolecules, or of redox-based regulatory mechanisms? By

extension, when cells are challenged with H2O2, for example, is this mainly inducing

irreversible damage or interfering with regulatory networks? Quantifying what

underpins protein expression-fitness landscapes is challenging, but promising new

tools and techniques may suit these questions (e.g. Parker et al., 2020).

2. What are the environmental controls on specific antioxidants? There are many

antioxidant systems in prokaryotes and eukaryotes (e.g. Mishra and Imlay, 2012).

Quantifying how these superoxide- and hydrogen-peroxide metabolizing enzymes

are produced in tandem may provide more insight into both the selective pressure on
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antioxidant production (regulatory or metabolic), as well as their contributions to stoi-

chiometry in situ. Also, antioxidants sometimes behave counter-intuitively (e.g. Page

et al., 2012), so direct measurements of antioxidants under various environmental

conditions is necessary.

Oxidative stress has shaped many facets of life. Describing and quantifying how the

mediators of oxidative stress – antioxidants – affect cellular stoichiometry is important for

connecting cellular processes to ocean biogeochemistry.

5.7 Data Availability

We provide code for all analyses at: https://github.com/bertrand-lab/antiox-review. All

data used here are previously published.

5.8 Author Contributions

J.S.P.M. and E.M.B. conceived of the paper. J.S.P.M. wrote the paper, J.S.P.M. and E.M.B.

edited and revised the paper.
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CHAPTER 6

EXAMINING THE GROWTH-RIBOSOME
ABUNDANCE RELATIONSHIP IN
PHYTOPLANKTON UNDER
MICRONUTRIENT AND LIGHT
CONTROLLED GROWTH IN AN
ANTARCTIC POLYNYA

6.1 Abstract

Ribosomes synthesize protein biomass, and variation in the number of ribosomes is thought

to underpin variation in growth rate. This mechanistic connection was first identified

because of observations connecting growth rate to the ribosomal protein mass fraction. Yet,

these observations have largely been made in model heterotrophic organisms. Here we use

42 metaproteomes (3–12 micron size fraction) to characterize the ribosomal mass fraction

in photosynthetic phytoplankton in the Amundsen Sea Polynya, Antarctica. The genera

Fragilariopsis and Phaeocystis made up to 45 and 29% of total protein concentrations

respectively, so we focused our analyses on these dominant taxa. We first show with

previously published data that a simple Approximate Bayesian Computation method

can be used to estimate the uncertainty around an observed ribosomal mass fraction.

We then coupled the estimated ribosomal mass fraction with paired data on dissolved

iron and manganese concentrations, macronutrients, light, and temperature. Ribosomal

mass fraction and temperature were inversely related in the diatom genus Fragilariopsis,
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and comparisons with other data suggest that there is a non-linear relationship between

ribosomes and temperature in this genus. We did not observe strong relationships between

other environmental variables and ribosomal mass fraction for Fragilariopsis spp. and

Phaeocystis spp. Taken together, our work suggests that in these conditions, either protein

turnover or a variable proportion of total translating ribosomes complicates the relationship

between growth and ribosomes.

6.2 Introduction

Protein synthesis and growth rate are intimately related; to divide, organisms need to dou-

ble their protein biomass. To divide faster, cells need either 1) more protein synthesizers

(ribosomes), 2) increased translation rate per ribosome, 3) decreased protein turnover rate

(i.e. decreased protein damage), or 4) increased proportion of actively translating ribo-

somes. Many researchers have observed a positive linear correlation between ribosomes

and growth rate, suggesting that cells typically grow faster by increasing the number of

ribosomes. Despite making several assumptions, Scott et al. (2010) showed that a simple

model based on this linear relationship can quantitatively predict changes in growth rate

under various conditions. Yet, the dominant focus of these studies has been on model,

heterotrophic microorganisms. In addition, there has been comparatively little research on

the relationship between ribosomes and non-carbon nutrients or other factors like light or

temperature (however note Jahn et al., 2018).

In the ocean, nutrients like nitrate, phosphate, iron, and manganese can control phyto-

plankton growth (Wu et al., 2019; Tagliabue et al., 2017; Moore et al., 2013). When these

nutrients limit growth in the ocean, what are the cellular processes that are limiting growth?

For example, does total protein synthesis via variable total ribosomes underpin different

growth rates in these ocean environments? There is a major gap in our understanding of

how ribosomes vary with growth rate in the ocean because of the diversity of resources and

organisms. This gap is partially because of difficulties in culturing many taxonomic groups,

both in terms of replicating environmental conditions (e.g. extremely low concentrations

of trace nutrients) and isolating and maintaining cultures of poorly characterized microbes.

One promising approach for studying gene expression in diverse microbes is to not

culture them at all, but rather observe their gene expression in situ. Metaproteomics

is an appropriate tool for probing microbial gene expression in this way, and has been
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used to explore how gene expression across environmental gradients changes for various

organisms (e.g. Saito et al., 2014). Yet, untargeted metaproteomics so far has not been

used to quantitatively assess proteomic composition in a way that aims to characterize

the ‘true’ proteomic composition. For example, Cohen et al. (2021) studied dinoflagellate

gene expression across environmental gradients in the Pacific Ocean using metaproteomics

and metatranscriptomics. However, the metric they used to assess dinoflagellate proteome

composition can only assess relative changes. To easily connect metaproteomic obser-

vations with proteomes from cultured organisms or computational models, we need to

quantitatively assess proteomes from metaproteomes.

In this contribution, we use metaproteomics to characterize the ribosomal mass frac-

tion (RMF), in two important photosynthetic marine eukaryotes. We define the ribosomal

mass fraction as the proportion of the proteome, by mass, allocated to ribosomal pro-

teins. This quantity is different from relative changes in expression because it provides

information about the absolute investment in protein synthesis machinery. All of our

metaproteomic observations are paired with environmental data, including measurements

of extremely low trace metal concentrations (picomolar level). We focused our analyses

on two dominant genera: Fragilariopsis and Phaeocystis, as they were both dominant in

our samples and have been previously included in biogeochemical models of the region

(Kwon et al., 2021). We then attempt to explain variation in RMF using these environ-

mental characteristics, observing a negative relationship with temperature and RMF in

Fragilariopsis spp.

6.3 Methods

6.3.1 Sample Collection

Samples were collected in the Amundsen Sea Polynya, Southern Ocean from December

2017 until February 2018 aboard the icebreaker RV Araon, from 15 different stations

(locations with unique latitude and longitude). We used a trace-metal clean sampling

system (Titan; De Baar et al., 2008), with a mounted conductivity (salinity), temperature,

and depth sensor (CTD; Seabird SBE 911+). After the Titan sampling system was brought

aboard the ship it was moved into a cleanroom environment for subsampling. Water was

collected and filtration for metaproteomics began between 1 to 2.5 hours after samples

were brought aboard the ship. Keeping the water containers on ice packs, we filtered water
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using a peristaltic pump through a series of connected polycarbonate filters of decreasing

size (12.0, 3.0, and 0.2 µm pore sizes). Filtration was stopped after 1.5 hours or the filters

clogged, and subsequently stored at -80 ◦C until protein extraction. We also collected water

for analyzing dissolved and particulate trace metal concentrations at corresponding depths

to the metaproteomic samples, which are discussed elsewhere (van Manen, 2021). Water

was also collected on a separate rosette sampling system from the Korea Polar Research

Institute for analyzing dissolved nitrate and nitrite, and dissolved silicate. The exact depths

for these nutrient concentrations did not match identically to the metaproteomic samples,

but differed by a median value of 5 m.

6.3.2 Proteomic Sample Preparation

Proteins were extracted from only the 3.0 µm filters frozen in cryovials with the following

method. We focused on the 3.0 µm filter size to explore Fragilariopsis spp. and Phaeocystis

spp. non-colony protein expression, which should be predominantly captured on this filter

size. Protein extraction buffer (0.1 M Tris/HCl, pH 7.5, 5% glycerol, 5 mM EDTA, 2%

SDS) was put into the cryovial, after which it was incubated at 95 ◦C for 15 minutes.

Filters with extraction buffer were then sonicated on ice (15 seconds on, 15 seconds off, 2

minutes total sonication time, 50% amplitude 125 W, Qsonica Sonicator Q125, Newtown,

Connecticut, USA). After sonication, we incubated the sample at room temperature for 30

minutes. Extracted protein in buffer was then removed from the cryovial, centrifuged at

15,000 G at room temperature for 30 minutes to pellet cell debris, and the supernatant was

removed and stored at -80 ◦C. We measured the total protein concentration using a BCA

assay (Thermo Fisher Scientific, California, USA) at this point to then calculate the total

µg protein per volume seawater.

We then reduced and alkylated the extracted protein, and removed the SDS extraction

buffer using S-traps (Protifi, Farmingdale, New York, USA). We first prepared solutions of

500 mM dithiothreitol (DTT) and 500 mM iodoacetamide (IAM) in 50 mM ammonium

bicarbonate. We then reduced the protein with DTT, bringing up the concentration to 5

mM and incubating at 37 ◦C for one hour in a Thermomixer (F1.5, Eppendorf, Hamburg,

Germany) at 350 RPM. Reduced protein was then cooled to room temperature, and

alkylated using IAM, bringing the concentration to three times that of DTT (15 mM).

After incubating in the dark for 30 minutes at room temperature, we then quenched the

reaction with 5 mM of DTT. We denatured the extracted proteins with 12% phosphoric
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acid by bringing it to 1.2% by volume. Our samples were then diluted with S-trap buffer

(1:7, sample : S-trap buffer; 90% methanol in 100 mM triethylammonium bicarbonate,

acidified to 7.1 pH with phosphoric acid). The sample and S-trap mixture were then loaded

onto the S-traps, which were kept on a vacuum manifold but prevented from becoming

completely dry. After the sample and S-trap mixture was fully loaded on each unit, we

washed the sample with 10x 600 µL of S-trap buffer to remove the SDS. For the first

three washes, buffer was left on the S-trap without using the vacuum pump. S-traps with

sample loaded were then centrifuged at 4000 XG for 1 minute to remove remaining S-trap

buffer. Finally, we digested the protein using trypsin in 50 mM ammonium bicarbonate,

with a ratio of 1:25 sample protein:trypsin, and incubated them at 37 ◦C for 16 hours.

Peptides were then eluted from the S-traps with 80 µL of 50 mM ammonium bicarbonate,

80 µL 0.2 % aqueous formic acid, and 80 µL 50% acetonitrile containing 0.2% formic

acid. Samples were then dried in a Vacufuge Plus (aqueous vacuum setting (V-AQ), room

temperature, Eppendorf, Hamburg, Germany; between 3-4 hours), and then reconstituted

in 3% acetonitrile and 0.1% formic acid.

The samples were desalted using 50 mg C18 columns (HyperSep, Thermo Fisher

Scientific). Columns were first conditioned with 500 µL methanol, and then 500 µL

50% acetonitrile, 0.1% formic acid. Columns were then equilibrated with two aliquots

of 500 µL 0.1% trifluoroacetic acid. We then increased the volume of samples that were

previously reconstituted with 3% acetonitrile and 1% formic acid by adding 100 µL of this

solution, and then loaded the diluted sample onto the equilibrated column. Samples were

then pushed through the column using a syringe, and then washed three times with 1000

µL of 0.1% TFA each time, removing the salt and retaining the peptides on the column.

Finally, peptides were eluted into a low binding plastic microcentrifuge tube (Thermo

Fisher Scientific, California, USA) with two aliquots of 200 µL of 50% acetonitrile and

0.1% formic acid, and then one aliquot of 70% acetonitrile and 0.1% formic acid. Samples

were then dried down using a Vacufuge Plus (Eppendorf, Hamburg, Germany; between

5-6 hours), until only the dried peptides remained.

6.3.3 Liquid Chromatography Mass Spectrometry

We used liquid chromatographic (LC) separation of the complex peptide mixture to reduce

the sample complexity prior to injecting into the mass spectrometer. The LC was coupled

directly to a Q Exactive hybrid quadrapole-Orbitrap mass spectrometer (Thermo Fisher
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Scientific, California, USA), and the entire run lasted 125 minutes, using a non-linear

gradient. Solvent A consisted of 0.1% formic acid in water, and solvent B contained 0.1%

in acetonitrile. From the start until 15 minutes, the flow rate was 0.3 µl/minute and 5%

solvent B. From 15.1 until 90 minutes, the flow rate was 0.25 µ/minute and solvent B

increased to 30% linearly. From 90 until 102 minutes, solvent B was increased to 55%

linearly. From 102.1 until 106 minutes, solvent B was increased to 95% linearly at a flow

rate of 0.3 µ/minute. The flow rate was kept constant at 95% solvent B until 110 minutes.

From 111 until 125 minutes, solvent B was decreased to 5%. We used a data-dependent

acquisition mass spectrometry approach, specifically with a TopN of value of 8. The MS1

scans were run at 140,000 resolution, with a scan range from 400 to 2000 m/z and an

automatic gain control target of 3E6. For the MS2 scans, we chose a resolution of 17,500,

and automatic gain control target of 1E6, an isolation window of 2 m/z, and a scan range

of 200 to 2000 m/z.

6.3.4 Metaproteomic Bioinformatics

Metaproteomics requires a database of potential proteins to search mass spectra against.

We used a custom database of metatranscriptomic sequences from the neighbouring Ross

Sea (Jabre et al., 2021), and appended those protein sequences with sequences from

metagenome-assembled genomes (MAGs, described below; Delmont et al., 2021). We

were interested in the diversity of antioxidant proteins that phytoplankton are using, so

we identified all antioxidant-proteins of interest from this large collection of eukaryotic

MAGs using Enzyme Commission numbers associated with their sequence annotations.

We then reduced the database size by combining protein sequences that are 95% or higher

sequence similarity (with CD-HIT, Li and Godzik, 2006). Finally, we appended a database

of common contaminants (Global Proteome Machine Organization common Repository

of Adventitious Proteins). In total, there were 414498 protein sequences in our database.

We then used MSGF+ (Kim et al., 2014) within OpenMS (Röst et al., 2016) with the

following settings: fixed cysteine carbamidomethyl, and variable methionine oxidation,

N-terminal glutamate to pyroglutamate, deamidated asparagine, and deamidated glutamine.

A 1% false discovery rate was applied at the peptide spectrum match level. Raw mass

spectrometry files were converted to mzML using ThermoRawFileParser (Hulstaert et al.,

2020).

Peptides were quantified at the MS1 level with their corresponding ion intensities
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(Weisser et al., 2013; Weisser and Choudhary, 2017). FeatureFinderIdentification is an

approach that cross-maps identified MS2 spectra to unidentified features across samples.

This approach requires grouping samples, and we conservatively only grouped samples that

were technical replicates. Note that for two samples, we were unable to acquire duplicate

injections (sample ID number 74 and 197). Peptide abundances were then calculated for

each injection by taking the sum of peptide intensities per injection, and normalizing the

intensities of each peptide by this sum. This method is a database-dependent normalization,

which can lead to problematic inferences (McCain, Allen and Bertrand, 2021). We ensured

our quantifications were robust by correlating normalizing factors to total ion current

across all samples.

6.3.5 Ribosomal Mass Fraction

Ribosomes are a critical molecular machinery for all microbes, and they are comprised

of many different proteins. Our goal is to estimate the ribosomal mass fraction (RMF),

defined as:

RMF =

∑N
i∈RibosomalAi∑N

i Ai
(6.1)

Where i denotes a unique peptide, Ai is the abundance of the ith peptide, and the

numerator only considers those peptides that unambiguously correspond to a ribosomal

protein. Throughout we only consider peptides that uniquely map to a taxon, and be-

low we only consider the two genera Fragilariopsis and Phaeocystis. We considered a

peptide taxonomically uninformative (and therefore not included) if the peptide amino

acid sequence was found in two or more proteins, and those protein sequences were from

distinct genera. We specify the ribosomal mass fraction because we do not normalize for

the length per protein. We also assume that the mass per peptide is relatively constant,

which is empirically observed. Previous analyses have shown that adjusting for the mass

per peptide has a negligible impact on inferences about proteomic composition.

With high amounts of sampling, the above equation can approximate the true RMF

well. However, mass spectrometers sample peptides according to abundance, and this

bias can lead to problematic inferences of RMF. More specifically, in data-dependent

acquisition experiments, ions are sampled explicitly because of their abundance (relative to
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the abundance of other co-eluting ions). Even in data-independent acquisition experiments,

there is an implicit bias towards abundant ions because there is a higher probability of

identifying abundant peptides.

Consider two scenarios of diatom abundance in an assemblage of organisms, but with

no change in RMF. In the first scenario, diatom abundance is relatively high. Because

of this, lesser-abundant diatom proteins will be quantified and the denominator will be

high. In the second scenario, diatom abundance is relatively low. Because ribosomes tend

to be a large proportion of the proteome, they are highly likely to be detected (if diatom

proteins are detected at all). However, the lesser-abundant diatom proteins are unlikely to

be detected. Therefore, the measured RMF will appear to increase despite no change in the

actual RMF. This issue is compounded because it is unclear how to quantify uncertainty

for an observed RMF. We therefore require methods for explicitly addressing these types

of bias, and to quantify uncertainty around the observed RMF.

We use a simple Approximate Bayesian Computation (ABC) method for inferring the

RMF in metaproteomic samples. First, we generate a distribution of peptide intensities from

a lognormal distribution with the log mean equal to 13.8, and the log standard deviation

equal to 1.45 (generating 10000 peptides). These values were obtained empirically by

determining the maximum likelihood estimates of distribution parameter values using

peptide intensities from a pure Pseudomonas denitrificans culture (Kleiner et al., 2017). We

then generate a value from a uniform distribution bounded by 0 and 1, which parameterizes

a Bernoulli distribution categorizing all peptide abundance values as either ribosomal

or non-ribosomal. Peptides are then sampled with probabilities proportional to their

abundances, and an observed RMF is calculated from this sample. The number of samples

is equivalent to the empirically observed number of unique peptides sampled from the

metaproteome. For example, if we observed only ten peptides for Fragilariopsis spp. in

a metaproteomic sample, then we would only sample ten times during this procedure.

Finally, we calculate the absolute difference between the sampled and observed RMF, and

use top 1% closest generated datasets to calculate the 95% credible intervals for the true

ribosomal mass fraction. In total, we generate 10000 empirical distributions.

To assess this approach, we used a previously published artificially assembled metapro-

teome Kleiner et al. (2017). From these data, we specifically used the uneven-protein
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per organism metaproteome (the short and long chromatographic runs), and the even-

protein per organism metaproteome. Four, pure-culture proteomes were also characterized

in Kleiner et al. (2017), which were the exact same cultures used in the metaproteome

assembly. From these four pure cultures, we calculated a ’true’ RMF.

6.3.6 Statistical Analyses of Southern Ocean data

Every metaproteomic sample had paired environmental data: dissolved iron and manganese

(dFe, dMn), temperature, and light. These dissolved metal data were not collected from

identical bottles, but bottles were collected at the same water depth on the same CTD cast.

We hypothesized that these environmental variables are dominant controls on ribosomal

mass fraction, and therefore sought to determine if they explained variation in RMF for

two major phytoplankton taxa, Phaeocystis spp. and Fragilariopsis spp. To do so, we used

a weighted linear regression, where the weights were inversely proportional to the 95%

credible intervals derived from the ABC method. Specifically, we fit the following model

(for each taxon j), where β represents the coefficient value:

logit(RMFj) ∼ β0,j + β1,j · Temperature+

β2,j · dFe+ β3,j · dMn+ β4,j · PAR + β5,j · [Nitrate+Nitrite]
(6.2)

Note that we originally included silicate as an explanatory variable in this regres-

sion. However, silicate was highly correlated with dMn and nitrate and nitrite, so we

subsequently removed it. The RMF values were transformed using a logit function.

6.4 Results

6.4.1 Estimating the Ribosomal Mass Fraction from Metaproteomes

Our simple ABC method applied to an artificially assembled metaproteome generally

captured the ‘true’ RMF from pure culture proteomes for two of the three species (using

data from Kleiner et al., 2017), suggesting that this method can be used for metaproteomic

samples under specific circumstances (Fig. 6.1). We overestimated the RMF in all cases

for the Pseudomonas denitrificans proteome. In this case, the artificially assembled

metaproteome included two other species within the same genus: P. fluorescens and P.

pseudoalcaligenes. In previous work we showed using simulations that low diversity can
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lead to underestimation of a proteomic quantity from a metaproteome, when using the sum

of peptide intensities (McCain, Allen and Bertrand, 2021). This is because low sequence

diversity can limit the number of unique peptides that are taxonomically informative.

Consistent with these simulations, the denominator of total P. denitrificans protein was

underestimated, increasing the inferred RMF. In other words, there were comparatively

few peptides that could be used to distinguish between the different Pseudomonas species.

Overall, these results suggested that this simple ABC method cannot be used to estimate

RMF at the species level, and provided reasonable estimates of uncertainty. Note that

Kleiner et al. (2017) did not include single-taxon proteomes for the other two Pseudomonas

species, so we cannot evaluate the performance at the genus level.

Figure 6.1: Estimating the ribosomal mass fraction (RMF) in three lab-generated metapro-
teomic samples (vertical axis), across different organisms (different panels) (Kleiner et al.,
2017). In total, there were 30 different organisms used, and here we compare three of
those 30 that had corresponding pure culture proteomes. The ‘true’ RMF observed from
the pure cultures is shown as vertical lines in each panel. Points represent the median of
the approximate posterior distribution, and the error bars correspond to the 95% credible
intervals of the approximate posterior distribution.

6.4.2 Amundsen Sea Metaproteome Characterization and Taxonomic
Abundance Profiles

In total, we matched 410876 spectra to peptides (peptide-spectrum matches) across all

samples. Of these, there were in total 32535 unique peptides. To ensure our database was

not differentially performing and therefore affecting our normalization and quantification

(McCain, Allen and Bertrand, 2021), we correlated the TIC for each sample with the sum of

observed peptide intensities. The Pearson correlation coefficient was 0.93 (Supplementary

Fig. 6.6), indicating that we identified the majority of protein across diverse samples and

therefore it is unlikely the database choice biased peptide quantification. Another measure

of database performance is the number of MS2 spectra identified as a percentage of total

MS2 spectra collected per mass spectrometry experiment. We identified on average 25%
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of MS2 spectra (SD = 6%), with a minimum of 16% and a maximum of 38%. These values

further support that database choice did not bias peptide quantification.

We used these metaproteomic data to examine the vertical distribution of taxon-

specific protein in the water column in the Amundsen Sea Polynya (Fig. 6.3). We

calculated the proportion of peptide intensities mapped to two taxa, Fragilariopsis spp.

and Phaeocystis spp., by taking the sum of all taxon-specific peptide intensities divided

by the sum of all peptides that were taxonomically informative. Note that at this stage

we excluded peptides that are taxonomically uninformative to better approximate the

proportion of total protein for each taxa. This proportion was then multiplied by the total

protein per filter, and then divided by the total volume of seawater filtered, which yielded a

taxon-specific protein concentration profile (Fig. 6.3).

These profiles clearly illustrated two different biogeographic regions: Fragilariopsis

spp. dominated versus Phaeocystis spp. dominated. In the center of the Amundsen Sea

Polynya and near stations 31–49, Phaeocystis spp. protein tended to be more abundant than

Fragilariopsis spp. protein. Closer to the edge of the polynya and into the marginal sea

ice zone (stations 50–52), Fragilariopsis spp. tended to be more dominant. In stations 24,

55, and 57, Fragilariopsis spp. was much more abundant than Phaeocystis spp. Overall,

these two genera contributed a large proportion of total protein (Fig. 6.3), even up to 49

and 25% for Fragilariopsis and Phaeocystis respectively.

188



Figure 6.2: Map of the stations that had corresponding metaproteomic samples at various
depths. Station numbers are displayed within each grey circle. Background colour
represents the bottom bathymetry, and the black lines near the bottom represent the land,
while blue lines represent ice. Note that station 53 was in the marginal sea ice zone.

6.4.3 Environmental Correlates of the Ribosomal Mass Fraction

We estimated the ribosomal mass fraction of two taxonomic groups, observing strikingly

constant vertical profiles in RMF for both Fragilariopsis spp. and Phaeocystis spp.

(Fig 6.4). These vertical profiles demonstrated reproducibility and consistency of these

metaproteomic methods across 42 different samples.
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Figure 6.3: Protein concentration with depth attributed to Fragilariopsis spp. and Phaeo-
cystis spp. across 15 different stations, as well as total protein concentration.
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Figure 6.4: Variation of estimated ribosomal mass fraction with depth for Fragilariopsis
spp. and Phaeocystis spp., with corresponding 95% credible intervals. Each panel cor-
responds to a unique station, with station numbers displayed in Fig. 6.2. Note that the
estimates for Fragilariopsis spp. are vertically offset for visualization purposes by 2 m.

We sought to explain variation in RMF using the coupled nutrient concentration data

(considering dFe, dMn, and nitrate and nitrite), as well as the in situ light and temperature

values (Fig. 6.5). For Fragilariopsis spp., we observed no significant correlation between

dissolved trace metals or light, but observed a significant negative correlation between

temperature and RMF (Fig. 6.5, Table 6.1). This coefficient means that for a degree

increase in temperature (for example, from -2 to -1 C), the RMF decreased 5.3%. (Note

that because of the logit transform this decrease is not linear). For Phaeocystis spp., we

observed a significant negative correlation between dMn and RMF (Fig. 6.5, Table 6.1).
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However, the effect size for this coefficient was very low: a 1 nM increase (from 1 nM to 2

nM) in dMn corresponds with a 0.3% decrease in RMF.

Figure 6.5: Variation of estimated RMF with four environmental variables (dissolved Fe,
dissolved Mn, light, and temperature) for both Fragilariopsis spp. and Phaeocystis spp.
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6.5 Discussion

We connected quantitative estimates of the RMF with environmental variables across two

taxa. This connection was possible because of a novel approach for calculating uncertainty

in RMF from metaproteomic samples. For Fragilariopsis spp., we observed a negative

relationship between RMF and temperature, and a negative relationship (albeit with a small

effect size) between Phaeocystis spp. RMF and dMn. Below, we first discuss the strengths

and weaknesses of metaproteomics as a tool for probing these relationships, then touch

on the observed and expected relationships between trace metal concentration and light

with RMF. Finally, we discuss the relationship between RMF and temperature. Note that

throughout the following, we assume that at least one of the environmental variables we

considered is controlling growth rate. This is a reasonable assumption because light, Fe,

and Mn, have been identified as critical limiting resources in various regions around the

Southern Ocean and in the Amundsen Sea Polynya (Sherrell et al., 2015; Wu et al., 2019;

Kwon et al., 2021; Alderkamp et al., 2015; Oliver et al., 2019; Browning et al., 2021).

Metaproteomics is a promising method for probing gene expression of uncultured

microbes in their natural environment, particularly those environments that are difficult

or impossible to replicate in the lab. To date, one of the weaknesses with untargeted

metaproteomics is that it has mostly been used to evaluate relative trends in gene expression.

Untargeted metaproteomics has mostly failed to provide quantitative metrics of proteomic

composition that can be easily compared with data from material or computational models

(O’Malley and Parke, 2018). We have developed a simple method for estimating one

quantitative metric, the proteomic mass fraction, alongside a measure of uncertainty.

Comparing the performance of our method with artificially assembled metaproteomes

demonstrated where it fails, specifically when considering fine-scale taxonomic resolution.

This conclusion reflects our previous research, showing that biases in metaproteomics due

to high sample complexity (McCain and Bertrand, 2019) and low diversity (McCain, Allen

and Bertrand, 2021) tend to be mitigated by looking at coarse taxonomic or functional

groupings. Future work should include the taxonomically uninformative peptides (e.g.

Pible et al., 2020), which provide more information but are more challenging to incorporate.

Observations correlating growth and ribosomes per cell motivated the development

of phenomenological growth laws in bacteria (Schaechter, Maaløe and Kjeldgaard, 1958;

Scott et al., 2010). Here we expand the set of available observations to photosynthetic
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marine microbes. In all microbes, growth and total protein synthesis are intimately related.

To increase total protein synthesis, organisms can increase the number of total ribosomes,

the rate of translation per ribosome, decrease the rate of degradation or protein damage,

or increase the proportion of total ribosomes that are actively translating. In general, dFe,

dMn, and light (which we expect to control growth rates here) had little explanatory value

for the RMF in our samples, indicating that RMF and growth rate do not have a simple

linear relationship as observed in some model bacteria (Schaechter, Maaløe and Kjeldgaard,

1958). Our previous modelling work for Fragilariopsis cylindrus mirrors these conclusions,

particularly because protein turnover is dependent on each of these environmental variables

(McCain et al., 2021). This model actually predicts almost no correlation between RMF and

growth rate, when considering that dFe and dMn are typically correlated in the Southern

Ocean. These environmental variables had little explanatory value for Phaeocystis spp. as

well. Re-examining previously published Phaeocystis antarctica proteomic data across

controlled dMn, dFe, and light levels, growth rate and RMF were only weakly correlated

(0.39 Pearson correlation coefficient; Wu et al., 2019). Phaeocystis antarctica forms large

colonies of many individual cells, and perhaps this unique life history complicates the

connection between RMF and growth rate. Furthermore, the RMF range here is much

lower than previously observed (McCain, Allen and Bertrand, 2021), perhaps because we

mostly excluded the colonies by examining only the 3 µm filters. (Note that previously

published Phaeocystis antartica proteomic data show divergent trends in ribosomal protein

expression with increased iron, across two different strains (Supplementary Figure 6.7;

Bender et al., 2017).) Overall, variation in RMF was not explained by light, dFe, or dMn:

why was there no relationship?

Returning to the four potential connections of growth rate and total protein synthesis

rate, we hypothesize that either 1) a variable proportion of ribosomes are actively trans-

lating, or 2) the rate of protein degradation is variable across the range of environmental

conditions we examined. If either of these are a function of the environmental variables, we

would not expect a simple correlation between RMF and growth rate. The first hypothesis

suggests that phytoplankton cells have an excess capacity for protein synthesis, and would

be consistent with other phytoplankton behaviours like ‘luxury uptake’ of Fe (Twining

et al., 2020). In very slowly growing cultures of E. coli, a high proportion (even up to

80%) of ribosomes are inactive (Dai et al., 2016). However, it is currently unknown how
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the proportion of translating ribosomes varies under Fe-controlled growth (even in highly

studied model organisms). For the second hypothesis regarding protein degradation, it is

reasonable to assume that depletion of Fe and Mn, which are critical antioxidant cofactors,

might hamper a cell’s capacity to avoid oxidative stress. Santra, Dill and Graff (2018)

showed that oxidative stress and protein turnover are directly connected via chaperones.

If the environmental variable that controls growth also controls protein degradation and

turnover, we would not predict a simple relationship between growth and RMF. Overall,

these data suggest that the bacterial growth laws exhibited in model organisms do not

clearly translate to eukaryotic microbes in the ocean limited by different resources.

Our observation of a negative relationship between RMF and temperature in Frag-

ilariopsis spp. suggests a variable rate of translation per ribosome. Translation rate per

ribosome increases under increased temperature (Toseland et al., 2013). Others have

observed a decrease in total RNA (most of which is ribosomal RNA) with temperature

(Toseland et al., 2013), and a decrease in ribosomal protein mRNA with increased tem-

peratures (Jabre et al., 2021), which both directly mirror our observations. Toseland et al.

(2013) looked over a 12 ◦C temperature range and considered three unique temperature

treatments, so the exact shape of the relationship between ribosomes and temperature is

unclear. Our results suggest that the majority of the change in RMF with temperature

occurs between -2 and 0 ◦C, consistent with a non-linear relationship between RMF and

temperature for Fragilariopsis spp.

Does increased translation rate, as a function of temperature, explain the increased

growth rate that is observed in cultures (Jabre and Bertrand, 2020)? Increasing temperature

from 1 to 3 ◦C, Jabre and Bertrand (2020) observed approximately a doubling of growth

rate under low Fe conditions, we therefore assume doubling of growth rate from -2 to

0 ◦C. Yet, we observed a decrease from ∼ 15% to ∼ 5% RMF, a decrease of ∼ 66%.

Using a previously described temperature dependence with a Q10 function (Toseland

et al., 2013), the change in translation rate per ribosome would increase only by 15%

with this change in temperature. This leaves a paradox, how would protein synthesis

capacity increase to support faster growth? We speculate that there is a temperature

dependence on the proportion of ribosomes that are actively translating, such that under

low temperatures, this proportion is lower. As discussed above, Dai et al. (2016) show

that up to 80% of ribosomes can be inactive under low growth rates in E. coli (under
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carbon substrate-controlled growth). This order-of-magnitude change in active ribosomes

would be sufficient to explain the growth rate increase with temperature in Fragilariopsis

cylindrus.

Coupling metaproteomics with environmental variables offers a natural laboratory to

examine gene expression. Here we have used this laboratory, located in the Amundsen

Sea Polynya, to study the regulation of ribosomes in photosynthetic eukaryotes. Our

results suggest a non-linear relationship between RMF and temperature for Fragilariopsis

spp., which was only possible to quantify because of the gradient of in situ temperatures

we observed. Future metaproteomic characterizations will help uncover the diversity of

protein synthesis-growth rate relationships in microbes.

6.6 Author Contributions

J.S.P.M. collected samples for metaproteomics, conducted laboratory processing and mass

spectrometry with E.R. (Elden Rowland), ran all bioinformatics and analyses, and wrote

the manuscript with input from E.M.B.
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6.7 Supplementary Figures

Figure 6.6: High correlation between the total ion current and the sum of peptide inten-
sities per sample indicates that the database choice did not significantly impact peptide
quantification.
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Figure 6.7: Divergent relationships between ribosomes and dissolved iron in two different
cultured strains (left and right panels refer to strain numbers) of Phaeocystis antartica
(Bender et al., 2017).
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CHAPTER 7

CONCLUSIONS

7.1 Overview of Contributions

In this thesis I have used metaproteomics and models to examine trade-offs in phyto-

plankton. While there are five distinct contributions, these can be subcategorized into

three themes. The first theme is putting metaproteomics as a tool ‘under the microscope’,

the second theme is using observations and models to explore and test hypotheses about

proteomic composition and trade-offs with respect to trace metals. The third theme is

interrogating these proposed hypotheses using alternative methods, additional data, and

synthesis. Here I will connect these three themes.

There are many basic assumptions in metaproteomics that have not been thoroughly

examined. Throughout this thesis I aimed to explicitly address these assumptions. In

Chapter 2, I studied a byproduct of high sample complexity, cofragmentation, and explored

the theoretical implications of cofragmentation bias. I also developed a computational

tool to predict this bias for a given peptide. In Chapter 3, I used simulations to study the

effect of sequence diversity in peptide-centric metaproteomics, and evaluated how database

configuration can influence both identification and quantification in metaproteomics. In

Chapter 6, I used a simple Approximate Bayesian Computation method to estimate the

proteomic mass fraction of ribosomes (with uncertainties).

The second theme collapses both Chapters 3 and 4 together. In Chapter 3, I quantified

various proteomic ‘traits’, one of which was the ribosomal mass fraction, hypothesizing that

this was related to the haptophyte-to-diatom transition frequently observed in the Ross Sea.

In Chapter 4, I developed a proteomic allocation model to study the interaction between

Fe and Mn. This lead to the discovery of general mechanisms of interdependence across
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resources, a novel method for inferring taxon-specific rates by coupling metaproteomic

data with a cellular model, and a reframing of micronutrient-controlled growth in the

ocean.

These two chapters were opportunities to put forward quantitative, concrete hypothe-

ses, which were subsequently further interrogated. One of the strengths of mathematical

modelling is that it encourages assumptions to be made explicit. For example, I was

forced to write a mathematical relationship for the fitness costs associated with produc-

ing antioxidants. In developing these hypotheses and mathematical relationships, I also

identified unknowns. Specifically, the fitness costs of antioxidants and their impacts on

cellular elemental stoichiometry were unclear. Furthermore, the assumptions regarding

ribosomal use in the proteomic allocation model had not yet been validated under trace

metal-controlled growth.

In the last theme I investigate some of the assumptions and hypotheses put forward,

specifically the 1) relationship between antioxidants and cellular elemental stoichiometry

(Chapter 5) and 2) the relationship between ribosomes and growth (Chapter 6). Chapter 5

revealed many nuances of antioxidants, mainly stemming from the diversity of antioxidant

systems. This synthesis identified several unknowns that should be tested in a material

model to ultimately quantify both the fitness costs of antioxidants and their contributions to

cellular stoichiometry (O’Malley and Parke, 2018). With this synthesis I also put forward

quantitative bounds for the contribution of various metal-containing antioxidants using

previously published data. In Chapter 6, I provided evidence that the assumption of 100%

ribosomal use is not supported under Fe-, Mn-, and light-controlled growth. Data from

Chapter 6 also refuted my earlier hypothesis about trait differences between diatoms and

haptophytes (however the differences in filter sizes complicates this comparison). While

the discoveries in Chapters 5 and 6 highlight additional complexities, they also provide a

way forward.

7.2 Future Directions

7.2.1 Metaproteomics

Metaproteomics as a tool to examine in situ gene expression is still in its infancy. I believe

the next frontier of metaproteomics will be rooted in two advances, one technological and

one conceptual. From the technological frontier, there have been major advances in mass

201



spectrometry, particularly using data-independent acquisition (DIA) strategies. Once these

approaches are more accessible for metaproteomics, I think the amount of information

gleaned per sample will inevitably increase. Another advantage for DIA experiments is

that the data can effectively be recycled with better algorithms. Also note that there are

many ‘disruptive’ proteomic technologies on the horizon that threaten mass spectrometry

as the premiere tool for proteomics (Timp and Timp, 2020).

Conceptual advances in metaproteomics will come when methods and measurements

are centered on absolute quantification. Here I use the term ‘absolute’ to refer to a

measurement that is ‘viewed or existing independently and not in relation to other things’.

For example, in Chapter 6 I attempted to infer the proteomic mass fraction of ribosomes,

independent of organismal abundance. This type of quantification is embraced in targeted

proteomics, however in a metaproteomic context ‘absolute’ quantification can still be a

non-trivial endeavor. The conceptual shift towards absolute quantification will enable

seamless comparisons with cultured organisms and computational models. (Note there is

no consensus on which values should be quantified).

Mitigating against biases in metaproteomics is critical to move closer to absolute

quantification, as illustrated throughout this thesis. Most of these biases can be simplified

with the statement: ‘the devil is in the denominator’. For example, the problems associated

with normalization and quantification from database dependence (Chapter 3), or the issues

in assessing proteomic mass fraction (Chapter 6), all stem from variable denominators.

Datasets like those of Kleiner et al. (2017) will be increasingly valuable for the field.

7.2.2 Representations of Growth in the Ocean

Most biogeochemical models include a function with inputs of environmental variables

and an output of growth (or something similar). These simplistic representations of biology

in biogeochemical models can lead to some challenges (discussed in Chapter 1). Using

models that predict both gene expression profiles alongside growth rate would achieve

more realistic biological behaviours. Further, this type of model would enable direct

comparisons with the large volumes of metaproteomic and metatranscriptomic data that

are being generated.

Should proteomic allocation models be embedded in biogeochemical models? Not

necessarily. In Chapter 5, I aimed to test specific hypotheses about the interaction between

Fe and Mn. Furthermore, it would not be computationally tractable to put this cellular
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model into a large oceanographic model. If the aim was to directly connect cellular and

biogeochemical modelling, it would only be necessary to represent the phenomenological

outcomes of cellular models. For example, a high-order polynomial regression could

be used to represent the predictions of a proteomic allocation model, and distill these

predictions into a simple equation. Representations of growth in the ocean have not

changed much since the seminal work of Riley (1946). At the same time, quantitative

systems biology of microbes is burgeoning. It is time for oceanographers to broaden the

toolkit of biological representations.

Another prominent use of metaproteomics is diagnosing nutrient stress using biomark-

ers (e.g. Saito et al., 2014). One advantage of using biomarkers over traditional bottle

incubation experiments is that it can be done with high-throughput methods. Yet, one open

challenge is: what do we do with this information? One goal might be to use biomarkers to

inform large-scale models, thus providing data to constrain the biological representations

in biogeochemical models (Fennel et al., 2019). However, to make this connection, there

needs to be some representation in biogeochemical models that link biomarker expres-

sion to growth rate. Cellular models that represent gene expression would enable this

connection.

7.2.3 Of Models and Metaproteomes: A Proposal

To borrow from John Steinbeck’s ‘Of Mice and Men’, I will briefly propose a research

program building from ideas presented in this thesis (touching on the theme of dreams

throughout Steinbeck’s book).

Computational models can be used to represent biological phenomena. Connecting

computational modelling with in situ gene expression measurements from complex mi-

crobial communities provides a path forward to studying organisms that are difficult to

culture. But, as was obvious from this thesis, this can lead to clear questions that should

be interrogated in another way.

Material modelling (O’Malley and Parke, 2018) is an appropriate tool for asking

certain questions: for example, what is the limit on membrane protein density? How

does the proportion of actively translating ribosomes vary under iron-controlled growth?

Are MnSOD, FeSOD, CuZnSOD, and NiSOD functionally replaceable? Material models

have built-in constraints, which can help answer these questions. Yet, it is difficult to

imagine asking some of these questions using an organism like Fragilariopsis cylindrus
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(at least considering the doubling time, but also the genetic tractability; although the latter

is being challenged with new methods; Faktorová et al., 2020). I propose to use genetically

tractable model organisms, like E. coli, to examine specific biological processes (like the

ones listed above).

This trifecta of approaches – mathematical modelling, metaproteomics, and material

modelling – is apt for studying environmentally important microbes. Mathematical mod-

elling provides a structured approach for connecting hypotheses and integrating processes.

These models can uniquely capture characteristics that material models cannot. Coupling

mathematical models with in situ gene expression measurements, like metaproteomics,

can be used to infer taxon-specific rates and quantify certain facets of diverse microbes.

Finally, material models can promote discovery of unknown processes, and can be used to

examine certain processes when knowledge of a system is very limited. Iteration between

these three approaches will help uncover the hidden lives of microbes.
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APPENDIX A

Chapter 2 was reprinted with permission from J. Proteome Res. 2019, 18, 10, 3555–3566.

Copyright 2019 American Chemical Society.

Chapter 3 includes material from: McCain, J.S.P., Allen, A.E., and E.M. Bertrand. Pro-

teomic traits vary across taxa in a coastal Antarctic phytoplankton bloom. The ISME

Journal. Published 2021.
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Faktorová D, Nisbet RER, Fernández Robledo JA, et al. (113 co-authors). 2020. Genetic
tool development in marine protists: emerging model organisms for experimental cell
biology. Nature Methods. 17:481–494.

Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive earth’s
biogeochemical cycles. Science. 320:1034–1039.

Fearnhead P, Prangle D. 2012. Constructing summary statistics for approximate Bayesian
computation: Semi-automatic approximate Bayesian computation. Journal of the Royal
Statistical Society. Series B: Statistical Methodology. 74:419–474.

Feierabend J, Germany W. 1986. Photoinactivation of catalase in vitro and in leaves.
Archives of Biochemistry and Biophysics. 251:567–576.

Fennel K, Gehlen M, Brasseur P, et al. (16 co-authors). 2019. Advancing marine biogeo-
chemical and ecosystem reanalyses and forecasts as tools for monitoring and managing
ecosystem health. Frontiers in Marine Science. 6:1–9.

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the
biosphere: integrating terrestrial and oceanic components. Science. 281:237–240.

Fiksen Ø, Follows MJ, Aksnes DL. 2013. Trait-based models of nutrient uptake in microbes
extend the Michaelis-Menten framework. Limnology and Oceanography. 58:193–202.

211



Finkel ZV, Follows MJ, Irwin AJ. 2016. Size-scaling of macromolecules and chemical
energy content in the eukaryotic microalgae. Journal of Plankton Research. 38:1151–
1162.

Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of
microbial communities in a model ocean. Science. 315:1843–1847.

Fomenko DE, Koc A, Agisheva N, et al. (11 co-authors). 2011. Thiol peroxidases mediate
specific genome-wide regulation of gene expression in response to hydrogen peroxide.
Proceedings of the National Academy of Sciences. 108:2729–2734.

Galbraith ED, Kienast M, Albuquerque AL, et al. (40 co-authors). 2013. The acceleration
of oceanic denitrification during deglacial warming. Nature Geoscience. 6:579–584.

Gallie D, Chen Z. 2019. Chloroplast-localized iron superoxide dismutases FSD2 and
FSD3 are functionally distinct in Arabidopsis. PLoS ONE. 14:e0220078.

Geider RJ, LaRoche J. 2002. Redfield revisited: Variability of C:N:P in marine microalgae
and its biochemical basis. European Journal of Phycology. 37:1–17.

Gifford SM, Sharma S, Booth M, Moran MA. 2013. Expression patterns reveal niche
diversification in a marine microbial assemblage. The ISME Journal. 7:281–298.

Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R.
2012. Targeted data extraction of the MS/MS spectra generated by data-independent
acquisition: A new concept for consistent and accurate proteome analysis. Molecular
and Cellular Proteomics. 11:O111.016717–O111.016717.

Giovannoni SJ. 2017. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.
Annual Review of Marine Science. 9:231–255.

Giovannoni SJ, Cameron Thrash J, Temperton B. 2014. Implications of streamlining
theory for microbial ecology. The ISME Journal. 8:1553–1565.

Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment:
a review. Frontiers in Microbiology. 3:1–17.

Goldfarb D, Wang W, Major MB. 2016. MSAcquisitionSimulator: Data-dependent
acquisition simulator for LC-MS shotgun proteomics. Bioinformatics. 32:1269–1271.

Goloborodko AA, Levitsky LI, Ivanov MV, Gorshkov MV. 2013. Pyteomics — a Python
framework for exploratory data analysis and rapid software prototyping in proteomics.
Journal for the American Society of Mass Spectrometry. 24:301–304.

Gorshkov AV, Tarasova IA, Evreinov VV, Savitski MM, Nielsen ML, Zubarev RA, Gor-
shkov MV. 2006. Liquid chromatography at critical conditions: comprehensive approach
to sequence-dependent retention time prediction. Analytical Chemistry. 78:7770–7777.

212



Gorshkov V, Hotta SYK, Verano-Braga T, Kjeldsen F. 2016. Peptide de novo sequencing
of mixture tandem mass. Proteomics. 16:2470–2479.

Graff van Creveld S, Rosenwasser S, Levin Y, Vardi A. 2016. Chronic iron limitation
confers transient resistance to oxidative stress in marine diatoms. Plant Physiology.
172:968–979.

Gu M, Imlay JA. 2013. Superoxide poisons mononuclear iron enzymes by causing
mismetallation. Molecular Microbiology. 89:123–134.

Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, Wallace DW. 2021.
Physical mixing in coastal waters controls and decouples nitrification via biomass
dilution. Proceedings of the National Academy of Sciences. 118:e2004877118.

Haber F, Weiss J. 1932. The catalytic decomposition of hydrogen peroxide by iron salts.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
147:332–351.

Haft DH, Selengut JD, White O. 2003. The TIGRFAMs database of protein families.
Nucleic Acids Research. 31:371–373.

Halliwell B, Gutteridge JM. 2007. Free Radicals in Biology and Medicine. Oxford
University Press, fourth edi edition.

Han BP. 2001. Photosynthesis-irradiance response at physiological level: a mechanistic
model. Journal of Theoretical Biology. 213:121–127.

Hardison AK, Algar CK, Giblin AE, Rich JJ. 2015. Influence of organic carbon and nitrate
loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA)
and N2 production. Geochimica et Cosmochimica Acta. 164:146–160.

Harpole WS, Ngai JT, Cleland EE, et al. (11 co-authors). 2011. Nutrient co-limitation of
primary producer communities. Ecology Letters. 14:852–862.

Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, Tendler A, Mayo AE,
Alon U. 2015. Inferring biological tasks using Pareto analysis of high-dimensional data.
Nature Methods. 12:233–235.

Held NA, Webb EA, McIlvin MM, et al. (11 co-authors). 2020. Co-occurrence of Fe and P
stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences.
17:2537–2551.

Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. 2017. Challenges and
perspectives of metaproteomic data analysis. Journal of Biotechnology. pp. 24–36.

Hillebrand H, Donohue I, Harpole WS, Hodapp D, Kucera M, Lewandowska AM, Merder
J, Montoya JM, Freund JA. 2020. Thresholds for ecological responses to global change
do not emerge from empirical data. Nature Ecology and Evolution. 4:1502–1509.

213



Hindmarsh A. 1983. ODEPACK, a Systematized Collection of ODE Solvers in Scientific
Computing. Elsevier.

Holton RW, Blecker HH, Onorb M. 1964. Effect of growth temperature on the fatty acid
composition of a blue-green alga. Phytochemistry. 3:595–602.

Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn N, Old W. 2010. Quantifying
the impact of chimera MS/MS spectra on peptide identification in large scale proteomic
studies. Journal of Proteome Research. 9:4152–4160.

Hsieh EJ, Bereman MS, Durand S, Valaskovic GA, MacCoss MJ. 2012. Effects of column
and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS
of complex proteomic samples. Journal of the American Society for Mass Spectrometry.
24:148–153.

Hu SK, Liu Z, Alexander H, Campbell V, Connell PE, Dyhrman ST, Heidelberg KB, Caron
DA. 2018. Shifting metabolic priorities among key protistan taxa within and below the
euphotic zone. Environmental Microbiology. 20:2865–2879.

Hudson RJ, Morel FM. 1990. lron transport in marine phytoplankton: Kinetics of cellular
and medium coordination reactions. Limnology and Oceanography. 35:1002–1020.

Huerta-Cepas J, Szklarczyk D, Heller D, et al. (12 co-authors). 2019. EggNOG 5.0: A
hierarchical, functionally and phylogenetically annotated orthology resource based on
5090 organisms and 2502 viruses. Nucleic Acids Research. 47:D309–D314.

Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson
JR. 2015. Quantitative proteomic analysis reveals a simple strategy of global resource
allocation in bacteria. Molecular Systems Biology. 11:e784–e784.

Hulstaert N, Shofstahl J, Sachsenberg T, Walzer M, Barsnes H, Martens L, Perez-Riverol
Y. 2020. ThermoRawFileParser: Modular, scalable, and cross-platform RAW file
conversion. Journal of Proteome Research. 19:537–542.

Imlay JA. 2003. Pathways of oxidative damage. Annual Review of Microbiology. 57:395–
418.

Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative
stress: Lessons from a model bacterium. Nature Reviews Microbiology. 11:443–454.

Imlay JA. 2014. The mismetallation of enzymes during oxidative stress. Journal of
Biological Chemistry. 289:28121–28128.

Imlay JA. 2019. Where in the world do bacteria experience oxidative stress? Environmental
Microbiology. 21:521–530.

Inomura K, Deutsch C, Wilson ST, et al. (11 co-authors). 2019. Quantifying oxygen man-
agement and temperature and light dependencies of nitrogen fixation by Crocosphaera
watsonii. mSphere. 4:1–16.

214



Ishiyama K, Inoue E, Yamaya T, Takahashi H. 2006. Gln49 and Ser174 residues play
critical roles in determining the catalytic efficiencies of plant glutamine synthetase. Plant
and Cell Physiology. 47:299–303.

Jabre L, Bertrand EM. 2020. Interactive effects of iron and temperature on the growth of
Fragilariopsis cylindrus. Limnology and Oceanography Letters. 5:363–370.

Jabre LJ, Allen AE, McCain JSP, et al. (11 co-authors). 2021. Molecular underpinnings
and biogeochemical consequences of enhanced diatom growth in a warming Southern
Ocean. Proceedings of the National Academy of Sciences. 118:1–9.

Jahn M, Vialas V, Karlsen J, Ka L, Uhle M, Hudson EP. 2018. Growth of cyanobacteria is
constrained by the abundance of light and carbon assimilation proteins. Cell Reports.
pp. 478–486.

Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen
W. 2006. Effect of copper exposure on gene expression profiles in Chlamydomonas
reinhardtii based on microarray analysis. Aquatic Toxicology. 80:249–260.

Jang HH, Lee KO, Chi YH, et al. (18 co-authors). 2004. Two enzymes in one: Two yeast
peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a
molecular chaperone function. Cell. 117:625–635.

Jeong HJ, du Yoo Y, Kim JS, Seong KA, Kang NS, Kim TH. 2010. Growth, feeding
and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine
planktonic food webs. Ocean Science Journal. 45:65–91.

Johnson GE, Lalanne JB, Peters ML, Li GWW. 2020. Functionally uncoupled transcrip-
tion–translation in Bacillus subtilis. Nature. 585:124–128.

Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC,
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