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Abstract

Approximately 280 million people suffer from depression, a disabling illness. Early di-

agnosis and effective monitoring are known to reduce adverse effects. Still, they require

extensive clinical resources, thus motivating considerable work in automatic detection

of depression, including from acoustic speech signals, with some recent success using

deep learning. Much less work has been done for automated assessment. We make

progress towards automated assessment by presenting the first approach to use acoustic

features of speech to predict responses for individual items on validated clinical assess-

ment tools and demonstrate results better than a majority-based baseline on many of

the items. We achieve this using CNN, and LSTM architectures whose inputs are speech

signals’ acoustic features and outputs are distributions over individual item responses

corresponding roughly to presence/absence of each such symptom. This approach pro-

vides valuable explanatory power as it inherently predicts which symptoms might lead

to the overall assessment score.
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Chapter 1

Introduction

Depression, or major depressive disorder, is a mental disorder that affects approximately

280 million people worldwide [20]. By 1990, depressive disorders were amongst the 25

most disabling diseases [6]. The current outlook is not better, with depressive disorders

ranked 13th in the same ranking and still the highest-ranked mental disorder [6].

The early assessment of depression in individuals is a fundamental step in offset-

ting the burden brought by this mental disorder. Multiple instruments have been cre-

ated to measure depression severity; some of these are self-reported [25, 4, 36] and some

others require a trained clinician [15, 30, 36]. These instruments are usually question-

naires/scales with various items that have to be answered. When aggregating the an-

swers of all items, it results in a severity estimate.

Due to advances in technology and the importance of early depression assessment,

many alternatives have been proposed to detect and estimate depression in an auto-

mated way from the estimates obtained using popular depression assessment instru-

ments. These approaches have evolved through the years, starting with the usage of

traditional machine learning models [49, 7, 29], all the way to artificial neural networks

[19, 44, 10, 53, 9, 1, 50]. Moreover, different types of input have been used for automated

depression detection or severity estimation. Existing approaches have used text [44],

speech [10, 53, 9, 1, 7, 29] and video [50, 7, 29].

So far, existing automated methods have focused on tasks where the total score ob-

tained from a depression assessment instrument determines the output to be predicted.

However, none of the proposed methods utilize the individual items contained in the as-

sessment tools. Considering these could be helpful both because it could suggest what

symptoms/aspects of depression can be identified by an automated system. Also, it

could provide potential explanatory power, e.g., “the overall severity score might be high

because the patient might have a high score on items (a,b,c)”.

1
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In this work, we define a binary classification task for detecting the presence of de-

pressive symptoms in individual items of clinical depression assessment instruments.

To train models for this task, we use two datasets: the Autobiographical Adult Speech

Samples (AASS) and the Distress Analysis Interview Corpus - Wizard of OZ (DAIC-WOZ)

[14], which contain recordings from hundreds of interviews with multiple participants,

along with transcripts and depression severity estimates. The AASS dataset contains es-

timates from the clinician-rated Montgomery-Åsberg Depression Rating Scale (MADRS)

[30] and the DAIC-WOZ dataset includes the self-rated Patient Health Questionnaire-8

(PHQ-8).

To detect depressive symptoms in individual items, we extract acoustic features

from the speech recordings contained in both datasets, namely mel spectrograms and

the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [12]. Together

with these acoustic features, we propose architectures of Artificial Neural Networks (ANN),

containing convolutional layers [27] and Long Short-Term Memory (LSTM) [17] layers.

We train these models to detect depressive symptoms in each item in the depression

assessment instruments.

We evaluate our proposed approaches using the F1 score, and we compare them

to determine which features and models obtain better results in the different items,

datasets, and depression instruments. Our results show that the proposed models per-

form better than an empirical majority-based baseline and show that no single proposed

model is better than the rest at predicting all the items. Moreover, our results indicate

that the scores vary across items, showing that some items of the depression assessment

instruments are more easily detectable than others from the acoustic features of speech

alone. For example, presence of suicidal thoughts are easier to detect than reduced ap-

petite.

1.1 Contributions

In this work, we make the following contributions:

1. We introduce the problem of automatically predicting scores on individual items

of depression assessment instruments from acoustic features of speech.

2. We cast this problem as a set of binary classification tasks, roughly corresponding
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to detecting the presence of the individual clinical depressive symptoms.

3. We implement acoustic-based deep learning architectures to solve the proposed

binary tasks.

4. We evaluate our models and provide a detailed analysis of the results on two dif-

ferent depression datasets scored with two severity estimation instruments: a

self-reported and a clinician-rated.

1.2 Outline

The structure of the rest of the document is the following.

Chapter 2 We explain some background concepts for our proposed approaches and

results, as well as existing related work. In particular, we provide background on depres-

sion, measurement, and model components. The related work explores research efforts

in the field of depression detection and severity estimation.

Chapter 3 We discuss the datasets used across our experiments, AASS, and DAIC-WOZ,

and we give information about the train, validation, and test splits used. Additionally, we

present the task and show how this definition impacts the distribution of the datasets.

Chapter 4 We describe the feature extraction process and the steps taken when ex-

tracting the acoustic features from speech recordings.

Chapter 5 We describe some challenges we observed when working on depression-

related tasks. We explain our approaches, including the architectures and their interac-

tion with the previously defined acoustic features and challenges. We also briefly high-

light some other approaches throughout the project and the intuition behind them re-

garding the challenges.

Chapter 6 We explain some details of the training procedure. We also evaluate and

analyze the results from our approaches.

Chapter 7 Finally, we present concluding remarks, considerations, and future work.



Chapter 2

Background

2.1 Measuring Depression

Measuring depression is challenging. Over the last century, multiple depression assess-

ment instruments/scales have been proposed. These scales are primarily divided into

two types: self-rated [25, 4, 36] and clinician-rated [15, 30, 36]. We used datasets with

depression severity estimates obtained with some of these scales/questionnaires dur-

ing our experiments. This section contains an explanation of these questionnaires.

2.1.1 Montgomery-Åsberg Depression Rating Scale (MADRS)

Montgomery and Åsberg designed this 10-item scale in 1979 for measuring the depres-

sion severity of patients [30]. To estimate a patient’s depression level, a trained clinician

rates each item from MADRS on a scale from 0 to 6. In this scale, the rater decides if the

score is defined in the main scale steps (0, 2, 4, 6) or not (1, 3, 5). The items to grade are

the following:

1. Apparent sadness

2. Reported sadness

3. Inner tension

4. Reduced sleep

5. Reduced appetite

6. Concentration difficulties

7. Lassitude

8. Inability to feel

4
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9. Pessimistic thoughts

10. Suicidal thoughts

The scores of the individual items are added to obtain a total score. This total score

indicates the depression severity estimated by the MADRS questionnaire.

2.1.2 Patient Health Questionnaire-8 (PHQ-8)

The PHQ-8 [25] is a self-rated questionnaire designed for estimating depression severity.

Since the questions are self-rated, people using this questionnaire answer it based on

their own experience and get a depression estimation.

In this questionnaire, participants are asked: "Over the past two weeks, how often have

you been bothered by any of the following problems?". Where the problems are:

1. Little interest or pleasure in doing things

2. Feeling down, depressed, or hopeless

3. Trouble falling or staying asleep, or sleeping too much

4. Feeling tired or having little energy

5. Poor appetite or overeating

6. Feeling bad about yourself - or that you are a failure or have let yourself or your

family down

7. Trouble concentrating on things, such as reading the newspaper or watching tele-

vision

8. Moving or speaking so slowly that other people could have noticed. Or the op-

posite - being so fidgety or restless that you have been moving around a lot more

than usual

There are four possible responses to the questions, each of them representing a score

from 0 to 3: Not at all (0), several days (1), more than half the days (2), nearly every day

(3). After answering the PHQ-8, patients will find themselves with an estimated score

from 0 to 24 after adding the scores obtained in each item. The higher the score, the

higher the estimated depression severity according to the PHQ-8 questionnaire.
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2.2 Automated Depression Assessment

Automated assessment of depression can be done in multiple ways. These alternatives

use the results from depression scales for determining the label. So far, existing ap-

proaches have focused on two tasks that are explained in this section.

2.2.1 Depression Severity Estimation (DSE)

The main objective of the task of Estimating Depression Severity is to predict the total

score obtained when adding all the items present in the depression scale used to assess

a participant.

2.2.2 Depression Detection (DD)

Depression Detection (DD) is a binary classification task. The objective is to accurately

predict the presence or absence of depression in a person by considering their charac-

teristics (e.g., speech) that might contain information about the depressive state. Since

depression assessment is done using scales, defining a scale-dependent threshold over

the total score is necessary to distinguish between depressed and healthy samples. For

MADRS (Section 2.1.1), a cutoff of 10 and above has been found to indicate the presence

of depression [55, 16]. For PHQ-8 (Section 2.1.2), its authors also recommend that any

score of 10 or higher be classified as current depression [25].

2.3 Metrics

Classification models are usually measured with the accuracy metric, i.e., accuracy =
# correctly predicted samples

# samples . However, when there is an interest in the performance of each

class, a different set of metrics is used. This set of metrics is also used when there is

the presence of class imbalance. In this section, we will use the confusion matrix on

table 2.1to explain how to calculate the metrics. Table 2.1 contains an example of the

usage of a confusion matrix on a binary depression detection task. We refrain from using

vocabulary designed for the binary classification scenario since metric names may vary

from positive to negative cases (e.g., sensitivity and specificity).
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Table 2.1: Example of a confusion matrix. Columns indicate the actual label and
rows correspond to the predicted label for a two class depression detection task (De-
pressed/Not Depressed).

Actual label
Depressed Not Depressed

Predicted
label

Depressed A B Predicted Depressed = A+B
Not Depressed C D Predicted Not Depressed =C +D

Actual
Depressed

= A+C

Actual Not
Depressed

= B +D

2.3.1 Precision

The way to compute this metric for one specific model is to find all the correctly pre-

dicted samples to have a class and divide that by the all samples predicted to have that

class (correctly and incorrectly predicted). That is, precision measures the proportion

of positive predictions that were indeed correct. Using the confusion matrix for the DD

task in table 2.1 a more straightforward way to view it is.

Precision(Depressed) = A

Predicted Depressed
= A

A+B

Precision(Not Depressed) = D

Predicted Not Depressed
= D

C +D

2.3.2 Recall

Recall measures the proportion of the actual samples in a class that were correctly pre-

dicted. The way to calculate it is to find all those samples that were correctly predicted to

have a class and then divide it by all those samples that truly belong to that class. Using

the confusion matrix in table 2.1 for a simpler explanation on the DD task:

Recall(Depressed) = A

Actual Depressed
= A

A+C

Recall(Not Depressed) = D

Actual Not Depressed
= D

B +D
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2.3.3 F1 Score

By definition, the F1 Score is the harmonic mean of the recall and precision metrics. It is

a useful metric that takes into consideration the information obtained from both of the

metrics. It is defined as:

F1-score = 2
1

Precision + 1
Recall

= 2∗Precision∗Recall

Precision+Recall
.

Usually, there is a trade-off between precision and recall. The higher the precision

the lower the recall and the other way around. That is why the F1-Score is commonly

used, given that it is a metric that considers the joint values of these two metrics.

2.4 Artificial Neural Networks (ANN)

Researchers have studied ANNs for decades. Initially, they were motivated by how the

neurons in the brain work [28]. In recent years, their popularity has risen since they

have been proven successful in various learning tasks. ANNs can be represented as a di-

rected graph, where a set of nodes (called neurons) are joined by directed edges, where

the edges represent weights that are learned during the training process. The activation

(value) of a neuron depends on the activations of those neurons pointing towards it and

the weights of the edges between them, as well as a non-linear activation function. To

adapt an ANN to a task it is trained by adjusting those weights to minimize a loss func-

tion [38]. There are many different types of components in an ANN, those used in our

proposed approaches will be explained in this section.

2.4.1 Linear Layers

Linear components in ANNs represent a set of neurons (layer) that is fully connected

to another set of neurons (layer). Each neuron of the first layer has an edge pointing

towards each neuron in the following layer. These edges contain a weight [38]. An ex-

ample of an ANN made up of one linear hidden layer (not an input or an output) can be

observed in image 2.1. ANNs with only linear layers are commonly called Feedforward

Neural Networks. In order to calculate the value of a specific neuron i , vn,i , in the layer

Vn a weighted sum is applied across the neurons from layer Vn−1, where the weightings
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Figure 2.1: Example of a Feedforward Neural Network.

This neural network has one hidden layer. Extracted from [38]

used are the weights contained in the edges pointing towards neuron vn,i .

vn,i =
J∑︂

j=1
vn−1, j wvn−1, j ,vn,i

J is the number of neurons in layer Vn−1 , and wvn−1, j ,vn,i is the weight connecting vn−1, j

to vn,i . It is important to note that usually an activation function is applied to each

neuron to obtain the activation value used for the next layer, in this explanation it has

been omitted, however, we briefly explain activation functions and their relevance in

section 2.4.4.

2.4.2 Convolutional Neural Network (CNN)

CNNs date back to the late 1980s and early 1990s, having zipcode identification from

handwritten digits [27] as one of the earliest applications. The biggest change brought

by CNNs is the use of convolutional layers. Convolutional layers aim to learn kernels

that are applied to the input. [13]. Convolutional layers are commonly applied across 1
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and 2 dimensions. An example of the application of a 2-dimensional kernel to an input

can be observed in figure 2.2.

Figure 2.2: Example of the calculation of the output of a convolutional layer

The image shows a 2x2 kernel being applied to a 3x4 input, and the output that this process
generates. Extracted from [13].

2.4.3 Long Short-Term Memory (LSTM)

The LSTM layer was proposed in 1997 [17]. Researchers designed this component to

work with sequence data. The objective of this kind of model is to create an intermediate

representation on one step xt of the data, and use it as part of the inputs needed when

creating the representation for the next step xt+1 in the sequence of data. This pattern is

common across Recurrent Neural Networks [39], however, LSTM introduces a group of

gates in order to make it easier for the gradient to spread across longer sequences [13].

Figure 2.3 shows the components inside of an LSTM layer. Namely, three different gates

are introduced as part of this component a forget gate, an input gate, and an output

gate. Using these three gates, the input, and the information shared from the previous

sequence step, the information for the next element in the sequence is obtained [13].
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Figure 2.3: LSTM usage and components.

The diagram shows how information is shared between time steps of sequence data. σ
(Sigmoid) and tanh represent the activation functions (section 2.4.4). Image extracted online

from [5], we added annotations for clarity.

Figure 2.4: Activation functions visualized.

2.4.4 Activation Functions

Activation functions are a fundamental part of modern ANNs, without them, ANNs would

be linear models regardless of the number of layers. This component can be applied to

any neuron across a network to introduce non-linear relations between neurons. These

non-linear relations help the models learn weights that generalize over the existing non-

linearities prevalent in data. Some of the most common activation functions are the

Sigmoid, the Hyperbolic Tangent (tanh), and the Rectified Linear Unit (ReLU) activation

functions. They are defined as follows:

ReLU(x) =

⎧⎪⎨⎪⎩x, if x > 0

0, otherwise
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Sigmoid(x) = 1

1+e−x

tanh(x) = ex −e−x

ex +e−x

Figure 2.4 shows a visual example of the output values of these activation functions given

an input value x.

2.5 Related Work

Due to its importance, automated depression assessment has gained popularity in the

last decades, fueled by existing workshops with depression-related challenges, such as

the Audio/Visual Emotion Challenge 2016 [47] and 2019 [35], and by the release of an

open depression dataset containing text, audio and video samples, DAIC-WOZ [14], de-

pression tasks have had an increase in popularity. Solutions have been proposed using

transcriptions (text) [44], speech, and video recordings [50].

Speech-based approaches have used a variety of features. From standard acoustic

feature sets (such as INTERSPEECH 2009 [37], AVEC 2013 [46], COVAREP [8], eGeMAPS

[12]) extracted with freely available toolkits (such as COVAREP [8], OpenSMILE [11] and

the WORLD Vocoder [31]), Spectrograms [2], and even proposing innovative features

[49, 19].

As alternatives for the existing depression-related tasks, DD and DSE, and, in con-

junction with these previously mentioned features, machine learning models have been

proposed, including Support Vector Regressors [46] and Gaussian Mixture Models [49].

Moreover, many neural architectures have been recently proposed. Some of these ar-

chitectures have taken advantage of the progress done in the computer vision field by

using CNNs [9, 54]. Others have used speech features as a sequence of data, using LSTMs

[1, 53] for depression-related tasks. Recently, attention mechanisms have been also pro-

posed as part of proposed solutions [54, 53]. Other authors have even explored existing

approaches from the speech recognition task to enhance the performance of their de-

pression models [10, 53].

Individual items from depression assessment scales are fundamental when deter-

mining the depression level present in a sample. These individual items have been used

in the past as a core element in depression bio-marker studies [45, 18, 3]. To the best
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of our knowledge, no automatic individual item assessment systems/models have been

proposed in previous studies.



Chapter 3

Datasets & Tasks

In this chapter, we describe the datasets used during our experiments, along with the

depression scales used for rating the depression severity for the participants. Addition-

ally, we explain the task we focus on during our work and its differences from the tasks

described in the section 2.2.2.

3.1 Datasets

In total, we use two datasets for our experiments which follow different collection pro-

cesses and contain depression estimates from different depression assessment instru-

ments. Using multiple datasets might give a better idea of how effective our approaches

can be with different depression assessment scales. In this section, we explain these

datasets and give a brief overview of their contents.

3.1.1 Autobiographical Adult Speech Samples (AASS)

This private dataset contains audio samples recorded by the Families Overcoming Risks

and Building Opportunities for Well-being (FORBOW) team as part of projects FOR-

BOW, Canadian Depression Research and Intervention Network (CDRIN), and Vocal

Mind Project (VMP). The recording process follows a predefined standard operating pro-

cedure that establishes the recording device, settings, location in the room, interviewer

prerequisites, and more. Each of the recordings corresponds to a person speaking about

their last few weeks. The interviewer asks each participant these three prompts:

1. (Neutral) Tell me how you have been feeling and what you have been up to lately.

2. (Positive) Think about when you had a positive experience or when something

good may have happened to you.

3. (Negative) Think about when you had a negative experience or when something

bad may have happened to you.

14
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Each participant is given a brief introduction to be ready for the interview and is ex-

pected to talk for 3 minutes in each prompt. Afterward, trained clinicians score the

recordings using the MADRS scale. Some of the participants undertake multiple inter-

views on different days to assess their depression levels across time. The recordings are

also split into different segments where raters mark the sentiment and emotion levels

of the speaker throughout the recording. We consider a total of 131 recordings contain-

ing MADRS item scores and transcripts as part of our experiments. We separate these

recordings across different splits; train split includes 94 samples, validation 16 samples,

and test 21 samples.

3.1.2 Distress Analysis Interview Corpus - Wizard of OZ (DAIC-WOZ)

The DAIC-WOZ dataset is available upon request and is part of the bigger Distress Anal-

ysis Interview Corpus (DAIC) [14], which comprises a group of clinical interviews cre-

ated to help with diagnosing depression. This dataset has been used as part of the Au-

dio/Visual Emotion Challenges [47, 35].

This dataset contains audio, video, and transcripts for multiple recording sessions. It

was collected in a "Wizard of OZ" or "OZ Paradigm" setup [22] where Ellie, a virtual inter-

viewer controlled by a person in a different room, interviews each participant. The tran-

scripts for the recordings are also provided, along with the depression severity scores

that participants reported using the PHQ-8 questionnaire.

The authors of the dataset provide suggested train, validation, and test splits. However,

the testing split does not contain detailed information about the PHQ-8 item scores. For

this reason, we decided to use the proposed validation set as our test set, and we split

the proposed train set into train and validation splits. In total, we consider 219 samples,

with 56 on the test set, 138 on the train test, and 25 on the validation set.

3.1.3 Exploration

Even though both datasets (AASS and DAIC-WOZ) have been collected to estimate de-

pression severity, the content in each of them is pretty different. A quick summary of

the primary differences, including recording length, samples, and depression scores, is

located in table 3.1. From observing the table, it is clear that the datasets are very dif-

ferent in nature, for example, there is a clear difference in the length of the audio clips,
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Table 3.1: Datasets’ descriptive statistics.

Dataset
Study
Status

#
Samples

Length
(seconds)

Voiced
Length

(seconds)

Total
Depression

Score

AASS
(MADRS) Ongoing 131

DAIC-WOZ
(PHQ-8) Done 219

which is carried into the voiced (interviewer) version. Moreover, the total depression

score distribution ranges vary due to the change in scale across the datasets, however, a

high concentration can be seen in the lower depression sections in both datasets.

It is also fundamental to understand how depression item scores are distributed

across datasets. Figures 3.1 and 3.2 show the item scores for the datasets used. It is im-

portant to note that the depression scales used for the datasets are different and, thus,

the scores will show a different structure. From these two illustrations, it can be con-

firmed that there is a concentration in lower depression scores, noticeable in the total

scores from table 3.1, and evident in figures 3.1 and 3.2.

Another consideration that can be derived from figures 3.1 and 3.2 is that extreme

depressive symptoms are not frequent. In the case of the AASS dataset, none of the

MADRS items achieves the maximum score of 6, defined by the scale. In the DAIC-WOZ

dataset, scores of 3 are reported; however, it is the least common score across the eight

questions in the questionnaire.

3.2 Task

We gave some background on the existing depression-related tasks in section 2.2 as a

context of the automated approaches related to depression. However, our work does

not focus on any of those tasks. We decided to propose an alternative task that takes
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(a) Validation split. (b) Test split.

(c) Train split.

Figure 3.1: AASS dataset item/question depression assessment score distribution ac-
cording to the MADRS scale.

into consideration the individual items of depression assessment instruments. We will

explain the task in this section.

3.2.1 Individual Item Depression Detection (IIDD)

We propose the IIDD task as the task of predicting the presence of depressive symp-

toms corresponding to above-zero scores on individual items in either depression scale,

MADRS or PHQ-8. This task has not been previously used as the target of any depression-

related system. The main objective of this task is to find out which items from the de-

pression severity scales can be coarsely but effectively detected using automated sys-

tems if any.

After applying the task definition, we are left with the distribution of samples for

the test set shown in table 3.2. It is important to note that the number of recordings in

this table does not reflect the total number of segments used during the training stages.

Interestingly, the application of these thresholds reduces the class imbalance observed

in section 3.1.3. Some of the depression assessment instruments items show a value
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(a) Validation split. (b) Test split.

(c) Train split.

Figure 3.2: DAIC-WOZ dataset item/question depression assessment score distribution
according to the PHQ-8 questionnaire.

distribution close to uniform across the classes in both datasets.
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Table 3.2: Samples on test splits after applying the depression thresholds defined in
sections 2.2.2 and 3.2.1. Top section contains items for the AASS dataset, bottom sec-
tion for the DAIC-WOZ. #(ND) Indicates the number of samples considered as "Not De-
pressed"/"No signs of Depression" and #(D) indicates those "Depressed"/"Presence of
Depression" samples according to the thresholds

Train set Validation set Test set
Item / Question #(ND) #(D) #(ND) #(D) #(ND) #(D)

AASS (MADRS)
(1) Apparent sadness 56 38 8 8 13 8
(2) Reported sadness 53 41 9 7 10 11
(3) Inner tension 32 62 7 9 9 12
(4) Reduced sleep 56 38 8 8 12 9
(5) Reduced appetite 76 18 12 4 16 5
(6) Conc. difficulties 53 41 10 6 12 9
(7) Lassitude 50 44 8 8 13 8
(8) Inability to feel 61 33 11 5 13 8
(9) Pessimistic thoughts 51 43 7 9 10 11
(10) Suicidal thoughts 77 17 13 3 17 4

DAICWOZ (PHQ-8)
(1) Little interest 69 69 12 13 26 30
(2) Feeling down 57 81 11 14 26 30
(3) Trouble sleeping 59 79 10 15 23 33
(4) Feeling tired 44 94 6 19 17 39
(5) Poor apetite 66 72 11 14 20 36
(6) Self-dissapointment 65 73 11 14 26 30
(7) Conc. difficulties 79 59 14 11 32 24
(8) Restlessness 109 29 19 6 40 16



Chapter 4

Feature extraction

The feature extraction process is an essential step in our work since this allows us to

work with larger audio windows while maintaining relatively small models, given the

relatively small datasets available. In this chapter, we explain the acoustic features and

dataset scaling techniques applied to the audio recordings on the datasets. We use this

features throughout our approaches. Chapter 5 describes how we do this.

4.1 Features

4.1.1 Spectrograms

The Spectrogram is a visual representation of the frequency, time, and intensity of an au-

dio signal’s spectrum [24]. To create this representation an FFT is applied across short-

time windows (Short-Time Fourier Transformation (STFT)) [32, 2]. Figure 4.1 shows this

process, where short-time windows are selected from an audio signal. Afterward, a low-

pass filter is applied to the signal, and then the FFT takes place. In the end, the result

contains information about the intensity and frequency of the input window. The re-

sults for subsequent windows are appended one after another to obtain a spectrogram.

Figure 4.2 contains an example of a spectrogram.

4.1.2 Mel-Spectrograms

Mel-Spectrograms build upon the spectrograms described in section 4.1.1. Moreover, to

obtain mel spectrograms, a transformation has to be done to the spectrogram, follow-

ing the mel scale. The mel scale [43] is a non-linear subjective scale, designed according

to how humans perceive sound, where the distance in the scale represents pitches that

sound equally distant for a human listener. The mel spectrogram is a version of the

spectrogram where the frequency dimension is replaced by the mel scale, with evenly

20
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Figure 4.1: Computation of running spectrum using FFT.

Subsequent time windows are extracted from the original audio signal (top-left of the image),
go through a low-pass filter (dotted line on the graphs on the left), have an FFT applied to them,

and result in a frequency & intensity representation (right side of the image). Extracted from
[32].

Figure 4.2: Example of a spectrogram.
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Figure 4.3: Example of 32 Mel Filter banks.

This figure contains two alternative visualizations of 32 Mel filter banks.

distributed mel bins. This representation can be achieved by using filter banks that de-

fine the linear transformation from frequency to the mel scale [40]. We have created two

visualizations of 32 mel filter banks, which we added as figure 4.3. Both images point

out that higher filter banks in the frequency spectrum take information from a more ex-

tensive range of frequencies. This filter bank transformation is applied to a spectrogram

equally across time, resulting in a mel spectrogram. Figure 4.4 shows the change of a

spectrogram into a mel spectrogram. Some differences are easily noticeable. In general,

Mel Spectrograms have been preferred over Spectrograms for deep learning applications

since they are a closer representation of how humans perceive sound. Mel Spectrograms

have been widely used in many audio-based applications, including speaker verification

[48], speech emotion recognition [34], and depression estimation [53].

4.1.3 extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) feature set was proposed in

2016 as a minimalist feature set to work with speech, and emotion applications, based

on multiple acoustic analyses [12]. eGeMAPS was proposed along with the GeMAPS

acoustic feature set and is an extended version of it.

Geneva Minimalistic Acoustic Parameter Set (GeMAPS)

This acoustic feature set contains 18 different parameters or low-level descriptors, listed

as follows with the number of parameters per item in parenthesis:
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Figure 4.4: Spectrogram and Mel Spectrogram side-by-side.

1. (1) Pitch.

2. (1) Jitter.

3. (3) Center frequency of Formants 1, 2, and 3.

4. (1) Bandwidth of the Formant 1.

5. (1) Shimmer, the difference of the peak amplitudes of consecutive F0 periods.

6. (1) Loudness.

7. (1) Harmonics-to-noise ratio (HNR).

8. (1) Alpha Ratio.

9. (1) Hammarberg Index.

10. (2) Spectral slope 0-500 Hz and 500-1500 Hz of the logarithmic power spectrum.

11. (3) Formant 1, 2, and 3 relative energy.

12. (1) Harmonic difference first F0 harmonic (H1) to the energy of the second F0

harmonic from the third formant (H2).
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13. (1) Harmonic difference of the first F0 harmonic(H1) to the energy of the highest

harmonic from the third formant (A3).

The original publication [12] contains a better detail of the features. These features are

also smoothed across time using a symmetric moving average with a length of 3 frames

[12].

In addition to this set of features, some statistics, functions, and temporal features

are calculated at the recording level, which summarizes the mentioned features across

time, giving a single element [12]. The statistics applied, with the number of resulting

features in parenthesis, are:

1. (36) Arithmetic mean and coefficient of variation of all the 18 features.

2. (16) 20th percentile, 50th percentile, 80th percentile, range 20th to 80th percentile,

mean of the rising signal sections, standard deviation of the increasing signal sec-

tions, mean of the falling signal sections, and standard deviation of the falling

signal sections of the features loudness and pitch.

3. (4) Arithmetic mean of the features Alpha Ratio, Hammarberg Index, Spectral

slope 0-500 Hz, and Spectral slope 500-1500 Hz.

4. (1) Rate of loudness peaks.

5. (2) Mean length and the standard deviation of continuously voiced regions.

6. (2) Mean length and the standard deviation of unvoiced regions.

7. (1) Number of continuous voiced regions per second.

In total, the GeMAPS feature set contains 62 parameters when considering all the func-

tions, statistics, and time features.

Extension

The extended version contains some additional features, which are:

1. (4) Mel-Frequency Cepstral Coefficients 1-4.

2. (1) Spectral flux.
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3. (2) Bandwidth of the Formants 2 and 3.

Similar to the process done in GeMAPS, the next step is to calculate additional statis-

tics and functionals of these features across time.

1. (10) Arithmetic mean and coefficient of variation of features Mel-Frequency Cep-

stral Coefficients 1-4, and Spectral flux.

2. (4) Arithmetic mean and coefficient of variation of features Formant 2, 3 band-

width for voiced sections only.

3. (1) Arithmetic mean of features Spectral flux for unvoiced sections only.

4. (10) Arithmetic mean and coefficient of variation to features MFCC 1-4, Spectral

flux for voiced sections only.

5. (1) Equivalent sound level.

In total, the number of additional statistics and functionals contained in eGeMAPS

is 26. The authors of the eGeMAPS feature set [12] explain this set of feature in a more

detailed manner. When adding these 26 parameters and the 62 parameters contained in

GeMAPS, the grand total count of the number of parameters in eGeMAPS is 88.

4.2 Data Scaling

An essential step in the feature creation process is scaling the features used by the mod-

els. This step is beneficial since it is common to have features in different scales, which

can negatively impact the training process of neural networks. We apply data scaling

to all the dataset splits (train, validation, and test). Below, we explain the data scaling

techniques used across our approaches.

4.2.1 Range Scaling

This scaling technique can be used when the features are bounded by a specific range

that does not vary across samples and datasets. After defining an upper limit and a lower

limit, the range normalized value of a sample s, at time t , for the feature f is:

x̃s,t , f =
xs,t , f − lower bound

upper bound− lower bound
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4.2.2 Min-Max Scaling

A maximum and a minimum value are obtained from the training dataset for each fea-

ture across time and samples. These maximum and minimum values are then used as

the upper and lower bounds of the range scaling technique, respectively. Given the min-

imum value for the feature f , min f , and the maximum value, max f , the final value for

a sample s, at time t , for the feature f is:

x̃s,t , f =
xs,t , f −min f

max f −min f



Chapter 5

Automated Assessment

In this chapter, we explore the automated assessment of the task described in section

3.2.1. First, we describe questions and challenges that arose during this work. These

challenges led us to try many different approaches. We describe in detail the approaches

we found to be most successful. Finally, we briefly summarize some of those experi-

ments we tried that we did not include in the final set of results in section 6

5.1 Challenges

Throughout our work with depression-related tasks, we have noticed some important

challenges to keep in mind. In this section, we explain them. In our approaches (section

5.2) we mention how we expect them to solve one or more challenges.

5.1.1 Length of Samples

An important aspect that has to be considered is the length of the recordings. By observ-

ing table 3.1, it is clear that the datasets have a variety of lengths with average lengths

of more than 8 minutes. Having samples with these durations brings another level of

complexity, since using a whole recording as the input of a model, given the proposed

features, becomes a difficult task due to the length of the sequence.

5.1.2 Recording predictions

Moreover, if we split recordings into multiple segments, all the segments from a single

recording will have the same depression label and the model will make predictions at

the segment label. Since our interest lies in predicting the depression level for a com-

plete recording, which represents the current depression state of a person, a strategy to

aggregate the segment level predictions into recording/track level predictions has to be

used.

27
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5.1.3 Unbalanced Data

From section 3.1.3, its tables, and figures we know that the explored datasets contain un-

balanced classes. To be precise, there is a high concentration of labels on the lower end

of depression presence, while there are very few recordings from extremely depressed

individuals. Since labels do not resemble a uniform distribution, it is necessary to con-

sider solutions that consider this issue.

5.1.4 Limited Samples

An essential aspect of training a model for a specific task is to have enough samples

to generalize well on unseen data. In this case, we have ∼22 hours and ∼30 hours in the

AASS and DAIC-WOZ, respectively. However, the recordings have an average duration of

over 8 minutes. Therefore, each dataset has ’effectively’ less than 300 samples. For this

reason, a significant challenge is to explore existing alternatives to deal with a limited

amount of samples.

5.2 Approaches

This section outlines the different approaches used throughout our experiments. It is

important to note that the outputs of the models will be logistic units predicting binary

variables (for the IIDD task). The features and samples can vary across each of the ap-

proaches and, therefore, we will describe them for each approach.

There are some processes shared by all our approaches, spanning from pre-processing

to getting track-level predictions. Those processes are the following:

• Audio re-sampling. The recordings in both of the datasets are re-sampled to have

a sampling frequency of 16,000 hertz (Hz). This step is necessary since we found

some recordings to have higher sampling rates than the rest. We applied a down-

sampling process using the Sound eXchange (SoX) utility [41] for these record-

ings.

• Only participant speech. An important pre-processing step shared by all our ap-

proaches is that we remove all the speech that does not belong to the speaker

prior to the creation of any features. We do this by using the recording transcripts
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from the datasets. The processed recordings only contain audio from those sec-

tions spoken by the participant/interviewee.

• Logistic output (Binary classification). All of our approaches contain models

trained on the task IIDD (section 3.2.1) for all the items in the depression sever-

ity estimates of the AASS and DAIC-WOZ datasets. Therefore, the output could be

interpreted as representing the probability of presence/absence of each item (i.e.,

depressive symptom). As we showed in section 3.2.1, having this task as the ob-

jective helps reduce the prevalence of the challenge of unbalanced data (section

5.1.3), in some of the depression items data is close to being balanced.

• Majority Vote for recording-level predictions. Due to the long samples (see sec-

tion 5.1.1), we split all recordings into segments of varying length. This introduces

the secondary challenge of obtaining recording-level predictions from segment-

level predictions (see section 5.1.2). To obtain the prediction for a recording, we

use majority voting. This voting scheme is a frequently used strategy in auto-

mated depression detection models [47]: a majority vote is carried across the bi-

nary predictions for each of the segments. An example of the majority vote can

Figure 5.1: An Example of the majority vote.

This example corresponds to the heat map of the predictions of a recording that has been split
into 660 segments. Top row indicates the probability of a segment of being ’Depressed’ (Label=1)
and the bottom row correspond to that of being ’Not Depressed’ (Label=0). Each column cor-
responds to those predictions for a segment, when adding both probabilities (top and bottom
rows) the results is always 1 for any segment. It is clear that the predictions vary across seg-
ments, some are clearly predicted as ’Not Depressed’ (Label=0), some as ’Depressed’ (Label=1),
and some have similar probabilities for both classes. At the end of the majority vote process, the
prediction is 0 (Not Depressed). This prediction is correct since we know that the actual label,
marked by the red box, is also 0 (Not Depressed).
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by observed in image 5.1. This process follows a defined set of steps. First, a pre-

diction is obtained in each of the segments by selecting the class with the higher

predicted probability. Afterward, a majority vote is carried across the segments;

therefore, the most commonly predicted class will correspond to the final predic-

tion for the recording.

5.2.1 Models

Spectrogram CNN

Features & Samples This approach uses mel spectrograms, explained in section 4.1.2and

shown in figure 4.4, as the features. We create the mel spectrograms using a 20 millisec-

onds (ms) window, 20 ms steps, and 64 mel filter banks. The scaling technique used is

range scaling since the values of the mel spectrogram have a range from -80 decibels

(dB) to 0 dB. We use there as the lower and upper bounds, respectively. As a solution

to the length of samples challenge (section 5.1.1), recordings are split into segments.

One sample/segment is defined to be the mel spectrogram extracted from 4 seconds of

a recording. There is a step of 1 second from sample to sample, meaning there is an

overlap between contiguous samples.

Model Architecture In figure 5.2 we describe the main component of this network,

it consists of 3 parallel strided 2-dimensional convolutional layers, with different ker-

nel sizes, dropout [42] and batch normalization [21]. The outputs of the layers are flat-

tened and appended into a single 156-dimensional embedding. This embedding is sent

through a linear layer that transforms it into the desired output, two units, sent through

the final activation function (softmax). Recently, similar strided convolutional architec-

tures with parallel layers have been proposed for depression-based models with success

[10, 19]. The explained component follows a similar pattern.

Spectrogram CNN-LSTM

Features & Samples Similar to the Spectrogram CNN, this model uses mel spectro-

grams extracted from the recordings using a window of 20 ms and 20 ms steps, with
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64 mel filter banks applied. Even though we generate the features using the same pa-

rameters, the samples we use to train the models are different. In this case, one sam-

ple/segment corresponds to the spectrograms from 10 4-second chunks with steps of 1

second at a time, meaning that in total, one sample contains overlapping spectrograms

corresponding to 13 seconds of the recording. The is a step of 1 second between one

sample/segment and another.

Model Architecture This model builds on the Spectrogram CNN. We use the main

component from figure 5.2 across multiple spectrograms. We use the resulting embed-

dings as the input of an LSTM with a hidden state size of 64 with dropout, as we show in

figure 5.3. The output of the LSTM is sent through a fully connected layer that produces

the logits received by the last activation function (softmax).

eGeMAPS CNN

Features & Samples The features used in this approach are explained in section 4.1.3.

The eGeMAPS feature set suggests a list of low-level acoustic descriptors and a list of

functions/statistics to apply across time which removes the time dimension. The fea-

tures used in our approach correspond to the list of low-level descriptors extracted by

Figure 5.2: Spectrogram CNN component.

Each box represents a 2-d convolution followed by a ReLU activation function. All the convolu-
tions had a stride of (2, 2). (ch,k, p) represent the number of channels, kernel size, and padding,
respectively. Each convolutional layer has dropout and batch normalization. Strided convo-
lutional architectures with parallel layers have been previously used for depression tasks with
success [19, 10]. The proposed architecture follows a similar pattern.
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Figure 5.3: Complete Spectrogram CNN-LSTM architecture.

Complete architecture for the model Spectrogram CNN-LSTM. The CNN corresponds to the con-
volutional component explained in figure 5.2. The LSTM layer has a hidden state size of 64.

the OpenSMILE toolkit [11] from the eGeMAPS feature set before applying the func-

tionals across time that the authors suggest. The configuration defined in OpenSMILE

generates features with a step of 100 ms and a window of 600 ms. The features extracted

with the OpenSMILE toolkit are 23 in total (number of features in brackets): (1) Pitch,

(1) Jitter, (3) Formant 1, 2, and 3 frequency, (1) Formant 1 bandwidth, (1) Shimmer, (1)

Loudness, (1) Harmonics-to-noise ratio (HNR), (1) Alpha Ratio, (1) Hammarberg Index,

(2) Spectral Slope 0-500 Hz and 500-1500 Hz, (3) Formant 1, 2, and 3 relative energy,

(1) Harmonic difference H1-H2, (1) Harmonic difference H1-A3, (4) MFCC 1-4, and (1)

Spectral flux. After the extraction process, we have a sequence of frames for each of

the samples that we use in the model architecture explained in the following section.

The extracted features are then scaled using the min-max scaling technique. One sam-

ple/segment on this proposed approach corresponds to the eGeMAPS low-level descrip-

tors extracted from 15 seconds of audio. Samples have a step of 1 second between each

other.

Model Architecture This architecture is described in figure 5.4, and is exclusively used

with the eGeMAPS features. It contains 3 parallel layers of strided 1-D convolutional lay-

ers. After applying the convolutional layers, we append their outputs and are send them

into two fully connected layers with ReLU activation functions. The convolutional layers

and the two linear layers have dropout [42] and a batch normalization [21] components.

These components have varying parameters defined during the hyperparameter tuning
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Figure 5.4: eGeMAPS CNN architecture.

Architecture of the eGeMAPS CNN. Each box represents a 1-D convolution across time, with
a stride of 2. Fully connected layers have ReLU activation functions. (ch,k, p) represent the
number of channels, kernel size, and padding, respectively. Every convolutional and linear layer
has batch normalization and dropout.

stage. We add one last linear layer at the end of the network, which creates the logits that

we use in the last activation function (softmax).

eGeMAPS CNN-LSTM

Features & Samples This architecture uses the eGeMAPS features as the input, as ex-

plained in the previous model. We define a sample as the eGeMAPS features extracted

from 24 seconds of audio for this model. We split these features into 10 chunks, where

each chunk contains the features corresponding to 15 seconds of audio. There is a step

of 1 second between chunks.

Model Architecture The architecture proposed for this model is an extension of the

eGeMAPS CNN. We include the main component from the eGeMAPS CNN, figure 5.4,

as part of this model. Then, we use the output embeddings from that component as a

sequence of data that is fed into an LSTM. This LSTM has dropout and a hidden state

of size 64 (see figure 5.5 for more details). Finally, a fully connected layer receives the

output from the last step of the LSTM and produces the logits processed by the softmax

activation function.
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Figure 5.5: Complete eGeMAPS CNN-LSTM architecture.

Complete architecture for the model eGeMAPS CNN-LSTM. The CNN corresponds to the con-
volutional component explained in figure 5.4. The LSTM layer has a hidden state size of 64.

5.2.2 Voting Alternative

On section 5.2 we explained how we use majority voting for obtaining a recording level

prediction. Here, we propose one alternative to obtain the track-level prediction as an

additional solution to the recording-level prediction challenges from section 5.1.2. We

will also refer to majority voting as hard voting, borrowing the naming convention from

ensemble learning.

Soft Voting

As an alternative to majority voting or hard voting, we decided to use soft voting. The

main difference is that, in soft voting, the probabilities of all the segments are averaged,

and then a prediction is made. This naming convention (soft and hard voting) has been

borrowed from ensemble learning where it is common when considering the predic-

tions from multiple models to obtain a final prediction.

This is a brief example showing how the prediction from these two strategies might

differ. In this example we consider a recording that has been split into 3 segments and

we need to find out the prediction at the recording level, therefore we need to vote. We

know the probability predictions for each of the segments, which are:

Segment 1: P (Depressed) = 0.60, P (Not Depressed) = 0.40

Segment 2: P (Depressed) = 0.55, P (Not Depressed) = 0.45
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Segment 3: P (Depressed) = 0.10, P (Not Depressed) = 0.90

If we do a majority vote over the predictions of each segment, we first observe that

Segment 1 is predicted as Depressed, Segment 2 is predicted as Depressed, and Seg-

ment 3 is predicted as Not Depressed. Thus, looking at the majority vote across these

three segments, the track level prediction is Depressed. On the other hand, if we use the

soft voting approach we find that the average of the predicted probabilities across the

segments is P (Depressed) = 0.417, P (Not Depressed) = 0.583, by looking at this result

we find ourselves with a prediction of Not Depressed at the track level. Thus, we are in

a scenario where the prediction made by soft voting differs from that of majority voting

(hard voting).

5.3 Other Approaches

This section briefly mentions other approaches that were considered and tested for tack-

ling the challenges explained in the section 5.1. These approaches are not part of our

final results since we decided not to pursue them during our initial stages.

Data Augmentation To mitigate the possible impact of data scarcity 5.1.4 we applied

data augmentation. For those approaches using spectrograms, we implemented and

tested those augmentations presented in the SpecAugment paper [33] due to its success

in a variety of audio applications. Namely, those augmentations tested were frequency

masking, time masking, and time warping. Additionally, we implemented the MixUp

augmentation [51] for all our approaches. We tested these techniques on an earlier ver-

sion of the AASS dataset. By then, the improvements observed were little, and, thus, we

decided not to pursue this approach any further.

Noise Robust loss functions We hypothesized that having the same label for all the

segments in a recording might cause the problem of noisy labels. The reasoning behind

this is that even if a person is Depressed, they might not show strong and consistent

acoustic signals of depression across the recording. Thus, some of the segments should

ideally be labeled differently. The loss function tested for this was Generalized Crossen-

tropy [52]. Similar to data augmentation, we tested this loss function on a previous
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version of the AASS dataset. Preliminary results did not show any major performance

improvement.

Class weights To address the data imbalance problem left for some of the items of the

depression assessment scales, after applying the definition of the IIDD task, we tested

the usage of class weights in the loss functions used for training the models. Once again,

we tested class weights on an earlier version of the AASS dataset, and the preliminary

results did not show significant improvements.

Variable depression & voting thresholds This was another alternative to majority vot-

ing that we tested to solve the challenge of obtaining recording-level predictions 5.1.2.

The idea behind this strategy is to select the best combination for the depression and

voting thresholds. The depression threshold defines the probability required for a seg-

ment to be labeled as ’Depressed’ instead of selecting the highest probability. The vot-

ing threshold determines the proportion of the segments required to vote ’Depressed’

to predict ’Depressed’ at the recording level. In this scenario, we can represent the ma-

jority vote as having a depression threshold of 0.5 (i.e., When the predicted probability

of ’Depressed’ of a segment is 0.5 or more the segment is predicted to be ’Depressed’ )

and a voting threshold of 0.5 (i.e., The prediction for the recording is ’Depressed’ if 50%

or more of the total segments are predicted as ’Depressed’ ). An example of the F-Score

surface created by varying both thresholds is available in figure 5.6. We observed from

this approach that even though it was possible to perform better than the majority vote

in some scenarios, on average, the majority vote has a more consistent behavior. In

contrast, it was common to choose a voting threshold and a depression threshold that

caused more harm than benefit due to overfitting.
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Figure 5.6: F1-Score when varying depression and voting threshold.

The plane at F1-Score equal to 0.8 corresponds to the F1-Score obtained by the majority voting
technique. It can be observed how the F1-Score varies with changes on the thresholds. In this
example, The figure also shows that the majority vote technique does not achieve the highest F1
score.
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Evaluation

6.1 Training details

As part of our experiments, we trained the approaches presented in section 5.2 on the

task of IIDD for each of the items of the depression assessment instruments for datasets

AASS and DAIC-WOZ. All models were trained using the Adam optimizer [23] for 25

epochs, with parameters β1:0.9, β2: 0.999, α: 0.0005. We also used L2 regularization

[26] in all our experiments. Additionally, we applied a random search of hyperparame-

ters for deciding on the exact parameters of the batch normalization [21] and dropout

[42] components in the layers of the proposed models. We used the random seed 1234

across all our experiments for replicability purposes.

6.2 Results

After training the models, we obtain track-level predictions using the majority vote ap-

proach explained at the start of section 5.2. We will explore these results in each of the

datasets separately in the upcoming sections.

6.2.1 Models

Autobiographical Adult Speech Samples (AASS)

The results of our approaches, when trained on the AASS dataset, can be observed in

table 6.1. At first glance, we can see that the performance across the different depression

items (IIDD task) is varied. Moreover, no single ’optimal’ approach/model outperforms

all the other approaches when looking at the F1-score.

When looking at individual items, those where our acoustic-based approaches can

more effectively detect depressive symptoms are (8) Inability to feel (F1-score of 0.8),

(9) Pessimistic thoughts (F1-score of 0.81), and (10) Suicidal thoughts (F1-score of 0.9),

38
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Table 6.1: Track level F1 Scores of the models trained on each of the individual items
of the AASS dataset. Each cell contains metrics in the format: Weighted F1 Score / F1
Score (ND) / F1 Score (D). Last column corresponds to a dummy predictor that always
predicts the most common class. Numbers in bold indicate the highest weighted F1-
scores obtained for each of the depression items.

AASS
MADRS Item /

Question
Spectrogram

CNN
Spectrogram
CNN LSTM

eGeMAPS
CNN

eGeMAPS
CNN LSTM

Dummy
Predictor

(1) Apparent sadness 0.36/0.32/0.43 0.61/0.71/0.43 0.66/0.74/0.53 0.76/0.81/0.67 0.47/0.76/0.00
(2) Reported sadness 0.62/0.60/0.64 0.71/0.73/0.70 0.61/0.67/0.56 0.71/0.75/0.67 0.36/0.00/0.69
(3) Inner tension 0.67/0.63/0.70 0.65/0.53/0.74 0.69/0.57/0.79 0.69/0.57/0.79 0.42/0.00/0.73
(4) Reduced sleep 0.67/0.67/0.67 0.76/0.76/0.76 0.74/0.83/0.62 0.75/0.81/0.67 0.42/0.73/0.00
(5) Reduced appetite 0.49/0.65/0.00 0.65/0.79/0.22 0.62/0.75/0.20 0.55/0.73/0.00 0.66/0.86/0.00
(6) Conc. difficulties 0.41/0.27/0.59 0.66/0.72/0.59 0.63/0.76/0.46 0.71/0.75/0.67 0.42/0.73/0.00
(7) Lassitude 0.33/0.46/0.13 0.42/0.40/0.45 0.57/0.67/0.40 0.67/0.72/0.59 0.47/0.76/0.00
(8) Inability to feel 0.67/0.72/0.59 0.52/0.62/0.38 0.80/0.86/0.71 0.65/0.76/0.46 0.47/0.76/0.00
(9) Pessimistic thoughts 0.76/0.78/0.74 0.62/0.60/0.64 0.81/0.82/0.80 0.81/0.82/0.80 0.36/0.00/0.69
(10) Suicidal thoughts 0.70/0.74/0.53 0.75/0.86/0.29 0.90/0.94/0.75 0.62/0.69/0.31 0.72/0.89/0.00

scores by eGeMAPS CNN and (9) also achieved by eGeMAPS CNN LSTM. In general,

there is a clear improvement for most of the items when comparing our approaches

against the dummy predictor, except for item (5) Reduced appetite, where none of the

models achieve an increase in the weighted F1-score.

Distress Analysis Interview Corpus - Wizard of OZ (DAIC-WOZ)

The results for the DAICWOZ were also obtained and are available in table 6.2. Over-

all, we can observe that the results vary across the depression items. It is also noticeable

that the samples on this dataset represent a bigger challenge when compared to the pre-

vious dataset, having, on average, lower performances according to the F1-score. How-

ever, when compared to the dummy predictor, our models increase the performance

throughout all the items of the PHQ-8 questionnaire.

6.2.2 Voting Alternatives

Soft Voting

After applying soft voting on the results obtained when training the model, as explained

in section 5.2.2, we obtain the results that we show in this section.



40

Table 6.2: Track level F1-Scores of the models trained on each of the individual items of
the DAIC-WOZ dataset. Each cell contains metrics in the format: Weighted F1-Score /
F1-Score (ND) / F1-Score (D). Last column corresponds a dummy predictor that always
predicts the most common class.

DAICWOZ
PHQ-8 Item /

Question
Spectrogram

CNN
Spectrogram
CNN LSTM

eGeMAPS
CNN

eGeMAPS
CNN LSTM

Dummy
Predictor

(1) Little interest 0.51/0.54/0.49 0.44/0.47/0.41 0.54/0.60/0.49 0.59/0.60/0.58 0.37/0.00/0.70
(2) Feeling down 0.45/0.35/0.55 0.47/0.38/0.55 0.61/0.51/0.70 0.43/0.38/0.47 0.37/0.00/0.70
(3) Trouble sleeping 0.49/0.27/0.64 0.55/0.47/0.62 0.45/0.22/0.62 0.51/0.32/0.65 0.44/0.00/0.74
(4) Feeling tired 0.64/0.34/0.77 0.59/0.22/0.75 0.56/0.09/0.76 0.53/0.14/0.70 0.57/0.00/0.82
(5) Poor appetite 0.55/0.26/0.72 0.46/0.39/0.49 0.48/0.29/0.59 0.54/0.43/0.61 0.50/0.00/0.78
(6) Self-disappointment 0.44/0.18/0.66 0.54/0.44/0.63 0.46/0.40/0.52 0.42/0.13/0.67 0.37/0.00/0.70
(7) Conc. difficulties 0.52/0.57/0.45 0.52/0.51/0.53 0.60/0.69/0.48 0.57/0.68/0.44 0.42/0.73/0.00
(8) Slow/Agitated 0.61/0.75/0.28 0.68/0.80/0.37 0.66/0.79/0.36 0.61/0.77/0.23 0.60/0.83/0.00

Autobiographical Adult Speech Samples (AASS): Table 6.3 contains the results for the

AASS when calculating the predictions using the soft voting alternative. There are some

changes when compared with the results obtained previously with the majority/hard

vote. Figures 6.1 and 6.2 contain visualizations that make the comparison between vot-

ing schemes and approaches easier. We can not claim that soft voting is a better alter-

native since sometimes it improves the F1 score, and sometimes it does not. We want to

highlight the performance of this voting alternative in one item where there were posi-

tive changes on the F1 score. Item (9) Pessimistic thoughts obtains the highest weighted

F1-score using the eGeMAPS CNN approach with a value of 0.86, an improvement over

the previous score of 0.81 obtained with hard voting. Additionally, there are some ex-

amples where there is an improvement within the results of a model. An example is the

behavior of question (6) Concentration difficulties, where a weighted F1-score of 0.69 is

obtained with soft voting using the eGeMAPS CNN approach, in contrast to the score

obtained with hard voting (0.63).

Distress Analysis Interview Corpus - Wizard of OZ (DAIC-WOZ): Table 6.4 shows the

results of this alternative. Like the patterns evidenced on the AASS dataset, soft voting

obtains a better performance in some occasions. There are no clear improvements in the

F1 score across the questions of this questionnaire. Importantly, soft voting manages to

obtain the highest F1 scores across multiple items, such as (1) Little interest (eGeMAPS

CNN LSTM), (3) Trouble sleeping (Spectrogram CNN and Spectrogram CNN LSTM), and
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Figure 6.1: AASS F1 Score comparison for hard and soft voting, questions 1 to 5.
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Figure 6.2: AASS F1 Score comparison for hard and soft voting, questions 6 to 10.
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Table 6.3: Track level F1-Scores of the models trained on each of the individual items
of the AASS dataset when using soft voting. Each cell contains metrics in the format:
Weighted F1-Score / F1-Score (ND) / F1-Score (D).

AASS
MADRS Item /

Question
Spectrogram

CNN
Spectrogram
CNN LSTM

eGeMAPS
CNN

eGeMAPS
CNN LSTM

(1) Apparent sadness 0.36/0.32/0.43 0.61/0.71/0.43 0.76/0.81/0.67 0.62/0.69/0.50
(2) Reported sadness 0.62/0.60/0.64 0.71/0.73/0.70 0.61/0.67/0.56 0.69/0.77/0.63
(3) Inner tension 0.62/0.56/0.67 0.65/0.53/0.74 0.69/0.57/0.79 0.69/0.57/0.79
(4) Reduced sleep 0.67/0.67/0.67 0.76/0.76/0.76 0.74/0.83/0.62 0.71/0.77/0.63
(5) Reduced appetite 0.49/0.65/0.00 0.65/0.79/0.22 0.62/0.75/0.20 0.55/0.73/0.00
(6) Conc. difficulties 0.53/0.55/0.50 0.66/0.72/0.59 0.69/0.79/0.57 0.71/0.75/0.67
(7) Lassitude 0.33/0.46/0.13 0.42/0.40/0.45 0.51/0.64/0.29 0.53/0.55/0.50
(8) Inability to feel 0.79/0.87/0.67 0.58/0.73/0.33 0.75/0.83/0.62 0.70/0.79/0.57
(9) Pessimistic thoughts 0.67/0.67/0.67 0.62/0.60/0.64 0.86/0.86/0.86 0.81/0.82/0.80
(10) Suicidal thoughts 0.70/0.74/0.53 0.75/0.86/0.29 0.90/0.94/0.75 0.56/0.58/0.44

(4) feeling tired (Spectrogram CNN). Once again, there are changes in the performance

across multiple items indicating that the tested voting schemes can obtain different re-

sults.

Table 6.4: Track level F1-Scores of the models trained on each of the individual items of
the DAIC-WOZ dataset when using soft voting. Each cell contains metrics in the format:
Weighted F1-Score / F1-Score (ND) / F1-Score (D).

DAICWOZ
PHQ-8 Item /

Question
Spectrogram

CNN
Spectrogram
CNN LSTM

eGeMAPS
CNN

eGeMAPS
CNN LSTM

(1) Little interest 0.53/0.55/0.52 0.55/0.38/0.69 0.53/0.63/0.44 0.59/0.61/0.57
(2) Feeling down 0.49/0.55/0.44 0.47/0.38/0.55 0.49/0.34/0.62 0.48/0.47/0.49
(3) Trouble sleeping 0.55/0.44/0.63 0.55/0.47/0.62 0.51/0.37/0.61 0.50/0.31/0.63
(4) Feeling tired 0.64/0.34/0.77 0.59/0.22/0.75 0.56/0.09/0.76 0.58/0.10/0.79
(5) Poor apetite 0.51/0.14/0.71 0.46/0.39/0.49 0.46/0.25/0.58 0.47/0.42/0.50
(6) Self-disappointment 0.44/0.18/0.66 0.50/0.44/0.55 0.46/0.40/0.52 0.42/0.13/0.67
(7) Conc. difficulties 0.59/0.61/0.57 0.52/0.51/0.53 0.55/0.60/0.49 0.55/0.67/0.40
(8) Slow/Agitated 0.60/0.77/0.17 0.68/0.80/0.37 0.64/0.78/0.30 0.60/0.75/0.22

Understanding the improvements: To understand how can the change from major-

ity/hard vote to soft vote brings an improvement, we have found an example where
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Figure 6.3: DAIC-WOZ F1 Score comparison for hard and soft voting, questions 1 to 4.
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Figure 6.4: DAIC-WOZ F1 Score comparison for hard and soft voting, questions 5 to 8.
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Figure 6.5: Example of the prediction probabilities of a recording (sample) labelled dif-
ferently when using majority vote and soft vote for item (3) Inner tension of MADRS on
the eGeMAPS CNN model.

Probabilities of predicting 1 (Depressed) and 0 (Not Depressed). In this example, is it clear that
the predicted probabilities across most of the segments are close to 0.5, however, some specific
segments show signals of Depression and obtain a high predicted probability for that class. How-
ever, the final prediction using majority/hard vote is wrong (0 - Not Depressed) and using soft
vote is correct (1 - Depressed)

the prediction changes between voting schemes. Figure 6.5 contains the visual repre-

sentation of the predicted probabilities of the segments of a recording. In the figure,

the highest predicted probabilities belong to label 1 (Depressed). However, in most of

the recording segments, the model is not that confident when it predicts and estimates

probabilities close to 0.5. When applying the majority/hard vote, the predicted class is 0

(Not Depressed). When using the soft vote the prediction is 1 (Depressed). The soft vote

strategy makes the correct prediction due to the influence of higher predicted probabil-

ity segments in the 1 (Depressed) class.

The change from majority voting to soft voting does not always bring improvements.

Figure 6.6 shows another example of a recording with conflicting predictions between

majority/hard vote and soft voting. This time around, the model predicts much more

confidently (higher probabilities), even when the predictions are incorrect. After apply-

ing the majority/hard voting across the segments, the prediction turns out to be 1 (De-

pressed), while soft voting predicts 0 (Not Depressed). In this case, the majority/hard

vote obtains the correct prediction.
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Figure 6.6: Example of the prediction probabilities of a recording (sample) labelled dif-
ferently when using majority vote and soft vote for item (1) Apparent sadness of MADRS
on the eGeMAPS CNN model.

Probabilities of predicting 1 (Depressed) and 0 (Not Depressed). In this example, the model con-
fidently predicts that some segments have a high propability of No Depressed, while others get
predicted a high probability of Depressed. In this scenario, the final prediction using major-
ity/hard vote is correct (1 - Depressed) and using soft vote is wrong (0 - Not Depressed)



Chapter 7

Conclusion

We have introduced and explored a new task in the field of automated depression as-

sessment from speech, where the aim is to automatically predict the presence of indi-

vidual depressive symptoms as defined by clinical depression estimation instruments.

We do this by using neural network architectures whose inputs are the acoustic features

of speech signals, i.e., paralinguistic characteristics of speech.

Our experiments show interesting and varied results when looking at individual

items from clinician-rated and self-rated depression assessment instruments. From

our results, we observed that each of the proposed approaches has its strengths and

weaknesses. In summary, most of our methods obtain better performance than an em-

pirical majority-based baseline on almost all the items of both depression assessment

tools. In general, specific items from questionnaires, such as inability to feel, pessimistic

thoughts, and suicidal thoughts, achieved better performances overall with one of our

model architectures. Other items, such as reduced appetite, were not easily detectable

with our experiments and are, most likely, difficult to predict using acoustic features

from speech.

Throughout our approaches, we also tested two different alternatives for aggregat-

ing segment-level predictions into recording-level predictions on each of the symptoms.

As part of our results, we show that both strategies, majority/hard voting, and soft vot-

ing, obtain similar performance. After analyzing specific examples, it was clear that their

results are inherently bound to perform differently depending on the segment-level pre-

dictions.

7.1 Future work

Depressive disorders are and will continue to be a challenge for humanity. Our work

contributes to the early detection of depressive symptoms, as defined in depression

assessment questionnaires. However, it also enables opportunities for future progress.

48
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Some areas to explore are:

• Extend the proposed binary classification task into more categories that bring

more information about each specific item. For example, categories might indi-

cate mild, moderate, or severe presence of a symptom.

• Use verbal and video features for the proposed task of depression detection on in-

dividual items from depression assessment instruments. Multimodal approaches

can clarify the complementary (or substitutable) nature of speech acoustics, ver-

bal content, and video for detailed depressive assessment while improving the

results obtained in this work.

• Use the predictions obtained for the items of the questionnaires as an intermedi-

ate step that can help improve depression detection or depression severity esti-

mation as a whole while still having the added benefits of explainability brought

by predicting all the items in the depression assessment instruments.

• Try more alternatives for the process of aggregating segment-level predictions

into track-level predictions. Using majority/hard voting or soft voting has shown

to be a good approach. However, it is a simple method that, when replaced, might

bring improvements in the overall results.

• Predicting the individual scores obtained for self-rated and clinician-rated de-

pression assessment scales for samples assessed with both instruments. Doing so

would give a better understanding of which type of scales are more predictable on

the same samples. Results from such an approach would provide a good compar-

ison between the performance on each scale. Also, this approach would provide

useful information about the presence of more symptoms.
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