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ABSTRACT 
 

Species distribution models (SDMs) are important tools for predicting changes in 

the distribution and impact of invasive species due to climate change. In this thesis, I 

developed and applied SDMs predicting the abundance of Membranipora membranacea, 

a bryozoan invasive to kelp beds in the northwest Atlantic Ocean (NWA). With a large, 

compiled dataset, I employed a multimodel inference approach to select relevant 

predictor variables for SDMs for M. membranacea, and developed a conceptual 

framework from my results to guide variable selection for SDMs of other organisms 

(Chapter 2). I then constructed SDMs predicting the abundance of M. membranacea in 

the NWA (Chapter 3). The future abundance distribution of the bryozoan depended on 

the magnitude of climate change and possible invasions of M. membranacea from new 

source populations. My results are applicable to the management of M. membranacea and 

kelp beds in the NWA, and to invasive species and SDMs generally. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Background 
 

Over evolutionary time scales, species are generally confined to a specific 

geographic range that they have evolved to inhabit, to which they are termed “native” 

(Webb 1985, Pyšek et al. 2004). However, through human-mediated means, organisms 

can sometimes become established in new areas as non-native species (Richardson et al. 

2011, Jeschke et al. 2014, Gilroy et al. 2017). Invasive species are a subset of non-native 

species that exert negative impacts on organisms and ecosystems in their introduced 

range (Colautti & MacIsaac 2004, Convention on Biological Diversity 2008, Richardson 

et al. 2011). Invasive species affect their invaded ecosystems through numerous 

mechanisms (Ehrenfeld 2010; see also section 2.1 of this thesis), which are often linked 

to an increase in the abundance of the invader in the absence of natural competitors or 

predators due to a lack of shared evolutionary history between the invader and recipient 

biological community (David et al. 2017). To date, biological invasions have had a 

devastating impact globally on the biodiversity and function of ecosystems (Ricciardi & 

MacIsaac 2011, Simberloff et al. 2013, Gallardo et al. 2016) and the services they 

provide to humans (Charles & Dukes 2008, Katsanevakis et al. 2014, Vilà & Hulme 

2017). Invasions are expected to increase in frequency and impact in the future due to 

climate change (Rahel & Olden 2008, Hellmann et al. 2008, Mainka & Howard 2010, 

Rehage & Blanchard 2016, Hulme 2017, Meyerson et al. 2019). 
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Global governance structures and the international scientific community have 

recognized the importance of developing strategies for managing biological invasions 

(Lodge et al. 2006, Convention on Biological Diversity 2010, UN 2015, Giakoumi et al. 

2019). Examples of strategies employed to detect and prevent invasions, wherever 

possible, include ballast water treatment (Bax et al. 2003, Scriven et al. 2015, Holbech & 

Pedersen 2018), border searches (Hulme 2006, Simberloff 2014), and DNA-based 

monitoring (Porco et al. 2013, Darling et al. 2017). Established invasive species have 

been controlled through methods such as biological control (Hoddle 2004, Messing & 

Wright 2006, Heimpel & Mills 2017), physical removal and culling (Parkes & Panetta 

2009, Simberloff 2014), containment (Forrest et al. 2009, Robertson et al. 2020), and 

protection of native ecosystems and species (Giakoumi et al. 2016, 2019, Epstein & 

Smale 2017). Regardless of the employed strategies, knowledge of both the current range 

of an invasive species and its projected future range under climate change is essential for 

informing prevention and management (Srivastava et al. 2019). 

Species distribution models (SDMs) use data on species occurrence or abundance 

and a set of environmental or biotic predictor variables to generate correlative 

relationships (although, more rarely, mechanistic approaches are also employed; 

Dormann et al. 2012) which can predict the distribution of organisms in space and time 

(Elith & Leathwick 2009, Guisan et al. 2017). With broad accessibility of the necessary 

data (Guisan et al. 2017) and software (Jarnevich et al. 2015), species distribution 

modelling has become a widely used tool for predicting the present and future 

distribution of organisms (Guisan & Thuiller 2005, Elith & Leathwick 2009, Franklin 

2013), and is thus commonly applied to invasive species (Jeschke & Strayer 2008, 
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Srivastava et al. 2019). However, despite their ease of application, the utility of SDMs as 

an aid to invasive species management, or any other application for that matter, relies on 

model accuracy (Pearson 2007). The accuracy of SDMs can be affected by many factors, 

including data quality (Robinson et al. 2011), the appropriateness of the applied model 

(Jarnevich et al. 2015), and the context in which the model is applied (e.g. extent of 

extrapolation; Elith & Leathwick 2009, Heikkinen et al. 2012). An important factor that 

can be overlooked is the selection and use of appropriate predictor variables (Barbet‐

Massin & Jetz 2014, Fourcade et al. 2018). Multiple studies have provided 

recommendations on various aspects of predictor selection for SDMs (Synes & Osborne 

2011, Williams et al. 2012, Barbet‐Massin & Jetz 2014, Petitpierre et al. 2017, Fourcade 

et al. 2018), but a general framework guiding the selection of predictors for SDMs is 

lacking. Therefore, despite the status of SDMs as one of the most frequently used 

modelling techniques in the ecological literature, there are still knowledge gaps to be 

addressed. 

1.2 Study system 
 

Membranipora membranacea is a invasive bryozoan, a small invertebrate which 

forms colonies composed of multiple semi-autonomous units called zooids (Ryland 

2005). Native to Europe and the west coast of North America (Schwaninger 1999, 2008), 

M. membranacea was introduced to the Gulf of Maine in 1987 (Lambert 1990) and has 

subsequently spread throughout the northwest Atlantic Ocean (NWA), as far north as 

southern Labrador (Caines & Gagnon 2012). The bryozoan grows on the blades of native 

kelps in the region, compromising their structural integrity (Krumhansl et al. 2011) and 

causing them to break off when the kelp is exposed to strong waves (Lambert et al. 1992, 



4 

 

Scheibling & Gagnon 2009). Kelp populations in the NWA have sustained substantial 

losses as a result of colonization by M. membranacea (Lambert et al. 1992, Scheibling & 

Gagnon 2009, Filbee-Dexter et al. 2016), which is concerning due to the importance of 

kelps as a keystone species providing habitat (Gotceitas et al. 1995, Christie et al. 2009, 

Teagle et al. 2017) and food (Krumhansl & Scheibling 2012, Filbee-Dexter & Scheibling 

2012, Wernberg et al. 2019) to a wide array of organisms. Management options for M. 

membranacea are limited; for example, the opportunity to control the establishment and 

spread of the bryozoan has passed, as it is long-established and widespread in the NWA. 

For the same reason, its eradication through physical removal or other means would 

require an impossibly gargantuan effort to implement. However, estimates of the present 

and future distribution of the bryozoan could help predict future spatial patterns of the 

impact of the bryozoan, as well as patterns of spread to currently unoccupied regions. 

These predictions could inform management actions such as the placement of marine 

protected areas (MPAs) for kelp (e.g. by avoiding placing MPAs in areas anticipated to 

be highly impacted by the bryozoan; sensu Giakoumi et al. 2016).  

1.3 Objectives 
 

The main objective of my thesis is to construct and employ SDMs to estimate the 

current and future distribution of the invasive species M. membranacea in the NWA. In 

Chapter 2, I lay the foundation for an SDM for M. membranacea by compiling the largest 

available dataset of observations of abundance and potential predictor variables and 

comparing multiple candidate models to select the optimal set of predictors for use in an 

SDM. I also use my analysis as the foundation for a conceptual framework to guide 

variable selection in future species distribution modelling studies. In Chapter 3, I 
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construct an SDM for M. membranacea based on the results of my analysis in Chapter 2, 

and project the model in the NWA under present and future climate scenarios. I also 

investigate the evidence for a shift in the relationship of the bryozoan to its predictor 

variables over time within the NWA, and the potential effect of an additional invasion of 

M. membranacea from a new source population. Lastly, in Chapter 4, I synthesise my 

findings from Chapters 2 and 3 and discuss their implications for M. membranacea and 

for SDMs and their application to invasive species in general.
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CHAPTER 2  

 

VARIABLE SELECTION FOR SPECIES 

DISTRIBUTION MODELS: A CASE STUDY WITH 

AN INVASIVE MARINE BRYOZOAN1 
 

2.1 Abstract 
 

Invasive species in marine environments constitute a major ecological threat that 

necessitates management action. Management of marine invasive species can be 

informed by using species distribution models (SDMs) to predict their range and potential 

impact. However, the accuracy and utility of SDMs can be compromised when predictor 

variables are selected without careful consideration of their ecophysiological relevance to 

the focal organism. I conducted an in-depth examination of the variable selection process 

by evaluating predictors to be used in SDMs for Membranipora membranacea, an 

ecologically significant marine invasive species with a complex lifecycle, as a case study. 

Using an information-theoretic and multi-model inference approach based on generalized 

linear mixed models, I assessed multiple environmental variables (depth, kelp density, 

kelp substrate, temperature, and wave exposure) in terms of their relationships, and 

relative and absolute importance as predictors of the abundance of multiple life stages of 

M. membranacea. I found that the relative importance of a predictor, the metric 

calculated to represent a predictor, and whether a predictor was proximal or distal were 

 
1 Pratt CJ, Denley D, Metaxas A. Variable selection for species distribution models: a case study with an 

invasive marine bryozoan. Oecologia. Submitted May 7, 2021. 

 

I collected and analysed field data, developed the study design, conducted data analysis, and wrote the 

manuscript. My co-authors Anna Metaxas and Danielle Denley collected field data, supervised the study 

design and analysis, and edited the manuscript. 
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important considerations in the variable selection process. Data constraints (e.g. sample 

size, lack of proximal predictor data) may inhibit accurate assessment of predictor 

variables during variable selection. Importantly, my results suggest that species-

environment relationships derived from small-scale studies can inform variable selection 

for SDMs at larger spatiotemporal scales. I developed a conceptual framework for 

variable selection for SDMs which can be applied to most contexts of species distribution 

modelling, but particularly those with several candidate predictors and a large dataset. 

2.2 Introduction 
 

Invasive species are a major threat to biodiversity (Bax et al. 2003, Millennium 

Ecosystem Assessment 2005, Halpern et al. 2008, Molnar et al. 2008, IPBES 2019), 

negatively affecting invaded ecosystems through different mechanisms, including 

competitive displacement of native species (Robinson et al. 2005, Cheng et al. 2009, 

Ekesi et al. 2009), habitat modification (Crooks 2002, Cuddington & Hastings 2004, 

Wallentinus & Nyberg 2007) and alteration of food webs (Kimbro et al. 2009, Miehls et 

al. 2009, David et al. 2017). The impacts of invasive species can also spread as they 

expand their invasive range (Sorte et al. 2010). As a result, biological invasions can 

reduce ecosystem services (Charles & Dukes 2008, Katsanevakis et al. 2014, Walsh et al. 

2016) and have negative socioeconomic impacts (Streftaris & Zenetos 2006, Pejchar & 

Mooney 2009). Eradication is a viable option for many terrestrial invasive species 

(Parkes & Panetta 2009, Robertson et al. 2017); however, high environmental 

connectivity in marine environments and long-range dispersal (Geburzi & McCarthy 

2018) make marine invasive species difficult to eradicate or control (Thresher & Kuris 

2004, Molnar et al. 2008, Giakoumi et al. 2019). Although management options are 
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limited, particularly for widespread marine invasive species (Forrest et al. 2006, 

Lehtiniemi et al. 2015), impacts from such species can still be mitigated through 

protection of native organisms (Giakoumi et al. 2016, Epstein & Smale 2017) and by 

enacting measures to delay or prevent secondary spread to new areas (Ojaveer et al. 

2015).  

Species distribution models (SDMs) are useful tools for informing management of 

marine invasive species by predicting the current distribution and future spread of the 

invader (Elith et al. 2010, Mainali et al. 2015, Battini et al. 2019, D’Amen & Azzurro 

2020). However, although the performance of these models is contingent on the use of 

environmental predictors with ecophysiological relevance to the modelled organism, 

many species distribution modelling studies do not fully address this requirement (Elith 

& Leathwick 2009, Austin & Van Niel 2011, Synes & Osborne 2011). The accuracy and 

utility of SDMs can be compromised when commonly available predictors are used 

without ecological justification (Austin 2007, Elith & Leathwick 2009), linear 

relationships are assumed and fit for predictors which may affect species distribution 

non-linearly (Austin 2007, Santika & Hutchinson 2009), and predictors are not 

considered at appropriate spatial (Dormann 2007) or temporal (Mod et al. 2016, Gardner 

et al. 2019) scales or in terms of the appropriate metric (DeWeber & Wagner 2018). 

Inadequate knowledge of variable importance may also impair the selection of relevant 

and informative predictor variables (Austin & Van Niel 2011). Additionally, for 

organisms with complex life cycles (sensu Wilbur 1980), the predictive performance and 

management applicability of SDMs can be diminished if they do not consider multiple 

life stages, which may each respond to different predictors (Costa et al. 2015, Asch & 
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Erisman 2018). Therefore, variable selection involving a detailed investigation of the 

relationships between the focal species and its potential predictors, based on existing 

knowledge and ecological theory, should be undertaken prior to the construction of an 

SDM. Here, I provide an example of this process of variable selection for a well-studied 

and ecologically significant marine invasive species with a complex life cycle.  

Membranipora membranacea is a widely distributed, invasive bryozoan 

inhabiting kelp bed ecosystems in the northwest Atlantic Ocean. Native to Europe and the 

western coast of North America (Schwaninger 2008), the bryozoan was first observed in 

the northwest Atlantic in the Gulf of Maine in 1987 (Berman et al. 1992) and has since 

spread to occupy a large range including Nova Scotia (Watanabe et al. 2010), coastal 

Newfoundland and southern Labrador (DFO 2011, Caines & Gagnon 2012), and the Gulf 

of St. Lawrence (Denley et al. 2019b). The bryozoan has an annual, complex lifecycle in 

which planktonic larvae settle out of the water column (Saunders & Metaxas 2007) and 

grow to form large, encrusting colonies on kelps (Berman et al. 1992, Scheibling et al. 

1999). Encrustation by M. membranacea weakens the tissue of kelp blades (Krumhansl et 

al. 2011) increasing their susceptibility to breakage during periods of high wave action 

(Lambert et al. 1992, Scheibling & Gagnon 2009). Consequently, M. membranacea has 

been linked to large-scale declines in kelp populations in its invasive range (Filbee-

Dexter et al. 2016). Since the abundance of the bryozoan increases with temperature, its 

negative impact on kelp bed ecosystems is predicted to increase with ocean warming due 

to climate change (Saunders et al. 2010, Denley et al. 2019a). Because of the ecological 

and economic importance of kelp bed ecosystems (Wernberg et al. 2019), robust SDMs 
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are needed for the abundance of M. membranacea in the northwest Atlantic to inform 

critical management strategies.  

Variable selection for M. membranacea is facilitated by past studies that have 

identified both environmental factors and biological characteristics of kelp beds affecting 

the abundance of multiple life stages (newly settled and adult colonies) of the bryozoan in 

its invasive range. Sea water temperature can affect the abundance of both newly settled 

and adult colonies (Saunders & Metaxas 2007, Scheibling & Gagnon 2009, Caines & 

Gagnon 2012). Wave exposure has been shown to have a negative quadratic relationship 

with the abundance of newly settled colonies (Caines & Gagnon 2012). Wave exposure 

may also affect the abundance of adults, as flow velocity affects adult colony abundance 

(Pratt 2008, Arkema 2009). Depth has been positively correlated with the abundance of 

newly settled colonies in multiple studies (Saunders & Metaxas 2007, Denley & Metaxas 

2017b). Lastly, the species of kelp on which M. membranacea grows can influence the 

abundance of both settler and adult life stages (Saunders & Metaxas 2009b), and the 

relative abundance of kelp species within mixed species kelp beds may affect the 

abundance of adult colonies of M. membranacea by altering its population dynamics 

(Denley et al. 2019a).  

Although past research has identified multiple factors affecting the abundance of 

M. membranacea, existing knowledge is insufficient to select the most relevant predictors 

for use in SDMs for this species. Firstly, there is a mismatch between the large spatial 

(>2000 km) and temporal (decadal) scales of the invasion of M. membranacea and those 

of these past studies, which were conducted over limited temporal (n = 2-3 years) and 

geographic (<50 km) ranges. Additionally, the relative importance of the predictors of 
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abundance of M. membranacea, as well as the absolute importance (sensu Galipaud et al. 

2017) of some candidate predictors (e.g. wave exposure and kelp density), have not been 

established. Lastly, multiple details regarding the effects of temperature and wave 

exposure on the abundance of newly settled and adult colonies of the bryozoan are not 

well-established, including: 1) the temporal windows over which these metrics should be 

considered; 2) the shapes of the potential relationships between wave exposure and the 

abundance of M. membranacea; and 3) whether the mean or thermal integral (cumulative 

sum) of temperature over a given temporal window is the superior metric for prediction.  

Although SDMs should ideally employ the most ecologically relevant, proximal 

predictors, data for these are often unavailable at the requisite spatiotemporal scales. For 

example, in the case of benthic marine organisms, in situ temperature at depth (IST) is 

often an ecologically relevant proximal predictor. However, because of limited 

availability of IST data, the distal predictor sea surface temperature (SST) is often the 

only option for large-scale modelling efforts (Stobart et al. 2016). When SST is used in 

SDMs where observations have been collected from multiple depths, depth should also be 

incorporated into the models to account for depth-based temperature variability (Duffy & 

Chown 2017). However, SST and depth may not be an adequate approximation of IST in 

all cases and relationships are not consistent in space and time (Castillo & Lima 2010, 

Stobart et al. 2016).  

In this study, I demonstrate a detailed process of predictor variable selection that 

is often absent from the current SDM literature, using the invasive bryozoan M. 

membranacea as a case study. Specifically, I model the relationships between two life 

history stages (newly settled and adult colonies) of the bryozoan and their potential 
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predictors using the largest available dataset to date of observations throughout the 

northwest Atlantic Ocean. After using past findings and ecological reasoning to identify 

relevant predictor variables and their appropriate metrics, I take an information-theoretic, 

multi-model inference approach to fulfill the following objectives: 1) determine the 

optimal metrics and most relevant temporal scales for environmental predictors of 

abundance; 2) quantify the relationships and determine the importance of environmental 

predictors in driving the abundance of different life history stages; 3) compare my 

quantified relationships and variable importance to the results of past studies conducted at 

smaller spatiotemporal scales; and 4) compare the performance of models based on a 

distal (SST) and proximal (IST) predictor of temperature. This study provides a 

conceptual framework for selecting variables for inclusion in SDMs that is especially 

applicable to organisms with numerous potential drivers of abundance for which ample 

species and predictor data are available. 

2.3 Materials and methods 
 

2.3.1 Dataset 

 
I compiled a dataset of all available observations of the abundance of adult 

colonies (measured as the percent cover of adult colonies per unit area of kelp blade) and 

newly settled colonies (settler density, measured as the number of newly settled colonies 

per unit area of kelp blade) of M. membranacea on the three numerically dominant kelp 

species (Agarum clathratum, Laminaria digitata, and Saccharina latissima) in the 

northwest Atlantic Ocean, along with data on their potential environmental drivers 

[depth, kelp density, kelp substrate (species), sea surface temperature (SST), in situ 
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temperature (IST), and wave exposure]. The dataset included historical data from the 

literature spanning over 2800 km and 30 years (n = 20 and 13 sites, for percent cover and 

settler density, respectively) and new data I collected from 9 additional sites on the 

Atlantic coast of Nova Scotia, Canada in 2018 and 2019 (Figure 2.1, Table A.1; for 

details, see Appendix A.1).



 

 

 

1
4
 

 

Figure 2.1  (a) Locations of historical (1987-2017) and newly collected (2018-2019) observations of percent cover and settler density 

of Membranipora membranacea in the northwest Atlantic Ocean. Insets show sites in (b) the Eastern Shore Islands and (c) the 

southwestern shore of Nova Scotia, corresponding to green and orange boxes in (a), respectively. 
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2.3.2 Calculation of response variables 
 

Percent cover of M. membranacea in all previous studies and new collections was 

either measured directly on individual kelp blades or estimated from imagery (as for my 

newly collected data as detailed in Appendix A.1.1). I found no difference in estimates of 

percent cover between methods (Appendix A.2) and therefore combined percent cover 

data from all studies irrespective of collection method. 

Although all previous studies and my new collections used the same method to 

enumerate settler density on individual collected kelp blades (for details see Appendix 

A.1.1), the definition of a settler varied among studies: settlers were defined either as 

colonies <1 cm in diameter or as colonies with ≤2 zooid rows (typically 0.5 - 0.9 mm in 

diameter; Saunders & Metaxas 2007). I used concurrent observations of abundance for 

multiple colony size classes from Caines and Gagnon (2012) to generate a relationship 

between colonies ≤2 zooids and <1 cm in diameter. I then used this relationship to 

estimate the abundance of colonies with ≤2 zooid rows in studies which defined settlers 

as colonies <1 cm (Appendix A.3). This allowed us to combine data across studies by 

standardizing settlers as colonies with ≤2 zooid rows.  

I averaged percent cover and settler density across all individuals of a given kelp 

species within each depth, site, and sampling date, and bounded the data between May 

and November to encompass the approximate annual growth period of M. membranacea 

(Table A.1; Appendix A.4). 

2.3.3 Identification and calculation of relevant predictor 

variables 
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2.3.3.1 Temperature 

 

I obtained time series of daily sea surface temperature (SST) data from NOAA’s 

“CoralTemp” dataset (NOAA Coral Reef Watch 2020) at a 5-km spatial resolution for the 

six months leading up to the sampling date for each observation of percent cover and 

settler density in my dataset. In cases where SST data were unavailable at a given site, I 

used the mean value from all grid cells within a 6-km radius of the site. I also compiled in 

situ temperature (IST) data corresponding to observations of percent cover and settler 

density from past studies (only available from sites in Nova Scotia; Table A.1). 

I calculated multiple temperature metrics, consisting of the mean and thermal 

integral over different time periods prior to a given observation of percent cover or settler 

density, for both IST and SST data (Table 2.1). For each period prior to the date of 

observation of percent cover or settler density, I calculated thermal integrals by summing 

standardized daily temperatures (calculated by adding 1.8°C to daily average 

temperatures to avoid negative values; Saunders & Metaxas 2007). To calculate thermal 

integral, gaps in IST data (n = 1-15 days) were filled using the mean temperature for the 

given month, site, and depth. Mean temperature metrics were calculated as the mean of 

daily average temperatures over the given period prior to the date of observation of 

percent cover or settler density. Thermal integral can effectively predict percent cover 

(Scheibling & Gagnon 2009, Caines & Gagnon 2012) and settler density of M. 

membranacea (Saunders & Metaxas 2007, Caines & Gagnon 2012). However, I also 

investigated mean temperature metrics since they do not rely on time series of continuous 

daily temperature and, therefore, offer greater flexibility in the temperature  
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data that can be used in predictive models. I investigated three-month temperature metrics 

as predictors of percent cover based on the findings of Scheibling & Gagnon (2009) that 

the three-month integral of temperature had a strong relationship with annual peak 

percent cover. I also assessed six-month temperature metrics to account for the potential 

effects of temperature on M. membranacea over longer timescales that encompass 

multiple stages in its lifecycle (larvae, reproduction, etc.; Saunders & Metaxas 2008, 

Caines & Gagnon 2012). For settler density, I investigated one-month temperature 

metrics since larvae of M. membranacea have an average planktonic larval duration of 4 

weeks (Yoshioka 1982), and three- and six-month metrics because the abundance of 

settlers may be explained by thermal indices which affect both the planktonic larval 

period and the adult colonies producing the larvae (Caines & Gagnon 2012).  
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Table 2.1 Summary of candidate temperature (SST or IST) and REI metrics considered as 

predictors of percent cover and settler density. Time periods in the metrics refer to the 

period prior to a given observation of percent cover or settler density over which 

temperature or wind data (for REI) were averaged or summed. One-month metrics were 

only considered as candidate predictors in models for settler density. 

Model Type 
         Temperature        REI 

Metric Abbreviation Metric Abbreviation 

Settler density 

models only 

one-month 

integral 

 

1-I one-month 

linear 

1-Lin 

one-month 

logarithmic 

1-Log 

one-month 

mean 

1-M 

one-month 

quadratic 

1-Q 

Percent cover and 

settler density 

models 

three-month 

integral 

3-I three-month 

linear 

3-Lin 

three-month 

logarithmic 

3-Log 

three-month 

quadratic 

3-Q 

three-month 

mean 

3-M 

six-month 

linear 

6-Lin 

six-month 

logarithmic 

6-Log 

six-month 

integral 

6-I 

six-month 

quadratic 

6-Q 

calendar-year 

linear 

Y-Lin 

six-month 

mean 

6-M 

calendar-year 

logarithmic 

Y-Log 

calendar-year 

quadratic 

Y-Q 
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 I examined the relative effects of seasonal temperature variation (day of year) and 

site- or year-specific thermal anomalies using residual regression (Graham 2003). I 

generated generalized additive models (GAMs) of the non-linear relationship between 

day of the year (1-365; independent variable) and all observations of each temperature 

metric (log-transformed if necessary to satisfy model assumptions) and used the residuals 

to represent temperature anomalies in subsequent GLMMs (SST anomaly in section 

2.3.4.3). I used the day of the year to represent seasonal average temperature variation in 

the northwest Atlantic (seasonal SST in section 2.3.4.3). 

2.3.3.2 Wave exposure 

 

I calculated wave exposure using the relative wave exposure index (REI) after 

Krumhansl & Scheibling (2011): 

 

𝑅𝐸𝐼 =  ∑(𝑉𝑖 × 𝑊𝑖 × 𝐹𝑖)

16

𝑖=1

 (2.1)  

where Vi and Wi are average wind speed (km h-1) and wind frequency over a given 

temporal window, and Fi is fetch (km; bounded at 2000 km for a given direction) from 

the ith cardinal direction (north, north-northeast, northeast, east-northeast, etc.), in 16 bins 

of 22.5° centred on each direction. I obtained wind data from weather stations within a 

maximum distance of ~100 km from each site, based on data availability, proximity, and 

geographical representativeness, from Environment and Natural Resources Canada’s 

Historical Climate Database (http://climate.weather.gc.ca) for Canadian sites and 

NOAA’s National Data Buoy Center (https://www.ndbc.noaa.gov) for sites in the Gulf of 

Maine (Figure A.3). REI was linearly related to in situ wave exposure measured as 

bottom orbital velocity at 5 sites (Appendix A.5).  

http://climate.weather.gc.ca/
https://www.ndbc.noaa.gov/


20 

 

To calculate metrics of REI for each observation, I first averaged hourly wind 

data over the same time periods as for the temperature metrics (one, three and six 

months), as well as over the calendar year of a given observation to describe the average 

exposure conditions at that site. I then transformed the time-averaged REI values into 

linear, logarithmic, and quadratic forms to test different hypotheses regarding 

relationships between REI and percent cover and settler abundance of M. membranacea 

(Table 2.1). A negative linear relationship between REI and the abundance of M. 

membranacea may be possible because high wave exposure could physically inhibit 

larval settlement (Koehl 2007) and slow the growth of adult colonies due to the energetic 

costs of producing protective structures in response to high wave action (Bayer et al. 

1997). Similarly, a negative log-linear relationship could occur if a threshold exists 

beyond which settlement or colony growth is impeded by the above mechanisms. Lastly, 

a quadratic relationship reflects possible inhibitory effects of both high and low wave 

exposure on settlement (Pawlik & Butman 1993) and the feeding success of adult 

colonies (Pratt 2008, Arkema 2009), respectively. 

2.3.3.3 Kelp Density 

 

For sites where all three kelp species were present, I calculated the site-and depth-

specific mean density of each species of kelp from July-September (summer), October-

December (autumn), January-March (winter), and April-June (spring). I then calculated 

the relative densities of L. digitata and S. latissima (species-specific kelp density divided 

by total kelp density; KelpR) and total kelp density (kelp density summed across all 3 

species; KelpT) for each depth, site, and period. I considered quadratic KelpR (of L. 

digitata and S. latissima) as predictors of percent cover of M. membranacea based on the 
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prediction of Denley et al. (2019a) that percent cover is highest for mixed-species kelp 

beds (i.e. percent cover should be greatest at intermediate values of KelpR). I 

hypothesised that, if larval supply limits settlement of M. membranacea as for other 

marine invertebrates (e.g. Gaines et al. 1985), a linear relationship could exist between 

KelpT and settler density: positive if physical factors such as the roughness (Eckman 

1990) and internal flow attenuation (Eckman et al. 1989) of kelp beds enhance settlement, 

or negative if the presence of kelp does not induce settlement (Denley & Metaxas 2017b) 

but higher densities of kelp spread settlers over a larger surface area of kelp and thus 

decrease their density.  

Preliminary analyses revealed moderate collinearity between the optimal REI 

metric (log of six-month REI; see sections 2.3.4.1 and 2.4.1) and the relative density of L. 

digitata (r = 0.43) and S. latissima (r = -0.34). To examine the effect of kelp density on 

percent cover independently from that of REI, I conducted residual regression (Graham 

2003) using linear models with KelpR as the dependent variable and the log of six-month 

REI as the independent variable. I used the residuals of these models as the KelpR 

variables in subsequent GLMMs for percent cover. 

2.3.4 Assessment of Predictor Variables 
 

I used an information-theoretic multi-model inference approach, based on 

generalized linear mixed models (GLMMs), to assess the relative and absolute 

importance of candidate predictors (and metrics) and the relationships of these predictors 

with percent cover and settler density of M. membranacea (Figure 2.2; for complete 

detailed schematic, see Figure A.5). I conducted all analyses in R, version 3.6.2 (R Core 
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Team 2020) in the R Studio environment (RStudio Team 2020). I fit GLMMs using 

glmmTMB (Brooks et al. 2017), validated them with DHARMa (Hartig 2020), and 

conducted model averaging with MuMIn (Barton 2019). See Appendix A.7 for a full list 

of packages used.  

2.3.4.1 Selection of optimal SST and REI metrics for predicting 

percent cover and settler density 

 

To determine the optimal REI and SST metrics for predicting percent cover and 

settler density, I compared the performance of GLMMs containing each candidate metric 

(Table 2.1) using ratios of their Akaike weights (Wagenmakers & Farrell 2004). First, I 

standardized all continuous predictor variables by subtracting the sample mean from each 

observation (Schielzeth 2010) and dividing by 2 standard deviations (Gelman 2008), and 

applied a sum-to-zero contrast to the kelp substrate variable (Schielzeth 2010). 

Standardization allowed comparison of parameter estimates among models to assess 

relative effect size, while the sum-to-zero contrast simplified the interpretation of model-

averaged interaction terms (Schielzeth 2010). After standardization, I examined 

collinearity between predictors by calculating pairwise correlations and variance inflation 

factors (Dormann et al. 2013). I then fit GLMMs composed of: 1) all candidate predictor 

variables except kelp density (depth, kelp substrate, REI, and SST) as fixed effects; 2) an 

interaction between temperature and kelp substrate, which was identified as significant in 

preliminary analyses; and 3) crossed random intercepts for study site and study year, to 

account for the blocked nature of the data within these factors (Table 2.2). GLMMs were 

fit using maximum likelihood. For models of percent cover, I used a beta model with an 

intercept-only zero-inflation term and a logit link function (Ospina & Ferrari 2012). For 
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models of settler density, I used a negative binomial model with a log link function. I 

validated the GLMMs by visually assessing QQ plots and plots of simulated residuals vs. 

fitted values.  

To determine optimal metrics, I first compared models fit with each REI metric, 

using the same temperature metric (six-month mean of SST [SST 6-M]) as the SST 

metric in each model (Figure 2.2, arrow 1). I selected the optimal REI metric by 

identifying the metric generating the model with the highest Akaike weight, and 

compared its performance relative to other REI metrics using ratios of their Akaike 

weights (evidence ratios; Wagenmakers & Farrell 2004). Using this optimal REI metric 

in each model, I then compared models fit using each SST metric, and selected the 

optimal SST metric using Akaike weights (Figure 2.2, arrow 2).
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Figure 2.2  Flow of data processing and modelling procedures used to assess the 

importance of predictors in contributing to observed patterns in percent cover and settler 

density of M. membranacea in the northwest Atlantic Ocean over broad spatial and 

temporal scales. Numbered arrows correspond to modelling procedures described in 

sections 2.3.4.1 and 2.3.4.2.  
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Table 2.2  General forms of global generalized linear mixed models for percent cover and settler abundance, where Percent Coverijk 

and Settler Densityijk are the kth observation at site i in year j, μ is the mean, α is the probability of observing 0, θ is unknown 

parameter controlling the variance, and k is the dispersion parameter. BEZI represents a zero-inflated beta distribution and NB 

represents a negative binomial distribution. LD and SL are abbreviations for L. digitata and S. latissima, respectively. 

Equation Percent cover Settler density 

Error 
distribution 

Percent Cover𝑖𝑗𝑘~BEZI(𝛼, 𝜇𝑖𝑗𝑘, 𝜃) Settler Density
𝑖𝑗𝑘

~NB(𝜇𝑖𝑗𝑘, k) 

Conditional 
mean function 

E(Percent Cover𝑖𝑗𝑘) = (1 − 𝛼)𝜇𝑖𝑗𝑘 E (Settler Density
𝑖𝑗𝑘

) = 𝜇𝑖𝑗𝑘 

Variance 
function 

var(Percent Cover)𝑖𝑗𝑘 = 

𝛼(1 − 𝛼)(−𝜇𝑖𝑗𝑘)
2

× (1 − 𝛼)
𝜇𝑖𝑗𝑘(1 −  𝜇𝑖𝑗𝑘) 

1 +  𝜃
 

var(Settler Density)𝑖𝑗𝑘 =   𝜇𝑖𝑗𝑘 +
𝜇𝑖𝑗𝑘

2

k
 

Model equation 

logit(𝜇𝑖𝑗𝑘) =  Depth
𝑖𝑗𝑘

 

+ Kelp  Substrate𝑖𝑗𝑘 +  REI 𝑖𝑗𝑘 

+ Temperature
𝑖𝑗𝑘

 

(+ Kelp
R

 LD 𝑖𝑗𝑘  +  Kelp
R

 SL 𝑖𝑗𝑘) 

+ Temperature
𝑖𝑗𝑘

× Kelp Substrate𝑖𝑗𝑘 

+ Site𝑖 + Year𝑗 

log(𝜇𝑖𝑗𝑘) =  Depth
𝑖𝑗𝑘

 

+ Kelp  Substrate𝑖𝑗𝑘 +  REI 𝑖𝑗𝑘 

+ Temperature
𝑖𝑗𝑘

 (+ Kelp
T 𝑖𝑗𝑘

) 

+ Temperature
𝑖𝑗𝑘

× Kelp Substrate𝑖𝑗𝑘 

+ Site𝑖 + Year𝑗 

Random 
intercept 

distributions 

Site𝑖~𝑁(0, 𝜎𝑆𝑖𝑡𝑒
2 ) 

Year𝑗~𝑁(0, 𝜎Year
2 ) 

Site𝑖~𝑁(0, 𝜎𝑆𝑖𝑡𝑒
2 ) 

Year𝑗~𝑁(0, 𝜎Year
2 ) 
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2.3.4.2 Importance of candidate predictors of percent cover 

and settler density 

 

For percent cover and settler density, I fit a global GLMM (using the same 

procedure described above in section 2.3.4.1) with depth, kelp substrate, the optimal REI 

metric, the optimal SST metric, an interaction between SST and kelp substrate, and 

random intercepts for site and year. To evaluate variable importance, I conducted model 

averaging on the global GLMM and derived a complete model set, consisting of all 

possible sub-models (combinations of fixed effects) of the global GLMM (Figure 2.2, 

arrow 3; Burnham & Anderson 2002). I calculated full-model averaged parameter 

estimates (Symonds & Moussalli 2011) and their unconditional 95% confidence intervals 

(Burnham & Anderson 2004) for each predictor variable from the complete model set 

(Figure 2.2, arrow 4). I assessed the relationship between the predictor variable and 

percent cover or settler density based on the sign of its estimate (i.e. positive or negative; 

or the relative magnitude of the parameter estimates for each species, in the case of kelp 

substrate) and compared the magnitude of parameter estimates between predictors to 

assess relative variable importance (Figure 2.2, arrow 5).  

To determine absolute variable importance, I ranked the models in the complete 

model set in order of increasing AIC and derived a top model set containing models for 

which ∆AIC (the increase in AIC of a given model compared to the top-ranked model) 

was less than 7, creating a top model set 95% likely to contain the actual best model 

(Figure 2.2, arrow 6; Burnham & Anderson 2002, Richards 2005). I excluded models for 

which a less complex nested model with an equal or lower AIC value was also included 

in the top model set (Richards 2008, Richards et al. 2011). I considered predictor 
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variables retained in all models within the top model set to be informative predictors 

(sensu Leroux 2019) of percent cover or settler density (Figure 2.2, arrow 7). If a 

predictor variable was not included in all models in the top model set, I used ∆AIC to 

compare models with and without the parameter and also examined if the 95% 

confidence interval for its parameter estimate included zero to further assess its 

importance (Grueber et al. 2011). To test for significant differences among kelp substrate 

species and kelp-SST interactions, I conducted Tukey tests using the top-ranked model in 

each model set. Lastly, I determined the goodness-of-fit of the models in the top model 

set using Nakagawa’s R2 (Nakagawa et al. 2017). 

I investigated the relative and absolute importance of kelp density separately from 

the other predictors (Appendix A.6), since substantially fewer data on kelp density were 

available and therefore assessing the importance of kelp density with the other predictors 

would have greatly reduced my sample size. However, kelp density was not an 

informative predictor for explaining patterns of percent cover and settler density 

(Appendix A.6). Therefore, I excluded kelp density and constructed models based on the 

full available dataset for all other analyses. 

2.3.4.3 Importance of seasonal SST and SST anomaly in 

predicting percent cover and settler density 

 

My dataset contained observations of percent cover and settler density over the 

entire growing season of M. membranacea (May-November) from different sites over 

different years and thus may have been influenced by both seasonal patterns in 

temperature and temperature variability between sites and years. To investigate the 

relative influence of these components of temperature variability as predictors of the 
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abundance of M. membranacea, I constructed global models for cover and settler density 

with depth, kelp substrate, the optimal REI metric, seasonal SST and SST anomaly (using 

the optimal SST metric) as fixed effects, an interaction between kelp substrate and 

seasonal SST, and site and year as random intercepts. I then derived complete model sets 

from these global models, and assessed variable importance using model averaging. 

2.3.4.4 IST- versus SST-based models 

 

To investigate the suitability of SST as a proxy for IST when predicting the 

abundance of M. membranacea, I examined differences in relative and absolute variable 

importance between models based on temperature data from IST and SST. For this 

comparison, I ran models using the subset of the full datasets for which IST data were 

available (IST datasets; n = 165 for percent cover, n= 192 for settler density, Table A.1). 

First, I identified the optimal REI and temperature metrics using IST- and SST-based 

models for percent cover and settler density, using the procedure in section 2.3.4.1. Then, 

I assessed relative variable importance and absolute variable importance as described in 

section 2.3.4.2. Lastly, I compared variable importance results and top model fit from the 

IST- and SST-based models for percent cover and settler density. 

2.4 Results 
 

2.4.1 Optimal SST and REI metrics for predicting percent 

cover and settler density  
 

 The optimal SST metric for explaining observed patterns in percent cover was the 

six-month mean of SST (SST 6-M); however, the Akaike weight of the model containing 

SST 6-M was only 1.11 times greater than that containing the six-month integral of SST 
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(SST 6-I; Table 2.3a). Akaike weights of the models with both six-month metrics were 

approximately three orders of magnitude greater than those with both three-month 

metrics. For predicting settler density, the optimal SST metric was SST 6-I (Table 2.3b), 

with Akaike weight of the model containing SST 6-I being 1.80 times greater than that 

with SST 6-M. Akaike weights for models with both six-month metrics were over 3 

orders of magnitude greater than those for three-month and one-month metrics. 

 The log of six-month REI (REI 6-Log) was the optimal REI metric for predicting 

percent cover (Table 2.3a), followed closely by the log of three-month REI (REI 3-Log) 

and the log of calendar-year REI (REI Y-Log). REI Y-Log was the optimal REI metric 

for predicting settler density, with the Akaike weight of the model containing REI Y-Log 

being 1.06 times greater than that with REI 6-log (Table 2.3b). 
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Table 2.3  Results of GLMMs comparing REI and SST metrics as predictors of a) percent 

cover and b) settler density. Models of the form shown in Table 2 (excluding kelp density 

as a predictor) were fit using each REI and SST metric. For comparison of REI metrics, 

SST Six-Month Mean was the temperature metric in the model. For comparison of SST 

metrics, the optimal REI metric was employed as the REI metric in the model. AIC, 

dAIC (change in AIC relative to top-ranked model) and Akaike weight were calculated 

for each model. REI and SST metrics are ranked in order of descending model 

performance and are abbreviated as per Table 2.1. 

(a) 

Variable Metric AIC  dAIC  weight  

REI 6-Log  -1282.436  0.000  0.258  

 3-Log  -1282.130  0.306  0.222  

 Y-Log  -1281.523  0.913  0.164  

 6-Lin  -1280.866  1.570  0.118  

 Y-Lin  -1279.936  2.500  0.074  

 3-Lin  -1279.766  2.670  0.068  

 6-Q  -1278.873  3.563  0.044  

 Y-Q  -1277.938  4.498  0.027  

 3-Q  -1277.780  4.656  0.025  

SST 6-M  -1282.436  0.000  0.527  

 6-I  -1282.222  0.214  0.473  

 3-I  -1265.605  16.831  <0.001  

 3-M  -1265.438  16.998  <0.001  
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(b) 

Variable Metric AIC  dAIC  weight  

REI Y-Log  3699.284  0.000  0.339  

 6-Log  3699.392  0.108  0.321  

 6-Q  3700.559  1.275  0.179  

 Y-Q  3702.862  3.578  0.057  

 3-Log  3704.073  4.789  0.031  

 1-Log  3705.668  6.384  0.014  

 1-Lin  3705.900  6.616  0.012  

 3-Lin  3706.007  6.723  0.012  

 Y-Lin  3706.042  6.758  0.012  

 6-Lin  3706.210  6.926  0.011  

 3-Q  3707.164  7.880  0.007  

 1-Q  3707.329  8.045  0.006  

SST 6-I  3698.044  0.000  0.650  

 6-M  3699.284  1.240  0.350  

 3-I  3722.245  24.201  <0.001  

 3-M  3722.513  24.469  <0.001  

 1-M  3834.331  136.287  <0.001  

 1-I  3834.575  136.530  <0.001  
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2.4.2 Importance of candidate predictors of percent cover 

and settler density 
 

My top-ranked GLMMs for percent cover and settler density both attained 

marginal R2 values of over 0.5 (Table 2.4a,b). SST was the most important predictor of 

both percent cover and settler density, with a parameter estimate more than twice as large 

as the next largest (kelp substrate; Figure 2.3a,b). Both seasonal SST and SST anomaly 

were informative individual predictors of percent cover and settler density of M. 

membranacea, both appearing in all models in the top model sets; however, seasonal SST 

was approximately 2 times more important than SST anomaly in both cases (Figure A.6, 

Table A.2). 

SST had a positive relationship with cover and settler density but the strength of 

this relationship was strongly dependent on kelp substrate (Figure 2.4d,h). The positive 

relationship between SST and percent cover was stronger for L. digitata than for S. 

latissima or A. clathratum while the positive relationship between SST and settler density 

was significantly lower for A. clathratum than L. digitata or S. latissima (Tukey test, 

p<0.01; Figure 2.3a,b). The second most important predictor of percent cover and settler 

density was kelp substrate (Figure 2.3a,b). Mean percent cover was significantly higher 

on L. digitata than on S. latissima or A. clathratum while mean settler density was 

significantly lower on A. clathratum than on L. digitata or S. latissima (Tukey test, 

p<0.01; Figure 2.3a,b; Figure 2.4b,f). Depth was the third most important predictor of 

percent cover and the least important for settler density (Figure 2.3a,b) with a negative 

and positive relationship, respectively (Figure 2.4a,e). The negative, logarithmic 

relationship with REI was the least important predictor of percent cover (Figure 2.3a; 
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Figure 2.4c) although it was the third most important predictor of settler density (Figure 

2.3b; Figure 2.4g). For percent cover, all candidate variables except REI were included in 

both models in the top model set; there was a ∆AIC of <1 when REI was removed from 

the top model in the model set (Table 2.4a) and its 95% confidence interval included zero 

(Figure 2.3a), providing little evidence that it is an informative predictor. For settler 

density, all predictors appeared in both models in the top model set except REI, which 

only appeared in the top-ranked model; there was a ∆AIC of over 4 when REI was 

removed in the second-ranked model (Table 2.4b) and its 95% confidence interval did not 

include zero (Figure 2.4b), indicating that it is an informative predictor. 
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Table 2.4  Sets of top models (models with ∆AIC<7) explaining observed patterns in a) 

percent cover and b) settler density of M. membranacea in the northwest Atlantic. REI 

and SST model terms are abbreviated as per Table 2.1. Marg. and Cond. R2 are the 

marginal and conditional R2 values for the GLMM. Random Effect SD is the standard 

deviation of each random intercept.  

(a) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

+ REI 6-Log 

+ Kelp 

Substrate 

+ SST 6-M 

+ Kelp 

Substrate:SST 

6-M 

12 653.218 -1282.436 0.000 0.581 0.588 0.766 Site = 

0.566 

Year = 

0.142 

Depth 

+ Kelp 

Substrate 

+ SST 6-M 

+ Kelp 

Substrate:SST 

6-M 

11 651.858 -1281.717 0.719 0.405 0.558 0.758 Site = 

0.592 

Year = 

0.142 
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(b)  

Model  df  logLik  AIC  ΔAIC  

Akaike 

Weigh

t  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

+ REI Y-Log 

+ Kelp 

Substrate 

+ SST 6-I 

+ Kelp 

Substrate:SST 

6-I 

11 -1838.022 3698.044 0.000 0.891 0.542 0.778 Year = 

0.845 

Site = 

0.654 

Depth 

+ Kelp 

Substrate 

+ SST 6-I 

+ Kelp 

Substrate:SST 

6-I 

10 -1841.444 3702.888 4.844 0.079 0.494 0.775 Year = 

0.849 

Site = 

0.788 
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Figure 2.3  Full-model averaged standardized parameter estimates for depth, kelp 

substrate, REI and SST as predictors of a) percent cover and b) settler density, arranged 

in descending order of magnitude. REI and SST metrics are abbreviated as per Table 2.1. 

Error bars represent 95% confidence intervals based on unconditional standard error. AC 

= A. clathratum, LD = L. digitata, SL = S. latissima.
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Figure 2.4  Candidate predictors of the percent cover (a-d) and settler density (e-h) of M. membranacea in the northwest Atlantic. 

Percent cover of colonies of M. membranacea on kelp blades (kelp species-specific means for each depth, site, and sampling date) as a 

function of a) depth, b) kelp substrate species, c) six-month mean REI, and d) six-month mean SST separated by kelp substrate. Settler 

density (no. individuals per m2 kelp; kelp species-specific means for each depth, site, and sampling date) as a function of e) depth, f) 

kelp substrate species, g) mean REI over the calendar year, and h) six-month integral SST separated by kelp substrate. 
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2.4.3 IST- vs SST-based models 

 
I compared the results of SST-based models to those of IST-based models to 

assess the suitability of SST as a proxy for IST for predicting the abundance of M. 

membranacea (for detailed results, see Table A.4 and Table A.5). The optimal 

temperature metric was the three-month integral in SST-based models and the three-

month mean in IST-based models of percent cover (Table 2.5a; Table A.4a,b). For settler 

density, the optimal temperature metric was the three-month integral in SST-based 

models and the one-month integral in IST-based models (Table 2.5b). For both percent 

cover and settler density, there were no notable differences in the rankings of REI metrics 

between IST- and SST-based models (Table A.4). For IST- and SST-based models of 

settler density, quadratic six-month mean REI (REI 6-Q) produced the model with the 

highest Akaike weight. However, the quadratic relationship between REI 6-Q and settler 

density seems to be an artifact of the dataset (few datapoints at intermediate values; 

Figure A.7) rather than a real effect. Consequently, I elected to use the log of one-month 

mean REI (REI 1-Log), which had a parameter estimate of almost identical magnitude to 

REI 6-Q, as the optimal REI metric for subsequent analyses. 

For percent cover, relative variable importance rankings were similar for IST- and 

SST-based models except depth, which had a higher relative importance in SST-based 

models than in IST-based models (Table 2.5a, Figures A.9a,c). Absolute variable 

importance was also the same in IST- and SST-based models except depth, which was an 

informative predictor in SST- but not IST-based models (Table 2.5a, Tables A.5a,b, 

Figures A.9a,c). The top-ranked IST-based model performed better in terms of model fit 

(higher marginal R2 and lower AIC) than the top-ranked SST-based model (Table 2.5a; 
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Tables A.5 a,b). For settler density, the relative importance of depth and REI was higher 

in IST-based models than in SST-based models, while the rankings of temperature, kelp 

substrate and REI were the same (Table 2.5b, Figures A.9b,d). Absolute variable 

importance did not differ between IST- and SST-based models, with depth, temperature 

and kelp substrate being informative. The top-ranked IST-based model had lower AIC 

but also slightly lower marginal R2 than the top-ranked SST-based model (Table 2.5b; 

Tables A.5c,d).  



 

   

 

4
0
 

Table 2.5  Comparison of SST- and IST-based models fit using the subset IST dataset for a) percent cover and b) settler abundance. 

Optimal temperature and REI metrics indicate the metrics producing models with the largest Akaike weight when compared to models 

fit using other metrics and are abbreviated as per Table 2.1. Relative variable importance indicates the ranking of candidate predictor 

variables by their full-model averaged parameter estimates. Absolute variable importance indicates the variables which were included 

as predictors in models in the top model set (i.e. informative predictors). Top model R2 is the marginal R2 for the top-ranked GLMM 

in the model set. 

(a) 

Temperature 

Data Source  

Optimal 

Temperature 

Metric  

Optimal REI 

Metric  

Relative Variable 

Importance  

Absolute 

Variable 

Importance  

Top Model 

AIC  

Top Model 

R2  

SST SST 3-I REI 6-Log SST>Depth>Kelp 

Substrate>REI 

Depth, Kelp 

Substrate, SST 

-470.658 0.586 

IST IST 3-M REI 3-Lin IST>Kelp 

Substrate>Depth>REI 

Kelp Substrate, 

IST 

-483.565 0.616 
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(b) 

Temperature 

Data Source  

Optimal 

Temperature 

Metric  

Optimal REI 

Metric  

Relative Variable 

Importance  

Absolute Variable 

Importance  

Top Model 

AIC  

Top 

Model R2  

SST SST 3-I REI 1-Log SST>Kelp> Depth>REI Depth, Kelp 

Substrate, SST 

1875.898 0.327 

IST IST 1-I REI 1-Log IST>Depth>Kelp 

Substrate>REI 

Depth, Kelp 

Substrate, IST 

1857.641 0.275 
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2.5 Discussion 
 

As a result of a detailed process of variable selection, the top-ranked models in 

this study explained a substantial amount of the variability (>50%; Cohen 1988, Møller & 

Jennions 2002) in the abundance of multiple life stages of the invasive bryozoan M. 

membranacea. With few exceptions, variable importance and the relationships between 

environmental predictors and abundance revealed in my large-scale study aligned with 

those of past studies conducted at smaller spatiotemporal scales. This case study using M. 

membranacea, a well-studied invasive species for which abundance data were available, 

may represent a best-case scenario for variable selection for SDMs. However, the 

framework I used can be applied widely in species distribution modelling to select 

relevant predictor variables, including for organisms for which data are available as 

presence-absence or presence-only (Figure 2.5).  

My comparisons of models based on different temperature data sources indicated 

that the suitability of distal predictors (e.g. depth and sea surface temperature [SST]) as 

proxies for their in situ counterparts (e.g. in situ temperature [IST]) should be 

investigated whenever possible in the context of SDM (Figure 2.5, step 3). Rankings of 

metrics and variable importance were similar and model fit was only slightly improved in  

IST- compared to SST-based models of percent cover, indicating that depth and SST can 

be used to approximate IST in SDMs for percent cover of M. membranacea. However, 

rankings of temperature metrics and the relative importance of depth differed between 

SST- and IST-based models of settler density, potentially due to confounding effects of 

another depth-dependent variable on settler density. The differences between SST- and 

IST-based models for settler density, as well as the spatial limitation of the IST dataset to 
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a subset of my study region (Nova Scotia), underscore the necessity to evaluate the 

suitability of SST and depth as a proxy for IST on a case-by-case basis.
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Figure 2.5  Conceptual framework for variable selection in species distribution 

modelling. Numbered black text shows each step in the variable selection process, blue 

text details considerations at a given step. 
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My results highlight the importance of carefully selecting metrics used to 

summarise environmental data employed in SDMs to match the scale of the ecological 

processes affecting the organism or life stage being modelled (Figure 2.5, step 4). Firstly, 

the six-month thermal windows of the optimal SST metrics in this study were consistent 

with previous studies, showing that the abundance of both settlers and adult colonies 

depends on the thermal history affecting the current and previous life stage (Saunders et 

al. 2010, Caines & Gagnon 2012). Secondly, I found that thermal integrals of SST 

explained patterns in settler density better than mean temperature, but that thermal 

integrals and means explained patterns in percent cover equally well. These results were 

likely caused by differences in thermal sensitivity between settlers and adult colonies of 

the bryozoan. Early life stages of marine ectotherms are often more sensitive to 

temperature than adults (Pörtner et al. 2007, Putnam et al. 2010, Pineda et al. 2012, 

Reglero et al. 2014, Pandori & Sorte 2019) and, as a result, thermal integrals may be 

superior to mean temperature in predicting the recruitment of M. membranacea 

(Neuheimer & Taggart 2007, Metaxas & Saunders 2009). Consequently, the suitable 

temporal resolution of environmental data may differ between organisms or life stages 

(Figure 2.5, step 3), as the calculation of thermal integrals requires daily temperature data 

whereas means can be calculated from data at a lower temporal resolution.  

Additionally, my findings demonstrate that the knowledge gained by assessing 

relative variable importance in an SDM can affect subsequent modelling decisions 

(Figure 2.5, step 5). Consistent with previous smaller-scale studies of the bryozoan 

(Saunders & Metaxas 2007, Scheibling & Gagnon 2009, Caines & Gagnon 2012), 

temperature was the most important predictor of percent cover and settler density in my 
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models, with a positive effect on abundance in both life stages. Notably, I found that 

although seasonal changes in temperature were most strongly associated with abundance, 

temperature anomalies among sites and years were also informative predictors of percent 

cover and settler density, providing evidence that spatial and interannual difference in 

temperature drive variability in the abundance of M. membranacea. The strong, positive, 

and direct effect of temperature on abundance reinforces the conclusions of previous 

studies (Saunders et al. 2010, Denley et al. 2019a) that the abundance of M. 

membranacea will increase with climate change-induced warming in the northwest 

Atlantic, and emphasises the need for SDMs predicting these future increases.  Further, 

kelp substrate was the second most important predictor of both percent cover and settler 

abundance, suggesting that SDMs predicting future temperature-induced changes in the 

abundance of the bryozoan must account for the substrate on which it is being measured. 

These inferences highlight that identifying the relative importance of candidate predictors 

is needed to inform the construction and implementation of SDMs. 

Even when a variable is an informative predictor in an SDM, the data used to 

calculate the predictor may not be sufficient to fully capture the ecological mechanism by 

which the predictor affects the focal organism (Figure 2.5, step 6). This is illustrated in 

this study by the emergence of mean REI over the calendar year as the optimal REI 

metric for predicting settler density. The negative logarithmic relationship between REI 

and settler density is ecologically justifiable, implying that settlement sharply decreases 

beyond a threshold value of REI. Since post-settlement mortality is low for M. 

membranacea (Yoshioka 1982, Denley & Metaxas 2016), this decrease is likely related 

to an inhibitory effect of wave action on larval settlement (Koehl 2007) rather than an 
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effect on post-settlement mortality. However, it is not clear that calendar year as the 

optimal temporal window for calculating REI has an ecological basis because it 

incorporates at least some wind data that could not have affected the bryozoan. Rather, 

this indicates that my models could not elucidate the real temporal window over which 

REI has the greatest effect on the settlement of M. membranacea. The type of data used 

to represent an environmental predictor can affect the ability of SDMs to account for and 

model the details of species-environment relationships, affecting their ecological realism 

(Figure 2.5, step 6). This outcome underscores the importance of carefully assessing and 

selecting predictor data prior to modelling (Figure 2.5, step 3).  

My investigations of kelp density as a candidate predictor of bryozoan abundance 

illustrate that, in some instances, it can be difficult to determine whether the low 

importance of a predictor indicates that it is truly uninformative or that the result is an 

artifact of data analysis. Here, I hypothesised that total density of kelp would influence 

settler density and that the relative density of the 3 dominant kelp species in the northwest 

Atlantic would affect percent cover of the bryozoan. Contrary to my expectations, I found 

that neither the density nor species composition of kelps affected the abundance of M. 

membranacea. However, unlike previous studies, my analyses relating relative kelp 

density to percent cover only focussed on mixed kelp beds where all three kelp species 

were present; previous predictive models compared population growth of M. 

membranacea for mixed kelp beds and mono-specific beds of the same density (Denley 

et al. 2019a). Additionally, my datasets for kelp density were considerably smaller than 

those for the other candidate predictors, possibly affecting my ability to detect an effect 

of kelp density. In my models, I was able to explain a substantial amount of variance in 



48 

 

the abundance of M. membranacea despite kelp density being an uninformative predictor. 

However, in cases where a predictor hypothesised as important is found to be 

uninformative, it may be necessary to deem the resultant model unsatisfactory and return 

to the beginning of the variable selection process (Figure 2.5, step 7). 

2.6 Conclusions 
 

Using a detailed variable selection procedure grounded in ecological reasoning 

and decades of past research, I determined relevant predictors and their optimal metrics 

for use in SDMs for multiple life stages of M. membranacea in the northwest Atlantic. 

My analyses revealed general conclusions relevant to variable selection for SDMs : 1) 

Relative variable importance can and should be used to inform species distribution 

modelling decisions; 2) Species-environment relationships derived from small-scale 

studies can be applied (if ecologically justified) to regional scales for the purposes of 

variable selection for species distribution modelling; 3) The use of distal predictors in 

SDMs can be justified; however, the interpretation of such predictors may be limited by 

confounding variables and their suitability will likely be study specific; 4) Temporal 

windows and descriptive statistics (e.g. mean, cumulative sum, maximum) for continuous 

environmental predictors should be selected to match the ecology and life stage of the 

focal organism; 5) Data constraints (e.g. sample size, lack of proximal data) may affect 

the performance of candidate predictor variables in SDMs. I recommend that future 

studies on species distribution modelling consider these conclusions and follow my 

proposed framework (Figure 2.5) to improve the selection of variables for inclusion in 

SDMs. This framework is particularly relevant when multiple predictors (or predictor 
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metrics) are hypothesised to affect the focal organism and sufficient data on species 

occurrence and predictors are available to conduct a detailed exploration.
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CHAPTER 3  

 

CLIMATE CHANGE INCREASES THE THREAT OF 

AN INVASIVE BRYOZOAN TO KELP BEDS IN THE 

NORTHWEST ATLANTIC OCEAN 
 

3.1 Abstract 
 

Climate change is expected to create more favourable climate conditions for many 

invasive species, increasing their abundance and spread. One such invasive species is 

Membranipora membranacea, an epiphytic bryozoan causing defoliation of kelp beds in 

the northwest Atlantic Ocean (NWA). The impact of M. membranacea is directly linked 

to its abundance, which is anticipated to increase due to climate change. Additionally, 

further range expansion may threaten Arctic kelp beds in the future. I constructed a 

species distribution model (SDM) to predict the abundance of M. membranacea in the 

NWA under present and future climate scenarios. I also assessed the potential effect of an 

invasion of M. membranacea from populations in Norway by comparing NWA- and 

Norway-based SDMs. The projected future abundance distribution of M. membranacea 

in the NWA differed substantially depending on the future climate scenario employed, 

but the bryozoan was predicted to occur in the Arctic at low abundances regardless of 

scenario. However, I also found that M. membranacea in Norway achieve much higher 

abundances at low temperatures compared to NWA populations, and could pose a dire 

threat to kelp beds in the NWA and southern Arctic if introduced in these regions. 

Although my SDMs performed well under internal validation, estimating the impact of 

M. membranacea is complicated by the context-dependent response of kelp communities 
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to coverage by the bryozoan. Nonetheless, this study assesses the potential response of an 

ecologically significant invasive species to climate change and is of broader relevance to 

the study of other invasive organisms.  

3.2 Introduction 
 

Climate change and invasive species are two of the greatest drivers of global 

ecological change, and are expected to act synergistically in causing further perturbation 

to ecosystems in the future (Hellmann et al. 2008, Mainka & Howard 2010). By favoring 

invasive species due to their broad environmental tolerances and capacity for rapid range 

shifts (Hellmann et al. 2008), climate change is expected to increase the frequency of 

species invasions (Rahel & Olden 2008, Rehage & Blanchard 2016) and exacerbate the 

negative impacts of already-established invasive species through increases in their range 

and abundance (Stachowicz et al. 2002, McDowell et al. 2014, Hulme 2017). Predictions 

of such responses of invasive species to environmental change are therefore needed, and 

species distribution models (SDMs) can be effective tools for this purpose (Elith 2017, 

Srivastava et al. 2019). However, the most commonly employed SDMs only predict the 

probability of presence or presence/absence of invasive species, not accounting for 

abundance (Bradley 2013, Ashcroft et al. 2017, Bradley et al. 2018) which is critical in 

determining impact (Parker et al. 1999, Ricciardi 2003, Kulhanek et al. 2011). This is 

likely due to the difficulty of predicting species abundances resulting from: 1) the paucity 

of reliable data on abundance for many species (Guisan et al. 2017, Bradley et al. 2018); 

and 2) the dependence of abundance on population and demographic processes that 

necessitate mechanistic modelling (i.e. SDMs composed of multiple mathematical 

functions predicting functional traits and life history; Dormann et al. 2012), and thus 
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substantial amounts of data (Ehrlén & Morris 2015, Briscoe et al. 2019). However, for 

invasive species with available abundance data and for which abundance distribution is 

not heavily dependent on population processes or demography, correlative SDMs can be 

used to predict abundance. These models can provide valuable information on the 

potential impacts of the species throughout their invasive range (e.g. Strubbe et al. 2010, 

Risch et al. 2020). 

Membranipora membranacea is an invasive epiphytic bryozoan in the northwest 

Atlantic Ocean (NWA) responsible for severe defoliation of kelp beds (Saunders & 

Metaxas 2008, Scheibling & Gagnon 2009, Filbee-Dexter et al. 2016), which support 

diverse communities and provide valuable ecosystem services (Teagle et al. 2017, 

Wernberg et al. 2019). The extent of kelp defoliation in a given area is related to the 

percentage of kelp blade surface area covered by colonies of M. membranacea and, 

specifically, the peak percent cover of the bryozoan during its annual life cycle 

(Scheibling & Gagnon 2009). Temperature is the primary driver of peak percent cover of 

M. membranacea (Scheibling & Gagnon 2009), suggesting that the abundance and 

negative impact of the bryozoan on kelp beds in the region will increase with climate 

change (Saunders et al. 2010, Denley et al. 2019a). Additionally, ocean warming may 

facilitate the range expansion of M. membranacea into Arctic kelp ecosystems (Goldsmit 

et al. 2018, Denley et al. 2019b). Habitat suitability models predicting the presence of M. 

membranacea have been developed previously (Goldsmit et al. 2018, Lyons et al. 2020); 

however, SDMs predicting the abundance (i.e. peak percent cover) of the bryozoan are 

needed to more accurately forecast the impact of this invasive species on kelp beds in the 

NWA and beyond. 
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As mentioned above, mechanistic SDMs have been recommended for the accurate 

prediction of abundance (Ehrlén & Morris 2015, Evans et al. 2015). However, while 

mechanistic SDMs may be necessary to predict the abundance of other organisms, 

multiple characteristics of M. membranacea make it an excellent candidate for the use of 

correlative species distribution modelling to predict its abundance. For example, while 

dispersal constraints and biotic interactions can limit the ability of organisms to colonize 

suitable habitat and thus affect the accuracy of correlative SDM projections (Wiens et al. 

2009, Boulangeat et al. 2012, Ehrlén & Morris 2015), M. membranacea disperses rapidly 

and has saturated its available range in the northern NWA (Denley et al. 2019b), 

indicating that dispersal limitations do not prevent M. membranacea from colonizing 

suitable habitat in the region. Also, M. membranacea is the competitively dominant kelp 

epiphyte in the NWA (Berman et al. 1992, Yorke & Metaxas 2011) and is not affected by 

predation in the region (Pratt & Grason 2007); thus, biotic interactions are unlikely to 

confound SDM predictions of range and abundance. Percent cover of M. membranacea 

on kelp blades is largely dependent on colony growth (Saunders & Metaxas 2009a, 

Saunders et al. 2010) which, in turn, is mainly determined by temperature (Saunders & 

Metaxas 2009a). Additionally, the bryozoan has an annual life cycle (Saunders & 

Metaxas 2007) and, consequently, abundance in a given year is unrelated to that of 

previous years. These characteristics allow the accurate prediction of annual peak 

abundance based solely on correlative relationships with temperature (Scheibling & 

Gagnon 2009, Saunders et al. 2010), depth, and kelp substrate (Chapter 2).  

Correlative SDMs characterise the realised niche of a species, and assume that 

this niche is conserved (i.e. that the relationship of the species to its predictor variables 
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does not change over space and time; Wiens et al. 2009)); however, realised niche of an 

invasive species, as characterised by an SDM, can change in its invaded range through 

multiple mechanisms (Gallien et al. 2010), which can cause the SDM to perform poorly 

(Václavík & Meentemeyer 2012). For one, invasive species can encounter novel 

environmental and biotic conditions in their invaded range, changing their realised niche 

and rendering SDMs calibrated on data from the species’ native range ineffective 

(Broennimann et al. 2007, Fitzpatrick et al. 2007, Zimmermann et al. 2010). SDMs fit to 

data from the invaded range of a species can also perform poorly when they are calibrated 

early in the invasion, as the realised niche of the invader will change over time as it fills 

its suitable habitat in the invaded range (Zimmermann et al. 2010, Václavík & 

Meentemeyer 2012). However, the realised niche of an invasive species can also change 

as a result of a shift in its fundamental niche in its invaded range. For example, invasive 

species may phenotypically or genetically adapt to new conditions upon introduction 

(Gallien et al. 2010, Chapman et al. 2017, Elith 2017), or multiple invasions by 

genetically-distinct source populations can enhance adaptive capability and lead to range 

expansion (Jeffery et al. 2017, Zhu et al. 2017). As M. membranacea has long been 

established in its invaded range in the NWA, ample data are available from the invaded 

range for SDM training (see Chapter 2) and the bryozoan appears to have saturated its 

suitable habitat in the region (Denley et al. 2019b), minimizing the risk of 

mischaracterising its realised niche. However, it is unknown whether M. membranacea 

has adapted to its invaded environment in the NWA and, although there is no evidence of 

multiple invasions in the region, the potential impact of a future additional invasion of M. 

membranacea has not been predicted. It is therefore important to investigate the 
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possibility of the above scenarios to provide additional context and assess the 

applicability of SDMs for M. membranacea in the region. 

Based on the predictor variables found to be important in Chapter 2 (temperature, 

kelp substrate, and depth) we constructed a correlative SDM for the peak percent cover of 

M. membranacea in the NWA to project the abundance distribution of the bryozoan 

under present and future climate scenarios in the region and assess the potential for M. 

membranacea to spread and impact Arctic kelp ecosystems. I also trained SDMs on data 

from the early and late stages of the invasion of the bryozoan and compared the models to 

assess the evidence for changes in the response of M. membranacea to its environment 

over the course of its invasion of the NWA. Finally, to predict the effect of a future 

additional invasion of the bryozoan, I constructed an SDM using abundance data for M. 

membranacea from Norway and compared it to the NWA-based model. This study 

provides valuable projections of future changes to the range and impact of this 

ecologically significant invasive species, and the implications of these changes for kelp 

bed ecosystems. 

3.3 Methods 
 

3.3.1 Study Region 
 

I defined the northwest Atlantic Ocean (NWA) in my study as the area bounded 

by the southern Gulf of Maine in the south (42°N), the St Lawrence Estuary in the west 

(72°W), the east coast of Newfoundland in the east (52°W), and the northern tip of 

Labrador in the north (61°N; Figure 3.1). This area encompasses the latitudinal and 

longitudinal extent of observations of percent cover of M. membranacea in my dataset. 
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To assess the potential northward spread of the bryozoan with climate change, the 

domain is also extended northward beyond the extent of the known range of the bryozoan 

to include the southern Arctic areas of the eastern coast of Labrador and Ungava Bay, 

Quebec.



 

   

 

5
7
 

 

Figure 3.1  Map of the study region in the northwest Atlantic Ocean. Blue points represent sites from which data on percent cover of 

Membranipora membranacea were obtained. The green and orange insets show the Eastern Shore Islands and Southwestern Shore of 

Nova Scotia, respectively. GoM = Gulf of Maine, GoS = Gulf of St Lawrence, LD = Labrador, ME = Maine, NB = New Brunswick, 

NF = Newfoundland, NS = Nova Scotia, PEI = Prince Edward Island, and QC = Quebec. 
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3.3.2 Biological Data 
 

 I obtained observations of percent cover of M. membranacea from 20 subtidal 

sites (1-13.5 m depth) in the northwest Atlantic Ocean, collected during the annual 

growth period of M. membranacea (1 May – 30 November; Chapter 2) between 1987 and 

2020 (n = 607). These data consisted of historical observations obtained from the 

literature and new data I collected from 9 sites along the Atlantic coast of Nova Scotia 

between 2018 and 2020. Each datapoint represents the mean percent cover of M. 

membranacea across all individuals of one of the three numerically dominant kelp 

species in the NWA (Agarum clathratum, Laminaria digitata, Saccharina latissima) at a 

given depth, site, and sampling date (see Chapter 2, except 2020, when new data were 

collected in July and October from 6 sites in the Eastern Shore Islands [Halibut Island, 

Long Island, The Moll, Speck Island, Tuffin Island, and White Island] using video-based 

percent cover estimation methods). No observations of percent cover were available on 

Alaria esculenta, a dominant kelp species in the northern Gulf of St Lawrence and 

northern Newfoundland (Adey & Hayek 2011); however, A. esculenta has thin blades 

(Kraan & Guiry 2000, Adey & Hayek 2011) which can erode rapidly, and was more 

prone to biofouling than S. latissima in a comparative study (Kerrison et al. 2020), and is 

therefore likely to be affected by M. membranacea to a similar or greater extent than the 

kelp species included in my dataset. 

3.3.3 Environmental Data 
 

 In a comprehensive variable selection analysis, I found that sea surface 

temperature (SST; averaged over the previous six months), kelp substrate (the species of 
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kelp on which the bryozoan is growing), and depth were informative predictors of percent 

cover of M. membranacea in the NWA, in order of decreasing importance (Chapter 2). 

Kelp substrate and depth were recorded when observations of percent cover were 

collected (allowing SDMs to be trained using these data) and parameterized as constants 

when projecting the SDMs (see section 3.3.4.3). Thus, I only obtained data layers for SST 

to train and project SDMs for M. membranacea. 

 I obtained rasters of daily SST for the NWA at a 0.05° (~5-km) spatial resolution 

from NOAA’s “CoralTemp” dataset (NOAA Coral Reef Watch 2020) from 1987 to 2020. 

I then extracted time series of SST at each site where percent cover of M. membranacea 

was sampled. For sites that were not covered by the SST raster, I extracted the time series 

of the nearest neighbouring cell. From the timeseries at each site, I calculated mean 

temperature over the six months (180 days) prior to each observation of percent cover. 

These temperature values were used to train the SDMs (section 3.3.4). 

 To prepare SST data for projecting annual peak percent cover of M. membranacea 

throughout the NWA, I began by identifying the most suitable period to represent 

present-day SST conditions for the NWA (i.e. the most recent group of years with similar 

SST; see Appendix B.1 for details), and found this period to be 2010-2020. I elected to 

choose my own range of years to represent present-day SST conditions because I judged 

the range of years for “present-day” conditions used by common databases like Bio-

ORACLE (2000-2014; Assis et al. 2018b) and MARSPEC (2002-2010; Sbrocco & 

Barber 2013) to no longer be representative of current SST conditions, due to rapid 

climate warming during the 2010s (NOAA National Centers for Environmental 

Information 2020). For each year from 2010 to 2020, I: (1) calculated the daily six-month 
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mean SST for each cell in the study area using the CoralTemp data; (2) identified the 

maximum value (SST 6-max) for each year; and (3) averaged these SST 6-max values 

across years to create a present-day temperature climatology for projecting percent cover 

throughout the NWA.  

 To project percent cover in the NWA under future climate change scenarios, I was 

unable to use SST data from CoralTemp since this dataset does not provide future climate 

projections. Instead, I obtained “present-day” (2000-2014) and future (2040-2050 and 

2090-2100) mean SST climatologies from Bio-ORACLE (Assis et al. 2018b) in order to 

generate rasters of the difference in SST between current and future climate scenarios, 

which could then be added to existing CoralTemp data to estimate future changes in SST 

6-max. For each future time period, I selected Representative Concentration Pathways 

(RCPs) 4.5 (to represent a “likely” future climate pathway) and 8.5 (to represent a 

“worst-case scenario” future climate pathway; Hausfather & Peters 2020a), for a total of 

4 future temperature scenarios. To obtain an estimate of mean SST 6-max for future 

scenarios, I first calculated the difference between mean “present-day” and future SST in 

the NWA for each cell in the Bio-ORACLE data. I then calculated SST 6-max for each 

year (as above) between 2000 and 2014 using the CoralTemp data and averaged across 

years, to provide a baseline value for each cell for the timeframe for “present-day” 

temperature from Bio-ORACLE. I generated future rasters of SST 6-max by adding the 

mean temperature difference between present and future scenarios (from Bio-ORACLE) 

to the mean SST 6-max for 2000-2014 (from CoralTemp). Since the resolution of the 

Bio-ORACLE data is coarser (0.08° or 9.2 km; Assis et al. 2018b) than that of 

CoralTemp (0.05° or 5 km; Skirving et al. 2020), I used bilinear interpolation to resample 
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the temperature-difference rasters derived from Bio-ORACLE to match the resolution of 

the CoralTemp data prior to summing the two rasters.  

3.3.4 SDM 
 

3.3.4.1 Construction 

 

 Following Chapter 2, I trained an abundance SDM on my full dataset of percent 

cover using a generalized linear mixed model (GLMM) fit with maximum likelihood, 

with fixed effects for six-month mean SST, depth, and kelp substrate, an interaction 

between SST and kelp substrate, and crossed random intercepts for study site and year (to 

account for the blocked nature of my data within these factors). I standardized SST and 

depth by 2 standard deviations and applied a sum-to-zero contrast to kelp substrate prior 

to modelling, which decreased collinearity between main effects and interactions terms 

and improve the interpretability of the model coefficients (Gelman 2008, Schielzeth 

2010).  I used a beta error distribution for the model, to limit percent cover between 0 and 

100% (expressed as a proportion between 0 and 1), and employed a zero-inflation model 

(Ospina & Ferrari 2012) parameterised with the same terms as the conditional model. 

Although I employed an intercept-only zero inflation model in Chapter 2 for the purposes 

of variable selection, preliminary analyses for Chapter 3 determined that a fully 

parameterized zero-inflation model improved the predictive performance of the SDM. 

Depth was non-significant in the zero-inflation model, but I retained it to comply with the 

ecological reasoning that depth affects the probability of measuring 0% cover. 
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3.3.4.2 Validation 

 

 To perform model validation, I employed the 0.632+ bootstrap method with 200 

repetitions, following Potts and Elith (2006), because it provides a more accurate estimate 

of model performance than cross-validation techniques. Specifically, I calculated 5 

metrics of performance for abundance models : 1) Pearson correlation between observed 

and predicted values (r); 2) Spearman rank correlation between observed and predicted 

values (ρ); 3) model calibration, where a linear regression model is fit between predicted 

and observed values (observed ~ m[predicted] + b) and the intercept (b) and slope (m) of 

the regression provide measures of bias and consistency of bias for the SDM, 

respectively; 4) root mean squared error (RMSE; Eq. 3.1) and average error (AVE; Eq. 

3.2), where n is the sample size, ŷi are the predicted values, and yi are the observed values 

(Potts & Elith 2006). 

RMSE = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(3.1) 

AVE = 
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

𝑛

𝑖=1

(3.2) 

 Lastly, I produced maps of model standard error (SE) to assess the magnitude and 

spatial distribution of uncertainty in the projections of percent cover (Guisan et al. 2017; 

see section 3.3.4.3). 
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3.3.4.3 Projection 

 

 I projected the SDM (percent cover and SE) onto present-day and future rasters of 

SST 6-max while keeping depth and kelp substrate constant. I chose to project at a 

constant depth because I were unable to obtain bathymetric rasters for the NWA at a high 

enough resolution to accurately reflect depths in the shallow subtidal zone over which my 

data ranged (1-13.5 m). Instead, I projected the model assuming a constant depth of 7.5 

m, the median depth of the observations of percent cover in my dataset and also a depth 

commonly inhabited by all three kelp species in my dataset, as well as Alaria esculenta 

(Adey & Hayek 2011). Accordingly, I restricted the model domain to raster cells in 

contact with land, assuming these cells to contain a 7.5-m depth contour.  

 For kelp substrate, I made separate predictions of percent cover for each kelp 

species assuming it was present across the model domain. Although species distribution 

models for L. digitata and S. latissima exist for the NWA (Khan et al. 2018, Assis et al. 

2018a, Wilson et al. 2019), these models did not consider the effects of M. membranacea. 

Furthermore, to my knowledge, no SDMs exist for A. clathratum in the NWA. Given 

these uncertainties and my study’s focus on habitat suitability for M. membranacea 

(rather than its realized distribution on different kelp species), I chose to not incorporate 

kelp distribution models into this study.  

  Prior studies have suggested that low salinity may negatively affect M. 

membranacea (Forbord et al. 2020). Preliminary analyses indicated there was no 

relationship between percent cover and salinity for my data, but sites in my dataset 

represented a narrow range of relatively high salinity habitats relative to other areas 

within the NWA. I therefore determined the lowest salinity at which M. membranacea 
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has been recorded in the NWA (21.2 PSU) and limited the SDM domain above this 

salinity level for my projections (see Appendix B.2 for details). 

3.3.4.4 Effect of invasion stage on SDM performance 

 

 To determine whether species-environment relationships of M. membranacea 

have changed over time in the NWA, I first divided the data into “early-stage” and “late-

stage” observations on which to train separate SDMs. To facilitate comparison between 

SDMs trained on the early- and late-stage datasets, I restricted the data to Nova Scotia for 

this analysis. M. membranacea was first documented in Nova Scotia in 1992 (Scheibling 

et al. 1999) and was the focus of a long-term study for the rest of the decade, from which 

I obtained records of percent cover ending in 1999 (Scheibling & Gagnon 2009). After 

1999, the next records of percent cover in my dataset are from 2005 (Saunders & 

Metaxas 2009b), shortly before the bryozoan was observed at sites throughout Nova 

Scotia (Watanabe et al. 2010). I therefore selected 1999 as the cut-off year between early 

(1999 and before) and late (2005-2020) invasion stages. However, early-stage data only 

contained observations on S. latissima and contained considerably fewer observations 

(n=43) than the late-stage data (n=492). To make SDMs based on the late-stage data 

more comparable to the early-stage models, I limited the late-stage data to observations 

of percent cover on S. latissima and subsetted it via random sampling to match the 

sample size of the early-stage data prior to modelling.  

 For the dataset from each invasion stage, I fit an SDM as in section 3.3.4.1, but 

without kelp substrate (data in this analysis were restricted to a single kelp species [S. 

latissima]), as well as the random intercepts for site and year from the zero-inflation 

model due to low variance (Bolker et al. 2009). To assess model performance, I validated 
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each model by predicting to the dataset from the opposite time period (i.e. early-stage 

SDM was validated on late-stage data, and vice versa) and calculating the 5 model 

validation metrics described in section 3.3.4.2. Lastly, I compared the distribution of 

percent cover in the NWA under present-day SST conditions projected using both the 

early- and late-stage models. 

3.3.4.5 Comparison of NWA- and Norway-based SDMs 

 

  I obtained percent cover data (n=118) from multiple studies in Norway (Førde et 

al. 2016, Matsson et al. 2019, Forbord et al. 2020), which were collected from S. 

latissima growing at aquaculture sites distributed along a large latitudinal gradient (58-

70°N). I retrieved SST data from CoralTemp and calculated six-month mean SST to 

match these percent cover records as per section 3.3.3. I then predicted percent cover for 

these data using the SDM trained on data from the NWA and assessed model 

performance using the 5 metrics detailed in section 3.3.4.2.  

 For comparison with the NWA-based model, and to assess the effect of any 

differences in species-environment relationships for M. membranacea between Norway 

and the NWA, I also trained an SDM for percent cover on the Norway dataset. I fit the 

model with the same specifications as the NWA-based SDM (section 3.3.4.1), except for 

kelp substrate, because all data from Norway were collected on the same kelp species (S. 

latissima), and random intercepts for site and year, which were removed from the zero-

inflation model due to low variance (Bolker et al. 2009). I calculated raw-scale regression 

coefficients (braw; Schielzeth 2010) to compare the effect sizes of SST and depth between 

the NWA and Norway-based SDMs. I then predicted peak percent cover of M. 

membranacea in the NWA using the Norway-based model, under the present and future 
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climate scenarios detailed in section 3.3.3, to simulate the potential effect of an invasion 

of Norwegian M. membranacea in the NWA. 

I conducted all analyses in R, version 4.0.3 (R Core Team 2020) in the R Studio 

environment (RStudio Team 2020). I worked with raster data using the raster package 

(Hijmans 2020), used the glmmtmb package to fit GLMMs (Brooks et al. 2017) and 

checked GLMM assumptions (fit of data to specified error distribution, homogeneity of 

variance, collinearity between variables, spatial and temporal autocorrelation) using the 

DHARMa (Hartig 2020) and performance packages (Lüdecke et al. 2020). I created 

figures using ggplot2 (Wickham 2016), sf (Pebesma 2018), and rnaturalearth (South 

2017), and arranged them using patchwork (Pedersen 2020). Other packages used are 

listed in Appendix B.3. In addition to the description above, my methods are also detailed 

according to ODMAP protocol (Zurell et al. 2020) in Appendix B.4. 

3.4 Results 
 

3.4.1 Model performance 
 

 The SDM for M. membranacea in the NWA (Table 3.1) performed well, as 

indicated by the model validation statistics resulting from 0.632+ bootstrap analysis 

(Table 3.2). There was a high Pearson correlation (r) between observed and predicted 

values, and the high Spearman rank correlation (ρ) (Cohen 1988, Møller & Jennions 

2002) indicated that the rank order of observations was preserved even when exact values 

were not predicted correctly. The model was almost perfectly calibrated, with no 

consistent bias (b = 0.00) and a slight overprediction of percent cover for high values 

(m=0.97). The model predictions of percent cover deviated from observed values by 12% 
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on average (RMSE = 0.12) and average model predictions were slightly lower than 

observed values (AVE = -0.01). Model standard error was less than 10% cover for all 

kelp substrate species and temperature scenarios and was highest for percent cover on A. 

clathratum, followed by L. digitata and S. latissima (Figures A.2-A.4). 
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Table 3.1  Model summary table for the SDM for peak percent cover of M. 

membranacea, trained on the full NWA dataset (section 3.3.4.1). Predictors were 

standardized by 2 standard deviations prior to modelling, and a sum-to-zero contrast was 

set for kelp substrate. Due to sum-to-zero contrast for kelp substrate, statistics for kelp 

substrate and kelp:SST use the intercept and the main effect for SST as reference 

categories, respectively. AC = A. clathratum, LD = L. digitata, SL = S. latissima. 

Significant p-values in bold (α = 0.05). σ2 is the residual variance and τ is the between-

group variance for random intercepts.   

Predictors Estimates Std. error z value p-value 

Conditional Model 

(Intercept) -2.36 0.15 -16.21 <0.001  

Depth -0.36 0.10 -3.70 <0.001  

Kelp (AC) -0.25 0.10 -2.53 0.011  

Kelp (LD) 0.38 0.08 4.53 <0.001  

Kelp (SL) -0.13 0.07 -1.85 0.064  

Six-Month Mean SST 1.79 0.14 13.18 <0.001  

Kelp (AC): Six-Month Mean 

SST 

-0.59 0.20 -2.88 0.004 
 

Kelp (LD): Six-Month Mean 

SST 

0.61 0.17 3.56 <0.001 
 

Kelp (SL): Six-Month Mean 

SST 

-0.02 0.14 -0.153 0.879 
 

Zero-Inflation Model  

(Intercept) -3.66 0.78 -4.67 <0.001  
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Predictors Estimates Std. error z value p-value 

Depth -0.22 0.44 -0.51 0.611  

Kelp (AC) 2.72 0.60 4.51 <0.001  

Kelp (LD) -3.11 1.05 -2.95 0.003  

Kelp (SL) 0.39 0.58 0.68 0.499  

Six-Month Mean SST -7.40 1.14 -6.48 <0.001  

Kelp (AC): Six-Month Mean 

SST 

3.29 1.13 2.90 0.004 
 

Kelp (LD): Six-Month Mean 

SST 

-5.52 1.95 -2.83 0.005 
 

Kelp (SL): Six-Month Mean 

SST 

2.23 1.08 2.08 0.038 
 

Random Effects  

σ2 0.45  

τ00 site 0.23  

τ00 year 0.06  
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Table 3.2  Model validation statistics for all models assessed in this study. r is Pearson’s 

correlation coefficient, ρ is Spearman’s rank correlation coefficient, b is the intercept and 

m is the slope of model calibration linear model (observed ~ m[predicted] + b), RMSE is 

the root mean squared error, and AVE is the average error (following Potts & Elith 2006). 

Training Data Validation Method r ρ 
Model 

Calibration 
RMSE AVE 

    b  m    

NWA  0.632+ bootstrap  0.70  0.84  0.00  0.97  0.12  -0.01  

NWA Early-

Stage  
Test data (late-stage dataset)  0.46  0.68  0.02  0.67  0.15  -0.02  

NWA Late-

Stage  
Test data (early-stage dataset)  0.74  0.80  -0.03  1.15  0.11  -0.01  

NWA  Test data (Norway dataset)  0.42  0.58  -0.05  3.78  0.26  0.10  

Norway  0.632+ bootstrap  0.69  0.84  0.01  0.99  0.14  -0.01  
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3.4.2 Distribution of peak percent cover under present-day 

and future climate scenarios 
 

 Under present-day temperature conditions (2010-2020), peak percent cover of M. 

membranacea in the NWA varied substantially between different areas and generally 

decreased with increasing latitude. The area of highest predicted cover was the southern 

Gulf of Maine, with up to 65% cover on L. digitata (Figure 3.2), 35% cover on S. 

latissima (Figure 3.3), and 20% cover on A. clathratum (Figure 3.4). In contrast, the 

lowest cover was predicted for the east coast of Labrador (LB) and Ungava Bay (UB) 

(≤5%) for all three species (Figures 3.2-3.4). Intermediate levels of cover were predicted 

in the other regions.  

 Under RCP 4.5, the SDM projected modest increases in peak percent cover of M. 

membranacea, compared to present-day cover, on all three kelp species and in most areas 

of the NWA by 2040-2050 (up to 10% on L. digitata, Figure 3.2; 5% on S. latissima, 

Figure 3.3; and 2% increase on A. clathratum, Figure 3.4), with further increases 

expected by 2090-2100 (up to 15% on L. digitata, Figure 3.2; 8% on S. latissima, Figure 

3.3; and 4% increase on A. clathratum, Figure 3.4). The largest projected increases in 

cover did not occur in areas with the highest present-day cover; for example, on the east 

coast of Cape Breton Island in Nova Scotia, where present-day cover was intermediate 

and ranged from 13% on A. clathratum (Figure 3.4) to 40% on L. digitata (Figure 3.2), 

cover increased to 17% (Figure 3.4), and 55% (Figure 3.2), respectively, by 2090-2100. 

Unlike the rest of the NWA, increases in cover were negligible in northern 

Newfoundland, LB, and UB on all three kelp species. In some embayments (e.g. Bay of 

Fundy, Nova Scotia; Chaleur Bay, New Brunswick; Notre Dame Bay, Newfoundland), 
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cover was projected to decrease (Figures 3.2-3.4); in these areas temperature projections 

for 2090-2100 under RCP 4.5 have already been surpassed by 2010-2020 temperatures.   

 Peak percent cover projections under RCP 8.5 for 2040-2050 were almost 

identical to 2090-2100 projections under RCP 4.5 (Figures 3.2-3.4). However, by 2090-

2100, substantial increases in percent cover were projected on all kelp species. Cover is 

projected to be the highest in the southern Gulf of Maine and the Maritime provinces 

(Nova Scotia, New Brunswick and Prince Edward Island), with up to 80% cover on L. 

digitata (Figure 3.2), 50% cover on S. latissima (Figure 3.3), and 30% cover on A. 

clathratum (Figure 3.4). These cover levels are increases of up to 30%, 25%, and 15% 

compared to present-day cover, respectively. While cover on A. clathratum and S. 

latissima is expected to remain low in LB and UB (Figures 3.3, 3.4), cover on L. digitata 

will reach up to 20% in southeastern LB and 10% in UB (Figure 3.2). 
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Figure 3.2  SDM projections of peak percent cover of M. membranacea on L. digitata for 

present-day (2010-2020) and future SST scenarios. RCP is the Representative 

Concentration Pathway under which SST has been predicted for each future time period 
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Figure 3.3  SDM projections of peak percent cover of M. membranacea on S. latissima 

for present-day (2010-2020) and future SST scenarios. RCP is the Representative 

Concentration Pathway under which SST has been predicted for each future time period 
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Figure 3.4  SDM projections of peak percent cover of M. membranacea on A. clathratum 

for present-day (2010-2020) and future SST scenarios. RCP is the Representative 

Concentration Pathway under which SST has been predicted for each future time period 
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3.4.3 Effect of invasion stage on SDM performance 
 

 The SDM trained on late-stage invasion data (2005-present) performed 

substantially better when extrapolating to early-stage observations (1999 and earlier) than 

the early-stage model when extrapolating to late-stage data (Table 3.2). The early-stage 

model over-estimated higher observations of percent cover for the late-stage data (m = 

0.67; Table 3.2). When projected to the NWA under present-day conditions, the early-

stage model also over-estimated cover compared to the SDM trained on all observations 

from Nova Scotia (Figure 3.5). In contrast, the late-stage model slightly underestimated 

cover for the early-stage observations within the larger cover ranges (m = 1.15; Table 3.2) 

and produced present-day projections of percent cover similar to those of the SDM 

trained on all observations from Nova Scotia (Figure 3.5)
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Figure 3.5  Projections of peak percent cover of M. membranacea on S. latissima, under present-day (2010-2020) SST conditions, by 

SDMs trained on A) data from Nova Scotia collected in 1999 or before, B) data from Nova Scotia collected in 2005 or after (subset to 

match sample size of data from 1999 or before), and C) all data from Nova Scotia. 
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3.4.4 Comparison of NWA- and Norway-based SDMs  
 

 The SDM trained on data from the NWA exhibited poor performance when 

validated against percent cover data from Norway, with low correlations (r and ρ) 

between observed and fitted values, high error (RMSE and AVE), and drastically 

underestimated percent cover (m  = 3.78; Table 3.2). When compared to the NWA-based 

model, the SDM trained on the Norway data (Table 3.3) had a much larger raw-scale 

parameter estimate for SST (braw Norway: 0.28; braw NWA: 0.07), indicating that percent 

cover of M. membranacea in Norway reaches high levels at lower temperatures than in 

the NWA. Additionally, there was a positive relationship between depth and percent 

cover in Norway (Table 3.3) in contrast to the negative relationship between depth and 

percent cover in the NWA (Table 3.2). When the Norway-based SDM was projected for 

cover on S. latissima in the NWA, cover was predicted to be 40-50% higher throughout 

the NWA (excluding LB and UB) than that predicted by NWA-based model under all 

scenarios (Figure 3.6). For example, projected present-day cover by the Norway-based 

SDM ranged between 40-90% and cover in 2090-2100 under RCP 8.5 was between 90-

100%. For LB and UB, the Norway-based SDM projected low cover in all scenarios 

except for RCP 8.5 2090-2100, where up to 45% cover was projected for southern LB 

and up to 15% cover was projected for UB (Figure 3.6).
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Table 3.3  Model summary table for the SDM for peak percent cover of M. 

membranacea, trained on the Norway dataset (section 3.3.4.5). Predictors were 

standardized by 2 standard deviations prior to modelling. Significant p-values in bold (α 

= 0.05). σ2 is the residual variance and τ is the between-group variance for random 

intercepts.  

Predictors Estimates Std. error z value p-value 

Count Model 

(Intercept) -1.47 0.16 -9.32 <0.001  

Depth 0.73 0.23 3.12 0.002  

Six-Month Mean SST 1.62 0.31 5.21 <0.001  

Zero-Inflated Model  

(Intercept) -1.25 0.30 -4.24 <0.001  

Depth 0.68 0.49 1.38 0.166  

Six-Month Mean SST -4.61 0.91 -5.07 <0.001  

Random Effects  

σ2 0.49  

τ00 site 0.00  

τ00 Year 0.00  
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Figure 3.6  Projections of peak percent cover of M. membranacea on S. latissima in the 

NWA by the Norway-based SDM for present-day (2010-2020) and future SST scenarios. 

RCP is the Representative Concentration Pathway under which SST has been predicted 

for each future time period.
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3.5 Discussion 
 

Using SDMs, I projected the present and future abundance of the invasive 

bryozoan M. membranacea in the northwest Atlantic Ocean (NWA). I found that future 

peak percent cover of the bryozoan will depend on emission scenario, and may be 

magnified if an additional invasion occurs from a source population adapted to colder 

temperatures than in the NWA.  

3.5.1 Projections of peak percent cover of M. 

membranacea in the NWA 
 

There were large differences in projections of future peak percent cover of M. 

membranacea depending on the employed future climate change scenario. Under the 

likely future climate pathway of RCP 4.5, the abundance of M. membranacea was 

predicted to show modest increases by 2090-2100 compared to present-day in most areas. 

The largest increases were forecasted for areas where present-day cover of M. 

membranacea is intermediate (e.g. in Cape Breton Island, Nova Scotia, where cover is 

13- 40% depending on kelp substrate) and no area in the NWA was predicted to reach 

percent cover levels above present-day maxima. Peak cover of M. membranacea was 

projected to increase approximately twice as rapidly under a worst-case emissions 

scenario (RCP 8.5), as projected cover by mid-century was very similar to end-of-century 

projections under RCP 4.5. By the end of the century under RCP 8.5, large increases in 

percent cover were predicted; for example, cover on S. latissima was expected to increase 

from up to 35% in present-day to over 50% in 2090-2100 in some areas of the Gulf of 

Maine and Maritime provinces. This increase in cover could considerably exacerbate 
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damage to kelp beds in these locations, as kelp defoliation rapidly intensifies as peak 

cover of M. membranacea increases from 25 to 50% (Scheibling & Gagnon 2009).  

Increasing habitat suitability for invasive species in the Arctic has been projected 

under climate change, particularly for ship-mediated invasive species like hull-fouling 

organisms and organisms with a planktonic stage amenable to ballast water transport 

(Ware et al. 2016, Goldsmit et al. 2018, Holbech & Pedersen 2018); M. membranacea 

has both of the above characteristics. There is a particularly high risk of spread of ship-

mediated marine invasive species to the Arctic due to the projected increase in shipping 

activity in the area (Miller & Ruiz 2014), emphasising the need for predictions of suitable 

habitat for such invasive species and their potential impacts in the region. M. 

membranacea has not been recorded to date on the Atlantic coast of Labrador (LB) or in 

Ungava Bay (UB), the Arctic regions included in my SDM domain, but I predicted the 

bryozoan will occur there at low peak cover (<8% on all kelp species) in both 2040-2050 

and 2090-2100 under RCP 4.5. Goldsmit et al. (2018) also predicted that M. 

membranacea could occur on the Atlantic coast of LB and in UB by 2045-2050 under 

RCP 4.5, supporting my prediction of the potential range expansion of the bryozoan to 

these areas. Projected cover was higher under the worst-case emissions scenario (RCP 

8.5), with up to 20% cover on L. digitata on the Atlantic coast of LB and up to 10% in 

UB. However, although these cover levels are notably higher than those projected under 

RCP 4.5, they are still unlikely to cause significant damage to kelp beds. Overall, 

although it is possible that M. membranacea could spread to the Arctic under both future 

climate scenarios, there is little evidence that the bryozoan would threaten the kelp beds 

there under either scenario.  
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Substantial differences in SDM projections between climate scenarios, like those 

observed in this study, are common when projecting the response of marine ectotherms to 

climate change (e.g. Asch et al. 2018, van Woesik et al. 2018, Park et al. 2020), likely 

due to the strong dependence of these organisms on temperature (Schmidt-Nielsen 1997, 

Pörtner 2002). Given that considerable uncertainty exists regarding the extent of future 

warming under climate change (Hawkins & Sutton 2009, Hausfather & Peters 2020b, 

Schwalm et al. 2020), it is unclear which RCP scenario future climate will track most 

closely. The future abundance and impact of M. membranacea on kelp beds in the NWA 

are therefore largely dependent on the extent of ocean warming due to climate change.  

My comparison of SDMs trained on data from Norway and the NWA revealed a 

pronounced difference in the response to temperature between populations of M. 

membranacea in the two regions. The bryozoan appears to achieve markedly higher 

percent cover in Norway than in the NWA under the same temperature conditions. I 

propose that populations of M. membranacea in Norway may be genetically adapted to 

grow at colder water temperatures than populations in the NWA. Indeed, M. 

membranacea from Norway are genetically distinct from M. membranacea from the 

NWA (Arpin 2021). Also, genetic evidence indicates that M. membranacea was likely 

introduced to the NWA from its native range in Europe (Schwaninger 1999), possibly 

from a single location (Arpin 2021). A source location for NWA populations that is 

warmer than Norway (e.g. England) may explain the better performance of M. 

membranacea at colder temperatures in Norway than in the NWA. In addition to 

differences in source population, genetic adaptation (Liu et al. 2020) and phenotypic 

plasticity (Zenni et al. 2014) can also lead to shifts in the climatic niche of invasive 
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species compared to their native populations. It is possible that M. membranacea of 

Norwegian origin are already present in the NWA and have genetically or phenotypically 

altered their response to temperature (see Menon 1972). However, the existence of 

genetic differences between populations from the NWA and Norway makes the presence 

of phenotypically adapted Norwegian M. membranacea unlikely, and there is no evidence 

of genetic adaptation of the bryozoan within the NWA. I thus consider the hypothesis of a 

non-Scandinavian origin for current populations of the bryozoan in the NWA more 

plausible. 

The introduction of M. membranacea from Norway, or elsewhere in northern 

Europe, to the NWA may cause the bryozoan to exhibit different population dynamics 

than the current strains in the region. Invasions from different source populations can 

increase the success of invasive species in their introduced range, by either facilitating 

local adaptation by increasing genetic diversity (Sakai et al. 2001) or acting as pre-

adapted genotypes to novel areas (Le Roux & Wieczorek 2009, Novo et al. 2015). 

Accordingly, a future invasion of cold-tolerant M. membranacea could expand the 

thermal tolerance of the bryozoan in the NWA and allow it to proliferate at an accelerated 

rate in the region. Such an expansion of an invasive species has occurred in the region 

previously: the European green crab was originally introduced to the east coast of the 

United States from southern Europe, but range expansion to the colder waters of the 

Maritime Provinces was the result of a second invasion of a more cold-tolerant lineage 

from Norway (Roman 2006).  

When projected to the NWA, the Norway-based SDM projected 40-50% higher 

peak cover of M. membranacea on S. latissima than that predicted by the NWA-based 
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SDM in most areas, under both present-day and future temperature conditions. Such 

coverage could jeopardize the viability of kelp populations throughout the region, except 

possibly the Atlantic coast of LB and UB. However, by the end of the century, severe 

negative impacts on kelp populations on the Atlantic coast of LB may also occur, as the 

Norway-based SDM predicted up to 50% peak cover on the Atlantic coast of LB under 

RCP 8.5. Studies currently predict stable or increasing populations of Arctic kelp under 

climate change based on environmental conditions (Assis et al. 2018a, Filbee-Dexter et 

al. 2019). However, high cover of M. membranacea in the Arctic under a potential 

invasion of populations from Norway underscores the importance of considering the 

impact of invasive (Reside et al. 2014) or other antagonistic species (Davis et al. 2021) 

when predicting climate refugia. Overall, given the ever increasing risk of biological 

invasions due to global shipping (Sardain et al. 2019) and the lack of intra-regional 

ballast water regulations in the NWA (Scriven et al. 2015), an invasion of Norwegian M. 

membranacea in the NWA is possible, could easily spread throughout the region from its 

site of introduction, and could have unexpectedly detrimental consequences for kelp bed 

ecosystems. 

3.5.2 SDM performance and limitations 
 

The SDM for peak percent cover of M. membranacea in the NWA performed 

well under 0.632+ bootstrap evaluation and produced reasonable present-day projections 

of percent cover, including moderate to high cover on L. digitata and S. latissima in the 

Gulf of Maine and Nova Scotia (Saunders & Metaxas 2008, 2009b, Scheibling & Gagnon 

2009) and low percent cover for the northern Gulf of St Lawrence and Newfoundland 

(Caines & Gagnon 2012, Denley et al. 2019b). Negligible present-day cover predicted for 
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the Atlantic coast of LB and UB fits with a lack of reports of M. membranacea presence 

in these areas to date. The distribution of peak cover of M. membranacea produced by the 

SDM is also broadly similar to present-day habitat suitability predicted by Lyons et al. 

(2020), with differences in some areas possibly because abundance and habitat suitability 

are generally only loosely correlated (Bean et al. 2014, Acevedo et al. 2017, Jiménez‐

Valverde et al. 2021).  

I showed that accurate prediction of the abundance distribution of M. 

membranacea was not possible using only data available during the initial stage of its 

invasion. SDMs for invasive species that are calibrated in the early stages of the invasion 

may produce inaccurate projections due to an incomplete representation of the 

environmental niche of the species by early-stage training data (Václavík & Meentemeyer 

2012) or a change in the niche of the species over time due to phenotypic or genetic 

adaptation to its invaded environment (Gallien et al. 2010, Jiménez-Valverde & Lobo 

2011). For M. membranacea, the late-stage model accurately predicted early-stage 

observations, indicating that the latter was not the case. Instead, it is likely that the 

paucity of sites in the early-stage data (n =2, compared to n = 11 in the late-stage data) 

represented only a subset of the abiotic conditions habitable for the bryozoan (Jiménez-

Valverde et al. 2011), decreasing the performance of the early-stage SDM. The lack of 

evidence for fundamental niche evolution over time in M. membranacea supports the 

validity of temporal extrapolation using the SDM for the bryozoan in the NWA. 

Additionally, the poor performance of the early-stage SDM reinforces the need for 

caution when calibrating SDMs for invasive species in the early stages of their invasion 

(Václavík & Meentemeyer 2012). 
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Although the SDM performed well in internal validation and produced plausible 

projections in most areas, projections of future cover in some areas may be unrealistic. 

For example, projections of future cover in some embayments (e.g. Bay of Fundy, Nova 

Scotia; Chaleur Bay, New Brunswick; Notre Dame Bay, Newfoundland) may be 

artificially low, as evidenced by projected decreases in cover under 2040-2050 

temperature conditions. Projected decreases in cover arise because present-day (2010-

2020) SST values have already surpassed those predicted for 2040-2050 by Bio-

ORACLE for these embayments. Although decreases in SST are projected for some areas 

of the Atlantic under climate change (e.g. south of Greenland; Alexander et al. 2018), no 

evidence for decreases in temperature in these embayments exists. It is more likely that 

the ensemble of pre-2014 CMIP5 climate models used to generate the Bio-ORACLE SST 

projections (Assis et al. 2018b) underestimated the rapidity of climate change in these 

embayments, and projections of cover in these areas should be treated with caution as a 

result. Additionally, SDM projections of very low peak cover in some areas (e.g. LB and 

UB) may not guarantee the presence or persistence of M. membranacea at these 

locations, as abundance SDMs are not reliable at estimating absence (i.e. 0% cover; 

Young et al. 2012).  

The impacts of biological invasions on native ecosystems are often dependent on 

local ecological context (de Moura Queirós et al. 2011, Thomsen et al. 2011, Hulme et al. 

2013). In this study, peak percent cover of M. membranacea may not directly correlate 

with impacts on local kelp communities due to interspecific and environment-driven 

differences in kelp physiology. For example, all kelp species may not experience similar 

defoliation: L. digitata appears to be more resistant to damage by M. membranacea than 
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S. latissima (Krumhansl et al. 2011), which may allow L. digitata to persist more easily 

through outbreaks of the bryozoan (Saunders & Metaxas 2009b). Also, declines in 

abundance of kelp species more vulnerable to M. membranacea may allow less 

susceptible species to increase in abundance (Denley et al. 2019a). Thus, the same level 

of peak percent cover by M. membranacea may have different ecological implications for 

different kelp species, and the severity of the effect of the bryozoan may depend on the 

species composition of a given kelp community.  

Impacts of invasive species are also affected by variability in abiotic conditions 

(Thomsen et al. 2011, Gutiérrez et al. 2014). For instance, kelp blades become stronger 

when exposed to higher wave energy (Kraemer & Chapman 1991, Thomsen et al. 2004, 

Wernberg & Vanderklift 2010), possibly reducing tissue weakening induced by M. 

membranacea, in turn explaining the persistence of kelp populations in some wave 

exposed areas of the NWA despite high cover by the bryozoan (Attridge et al. submitted). 

Moreover, the direct negative effect of increasing sea temperatures on kelps (Simonson et 

al. 2015) may worsen the impact of M. membranacea on kelps as the climate warms.  

3.6 Conclusions 
 

Using species distribution modelling, I showed that peak percent cover of M. 

membranacea in the NWA could increase either slightly or dramatically by the end of the 

century, depending on the future trajectory of ocean warming. Consequently, similarly to 

other ecosystems characterized by marine ectotherms, the fate of kelp beds throughout 

much of the NWA is largely dependent on the extent of climate change mitigation. 

Importantly, projected increases in the abundance M. membranacea may be partially 
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underestimated in some areas (e.g. large embayments) where current temperatures have 

already exceeded projected trends. Kelp beds on the east coast of Labrador and Ungava 

Bay do not appear to be at significant risk of defoliation by M. membranacea over the 

next century, assuming the response of the bryozoan to temperature remains unchanged. 

However, the substantial differences in projections between populations of M. 

membranacea from Norway and NWA indicate that the bryozoan could achieve 

considerably higher percent cover throughout the NWA, extending into Labrador, if the 

former were to invade the region. This emphasises the large potential for multiple 

introductions to alter the impact of invasive species. An invasion of M. membranacea 

from Norway would challenge the status of the Arctic as a potential refuge for kelp under 

climate change, highlighting the importance of considering invasive species range shifts 

when predicting refugia for species of concern. Lastly, although the SDM performed 

well, the complex responses of kelp communities to infestation by the bryozoan and the 

environment limit the interpretation of the potential impacts of M. membranacea on kelp 

beds, exemplifying the need for SDMs to be interpreted in ecological context. Overall, 

this study provides evidence that climate change may expand the range and intensify the 

impact of M. membranacea on kelps in the NWA, indicating that the bryozoan will 

continue to be a significant driver of ecological change in rocky subtidal ecosystems of 

the region.
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CHAPTER 4 

 

CONCLUSION 
 

Species distribution models (SDMs) are important tools for informing the 

management of invasive species (Gallien et al. 2010, Srivastava et al. 2019). In this 

thesis, I developed and employed SDMs to project the present and future distributions of 

the invasive bryozoan Membranipora membranacea in the northwest Atlantic Ocean 

(NWA). My results contribute valuable knowledge applicable both to the management of 

M. membranacea, but also to SDMs and their application to predictions of invasive 

species more broadly. 

In Chapter 2, I laid the foundation for an SDM for the percent cover M. 

membranacea by thoroughly evaluating the importance of candidate predictor variables. 

Although previous studies had identified numerous candidate predictor variables for 

percent cover, their effects on the bryozoan over large spatiotemporal scales, their 

relative and absolute importance, and numerous details of their optimal parameterization 

were unknown. I found that temperature (specifically, mean temperature over the 

previous six months), kelp substrate, and depth were important predictors of percent 

cover, establishing these variables as the optimal predictors for use in an SDM for percent 

cover. By also examining the predictors of settler density, I not only contributed to 

fundamental knowledge of the environmental drivers of settlement in M. membranacea 

but also demonstrated that optimal predictors and their metrics for use in SDMs can differ 

depending on the life stage of the organism being modelled. This and other generalizable 
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findings (see section 2.6) allowed me to compose a conceptual framework to guide 

variable selection for SDMs of other species.  

Past studies have developed SDMs predicting the presence of M. membranacea 

(Goldsmit et al. 2018, Lyons et al. 2020), but models predicting the abundance and 

resultant impact of the bryozoan were lacking prior to this thesis. In Chapter 3, I applied 

the results of my variable selection analysis (Chapter 2) to construct and project SDMs 

for the peak percent cover of M. membranacea in the NWA under present and future 

climate scenarios. I also fit SDMs to data from the early and late stages of the invasion of 

the bryozoan to determine whether there was evidence of a niche shift for M. 

membranacea in the NWA over time. Lastly, I assessed the impact of a potential future 

invasion of the NWA by populations of the bryozoan from Norway by comparing NWA- 

and Norway-based SDMs. Peak percent cover in the NWA was projected to remain 

similar to present-day levels or to increase substantially in most areas, depending on the 

future climate scenario employed. Although I found no evidence of a niche shift for M. 

membranacea over time in the NWA, my results demonstrated that Norwegian 

populations of M. membranacea exhibit different responses to temperature and depth 

than populations in the NWA. An invasion of M. membranacea from Norwegian 

populations could potentially alter the behaviour of the bryozoan within the NWA, 

allowing it to achieve extremely high peak percent cover under present and future climate 

conditions and even to spread into eastern Labrador at levels that could negatively impact 

kelp populations. Overall, my results show that the threat of M. membranacea in the 

NWA may increase with future climate change (including in the Arctic under some 
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scenarios), but the extent of this increase is dependent on the magnitude of future climate 

change as well as the invasion dynamics of the bryozoan. 

 The predictions of the distribution of M. membranacea can help to inform 

management action to mitigate the effects of the bryozoan on kelp beds in the NWA. For 

one, marine protected areas (MPAs) in the NWA mandated to protect kelp (e.g. Eastern 

Shore Islands Area of Interest; DFO 2019) should consider the current and future 

abundance of M. membranacea and its potential to negatively impact kelps in the area. 

MPAs could be established in areas where the present and projected impacts of M. 

membranacea on kelps are projected to remain low under climate change (e.g. eastern 

Newfoundland, northern Gulf of St Lawrence, Labrador and Ungava Bay; see section 

3.4.2). This would allow protection of kelps from other stressors while avoiding areas 

impacted by the bryozoan (sensu Giakoumi et al. 2016). Additionally, the projected 

negative impacts associated with an invasion of M. membranacea from Norway 

emphasise the need for continued improvements to preventative measures (e.g. ballast 

water treatment; Scriven et al. 2015) and monitoring of M. membranacea populations 

(Sephton et al. 2017, DFO 2020) to detect additional invasions of the bryozoan that could 

change its response to environmental conditions in the NWA. However, projections of 

peak percent cover of M. membranacea must be considered jointly with the susceptibility 

of the local kelp community when predicting the impacts of the invasive species on kelp 

beds (see section 3.5.2). Therefore, continued research on the interactions between M. 

membranacea, kelp beds, and environmental conditions is necessary to fully disentangle 

the various context-dependent effects of the bryozoan on kelps and more accurately 

predict the impact of the invasive species under climate change. 
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APPENDIX A 

 

CHAPTER 2 
 

 

 

Figure A.1  Daily in situ temperature data from five sites in the Eastern Shore Islands 

from October 2018-October 2019. 
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Table A.l   Regions (GOM = Gulf of Maine, NFLD = Newfoundland and Labrador, NS = Nova Scotia), study sites, locations, years, 

and kelp substrate species (AC = A. clathratum, LD = L. digitata, SL = S. latissima) for which data on percent cover and settler 

density of Membranipora membranacea were available. Sample sizes for percent cover (N (Cover)) and settler density (N (Sett)) are 

kelp species-specific means for each depth, site, and sampling date and are shown for the full datasets, kelp density datasets, and IST 

datasets respectively. Total sample sizes are shown at the bottom of the table. Cover method: method by which percent cover data 

were collected (blade: examining individual kelp blades; video: video transects). Sett definition: how settlers were defined in a study; 

see text for details. 

  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

GOM  

Ammen 

Rock 1 

42.89058 -68.94351 1987, 

2012, 

2014 

SL videoa NA 3 3 NA NA NA NA Witman 

and Lamb 

(2018) 

Beverly 

Port 

Marina 

42.54047 -70.88256 2010, 

2011 

SL blade NA 13 NA NA NA NA NA McCuller 

(2012) 

Cape 

Neddick 

43.16700 -70.59200 1989, 

1990 

SL blade NA 3 NA NA NA NA NA Lambert et 

al. (1992) 

Spring 

Point 

Marina 

43.65071 -70.23037 2010, 

2011 

SL blade NA 16 NA NA NA NA NA McCuller 

(2012) 

Wentworth 

Marina 

43.05781 -70.72691 2010, 

2011 

SL blade NA 12 NA NA NA NA NA 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

 

NFLD 

 

 

 

 

 

 

 

Bird Cove 51.05528 -56.94028 2008 SL blade ≤ 2 

zooids 

4 NA NA 4 NA NA Caines 

and 

Gagnon 

(2012) Daniel's 

Harbour 

50.24139 -57.58889 2008 SL blade ≤ 2 

zooids 

4 NA NA 4 NA NA 

Green 

Island 

Cove 

51.37667 -56.60778 2008 SL blade ≤ 2 

zooids 

4 NA NA 4 NA NA 

Lark 

Harbour 

49.10694 -58.35639 2008 SL blade ≤ 2 

zooids 

3 NA NA 3 NA NA 

Norris 

Point 

49.50278 -57.89222 2008 SL blade ≤ 2 

zooids 

2 NA NA 3 NA NA 

Port au 

Choix 

50.73222 -57.31222 2008 SL blade ≤ 2 

zooids 

4 NA NA 4 NA NA 

Port aux 

Basques 

47.57861 -59.09111 2008 SL blade ≤ 2 

zooids 

2 NA NA 2 NA NA 

Red Bay 51.72639 -56.42889 2008 SL blade ≤ 2 

zooids 

2 NA NA 2 NA NA 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

NS 

 

 

 

 

 

 

Birchy 

Head 

44.57500 -64.04167 2008 LD, SL NA ≤ 2 

zooids 

NA NA NA 4 4 NA Yorke and 

Metaxas 

(2012) 

Crooks 

Island 

44.92292 -62.08627 2019 AC, LD, 

SL 

video NA 10 NA NA NA NA NA This Study 

Feltzen 

South 

44.33167 -64.28167 2008 LD, SL blade ≤ 2 

zooids 

2 NA NA 4 4 NA Yorke and 

Metaxas 

(2012) 

2009, 

2010 

LD, SL blade ≤ 2 

zooids 

12 NA 4 12 NA 4 Denley et 

al. (2014) 

Halibut 

Island 

44.88797 -62.20700 2018 AC, LD, 

SL 

blade NA 3 3 NA NA NA NA This Study 

2019 AC, LD, 

SL 

blade < 1 cm 8 8 8 8 8 8 

Little Duck 

Island 

44.36667 -64.18333 1992, 

1993, 

1994, 

1995, 

1997, 

SL video NA 36 NA NA NA NA NA Scheibling 

and 

Gagnon 

(2009) 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

NS 

 

 

 

 

 

 

1998, 

1999 

Long 

Island 

44.88955 -62.30292 2019 AC, LD, 

SL 

blade < 1 cm 8 NA 8 8 NA 8 This Study 

Mill Cove 44.58333 -64.05000 1992, 

1993, 

1994, 

1995 

SL video NA 13 NA NA NA NA NA Scheibling 

and 

Gagnon 

(2009) 

Paddy's 

Head 

44.51833 -63.95056 2005, 

2006 

ACb, LD, 

SL 

blade ≤ 2 

zooids 

70 NA 23 57 NA 18 Saunders 

and 

Metaxas 

(2009b) 

2008 LD, SL blade ≤ 2 

zooids 

2 NA 2 4 4 4 Yorke and 

Metaxas 

(2012) 

2012, 

2013 

AC, LD, 

SL 

blade < 1 cm 46 46 15 46 46 15 Denley 

and 

Metaxas 

(2017a) 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

 

NS 

 

 

 

 

 

Pumpkin 

Island 

44.82208 -62.37690 2019 AC, LD, 

SL 

video NA 10 NA NA NA NA NA This Study 

Sandy 

Cove 

44.46206 -63.70483 2005, 

2006 

ACb, LD, 

SL 

blade ≤ 2 

zooids 

19 NA NA 14 NA NA Saunders 

and 

Metaxas 

(2009b) 

2008 LD, SL NA ≤ 2 

zooids 

NA NA NA 4 4 NA Yorke and 

Metaxas 

(2012) 

2012, 

2013 

AC, LD, 

SL 

blade < 1 cm 33 29 6 33 33 6 Denley 

and 

Metaxas 

(2017a) 

2015, 

2016, 

2017 

SL NA < 1 cm NA NA NA 20 NA 20 Denley 

(unpubl. 

data) 

Shag Rock 44.43129 -63.56631 2018 LD, SL video NA 4 NA NA NA NA NA This Study 

2019 LD, SL blade < 1 cm 4 4 NA 4 4 NA 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

 

NS 

 

 

 

 

 

Speck 

Island 

44.84490 -62.38682 2019 AC, LD, 

SL 

video NA 10 10 NA NA NA NA 

Splitnose 

Point 

44.47735 -63.54673 2008, 

2009 

LD, SL blade NA 10 NA NA NA NA NA Krumhansl 

and 

Scheibling 

(2011) 

The Lodge 44.55083 -64.01917 2005, 

2006 

ACb, SL blade ≤ 2 

zooids 

58 NA 21 45 NA 15 Saunders 

and 

Metaxas 

(2009b) 

2008, 

2009 

LD, SL blade NA 10 NA 4 NA NA NA Krumhansl 

and 

Scheibling 

(2011) 

2009, 

2010 

LD, SL blade ≤ 2 

zooids 

33 NA 22 33 1 22 Denley et 

al. (2014) 

2012, 

2013 

AC, LD, 

SL 

blade < 1 cm 43 43 43 43 43 43 Denley 

and 
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  N (Cover) N (Sett)  

Region Study site Latitude 

(DD) 

Longitude 

(DD) 

Year Kelp 

substrate 

Cover 

method 

Sett 

definition 

Full Kelp 

density 

IST Full Kelp 

density 

IST Source 

 

 

 

 

 

 

 

NS 

 

 

 

 

Metaxas 

(2017a) 

2015, 

2016, 

2017 

SL NA < 1 cm NA NA NA 20 NA 20 Denley 

(unpubl. 

data) 

The Moll 44.92397 -62.23767 2018 AC, LD, 

SL 

blade NA 3 3 NA NA NA NA This Study 

2019 AC, LD, 

SL 

blade < 1 cm 9 9 9 9 9 9 

Tuffin 

Island 

44.90660 -62.15593 2018 AC, LD, 

SL 

blade NA 3 3 NA NA NA NA 

2019 AC, LD, 

SL 

blade < 1 cm 9 9 NA 9 9 NA 

White 

Island 

44.88707 -62.11967 2019 AC, LD, 

SL 

blade < 1 cm 9 9 NA 9 9 NA 

 Total 549 179 165 412 178 192  

 



 

 

 

1
0
1
 

a: Percent cover data for Ammen Rock in 2012 were collected by analyzing photos, not video  

b: Only percent cover data on this species 

 

 



 

 102    

 

Table A.2  Sets of top models (models with ∆AIC<7) explaining observed patterns in a) 

percent cover and b) settler density of M. membranacea in the northwest Atlantic, where 

SST has been separated into seasonal (day of year) and anomaly (site- or year-specific 

anomalies from overall mean, obtained as residuals from generalized additive models 

between day of the year and SST) components. REI and SST metrics are abbreviated as 

per Table 2.1. Marg. and Cond R2 are the marginal and conditional R2 values for the 

GLMM. Random Effect SD is the standard deviation of each random intercept. 

 

(a) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

 + Kelp Substrate 

+ REI 6-Log                       

+ SST 6-M 

(Anomaly)      + 

SST 6-M 

(Seasonal)  

+ Kelp 

Substrate:SST 6-

M (Seasonal) 

13 643.479 -1260.959 0.000 0.577 0.569 0.756 Site = 0.577 

Year = 0.152 

Depth 

+ Kelp Substrate 

+ SST 6-M 

(Anomaly)      + 

SST 6-M 

(Seasonal) 

+ Kelp 

Substrate:SST 6-

M (Seasonal) 

12 642.085 -1260.170 0.788 0.389 0.543 0.750 Site = 0.596 

Year = 0.162 

   Kelp Substrate             

+ REI 6-Log 

+ SST 6-M 

(Anomaly)      + 

SST 6-M 

(Seasonal) 

+ Kelp 

Substrate:SST 6-

M (Seasonal) 

12 639.366 -1254.732 6.227 0.026 0.560 0.751 Site = 0.569 

Year = 0.192 
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(b) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD 

Depth 

+ REI Y-Log 

+ Kelp Substrate 

+ SST 6-I 

(Anomaly)        

+ SST 6-I 

(Seasonal) 

10 -1852.667 3725.335 0.000 0.457 0.515 0.769 Year = 0.877 

Site = 0.679 

    Kelp Substrate             

+ REI Y-Log 

+ SST 6-I 

(Anomaly)        

+ SST 6-I 

(Seasonal) 

9 -1855.483 3728.966 3.631 0.074 0.513 0.769 Year = 0.868 

Site = 0.701 

Depth 

+ Kelp Substrate 

+ SST 6-I 

(Anomaly)       

 + SST 6-I 

(Seasonal) 

9 -1855.790 3729.580 4.245 0.055 0.465 0.765 Year = 0.898 

Site = 0.789 
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A.1 Data collection: new data 
 

I collected data from 8 previously unsurveyed sites in the Eastern Shore Islands 

(ESI) of Nova Scotia: Crooks Island (CR), Halibut Island (HB), Long Island (LI), The 

Moll (MO), Pumpkin Island (PU), Speck Island (SI), Tuffin Island (TU) and White Island 

(WI) (for locations, see Table A.1). Additionally, I collected data from Shag Rock (SR), a 

long-term study site on the southwestern shore approximately 5 km offshore of Sambro, 

Nova Scotia, which had anomalously high kelp cover compared to other sites in the area. 

I surveyed 4 sites in October 2018 (HB, MO, TU, SR), all 8 sites in the ESI in July, 

August and October 2019, and SR in July and October 2019.  

A.1.1 Percent cover and settler density of M. 

membranacea 

  
At HB, MO, and TU in 2018 and 2019, and LI, SR, and WI in 2019, I 

haphazardly collected five kelp blades of each of the three numerically dominant kelp 

species in Nova Scotia (Agarum clathratum, Laminaria digitata, and Saccharina 

latissima) between 6 and 9 m using SCUBA. I stored collected blades in plastic coolers 

without water and processed them within 72 hours of sampling. If blades were processed 

more than 72 hours after sampling, I stored them in tanks with flowing, ambient seawater 

to preserve them until they were processed. I visually enumerated newly settled colonies 

(colonies measuring <1 cm in diameter; Denley & Metaxas 2017b) on one side of each 

kelp blade, with the aid of an OptivisorTM (up to 8x magnification) if necessary. For L. 

digitata with a basal meristem < 20 cm wide and all A. clathratum and S. latissima, I 

analysed one whole side of the blade. For L. digitata with a basal meristem > 20 cm wide, 

I subdivided blades widthwise into 3 equal segments and analysed 1 digitated blade in 



 

105 

 

each subdivided segment. I estimated the surface area of each kelp blade from 

photographs using Image J and divided the number of settlers by the surface area of each 

kelp blade to obtain the settler density per unit area of kelp. For subdivided L. digitata, I 

divided the number of settlers on each digitated blade by the blade area to obtain settler 

density per unit area and averaged these densities across the 3 blades to obtain one value 

per kelp plant. To measure percent cover of M. membranacea, I divided kelp blades 

lengthwise into 15-cm segments on one side of the blade, starting at the proximal end. I 

measured the percentage of the kelp blade covered by colonies of M. membranacea 

within 25-cm2 subsections using a grid placed in the centre of each 15-cm segment. I then 

averaged percent cover values across all subsections to obtain the estimated percent cover 

of M. membranacea for the entire kelp blade.  

 I measured percent cover of M. membranacea at SR in 2018, and at CR, PU, and 

SI in 2019, from 120-m long video transects done at 6 and 9 m depths with a handheld 

GoPro® Hero camera. I attached 1.5-m plumb line to the camera to keep the camera at a 

constant height above the seafloor and a washer attached to the bottom of the plumb line 

provided a scale reference for subsequent image analysis. For each video transect, I 

extracted and analysed video frames at ~30-second intervals in Image J using the point 

method (Kohler & Gill 2006). For each image, I obtained the percent cover of M. 

membranacea on each kelp species by dividing the number of points overlaying M. 

membranacea colonies on a given kelp species by the total number of points overlaying 

the kelp species (covered with M. membranacea or not). I then calculated the mean 

percent cover of M. membranacea on each kelp species across images at each depth for 

each site. 
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A.1.2 In Situ Temperature 
 

I measured in situ temperature (IST) at 6 and 9 m depth continuously at 10-minute 

intervals using HOBO Pendant® temperature loggers from October 2018 to October 

2019 (HB, LI, MO), May 2019 to October 2019 (CR) and June 2019 to October 2019 

(PU, SR). I averaged IST across 6 and 9 m depths at each site to correspond with data on 

percent cover and settler density of M. membranacea collected from between 6 and 9 m, 

but also retained temperature series for 6 and 9 m to correspond with video-based 

measurements of percent cover at 6 and 9 m. For PU at 9 m and CR, HB, LI, and MO at 

both depths, IST records ended approximately one week prior to sampling of M. 

membranacea in October 2019 due to logger memory limitations. To extend the 

temperature series at these sites until their sampling dates, I generated a linear model 

based on the data from PU at 6 m to obtain an estimate of the mean rate of temperature 

change each day. I applied this rate of change to the other sites, which were within 25 km 

of PU and thus share a thermal regime (Figure A.1), for the week leading up to the 

sampling date. 

A.1.3 Kelp Density 
 

I measured kelp density at HB, LI and TU in October 2018 and at CR, HB, MO, 

LI, TU, and WI in July and October 2019. I haphazardly sampled 0.5-m2 quadrats (n = 5-

12) between 6 and 9 m in 2018 and at 6 and 9 m in 2019. I counted the number of adult 

A. clathratum, L. digitata, and S. latissima (>20 cm in length) within each quadrat and 

divided by the quadrat area to obtain kelp density per m2 of seafloor. I then calculated the 

average kelp density across all quadrats at each depth. 
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A.2 Comparing methods for measuring percent cover 

of M. membranacea 
 

I collected new data on percent cover of M. membranacea concurrently from both 

counts on individual kelp blades and video transects at six sites (HB, LI, MO, SR, TU, 

and WI), affording us the opportunity to compare percent cover data among methods 

using a 2-way ANOVA with fixed factors of collection methodology (2 levels: individual 

blade examination, video) and kelp substrate species (3 levels: A. clathratum, L. digitata, 

S. latissima). There was no significant difference in percent cover between methods for 

any kelp species (F(2 , 22) = 1.022, p>0.05) or between the different methods across kelp 

species (F(1, 22) = 0.097, p>0.05). 

A.3 Standardizing settler density across studies 
 

It was necessary to standardize settler density in my dataset across studies that 

used different size definitions of a settler. Since mortality for newly settled colonies of M. 

membranacea is negligible (Yoshioka 1982, Denley & Metaxas 2016), I assumed I could 

predict the proportion of ≤2-zooid colonies (typically 0.5 - 0.9 mm in diameter; Saunders 

& Metaxas 2007) in the <1-cm colony size class. For observations from studies that 

defined settlers as colonies <1-cm (Denley & Metaxas 2017a; D. Denley unpublished 

data; this study), I calculated the abundance of ≤2-zooid colonies based on relationships I 

derived from data in Caines and Gagnon (2012) (n=26). The study enumerated multiple 

small size classes (≤2 zooids, and >2 zooids but ≤0.5 cm in diameter) across a wide 

geographic range (8 sites over a 450-km latitudinal range) over 4 months and provided 

monthly average IST. 
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First, I combined abundance across the two size classes measured by Caines and 

Gagnon (2012) for each observation to obtain the density of colonies ≤0.5cm (Eq. A.1). 

 Colonies ≤0.5cm = Colonies ≤2 zooid rows + 0.5cm ≤ Colonies >2 zooid rows  (A.1) 

 

I then estimated the growth rate (GR, in cm day-1) for ≤0.5-cm colonies based on the 

monthly average temperature (T), using the field-based equation for size- and 

temperature-specific growth from Saunders and Metaxas (2009a; Eq. A.2).  

log(GR) = −1.665 + 0.719 ∙ log(0.5 c𝑚) + 0.072 (T)   (A.2) 

 

This estimate assumes a relatively constant temperature (i.e. colony growth rate) and 

settlement rate over the period in which a 2-zooid colony matures into a 1-cm colony. By 

dividing 0.5 cm (the amount that a 0.5-cm colony would need to grow to reach 1 cm in 

diameter) by GR, I estimated the number of days that colonies would spend in the 0.5- to 

1-cm size class (“residence time”, RT; Eq. A.3). 

 
RT = 

0.5 𝑐𝑚

GR
 

(A.3) 

 

I calculated the approximate age of the ≤2-zooid colonies using a linear model derived 

from temperature-dependent age estimates presented in Saunders and Metaxas (2007) 

(Eq. A.4) and obtain an estimated settlement rate (STR, colonies day-1) for each 

observation by dividing the number of ≤2-zooid colonies by their estimated age (Eq. 

A.5).  

log(Age) = 2.66 –  1.92 ∙  log(T) (A.4) 
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STR = 

Colonies ≤2 zooid rows

Age
 (A.5) 

I multiplied the residence time by the settlement rate to obtain an estimate of the density 

of colonies between 0.5 and 1 cm in diameter, and added the density of ≤0.5-cm colonies 

to estimate the density of colonies <1 cm (Eq. A.6). 

 Colonies <1 cm = Colonies ≤0.5 cm +  RT ∙ STR   (A.6) 

 

Lastly, I fit a linear regression model predicting the abundance of colonies ≤2 zooids 

from the estimated abundance of colonies <1 cm (both log-transformed to satisfy the 

assumptions of normality and homogeneity of variance; intercept forced through the 

origin; Figure A.2). This model only holds for the range of temperatures (3.3 – 17.6°C) 

and settler densities (0-2663 settlers m-2 kelp) measured by Caines and Gagnon (2012); 

however, these ranges are encompass those measured by studies in Nova Scotia from 

May-November (e.g. IST: 5.0 – 17.3°C, settler density: 0 -1927 settlers m 2 kelp; 

Saunders & Metaxas 2009b), supporting my application of this model to convert 

observations of colonies <1 cm to colonies ≤2 zooids in my compiled dataset.



 

 110    

 

 

 

Figure A.2  Density of colonies with ≤2 zooids as a function of the estimated number of 

colonies <1 cm in diameter (see Appendix A.3 for details), with the regression line 

(dashed red line) forced through the origin. Data were log(x+1)-transformed to satisfy 

model assumptions. Data from Caines and Gagnon (2012). [log(Density of ≤2-zooid 

colonies +1) = log(0.8348(Density of <1-cm colonies) + 1), adj. r2 = 0.97, p< 2.2∙10-16] 
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A.4 Approximation of annual growth period of M. 

membranacea  
 

I considered M. membranacea to be an annual species because less than 1% of 

colonies overwinter (D. Denley unpublished data; M. Saunders unpublished data), and 

the bryozoan exhibits slow growth and minimal reproductive output over winter 

(Saunders & Metaxas 2009a, Denley & Metaxas 2017a). I chose May as the beginning of 

the growing season because the onset of reproduction (Denley & Metaxas 2017a) and 

subsequent settlement of M. membranacea (Saunders & Metaxas 2007) have been shown 

to occur as early as May, and thus the growth of new colonies can also begin. I chose 

November as the end of the growing season because 1) the reproductive season ends 

(Denley & Metaxas 2017a), causing abundances of competent larvae to decrease 

substantially (Saunders & Metaxas 2010); 2) the latest recorded seasonal peaks in settler 

density (Saunders & Metaxas 2009b) and percent cover (Scheibling & Gagnon 2009, 

Saunders & Metaxas 2009b) in the northwest Atlantic both occurred in November; and 3) 

seasonal recession of M. membranacea colonies due to partial mortality also begins in 

November (Denley & Metaxas 2016). 

A.5 Comparing methods for measuring wave exposure 
 

To determine the accuracy of relative exposure index (REI) as a wave exposure 

metric, I measured wave exposure in situ at 5 sites (HB, CR, PU, MO, and LI) using 

HOBO Pendant G® Acceleration Loggers housed in Underwater Relative Swell Kinetics 

Instrument (URSKI) floats, after Figurski et al. (2011). I deployed these instruments, 

which measure bottom orbital velocity (ub) generated by waves, for approximately 1 
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week in July 2019 at HB, CR, PU, and MO and in late September/early October 2019 at 

HB, CR, PU, MO, and LI. I chose these two deployment periods to represent relatively 

calm (July) and stormy (September/October) times of year to test the relationship 

between in situ and REI-based exposure under a range of conditions. I calculated mean ub 

in the horizontal dimensions over each sampling period at each site after Figurski et al. 

(2011).  

I explored the relationship between mean ub over each deployment period and 

REI averaged over a one-month window centered at the URSKI deployment period at 

each site using simple linear regression. I averaged REI values over the one-month 

window because preliminary analyses indicated that it is not possible to generate an 

accurate estimate of REI for periods of 1 week using hourly wind data, due to an 

insufficient number of observations.  

There was a significant linear relationship between REI and ub (p<0.05, R2 = 

0.62); however, the relationship was significant only when data from PU were not 

included (Figure A.4). Mean ub values for PU were substantially lower than expected 

given the REI values calculated for the site (Figure A.4), likely due to the presence of 

underwater ridges on the exposed side of the site which may attenuate wave energy but 

were not accounted for in calculations of fetch for REI. This example highlights a 

limitation of REI as a representation of in situ wave exposure and emphasises that in situ 

measures of wave exposure are preferable when it is possible to collect such data.
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Figure A.3  Map of weather stations (labelled, diamond-shaped points) and study sites 

(round points). The color of each point corresponds to the weather station from which 

wind data were used to calculate REI. Weather station names/codes correspond to the 

station information found on Environment and Natural Resources Canada’s Historical 

Climate Database (http://climate.weather.gc.ca) for Canadian stations and NOAA’s 

National Data Buoy Center (https://www.ndbc.noaa.gov) for stations in the Gulf of 

Maine. 

http://climate.weather.gc.ca/
https://www.ndbc.noaa.gov/
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Figure A.4  Relationship of REI calculated from wind data averaged over a one-month 

window centered at the URSKI deployment period with mean ub over the URSKI 

deployment period. Square, grey points, from PU, were considered outliers and not 

included when fitting the linear regression line (dashed red line). 

[Mean ub = – 0.085 + 7.026∙10-7(REI), r2 = 0.62, p=0.02] 
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A.6 Relative and absolute importance of kelp density 

as a predictor of percent cover and settler density of 

M. membranacea 
 

Kelp density was only measured in less than half of the observations of M. 

membranacea percent cover and settler density in my full dataset. Therefore, I assessed 

the relative importance of kelp density separately from the other predictors using the 

subset of the full dataset for which kelp density data were available (kelp density 

datasets; n = 179 for percent cover, n= 178 for settler density, Table A.1). First, I 

determined the optimal REI and SST metrics for the kelp density datasets as described in 

section 2.3.4.1. I then constructed global models consisting of depth, kelp density (KelpR 

of L. digitata and S. latissima for cover, KelpT for settler density), kelp substrate, the most 

important REI metric, and the most important SST metric as fixed effects, with an 

interaction between SST and kelp substrate, and site and year as random intercepts. 

Lastly, I created complete model sets from the global models and assessed the relative 

and absolute variable importance of kelp density though model averaging. 

Relative kelp density was the least important predictor in explaining patterns in 

percent cover (Figure A.8a) and relative density of neither L. digitata nor S. latissima 

appeared in any model in the top model set for percent cover (Table A.3a). Similarly, 

total kelp density was of low relative importance in explaining patterns in settler density 

(Figure A.8b) and did not appear in either model in the top model set (Table A.3b).
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Table A.3  Sets of top models (models with ∆AIC<7) explaining observed patterns in a) 

percent cover and b) settler density of M. membranacea in the northwest Atlantic, fit to 

the kelp density datasets. REI and SST metrics are abbreviated as per Table 2.1. Marg. 

and Cond R2 are the marginal and conditional R2 values for the GLMM. Random Effect 

SD is the standard deviation of each random intercept. 

 

(a) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect 

SD  

Depth 

+ Kelp Substrate           

+ REI 3-Log 

+ SST 6-I 

+ Kelp 

Substrate:SST  6-I 

12 225.961 -427.923 0.000 0.323 0.385 0.904 Site = 

1.363 

Year = 

0.31 

Kelp Substrate            

+ REI 3-Log 

+ SST 6-I 

+ Kelp 

Substrate:SST  6-I 

11 224.521 -427.043 0.880 0.208 0.376 0.900 Site = 

1.363 

Year = 

0.321 

Depth 

+ Kelp Substrate 

+ SST 6-I 

+ Kelp 

Substrate:SST  6-I 

11 222.390 -422.780 5.142 0.025 0.414 0.790 Site = 

0.823 

Year = 

0.264 

Kelp Substrate 

+ SST 6-I 

+ Kelp 

Substrate:SST  6-I 

10 220.716 -421.433 6.490 0.013 0.397 0.775 Site = 

0.809 

Year = 

0.267 
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(b) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect 

SD  

Kelp Substrate 

+ SST 6-I 

+ Kelp 

Substrate:SST 6-I 

9 -722.025 1462.050 0.000 0.324 0.397 0.777 Year = 

1.015 

Site = 

0.702 

Kelp Substrate 

+ SST 6-I 

7 -726.854 1467.708 5.658 0.019 0.376 0.761 Year = 

1.027 

Site = 

0.666 
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A.7 Additional R packages 
 

Numerous R packages were used in this study in addition to those listed in the 

main text. Tukey tests were conducted using emmeans (Lenth 2020) and VIF and 

Nakagawa’s R2
 values were calculated using performance (Lüdecke et al. 2020). Figures 

were created using ggplot2 (Wickham 2016) and cowplot (Wilke 2019), with maps being 

constructed using sf (Pebesma 2018), ggrepel (Slowikowski 2019), and ggspatial 

(Dunnington 2018). Tables were created using kableExtra (Zhu 2019) and knitr (Xie 

2020). Fetch values for use in REI calculations were calculated using fetchR (Seers 2018) 

and sp (Pebesma & Bivand 2005). The raster package (Hijmans 2020) and ncdf4 (Pierce 

2019) were used to extract SST data for study sites. The mgcv package (Wood 2004) was 

used to fit GAMs for separating seasonal SST and SST anomaly. Finally, data 

exploration and manipulation were conducted using GGally (Schloerke et al. 2018), 

lubridate (Grolemund & Wickham 2011), stringi (Gagolewski 2020), and tidyverse 

(Wickham et al. 2019).
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Table A.4  Results of models comparing REI and temperature (SST or IST) metrics as 

predictors of percent cover and settler density in the IST datasets, for a) SST-based 

models and b) IST-based models of percent cover and c) SST-based models and d) IST-

based models of settler density. Models of the form shown in Table 2.2 (excluding kelp 

density as a predictor) were fit using each REI and temperature metric. REI and 

temperature metrics are abbreviated as per Table 2.1. For comparison of REI metrics, six-

month mean was the temperature metric in the model. For comparison of temperature 

metrics, the optimal REI metric was employed as the REI metric in the model. AIC, 

dAIC (change in AIC relative to top-ranked model) and Akaike weight were calculated 

for each model. REI and SST metrics are ranked in order of descending model 

performance. 

 

(a) 

Variable Metric AIC  dAIC  weight  

REI 6-Log  -469.916  0.000  0.196  

 3-Lin  -469.615  0.300  0.169  

 6-Lin  -468.757  1.159  0.110  

 Y-Lin  -468.749  1.166  0.110  

 3-Log  -468.730  1.186  0.109  

 Y-Log  -468.706  1.209  0.107  

 3-Q  -468.406  1.509  0.092  

 6-Q  -467.706  2.209  0.065  

 Y-Q  -466.830  3.085  0.042  

SST 3-I  -470.491  0.000  0.284  

 3-M  -470.470  0.021  0.281  

 6-I  -469.996  0.496  0.222  

 6-M  -469.916  0.576  0.213  
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(b) 

Variable Metric AIC  dAIC  weight  

REI 3-Lin  -473.841  0.000  0.157  

 6-Log  -473.815  0.027  0.155  

 3-Q  -473.544  0.298  0.135  

 Y-Lin  -473.245  0.597  0.116  

 3-Log  -473.209  0.632  0.114  

 Y-Log  -472.980  0.861  0.102  

 6-Lin  -472.951  0.890  0.100  

 6-Q  -472.345  1.497  0.074  

 Y-Q  -471.427  2.414  0.047  

IST 3-M  -480.485  0.000  0.495  

 3-I  -480.378  0.107  0.469  

 6-M  -473.841  6.644  0.018  

 6-I  -473.834  6.652  0.018  
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(c) 

Variable Metric AIC  dAIC  weight  

REI 6-Q  1893.858  0.000  0.142  

 1-Log  1894.106  0.248  0.126  

 6-Lin  1894.568  0.710  0.100  

 Y-Lin  1894.738  0.880  0.092  

 3-Lin  1894.797  0.939  0.089  

 1-Lin  1894.856  0.999  0.086  

 3-Q  1895.014  1.156  0.080  

 3-Log  1895.165  1.307  0.074  

 6-Log  1895.378  1.520  0.067  

 Y-Log  1895.481  1.623  0.063  

 Y-Q  1896.284  2.426  0.042  

 1-Q  1896.437  2.579  0.039  

SST 3-I  1879.020  0.000  0.382  

 3-M  1879.135  0.115  0.361  

 1-M  1881.194  2.175  0.129  

 1-I  1881.213  2.193  0.128  

 6-I  1893.553  14.533  <0.001  

 6-M  1894.106  15.087  <0.001  
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(d) 

Variable Metric AIC  dAIC  weight  

REI 6-Q  1899.394  0.000  0.161  

 1-Log  1899.954  0.560  0.122  

 6-Lin  1900.209  0.814  0.107  

 Y-Lin  1900.566  1.171  0.090  

 1-Lin  1900.603  1.208  0.088  

 3-Lin  1900.697  1.303  0.084  

 3-Q  1900.721  1.327  0.083  

 3-Log  1901.061  1.666  0.070  

 6-Log  1901.442  2.048  0.058  

 Y-Log  1901.450  2.055  0.058  

 Y-Q  1902.182  2.787  0.040  

 1-Q  1902.280  2.885  0.038  

IST 1-I  1862.247  0.000  0.640  

 1-M  1863.397  1.151  0.360  

 3-I  1890.235  27.989  <0.001  

 3-M  1890.471  28.224  <0.001  

 6-I  1899.348  37.101  <0.001  

 6-M  1899.954  37.708  <0.001  
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Table A.5  Sets of top models (models with ∆AIC<7) based on the IST datasets 

explaining observed patterns in a) percent cover (SST-based models), b) percent cover 

(IST-based models), c) settler density (SST-based models), d) settler density (IST-based 

models) of M. membranacea in the northwest Atlantic. REI and temperature metrics are 

abbreviated as per Table 2.1. Marg. and Cond R2 are the marginal and conditional R2 

values for the GLMM. Random Effect SD is the standard deviation of each random 

intercept. 

 

(a) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

+ Kelp Substrate 

+ SST 3-I 

+ Kelp 

Substrate:SST 3-I 

11 246.329 -470.658 0.000 0.260 0.586 0.771 Site = 

0.456 

Year = 

0.377 

Depth 

+ Kelp Substrate 

+ SST 3-I 

10 245.279 -470.558 0.101 0.247 0.613 0.801 Site = 

0.491 

Year = 

0.407 

Depth 

+ Kelp Substrate 

+ SST 3-I 

9 244.269 -470.539 0.120 0.245 0.589 0.771 Site = 

0.447 

Year = 

0.387 
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(b) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

IST 3-M 

+ Kelp 

Substrate 

8 249.782 -483.565 0.000 0.266 0.616 0.769 Site = 

0.453 

Year = 

0.277 
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(c) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

+ Kelp 

Substrate 

+ SST 3-I 

8 -929.949 1875.898 0.000 0.332 0.327 0.718 Year = 

0.848 

Site = 

0.822 

Kelp Substrate 

+ SST 3-I 

7 -932.036 1878.071 2.173 0.112 0.326 0.718 Year = 

0.865 

Site = 

0.819 

Depth 

+ SST 3-I 

6 -934.484 1880.968 5.070 0.026 0.265 0.713 Year = 

0.922 

Site = 

0.874 
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(d) 

Model  df  logLik  AIC  ΔAIC  
Akaike 

Weight  

Marg. 

R2  

Cond. 

R2  

Random 

Effect SD  

Depth 

+ IST 1-I 

+ Kelp 

Substrate 

8 -920.821 1857.641 0.000 0.524 0.275 0.784 Year = 

1.173 

Site = 

0.905 

Depth 

+ IST 1-I 

6 -925.361 1862.722 5.081 0.041 0.231 0.780 Year = 

1.224 

Site = 

0.94 
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Figure A.5  Schematic of data processing and modelling procedures used to assess the importance of predictors in contributing to 

observed patterns in the percent cover and settler density of M. membranacea in the northwest Atlantic over broad spatial and 

temporal scales. Boxes with a dark outline represent the fulfillment of a study objective.
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Figure A.6  Full-model averaged standardized parameter estimates for the seasonal (day 

of year) and anomaly (site- or year-specific anomalies from overall mean, obtained as 

residuals from generalized additive models between day of the year and SST) 

components of temperature for a) percent cover and b) settler density. SST metric names 

are abbreviated as per Table 2.1. Error bars represent a 95% confidence interval based on 

unconditional standard error.
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Figure A.7  Settler density (no. individuals per m2 kelp; kelp species-specific means for 

each depth, site, and sampling date) as a function of six-month mean REI (relative wave 

exposure index calculated using wind data over the six months prior to a given 

observation of settler abundance) from the IST dataset.
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Figure A.8  Full-model averaged standardized parameter estimates for depth, kelp 

density, kelp substrate, REI and SST as predictors of a) percent cover and b) settler 

density, based on models fit to the kelp density datasets, arranged in descending order of 

magnitude. REI and SST metrics are abbreviated as per Table 2.1. Kelp density metrics 

are relative density (species-specific density divided by sum of density of 3 dominant 

species) of Laminaria digitata and Saccharina latissima residualized against REI for 

percent cover (squared; coefficients for linear components not shown) and total kelp 

density (sum of density of 3 dominant species) for settler density. Error bars represent a 

95% confidence interval based on unconditional standard error. AC = A. clathratum, LD 

= L. digitata, SL = S. latissima.
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Figure A.9  Full-model averaged standardized parameter estimates for depth, kelp substrate, REI and temperature as predictors of a) 

percent cover (SST-based models), b) settler density (SST-based models), c) percent cover (IST-based models), and d) settler density 

(IST-based models), based on the IST datasets. REI and temperature metrics are abbreviated as per Table 2.1. Estimates arranged in 

descending order of magnitude. Error bars represent a 95% confidence interval based on unconditional standard error. AC = Agarum 

clathratum, LD = Laminaria digitata, SL = Saccharina latissima.
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APPENDIX B 

 

CHAPTER 3 
 

B.1 Determination of time period for present-day 

climatology 
 

 To determine the most representative time period for present-day SST conditions 

in the NWA, I elected to calculate a long-term baseline temperature for the NWA and 

compare annual mean temperatures to the baseline. SST data from CoralTemp, which I 

used to parameterize and project SDMs, are only available from 1985 to present, a period 

not long enough to establish a long-term baseline. Therefore, for this analysis, I obtained 

annual SST rasters for the NWA from the NOAA Extended Reconstructed SST (ERSST) 

v5 dataset (Huang et al. 2017), and calculated a long-term baseline as the mean 

temperature across all cells between 1900 and 2000. I then used the ERSST data to 

calculate annual mean temperature across all cells for the range of years in my dataset 

(1987-2020), and subtracted the long-term baseline temperature from each annual value 

to obtain annual anomalies for each year. To segregate the years into groups based on 

their temperature anomaly, I conducted k-means clustering analysis (k = 3, starting 

iterations = 25; Hartigan & Wong 1979). I found that the most recent cluster of years, 

with the greatest positive anomaly from 20th century average temperature, was 2010-2020 

(Figure B.1). Therefore, I selected 2010-2020 as the years over which to calculate 

present-day percent cover of M. membranacea.
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Figure B.1  Results of k-means clustering of annual sea surface temperature (SST) 

anomalies from mean SST from 1900-2000. Clusters 1-3 are groups of years with similar 

values of SST anomaly, where small points represent annual mean SST values and large 

points represent the cluster mean.  
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B.2 Salinity threshold 
 

 As M. membranacea is thought to be negatively impacted by low salinity 

(Forbord et al. 2020), and the NWA contains multiple estuarine areas, I sought to limit 

my SDM domain by salinity to avoid projected percent cover to areas where M. 

membranacea has not been recorded previously. I obtained present-day (2000-2014) sea 

surface salinity (SSS) data from Bio-ORACLE (Assis et al. 2018b) and extracted SSS at 

all sites in my dataset. When included as a predictor in the SDM, I found no significant 

relationship between salinity and percent cover, but the sites in my dataset included a 

narrow range of relatively high salinity (~30-32 PSU). To determine the broader range of 

salinity inhabited by M. membranacea in the NWA, I extracted SSS at monitoring sites 

with settlement plates inhabited by M. membranacea in the Gulf of St Lawrence (GoS; 

Fisheries and Oceans Canada 2006-2020), which has a lower average salinity than the 

sites in my dataset. The lowest salinity inhabited by M. membranacea in the GoS was 

21.2 PSU. Since M. membranacea exhibits similar phenology and had a similar rate of 

spread in the GoS compared to other (more saline) areas in the NWA (Gulf of Maine and 

Nova Scotia; Denley et al. 2019b), there is no evidence that M. membranacea is 

negatively impacted by lower salinity levels in the GoS. Therefore, I used 21.2 PSU as 

the minimum salinity value for projecting my SDMs. This excluded from the domain of 

the SDM much of the St Lawrence Estuary in southern Quebec, and the George River 

Estuary in northern Quebec. 
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B.3 Additional R packages 
 

 In addition to those mentioned in the main text, I used several additional R 

packages to conduct the analyses in this study. I created tables with sjplot (Lüdecke 

2020), kableextra (Zhu 2019) and knitr (Xie 2020). I obtained data from Bio-ORACLE 

using sdmpredictors (Bosch 2020). I used sp (Pebesma & Bivand 2005) and rSDM 

(Rodriguez-Sanchez 2021) to assign SST values to sites not on the raster grid. I worked 

with netcdf files from CoralTemp using ncdf4 (Pierce 2019). To establish cells in contact 

with land, I converted the land shapefile to a raster format using fasterize (Ross 2020). I 

conducted k-means clustering analysis using stats (R Core Team 2020) and plotted the 

results using factoextra (Kassambara & Mundt 2020). For data management and 

manipulation, I used tidyverse (Wickham et al. 2019), lubridate (Grolemund & Wickham 

2011), car (Fox & Weisberg 2019), anytime (Eddelbuettel 2020), and readxl (Wickham 

& Bryan 2019). 

B.4 ODMAP  

 

B.4.1 Overview 
 

Authorship 

Contact : c.pratt@dal.ca 

Study link: (will include after study published) 

Model objective 

Model objective: Mapping and interpolation 

Target output: Abundance 

Focal Taxon 

Focal Taxon: Membranipora membranacea 

mailto:c.pratt@dal.ca
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Location 

Location: Northwest Atlantic Ocean 

Scale of Analysis 

Spatial extent: -72, -52, 42, 61 (xmin, xmax, ymin, ymax) 

Spatial resolution: 5 

Temporal extent: - 2010-2020 - 2040-2050 - 2090-2100 

Temporal resolution: decadal 

Boundary: rectangle 

Biodiversity data 

Observation type: field survey 

Response data type: Abundance 

Predictors 

Predictor types: climatic, habitat, topographic 

Hypotheses 

Hypotheses: Cover of Membranipora has a positive, exponential relationship with 

temperature. Cover also depends on the species of kelp acting as its substrate, with 

Laminaria digitata hosting the highest cover, followed by Saccharina latissima then 

Agarum clathratum. Cover also has a negative relationship with depth, which is due to 

decreasing temperature with depth. These hypotheses were all supported by Chapter 2. 

Assumptions 

Model assumptions: - All key environmental drivers are included in the model - the 

species is in equilibrium with its environment - the model extrapolates in a biologically 

sensible manner; niche conservatism through time - predictors and abundance data were 

collected without error. 

Algorithms 

Modelling techniques: generalized linear mixed model (GLMM) 

Model complexity: I conducted a thorough variable selection analysis (Chapter 2) and 

determined the predictors used in this study to be the optimal set of predictors for the 

percent cover of M. membranacea 

Model averaging: Did not use ensemble modelling because of limited alternatives to 

GLMM when modelling grouped data. Alternatives that do exist are tree-based (mixed-

effects random forest, gaussian process boosting) and not suitable for extrapolation 
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Workflow 

Model workflow: - Fit GLMM according to specifications from Chapter 2 - Validate 

GLMM using either 0.632+ bootstrap (following Potts & Elith 2006) or external 

validation on test data, depending on analysis - Project GLMM to present and future 

climate scenarios using rasters of SST and setting depth and kelp substrate as constants 

Software 

Software: -I used R version 4.0.3. (R Core Team 2020) in the R Studio environment 

(RStudio Team 2020) for all analyses -key packages: glmmtmb (Brooks et al. 2017), 

raster (Hijmans 2020) 

Code availability: -will be uploaded to Dryad 

Data availability: -will be uploaded to Dryad 

 

B.4.2 Data 
 

Biodiversity data 

Taxon names: Membranipora membranacea 

Taxonomic reference system: N/A 

Ecological level: populations, species 

Data sources: Compiled from literature, unpublished, and original data 

Sampling design: Opportunistic (determined by data availability). Nested within sites and 

years 

Sample size: 607 (main dataset); 43 (invasion stage analysis); 118 (Norway data) 

Clipping: N/A 

Scaling: N/A 

Cleaning: Percent cover was averaged by site, depth, kelp substrate, and sampling date 

Absence data: N/A 

Background data: N/A 

Errors and biases: Percent cover values will have varying error rate depending on study 

they originated from 

Data partitioning 

Training data: No data partitioning was applied 
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Validation data: 0.632+ bootstrap validation (n = 200 replicates) or external validation 

used depending on the analysis 

Test data: Test data were determined by the needs of the analysis 

Predictor variables 

Predictor variables: maximum six-month mean sea surface temperature (SST 6-max); 

depth; kelp substrate 

Data sources: daily SST from CoralTemp (NOAA Coral Reef Watch 2020), future SST 

from Bio-ORACLE (Assis et al. 2018b) 

Spatial extent: -72, -52, 42, 61 (xmin, xmax, ymin, ymax) 

Spatial resolution: CoralTemp: 5km; Bio-ORACLE: 9km 

Coordinate reference system: “+proj=longlat +datum=WGS84 +no_defs” 

Temporal extent: 1987-2020 

Temporal resolution: daily 

Data processing: Bio-ORACLE SST rasters downscaled to match resolution of 

CoralTemp data using bilinear interpolation 

Errors and biases: N/A 

Dimension reduction: See Chapter 2 

Transfer data 

Data sources: Transferred to Norwegian percent cover data compiled from multiple 

studies (Førde et al. 2016, Matsson et al. 2019, Forbord et al. 2020) 

Spatial extent: 4.7, 19.8, 58.1, 70.1 (xmin, xmax, ymin, ymax) 

Spatial resolution: 5km (CoralTemp SST) 

Temporal extent: 2014-2017 

Temporal resolution: daily SST 

Models and scenarios: Transferred NWA model to Norway data to test performance 

Data processing: N/A 

Quantification of Novelty: N/A 
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B.4.3 Model 
 

Variable pre-selection 

Variable pre-selection: Model averaging-based approach (see Chapter 2) 

Multicollinearity 

Multicollinearity: Tested for collinearity using VIF and Pearson correlation 

Model settings 

GLMM: REML (FALSE), ziformula (~.), formula (percent_cover ~ depth + 

kelp_substrate + six_month_mean_sst + kelp_substrate*six_month_mean_sst + (1|site) + 

(1|year)), family (beta_family(link=“logit”)) 

Model settings (extrapolation): N/A 

Model estimates 

Coefficients: Extracted from glmmTMB output in R 

Parameter uncertainty: Standard error of model-averaged parameter estimates (see 

Chapter 2) 

Variable importance: Model averaged parameter estimates (see Chapter 2) 

Model selection - model averaging - ensembles 

Model selection: Information-theoretic approach (see Chapter 2) 

Model averaging: N/A 

Model ensembles: N/A 

Analysis and Correction of non-independence 

Spatial autocorrelation: N/A (autocorrelation not present) 

Temporal autocorrelation: N/A (autocorrelation not present) 

Nested data: Crossed random intercepts in GLMM to account for nesting within site and 

year 

Threshold selection 

Threshold selection: N/A 
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B.4.4 Assessment 
 

Performance statistics 

Performance on training data: Pearson correlation between observed and predicted 

values, Spearman rank correlation between observed and fitted values, Model calibration 

(slope and intercept of linear regression between observed and predicted values), RMSE, 

Average error 

Performance on validation data: All statistics estimated via 0.632+ bootstrap for main 

model validation (section 3.3.4.2) 

Performance on test data: All statistics estimated via test data for comparison to 

Norwegian percent cover data (section 3.3.4.5) 

Plausibility check 

Response shapes: Response plots (see Chapter 2) 

Expert judgement: Map display 

 

B.4.5 Prediction 
 

Prediction output 

Prediction unit: peak percent cover of Membranipora membranacea 

Post-processing: projections clipped to raster cells in contact with land and to areas with 

salinity greater than or equal to 21.2 (minimum salinity where M. membranacea has been 

recorded in the NWA) 

Uncertainty quantification 

Algorithmic uncertainty: Standard error 

Input data uncertainty: Due to varying methods, uncertainty in input data varies by data 

point 

Parameter uncertainty: Estimates of standard error are low (+/- 10%) and do not have a 

substantial impact on interpretation of predictions 

Scenario uncertainty: for CoralTemp, see Liu et al. (2014) and Maturi et al. (2017); for 

Bio-ORACLE, see Assis et al. (2018b) 

Novel environments: N/A
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Figure B.2  Model standard error for SDM projections of peak percent cover of M. 

membranacea on L. digitata for present-day (2010-2020) and future SST scenarios. RCP 

is the Representative Concentration Pathway under which SST has been predicted for 

each future time period. 
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Figure B.3  Model standard error for SDM projections of peak percent cover of M. 

membranacea on S. latissima for present-day (2010-2020) and future SST scenarios. 

RCP is the Representative Concentration Pathway under which SST has been predicted 

for each future time period. 
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Figure B.4  Model standard error for SDM projections of peak percent cover of M. 

membranacea on A. clathratum for present-day (2010-2020) and future SST scenarios. 

RCP is the Representative Concentration Pathway under which SST has been predicted 

for each future time period.
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