
MATHEURISTIC OPTIMIZATION APPROACHES FOR LARGE SCALE

RESOURCE CONSTRAINED SCHEDULING PROBLEMS IN REFIT OPERATIONS

by

Sanjay Manjunath Prabhu

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

July 2020

© Copyright by Sanjay Manjunath Prabhu, 2020

ii

Dedication

I dedicate this thesis to Devi Nagayakshi.

iii

Table of Contents

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

ABSTRACT ... xiv

LIST OF ABBREVIATIONS USED ... xv

GLOSSARY ... xvii

ACKNOWLEDGMENTS ... xviii

CHAPTER 1: INTRODUCTION ... 1

1.1 THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP) 2

CHAPTER 2: PROBLEM DESCRIPTION ... 4

2.1 PROJECT MANAGEMENT OVERVIEW... 4

2.2 NAVAL SURFACE SHIP WORK PERIOD PROBLEM (NSWPP) 6

2.3 THE MAINTENANCE LIFECYCLE OF A SHIP ... 7

2.4 NSWPP PLANNING PROCESS ... 8

2.4.1 Initiation and Planning .. 10

2.4.2 Scheduling .. 11

iv

2.4.3 Execution, Monitoring, and Control ... 11

2.4.4 Closing .. 11

2.5 CHALLENGES IN SCHEDULING NAVAL MAINTENANCE OPERATIONS 12

2.5.1 Spatial Constraint .. 12

2.5.2 Operational Constraints: Radiation and Emissions 13

2.5.3 Priority Constraints ... 13

2.6 TOPOLOGY/STRUCTURE OF THE PROJECT NETWORK .. 14

2.7 UNCERTAINTY IN NSWPP .. 15

2.8 ISSUES WITH COMMERCIAL SOFTWARE .. 17

2.9 RESEARCH OBJECTIVES AND THESIS OUTLINE ... 19

CHAPTER 3: LITERATURE REVIEW .. 21

3.1 CLASSICAL PROJECT SCHEDULING TECHNIQUES .. 21

3.2 CLASSIFICATION OF RCPSP ... 22

3.2.1 Time Constrained Problem vs. Resource-Constrained Problem................... 23

3.2.2 Renewable Resources vs. Non-Renewable Resources 24

3.2.3 Pre-emptive Model vs. Non-Preemptive Model ... 25

3.2.4 Single-mode vs. multi-mode ... 25

v

3.2.5 Single-Criterion Problem vs. Multi-Criteria Problem 25

3.2.6 Deterministic Problem vs. Stochastic Problem ... 26

3.2.7 Proactive Scheduling and Reactive Scheduling .. 27

3.3 MILP FORMULATIONS ... 28

3.3.1 Description of Notations ... 29

3.3.2 The Discrete-Time Formulation ... 30

3.3.3 Disaggregated Discrete-Time Formulation .. 31

3.3.4 On/Off Event-Based Formulation ... 31

3.4 RCPSP SOLUTION METHODS ... 33

3.4.1 Simplex and Branch-and-Bound based Solvers .. 33

3.4.2 Heuristic and Metaheuristic Approach ... 34

3.4.3 Constraint Programming and Satisfiability Test ... 35

3.4.4 Matheuristics ... 35

3.5 COMPUTATIONAL COMPLEXITY ... 37

3.6 INSTANCE/NETWORK INDICATORS ... 39

3.6.1 Network Complexity ... 41

3.6.2 Order Strength ... 41

vi

3.6.3 Resource Factor .. 42

3.6.4 Resource Strength ... 43

3.6.5 Resource Constrainedness .. 45

3.6.6 Process Range ... 46

3.6.7 Disjunction Ratio .. 47

3.7 CHARACTERISTICS OF NSWPP INSTANCES .. 48

CHAPTER 4: RESEARCH METHODOLOGY AND PRELIMINARY

EXPERIMENTS .. 49

4.1 DAL-RANDOMIZER ... 49

4.2 SELECTION OF THE FORMULATION TYPE FOR THE NSWPP 51

4.3 THE PRIORITY-DURATION FORMULATION (PD) .. 53

4.4 GUROBI NUMERICAL ISSUES .. 55

4.5 SOLUTION COMPARISON CRITERIA ... 57

4.6 COMPARATIVE TEST BETWEEN DISCRETE-TIME AND DISAGGREGATED DISCRETE-

TIME FORMULATIONS ... 58

4.7 COMPARISON BETWEEN MINIMIZATION AND MAXIMIZATION MODELS 61

4.8 COMPUTATION TIME GROWTH FOR NSWPP ... 63

CHAPTER 5: DEVELOPMENT OF AN EFFICIENT MATHEURISTIC

APPROACH AND NUMERICAL EXPERIMENTS ... 65

vii

5.1 MULTI-STEP OPTIMIZATION VERSION 1 .. 65

5.1.1 Multi-step Optimization-1 vs. Regular Optimization 70

5.1.1.1 Computation time comparison .. 70

5.1.1.2 Average Priority-1 DWC comparison .. 71

5.1.1.3 Makespan comparison .. 71

5.2 MULTI-STEP OPTIMIZATION VERSION 2 .. 72

5.2.1 Multi-step Optimization-2 vs. Regular Optimization 76

5.2.1.1 Computation time comparison .. 77

5.2.1.2 Average Priority-1 DWC comparison .. 77

5.2.1.3 Makespan comparison .. 78

5.3 MULTI-STEP OPTIMIZATION VERSION 3 .. 79

5.3.2 Average Priority-1 DWC and Makespan comparison 86

5.4 INFLUENCE OF NETWORK INDICATOR ON THE COMPUTATION TIME OF MSO-3 86

5.5 SSGS VS. MSO-3 ... 89

5.5.1 Experiment 1 ... 90

5.5.1.1 Average Priority-1 DWC comparison .. 91

5.5.1.2 Makespan comparison .. 92

viii

5.5.1.3 Computational Time for Multi-Step Optimization Version 3 93

5.5.2 Experiment 2 ... 93

5.5.3 Experiment 3 ... 97

CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 100

BIBLIOGRAPHY ... 102

APPENDICES .. 102

APPENDIX - 1 .. 113

APPENDIX – 2 ... 114

ix

List of Tables
Table 1. Deferment of work package into the successive work period (source: [1]) 10

Table 2. Mean and standard deviation of the makespan percentage deviation for

commercial software (source: [23]) .. 17

Table 3. The mean and maximum of makespan percentage deviation relative to the

optimal value (source: [8]) .. 18

Table 4. Classification of RCPSP and its variants adapted from [31] 23

Table 5. Data showing that the actual calendar start-to-finish time are much larger than

the planned preventive maintenance hours (source: [1]) 27

Table 6. Effect of the Resource Factor on the Computation Time (source: [83]) 43

Table 7. Synthesis of experiments from Kone et al. (2011) ... 47

Table 8. Computation time comparison for different MILP formulations tested on

NSWPP instances .. 53

Table 9. Characteristics of the Dal-R 100 test instances .. 59

Table 10. Characteristics of the Dal-R test instances used to show the growth in

computation time for NSWPP ... 63

Table 11. Characteristics of test instances used for the SSGS and MSO-3 comparison .. 90

Table 12. Percentage mean difference and margin of error for Average Priority-1

DWC between SSGS and MSO-3 ... 91

Table 13. Percentage mean difference and margin of error for makespan between

SSGS and MSO-3 .. 92

Table 14. Mean and Maximum difference in makespan between SSGS and MSO-3 92

Table 15. Percentage mean difference and margin of error for Average Priority-1

DWC for different subgroup sizes ... 94

x

Table 16. Average percentage increase in computation time for MSO-3 with an

increase in subgroup size ... 95

Table 17. Percentage mean difference and margin of error for Makespan between

different sized subgroups with an increase in instance size 96

Table 18. Characteristics of test instances used for comparing SSGS+Optimizer and

MSO-3 ... 98

xi

List of Figures
Figure 1. Phases of project management (source: [11]) ... 5

Figure 3. The 5-year maintenance life cycle of a ship .. 7

Figure 2. Process of work package generation in NSWPP ... 9

Figure 4. Representation of spatial constraint in a ship (source: [21]) 12

Figure 5. A typical project network structure ... 15

Figure 6. A typical NSWPP network structure ... 15

Figure 7. Project progress chart for an extended work period (source: [19]) 16

Figure 8. Actual hours vs. Planned hours comparison for an extended work period

(source: [19]) ... 16

Figure 9. Arbitrary instance with 5 activities and 3 resource types 40

Figure 10. Logarithm of Computation Time vs Order Strength (source: [82]) 42

Figure 11. Computational effort vs. RC and RS values (source: [82]) 46

Figure 12. Representation of fictitious ship used in Dal-Randomizer 50

Figure 13. Representation of a good and a bad schedule .. 55

Figure 14. Differentiating a good schedule from a bad schedule using Average

Priority-1 Duration Weighted Centroid ... 58

Figure 15. Computation time comparison between DT and DDT formulation 60

Figure 16. Average priority-1 DWC comparison between minimization and

maximization model .. 62

Figure 17. Makespan comparison between minimization and maximization model........ 62

Figure 18. Computation time comparison between minimization and maximization

model ... 63

xii

Figure 19. Computation time growth with an increase in instance size for regular

optimization ... 64

Figure 20. The network structure of the arbitrary instance with 20 activities 67

Figure 21. Activity decomposition after sorting the arbitrary instance with 20 activities 67

Figure 22. Representation of the change in data after the first iterations in the MSO-1 .. 68

Figure 23. Computation time comparison between Regular Optimization and MSO-1

with an increase in instance size .. 69

Figure 24. Computation time comparison between MSO-1 and Regular Optimization... 70

Figure 25. Average priority-1 DWC comparison between MSO-1 and Regular

Optimization .. 71

Figure 26. Makespan comparison between MSO-1 and Regular Optimization 71

Figure 27. Activity decomposition after applying three-level sorting to the arbitrary

instance with 20 activities ... 74

Figure 28. Representation of the change in data after the first iterations in the MSO-2 .. 74

Figure 29. Computation times comparison between Regular Optimization, MSO-1 and

MSO-2 ... 76

Figure 30. Computation time comparison between MSO-2 and Regular Optimization... 77

Figure 31. Average Priority-1 DWC comparison between MSO-2 and Regular

Optimization .. 77

Figure 32. Makespan comparison between MSO-2 and Regular Optimization 78

Figure 33. Representation of MSO-3 .. 80

Figure 34. The network structure of the subproblems when created using only

individual subgroups ... 82

Figure 35. Representation of the change in data after the first iterations in the MSO-3 .. 83

xiii

Figure 36. Computation time comparison between MSO-3 and MSO-2 84

Figure 37. Computation time comparison between MSO-3 and Regular Optimization... 85

Figure 38. Computation time comparison between MSO-3 and MSO-2 85

Figure 39. Changes in network characteristics when the main problem is decomposed

into subproblems in MSO-3 .. 87

Figure 40. Influence of Resource Constrainedness on the computation time for MSO-3 87

Figure 41. Influence of Network Complexity on the computation time for MSO-3 88

Figure 42. Influence of Disjunction Ratio on the computation time for MSO-3 89

Figure 43. Average Priority-1 DWC comparison between SSGS and MSO-3 91

Figure 44. Makespan comparison between SSGS and MSO-3 .. 92

Figure 45. The computation time for MSO-3 ... 93

Figure 46. Influence of subgroup size on Average Priority-1 DWC for MSO-3 94

Figure 47. Influence of the subgroup size on the computation time for MSO-3 95

Figure 48. Influence of subgroup size on the Makespan for MSO-3 96

Figure 49. The network structure of the Thales shared test instances 98

Figure 50. Average Priority-1 DWC comparison between MSO-3 and

SSGS+Optimizer ... 98

Figure 51. Computation time comparison between MSO-3 and SSGS+Optimizer 99

Figure 52. The network structure of Polytechnique University shared test instance 113

Figure 53. The network structure of Dal- Randomizer test instance 113

xiv

Abstract

This thesis will discuss the development of matheuristic methods for scheduling the refit

activities in the naval surface ship work period problem (NSWPP). The NSWPP is a variant

of the classical resource-constrained project scheduling problem (RCPSP) with specific

network structure and constraints. The NSWPP is a non-deterministic polynomial-time

hard problem whose solution becomes computationally demanding as the problem size

increases. Therefore, a matheuristic method called multi-step optimization (MSO) is

developed in this paper, which combines heuristics and mixed-integer linear programming

(MILP) to schedule the NSWPP activities efficiently. MSO uses heuristic priority rules to

decompose the activities from the main project into subgroups. The subgroups are then

iteratively optimized using a time-indexed discrete-time MILP formulation. The results

from the comparative tests conducted show that MSO is computationally efficient and

produces near-optimal solutions. Also, a comparative study of the solutions generated by

MSO proves that the proposed method outperforms state-of-the-art heuristics.

xv

List of Abbreviations Used
BnB Branch-and-Bound

CI Confidence Interval

CPM Critical Path Method

Dal-R Dal - Randomizer

DDT Disaggregated Discrete-Time

DR Disjunction Ratio

DT Discrete-Time

DWC Duration Weighted Centroid

ERP Enterprise Resource Planning

ES Early Start Time

FCT Flow-based Continuous Time

FMF Fleet Maintenance Facility

HDR High Disjunction Ratio

HPR High Process Range

ISSP In-Service Support Provider

LDR Low Disjunction Ratio

LP Linear Program

LPR Low Process Range

LS Late Start Time

MILP Mixed Integer Linear Program

MP Mathematical Programming

xvi

MSO Multi-Step Optimization

NC Network Complexity

NSWPP Naval Surface Ship Work Period Problem

OOE On-off Event

OS Order Strength

PD Priority-Duration

PERT Project Evaluation and Review Technique

PM Preventive Maintenance

PR Process Range

PSPLIB Project Scheduling Problem Library

RC Resource Constrainedness

RCN Royal Canadian Navy

RCPSP Resource-Constrained Project Scheduling Problem

RF Resource Factor

RFc Repair Facility

RP Refit Period

RS Resource Strength

SEE Start/End Event Based

SG Subgroup

SSGS Serial Schedule Generation Scheme

WP Work Package

xvii

Glossary

Dummy: Placeholder activity, that is used to represent the start and finish

milestones. This activity has zero resource demand and duration.

Makespan: Actual time required to finish all activities in the project.

Robust Schedule: A schedule with all priority-1 activities scheduled as early as

possible

Schedule quality: The proximity of the generated schedule in comparison to the

optimal schedule.

Time windows: Time frame within which a project gets executed

Instance: A project data frame with information on activity duration, resource

demand, resource capacity, priority numbers, etc

High Priority Activity: Priority-1 activity

Low Priority Activity: Priority-3 activity

xviii

Acknowledgments

I am incredibly thankful to my parents, brother, and friends for their love, support,

encouragement, and motivation, which helped me pursue this opportunity.

I am appreciative of the Industrial Engineering Department, Dalhousie University, NS for

supporting my academic endeavours.

I am thankful to Shahin Hameed K. for introducing me to the Mitacs Accelerate internship

Program.

I am deeply grateful to my supervisors Dr. Claver Diallo, Dr. Alireza Ghasemi, for giving

me the opportunity to work with them on a challenging project. A special thanks to Dr.

Pemberton Cyrus and Dr. M. Ali Ülkü for offering guidance to improve the quality of the

thesis. The process would have been very arduous without their patience, time, guidance,

and support.

I extend my admiration and gratitude to LCdr. Eric Bertrand, for supporting me and always

being ready to answer my questions and provide assistance.

A special thanks to Thales Group, Canada, and Mitacs for funding this internship and

research project under the Mitacs Accelerate program.

1

Chapter 1: Introduction
This thesis is a part of the “Refit Optimizer” research project undertaken by Thales Group,

Canada, to develop a decision support tool to optimize the process of scheduling refit

operations. Thales Group is a French multinational company reputed for providing service

to the aerospace, defence, transportation, and security industries. It has been awarded a

multi-million-dollar contract to conduct maintenance operations on arctic/offshore patrol

ships (Harry DeWolfe Class) and joint support ships (Protecteur Class). Three universities

namely, Dalhousie University, Polytechnique Montreal and Université de Laval are

working in a consortium to help Thales Group, Canada in its endeavour along with the help

of other organizations such as Fleet Maintenance Facility (FMF) on both coasts, and

Seaspan from Victoria, BC.

The naval surface ship work period problem (NSWPP) is a highly complex variant of the

classical resource-constrained project scheduling problem (RCPSP) with hundreds of

activities to be scheduled using a limited resource pool. The NSWPPs are subjected to a

variety of contingencies which makes their planning, scheduling and execution very

challenging. In addition, due to the high variability of the processing duration of the

activities, a large number of planned activities go unattended by the end of the project [1].

The repair facilities (RFc) working on the NSWPP generally use commercial enterprise

resource planning (ERP) software to schedule the activities and to manage the resources

[1]. The usefulness of the ERP software is limited due to the disabling of the auto-

scheduling option, which is done to prevent the mass-modification of information in the

centralized system [2]. Therefore, the schedulers end up planning all the projects manually.

2

This thesis focuses on developing efficient scheduling techniques using mathematical

formulations which can be used alongside RFc’s ERP system to schedule the NSWPPs

optimally.

1.1 The Resource-Constrained Project Scheduling Problem (RCPSP)

The resource-constrained project scheduling problem (RCPSP) is a combinatorial

optimization problem wherein the objective is to minimize the makespan of the project by

determining the start time for the project activities while making sure that the precedence

constraints and resource constraints are satisfied [3]. The resource constraints can be

budget, human resources, materials, or machines [4]. RCPSP belongs to the class of NP-

hard problems, which means that as the size of the problem increases, the computational

time grows exponentially, thus making it hard to solve the problem in polynomial time

using exact solution methods [5]. Even with improvements to exact solution methods,

software, and hardware technologies, NP-hard problems are still difficult to optimize for

large instances in a reasonable amount of time [6]. Therefore, large RCPSP instances are

generally solved using heuristic algorithms because of their speed and flexibility. The

downside to this is the compromise with the optimality of the obtained solution. A heuristic

algorithm generally gives a solution that is far away from the optimum [7]. The gap

between the heuristic solution and the optimal solution becomes significant with an

increase in the size of the problem, and this will result in issues such as overestimation of

the project makespan, overestimation of the budget, and inefficient resource management

that are detrimental to the progression of the project [8]. For the past couple of decades,

researchers have been working on efficient hybrid algorithms and solution methods to

solve NP-hard problems. One such method known as matheuristic designates

3

(meta)heuristic procedures that are incorporated into mathematical programming models

or algorithms that integrate the mathematical programming concepts into the

(meta)heuristic framework to optimize complex real-world problems [9].

This thesis contributes to the body of knowledge in the area of RCPSP by proposing a new

MILP formulation called the priority-duration (PD) formulation that better captures the

operational objective and schedules the project in a way that complies with the practical

protocol followed in the naval industry. In addition, a new matheuristic method called

multi-step optimization (MSO) is developed that uses a unique three-level heuristic priority

rule to decompose the large NSWPP instances into subproblems that are later iteratively

optimized using the PD formulation to generate near-optimal solutions. The proposed

matheuristic proved to be very efficient in solving large NSWPP instances and also capable

of producing superior quality solutions when compared to state-of-the-art heuristic

methods like the serial schedule generation scheme (SSGS).

4

Chapter 2: Problem Description

This chapter is devoted to a detailed description of the naval surface ship work period

problem (NSWPP). It includes an overview of project management, a description of the

implementation of project management in NSWPP, an outline of the challenges in the

NSWPP, the nature of the network in the NSWPP, a description of the sources of

uncertainty in naval projects, and a discussion of the issues with the use of commercial

scheduling software.

2.1 Project Management Overview

A project can be defined as an undertaking of a unique idea to meticulously create a product

or service through efficient management of resources [10]. The primary elements of project

management, regardless of the type of project (construction, manufacturing, product

development, etc.) are the 4Ms, i.e., Manpower, Machine, Materials, and Money. Project

management is the process of efficiently managing all these elements in a coordinated

manner throughout the project’s lifecycle [10].

According to the Project Management Institute (PMI), project management processes can

be classified into five phases: 1) Initiating, 2) Planning, 3) Execution, 4) Monitoring and

Controlling, 5) Closing [10], [11].

5

Figure 1. Phases of project management (source: [11])

In this thesis paper, the focus is directed towards the scheduling operation, which is a part

of the planning phase of project management. Scheduling is a highly detailed process and

is commonly dealt with a proactive approach [11]. According to the Project Management

Body of Knowledge (PMBOK), a book on standard terminologies and guidelines for

project management, the planning phase is composed of 24 distinct steps such as;

determining the planning approach, finalizing the requirements, creating activities,

determining the activity duration, creating the work breakdown structure, assigning

resources to the activities, and constructing a schedule [11], [12]. The resultant of the

planning operations is the generation of the baseline schedule. The baseline schedule is

constructed as per the objectives set by the management. The most commonly used

objective is to minimize the makespan for the given project [13]. There are also possibilities

for the administration to use other objectives depending upon the nature of the project such

as the following: 1) Maximizing the net present value, 2) Minimizing the idle time, 3)

Balancing resource consumption levels, 4) Minimizing the cost of executing the project,

etc. [13]. A detailed overview of different possible objectives can be found in [14], [15],

[16].

6

A proactive baseline schedule is paramount before the actual start of the project because it

acts as a point of reference to monitor the performance of the project and it enables the

management to vigilantly track metrics such as resource usage, time adherence, and

precedence adherence [17]. A delay in the execution of critical tasks can have a snowball

effect directed towards the succeeding activities of the project resulting in disruption of the

schedule, budget, and other following endeavours.

In the NSWPP, there are a few high-value resources such as specialized technicians,

material handling machines, and dry docks that need to be planned as accurately as possible

in the baseline schedule [18]. These resources always tend to be critical for the project’s

performance. Disruptions caused by these resources can affect the performance of the

existing and subsequent projects as well [18].

2.2 Naval Surface Ship Work Period Problem (NSWPP)

The NSWPP is the summation of all the work packages (WP) and their associated

activities. The term “work period” refers to the length of time during which the naval repair

facility performs the maintenance operations on a ship by executing the majority of the

WPs. A work package consists of a number of “activities” that represent individual tasks

required to complete the WP. The activities can execute in sequence one after the other or

execute in parallel where multiple activities can be performed simultaneously.

The NSWPP consists of a large list of prioritized WPs that must be completed using limited

resources from a shared resource pool [18]. During NSWPP, many ships can undergo

maintenance simultaneously and the ships compete for majority of similar resources, which

makes the scheduling operation very challenging.

7

NSWPP differs from other RCPSP seen in the literature for a number of reasons. Firstly,

not all activities in a NSWPP need to be completed [1]. The goal in a NSWPP is to finish

all the high priority WPs within the makespan such that even if there are uncompleted low

priority WPs, they can be reasonably mitigated so that the project is not compromised [1].

Apart from human and machine resources, NSWPP includes spatial resources while

planning to prevent over-crowding a particular space/compartment [1]. Since NSWPP

occurs in a relaxed environment with numerous spaces, the WPs are relatively independent

of each other. Therefore, the number of precedence constraints is less, which in return

makes the scheduling problem challenging because the problem will have a larger solution

space and the WPs can fit anywhere within the time window. NSWPP does not comprise

only of maintenance operations but also includes equipment upgrades, steel renewal,

engineering changes, testing and trials etc. [19]. All these operations are important because

the ship must remain relevant with the state-of-the-art technologies throughout its lifetime

that spans over many decades [19].

2.3 The Maintenance Lifecycle of a Ship

Figure 2. The 5-year maintenance life cycle of a ship

8

Figure 3 is a representation of the typical maintenance life cycle of a navy ship. A naval

ship undergoes refit period (RP)/docking work period once every 5 years during which it

undergoes extensive maintenance operations such as welding, painting, deck floor

replacement, and equipment upgrades [18], [1]. The RP can last for about 53 weeks, but

the time horizon of the work period can be different depending on the type of ship under

consideration [1]. In-between the successive RPs, the ship undergoes a brief maintenance

period called the short work period (SWP) that generally lasts for three to six weeks, and a

ship can have 2-4 SWPs in a year [18], [1]. The maintenance operations during the SWP

are performed at the Fleet Maintenance Facility Cape Scott (FMFCS), or the Fleet

Maintenance Facility Cape Breton (FMFCB) [18]. Before the start and after the completion

of the RP, the ship undergoes an extended work period (EWP) that lasts for several months.

During EWP-1 the ship is made as light as possible by removing the fuel, drinking water,

ammunition, etc. to rest it on the dry dock platform comfortably [1]. At the end of the RP,

the EWP-2 commences during which the ship is taken back into the ocean where it gets re-

fuelled, re-filled with drinking water, and reinstalled with the necessary equipment and set

to sail [1].

2.4 NSWPP Planning Process

When the ship is on a mission or alongside a port city, equipment can breakdown either

under the harsh conditions at sea, or on standby while rotating machinery is laying idle and

corrosion progresses. As shown in figure 2, when a breakdown occurs, and the ship staff

cannot fix it by themselves, they generate notifications in the primary repair facility’s (RFc)

electronic maintenance system, for planning and later for conducting corrective

maintenance on the faulty equipment. The RFc staff also creates additional notifications

9

when defects are discovered during the inspection of the ship at the dockyard [1].

Preventive maintenance (PM) notifications are also automatically generated from the

RFc’s electronic maintenance system. Prior to the start of the refit period, the Royal

Canadian Navy (RCN) gives a time horizon to complete as many work packages as

possible, for that period, to the repair facility (e.g., FMF, Thales, or SNC Lavalin). The

RFc’s planning department will then use the notifications to create activities and work

packages that include all the information needed to correct the defect or perform the PM.

These WPs will be then used by the project leader and scheduler to generate a schedule and

propose an estimated number of WPs that can be completed within the given time horizon

[1].

Figure 3. Process of work package generation in NSWPP

In the NSWPP, it is common to see more pending WPs to be completed within the given

time horizon and with limited resource availability. Unlike the maintenance projects for

aircraft and submarines, the NSWPP does not require all the outstanding maintenance

operations to be completed during the work period [1]. From table 1, which represents the

data from one of the work periods at FMFCS (Source: [1]), it can be seen that although a

WP was first created in 2015, it was scheduled to execute in 2019. To ensure that the

essential WPs are finished during the active work period, priorities are assigned to the WPs

10

[18] [1]. It is acceptable to have low-priority WPs unattended as the high redundancy in

naval ships allow defect tolerance; plus, even if a ship loses power from a catastrophic

failure, it still floats and lives are not in immediate danger [1]. Also, there can be back and

forth negotiations with the RCN throughout the life cycle of a ship for deferring the

execution of WPs into the successive work periods, thus ensuring that mission-critical WPs

are completed. [1].

Table 1. Deferment of work package into the successive work period (source: [1])

As discussed earlier in section 2.1, the processes in a project can be divided into five

groups. Similarly, the NSWPP can also be divided into these groups. The following section

gives an overview of each phase.

2.4.1 Initiation and Planning

The initiation and planning phase begins as early as 16 weeks priors to the start of the work

period during which the vital data regarding operational goals, engineering changes,

material requirements, activity duration, etc. are collected and reviewed [18]. Once the

activity details are available, the experts from The Fleet Engineering Readiness (FER) and

Naval Engineering Operations Department (N-37) assign priority numbers to the work

11

packages and the activities within the work package inherit the same priority number [18],

[20].

2.4.2 Scheduling

In this phase, the data available is used to schedule the WPs starting with the high priority

ones [18]. The initial draft is shared with the ship’s command team for a review, and any

potential issues are brought up during the subsequent meetings before finalizing the

baseline schedule [18], [1].

2.4.3 Execution, Monitoring, and Control

The resources are expected to conform to the schedule and finish the work within the

determined time window [18]. Any resource conflicts arising during the execution of the

project are discussed during the weekly meetings [18], [1]. If a planned high priority WP

is getting delayed due to a shortage of resources, a lower priority WP gets cancelled or

deferred into the next work period to expedite the high priority WP by satisfying its

resource demands [18], [1].

2.4.4 Closing

At the end of the project, a meeting is held to discuss the project’s performance.

Comparisons such as actual hours vs. planned hours, number of WPs completed vs. the

number of WPs planned are reviewed [18]. The completed WPs are broken down by

priority to review the number of high priority WPs finished [18]. Other information, such

as labor hours and the number of WPs cancelled or deferred to the next work period are

also presented [18].

The performance of the In-Service Support Provider ISSP (i.e., Thales) will be quantified

using a contractor scoring scheme, which compares the number of WPs accepted at the

12

start of the work period and the number of WPs completed by the end of the work period

[1]. Different scores are assigned to WPs based on their priority status [1]. Since the

priority-1 WPs are valued highly, the ISSP must ensure that it completes all the high

priority WPs to get a good score.

2.5 Challenges in Scheduling Naval Maintenance Operations

Scheduling naval maintenance operations is subject to various constraints and high levels

of uncertainty. Apart from precedence, time and resource constraints, which are commonly

witnessed during project scheduling, there is a multitude of additional constraints that are

to be considered, such as – the spatial constraints, operational constraints and priority

constraints. Some of these constraints are unique to the NSWPP and adds to the complexity

of generating a proactive schedule. The following section briefly presents the unique

constraints that make the scheduling operation challenging.

2.5.1 Spatial Constraint

Figure 4. Representation of spatial constraint in a ship (source: [21])

13

Consider a ship like the Halifax class ship, which has 5 decks and 353 spaces [1]. Though

a ship has lots of spaces, there can be situations where work cannot be scheduled even

when the space is available. For example, every deck (below the upper deck) has a narrow

passageway connecting multiple adjacent spaces. If WPs are scheduled to occur in all the

spaces at once, conflicts can occur over the use of the passageway. Furthermore, when the

scheduled WP is “hot-work” such as welding or gas-cutting a patch of metal, as shown in

Figure 4, no WPs can be scheduled to occur in the adjacent spaces [21]. A Firewatch is

stationed in the adjacent space to prevent any mishaps [21]. Another example is when

heavy equipment from the lower deck needs to be removed from the ship. The soft patches

(floorboard) present on top of the equipment needs to be removed so that it can be lifted

using a crane [1], [21].

2.5.2 Operational Constraints: Radiation and Emissions

The ship contains radars and other equipment that use strong electromagnetic waves for

operating its combat and communication systems. During calibration and testing of these

equipment, no WP can be scheduled on the upper deck of the ship as it can have severe

consequences, such as radiation burn on the people working in close quarters with these

equipment [1], [22]. In addition, upper deck operations involving jetty cranes are deferred

during the testing of the ship’s gas/diesel-powered equipment because these equipment

emit large volumes of exhaust gases into the atmosphere creating an inhospitable

environment for the operator sitting in the cabin on top of the crane to control it [1].

2.5.3 Priority Constraints

The naval ship maintenance operations are priority dominant. The FMFCS uses three

priority levels to categorize work based on its importance [18], [1]. They are essential work

14

(high priority), high opportunity work (medium priority), normal opportunity work (low

priority) [18], [1]. The primary objective during any work period is to complete all the high

priority WPs first since they are considered mission-critical.

2.6 Topology/Structure of the Project Network

The work packages in NSWPP do not have many precedence relationships with each other,

as in the network structure shown in Figure 5 which is very typical of projects in the

construction industry, submarine industry, and aircraft industry. Since the ship is very big

with multi-levelled decks and lots of spaces, the WPs do not cross-interact and exhibit a

network structure, as shown in Figure 6 [1]. Since it is not mandatory to finish all the WPs,

dummy start and end nodes are not required. Most project scheduling problems require that

all activities be completed while minimizing the makespan of the project. For this purpose,

a fictitious dummy end node is used where all the open-ended activities are given as the

predecessor to the dummy end node. Then the objective function seeks to minimize the

start time of the end node to get an optimal makespan, as shown in equation (1). One of the

issues with this approach is that the slack activities tend to get scheduled close as late as

possible [19] and if there are open-ended activities that are not connected to the end node,

they might, sometimes, get poorly optimized. In NSWPP, the goal is the minimize the start

time of all the activities starting with the high priority ones and long duration ones within

the same priority, as shown in equation (29). Therefore, having the dummy nodes serves

no purpose to the objective function, but it can be included, if needed, to specify important

milestones.

15

Figure 5. A typical project network structure

Figure 6. A typical NSWPP network structure

2.7 Uncertainty in NSWPP

The NSWPP is very uncertain and full of contingencies which make the activity duration

stochastic in nature. This means the activities can finish earlier than planned, finish later

than planned, or may not get executed at all. This uncertainty is evident in the data obtained

from the FMFCS for an extended work period (2018-2019) that lasted for four months

(Source: [19]). According to the data, 636 WPs were initially planned, out of which only

399 were executed, as shown in Figure 7. Thus, 37.26% of WP never got executed. Of the

16

399 WPs that got executed, 16.29% of WPs were underestimated (took longer to complete

than estimated), 72% of WPs were overestimated (took less time to complete than

estimated), and only 11.03% of WPs were completed exactly on time. The major reasons

for this uncertainty are scope growth of the planned WPs, resources required to address

high priority work on another ship or the submarine, unavailability of the essential parts or

equipment, unforeseen engineering changes, inclement weather, procrastination,

absenteeism, and other contingencies [18], [19]

Figure 7. Project progress chart for an extended work period (source: [19])

Figure 8. Actual hours vs. Planned hours comparison for an extended work period (source: [19])

37.26%

62.74%

Project Progress Chart

Number of work packages not executed by the end of the work period

Number of work packages executed by the end of the work period

16.29%

11.03%

72.68%

Actual Hour vs. Planned Hour comparison for the
finished 399 work packages

Under Estimated

Equal to Estimated

Over Estimated

17

Currently, the FMF schedules all the projects manually, which is an arduous and time-

consuming process [1]. In order to cope with the changes and uncertainties, the project is

frequently rescheduled (usually every week) to make sure that it adheres to the baseline

schedule [1], [2]. Though ERP software such as Primavera P6 is used at FMFCB, the auto-

scheduling privileges remain locked to prevent accidental modifications to financial and

contractual information [1], [2].

2.8 Issues with Commercial Software

Kolisch (1999) conducted a study to analyze the gap in makespan between the optimal

solution and that obtained using commercial software such as MS Project and Primavera

project planner on 160 instances with the number of activities ranging between 10-30 and

2-4 resource types. The results from the study concluded that the solution deteriorates with

an increase in the number of activities. Similar results were also reported by [8], [23]. Table

2 represents the mean and standard deviation of the makespan percentage deviation

obtained by the commercial software packages [24].

Table 2. Mean and standard deviation of the makespan percentage deviation for commercial software (source: [24])

Baumann and Trautmann (2015) evaluated the resource allocation capability of 8 popular

commercial scheduling software such as Primavera P6, MS project 2010, MS project 2013,

and CS project professional. They conducted experiments on a total of 1560 instances from

PSPLIB with the number of activities ranging between 30-120 and 4 resource types. The

results concluded that commercial software gives a makespan that is longer when

18

compared to the optimum. In the worst-case scenario (highly resource-constrained),

Primavera P6 could take 113% longer to generate a schedule with mere 60 activities when

compared to the branch and bound algorithm [8]. Table 3 shows the mean and maximum

of makespan percentage deviation relative to the optimal value given by [8].

Table 3. The mean and maximum of makespan percentage deviation relative to the optimal value (source: [8])

Despite evidences showing the drawback of commercial software, organizations still insist

on using them over the optimization software because of its speed and its capability to store

a large amount of information such as multi-project portfolio, resource usage and

availability, project’s daily progress details and project’s expenditure at every level, all

within a single software [1]. In addition, since commercial software schedules the project

activities very quickly, it enables the planners to perform what-if analyses and compare

multiple schedules [1]. Although the commercial software packages are fast, their solutions

are poor because of their poor resource allocation capabilities. Therefore, the project

activities would be scheduled inefficiently, and the resource utilization would also be poor.

This results in a schedule with a large makespan right from the start when the baseline is

generated. Further, following a similar approach while monitoring the project’s regular

performance and for re-scheduling the activities whenever the project starts to deviate from

the baseline could extend the project’s makespan much more. A practical way to overcome

the adversities would be to manually schedule the most important activities first (the project

19

leaders usually have good knowledge about the most demanding activities) and then use

optimization procedure to automatically schedule the remaining activities around the

important activities within the given time horizon [1]. This approach helps to achieve a

good balance between heuristic and optimization techniques and prevents the case of

overestimating the project makespan or making the makespan too tight, which can cause

the baseline schedule to breakdown rapidly at the occurrence of uncertainty.

2.9 Research objectives and thesis outline

The research objective for this thesis is to propose effective formulations and solution

methodologies that can be used to generate high-quality schedules for large NP-hard

priority dominant NSWPP.

This thesis will investigate the following research questions:

1. How and on what basis to select the most suitable MILP formulation to schedule

the large priority dominant NSWPP efficiently?

2. Is there a solution technique that will help to combine positive attributes of both

pure optimization techniques and heuristic approaches to solve the large NSWPP

efficiently in order to overcome the exponential growth in computational time

witnessed with the use of pure optimization technique and, at the same time, obtain

a solution that is close to the optimum?

The thesis is structured such that a literature review of the popular scheduling techniques,

RCPSP development, variants of RCPSP, RCPSP solution methods, RCPSP formulations

and network topology of the project networks is performed to study the existing models

that could apply to NSWPP. After the literature review, preliminary experimentation with

20

different MILP formulations is conducted on the real-world inspired instances to analyze

their performance. It is followed by a description of the new proposed priority-duration

(PD) objective function that helps to schedule the NSWPP activities in a way that complies

with the practical protocol followed in the naval industry. To further narrow down on the

most suitable formulation, the objective function of the original MILP formulations

(minimize makespan) is replaced with the PD objective function while still retaining the

constraints. Upon further experimentation with NSWPP instances, the constraints from the

best performing formulation are used to develop the new PD formulation.

Following the tests conducted with the PD formulation using pure optimization techniques,

a new matheuristic method called multi-step optimization (MSO) is developed in this thesis

to overcome the computational complexity of the pure optimization technique used to solve

the NSWPP. Later, experiments are conducted with MSO on NSWPP instances to analyze

its performance and solution quality in comparison to pure optimization technique and

heuristic methodology like the serial schedule generation scheme (SSGS). Furthermore,

the instance characteristics of the NSWPP are studied to understand their influence over

the computational time when using MSO.

21

Chapter 3: Literature Review
This chapter is structured to provide an overview of the popular scheduling approaches,

the classification of RCPSP and its variants in section 3.1 and section 3.2, respectively.

Section 3.3 discusses the different MILP formulations available for RCPSP with major

focus placed on time-indexed and event-based MILP formulations. Section 3.4 discusses

about the different RCPSP solution methods, section 3.5 discusses about the computational

complexity and finally section 3.6 delineates the instance characteristics and how it dictates

the complexity of an RCPSP.

3.1 Classical Project Scheduling Techniques

Scheduling is one of the areas that has seen developments throughout centuries [25]. It can

be traced back to the time of Sun Tzu, the famous Chinese general of the Zhou Dynasty

(722-481 BCE), who wrote about scheduling and strategies from a military perspective

[25]. Scheduling became very popular in the 1950s with the invention of the Critical Path

Method (CPM) [26] and Project Evaluation and Review Technique (PERT) [27]. The

Dupont Corporation first used CPM in 1957 for the construction of its new chemical plant

[28], and PERT was used to control and measure the progress of the Polaris Fleet Ballistic

Missile project by the U.S. Navy in 1958 [28].

CPM is deterministic in nature and uses predetermined times to calculate the earliest

possible project finish times through an iterative calculation of individual activity duration

while respecting all the precedence constraints. The solution gives information about

critical and non-critical activities. The non-critical activities carry a slack or buffer that gets

used in case of delay without affecting the original schedule.

22

PERT shares similarities with CPM with the major distinguishing factor being the

probabilistic nature of PERT, wherein it uses the mean value of three duration estimates,

namely the optimistic, most likely, and pessimistic durations to determine the expected

activity duration.

Both PERT and CPM produce only precedence and time feasible schedule and not consider

the resource feasibility [17], [29]. A sound scheduling algorithm must mandatorily

incorporate the resource availability and resource demands along with the precedence

constraints to generate precedence, time & resource feasible schedule [30]. CPM and PERT

algorithms are not designed to achieve this objective [29], [30]. This technique cannot be

used to schedule complex NSWPP that deal with hundreds of activities sharing the

available resources and subject to additional constraints. These inherent limitations of CPM

and PERT paved the way for RCPSP.

3.2 Classification of RCPSP

The RCPSP is one of the most researched problems because of its practical importance and

relevance with all industries like construction, manufacturing, logistics and

pharmaceutical. Every industry poses different kinds of constraints and objective functions,

with the underlying aim being to determine the optimal start time of project activities,

which has led to the development of many variants of the RCPSP. RCPSPs can be classified

based on the following attributes:

• Type of constraints

• Type of precedence relationships

• Type of resources

• Type of activity splitting

23

• Number of execution modes

• Number of objectives

• Types of objectives

• Level of information

Table 4. Classification of RCPSP and its variants adapted from [31]

Table 4, adapted from Schwindt and Zimmermann (2015), classifies the RCPSP variants

according to their attributes. This section gives a brief description of some of the RCPSP

variants to explain the nature of the NSWPP project better.

3.2.1 Time Constrained Problem vs. Resource-Constrained Problem

In the Time Constrained problem, the deadline for completing the activities of the project

is fixed, and the schedule is generated by varying the resource demand and resource

24

capacity [32]. In the Resource-Constrained problem, the project activities are to be

scheduled with an aim to minimize the makespan of the project while ensuring that the

resources are not allocated over their maximum capacity [32]. The NSWPP is a resource-

constrained problem since the objective is to finish the project in the least possible time by

strictly respecting the resource and precedence constraints.

3.2.2 Renewable Resources vs. Non-Renewable Resources

Renewable resources are the ones for which only the total usage during every time period

is constrained [33]. During the execution of an activity, the renewable resource is used for

a pre-determined time period [14]. On completion of the activity, the resource is released

back into the resource pool, thus making it available for the next activity in line. Machines,

tools, and human resources are regarded as renewable resources [34]. The non-renewable

resources are the ones for which only the total consumption over the project duration is

constrained [33]. Money, energy, and raw materials are some of the best examples for non-

renewable resources [17]. An additional resource type, namely the doubly constrained

resource, was introduced by Slowinski in 1980. According to him, these resources share

the characteristics of both renewable and non-renewable resources [16]. The energy

utilization and the project budget are good examples of doubly constrained resources

because their total usage during every time period and their total consumption for over the

entire project duration can both be constrained [33]. In this thesis, the NSWPP project is

modelled with renewable resources. The information on the non-renewable resources like

the project budget and personnel salaries are kept confidential during NSWPP and thus,

they are not considered [1].

25

3.2.3 Pre-emptive Model vs. Non-Preemptive Model

In general, RCPSP assumes non pre-emption of activities, which means that once an

activity is started, it cannot be interrupted. This assumption is practically sound and

conforms with the naval project practices where the activities are completed once they are

started. If a project supports pre-emption of activities, it means that activity under execution

can be interrupted at any point of time to start working on another activity. For a review on

RCPSP with pre-emption, see [35], [36], [37] where they support pre-emption of activity

at discrete time units [15].

3.2.4 Single-mode vs. multi-mode

A problem that allows activities to execute in one way within a fixed processing time and

fixed resource demands is called a single-mode problem. The concept of multi-mode was

introduced by [38] in which the activities were given an option to execute in a different

mode with each mode having a unique activity duration and resource demands [15]. Multi-

mode project scheduling is useful in job-shop scheduling and determining the cost involved

in crashing a project [15].

3.2.5 Single-Criterion Problem vs. Multi-Criteria Problem

If the objective function has only a single criterion to either minimize or maximize the

intended goal, it is called a single criterion problem. There are instances where multiple

criteria need to be satisfied for a given problem. They can be either similar (every criterion

needs to be maximized or minimized) or contradicting to understand the important trade-

off between criteria such as makespan, resource level, and project cost as done by [15],

[39]. In a problem with the multi-criteria objective function, the impact of each criterion

on the overall objective function is controlled by assigning weights [15]. The larger the

26

weight, the higher its impact on the objective function. In this paper, the NSWPP project

is modeled with a multi-criteria objective function that aims at scheduling the high priority

activities before the low priority ones. Also, for activities within the same priority, the ones

with longer duration are scheduled first.

3.2.6 Deterministic Problem vs. Stochastic Problem

In a deterministic problem, the activity duration is assumed to be fixed. Most of the

research conducted on RCPSP considers the activity durations to be fixed [40]. In practice,

every project is subject to uncertainties and it is common for activity durations to fluctuate.

This makes the need for a stochastic planning approach indispensable in the field of project

management. Stochastic scheduling incorporates the variability in activity duration. Using

stochastic scheduling techniques for scheduling naval maintenance operations is a

complicated endeavour because of the lack of historical data that is needed to understand

activity duration distributions [18]. Table 5 represents a snapshot of a work period data. It

can be seen that the calendar days represented by scheduled start and scheduled finish does

not relate to the planned hours. The calendar days are generally exaggerated so that if the

staff or the contractors is required to work on some other important job, they can get back

and still finish work within the allotted time [20]. In addition, the FMF records the billed

hours as opposed to actual total hours between the start date and finish date of a WP [1].

That means if a WP gets finished in 5 hours, it could be on one calendar day or spread over

many calendar days [1]. Also, any delays that occur due to contingencies like bad weather,

unavailability of a part, etc. are not included in the schedule [1]. Therefore, it is very hard

to determine the actual execution time for activities [1].

27

Table 5. Data showing that the actual calendar start-to-finish time are much larger than the planned preventive

maintenance hours (source: [1])

This, in turn, hinders the application of buffer insertion techniques such as project buffer,

feeding buffer, and resource buffer to protect the project against uncertainties [41]. For

further review on stochastic RCPSP with buffer insertion techniques, refer [15], [18], [40],

[41].

3.2.7 Proactive Scheduling and Reactive Scheduling

The technique where a schedule is generated by integrating enough protection to the

baseline schedule by anticipating future contingencies is called proactive scheduling [42].

If the project starts to go astray despite proactive scheduling, the reactive scheduling

technique is incorporated to bring the project back in line. The reactive scheduling is an

indispensable part of project management. There are different methods to perform reactive

scheduling. Irrespective of the method chosen, the primary objective is to make sure that

the revised schedule is in proximity to the baseline schedule [42]. The inability to bear

resemblance can have catastrophic ramifications such as unavailability of scarce and

special skilled resources, frequent changes in agreement with subcontractors, and violation

of project deadline. [42]. For a review on reactive scheduling policies for the NSWPP

project, readers can refer to [19], wherein a rescheduling policy using MILP formulations

is developed to minimize the number of scheduling changes when re-scheduling activities.

28

In this thesis, the NSWPP is modelled with a multi-criteria objective function that aims to

minimize the total weighted start time of the project while scheduling all the high priority

activities before the low priority ones and for activities within the same priority, the ones

with a longer duration are scheduled before the shorter ones. In addition, the following

assumptions are made:

• Non pre-emption – once an activity starts it cannot be interrupted till it finishes.

• Single-mode – the activities have only one mode with a specific resource demand

and processing duration to execute in.

• Deterministic duration – the activity durations are fixed.

3.3 MILP Formulations

MILP is a variant of integer linear programming where some variables are restricted to be

integers, while others can be continuous variables [43]. There are three main categories of

MILP formulation for solving RCPSP [44]. They are:

• Time-Indexed Formulations: This formulation makes use of the binary variable 𝑥𝑖,𝑡,

where i is the activity index and t is the time index. Here, 𝑥𝑖,𝑡 = 1 when activity i starts

at time period t; else it is 0 [44].

• Sequence-Based Formulation: This formulation makes use of the binary variable 𝑦𝑖,𝑗

and continuous-time variable 𝑆𝑖, where i and j are activity indices. Here, 𝑦𝑖,𝑗 = 1 if

𝑆𝑖 + 𝐷𝑖 ≤ 𝑆𝑗 where 𝐷𝑖 is the duration of activity i. This formulation was originally

intended to solve machine scheduling problems, but with the addition of constraints

to satisfy resource demands, it was extended to solve RCPSP [44].

29

• Event-Based Formulation: This formulation makes use of the binary variable 𝑧𝑖,𝑒,

where i is the activity index and e is the event index. Here, 𝑧𝑖,𝑒 = 1 if activity i starts

at event e or still in process at event e. It also makes use of the continuous-time variable

𝑡𝑒 to determine the start time of events [44].

3.3.1 Description of Notations

c Positive constant

H Planning Horizon

n Number of activities to be scheduled, including dummy activities (if present)

A Set of project activities

E Set of events

M Machines

P/prec Set of precedence pairs

R/res Set of resource types

e Index used to denote event in set E

i and j Indices used to denote activity in set A

k Index used to denote resource in set R

Represents maximum availability of resource type k

Represents number resources of each type k demanded by activity i

 / Represents the duration of activity i

Represents the earliest possible start time of activity i

Represents latest possible start time for activity i

Continuous-time variable

Binary, 1 if activity i starts at time t

Binary, 1 if

Binary, 1 if activity I starts at event e or still being executed after event e

Completion time

Makespan, max{ ,….., }

Total completion time (+…..+)

Objective Function

Decision Variable

Parameters

Indices

Constants

Sets

 𝑖

30

3.3.2 The Discrete-Time Formulation

The basic discrete-time (DT) formulation introduced by [45] is given below. It uses a single

activity and time indexed binary decision variable 𝑥𝑖,𝑡 such that

𝑥𝑖,𝑡 = {
1, if activity 𝑖 starts at time 𝑡
0, otherwise

The formulation obtained is:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑡𝑥𝑛,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

 (1)

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥ 𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖 ∀(𝑖, 𝑗) ∈ 𝑃 (2)

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤ 𝐵𝑘 ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅 (3)

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

= 1 ∀ 𝑖 ∈ 𝐴 (4)

𝑥𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻 (5)

Constraint (2) is a precedence constraint that makes sure that the successor does not start

before the completion of the predecessor. Constraint (3) makes sure that the resources are

not over-utilized beyond their maximum availability. Constraint (4) ensures that all

activities are scheduled.

31

3.3.3 Disaggregated Discrete-Time Formulation

The disaggregated discrete-time formulation (DDT) is similar to the DT formulation with

an exception in the way the precedence constraint is formulated, which is shown in

equation (6). It ensures that the precedence constraint is satisfied by preventing the

predecessor (i) and successor (j) from executing simultaneously. This approach was

introduced by Christofides et al. (1987) [46].

 𝑥𝑖,𝜏

𝐿𝑆𝑖

𝜏=𝐸𝑆𝑖

 + 𝑥𝑗,𝜏

min (𝐿𝑆𝑗,𝑡+𝐷𝑖−1)

𝜏=𝐸𝑆𝑗

 ≤ 1 ∀(𝑖, 𝑗) ∈ 𝑃 (6)

3.3.4 On/Off Event-Based Formulation

The On/Off Event-based formulation (OOE) was introduced by Kone et al. in 2011 to solve

RCPSP instances. Unlike the time-indexed formulations, where the number of variables

grows rapidly with a larger time window, the variable used in the event-based formulation

is not a function of time, and it does not exhibit similar growth [46].

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑚𝑎𝑥 (7)

 𝑧𝑖,𝑒
𝑒∈𝐸

≥ 1 ∀𝑖 ∈ 𝐴 (8)

 𝑚𝑎𝑥 ≥ 𝑡𝑒 + (𝑧𝑖,𝑒− 𝑧𝑖,𝑒−1)𝐷𝑖 ∀𝑒 ≠ 1 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (9)

𝑡1 = 0 (10)

𝑡𝑒+1 ≥ 𝑡𝑒 ∀𝑒 ≠ 𝑛 ∈ 𝐸 (11)

 𝑡𝑒2 ≥ 𝑡𝑒1 + ((𝑧𝑖,𝑒1 − 𝑧𝑖,𝑒1−1) − (𝑧𝑖,𝑒2 − 𝑧𝑖,𝑒2−1) − 1)𝐷𝑖 ∀(𝑒1, 𝑒2, 𝑖) ∈ 𝐸
2 × 𝐴, 𝑒2 > 𝑒1 (12)

32

 𝑧𝑖,𝑓

𝑒−1

𝑓=1

≤ 𝑒 (1 − (𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1)) ∀𝑒 ≠ 1 ∈ 𝐸 (13)

 𝑧𝑖,𝑓

𝑛

𝑓=𝑒

≤ (𝑛 − 𝑒) (1 + (𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1)) ∀𝑒 ≠ 1 ∈ 𝐸 (14)

 𝑧𝑗,𝑓 + 𝑧𝑖.𝑒

𝑒

𝑓=1

≤ 1 + (1 − 𝑧𝑖,𝑒) 𝑒 ∀𝑒 ∈ 𝐸, ∀(𝑖, 𝑗) ∈ 𝑃 (15)

 𝑏𝑖,𝑘. 𝑧𝑖,𝑒

𝑛

𝑖=1

≤ 𝐵𝑘 ∀𝑒 ∈ 𝐸, ∀𝑘 ∈ 𝑅 (16)

 𝐸𝑆𝑖. 𝑧𝑖,𝑒 ≤ 𝑡𝑒 ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (17)

 𝑡𝑒 ≤ 𝐿𝑆𝑖(𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1) + 𝐿𝑆𝑛(1 − 𝑧𝑖,𝑒 + 𝑧𝑖,𝑒−1) ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (18)

 𝐸𝑆𝑛 ≤ 𝑚𝑎𝑥 ≤ 𝐿𝑆𝑛 ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (19)

 𝑡𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 (20)

 𝑧𝑖,𝑒 ∈ {0,1} ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (21)

Constraint (8) assigns each activity at least one event, ensuring it is scheduled. Constraint

(9) defines the makespan, Cmax, as the end of the last activity. Constraint (10) initializes the

first event to the start time of zero. Constraint (11) ensures that events happen in order.

Constraint (12) links the binary variable z to the corresponding t variable. Constraint (13)

ensures non-preemption from predecessor events. Constraint (14) ensures non-pre-emption

for successor events. Constraints (15) imposes precedence constraints. Constraint (16)

imposes resource constraints. Constraints (17) and (18) impose earliest and latest start

33

times, respectively. Constraints (19) ensures that makespan is within the time window of

the last activity. Constraints (20) and (21) describe the continuous variable t and binary

variable z, respectively.

Kone et al. (2011) conducted experiments on a variety of standard RCPSP instances

imported from the PSPLIB to test the performance of different MILP formulations. They

suggested that there is no single class of MILP formulation that will dominate over the

other types of formulations and added that appropriate formulation has to be selected based

on the characteristics of the problem.

3.4 RCPSP Solution Methods

The most prominent solution methods for the Mixed Integer Linear Programming (MILP)

formulations of the RCPSP are simplex and branch-and-bound solvers, heuristics,

metaheuristics, constraint programming, satisfiability test, and matheuristics.

3.4.1 Simplex and Branch-and-Bound based Solvers

A “solver” is a mathematical software that incorporates multiple algorithms that can be

used to optimally solve one or more class of problems [47], [48]. For solving combinatorial

problems like an RCPSP, solvers such as IBM ILOG CPLEX, Gurobi, CBC and

Gusek/GLPK are used which runs on simplex and branch-and-bound algorithms. Although

the solvers give an optimal solution for an RCPSP, it can be computationally intensive and

it can take several hours to solve a moderate-sized problem with moderate resource

constrainedness. However, the advantage of a solver is that it determines the upper bound,

lower bound and the optimality gap for a given problem. Therefore, even if the problem

does not solve completely in a reasonable amount of time, the value of the optimality gap

34

can be very useful to analyze the quality of the solution obtained using faster techniques

such as heuristics and metaheuristics [49].

3.4.2 Heuristic and Metaheuristic Approach

Blazewicz et al. (1983) showed that the RCSPSP is an NP-hard problem and thus, it would

be computationally demanding to solve complex RCPSP using MILP formulations and

exact algorithms. Therefore, heuristics and metaheuristic algorithms have become the go-

to methods for researchers to solve complex RCPSP [50]. A heuristic is a technique

wherein computationally difficult problems are solved quickly at the cost of optimality,

accuracy, and completeness [51]. A heuristic algorithm is dependent on the nature of the

problem on which it is used, and it is generally greedy in its approach to finding a solution.

This often results in entrapment within a local optimum [52]. One of the fastest heuristic

algorithms for scheduling an RCPSP is priority rule based scheduling. The application of

priority rules helps to reduce the solution space and fastens the computation ([53], [54],

[55], [56], [57], [58], [59], [60]). The schedule generation scheme is the core tool on which

different priority rules are used to schedule the RCPSP instances [41], [61]. Diana et al.

(2012) conducted experiments on the standard RSPSP instances from PSPLIB to compare

different priority rules. After experimenting on 23 different priority rules, it was found that

the Latest Start Time rule yielded results that were close to the optimal solution. The

metaheuristic algorithms are high-level strategies that help a heuristic to efficiently search

the solution space to find a good solution for an optimization problem [62]. Unlike the

heuristic algorithm, the metaheuristic algorithm is less dependant on the nature of the

problem on which it is used [52]. It explores the solution space much more thoroughly,

even at the cost of temporary deterioration of the solution, in the hope of finding the optimal

35

solution [7]. For further reading on heuristic and metaheuristic approaches, refer [50], [61],

[63].

3.4.3 Constraint Programming and Satisfiability Test

Constraint programming is a method that solves combinatorial problems such as RCPSP

using variables and logical constraints [64]. It derives its solution techniques from various

fields like operations research, computer science, and artificial intelligence [65]. Similarly,

Satisfiability test (SAT) is another unique solving technique which uses Boolean

expressions to solve the RCPSP [64]

3.4.4 Matheuristics

A matheuristic is a hybrid solution technique obtained by combining (meta)heuristic

techniques and mathematical programming (MP) techniques [9]. This method integrates

the positive characteristics of both techniques to enhance the performance of the algorithms

used on complex real-world problems [7]. These hybrid algorithms are extensively used to

solve NP-hard problems such as vehicle routing problems, travelling salesman problems,

job shop scheduling, and RCPSP [7]. According to Archetti and Speranza (2014),

matheuristic methods can be broadly grouped into three classes: decomposition method,

improvement heuristics, and relaxation-based method. The decomposition method

involves breaking the original problem into smaller subproblems that can then be solved

using MP models to optimality [6]. A time limit is generally specified to prevent the

optimization process from being limited by the complexity of the subproblem [6]. The

improvement heuristics class of matheuristics integrates heuristics and MP models. In this

method, the initial solution obtained from a heuristic is improved by using the MP model.

This is a popular class, and many ways of incorporating the MP model into (meta)heuristics

36

have been proposed [6]. [66] proposed a local search with subproblem exact resolution

method based on large neighborhood search for solving the single-mode RCPSP. In this

method, the initial solution for the given problem is generated by using forward &

backward improvement algorithm on serial schedule generation scheme with an aim to

minimize the makespan [63]. The obtained solution is further improved by iteratively

rescheduling randomly selected subproblems, under a predetermined time limit, using

exact solving approach while freezing the start times of activities which are not part of the

subproblem [63]. The resulting solution from optimizing the subproblem is fed into the

existing initial solution and further post-optimized using the forward-backward

improvement algorithm [63]. [67] proposed a matheuristic method integrating integer

programming models and a local search based on forward-backward improvement

algorithm to solve multi-mode RCPSP. In this method, the initial solution detailing the start

times of activities and its execution mode is obtained using a constructive heuristic

algorithm [67]. The obtained solution is further improved by iteratively solving

subproblems, which are generated based on the earliest start time of the activities within

the range of the predetermined time window, using an integer programming model [67],

[68]. The range of the time window keeps on increasing after every iteration to generate

new subproblems [67]. The process is repeated until the entire problem is solved and a

feasible solution is obtained. This feasible solution is further post-optimized using a local

search based on the forward-backward improvement algorithm hybridized with an integer

programming model to control the execution modes and changes to the solution [67], [68].

[69] proposed the use of the variable neighborhood search algorithm, modified to be used

as an advanced optimization method, for solving multi-mode RCPSP. The relaxation-based

37

method produces an approximate solution for the given problem by relaxing certain

attributes in the MP formulation that increases the complexity and computational effort [6].

The obtained solution is further improved using heuristics or metaheuristics. For further

review on matheuristics, the reader is referred to [70], [71], [72], [73].

The proposed multi-step optimization matheuristic is of the decomposition class. The large

list of activities is decomposed into subgroups using heuristic priority rules. The subgroups

are later optimized iteratively using a MILP formulation that generates a near-optimal

schedule. The multi-step optimization is discussed in detail in Chapter 5.

3.5 Computational Complexity

The concept of computational complexity was born when the Turing machine, a theoretical

computation model developed by Turing, helped to prove the major barrier to the

computational speed of the computer [74]. Since then, to understand the computational

difficulty, the problems are categorized into different classes such as P-class (Polynomial)

and NP-class (Non-deterministic polynomial) [74]. The P-class problems are the ones that

can be solved and have their solutions verified in polynomial time. A good example of P-

class problem would be multiplication, where irrespective of the size of the problem, the

computational time varies as a polynomial function, i.e., O(𝑛𝑐) where n is the input size

and c is a positive constant. NP-class problems are those which are hard to solve in

polynomial time, but if the solutions are given, its feasibility/correctness can be verified in

polynomial time. A good example of NP-class problem would be the Sudoku game, where

solving the entire sudoku can be difficult, but if the solutions are already given, it is easy

to check for its correctness. The computational time for NP-class problems increase

exponentially with input size, i.e., O(𝑐𝑛).

38

The NP problems can be further classified into NP-hard and NP-complete problems. To

prove that a problem L is NP-complete, the following two conditions must be satisfied

[75]:

1. L is in NP

2. Every problem in NP is reducible to L in polynomial time

Further, if a problem only satisfies condition 2, it is said to be NP-hard [75]. In 1971, Cook

showed that the Boolean Satisfiability problem is NP-complete and proved the existence

of NP-complete problems [76]. Later in 1972, Karp used Cook’s theorem and proved

nearly 21 problems to be NP-complete [75]. Blazewicz et al. (1983) extended the machine

scheduling problem to RCPSP by considering additional scarce resources that would be

required to complete a job. They considered models with parallel machines, unit time

duration and minimization of the maximum completion time (makespan) as the optimality

criterion (M2|res; prec ; 𝑑𝑖=1| 𝑚𝑎𝑥) for their experimentation and showed that RCPSP

problems are NP-hard. They also added that NP-hardness for RCPSP with other optimality

criteria such as minimizing total completion time (∑ 𝑖) can also be shown by replacing

 𝑚𝑎𝑥 in the same problem [5]. [77] showed that the problem of minimizing the total

weighted completion time of the jobs on a single machine with unit time duration and finish

to start precedence constraint (1|prec; 𝑑𝑖=1| ∑𝑤𝑖 𝑖) to be NP-hard. The NSWPP is a

variant of the RCPSP, the objective function in the priority-duration formulation for

NSWPP, as shown in equation (29), aims to minimize the total weighted start time of the

project and has similar characteristics as RCPSP with regards to resources, nature of

precedence constraint and processing duration. Thus, by analogy, we can say that NSWPP

is also NP-hard.

39

During experimentation, the NSWPP instances are solved using the Gurobi optimizer

which uses the Branch-and-Bound algorithm (BnB) to solve complex NP-hard

optimization problems. When optimizing a given problem, the BnB algorithm generates

subsets of the search tree and then iteratively explores every subset [78]. When exploring,

every candidate solution is checked against the lower bound and upper bound value

estimated on the optimum [79]. If the subset being explored does not give a better value

than the incumbent, it gets pruned (Bounding) [78]. If a better value is obtained, the subset

branches further and the algorithm continues to explore it [78]. In the end, once the entire

search tree is explored, the best-found solution is returned as an optimal value [78]. The

time complexity of the BnB algorithm can be given as O(V𝑣𝑤) [78] where V is a bound

on time needed to explore a subset, 𝑣 is the branching factor of the tree which is the

maximum number of children generated at any node in the tree, and 𝑤 is the search depth,

which is the length of the longest path from the root to a leaf. It depends on the size of the

input.

An upper bound on the maximum completion time to solve a problem can be estimated by

determining the number of activities in the input data [74]. Greater the number of activities

in the input, greater would be the computation time required to solve the problem.

3.6 Instance/Network Indicators

Project networks exhibit unique characteristics that tend to affect the efficiency of the

solution methods used [80]. The study of network characteristics is important because it

can help to determine the solution method that can solve the hardest problem efficiently

and later, the same method can be used to solve other relatively easier problems [81]. These

40

unique characteristics can be measured using instance indicators. There are four types of

instance indicators:

1) Precedence-oriented indicators: Order Strength (OS), Network complexity (NC),

2) Resource-oriented: Resource factor (RF) and Resource Constrainedness (RC),

3) Time-oriented: Process Range (PR), and

4) Hybrid indicators: Resource Strength (RS) [46].

Kolisch et al. (1995) worked extensively on this classification and created the benchmark

PSPLIB instances. These instances are regarded as the standard to test any new solution

methods to solve RCPSP.

This section aims to present the most promising instance indicators for RCPSP and their

effect on computational difficulty. The calculations for determining the network indicator

values are explained using an arbitrary instance shown in Figure 9 where A – activity, B –

maximum availability of resource type k, D – processing duration of the activities and k –

resource demands.

Figure 9. Arbitrary instance with 5 activities and 3 resource types

41

3.6.1 Network Complexity

This measure indicates how dense the network is. It is given by the ratio of the total number

of non-dummy precedence pairs (P) to the total number of non-dummy activities (n) [81]:

𝑁 =
𝑃

𝑛
 (22)

The network complexity for instance shown in Figure 9 can be calculated as follows:

𝑁 =
3

5
 = 0.6

A project with many precedence pairs is said to be disjunctive in nature, and thus many

activities cannot be executed in parallel [46]. A project having a low number of precedence

pairs is said to be cumulative in nature, wherein many activities can be executed in parallel

[46].

3.6.2 Order Strength

This measure is the ratio between the number of precedence pairs (transitive once included)

of non-dummy activities and the theoretical maximum number of precedence pairs [82].

𝑂𝑆 =
| 𝑃 |

𝑛2 − 𝑛
2

 (23)

Where n is the number of non-dummy activities. The numerator is the sum of the number

of activities that need to be completed for a given activity to start. The order strength for

instance shown in Figure 9 can be calculated as follows:

 𝑂𝑆 =
4

52 − 5
2

 = 0.4

42

De Reyck et al. (1999) conducted experiments on 7200 RCPSP instances using the branch-

and-bound algorithm and showed that OS follows a continuous hard-easy phase transition

pattern, as shown in Figure 10 [82]. This is because, as the number of precedence

relationships within a network increases, the number of feasible solutions decreases due to

the reduced possibility of the enumeration tree [83]. Similar results can also be observed

with network complexity value [83].

Figure 10. Logarithm of Computation Time vs Order Strength (source: [82])

3.6.3 Resource Factor

This measure was introduced by Pascoe (1966). It denotes the average resource demand

for a resource type requested per activity [81], [83].

43

𝑅𝐹 =
1

𝑛𝑘
 {

1, 𝑖𝑓 𝑟𝑖,𝑘 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐾

𝑘=1

𝑛

𝑖=1

 (24)

 ri,k = Demand for resource type k by activity i

The resource factor for instance shown in Figure 9 can be calculated as follows:

𝑅𝐹 =
14

5 × 3
 = 0.933

If RF = 1, then the all the resources are demanded by all the activities. If RF = 0, then none

of the resources are demanded by any of the activities [83]. [83] conducted experiments on

480 RCPSP instances with 30 activities and 4 types of resources using the branch-and-

bound algorithm and showed that the computational effort increases as the RF value

increases, as shown in Table 6.

Table 6. Effect of the Resource Factor on the Computation Time (source: [83])

3.6.4 Resource Strength

This measure was coined by Cooper (1976) to measure the size of resource conflict [84].

𝑅𝑆𝑘 =
𝑎𝑘 − 𝑟𝑘

𝑚𝑖𝑛

𝑟𝑘
𝑚𝑎𝑥 − 𝑟𝑘

𝑚𝑖𝑛
 (25)

44

Where 𝑎𝑘 is the maximum availability of renewable resource type k

 𝑟𝑘
𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑖=1,..𝑛 𝑟𝑖,𝑘

 𝑟𝑘
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑡=1…𝐻 (𝑟𝑖,𝑘

𝑖=1,..𝑛

)

𝑟𝑘
𝑚𝑖𝑛 – Maximum demand for resource type k by the activities.

𝑟𝑘
𝑚𝑎𝑥 – Peak demand for resource type k in the schedule generated on early start time.

The resource strength for instance shown in Figure 9 can be calculated as follows:

𝑅𝑆1 =
4 − 3

5 − 3
= 0.5

𝑅𝑆2 =
3 − 3

3 − 3
= 0

To get the resource strength for the instance, 𝑅𝑆𝑘 values must be averaged over all the

resource types k [81], [82].

De Reyck and Herroelen (1996) showed that instances with RS ≥ 1 are trivial problems

that are no longer resource-constrained, and instance with RS ≈ 0 are extremely

computationally demanding, as shown in Figure 11 [82].

The use of RS as an instance indicator has been under a disagreement. While [83] argue

that the RS is advantageous as it uses the precedence information along with the resources,

[82] and [85] argue that incorporation of precedence information to determine the resource

conflicts makes it an impure measure [81], [84]. The fact that RS relies on the peak value

of resource demands makes it forget to consider the frequency and magnitude of other

45

relatively smaller values, which can induce serious bias into the measure, especially when

the problem size grows big [81], [84]. To overcome this, many researchers use Resource

Constrainedness (RC) as a resource measure [82].

3.6.5 Resource Constrainedness

This measure was introduced by Patterson (1976). It is defined as the average usage of a

resource k over the activities using resource k.

𝑅 𝑘 =

∑ 𝑟𝑖,𝑘
𝑛
𝑖=1

∑ {
1, 𝑖𝑓 𝑟𝑖,𝑘 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑛
𝑖=1

𝑎𝑘
 (26)

Where 𝑟𝑖,𝑘 is the demand for resource k by activity i and 𝑎𝑘 is the maximum availability of

renewable resource k. The resource constrainedness for instance shown in Figure 9 can be

calculated as follows:

𝑅 1 =

9
5
4
 = 0.45

𝑅 2 =

8
4
3
 = 0.6667

To get the resource constrainedness for the instance, 𝑅 𝑘 values must be averaged over all

the resource types k [81], [82]. [85] showed that RS and RC exhibit an easy-hard-easy

complexity pattern that resembles a bell curve that supported a similar conjecture made by

[86]. This helped to reject the negative correlation between RS and computational effort

shown by [83], [84]. They also emphasized the fact that, along with the average

computational effort, the variance is also high at the phase transition region [82]. Therefore,

46

instances need not be computationally demanding even though their RC and RS values

exist in the ‘NP-hard region’ [82].

Figure 11. Computational effort vs. RC and RS values (source: [82])

RS and RC can be used as strong indicators to determine network complexity when there

is only one type of resource (K=1) or when 𝑅 𝑘 and 𝑅𝑆𝑘 are similar over all resources type

k [82]. Since 𝑅 𝑘 and 𝑅𝑆𝑘 values are averaged over all the resource types k, in cases where

there is more than one type of resource with dissimilar demands, it induces serious bias

into the measure [82]. Presently, there are no stable and consistent measures identified to

analyze the impact of resource usage on the computational difficulty [82].

3.6.6 Process Range

This measure is the ratio between the maximum and minimum processing duration of the

project activities.

𝑃𝑅 =
𝑚𝑎𝑥𝑖=1..𝑛 𝐷𝑖
𝑚𝑖𝑛𝑖=1..𝑛 𝐷𝑖

 (27)

47

The process range for instance shown in figure 9 can be calculated as follows:

𝑃𝑅 =
5

1
 = 5

A larger PR will significantly increase computation time when minimizing the makespan

of a project because the algorithm has to search through a larger solution space to assign

an optimal start time for the longer duration activities present among the short duration

ones while ensuring that the precedence and resource constraints are satisfied.

3.6.7 Disjunction Ratio

This measure distinguishes between disjunctive instances (with a high number of

precedence relations) to cumulative instances (with a low number of precedence pairs)

[46]. It integrates resource and precedence measures [46]. It can be defined as a product of

resource constrainedness and network complexity [4]

𝐷𝑅 = 𝑁 × 𝑅 (28)

[46] observed a trend when comparing the performance of DT, DDT, OOE, Flow-based

continuous time (FCT) and Start/End event based (SEE) MILP formulations respectively

based on the process range and disjunction ratio. After analyzing the result, they gave a

table depicting the performance of different MILP formulations based on these two

instance indicators, as shown in table 7.

Table 7. Synthesis of experiments from Kone et al. (2011)

48

[46] concluded that when a MILP is used to solve an RCPSP the following formulation

should be preferred:

1) DDT formulation if the PR is low.

2) Flow-based continuous-time formulation (FCT) or OOE formulation if the PR and

DR are high

3) OOE formulation if PR is high and DR is low

3.7 Characteristics of NSWPP instances

The NSWPP instances are low/medium in network complexity and medium/high in

resource constrainedness. Therefore, the DR can vary between low and high based on the

instance under consideration. Upon analysis of the NSWPP data, it was observed that the

maximum processing time for an WP during the NSWPP is 20 days, which can be

considered as low in terms of process range. But the process range will be high if the same

were to be considered in hours. Thus, it is necessary to perform tests on instances

resembling the NSWPP for all combinations of DR and PR to determine the best suited

MILP formulation. The following section discusses the test designed to select the most

suited MILP formulation for scheduling activities in the NSWPP.

49

Chapter 4: Research Methodology and

Preliminary Experiments

This chapter details the research procedure followed for developing the matheuristic

model. It includes information about the Dal-Randomizer [19] that helps to generate

instances resembling the NSWPP project, selection of the best MILP formulation type for

solving the NSWPP instances, development of the objective function, and development of

the solution scoring criteria to evaluate the solutions.

4.1 Dal-Randomizer

When any new solution method is developed for RCPSP, the general practice is to test it

on benchmark instances from the Project Scheduling Problem Library (PSPLIB). The

PSPLIB instances were not used in this study for the following reasons:

1) PSPLIB instances have a highly interconnected network structure, as seen in Figure 5,

which makes it difficult to distinguish between work packages and activities.

2) PSPLIB instances do not have priorities for activities. Even if we were to assign

priorities to the activities for the purpose of experimentation, the connectedness of the

network would still make the instance precedence-dominant rather than priority-dominant.

3) PSPLIB instances use a maximum of 4 types of resources in all instances, while the

NSWPP consists of 40-60 resource types.

4) PSPLIB instances have low resource constrainedness, while the NSWPP instances have

medium-high resource constrainedness.

50

In addition, the schedule is prepared on the work package level rather than on activity level

to reduce the time required to input the data into the system [20]. Since the contractor and

RFc staff working on the NSWPP projects are well experienced, they do not need the

schedule to guide them on which activity to perform and in which order. Therefore, the

project leader does not have to schedule on activity level with all the precedence

information [1], [20].

To overcome the limitations of PSPLIB instances, the Dal-Randomizer (created by [19])

was used to generate instances that closely resemble the actual NSWPP. The randomizer

is based on a fictitious ship with 51 types of resources, of which 40 are spatial resources,

and the remaining 11 represent resources like the crane, jetty spaces, FMF crew, Thales

crew, etc.

Figure 12. Representation of fictitious ship used in Dal-Randomizer

It uses a random number generator to create unique NSWPP types instances whose network

structure is similar to that seen on the work package level, as shown in Figure 53 in

appendix 1. Every node generated by the Dal-randomizer is regarded as an “activity” in

this paper. The following gives a brief description of the design of the Dal-Randomizer

(Dal-R):

51

• Instances with the number of activities ranging between 0-500 are randomly

generated.

• 1 to 4 activities are consolidated into a set with a finish to start precedence

relationship, as shown in figure 6. For every set generated: 40% have one activity

in them, 30% have two activities in them, 20% have three activities in them, and

10% have four activities.

• Every set is assigned with a priority number ranging between 1 to 3, with 1

representing a high priority activity and 3 representing a low priority activity. The

activities within the set inherit the same priority number. 50% of the sets are

assigned priority – 1, 30% of the sets are assigned priority – 2, and 20% of the sets

are assigned priority – 3.

• Similar percentage metrics are used to assign resources for the activities.

The developer decided these percentage metrics through his experience working in

NSWPP projects and analyzing the data provided by the FMFCS. The Dal-R helps to build

instances that capture the important aspects of the NSWPP projects and helps to

select/develop an efficient solution method to tackle the real-world problem.

4.2 Selection of the formulation type for the NSWPP

To select the most efficient MILP formulation type for scheduling activities in the NSWPP

with makespan minimization, tests were performed on multiple formulation types. The

time-indexed formulations (DT and DDT) and event-based formulation (OOE) were used,

and their computational times were compared to select the best performing formulation.

Based on the results in [46] (See Table 7), the event-based formulation is, in theory, capable

of performing well on classical RCPSP. Thus, it is included in this test to find out how it

52

performs on the NSWPP. 10 instances were considered for the initial experimentation,

including the preliminary instance shared by Ecole Polytechnique (Figure 52 in appendix

1) and instances generated by the Dal-Randomizer (Figure 53 in appendix 1), to analyze

the performance of these formulations for all possible combinations of DR and PR

pertaining to NSWPP. All the experiments were conducted on Acer Aspire S7 Ultrabook

powered by Intel®Core™ i5-4200 CPU @ 1.60GHz and 8GB DDR3 RAM. The MILP

formulation was coded in Gusek/GLPK. The instance data was converted into a readable

file using Microsoft Excel VBA and fed into Gusek to generate the LP file, which was later

solved using Gurobi 8.1. The maximum time limit was set to 600 seconds (10 minutes),

and the MIP Gap was set to 0%.

From Table 8, it is evident that the performance of DT and DDT formulations are in

accordance with the table proposed by [46]. The OOE, however, did not perform as

expected. Though [46] suggested using the OOE formulation for solving highly cumulative

instances and instances with high PR, it performed in accordance with the results in Table

7 only when the instance size was small. The formulation did not solve to optimality even

after 600s when the number of activities was increased to 30. [4] showed that OOE fails to

solve an instance with 32 activities even after 3600s. The last line in Table 8 ranks the

formulations based on the computation speed and the MIP gap from best to worst. Since

the results were promising in the case of time-indexed formulation, it was considered for

further testing and analysis.

53

Table 8. Computation time comparison for different MILP formulations tested on NSWPP instances

4.3 The Priority-Duration formulation (PD)

As discussed earlier in section 2.5, the NSWPP is a priority dominant project. Through

interviews with the project leaders and schedulers at Thales and FMFCS, it was found that

it is desirable to schedule all the high priority activities first and as early as possible [1],

[20]. They mentioned the contingencies in the NSWPP and emphasized that by scheduling

the high priority activities at its earliest possible time, it will allow them to finish all the

mission-critical activities without having to go overboard with the project makespan.

Therefore, rather than minimizing the makespan, the objective function from the time-

indexed formulation was modified to minimize the total weighted start time of the project

while scheduling all the high priority activities before the low priority ones and for

activities within the same priority, the ones with a longer duration are scheduled before the

shorter ones

Minimize 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

 (𝜀 + 𝐷𝑖)
𝛼 𝑡 (29)

Where 𝑥𝑖,𝑡 = {
1, if activity 𝑖 starts at time 𝑡
0, otherwise

54

 𝑝𝑖: Priority of activity i

 𝐷𝑖: Duration of activity i

 𝜃: Weight parameter used to schedule higher priority activities earlier than

lower priority activities, respectively in the objective function (𝜃 > 0).

 𝛼: Parameter used to ensure that the longer duration activities are scheduled

before the shorter ones for activities within the same priority (𝛼 > 1).

 ε: Parameter of very small positive value to account for milestones with no

duration (𝜀 ≥ 0).

The weight 𝜃 increases the objective function coefficient value for priority-1 activities

more than that of priority 2 and 3 activities starting at the same time period and ensures

that they are scheduled first. In the remainder of this thesis, 𝜃 is set to 5 by default. The

reason for 𝜃 being equal to 5 has to do with Gurobi’s objective function co-efficient ratio

precision limitation which is discussed in the next section.

The weight 𝛼 acts as a tiebreaker and ensures that the longer duration activities get

scheduled before the shorter duration ones for activities with the same priority. When the

activities under consideration are of the same priority, if 𝛼 is set to 1, there are high

possibilities for different sequences of activities to yield the same objective function. This

makes the process of distinguishing between a good and a lousy schedule difficult. For

example, let’s consider the two alternative schedules with 3 priority-1 activities, as shown

in Figure 13. If 𝛼 = 1, then both schedules give the same objective function value while it

is evident that schedule 1 is better than schedule 2. Without loss of generality and for ease

of argument, we use ε=0 to calculate the objective function in both cases.

55

Figure 13. Representation of a good and a bad schedule

Schedule 1: 𝑍 = (6 × 0) + (3 × 6) + (1 × 9) = 27

Schedule 2: 𝑍 = (1 × 0) + (3 × 1) + (6 × 4) = 27

If 𝛼 > 1, say 1.1, schedule 1 gets a lower objective function value than schedule 2

Schedule 1: 𝑍 = (61.1 × 0) + (31.1 × 6) + (11.1 × 9) = 29.09

Schedule 2: 𝑍 = (11.1 × 0) + (31.1 × 1) + (61.1 × 4) = 32.05

Therefore, when 𝛼 > 1, it helps to break the tie and obtain a better schedule where the

longer duration activities start before the shorter duration ones. In the remainder of this

thesis, 𝛼 is set to 1.1 by default.

4.4 Gurobi Numerical Issues

The values of 𝜃 and 𝛼 plays an important role while solving the model using Gurobi. The

algorithms used in Gurobi are sensitive to the numerical values encountered during

optimization, and the software can produce erroneous results in the presence of numerical

issues [87]. To prevent this, certain parameters are to be dealt with care. The issue that had

a prominent effect on the solution quality was the objective function coefficient ratio.

During the initial phase of testing, the value of 𝜃 was set to 10 and that of 𝛼 was set to 2.

Although these values produced a large difference in the objective function coefficient

56

value between activities of different priority levels which in turn helps to solve the instance

quickly, it caused the objective function coefficient ratio to be very large.

For example, let’s consider a project with a time horizon of 200 days with a priority-3

activity of duration 1 day, and a priority-1 activity with a duration of 20 days. Furthermore,

the priority-3 activity has a time window (i.e., range of start time ES–LS) of (1-199) days.

The priority-1 activity has a time window of (1-180) days. Then, the objective function

coefficients (i.e.,
1

𝑝𝑖
10 (𝜀 + 𝐷𝑖)

2𝑡) will be as follows for both cases:

𝑐1 =
1

110
 × 202 × 180 = 72000 (maximum value)

𝑐3 =
1

310
 × 12 × 1 = 1.694 × 10−5 (minimum value)

Objective function Coefficient ratio =
72000

1.694 × 10−5
= 4.25 × 109

Because of such a large ratio, Gurobi scheduled the activities very poorly. In some cases,

the priority-3 activities were not at all optimized. They were scheduled at a time period

equal to their LS time.

Given that the objective function coefficient ratio is recommended to be less than 109, the

lesser the better, to eliminate the possibility of erroneous solution [87], the values of 𝜃 and

𝛼 were set to 5 and 1.1 respectively, which resulted in the improvement of the objective

function coefficient ratio (1.1804 × 106 ≪ 109).

In addition to the above-mentioned issue, Gurobi can sometimes return non-integer values

for integer variables, especially for a MILP model. Thus, 0.9999934543 can be returned

57

instead of 1. This happens because the integer feasibility tolerance limit is set to 1𝐸−5 by

default [88]. Since a value like 0.9999934543 falls within default tolerance value (1 -

0.9999934543= 6.5𝐸−6), Gurobi considers it to be feasible [88]. This can be prevented

by appropriately tightening the tolerance [88]. The integer feasibility tolerance in Gurobi

ranges between 1𝐸−9 to 1𝐸−1 and during experimentation the value was set to 1𝐸−7 to

prevent erroneous values. However, the user must be careful not to tighten the value too

much as it can significantly increase the solution time [88].

4.5 Solution Comparison Criteria

The objective function in the PD formulation does not aim to minimize the makespan. It

minimizes the total weighted start time of the project while scheduling all the high priority

activities before the low priority ones and for activities within the same priority, the ones

with a longer duration are scheduled before the shorter ones. Since makespan cannot be

used as an effective metric to differentiate between a good schedule and a bad schedule, a

new metric called the average priority-1 duration weighted centroid (DWC) is used. This

measure was developed by [19] and is defined as follows.

Average Priority − 1 Duration Weighted Centroid =
𝛴𝑖 ∈ℙ1 [

(𝑥𝑠𝑡𝑎𝑟𝑡+𝑥𝑓𝑖𝑛𝑖𝑠ℎ) ×𝐷𝑖
2

]

𝑛ℙ1
 (30)

Where ℙ1 is the set containing priority-1 activities and 𝑛ℙ1is the number of priority-1

activities.

58

Figure 14. Differentiating a good schedule from a bad schedule using Average Priority-1 Duration Weighted Centroid

The schedules shown in Figure 14 are considered. If makespan is used as a performance

measure, all three schedules will end up having the same value of 16, although it is evident

that schedule 3 is undesirable. The average priority-1 DWC clearly distinguishes between

a good and a bad schedule by considering only the priority-1 activities in its formula, thus

eliminating any bias introduced by lower priority activities. Smaller the value of average

priority-1 DWC, the better the schedule because a smaller value represents a front-loaded

schedule with all the priority-1 activities scheduled at the earliest.

4.6 Comparative test between Discrete-Time and Disaggregated Discrete-

Time formulations

There are two variants of time-indexed formulation: Discrete-Time and Disaggregated

Discrete-Time. They differ only in the way the precedence constraint is formulated as

discussed in section 3.3. To decide between DT and DDT, tests were conducted on a total

of 50 random instances generated on the Dal-Randomizer to measure the computational

speed of both formulations. Table 9 shows the characteristics of the instances.

59

Table 9. Characteristics of the Dal-R 100 test instances

The computation times for solving each instance using DT and DDT formulations were

recorded, and a paired t-test was used to determine the best by measuring the mean

difference between the two formulations with the assumption that the relative difference

between the solutions (solve time, makespan etc.) for the same instance is normally

distributed.

A t-test was used since the sample size selected was not too large (i.e., <100) [89]. A

confidence interval of 90%, i.e., an alpha value of 0.10 was used for all the t-tests. A 90%

CI was selected instead of 95% CI or 99% CI as the chosen sample size was just 50. To be

95% or 99% definite about the results, the number of test samples need to be high (more

than 500) so that a strong result can be obtained with a very small margin of error [90].

60

4.6.1 Computation Time Comparison

Figure 15. Computation time comparison between DT and DDT formulation

The test result shows that DT formulation performs 57% ± 4.4% faster than the DDT

formulation at 90% CI.

The testing concluded that the DT formulation exhibits superior computational

performance over DDT for solving NSWPP instances. Thus, the constraints from the DT

formulation were incorporated into the priority-duration formulation, as shown in the

following.

Minimize 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

 (𝜀 + 𝐷𝑖)
𝛼 𝑡 (31)

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥ 𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖 ∀(𝑖, 𝑗) ∈ 𝑃 (32)

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤ 𝐵𝑘 ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅 (33)

61

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

= 1 ∀ 𝑖 ∈ 𝐴 (34)

𝑥𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻 (35)

4.7 Comparison between minimization and maximization models

In this thesis, the developed MILP is a minimization model. A maximization formulation

with similar constraints was proposed by [19], as shown in equation (36), to deal with the

NSWPP.

Maximize 𝑍 =
100 𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

(𝜀1 +𝐷𝑖)
𝛼(1 − 𝜀2𝑡) (36)

The validity of both models was analyzed through experimentation on instances shown in

Table 9 with the condition that both models should give similar solutions, and if the

solution from the minimization model were to be plugged into the maximization model,

the objective function value should equal that of the maximization model.

The experimental results showed that both the formulations produce similar solutions, as

depicted in Figures 16 and 17. Thus, proving that both formulations are suitable for

scheduling activities in NSWPP.

62

Figure 16. Average priority-1 DWC comparison between minimization and maximization model

Figure 17. Makespan comparison between minimization and maximization model

During the tests, it was observed that the minimization model performed faster than the

maximization model. To analyze this further, the t-test was used on the solutions times for

both models. From Figure 18, the test showed that the minimization model performs 12.9%

± 7.1% faster than the maximization model at 90% CI. Since the minimization model

proved to be computationally faster, it was used in the remaining experimentations.

63

Figure 18. Computation time comparison between minimization and maximization model

4.8 Computation time growth for NSWPP

It has been established that RCPSP is an NP-hard problem, and thus it exhibits an

exponential increase in computation time with an increase in the instance size. NSWPP

being a variant of RCPSP also exhibits similar behaviour. To show this, an experiment was

conducted using the PD formulation on seven NSWPP instances generated on the Dal-

Randomizer with the number of activities ranging between 50 to 200 and increasing in

increments of 25. Table 10 shows the characteristics of the instances.

Table 10. Characteristics of the Dal-R test instances used to show the growth in computation time for NSWPP

64

From Figure 19, the computation time grows exponentially as the size of the problem

increases. The instance with 200 activities ran for more than 7 hours without solving to

optimality when solved using the regular optimization method wherein the entire instance

is solved at once.

To reap the benefits of the exact solution method to solve large NSWPP projects, it is

important to make sure that the instances are solved within a short time frame irrespective

of its size.

Figure 19. Computation time growth with an increase in instance size for regular optimization

The following chapter discusses the development of matheuristic methods to schedule

large NSWPP problems efficiently.

65

Chapter 5: Development of an efficient

matheuristic approach and numerical

experiments

In the course of developing an efficient matheuristic approach, different decomposition

strategies were examined sequentially. The results from the primary experimentation were

analyzed to understand the merits and demerits of the opted strategy, and this knowledge

was used to set-up subsequent experiments to improve the matheuristic. This chapter

details different decomposition strategies used for the matheuristic approach and their

results

5.1 Multi-step Optimization Version 1

The developed multi-step optimization (MSO-1) is a matheuristic technique where a large

instance is solved in multiple iterations by decomposing its list of activities into subgroups

and then iteratively optimizing each subgroup using the priority-duration formulation.

Iteration 1 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ ℙ1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (37)

Iteration 2 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ ℙ2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (38)

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥ 𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖 ∀(𝑖, 𝑗) ∈ 𝑃 (39)

66

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤ 𝐵𝑘 ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅 (40)

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

= 1 ∀ 𝑖 ∈ 𝐴 (41)

𝑥𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻 (42)

Where, A ⊃ ℙ1, ℙ2

 ℙ1 is the subgroup consisting of only priority-1 activities.

 ℙ2 is the subgroup consisting of only priority 2 and 3 activities.

Unlike existing matheuristic approaches for RCPSP, the proposed approach does not create

subproblems. It operates on the entire problem during every iteration but only considers

the activities of the “in-process” subgroup in the objective function. Therefore, only the

activities considered in the objective function will be optimized. The remaining activities

get scheduled in any timeslot within their time window that satisfies the precedence and

resource constraints. The following describes the steps required to implement MSO-1 with

the help of the arbitrary instance generated on the Dal-Randomizer as shown in Figure 20.

67

Figure 20. The network structure of the arbitrary instance with 20 activities

Figure 21. Activity decomposition after sorting the arbitrary instance with 20 activities

68

Figure 22. Representation of the change in data after the first iterations in the MSO-1

Step 1: Sort the activities in an ascending order based on their priority numbers and create

two subgroups with the 1st subgroup (ℙ1) consisting of only priority-1 activities

and the 2nd subgroup (ℙ2) consisting of priority-2 and priority-3 activities, as shown

in Figure 21.

Step 2: For the first iteration, consider only the activities of the 1st subgroup (ℙ1) in the

objective function and optimize it. At the end of the first iteration, fix the time

window (i.e., ES time and LS time) of the activities in ℙ1 to their start times from

the solution, as shown in Figure 22. Once the time window of the optimized

activities gets fixed, it will remain fixed until the entire instance is solved.

Step 3: For the second iteration, consider only the activities from the 2nd subgroup (ℙ2) in

the objective function and optimize it.

69

Decomposing the activities helps to reduce the computational difficulty and solve the given

problem quickly. Fixing the time-window of the activities in ℙ1 to their start time values

from the solution prevents any changes to the schedule during the subsequent iterations.

Figure 23 shows the improvement in computational time for using MSO-1 over the regular

optimization on the instances shown in Table 10. While the regular optimization ran for

over 7 hours without generating an optimal solution for an instance with 200 activities, the

MSO-1 solved the same instance in under 10 minutes.

Figure 23. Computation time comparison between Regular Optimization and MSO-1 with an increase in instance size

It should be noted that for computation time comparisons, only the time taken for Gurobi

to solve the instance was considered. The pre-processing time taken in-between iterations

to update the datasheet and to generate the new LP file was not considered because the pre-

processing time can vary depending on the software being used. The author used MS Excel

VBA to interact with multiple software such as – notepad, excel, Gusek, and Gurobi. While

data updating in-between iterations was done in 5s – 15s, the generation of the LP file took

the longest and it grew with an increase in the instance size (between 20 seconds to 5

70

minutes for the number of activities ranging between 100 to 500). The interaction between

multiple software and the pre-processing time can be reduced considerably or eliminated

with the use of efficient software having a powerful in-built solver to optimize the problem

directly without having to generate an LP file.

5.1.1 Multi-step Optimization-1 vs. Regular Optimization

To analyze the efficiency and solution quality, MSO-1 was compared with the regular

optimization technique. Both approaches were tested on 50 instances generated on the Dal-

Randomizer. The details of the test instances are shown in Table 9.

5.1.1.1 Computation time comparison

Figure 24. Computation time comparison between MSO-1 and Regular Optimization

The tests showed that MSO-1 is 25.7% ± 7.2% faster than the regular optimization at 90%

CI, which is a significant improvement.

71

5.1.1.2 Average Priority-1 DWC comparison

Figure 25. Average priority-1 DWC comparison between MSO-1 and Regular Optimization

The MSO-1 gives identical average priority-1 DWC value to that of regular optimization

at 90% CI. Since the priority-1 activities are weighted so greatly in the PD formulation,

MSO-1 gives similar DWC values as regular optimization.

5.1.1.3 Makespan comparison

Figure 26. Makespan comparison between MSO-1 and Regular Optimization

72

MSO-1 gives 0.31% ± 0.6% longer makespan than regular optimization at 90% CI which

is not statistically significant. Therefore, MSO-1 gives solutions identical to that of regular

optimization while performing 25% faster.

Although there are advantages of using MSO-1, it comes with certain drawbacks. This

technique is not beneficial if the instance under consideration consists of a large number of

activities belonging to the same priority. From the experiment discussed in this section, if

all the 100 activities were of the same priority number, say priority-1, then creating the

activity subgroups from the large instances would not be possible using the MSO-1

decomposition technique. As a result, MSO-1 would perform similarly to the regular

optimization and exhibit similarly large computational time. Thus, Multi-step optimization

version 2 presented in the next section was developed to overcome this drawback.

5.2 Multi-step Optimization Version 2

This version divides the activities into n subgroups, A ⊃ 𝑆1, 𝑆2,…, 𝑆𝑛, that are iteratively

optimized using the priority-duration formulation. Thus, the objective functions for each

iteration are:

Iteration 1 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (43)

Iteration 2 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (44)

 ………..

73

Iteration 𝑛 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆𝑛

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (45)

The constraints remain the same as before.

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥ 𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖 ∀(𝑖, 𝑗) ∈ 𝑃 (46)

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤ 𝐵𝑘 ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅 (47)

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

= 1 ∀ 𝑖 ∈ 𝐴 (48)

𝑥𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻 (49)

Similar to MSO-1, MSO-2 also operates on the entire problem during every iteration by

only optimizing the activities of the “in-process” subgroup. The only difference between

the two versions is the sorting technique used to create the subgroups. The following

describes the steps required to implement MSO-2 with the help of the arbitrary instance

shown in Figure 20.

74

Figure 27. Activity decomposition after applying three-level sorting to the arbitrary instance with 20 activities

Figure 28. Representation of the change in data after the first iterations in the MSO-2

Step 1: Sort the activities on three levels. The first level by priority number (smallest to

largest), the second level by their ES time (shortest to longest), and the third level

by their duration (longest to shortest). After sorting, create subgroups of the desired

size, as shown in Figure 27.

75

 Step 2: Start the first iteration by considering only the activities of the 1st subgroup (𝑆1)

in the objective function and optimize it. At the end of the first iteration, fix the

time window (i.e., ES time and LS time) of the activities in 𝑆1 to their start times

from the solution, as shown in Figure 28. Once the time window of the optimized

activities gets fixed, it will remain fixed until the entire instance is solved.

Step 3: Start the second iteration by considering only the activities of the 2nd subgroup (𝑆2)

in the objective function and optimize it. At the end of the second iteration, fix the

time window (i.e., ES time and LS time) of the activities in 𝑆2 to their start times

from the solution. Once the time window of the optimized activities gets fixed, it

will remain fixed until the entire instance is solved.

Step 4: Repeat the steps by considering the next subgroup and follow the same until all the

subgroups are optimized.

Decomposing the activities using the three-level sorting technique is advantageous because

it helps to create ideal subgroups that mimic the objective function of the PD formulation

by ensuring that the priority-1 activities with the shortest ES time and the longest duration

are scheduled first. Also, since the time window of the activities in the previously optimized

subgroup gets fixed at the end of each iteration, as shown in Figure 28, it is important to

use three-level sorting as it ensures that the activities with lower priority or shorter duration

are not present in the earlier subgroups. If not, the resulting schedule could be far away

from the optimum.

Determining the size of the subgroup is an open-problem. For testing MSO-2 on NSWPP

instances, the activities were arbitrarily broken into subgroups of size 50. The size of the

76

subgroup is determined such that it is small enough to be solved easily in a reasonable

amount of time using a MILP model and, at the same time, large enough to be able to

explore relevant resource allocations.

No time limit was imposed for the execution of the MILP model, as interrupting the

optimization process would decrease the probability of getting near the optimum solution.

Figure 29 shows the computation times of MSO-1, MSO-2 and the regular optimization

tested on the instances shown in Table 10. While the regular optimization ran for over 7

hours without generating an optimal solution for an instance with 200 activities, MSO-2

solved the same instance in under 4 minutes while MSO-1 took a little under 10 minutes.

Figure 29. Computation times comparison between Regular Optimization, MSO-1 and MSO-2

5.2.1 Multi-step Optimization-2 vs. Regular Optimization

To analyze the efficiency and solution quality, MSO-2 was compared with the regular

optimization technique. Both approaches were tested on 50 instances generated on the Dal-

Randomizer. The details of the test instances are shown in Table 9.

77

5.2.1.1 Computation time comparison

Figure 30. Computation time comparison between MSO-2 and Regular Optimization

The tests showed that MSO-2 is 21.8% ± 8.5% faster than the regular optimization at 90%

CI, which is a significant improvement.

5.2.1.2 Average Priority-1 DWC comparison

Figure 31. Average Priority-1 DWC comparison between MSO-2 and Regular Optimization

78

The MSO-2 gives 0.39% ± 0.2% larger average priority-1 DWC value than regular

optimization at 90% CI. The result shows that the solution obtained from the regular

optimization is better when compared to the matheuristic solution and this is expected

because a solution obtained from a pure optimization technique is always optimum.

However, the interesting fact is that MSO-2 gives a solution that is just 0.39% away from

the optimum while performing 21.8% faster. Therefore, a deviation of such a small

magnitude would be considered negligible and “forgivable” in a practical setting.

5.2.1.3 Makespan comparison

Figure 32. Makespan comparison between MSO-2 and Regular Optimization

MSO-2 gives 0.15% ± 0.2% longer makespan than regular optimization at 90% CI. Again,

MSO-2, on average, gives a makespan that is just 0.15% away from the optimal value while

obtaining the result 21.8% faster. This small deviation would again be negligible in a

practical scenario.

79

From the results discussed above, it is evident that the multi-step optimization v2 can solve

a large NSWPP in a much shorter time while generating results that are extremely close to

the optimum.

5.3 Multi-step Optimization Version 3

A third version of the proposed multi-step optimization matheuristic MSO-3 was

developed by combining the subproblem approach and MSO-2 with the aim of improving

solution time for solving large NSWPP instances. Instead of considering the entire instance

during every iteration, as in MSO-2, subproblems were created out of the decomposed

activities and then they are solved iteratively using the priority-duration formulation.

In MSO-3, the size of the subproblem increases with every iteration as shown in Figure 33

(i.e., Iteration i optimizes subproblem SPi made of i subgroups S1,..,Sn).

Here, A ⊃ 𝑆1, 𝑆2,…, 𝑆𝑛

Iteration 1 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (50)

Iteration 2 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (51)

 ………..

Iteration 𝑛 ∶ Min 𝑍 =
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP𝑛

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (52)

The constraints remain the same as before.

80

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥ 𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖 ∀(𝑖, 𝑗) ∈ 𝑃 = SP𝑛 (53)

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤ 𝐵𝑘 ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅 (54)

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

= 1 ∀ 𝑖 ∈ 𝐴 (55)

𝑥𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻 (56)

The following describes the steps required to implement MSO-3 with the help of the

arbitrary instance shown in Figure 20.

Figure 33. Representation of MSO-3

81

Step 1: Sort the activities on three levels (priority, ES, & duration) as in MSO-2 and create

subgroups of the desired size. For experimentations with MSO-3, the size of the

subgroup is maintained at 50, but other sizes can be used.

Step 2: Create subproblem-1 with information on the precedence pairs, processing

duration, resource availability, and resource demand for the activities belonging to

subgroup-1.

Step 3: Optimize subproblem-1 and at the end of the first iteration, fix the time window of

the activities in subproblem-1 to their start times from the solution.

Step 4: Create the next subproblem (i.e., subproblem-2) with information on the precedence

pairs, processing duration, resource availability, and resource demand for the

activities belonging to subgroup-1 and subgroup-2. Since the time window of the

activities in subgroup-1 gets fixed, it will not add to the computational time of

subproblem-2. Also, the presence of subgroup-1 ensures that when subgroup-2 is

being optimized, the precedence relationships are not violated.

Step 5: Optimize subproblem-2 and, at the end of the second iteration, fix the time window

of the activities in subproblem-2 to their start times from the solution.

Step 6: Repeat Steps 4–5 above for each of the remaining subgroups adding one subgroup

at a time.

It is essential to add the activities from the previous subproblem when a new subproblem

is created in order to satisfy the precedence constraints. When the activities are sorted on

three levels and decomposed, as shown in Figure 27, the predecessor of an activity need

82

not be present in the same subgroup. If we create subproblems by just using every single

subgroup, then we get the subproblems, as shown in Figure 34, where it is evident that the

activity-3 is in the subproblem-1 and its successors, i.e., activities 4,5 and 6 are present in

subproblem-2. Similarly, activity-19 is present in subproblem-1 and its successor, activity-

20, is in subproblem-3. In such a situation, the precedence relationship can be violated, and

the succeeding activity can start before the start/completion of its predecessor if the

resources are available.

Figure 34. The network structure of the subproblems when created using only individual subgroups

The main difference between MSO-2 and MSO-3 is that while MSO-2 operates on the

entire instance during every iteration by only optimizing the activities of the “in-process”

subgroup, MSO-3 optimizes individual subgroups during every iteration by including the

activities from the previously optimized subgroup.

Consider the arbitrary instance with twenty activities, as shown in Figure 20. The activities

are sorted on three-level and decomposed into 4 subgroups with 5 activities each, as shown

in Figure 27.

83

When using MSO-2, only the 5 activities from subgroup-1 will be considered in the

objective function and optimized during the first iteration. Although the remaining 15

activities are not considered in the objective function, the solver still roughly schedules the

remaining activities in any timeslot within their time window that satisfies the precedence

and resource constraints. This rough scheduling of the remaining activities adds to the

computation time during initial iterations. As a result, the total solve time increases. MSO-

3 eliminates this process by only optimizing individual subgroups at a time. This means,

only the 5 activities from subgroup-1 will be considered in the subproblem-1 and it gets

optimized during the first iteration. For the second iteration, although the activities from

the previously optimized subgroup (subgroup -1) is included while solving the subproblem-

2, the computation time to solve the subproblem-2 will not be affected since the time

window of the first 5 activities will be fixed to their start time values from the solution as

shown in Figure 35. Therefore, no matter how large the problem, MSO-3 solves individual

subgroups during every iteration and, in turn, solves the entire instance quickly.

Figure 35. Representation of the change in data after the first iterations in the MSO-3

84

Figure 36 shows the improvement in computational time for using MSO-3 over MSO-2 on

the instances shown in Table 10. While MSO-2 took around 4 minutes to solve an instance

with 200 activities, MSO-3 solved the same instance in under 0.5 minutes.

Figure 36. Computation time comparison between MSO-3 and MSO-2

To further analyze the speed and solution quality, MSO-3 was compared with regular

optimization and MSO-2. All three approaches were tested on 50 instances generated on

the Dal-Randomizer. The details of the test instances are shown in Table 9.

85

5.3.1 Computation time comparison

Figure 37. Computation time comparison between MSO-3 and Regular Optimization

The test showed that MSO-3 is 59% ± 4% faster than the regular optimization at 90% CI,

which is a significant improvement.

Figure 38. Computation time comparison between MSO-3 and MSO-2

MSO-3 is 45% ± 3.3% faster than MSO-2 at 90% CI, which is a significant improvement.

86

5.3.2 Average Priority-1 DWC and Makespan comparison

The average priority-1 DWC and makespan values produced by MSO-3 are similar to those

obtained for MSO-2, as presented in Figures 31 and 32. Therefore, MSO-3 gives the

average priority-1 DWC that is just 0.39% away from the optimal value and the makespan

that is only 0.15% away from the optimal value while performing 59% faster than the

regular optimization. Thus, by combining the benefits of the subproblem approach and

MSO-2, the proposed matheuristic was made much more efficient for tackling large

NSWPP instances.

5.4 Influence of network indicator on the computation time of MSO-3

This section discusses the influence of network indicators on the computational effort

required to solve an instance using MSO-3. Table 9 represents the network characteristics

of the Dal-Randomizer instances used for experimentation. When using MSO-3, the

network indicator value changes during every iteration because the main problem is

decomposed into subproblems and these subproblems have different network indicators,

as shown in Figure 39.

For example, consider an instance with 100 activities being solved using MSO-3. Let’s

assume that the size of the subgroup is 50. When the main problem is sorted and

decomposed, it gives 2 subgroups with 50 activities each. The 1st subproblem will optimize

the activities in subgroup-1. The 2nd subproblem consists on activities from subgroups 1

and 2. Though, we include the activities from the 1st subproblem when solving the 2nd

subproblem, it does not have any influence over the computational effort to solve the 2nd

subproblem as the time window of the 1st subproblem gets fixed at the end of the iteration.

The only reason why we include the activities from the 1st subproblem is to ensure that the

87

precedence constraints are satisfied. So technically, only 50 activities are optimized during

every iteration.

Figure 39. Changes in network characteristics when the main problem is decomposed into subproblems in MSO-3

For studying the influence of the network indicators on the computational speed, the values

of NC, RC and DR were calculated for every subproblem solved when experimenting on

the fifty Dal-R100 instances shown in Table 9 and later analyzed to understand the trend.

Figure 40. Influence of Resource Constrainedness on the computation time for MSO-3

From Figure 40, the average computation time shows an increasing trend with an increase

in the resource constrainedness value. The results are in accordance with the chart shared

by [82]. From Figure 11, the area between RC values ranging from 0.25 to 0.78 is called

the “NP-hard region” or the “phase transition region” where the complexity of an instance

increases and then drops which resembles a bell-curve pattern [82]. The computational

88

effort is the greatest when RC value is between 0.5 - 0.73. [82] also mentioned that though

the computational effort is greatest in the phase transition region (denoted as NP-hard

region in Figure 11), the instance need not be computationally difficult since the variance

is also high in that region [82]. This explains the rise and fall in computational time even

when RC value is within the “NP-hard region”. In addition, the network complexity (NC)

value also keeps changing during every iteration and it also has an influence over the

computational time.

Figure 41. Influence of Network Complexity on the computation time for MSO-3

From Figure 41, the average computation time shows a decreasing trend with an increase

in the network complexity value. A high network complexity value denotes a high number

of precedence pairs. If the number of precedence pair is high, then the computational effort

required would be less because of the smaller solution space. Since other contributing

factors, such as the RC value, keeps changing with every iteration, a rise in computational

time could be seen even when the NC value is high.

89

Figure 42. Influence of Disjunction Ratio on the computation time for MSO-3

From Figure 42, the average computational time shows a decreasing trend with an increase

in the DR value. Since DR is the product of RC and NC and because of high variance of

RC on its influence over the solution time, a rise in computational time could be seen even

when the DR value is high.

5.5 SSGS vs. MSO-3

The results from experimentation on MSO-3 shows that it is capable of producing near-

optimal solution for NSWPP instances. Since it is still a heuristic, it is important to compare

MSO-3 with existing state-of-the-art heuristics to study its benefits.

The most commonly used heuristic for solving RCPSP is the serial schedule generation

scheme (SSGS). The SSGS is a scheduling algorithm that makes use of the activity

increment approach to schedule each project activity at the earliest possible time within

their precedence and resource constraints [91]. The quality of the schedule generated by

the SSGS depends on the sequence of activity in the given data because it moves along the

list from the top to the bottom while selecting and scheduling the next activity in the list at

every step [91].

90

5.5.1 Experiment 1

In this experiment, a comparative test for average priority-1 DWC and makespan was

conducted between SSGS and MSO-3 on instances from the Dal-Randomizer. The test was

conducted on 5 sets of 10 instances each, with the number of activities in each set

increasing in increments of 100 (set 1 consists of 10 instances with 100 activities, set 2

consists of 10 instances with 200 activities, etc.) The details of the test instances are shown

in Table 11.

Table 11. Characteristics of test instances used for the SSGS and MSO-3 comparison

Three-level sorting, as in the case of MSO-3, was employed on the activities before solving

each instance in SSGS. The same instances were also solved using MSO-3 and resulting

solutions were compared using a t-test. For solving the instances with MSO-3, the activities

were broken into subgroups of 50.

91

5.5.1.1 Average Priority-1 DWC comparison

Figure 43. Average Priority-1 DWC comparison between SSGS and MSO-3

Table 12. Percentage mean difference and margin of error for Average Priority-1 DWC between SSGS and MSO-3

From Figure 43, it is evident that the average priority-1 DWC value given by the MSO-3

is always statistically better when compared to SSGS irrespective of the instance size. This

is because the MILP model searches the solution space in-depth when compared to the

heuristics.

Table 12 reads as follows: For instances with 100 activities, the SSGS gives 8.6% ± 2%

larger average priority-1 DWC value when compared to MSO-3 at 90% CI.

92

5.5.1.2 Makespan comparison

Figure 44. Makespan comparison between SSGS and MSO-3

Table 13. Percentage mean difference and margin of error for makespan between SSGS and MSO-3

Table 14. Mean and Maximum difference in makespan between SSGS and MSO-3

Table 13 shows the percentage mean difference and margin of error for makespan between

SSGS and MSO-3. Though the results are not statistically significant in all cases, the SSGS,

on average, gives a longer makespan in comparison to MSO-3 irrespective of the instance

size, as shown in Table 14.

93

5.5.1.3 Computational Time for Multi-Step Optimization Version 3

The computational speed of a heuristic like SSGS is not surprising. The instances with 500

activities were solved in under 3 seconds with the SSGS. The interesting part was the speed

at which the MSO-3 was able to solve the same instances while generating better quality

solutions. From Figure 45, the instances with 500 activities were solved in under 35

seconds on average. This shows that the multi-step optimization can be used to schedule

large projects quickly.

Figure 45. The computation time for MSO-3

The project leaders and schedulers consider it acceptable to wait for 1-2 minutes for an

automatically generated schedule for a large NSWPP project [1], [20]. Therefore, even

though MSO-3 is not as fast as the SSGS, it is still beneficial as it will produce a solution

of better quality than the SSGS within the permissible time.

5.5.2 Experiment 2

This section explains the influence of the size of the subgroup on the computational speed

and solution quality for MSO-3. When using MSO-3, if the size of the subgroup is small,

then it leads to a poor quality solution where the higher priority activities will not be

94

effectively scheduled. If the subgroup is very large, then the quality of the solution will

improve, but the computational effort required to solve the problem increases significantly.

Figures 46 and 47 show that, as the size of the subgroup increases, the average priority-1

DWC value improves but at the cost of computational efficiency. The improvement is very

much prominent when the size of the problem is large.

Figure 46. Influence of subgroup size on Average Priority-1 DWC for MSO-3

Table 15. Percentage mean difference and margin of error for Average Priority-1 DWC for different subgroup sizes

95

Figure 47. Influence of the subgroup size on the computation time for MSO-3

Table 16. Average percentage increase in computation time for MSO-3 with an increase in subgroup size

The computational time for instances with 400 activities shows a more significant increase

than any other instances, even higher than the 500 activity instances when the subgroup

size is increased. The reason for this is firstly, due to small sample size, a high variance in

computation time is seen for 400 activity instances and secondly, the increase is because

of the characteristics of the subproblems. As mentioned in Section 5.4, the resource

constrainedness, the number of precedence pairs and other factors keep changing with

every iteration. So, even though we are optimizing only 50, 65 or 80 activities at a time,

the computational time can vary greatly.

96

Figure 48. Influence of subgroup size on the Makespan for MSO-3

Table 17. Percentage mean difference and margin of error for Makespan between different sized subgroups with an

increase in instance size

For the makespan, however, as the size of the subproblem increases, the makespan can

extend, reduce, or remain the same. Since reducing makespan is not our primary objective,

when the higher priority activities get scheduled at the earliest, the lower priority activities

get pushed a little further. From Table 17, though the makespan can get extended, the

changes are not significant because of high variability.

97

Since the goal in an NSWPP is to obtain a good quality solution quickly and be able to do

frequent rescheduling when required due to the high uncertainty in the naval environment,

subgroup size 50 was used for the experimentation as it offered a better speed/quality trade-

off.

5.5.3 Experiment 3

The last experiment uses Gurobi’s capability of accepting an initial solution to generate a

feasible incumbent objective function within a couple of seconds and then improve the

solution further to reach the optimum eventually. In this case, an initial solution for the

given instance generated using the SSGS is sent to Gurobi along with the LP file to be

solved. This method is labelled SSGS+optimizer.

In this experiment, the solution quality of SSGS+optimizer and MSO-3 were compared

after a time limit of 600 seconds. For testing, 18 Dal-Randomizer instances with an average

of 512 activities and 53 resource types were considered. The details of the test instances

are shown in Table 18. The network structure of instances used for this experiment was

similar to that shared by Thales, as shown in the Figure 49. Since these instances had a

higher network complexity, a larger subgroup of 150 activities was selected to experiment

with MSO-3, as it would be beneficial to get a near-optimal solution without overly

increasing the computational time. In addition, while testing MSO-3, a maximum time limit

of 300 seconds was enforced for every iteration.

98

Table 18. Characteristics of test instances used for comparing SSGS+Optimizer and MSO-3

Figure 49. The network structure of the Thales shared test instances

Figure 50. Average Priority-1 DWC comparison between MSO-3 and SSGS+Optimizer

99

Figure 51. Computation time comparison between MSO-3 and SSGS+Optimizer

The experimental results show that MSO-3 gives 7% ± 1.2% smaller priority-1 DWC value

when compared to SSGS+optimizer while performing 76% ± 6.5% faster at 90% CI. The

results show that even without an initial solution, the MSO-3 can perform very efficiently

and deliver a much better solution than the state-of-the-art heuristics.

100

Chapter 6: Conclusion and Future

Research
Generating the baseline schedule, managing the activities, and controlling the risks arising

from the NSWPP activities is a very onerous yet interesting venture. The industry-specific

network structure, priority constraints, space constraints, and operational constraints

witnessed in the NSWPP are an addition to the classic resource-constrained project

scheduling problem. Using heuristic algorithms and commercial software running on

heuristics to schedule such projects results in solutions that are generally far from the

optimal value. In a challenging environment such as the NSWPP, a heuristic would make

the project last longer by giving an overdrawn makespan.

The matheuristic method proposed in this paper helps to intelligently schedule the NSWPP

activities in a practical way that is mandated by the naval industry. The experimental results

show that the multi-step optimization method can schedule large RCPSP instances in a

short time frame while generating a near-optimal solution.

Finally, the comparative test between serial schedule generation scheme (SSGS) and multi-

step optimization shows that the latter provides a better-quality solution. For the makespan,

while the SSGS can produce shorter makespan than multi-step optimization at times, on

average, the multi-step optimization produces a shorter makespan than the SSGS.

Many potential areas for research were identified during the project, but only a few could

be explored due to time constraints. The following are potential areas where the

matheuristic can be extended.

101

The multi-step optimization could be extended to solve the multi-mode resource-

constrained NSWPP project where activities can be given an option to execute in a different

mode with each mode having a unique activity duration and resource demands.

Parallel to this research, [19] conducted research on rescheduling NSWPP projects using a

multi-mode RCPSP model to reduce the deviation days of delayed activities with regards

to the baseline schedule. It would be interesting to use multi-step optimization for

rescheduling the NSWPP. The single-mode multi-step optimization can be used to generate

an aggregated schedule for the entire project, which will act as a baseline. Later during the

project monitoring and control phase, the multi-mode multi-step optimization can be

integrated with Bertrand’s re-scheduling formulation to re-schedule a small group of

activities that will execute in the near future, say around 50. This approach could optimally

assign overtime to the activities that have the biggest impact on the baseline schedule and

prevents change to the start time of all the activities in the schedule.

The priority-duration formulation may be tested for varying resource availability. This is

an interesting topic under the RCPSP rescheduling policy. Not only does the varying

resource availability bear the tendency to break the baseline schedule, but there can also be

situations where it can help to improve the baseline schedule by planning the activities to

execute early due to an increase in resource availability.

102

Bibliography

[1] E. L. J. Bertrand, Interviewee, Interview with Royal Canadian Navy officer.

[Interview]. May 2019.

[2] J. MacLean, Interviewee, Interviewee, Interview with Thales Head ERP

Manager. [Interview]. May 2019.

[3] L. Bianco, A. Mingozzi, V. Maniezzo and S. Ricciardelli, "An Exact Algorithm

for the Resource Constrained Project Scheduling Problem Based on a New

Mathematical Formulation," Management Science, vol. 44, no. 5, pp. 714-729,

1998.

[4] E. Croteau, "An On-Event Based Model for Resource Constrained Scheduling of

Aircraft," Thesis, Dalhousie University, Halifax, Nova Scotia, 2015.

[5] J. Blazewicz, J. Lenstra and A. RinnooyKan, "Scheduling Subject to Resource

Constraints: Classification and Complexity," Discrete Applied Mathematics, vol.

5, no. 1, pp. 11-24, 1983.

[6] C. Archetti and M. Speranza, "A survey on matheuristics for routing problems,"

European Journal of Operational Research, vol. 2, pp. 223-246, 2014.

[7] A. Augimeri, "Local Search with SubProblem Exact Resolution: Application to a

real Resource-Constrained Project Scheduling Problem," Thesis, Polytechnic

University of Turin, Turin, 2019.

[8] P. Baumann and N. Trautmann, "Resource-Constrained Project Scheduling with

Project Management Information Systems," Handbook on Project Management

and Scheduling, vol. 2, pp. 1385-1400, 2015.

[9] N. Rodríguez, A. Gupta, P. Zabala and G. Cabrera-Guerrero, "Optimization

Algorithms Combining (Meta)heuristics and Mathematical Programming and Its

Application in Engineering," Mathematical Problems in Engineering, pp. 1-3,

2018.

103

[10] "what is project management?," 2019. [Online]. Available:

https://www.pmi.org/about/learn-about-pmi/what-is-project-management.

[Accessed November 2019].

[11] Project Management Academy, "The Five Traditional Process Groups

Explained," 2019. [Online]. Available:

https://projectmanagementacademy.net/articles/five-traditional-process-groups/.

[Accessed November 2019].

[12] Master of project academy, "24 Steps of Project Planning Process | What Are the

Planning Process Group Activities," 2019. [Online]. Available:

https://blog.masterofproject.com/project-planning-process-group-activities/.

[Accessed November 2019].

[13] M. Vanhoucke, "Resource constrained project scheduling: What is my

scheduling objective?," June 2016. [Online]. Available:

http://www.pmknowledgecenter.com/baseline/dynamic-scheduling-introduction-

to-baseline-scheduling. [Accessed September 2019].

[14] P. Brucker, A. Drexl, R. Mohring, K. Neumann and E. Pesch, "Resource-

constrained project scheduling: Notation, classification, models, and methods,"

European Journal of Operational Research, vol. 112, no. 1, pp. 3-41, 1999.

[15] S. Hartmann and D. Briskorn, "A survey of variants and extensions of the

resource-constrained project scheduling problem," European Journal of

Operational Research, vol. 207, no. 1, pp. 1-14, 2010.

[16] F. Habibi, F. Barzinpour and S. Sadjadi, "Resource-constrained project

scheduling problem: review of past and recent developments," Journal of Project

Management, pp. 55-88, 2018.

[17] M. Vanhoucke, "Dynamic scheduling: An introduction to baseline scheduling,"

June 2012. [Online]. Available:

http://www.pmknowledgecenter.com/baseline/dynamic-scheduling-introduction-

to-baseline-scheduling. [Accessed May 2019].

[18] J. Couch, "Performance Robust Project Scheduling Polices for Naval Ship

Maintenance," Thesis, Dalhousie University, Halifax, Nova Scotia, 2016.

104

[19] E. Bertrand, "Optimization of the Naval Surface Ship Resource-Constrained

Project Scheduling Problem," Unpublished, Thesis, Dalhousie University,

Halifax, Nova Scotia, 2020.

[20] P. Jeffery, Interviewee, Interview with Thales Project Manager. [Interview]. May

2019.

[21] United States Department of Labour, "Occupational Safety and Health

Administration," 2019. [Online]. Available:

https://www.osha.gov/SLTC/etools/shipyard/shiprepair/sr_index.html. [Accessed

October 2019].

[22] S. Denpreuktham, "Would anything happen if you stand in front of a powerful

military radar at the point when its strength is the greatest?," July 2017. [Online].

Available: https://www.quora.com/Would-anything-happen-if-you-stand-in-

front-of-a-powerful-military-radar-at-the-point-when-its-strength-is-the-greatest.

[Accessed October 2019].

[23] A. Kastor and K. Sirakoulis, "The effectiveness of resource levelling tools for

resource constriant project scheduling problem," International Journal of Project

Management, vol. 27, pp. 493-500, 2009.

[24] R. Kolisch, "Resource Allocation Capabilities of Commercial Project

Management Software Package," Interfaces, vol. 29, no. 4, pp. 19-31, 1999.

[25] P. Weaver, "A Brief History of Scheduling," in myPrimavera Conference, Hyatt,

Canberra, 2006.

[26] M. R. Walker and J. Kelley, "Critical-path planning and scheduling," in Eastern

Joint IRE-AIEE-ACM Computer Conference, Boston, Massachusetts, 1959.

[27] D. Malcolm, J. H. Roseboom, C. E. Clark and W. Fazar, "Application of a

Technique for Research and Development Program Evaluation," Operations

Research, vol. 7, no. 5, pp. 646-669, 1959.

105

[28] F. Dilmaghani, "Critical Chain Project Management (CCPM) at Bosch Security

Systems (CCTV) Eindhoven," Thesis, University of Twente, Enschede, The

Netherlands, 2008.

[29] C. Carone, "The Differences Between CPM and Resource-Loaded Scheduling

and How They Applied to The Martinez Tesoro Refinery Flare Header

Replacement Project," California Polytechnic State University, San Luis Obispo,

California, 2017.

[30] M. Matthews, "Resource scheduling: incorporating capacity into schedule

construction," Project Management Journal, vol. 25, no. 2, pp. 44-54, 1994.

[31] C. Schwindt and J. Zimmermann, "Handbook on project management and

sheduling vol.2," in International Handbooks on Information Systems, Springer

International Publishing, 2015, pp. 1-1406.

[32] T. Guldemond, J. Hurink, J. Paulus and J. Schutten, "Time-constrained project

scheduling," Journal of Scheduling, vol. 11, no. 2, pp. 137-148, 2008.

[33] J. Weglarz, "Project Scheduling with Continuously-Divisible, Doubly

Constrained Resource," Management Sciences, vol. 27, no. 9, pp. 1040-1053,

1981.

[34] A. Moukrim and J. Carlier, "Storage Resources," in Handbook on Project

Management and Scheduling Vol. 1, Springer International Publishing, 2015, pp.

177-189.

[35] E. Demeulemeester and W. Herroelen, "An efficient optimal solution procedure

for the preemptive resource-constrained project scheduling problem," European

Journal of Operational Research, vol. 90, no. 2, pp. 334-348, 1996.

[36] L. Bianco, M. Caramia and P. Dellolmo, "Solving a Preemptive Project

Scheduling Problem with Coloring Techniques," in In: Węglarz J. (eds) Project

Scheduling. International Series in Operations Research & Management Science,

vol. 14, Boston, MA, Springer International Publishing, 1999, pp. 135-145.

[37] D. Debels and M. Vanhoucke, "The impact of various activity assumptions on

the lead time and resource utilization of resource-constrained projects,"

Computers & Industrial Engineering, vol. 54, no. 1, pp. 140-154, 2008.

106

[38] S. E. Elmaghraby, Activity networks : project planning and control by network

models, New york: Wiley, 1977.

[39] N. Nudtasomboon and S. Randhawa, "Resource-constrained project scheduling

with renewable and non-renewable resources and time-resource tradeoffs,"

Computers & Industrial Engineering, vol. 32, no. 1, pp. 227-242, 1997.

[40] J. Grey, "Buffer Techniques For Stochastic Resource Constrained Project

Scheduling With Stochastic Task Insertions Problems," Ph.D. dissertation,

University of Central Florida, Orlando, Florida, 2007.

[41] M. Vanhoucke, "Dynamic Scheduling," 2012. [Online]. Available:

http://www.pmknowledgecenter.com/content/dynamic-scheduling. [Accessed

June 2019].

[42] F. Deblaere, E. Demeulemeester and W. Herroelen, "Reactive scheduling in

multi-mode RCPSP," Computers & Operations Research, vol. 38, no. 1, pp. 63-

74, 2011.

[43] "Integer programming," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Integer_programming. [Accessed November 2019].

[44] O. Kone, C. Artigues, P. Lopez and M. Mongeau, "Comparison of mixed integer

linear programming models for the resource-constrained project scheduling

problem with consumption and production of resources," Flexible Services and

Manufacturing Journal, vol. 25, no. 1, pp. 25-47, 2012.

[45] A. A. B. Pritsker, L. J. Waiters and P. Wolfe, "Multiproject Scheduling with

Limited Resources: A Zero-One Programming Approach," Management Science,

vol. 16, no. 1, pp. 93-108, 1969.

[46] O. Kone, C. Artigues, P. Lopez and M. Mongeau, "Event-based MILP models for

resource-constrained project scheduling problems," Computers & Operations

Research, vol. 38, no. 1, pp. 3-13, 2011.

[47] "Solver," Wikipedia, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Solver. [Accessed Jan 2020].

107

[48] L. White, "what exactly is a "solver" in optimization?," StackExchange, 2016.

[Online]. Available: https://stats.stackexchange.com/questions/241249/what-

exactly-is-a-solver-in-optimization. [Accessed Jan 2020].

[49] G. Claassen, "What is the advantages of MIP model? Why the MIP model are

proposed for the problems?," ReasearchGate, 2016. [Online]. Available:

https://www.researchgate.net/post/what_is_the_advantages_of_MIP_model_Why

_the_MIP_model_are_proposed_for_the_problems. [Accessed Feb 2020].

[50] R. Kolisch and S. Hartmann, "Heuristic Algorithms for Solving the

ResourceConstrained Project Scheduling Problem: Classification and

Computational Analysis," in in: J. Weßglarz (Ed.), Handbook on Recent

Advances in Project Scheduling, vol. 1, Dordrecht, Kluwer Academic Publishers,

1999, pp. 147-178.

[51] V. Kenny, M. Nathal and S. Saldana, "Heuristic algorithms," May 2014.

[Online]. Available:

https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms

. [Accessed November 2019].

[52] H. Lehtihet, "What are the differences between heuristics and metaheuristics?,"

July 2013. [Online]. Available:

https://www.researchgate.net/post/What_are_the_differences_between_heuristics

_and_metaheuristics. [Accessed November 2019].

[53] J. Patterson and E. Davis, "A Comparison of Heuristic and Optimum Solutions in

Resource-Constrained Project Scheduling," Management Science, vol. 21, no. 8,

pp. 944-955, 1975.

[54] F. Boctor, "Some efficient multi-heuristic procedures for resource-constrained

project scheduling," European Journal of Operational Research, vol. 49, no. 1,

pp. 3-13, 1990.

[55] R. Kolisch, "Efficient priority rules for the resource-constrained project

scheduling problem," Journal of Operations Management, vol. 14, no. 3, pp.

179-192, 1996.

[56] L. Ozdamar and G. Ulusoy, "A local constraint based analysis approach to

project scheduling under general resource constraints," European Journal of

Operational Research, vol. 79, no. 2, pp. 287-298, 1994.

108

[57] L. Ozdamar and G. Ulusoy, "An iterative local constraints based analysis for

solving the resource constrained project scheduling problem," Journal of

Operations Management, vol. 14, no. 3, pp. 193-208, 1996.

[58] R. Kolisch and A. Drexl, "Adaptive Search for Solving Hard Project Scheduling

Problems," Naval Research Logistics, vol. 43, no. 1, pp. 23-40, 1996.

[59] A. Schirmer, "Case-Based Reasoning and Improved Adaptive Search for Project

Scheduling," Naval Research Logistics, vol. 47, no. 3, pp. 201-222, 2000.

[60] R. Klein, "Bidirectional planning: Improving priority rule-based heuristics for

scheduling resource-constrained projects," European Journal of Operational

Research, vol. 127, no. 3, pp. 619-638, 2000.

[61] S. Diana, L. Ganapathy and A. Pundir, "Comparison of Different Priority Rules

for the Resource Constrained Project Scheduling Problem," NICMAR-Journal of

Construction Management, vol. 27, no. 2-3, pp. 27-37, 2012.

[62] "Metaheuristics," Wikipedia, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Metaheuristic. [Accessed December 2019].

[63] R. Pellerin, N. Perrier and F. Berthaut, "A survey of hybrid metaheuristics for the

resource-constrained project schedulling problem," European Journal of

Operational Research, vol. 280, pp. 395-416, 2020.

[64] J. Schulz, "Hybrid Solving Techniques for Project Scheduling Problems," Thesis,

The Technical University of Berlin, Berlin, Germany, 2012.

[65] "Constraint programming," 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Constraint_programming#Constraint_solving.

[Accessed November 2019].

[66] M. Palpant, C. Artigues and P. Michelon, "LSSPER: Solving the Resource-

Constrained Project Scheduling Problem with Large Neighbourhood Search,"

Annals of Operations Research, vol. 131, pp. 237-257, 2004.

109

[67] T. A. M. Toffolo, H. G. Santos, M. A. M. Carvalho and J. A. Soares, "An integer

programming approach to the multimode resource-constrained multiproject

scheduling problem," Journal of Scheduling, vol. 19, no. 3, pp. 295-307, 2015.

[68] T. Wauters, J. Kinable, P. Smet, W. Vancroonenburg, G. V. Berghe and J.

Verstichel, "The Multi-Mode Resource-Constrained Multi-Project Scheduling

Problem," Journal of Scheduling, vol. 19, no. 3, pp. 271-283, 2014.

[69] R. K. Chakrabortty, A. Abbasi and M. J. Ryan, "Multi-mode resource-

constrained project scheduling using modified variable neighborhood search

heuristic," International Transactions in Operational Research, pp. 1-30, 2019.

[70] S. Fernandes and H. R. Lourenco, "Hybrids combining Local Search Heuristics

with Exact Algorithm," in Algoritmos Evolutivos y Bioinspirados, Spain, 2007,

pp. 269-274.

[71] M. A. Boschetti, V. Maniezzo, M. Roffilli and A. B. Rohler, "Matheuristics:

Optimization, Simulation and Control," Lecture Notes in Computer Science, pp.

171-177, 2009.

[72] J. Puchingar and G. R. Raidl, "Combining Metaheuristics and Exact Algorithms

in Combinatorial Optimization: A Survey and Classification," Lecture Notes in

Computer Science, pp. 41-53, 2005.

[73] M. O. Ball, "Heuristics based on mathematical programming," Surveys in

Operations Research and Management Science, vol. 16, pp. 21-38, 2011.

[74] L. Fortnow and S. Homer, "A Short History of Computational Complexity," Bull.

EATCS, vol. 80, pp. 95-133, 2003.

[75] "NP-completeness," Wikipedia, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/NP-completeness.

[76] "Stephen Cook," wikipedia, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Stephen_Cook. [Accessed July 2020].

110

[77] J. Lenstra and A. H. G. Rinnooy Kan, "Complexity of Scheduling under

Precedence Constraints," INFORMS, vol. 26, no. 1, pp. 22-35, 1978.

[78] R. Morrison, S. H. Jacobson, J. J. Sauppe and E. C. Sewell, "Branch-and-bound

algorithms: A survey of recent advances in searching, branching, and pruning,"

Discrete Optimization, vol. 19, pp. 79-102, 2016.

[79] "Branch and bound," Wikipedia, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Branch_and_bound. [Accessed July 2020].

[80] J. Patterson, "Project Scheduling: The Effects of Problem Structure on Heuristic

Performance," Naval Research Logistics Quarterly, vol. 23, no. 1, pp. 95-123,

1976.

[81] F. Nijs, "Project Scheduling: The Impact of Instance Structure on Heuristic

Performance," Thesis, Delft University of Technology, Delft, The Netherlands,

2013.

[82] W. Herroelen and B. De Reyck, "Phase transitions in project scheduling,"

Journal of the Operational Research Society, vol. 50, no. 1, pp. 148-156, 1999.

[83] R. Kolisch, A. Sprecher and A. Drexl, "Characterization and Generation of a

General Class of Resource-Constrained Project Scheduling Problems,"

Management Science, vol. 41, no. 10, pp. 1693-1703, 1995.

[84] E. Demeulemeester, M. Vanhoucke and W. Herroelen, "RanGen: A Random

Network Generator for Activity-on-the-Node Networks," Journal of Scheduling,

vol. 6, no. 1, pp. 17-38, 2003.

[85] B. De Reyck and W. Herroelen, "On the use of the complexity index as a

measure of complexity in activity networks," European Journal of Operational

Research, vol. 91, no. 2, p. 347–366, 1996.

[86] S. Elmaghraby and W. Herroelen, "On the measurement of complexity in activity

networks," European Journal of Operational Research, vol. 5, no. 4, pp. 223-

234, 1980.

111

[87] "Gurobi Guidelines for Numerical Issues," February 2017. [Online]. Available:

http://files.gurobi.com/Numerics.pdf. [Accessed July 2019].

[88] "IntFeasTol," 2019. [Online]. Available:

https://www.gurobi.com/documentation/8.1/refman/intfeastol.html. [Accessed

July 2019].

[89] S. Sahoo, "Univariate Analysis," July 2014. [Online]. Available:

https://www.slideshare.net/drswaroopsoumya/univariate-analys. [Accessed

August 2019].

[90] "90% confidence interval acceptable?," [Online]. Available:

https://www.researchgate.net/post/90_Confidence_Interval_Acceptable.

[Accessed November 2019].

[91] M. Vanhoucke, "Optimizing regular scheduling objectives: Schedule generation

schemes," PM Knowledge Centre, 2012. [Online]. Available:

http://www.pmknowledgecenter.com/dynamic_scheduling/baseline/optimizing-

regular-scheduling-objectives-schedule-generation-

schemes#:~:text=A%20schedule%20generation%20scheme%20determines,times

%20to%20the%20project%20activities.&text=A%20serial%20schedule%2.

[Accessed October 2019].

[92] R. Slowinski, "Two approaches to problems of resource allocation among project

activities—a comparative study," Journal of the Operational Research Society,

vol. 31, no. 8, pp. 711-723, 1980.

[93] D. Cooper, "Heuristics for Scheduling Resource-Constrained Projects: An

Experimental Investigation," Management Science, vol. 22, no. 11, pp. 1186-

1194, 1976.

[94] T. Pascoe, "Allocation of Resources - CPM," Revue Francaise de Recherche

Operationelle, vol. 38, pp. 31-38, 1966.

[95] N. Christofides, R. Alvarez-Valdes and J. Tamarit, "Project scheduling with

resource constraints: A branch and bound approach," European Journal of

Operations Research, vol. 29, no. 3, pp. 262-273, 1987.

112

[96] B. De Reyck, W. Herroelen and E. Demeulemeester, "Algorithms for Scheduling

Projects with Generalized Precedence Relations.," International Series in

Operations Research & Management Science,, pp. 77-105, 1999.

113

Appendices

Appendix - 1

Figure 52. The network structure of Polytechnique University shared test instance

Figure 53. The network structure of Dal- Randomizer test instance

114

Appendix – 2

The priority- duration formulation and example data format

param H:= 40; #Planning Horizon

param R:= 10; #Resource Type

param n:= 10; #No. of activities

set A, default{1..n}; # set of activities

set P within A cross A; #predecessor pairs

set RR, default {1..R}; #set of resources

param D{i in A}; #Duration of activity

param RD{i in A, k in RR}; #Resources demand for activity i

param AV{k in RR}; #Resource Availability

param ES{i in A} ; #Early Start time

param LS{i in A} ; #Late Start time

param PR{i in A}; #priority of the activity

var x{i in A, t in ES[i]..LS[i]}, binary;

minimize MS: sum{i in A,t in ES[i]..LS[i]} t * x[i,t] * ((1/PR[i])**5)* (0.01 + D[i])**1.1;

s.t. one{(i,j) in P} : sum{t in ES[j]..LS[j]} t*x[j,t] >= sum{t in ES[i]..LS[i]} t*x[i,t] + D[i];

s.t. two{t in 0..H,k in RR}: sum{i in 1..n, s in max(t-D[i]+1,ES[i])..min(LS[i],t)} RD[i,k]*x[i,s] <= AV[k];

s.t. three{i in A}:sum{t in ES[i]..LS[i]} x[i,t] = 1;

solve;

display MS,x;

end;

data;

set P :=

(2,3),

(6,7),

(8,9);

param: D ES LS PR:=

1 5 0 95 1

2 16 0 84 3

3 17 16 83 3

4 4 0 96 1

5 8 0 92 3

6 8 0 92 1

7 16 8 84 1

8 4 0 96 2

9 18 4 82 2

10 7 0 93 2 ;

115

param AV :=

1 35

2 35

3 35

4 35

5 35

6 35

7 35

8 35

9 35

10 35 ;

param RD: 1 2 3 4 5 6 7 8 9 10 :=

1 0 0 0 0 7 0 0 0 0 0

2 0 0 0 26 0 0 0 0 0 0

3 0 0 0 0 0 10 32 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 18 0 0 0 0 0

6 0 0 0 0 16 0 0 0 0 0

7 0 0 0 0 16 0 35 0 0 0

8 0 0 0 0 0 0 0 0 0 35

9 0 1 0 0 0 0 0 0 0 0

10 1 5 0 0 0 0 0 0 0 0 ;

end;

