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Abstract 

This thesis will discuss the development of matheuristic methods for scheduling the refit 

activities in the naval surface ship work period problem (NSWPP). The NSWPP is a variant 

of the classical resource-constrained project scheduling problem (RCPSP) with specific 

network structure and constraints. The NSWPP is a non-deterministic polynomial-time 

hard problem whose solution becomes computationally demanding as the problem size 

increases. Therefore, a matheuristic method called multi-step optimization (MSO) is 

developed in this paper, which combines heuristics and mixed-integer linear programming 

(MILP) to schedule the NSWPP activities efficiently. MSO uses heuristic priority rules to 

decompose the activities from the main project into subgroups. The subgroups are then 

iteratively optimized using a time-indexed discrete-time MILP formulation. The results 

from the comparative tests conducted show that MSO is computationally efficient and 

produces near-optimal solutions. Also, a comparative study of the solutions generated by 

MSO proves that the proposed method outperforms state-of-the-art heuristics. 
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Chapter 1: Introduction 
This thesis is a part of the “Refit Optimizer” research project undertaken by Thales Group, 

Canada, to develop a decision support tool to optimize the process of scheduling refit 

operations. Thales Group is a French multinational company reputed for providing service 

to the aerospace, defence, transportation, and security industries. It has been awarded a 

multi-million-dollar contract to conduct maintenance operations on arctic/offshore patrol 

ships (Harry DeWolfe Class) and joint support ships (Protecteur Class). Three universities 

namely, Dalhousie University, Polytechnique Montreal and  Université de Laval are 

working in a consortium to help Thales Group, Canada in its endeavour along with the help 

of other organizations such as Fleet Maintenance Facility (FMF) on both coasts, and 

Seaspan from Victoria, BC. 

The naval surface ship work period problem (NSWPP) is a highly complex variant of the 

classical resource-constrained project scheduling problem (RCPSP) with hundreds of 

activities to be scheduled using a limited resource pool. The NSWPPs are subjected to a 

variety of contingencies which makes their planning, scheduling and execution very 

challenging. In addition, due to the high variability of the processing duration of the 

activities, a large number of planned activities go unattended by the end of the project [1].  

The repair facilities (RFc) working on the NSWPP generally use commercial enterprise 

resource planning (ERP) software to schedule the activities and to manage the resources 

[1]. The usefulness of the ERP software is limited due to the disabling of the auto-

scheduling option, which is done to prevent the mass-modification of information in the 

centralized system [2]. Therefore, the schedulers end up planning all the projects manually. 
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This thesis focuses on developing efficient scheduling techniques using mathematical 

formulations which can be used alongside RFc’s ERP system to schedule the NSWPPs 

optimally. 

1.1 The Resource-Constrained Project Scheduling Problem (RCPSP) 

The resource-constrained project scheduling problem (RCPSP) is a combinatorial 

optimization problem wherein the objective is to minimize the makespan of the project by 

determining the start time for the project activities while making sure that the precedence 

constraints and resource constraints are satisfied [3]. The resource constraints can be 

budget, human resources, materials, or machines [4]. RCPSP belongs to the class of NP-

hard problems, which means that as the size of the problem increases, the computational 

time grows exponentially, thus making it hard to solve the problem in polynomial time 

using exact solution methods [5]. Even with improvements to exact solution methods, 

software, and hardware technologies, NP-hard problems are still difficult to optimize for 

large instances in a reasonable amount of time [6]. Therefore, large RCPSP instances are 

generally solved using heuristic algorithms because of their speed and flexibility. The 

downside to this is the compromise with the optimality of the obtained solution. A heuristic 

algorithm generally gives a solution that is far away from the optimum [7]. The gap 

between the heuristic solution and the optimal solution becomes significant with an 

increase in the size of the problem, and this will result in issues such as overestimation of 

the project makespan, overestimation of the budget, and inefficient resource management 

that are detrimental to the progression of the project [8]. For the past couple of decades, 

researchers have been working on efficient hybrid algorithms and solution methods to 

solve NP-hard problems. One such method known as matheuristic designates 
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(meta)heuristic procedures that are incorporated into mathematical programming models 

or algorithms that integrate the mathematical programming concepts into the 

(meta)heuristic framework to optimize complex real-world problems [9].  

This thesis contributes to the body of knowledge in the area of RCPSP by proposing a new 

MILP formulation called the priority-duration (PD) formulation that better captures the 

operational objective and schedules the project in a way that complies with the practical 

protocol followed in the naval industry.  In addition, a new matheuristic method called 

multi-step optimization (MSO) is developed that uses a unique three-level heuristic priority 

rule to decompose the large NSWPP instances into subproblems that are later iteratively 

optimized using the PD formulation to generate near-optimal solutions. The proposed 

matheuristic proved to be very efficient in solving large NSWPP instances and also capable 

of producing superior quality solutions when compared to state-of-the-art heuristic 

methods like the serial schedule generation scheme (SSGS).  
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Chapter 2: Problem Description 

 

This chapter is devoted to a detailed description of the naval surface ship work period 

problem (NSWPP). It includes an overview of project management, a description of the 

implementation of project management in NSWPP, an outline of the challenges in the 

NSWPP, the nature of the network in the NSWPP, a description of the sources of 

uncertainty in naval projects, and a discussion of the issues with the use of commercial 

scheduling software.   

2.1 Project Management Overview 

A project can be defined as an undertaking of a unique idea to meticulously create a product 

or service through efficient management of resources [10]. The primary elements of project 

management, regardless of the type of project (construction, manufacturing, product 

development, etc.) are the 4Ms, i.e., Manpower, Machine, Materials, and Money. Project 

management is the process of efficiently managing all these elements in a coordinated 

manner throughout the project’s lifecycle [10]. 

According to the Project Management Institute (PMI), project management processes can 

be classified into five phases: 1) Initiating, 2) Planning, 3) Execution, 4) Monitoring and 

Controlling, 5) Closing [10], [11].  
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Figure 1. Phases of project management (source: [11]) 

In this thesis paper, the focus is directed towards the scheduling operation, which is a part 

of the planning phase of project management. Scheduling is a highly detailed process and 

is commonly dealt with a proactive approach [11]. According to the Project Management 

Body of Knowledge (PMBOK), a book on standard terminologies and guidelines for 

project management, the planning phase is composed of 24 distinct steps such as; 

determining the planning approach, finalizing the requirements, creating activities, 

determining the activity duration, creating the work breakdown structure, assigning 

resources to the activities, and constructing a schedule [11], [12]. The resultant of the 

planning operations is the generation of the baseline schedule. The baseline schedule is 

constructed as per the objectives set by the management. The most commonly used 

objective is to minimize the makespan for the given project [13]. There are also possibilities 

for the administration to use other objectives depending upon the nature of the project such 

as the following: 1) Maximizing the net present value, 2) Minimizing the idle time, 3) 

Balancing resource consumption levels, 4) Minimizing the cost of executing the project, 

etc. [13]. A detailed overview of different possible objectives can be found in [14], [15], 

[16]. 
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A proactive baseline schedule is paramount before the actual start of the project because it 

acts as a point of reference to monitor the performance of the project and it enables the 

management to vigilantly track metrics such as resource usage, time adherence, and 

precedence adherence [17]. A delay in the execution of critical tasks can have a snowball 

effect directed towards the succeeding activities of the project resulting in disruption of the 

schedule, budget, and other following endeavours.  

In the NSWPP, there are a few high-value resources such as specialized technicians, 

material handling machines, and dry docks that need to be planned as accurately as possible 

in the baseline schedule [18]. These resources always tend to be critical for the project’s 

performance. Disruptions caused by these resources can affect the performance of the 

existing and subsequent projects as well [18]. 

2.2 Naval Surface Ship Work Period Problem (NSWPP) 

The NSWPP is the summation of all the work packages (WP) and their associated 

activities. The term “work period” refers to the length of time during which the naval repair 

facility performs the maintenance operations on a ship by executing the majority of the 

WPs. A work package consists of a number of “activities” that represent individual tasks 

required to complete the WP. The activities can execute in sequence one after the other or 

execute in parallel where multiple activities can be performed simultaneously.  

The NSWPP consists of a large list of prioritized WPs that must be completed using limited 

resources from a shared resource pool [18]. During NSWPP, many ships can undergo 

maintenance simultaneously and the ships compete for majority of similar resources, which 

makes the scheduling operation very challenging.  
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NSWPP differs from other RCPSP seen in the literature for a number of reasons. Firstly, 

not all activities in a NSWPP need to be completed [1]. The goal in a NSWPP is to finish 

all the high priority WPs within the makespan such that even if there are uncompleted low 

priority WPs, they can be reasonably mitigated so that the project is not compromised [1]. 

Apart from human and machine resources, NSWPP includes spatial resources while 

planning to prevent over-crowding a particular space/compartment [1]. Since NSWPP 

occurs in a relaxed environment with numerous spaces, the WPs are relatively independent 

of each other. Therefore, the number of precedence constraints is less, which in return 

makes the scheduling problem challenging because the problem will have a larger solution 

space and the WPs can fit anywhere within the time window. NSWPP does not comprise 

only of maintenance operations but also includes equipment upgrades, steel renewal, 

engineering changes, testing and trials etc. [19]. All these operations are important because 

the ship must remain relevant with the state-of-the-art technologies throughout its lifetime 

that spans over many decades [19].   

2.3 The Maintenance Lifecycle of a Ship 

 

Figure 2. The 5-year maintenance life cycle of a ship 
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Figure 3 is a representation of the typical maintenance life cycle of a navy ship. A naval 

ship undergoes refit period (RP)/docking work period once every 5 years during which it 

undergoes extensive maintenance operations such as welding, painting, deck floor 

replacement, and equipment upgrades [18], [1]. The RP can last for about 53 weeks, but 

the time horizon of the work period can be different depending on the type of ship under 

consideration [1]. In-between the successive RPs, the ship undergoes a brief maintenance 

period called the short work period (SWP) that generally lasts for three to six weeks, and a 

ship can have 2-4 SWPs in a year [18], [1]. The maintenance operations during the SWP 

are performed at the Fleet Maintenance Facility Cape Scott (FMFCS), or the Fleet 

Maintenance Facility Cape Breton (FMFCB) [18]. Before the start and after the completion 

of the RP, the ship undergoes an extended work period (EWP) that lasts for several months. 

During EWP-1 the ship is made as light as possible by removing the fuel, drinking water, 

ammunition, etc. to rest it on the dry dock platform comfortably [1]. At the end of the RP, 

the EWP-2 commences during which the ship is taken back into the ocean where it gets re-

fuelled, re-filled with drinking water, and reinstalled with the necessary equipment and set 

to sail [1].  

2.4 NSWPP Planning Process 

When the ship is on a mission or alongside a port city, equipment can breakdown either 

under the harsh conditions at sea, or on standby while rotating machinery is laying idle and 

corrosion progresses. As shown in figure 2, when a breakdown occurs, and the ship staff 

cannot fix it by themselves, they generate notifications in the primary repair facility’s (RFc) 

electronic maintenance system, for planning and later for conducting corrective 

maintenance on the faulty equipment. The RFc staff also creates additional notifications 
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when defects are discovered during the inspection of the ship at the dockyard [1]. 

Preventive maintenance (PM) notifications are also automatically generated from the 

RFc’s electronic maintenance system. Prior to the start of the refit period, the Royal 

Canadian Navy (RCN) gives a time horizon to complete as many work packages as 

possible, for that period, to the repair facility (e.g., FMF, Thales, or SNC Lavalin). The 

RFc’s planning department will then use the notifications to create activities and work 

packages that include all the information needed to correct the defect or perform the PM. 

These WPs will be then used by the project leader and scheduler to generate a schedule and 

propose an estimated number of WPs that can be completed within the given time horizon 

[1].  

 

Figure 3. Process of work package generation in NSWPP 

 

In the NSWPP, it is common to see more pending WPs to be completed within the given 

time horizon and with limited resource availability. Unlike the maintenance projects for 

aircraft and submarines, the NSWPP does not require all the outstanding maintenance 

operations to be completed during the work period [1]. From table 1, which represents the 

data from one of the work periods at FMFCS (Source: [1]), it can be seen that although a 

WP was first created in 2015, it was scheduled to execute in 2019. To ensure that the 

essential WPs are finished during the active work period, priorities are assigned to the WPs 
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[18] [1]. It is acceptable to have low-priority WPs unattended as the high redundancy in 

naval ships allow defect tolerance; plus, even if a ship loses power from a catastrophic 

failure, it still floats and lives are not in immediate danger [1]. Also, there can be back and 

forth negotiations with the RCN throughout the life cycle of a ship for deferring the 

execution of WPs into the successive work periods, thus ensuring that mission-critical WPs 

are completed. [1].  

 

 

Table 1. Deferment of work package into the successive work period (source: [1]) 

 

As discussed earlier in section 2.1, the processes in a project can be divided into five 

groups. Similarly, the NSWPP can also be divided into these groups. The following section 

gives an overview of each phase. 

2.4.1 Initiation and Planning 

The initiation and planning phase begins as early as 16 weeks priors to the start of the work 

period during which the vital data regarding operational goals, engineering changes, 

material requirements, activity duration, etc. are collected and reviewed [18]. Once the 

activity details are available, the experts from The Fleet Engineering Readiness (FER) and 

Naval Engineering Operations Department (N-37) assign priority numbers to the work 
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packages and the activities within the work package inherit the same priority number [18], 

[20]. 

2.4.2 Scheduling  

In this phase, the data available is used to schedule the WPs starting with the high priority 

ones [18]. The initial draft is shared with the ship’s command team for a review, and any 

potential issues are brought up during the subsequent meetings before finalizing the 

baseline schedule [18], [1]. 

2.4.3 Execution, Monitoring, and Control 

The resources are expected to conform to the schedule and finish the work within the 

determined time window [18]. Any resource conflicts arising during the execution of the 

project are discussed during the weekly meetings [18], [1]. If a planned high priority WP 

is getting delayed due to a shortage of resources, a lower priority WP gets cancelled or 

deferred into the next work period to expedite the high priority WP by satisfying its 

resource demands [18], [1].  

2.4.4 Closing 

At the end of the project, a meeting is held to discuss the project’s performance. 

Comparisons such as actual hours vs. planned hours, number of WPs completed vs. the 

number of WPs planned are reviewed [18]. The completed WPs are broken down by 

priority to review the number of high priority WPs finished [18]. Other information, such 

as labor hours and the number of WPs cancelled or deferred to the next work period are 

also presented [18].  

The performance of the In-Service Support Provider ISSP (i.e., Thales) will be quantified 

using a contractor scoring scheme, which compares the number of WPs accepted at the 



12 
 

start of the work period and the number of WPs completed by the end of the work period 

[1]. Different scores are assigned to WPs based on their priority status [1]. Since the 

priority-1 WPs are valued highly, the ISSP must ensure that it completes all the high 

priority WPs to get a good score. 

 

2.5 Challenges in Scheduling Naval Maintenance Operations  

Scheduling naval maintenance operations is subject to various constraints and high levels 

of uncertainty. Apart from precedence, time and resource constraints, which are commonly 

witnessed during project scheduling, there is a multitude of additional constraints that are 

to be considered, such as – the spatial constraints, operational constraints and priority 

constraints. Some of these constraints are unique to the NSWPP and adds to the complexity 

of generating a proactive schedule. The following section briefly presents the unique 

constraints that make the scheduling operation challenging. 

2.5.1 Spatial Constraint 

 

 

Figure 4. Representation of spatial constraint in a ship (source: [21]) 
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Consider a ship like the Halifax class ship, which has 5 decks and 353 spaces [1]. Though 

a ship has lots of spaces, there can be situations where work cannot be scheduled even 

when the space is available. For example, every deck (below the upper deck) has a narrow 

passageway connecting multiple adjacent spaces. If WPs are scheduled to occur in all the 

spaces at once, conflicts can occur over the use of the passageway. Furthermore, when the 

scheduled WP is “hot-work” such as welding or gas-cutting a patch of metal, as shown in 

Figure 4, no WPs can be scheduled to occur in the adjacent spaces [21]. A Firewatch is 

stationed in the adjacent space to prevent any mishaps [21]. Another example is when 

heavy equipment from the lower deck needs to be removed from the ship. The soft patches 

(floorboard) present on top of the equipment needs to be removed so that it can be lifted 

using a crane [1], [21].  

2.5.2 Operational Constraints: Radiation and Emissions 

The ship contains radars and other equipment that use strong electromagnetic waves for 

operating its combat and communication systems. During calibration and testing of these 

equipment, no WP can be scheduled on the upper deck of the ship as it can have severe 

consequences, such as radiation burn on the people working in close quarters with these 

equipment [1], [22]. In addition, upper deck operations involving jetty cranes are deferred 

during the testing of the ship’s gas/diesel-powered equipment because these equipment 

emit large volumes of exhaust gases into the atmosphere creating an inhospitable 

environment for the operator sitting in the cabin on top of the crane to control it [1].    

2.5.3 Priority Constraints 

The naval ship maintenance operations are priority dominant. The FMFCS uses three 

priority levels to categorize work based on its importance [18], [1]. They are essential work 
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(high priority), high opportunity work (medium priority), normal opportunity work (low 

priority) [18], [1]. The primary objective during any work period is to complete all the high 

priority WPs first since they are considered mission-critical.  

2.6 Topology/Structure of the Project Network 

The work packages in NSWPP do not have many precedence relationships with each other, 

as in the network structure shown in Figure 5 which is very typical of projects in the 

construction industry, submarine industry, and aircraft industry. Since the ship is very big 

with multi-levelled decks and lots of spaces, the WPs do not cross-interact and exhibit a 

network structure, as shown in Figure 6 [1]. Since it is not mandatory to finish all the WPs, 

dummy start and end nodes are not required. Most project scheduling problems require that 

all activities be completed while minimizing the makespan of the project. For this purpose, 

a fictitious dummy end node is used where all the open-ended activities are given as the 

predecessor to the dummy end node. Then the objective function seeks to minimize the 

start time of the end node to get an optimal makespan, as shown in equation (1). One of the 

issues with this approach is that the slack activities tend to get scheduled close as late as 

possible [19] and if there are open-ended activities that are not connected to the end node, 

they might, sometimes, get poorly optimized. In NSWPP, the goal is the minimize the start 

time of all the activities starting with the high priority ones and long duration ones within 

the same priority, as shown in equation (29). Therefore, having the dummy nodes serves 

no purpose to the objective function, but it can be included, if needed, to specify important 

milestones. 
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Figure 5. A typical project network structure 

 

 

Figure 6. A typical NSWPP network structure  

 

2.7 Uncertainty in NSWPP 

The NSWPP is very uncertain and full of contingencies which make the activity duration 

stochastic in nature. This means the activities can finish earlier than planned, finish later 

than planned, or may not get executed at all. This uncertainty is evident in the data obtained 

from the FMFCS for an extended work period (2018-2019) that lasted for four months 

(Source: [19]). According to the data, 636 WPs were initially planned, out of which only 

399 were executed, as shown in Figure 7. Thus, 37.26% of WP never got executed. Of the 
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399 WPs that got executed, 16.29% of WPs were underestimated (took longer to complete 

than estimated), 72% of WPs were overestimated (took less time to complete than 

estimated), and only 11.03% of WPs were completed exactly on time. The major reasons 

for this uncertainty are scope growth of the planned WPs, resources required to address 

high priority work on another ship or the submarine, unavailability of the essential parts or 

equipment, unforeseen engineering changes, inclement weather, procrastination, 

absenteeism, and other contingencies [18], [19] 

 

Figure 7. Project progress chart for an extended work period (source: [19]) 

 

Figure 8. Actual hours vs. Planned hours comparison for an extended work period (source: [19]) 

 

37.26%

62.74%

Project Progress Chart

Number of work packages not executed by the end of the work period

Number of work packages executed by the end of the work period

16.29%

11.03%

72.68%

Actual Hour vs. Planned Hour comparison for the 
finished 399 work packages 

Under Estimated

Equal to Estimated

Over Estimated
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Currently, the FMF schedules all the projects manually, which is an arduous and time-

consuming process [1]. In order to cope with the changes and uncertainties, the project is 

frequently rescheduled (usually every week) to make sure that it adheres to the baseline 

schedule [1], [2]. Though ERP software such as Primavera P6 is used at FMFCB, the auto-

scheduling privileges remain locked to prevent accidental modifications to financial and 

contractual information [1], [2].  

2.8 Issues with Commercial Software 

Kolisch (1999) conducted a study to analyze the gap in makespan between the optimal 

solution and that obtained using commercial software such as MS Project and Primavera 

project planner on 160 instances with the number of activities ranging between 10-30 and 

2-4 resource types. The results from the study concluded that the solution deteriorates with 

an increase in the number of activities. Similar results were also reported by [8], [23]. Table 

2 represents the mean and standard deviation of the makespan percentage deviation 

obtained by the commercial software packages [24]. 

 

Table 2. Mean and standard deviation of the makespan percentage deviation for commercial software (source: [24]) 

 

Baumann and Trautmann (2015) evaluated the resource allocation capability of 8 popular 

commercial scheduling software such as Primavera P6, MS project 2010, MS project 2013, 

and CS project professional. They conducted experiments on a total of 1560 instances from 

PSPLIB with the number of activities ranging between 30-120 and 4 resource types. The 

results concluded that commercial software gives a makespan that is longer when 
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compared to the optimum. In the worst-case scenario (highly resource-constrained), 

Primavera P6 could take 113% longer to generate a schedule with mere 60 activities when 

compared to the branch and bound algorithm [8]. Table 3 shows the mean and maximum 

of makespan percentage deviation relative to the optimal value given by [8]. 

 

Table 3. The mean and maximum of makespan percentage deviation relative to the optimal value (source: [8]) 

Despite evidences showing the drawback of commercial software, organizations still insist 

on using them over the optimization software because of its speed and its capability to store 

a large amount of information such as multi-project portfolio, resource usage and 

availability, project’s daily progress details and project’s expenditure at every level, all 

within a single software [1]. In addition, since commercial software schedules the project 

activities very quickly, it enables the planners to perform what-if analyses and compare 

multiple schedules [1]. Although the commercial software packages are fast, their solutions 

are poor because of their poor resource allocation capabilities. Therefore, the project 

activities would be scheduled inefficiently, and the resource utilization would also be poor. 

This results in a schedule with a large makespan right from the start when the baseline is 

generated. Further, following a similar approach while monitoring the project’s regular 

performance and for re-scheduling the activities whenever the project starts to deviate from 

the baseline could extend the project’s makespan much more. A practical way to overcome 

the adversities would be to manually schedule the most important activities first (the project 
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leaders usually have good knowledge about the most demanding activities) and then use 

optimization procedure to automatically schedule the remaining activities around the 

important activities within the given time horizon [1]. This approach helps to achieve a 

good balance between heuristic and optimization techniques and prevents the case of 

overestimating the project makespan or making the makespan too tight, which can cause 

the baseline schedule to breakdown rapidly at the occurrence of uncertainty. 

2.9 Research objectives and thesis outline 

The research objective for this thesis is to propose effective formulations and solution 

methodologies that can be used to generate high-quality schedules for large NP-hard 

priority dominant NSWPP. 

This thesis will investigate the following research questions: 

1. How and on what basis to select the most suitable MILP formulation to schedule 

the large priority dominant NSWPP efficiently? 

2. Is there a solution technique that will help to combine positive attributes of both 

pure optimization techniques and heuristic approaches to solve the large NSWPP 

efficiently in order to overcome the exponential growth in computational time 

witnessed with the use of pure optimization technique and, at the same time, obtain 

a solution that is close to the optimum? 

The thesis is structured such that a literature review of the popular scheduling techniques, 

RCPSP development, variants of RCPSP, RCPSP solution methods, RCPSP formulations 

and network topology of the project networks is performed to study the existing models 

that could apply to NSWPP. After the literature review, preliminary experimentation with 
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different MILP formulations is conducted on the real-world inspired instances to analyze 

their performance. It is followed by a description of the new proposed priority-duration 

(PD) objective function that helps to schedule the NSWPP activities in a way that complies 

with the practical protocol followed in the naval industry. To further narrow down on the 

most suitable formulation, the objective function of the original MILP formulations 

(minimize makespan) is replaced with the PD objective function while still retaining the 

constraints. Upon further experimentation with NSWPP instances, the constraints from the 

best performing formulation are used to develop the new PD formulation.   

Following the tests conducted with the PD formulation using pure optimization techniques, 

a new matheuristic method called multi-step optimization (MSO) is developed in this thesis 

to overcome the computational complexity of the pure optimization technique used to solve 

the NSWPP. Later, experiments are conducted with MSO on NSWPP instances to analyze 

its performance and solution quality in comparison to pure optimization technique and 

heuristic methodology like the serial schedule generation scheme (SSGS). Furthermore, 

the instance characteristics of the NSWPP are studied to understand their influence over 

the computational time when using MSO.  
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Chapter 3: Literature Review 
This chapter is structured to provide an overview of the popular scheduling approaches, 

the classification of RCPSP and its variants in section 3.1 and section 3.2, respectively. 

Section 3.3 discusses the different MILP formulations available for RCPSP with major 

focus placed on time-indexed and event-based MILP formulations. Section 3.4 discusses 

about the different RCPSP solution methods, section 3.5 discusses about the computational 

complexity and finally section 3.6 delineates the instance characteristics and how it dictates 

the complexity of an RCPSP. 

3.1 Classical Project Scheduling Techniques 

Scheduling is one of the areas that has seen developments throughout centuries [25]. It can 

be traced back to the time of Sun Tzu, the famous Chinese general of the Zhou Dynasty 

(722-481 BCE), who wrote about scheduling and strategies from a military perspective 

[25]. Scheduling became very popular in the 1950s with the invention of the Critical Path 

Method (CPM) [26] and Project Evaluation and Review Technique (PERT) [27]. The 

Dupont Corporation first used CPM in 1957 for the construction of its new chemical plant 

[28], and PERT was used to control and measure the progress of the Polaris Fleet Ballistic 

Missile project by the U.S. Navy in 1958 [28]. 

CPM is deterministic in nature and uses predetermined times to calculate the earliest 

possible project finish times through an iterative calculation of individual activity duration 

while respecting all the precedence constraints. The solution gives information about 

critical and non-critical activities. The non-critical activities carry a slack or buffer that gets 

used in case of delay without affecting the original schedule.  
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PERT shares similarities with CPM with the major distinguishing factor being the 

probabilistic nature of PERT, wherein it uses the mean value of three duration estimates, 

namely the optimistic, most likely, and pessimistic durations to determine the expected 

activity duration. 

Both PERT and CPM produce only precedence and time feasible schedule and not consider 

the resource feasibility [17], [29]. A sound scheduling algorithm must mandatorily 

incorporate the resource availability and resource demands along with the precedence 

constraints to generate precedence, time & resource feasible schedule [30]. CPM and PERT 

algorithms are not designed to achieve this objective [29], [30]. This technique cannot be 

used to schedule complex NSWPP that deal with hundreds of activities sharing the 

available resources and subject to additional constraints. These inherent limitations of CPM 

and PERT paved the way for RCPSP. 

3.2 Classification of RCPSP 

The RCPSP is one of the most researched problems because of its practical importance and 

relevance with all industries like construction, manufacturing, logistics and 

pharmaceutical. Every industry poses different kinds of constraints and objective functions, 

with the underlying aim being to determine the optimal start time of project activities, 

which has led to the development of many variants of the RCPSP. RCPSPs can be classified 

based on the following attributes: 

• Type of constraints 

• Type of precedence relationships 

• Type of resources 

• Type of activity splitting 
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• Number of execution modes 

• Number of objectives 

• Types of objectives 

• Level of information 

 

Table 4. Classification of RCPSP and its variants adapted from [31] 

Table 4, adapted from Schwindt and Zimmermann (2015), classifies the RCPSP variants 

according to their attributes. This section gives a brief description of some of the RCPSP 

variants to explain the nature of the NSWPP project better. 

3.2.1 Time Constrained Problem vs. Resource-Constrained Problem 

In the Time Constrained problem, the deadline for completing the activities of the project 

is fixed, and the schedule is generated by varying the resource demand and resource 



24 
 

capacity [32]. In the Resource-Constrained problem, the project activities are to be 

scheduled with an aim to minimize the makespan of the project while ensuring that the 

resources are not allocated over their maximum capacity [32]. The NSWPP is a resource-

constrained problem since the objective is to finish the project in the least possible time by 

strictly respecting the resource and precedence constraints. 

3.2.2 Renewable Resources vs. Non-Renewable Resources 

Renewable resources are the ones for which only the total usage during every time period 

is constrained [33]. During the execution of an activity, the renewable resource is used for 

a pre-determined time period [14]. On completion of the activity, the resource is released 

back into the resource pool, thus making it available for the next activity in line. Machines, 

tools, and human resources are regarded as renewable resources [34]. The non-renewable 

resources are the ones for which only the total consumption over the project duration is 

constrained [33]. Money, energy, and raw materials are some of the best examples for non-

renewable resources [17]. An additional resource type, namely the doubly constrained 

resource, was introduced by Slowinski in 1980. According to him, these resources share 

the characteristics of both renewable and non-renewable resources [16]. The energy 

utilization and the project budget are good examples of doubly constrained resources 

because their total usage during every time period and their total consumption for over the 

entire project duration can both be constrained [33]. In this thesis, the NSWPP project is 

modelled with renewable resources. The information on the non-renewable resources like 

the project budget and personnel salaries are kept confidential during NSWPP and thus, 

they are not considered [1].  
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3.2.3 Pre-emptive Model vs. Non-Preemptive Model 

In general, RCPSP assumes non pre-emption of activities, which means that once an 

activity is started, it cannot be interrupted. This assumption is practically sound and 

conforms with the naval project practices where the activities are completed once they are 

started. If a project supports pre-emption of activities, it means that activity under execution 

can be interrupted at any point of time to start working on another activity. For a review on 

RCPSP with pre-emption, see [35], [36], [37] where they support pre-emption of activity 

at discrete time units [15]. 

3.2.4 Single-mode vs. multi-mode 

A problem that allows activities to execute in one way within a fixed processing time and 

fixed resource demands is called a single-mode problem. The concept of multi-mode was 

introduced by [38] in which the activities were given an option to execute in a different 

mode with each mode having a unique activity duration and resource demands [15]. Multi-

mode project scheduling is useful in job-shop scheduling and determining the cost involved 

in crashing a project [15]. 

3.2.5 Single-Criterion Problem vs. Multi-Criteria Problem 

If the objective function has only a single criterion to either minimize or maximize the 

intended goal, it is called a single criterion problem. There are instances where multiple 

criteria need to be satisfied for a given problem. They can be either similar (every criterion 

needs to be maximized or minimized) or contradicting to understand the important trade-

off between criteria such as makespan, resource level, and project cost as done by [15], 

[39]. In a problem with the multi-criteria objective function, the impact of each criterion 

on the overall objective function is controlled by assigning weights [15]. The larger the 
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weight, the higher its impact on the objective function. In this paper, the NSWPP project 

is modeled with a multi-criteria objective function that aims at scheduling the high priority 

activities before the low priority ones. Also, for activities within the same priority, the ones 

with longer duration are scheduled first. 

3.2.6 Deterministic Problem vs. Stochastic Problem 

In a deterministic problem, the activity duration is assumed to be fixed. Most of the 

research conducted on RCPSP considers the activity durations to be fixed [40]. In practice, 

every project is subject to uncertainties and it is common for activity durations to fluctuate. 

This makes the need for a stochastic planning approach indispensable in the field of project 

management. Stochastic scheduling incorporates the variability in activity duration. Using 

stochastic scheduling techniques for scheduling naval maintenance operations is a 

complicated endeavour because of the lack of historical data that is needed to understand 

activity duration distributions [18]. Table 5 represents a snapshot of a work period data. It 

can be seen that the calendar days represented by scheduled start and scheduled finish does 

not relate to the planned hours. The calendar days are generally exaggerated so that if the 

staff or the contractors is required to work on some other important job, they can get back 

and still finish work within the allotted time [20].  In addition, the FMF records the billed 

hours as opposed to actual total hours between the start date and finish date of a WP [1]. 

That means if a WP gets finished in 5 hours, it could be on one calendar day or spread over 

many calendar days [1]. Also, any delays that occur due to contingencies like bad weather, 

unavailability of a part, etc. are not included in the schedule [1]. Therefore, it is very hard 

to determine the actual execution time for activities [1]. 
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Table 5. Data showing that the actual calendar start-to-finish time are much larger than the planned preventive 

maintenance hours (source: [1]) 

 

This, in turn, hinders the application of buffer insertion techniques such as project buffer, 

feeding buffer, and resource buffer to protect the project against uncertainties [41]. For 

further review on stochastic RCPSP with buffer insertion techniques, refer [15], [18], [40], 

[41]. 

3.2.7 Proactive Scheduling and Reactive Scheduling 

The technique where a schedule is generated by integrating enough protection to the 

baseline schedule by anticipating future contingencies is called proactive scheduling [42]. 

If the project starts to go astray despite proactive scheduling, the reactive scheduling 

technique is incorporated to bring the project back in line. The reactive scheduling is an 

indispensable part of project management. There are different methods to perform reactive 

scheduling. Irrespective of the method chosen, the primary objective is to make sure that 

the revised schedule is in proximity to the baseline schedule [42]. The inability to bear 

resemblance can have catastrophic ramifications such as unavailability of scarce and 

special skilled resources, frequent changes in agreement with subcontractors, and violation 

of project deadline. [42]. For a review on reactive scheduling policies for the NSWPP 

project, readers can refer to [19], wherein a rescheduling policy using MILP formulations 

is developed to minimize the number of scheduling changes when re-scheduling activities. 
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In this thesis, the NSWPP is modelled with a multi-criteria objective function that aims to 

minimize the total weighted start time of the project while scheduling all the high priority 

activities before the low priority ones and for activities within the same priority, the ones 

with a longer duration are scheduled before the shorter ones. In addition, the following 

assumptions are made: 

• Non pre-emption – once an activity starts it cannot be interrupted till it finishes. 

• Single-mode – the activities have only one mode with a specific resource demand 

and processing duration to execute in. 

• Deterministic duration – the activity durations are fixed. 

3.3 MILP Formulations 

MILP is a variant of integer linear programming where some variables are restricted to be 

integers, while others can be continuous variables [43]. There are three main categories of 

MILP formulation for solving RCPSP [44]. They are: 

• Time-Indexed Formulations: This formulation makes use of the binary variable 𝑥𝑖,𝑡, 

where i is the activity index and t is the time index. Here, 𝑥𝑖,𝑡 = 1 when activity i starts 

at time period t; else it is 0 [44]. 

• Sequence-Based Formulation: This formulation makes use of the binary variable 𝑦𝑖,𝑗 

and continuous-time variable 𝑆𝑖, where i and j are activity indices. Here,  𝑦𝑖,𝑗 = 1 if 

𝑆𝑖 + 𝐷𝑖 ≤ 𝑆𝑗  where 𝐷𝑖 is the duration of activity i. This formulation was originally 

intended to solve machine scheduling problems, but with the addition of constraints 

to satisfy resource demands, it was extended to solve RCPSP [44].  
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• Event-Based Formulation: This formulation makes use of the binary variable 𝑧𝑖,𝑒, 

where i is the activity index and e is the event index. Here, 𝑧𝑖,𝑒 = 1 if activity i starts 

at event e or still in process at event e. It also makes use of the continuous-time variable 

𝑡𝑒 to determine the start time of events [44]. 

3.3.1 Description of Notations 

 

 

 

c Positive constant

H Planning Horizon

n Number of activities to be scheduled, including dummy activities (if present)

A Set of project activities

E Set of events

M Machines

P/prec Set of precedence pairs

R/res Set of resource types

e Index used to denote event in set E

i  and j Indices used to denote activity in set A

k Index used to denote resource in set R

Represents maximum availability of resource type k

Represents number resources of each type k demanded by activity i

           / Represents the duration of activity i

Represents the earliest possible start time of activity i

Represents latest possible start time for activity i

Continuous-time variable

Binary, 1 if activity i starts at time t

Binary, 1 if 

Binary, 1 if activity I starts at event e or still being executed after event e

Completion time

Makespan, max{      ,…..,      }

Total completion time (     +…..+     )

Objective Function

Decision Variable

Parameters

Indices

Constants

Sets

  𝑖
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3.3.2 The Discrete-Time Formulation 

The basic discrete-time (DT) formulation introduced by [45] is given below. It uses a single 

activity and time indexed binary decision variable 𝑥𝑖,𝑡 such that   

𝑥𝑖,𝑡 = {
1, if activity 𝑖 starts at time 𝑡
0, otherwise                               

 

The formulation obtained is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =   𝑡𝑥𝑛,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

 (1) 

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥  𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖                                                                               ∀(𝑖, 𝑗) ∈ 𝑃     (2) 

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤  𝐵𝑘                                        ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅     (3) 

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

=  1                                                                                                                ∀ 𝑖 ∈ 𝐴     (4) 

𝑥𝑖,𝑡 ∈ {0,1}                                                                                                      ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻    (5) 

Constraint (2) is a precedence constraint that makes sure that the successor does not start 

before the completion of the predecessor.  Constraint (3) makes sure that the resources are 

not over-utilized beyond their maximum availability. Constraint (4) ensures that all 

activities are scheduled. 
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3.3.3 Disaggregated Discrete-Time Formulation 

The disaggregated discrete-time formulation (DDT) is similar to the DT formulation with 

an exception in the way the precedence constraint is formulated, which is shown in 

equation (6). It ensures that the precedence constraint is satisfied by preventing the 

predecessor (i) and successor (j) from executing simultaneously. This approach was 

introduced by Christofides et al. (1987) [46].   

 𝑥𝑖,𝜏 

𝐿𝑆𝑖

𝜏=𝐸𝑆𝑖

  +  𝑥𝑗,𝜏

min (𝐿𝑆𝑗,𝑡+𝐷𝑖−1)

𝜏=𝐸𝑆𝑗

 ≤  1                   ∀(𝑖, 𝑗) ∈ 𝑃    (6) 

3.3.4 On/Off Event-Based Formulation 

The On/Off Event-based formulation (OOE) was introduced by Kone et al. in 2011 to solve 

RCPSP instances. Unlike the time-indexed formulations, where the number of variables 

grows rapidly with a larger time window, the variable used in the event-based formulation 

is not a function of time, and it does not exhibit similar growth [46].  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =   𝑚𝑎𝑥    (7) 

 𝑧𝑖,𝑒
𝑒∈𝐸

≥ 1                                                                                                                          ∀𝑖 ∈ 𝐴 (8) 

 𝑚𝑎𝑥 ≥ 𝑡𝑒 + (𝑧𝑖,𝑒− 𝑧𝑖,𝑒−1)𝐷𝑖                                                               ∀𝑒 ≠ 1 ∈  𝐸, ∀𝑖 ∈ 𝐴 (9) 

𝑡1 =  0                                                                                                                                             (10) 

𝑡𝑒+1 ≥ 𝑡𝑒                                                                                                                ∀𝑒 ≠ 𝑛 ∈ 𝐸  (11) 

 𝑡𝑒2 ≥ 𝑡𝑒1 + ((𝑧𝑖,𝑒1 − 𝑧𝑖,𝑒1−1) − (𝑧𝑖,𝑒2 − 𝑧𝑖,𝑒2−1) − 1)𝐷𝑖    ∀(𝑒1, 𝑒2, 𝑖) ∈ 𝐸
2 × 𝐴, 𝑒2 > 𝑒1 (12) 
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  𝑧𝑖,𝑓

𝑒−1

𝑓=1

≤  𝑒 (1 − (𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1))                                                                  ∀𝑒 ≠ 1 ∈ 𝐸  (13) 

  𝑧𝑖,𝑓

𝑛

𝑓=𝑒

≤ (𝑛 − 𝑒) (1 + (𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1))                                                        ∀𝑒 ≠ 1 ∈ 𝐸 (14) 

 𝑧𝑗,𝑓 + 𝑧𝑖.𝑒

𝑒

𝑓=1

≤ 1 + (1 − 𝑧𝑖,𝑒) 𝑒                                                         ∀𝑒 ∈ 𝐸, ∀(𝑖, 𝑗) ∈ 𝑃 (15) 

  𝑏𝑖,𝑘. 𝑧𝑖,𝑒

𝑛

𝑖=1

≤ 𝐵𝑘                                                                                            ∀𝑒 ∈ 𝐸, ∀𝑘 ∈ 𝑅 (16) 

 𝐸𝑆𝑖. 𝑧𝑖,𝑒 ≤ 𝑡𝑒                                                                                                     ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (17) 

 𝑡𝑒 ≤ 𝐿𝑆𝑖(𝑧𝑖,𝑒 − 𝑧𝑖,𝑒−1) + 𝐿𝑆𝑛(1 − 𝑧𝑖,𝑒 + 𝑧𝑖,𝑒−1)                                     ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (18) 

 𝐸𝑆𝑛 ≤  𝑚𝑎𝑥 ≤ 𝐿𝑆𝑛                                                                                         ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (19) 

 𝑡𝑒 ≥ 0                                                                                                                               ∀𝑒 ∈ 𝐸 (20) 

 𝑧𝑖,𝑒 ∈ {0,1}                                                                                                        ∀𝑒 ∈ 𝐸, ∀𝑖 ∈ 𝐴 (21) 

Constraint (8) assigns each activity at least one event, ensuring it is scheduled. Constraint 

(9) defines the makespan, Cmax, as the end of the last activity. Constraint (10) initializes the 

first event to the start time of zero. Constraint (11) ensures that events happen in order. 

Constraint (12) links the binary variable z to the corresponding t variable. Constraint (13) 

ensures non-preemption from predecessor events. Constraint (14) ensures non-pre-emption 

for successor events. Constraints (15) imposes precedence constraints. Constraint (16) 

imposes resource constraints. Constraints (17) and (18) impose earliest and latest start 
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times, respectively. Constraints (19) ensures that makespan is within the time window of 

the last activity. Constraints (20) and (21) describe the continuous variable t and binary 

variable z, respectively. 

Kone et al. (2011) conducted experiments on a variety of standard RCPSP instances 

imported from the PSPLIB to test the performance of different MILP formulations. They 

suggested that there is no single class of MILP formulation that will dominate over the 

other types of formulations and added that appropriate formulation has to be selected based 

on the characteristics of the problem. 

3.4 RCPSP Solution Methods 

The most prominent solution methods for the Mixed Integer Linear Programming (MILP) 

formulations of the RCPSP are simplex and branch-and-bound solvers, heuristics, 

metaheuristics, constraint programming, satisfiability test, and matheuristics. 

3.4.1 Simplex and Branch-and-Bound based Solvers 

A “solver” is a mathematical software that incorporates multiple algorithms that can be 

used to optimally solve one or more class of problems [47], [48]. For solving combinatorial 

problems like an RCPSP, solvers such as IBM ILOG CPLEX, Gurobi, CBC and 

Gusek/GLPK are used which runs on simplex and branch-and-bound algorithms. Although 

the solvers give an optimal solution for an RCPSP, it can be computationally intensive and 

it can take several hours to solve a moderate-sized problem with moderate resource 

constrainedness. However, the advantage of a solver is that it determines the upper bound, 

lower bound and the optimality gap for a given problem. Therefore, even if the problem 

does not solve completely in a reasonable amount of time, the value of the optimality gap 
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can be very useful to analyze the quality of the solution obtained using faster techniques 

such as heuristics and metaheuristics [49].  

3.4.2 Heuristic and Metaheuristic Approach 

Blazewicz et al. (1983) showed that the RCSPSP is an NP-hard problem and thus, it would 

be computationally demanding to solve complex RCPSP using MILP formulations and 

exact algorithms. Therefore, heuristics and metaheuristic algorithms have become the go-

to methods for researchers to solve complex RCPSP [50]. A heuristic is a technique 

wherein computationally difficult problems are solved quickly at the cost of optimality, 

accuracy, and completeness [51]. A heuristic algorithm is dependent on the nature of the 

problem on which it is used, and it is generally greedy in its approach to finding a solution. 

This often results in entrapment within a local optimum [52]. One of the fastest heuristic 

algorithms for scheduling an RCPSP is priority rule based scheduling. The application of 

priority rules helps to reduce the solution space and fastens the computation ( [53], [54], 

[55], [56], [57], [58], [59], [60]). The schedule generation scheme is the core tool on which 

different priority rules are used to schedule the RCPSP instances [41], [61]. Diana et al. 

(2012) conducted experiments on the standard RSPSP instances from PSPLIB to compare 

different priority rules. After experimenting on 23 different priority rules, it was found that 

the Latest Start Time rule yielded results that were close to the optimal solution. The 

metaheuristic algorithms are high-level strategies that help a heuristic to efficiently search 

the solution space to find a good solution for an optimization problem [62]. Unlike the 

heuristic algorithm, the metaheuristic algorithm is less dependant on the nature of the 

problem on which it is used [52]. It explores the solution space much more thoroughly, 

even at the cost of temporary deterioration of the solution, in the hope of finding the optimal 
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solution [7]. For further reading on heuristic and metaheuristic approaches, refer [50], [61], 

[63]. 

3.4.3 Constraint Programming and Satisfiability Test 

Constraint programming is a method that solves combinatorial problems such as RCPSP 

using variables and logical constraints [64]. It derives its solution techniques from various 

fields like operations research, computer science, and artificial intelligence [65]. Similarly, 

Satisfiability test (SAT) is another unique solving technique which uses Boolean 

expressions to solve the RCPSP [64]  

3.4.4 Matheuristics  

A matheuristic is a hybrid solution technique obtained by combining (meta)heuristic 

techniques and mathematical programming (MP) techniques [9]. This method integrates 

the positive characteristics of both techniques to enhance the performance of the algorithms 

used on complex real-world problems [7]. These hybrid algorithms are extensively used to 

solve NP-hard problems such as vehicle routing problems, travelling salesman problems, 

job shop scheduling, and RCPSP [7]. According to Archetti and Speranza (2014), 

matheuristic methods can be broadly grouped into three classes: decomposition method, 

improvement heuristics, and relaxation-based method. The decomposition method 

involves breaking the original problem into smaller subproblems that can then be solved 

using MP models to optimality [6]. A time limit is generally specified to prevent the 

optimization process from being limited by the complexity of the subproblem [6]. The 

improvement heuristics class of matheuristics integrates heuristics and MP models. In this 

method, the initial solution obtained from a heuristic is improved by using the MP model. 

This is a popular class, and many ways of incorporating the MP model into (meta)heuristics 
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have been proposed [6]. [66] proposed a local search with subproblem exact resolution 

method based on large neighborhood search for solving the single-mode RCPSP. In this 

method, the initial solution for the given problem is generated by using forward & 

backward improvement algorithm on serial schedule generation scheme with an aim to 

minimize the makespan [63]. The obtained solution is further improved by iteratively 

rescheduling randomly selected subproblems, under a predetermined time limit, using 

exact solving approach while freezing the start times of activities which are not part of the 

subproblem [63]. The resulting solution from optimizing the subproblem is fed into the 

existing initial solution and further post-optimized using the forward-backward 

improvement algorithm [63]. [67] proposed a matheuristic method integrating integer 

programming models and a local search based on forward-backward improvement 

algorithm to solve multi-mode RCPSP. In this method, the initial solution detailing the start 

times of activities and its execution mode is obtained using a constructive heuristic 

algorithm [67]. The obtained solution is further improved by iteratively solving 

subproblems, which are generated based on the earliest start time of the activities within 

the range of the predetermined time window, using an integer programming model [67], 

[68]. The range of the time window keeps on increasing after every iteration to generate 

new subproblems [67]. The process is repeated until the entire problem is solved and a 

feasible solution is obtained. This feasible solution is further post-optimized using a local 

search based on the forward-backward improvement algorithm hybridized with an integer 

programming model to control the execution modes and changes to the solution [67], [68]. 

[69] proposed the use of the variable neighborhood search algorithm, modified to be used 

as an advanced optimization method, for solving multi-mode RCPSP. The relaxation-based 
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method produces an approximate solution for the given problem by relaxing certain 

attributes in the MP formulation that increases the complexity and computational effort [6]. 

The obtained solution is further improved using heuristics or metaheuristics. For further 

review on matheuristics, the reader is referred to [70], [71], [72], [73]. 

The proposed multi-step optimization matheuristic is of the decomposition class. The large 

list of activities is decomposed into subgroups using heuristic priority rules. The subgroups 

are later optimized iteratively using a MILP formulation that generates a near-optimal 

schedule. The multi-step optimization is discussed in detail in Chapter 5. 

3.5 Computational Complexity 

The concept of computational complexity was born when the Turing machine, a theoretical 

computation model developed by Turing, helped to prove the major barrier to the 

computational speed of the computer [74]. Since then, to understand the computational 

difficulty, the problems are categorized into different classes such as P-class (Polynomial) 

and NP-class (Non-deterministic polynomial) [74]. The P-class problems are the ones that 

can be solved and have their solutions verified in polynomial time. A good example of P-

class problem would be multiplication, where irrespective of the size of the problem, the 

computational time varies as a polynomial function, i.e., O(𝑛𝑐) where n is the input size 

and c is a positive constant. NP-class problems are those which are hard to solve in 

polynomial time, but if the solutions are given, its feasibility/correctness can be verified in 

polynomial time. A good example of NP-class problem would be the Sudoku game, where 

solving the entire sudoku can be difficult, but if the solutions are already given, it is easy 

to check for its correctness. The computational time for NP-class problems increase 

exponentially with input size, i.e., O(𝑐𝑛). 
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The NP problems can be further classified into NP-hard and NP-complete problems. To 

prove that a problem L is NP-complete, the following two conditions must be satisfied 

[75]: 

1. L is in NP  

2. Every problem in NP is reducible to L in polynomial time  

Further, if a problem only satisfies condition 2, it is said to be NP-hard [75].  In 1971, Cook 

showed that the Boolean Satisfiability problem is NP-complete and proved the existence 

of NP-complete problems [76]. Later in 1972, Karp used Cook’s theorem and proved 

nearly 21 problems to be NP-complete [75]. Blazewicz et al. (1983) extended the machine 

scheduling problem to RCPSP by considering additional scarce resources that would be 

required to complete a job. They considered models with parallel machines, unit time 

duration and minimization of the maximum completion time (makespan) as the optimality 

criterion (M2|res; prec ; 𝑑𝑖=1| 𝑚𝑎𝑥) for their experimentation and showed that RCPSP 

problems are NP-hard. They also added that NP-hardness for RCPSP with other optimality 

criteria such as minimizing total completion time ( ∑  𝑖) can also be shown by replacing 

 𝑚𝑎𝑥 in the same problem [5]. [77] showed that the problem of minimizing the total 

weighted completion time of the jobs on a single machine with unit time duration and finish 

to start precedence constraint ( 1|prec; 𝑑𝑖=1| ∑𝑤𝑖 𝑖) to be NP-hard. The NSWPP is a 

variant of the RCPSP, the objective function in the priority-duration formulation for 

NSWPP, as shown in equation (29), aims to minimize the total weighted start time of the 

project and has similar characteristics as RCPSP with regards to resources, nature of 

precedence constraint and processing duration. Thus, by analogy, we can say that NSWPP 

is also NP-hard.  
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During experimentation, the NSWPP instances are solved using the Gurobi optimizer 

which uses the Branch-and-Bound algorithm (BnB) to solve complex NP-hard 

optimization problems. When optimizing a given problem, the BnB algorithm generates 

subsets of the search tree and then iteratively explores every subset [78]. When exploring, 

every candidate solution is checked against the lower bound and upper bound value 

estimated on the optimum [79]. If the subset being explored does not give a better value 

than the incumbent, it gets pruned (Bounding) [78]. If a better value is obtained, the subset 

branches further and the algorithm continues to explore it [78]. In the end, once the entire 

search tree is explored, the best-found solution is returned as an optimal value [78]. The 

time complexity of the BnB algorithm can be given as O(V𝑣𝑤) [78] where V is a bound 

on time needed to explore a subset, 𝑣 is the branching factor of the tree which is the 

maximum number of children generated at any node in the tree, and 𝑤 is the search depth, 

which is the length of the longest path from the root to a leaf. It depends on the size of the 

input. 

An upper bound on the maximum completion time to solve a problem can be estimated by 

determining the number of activities in the input data [74]. Greater the number of activities 

in the input, greater would be the computation time required to solve the problem.  

3.6 Instance/Network Indicators 

Project networks exhibit unique characteristics that tend to affect the efficiency of the 

solution methods used [80]. The study of network characteristics is important because it 

can help to determine the solution method that can solve the hardest problem efficiently 

and later, the same method can be used to solve other relatively easier problems [81]. These 
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unique characteristics can be measured using instance indicators. There are four types of 

instance indicators: 

1) Precedence-oriented indicators: Order Strength (OS), Network complexity (NC), 

2) Resource-oriented: Resource factor (RF) and Resource Constrainedness (RC), 

3) Time-oriented: Process Range (PR), and 

4) Hybrid indicators: Resource Strength (RS) [46]. 

Kolisch et al. (1995) worked extensively on this classification and created the benchmark 

PSPLIB instances. These instances are regarded as the standard to test any new solution 

methods to solve RCPSP. 

This section aims to present the most promising instance indicators for RCPSP and their 

effect on computational difficulty. The calculations for determining the network indicator 

values are explained using an arbitrary instance shown in Figure 9 where A – activity, B – 

maximum availability of resource type k, D – processing duration of the activities and k – 

resource demands. 

 

 

Figure 9. Arbitrary instance with 5 activities and 3 resource types 



41 
 

3.6.1 Network Complexity  

This measure indicates how dense the network is. It is given by the ratio of the total number 

of non-dummy precedence pairs (P) to the total number of non-dummy activities (n) [81]: 

𝑁 =  
𝑃

𝑛
 (22) 

The network complexity for instance shown in Figure 9 can be calculated as follows: 

𝑁 =  
3

5
 = 0.6  

A project with many precedence pairs is said to be disjunctive in nature, and thus many 

activities cannot be executed in parallel [46]. A project having a low number of precedence 

pairs is said to be cumulative in nature, wherein many activities can be executed in parallel 

[46]. 

3.6.2 Order Strength   

This measure is the ratio between the number of precedence pairs (transitive once included) 

of non-dummy activities and the theoretical maximum number of precedence pairs [82]. 

𝑂𝑆 = 
| 𝑃 |

𝑛2 − 𝑛
2

 (23) 

Where n is the number of non-dummy activities. The numerator is the sum of the number 

of activities that need to be completed for a given activity to start. The order strength for 

instance shown in Figure 9 can be calculated as follows: 

   𝑂𝑆 =  
4

52 − 5
2

 = 0.4  
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De Reyck et al. (1999) conducted experiments on 7200 RCPSP instances using the branch-

and-bound algorithm and showed that OS follows a continuous hard-easy phase transition 

pattern, as shown in Figure 10 [82]. This is because, as the number of precedence 

relationships within a network increases, the number of feasible solutions decreases due to 

the reduced possibility of the enumeration tree [83]. Similar results can also be observed 

with network complexity value [83].  

 

Figure 10. Logarithm of Computation Time vs Order Strength (source: [82]) 

 

3.6.3 Resource Factor  

This measure was introduced by Pascoe (1966). It denotes the average resource demand 

for a resource type requested per activity [81], [83].  
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𝑅𝐹 =  
1

𝑛𝑘
   {

1, 𝑖𝑓 𝑟𝑖,𝑘  > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐾

𝑘=1

𝑛

𝑖=1

  (24) 

    ri,k = Demand for resource type k by activity i   

The resource factor for instance shown in Figure 9 can be calculated as follows: 

𝑅𝐹 =  
14

5 × 3
 = 0.933  

If RF = 1, then the all the resources are demanded by all the activities. If RF = 0, then none 

of the resources are demanded by any of the activities [83]. [83] conducted experiments on 

480 RCPSP instances with 30 activities and 4 types of resources using the branch-and-

bound algorithm and showed that the computational effort increases as the RF value 

increases, as shown in Table 6.  

 

 

Table 6. Effect of the Resource Factor on the Computation Time (source: [83]) 

   

3.6.4 Resource Strength  

This measure was coined by Cooper (1976) to measure the size of resource conflict [84].  

𝑅𝑆𝑘 = 
𝑎𝑘 − 𝑟𝑘

𝑚𝑖𝑛

𝑟𝑘
𝑚𝑎𝑥 − 𝑟𝑘

𝑚𝑖𝑛 
  (25) 
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Where 𝑎𝑘 is the maximum availability of renewable resource type k  

             𝑟𝑘
𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑖=1,..𝑛 𝑟𝑖,𝑘   

            𝑟𝑘
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑡=1…𝐻 (  𝑟𝑖,𝑘

𝑖=1,..𝑛

 ) 

𝑟𝑘
𝑚𝑖𝑛 – Maximum demand for resource type k by the activities. 

𝑟𝑘
𝑚𝑎𝑥 – Peak demand for resource type k in the schedule generated on early start time. 

The resource strength for instance shown in Figure 9 can be calculated as follows: 

𝑅𝑆1 = 
4 − 3

5 − 3
= 0.5 

𝑅𝑆2 = 
3 − 3

3 − 3
= 0 

To get the resource strength for the instance, 𝑅𝑆𝑘 values must be averaged over all the 

resource types k [81], [82]. 

De Reyck and Herroelen (1996) showed that instances with RS ≥ 1 are trivial problems 

that are no longer resource-constrained, and instance with RS ≈ 0 are extremely 

computationally demanding, as shown in Figure 11 [82].  

The use of RS as an instance indicator has been under a disagreement. While [83] argue 

that the RS is advantageous as it uses the precedence information along with the resources, 

[82] and [85] argue that incorporation of precedence information to determine the resource 

conflicts makes it an impure measure [81], [84]. The fact that RS relies on the peak value 

of resource demands makes it forget to consider the frequency and magnitude of other 
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relatively smaller values, which can induce serious bias into the measure, especially when 

the problem size grows big [81], [84]. To overcome this, many researchers use Resource 

Constrainedness (RC) as a resource measure [82]. 

3.6.5 Resource Constrainedness   

This measure was introduced by Patterson (1976). It is defined as the average usage of a 

resource k over the activities using resource k.  

𝑅 𝑘 = 

∑ 𝑟𝑖,𝑘
𝑛
𝑖=1

∑ {
1, 𝑖𝑓 𝑟𝑖,𝑘  > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑛
𝑖=1

 

𝑎𝑘
   (26)

 

Where 𝑟𝑖,𝑘 is the demand for resource k by activity i and 𝑎𝑘 is the maximum availability of 

renewable resource k.  The resource constrainedness for instance shown in Figure 9 can be 

calculated as follows: 

𝑅 1 = 

9
5
4 
 = 0.45  

𝑅 2 = 

8
4
3 
 = 0.6667  

To get the resource constrainedness for the instance, 𝑅 𝑘 values must be averaged over all 

the resource types k [81], [82]. [85] showed that RS and RC exhibit an easy-hard-easy 

complexity pattern that resembles a bell curve that supported a similar conjecture made by 

[86]. This helped to reject the negative correlation between RS and computational effort 

shown by [83], [84]. They also emphasized the fact that, along with the average 

computational effort, the variance is also high at the phase transition region [82]. Therefore, 
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instances need not be computationally demanding even though their RC and RS values 

exist in the ‘NP-hard region’ [82]. 

 

Figure 11. Computational effort vs. RC and RS values (source: [82]) 

 

RS and RC can be used as strong indicators to determine network complexity when there 

is only one type of resource (K=1) or when 𝑅 𝑘 and 𝑅𝑆𝑘 are similar over all resources type 

k [82]. Since 𝑅 𝑘 and 𝑅𝑆𝑘 values are averaged over all the resource types k, in cases where 

there is more than one type of resource with dissimilar demands, it induces serious bias 

into the measure [82]. Presently, there are no stable and consistent measures identified to 

analyze the impact of resource usage on the computational difficulty [82]. 

3.6.6 Process Range   

This measure is the ratio between the maximum and minimum processing duration of the 

project activities. 

𝑃𝑅 = 
𝑚𝑎𝑥𝑖=1..𝑛 𝐷𝑖
𝑚𝑖𝑛𝑖=1..𝑛 𝐷𝑖

 (27) 
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The process range for instance shown in figure 9 can be calculated as follows: 

𝑃𝑅 = 
5

1
 = 5  

A larger PR will significantly increase computation time when minimizing the makespan 

of a project because the algorithm has to search through a larger solution space to assign 

an optimal start time for the longer duration activities present among the short duration 

ones while ensuring that the precedence and resource constraints are satisfied.     

3.6.7 Disjunction Ratio   

This measure distinguishes between disjunctive instances (with a high number of 

precedence relations) to cumulative instances (with a low number of precedence pairs) 

[46]. It integrates resource and precedence measures [46]. It can be defined as a product of 

resource constrainedness and network complexity [4] 

𝐷𝑅 = 𝑁  ×  𝑅  (28) 

[46] observed a trend when comparing the performance of DT, DDT, OOE, Flow-based 

continuous time (FCT) and Start/End event based (SEE) MILP formulations respectively 

based on the process range and disjunction ratio. After analyzing the result, they gave a 

table depicting the performance of different MILP formulations based on these two 

instance indicators, as shown in table 7. 

 

Table 7. Synthesis of experiments from Kone et al. (2011) 
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[46] concluded that when a MILP is used to solve an RCPSP the following formulation 

should be preferred: 

1) DDT formulation if the PR is low.  

2) Flow-based continuous-time formulation (FCT) or OOE formulation if the PR and 

DR are high 

3) OOE formulation if PR is high and DR is low  

3.7 Characteristics of NSWPP instances 

The NSWPP instances are low/medium in network complexity and medium/high in 

resource constrainedness. Therefore, the DR can vary between low and high based on the 

instance under consideration. Upon analysis of the NSWPP data, it was observed that the 

maximum processing time for an WP during the NSWPP is 20 days, which can be 

considered as low in terms of process range. But the process range will be high if the same 

were to be considered in hours. Thus, it is necessary to perform tests on instances 

resembling the NSWPP for all combinations of DR and PR to determine the best suited 

MILP formulation. The following section discusses the test designed to select the most 

suited MILP formulation for scheduling activities in the NSWPP. 
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Chapter 4: Research Methodology and 

Preliminary Experiments 
 

This chapter details the research procedure followed for developing the matheuristic 

model. It includes information about the Dal-Randomizer [19] that helps to generate 

instances resembling the NSWPP project, selection of the best MILP formulation type for 

solving the NSWPP instances, development of the objective function, and development of 

the solution scoring criteria to evaluate the solutions. 

4.1 Dal-Randomizer 

When any new solution method is developed for RCPSP, the general practice is to test it 

on benchmark instances from the Project Scheduling Problem Library (PSPLIB). The 

PSPLIB instances were not used in this study for the following reasons:  

1) PSPLIB instances have a highly interconnected network structure, as seen in Figure 5, 

which makes it difficult to distinguish between work packages and activities.  

2) PSPLIB instances do not have priorities for activities. Even if we were to assign 

priorities to the activities for the purpose of experimentation, the connectedness of the 

network would still make the instance precedence-dominant rather than priority-dominant. 

3) PSPLIB instances use a maximum of 4 types of resources in all instances, while the 

NSWPP consists of 40-60 resource types. 

4) PSPLIB instances have low resource constrainedness, while the NSWPP instances have 

medium-high resource constrainedness. 
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In addition, the schedule is prepared on the work package level rather than on activity level 

to reduce the time required to input the data into the system [20]. Since the contractor and 

RFc staff working on the NSWPP projects are well experienced, they do not need the 

schedule to guide them on which activity to perform and in which order. Therefore, the 

project leader does not have to schedule on activity level with all the precedence 

information [1], [20]. 

To overcome the limitations of PSPLIB instances, the Dal-Randomizer (created by [19]) 

was used to generate instances that closely resemble the actual NSWPP. The randomizer 

is based on a fictitious ship with 51 types of resources, of which 40 are spatial resources, 

and the remaining 11 represent resources like the crane, jetty spaces, FMF crew, Thales 

crew, etc.  

 

Figure 12. Representation of fictitious ship used in Dal-Randomizer 

It uses a random number generator to create unique NSWPP types instances whose network 

structure is similar to that seen on the work package level, as shown in Figure 53 in 

appendix 1. Every node generated by the Dal-randomizer is regarded as an “activity” in 

this paper. The following gives a brief description of the design of the Dal-Randomizer 

(Dal-R): 
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• Instances with the number of activities ranging between 0-500 are randomly 

generated. 

• 1 to 4 activities are consolidated into a set with a finish to start precedence 

relationship, as shown in figure 6. For every set generated: 40% have one activity 

in them, 30% have two activities in them, 20% have three activities in them, and 

10% have four activities.  

• Every set is assigned with a priority number ranging between 1 to 3, with 1 

representing a high priority activity and 3 representing a low priority activity. The 

activities within the set inherit the same priority number. 50% of the sets are 

assigned priority – 1, 30% of the sets are assigned priority – 2, and 20% of the sets 

are assigned priority – 3. 

• Similar percentage metrics are used to assign resources for the activities. 

The developer decided these percentage metrics through his experience working in 

NSWPP projects and analyzing the data provided by the FMFCS. The Dal-R helps to build 

instances that capture the important aspects of the NSWPP projects and helps to 

select/develop an efficient solution method to tackle the real-world problem. 

4.2 Selection of the formulation type for the NSWPP 

To select the most efficient MILP formulation type for scheduling activities in the NSWPP 

with makespan minimization, tests were performed on multiple formulation types. The 

time-indexed formulations (DT and DDT) and event-based formulation (OOE) were used, 

and their computational times were compared to select the best performing formulation.  

Based on the results in [46] (See Table 7), the event-based formulation is, in theory, capable 

of performing well on classical RCPSP.  Thus, it is included in this test to find out how it 
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performs on the NSWPP. 10 instances were considered for the initial experimentation, 

including the preliminary instance shared by Ecole Polytechnique (Figure 52 in appendix 

1) and instances generated by the Dal-Randomizer (Figure 53 in appendix 1), to analyze 

the performance of these formulations for all possible combinations of DR and PR 

pertaining to NSWPP. All the experiments were conducted on Acer Aspire S7 Ultrabook 

powered by Intel®Core™ i5-4200 CPU @ 1.60GHz and 8GB DDR3 RAM. The MILP 

formulation was coded in Gusek/GLPK. The instance data was converted into a readable 

file using Microsoft Excel VBA and fed into Gusek to generate the LP file, which was later 

solved using Gurobi 8.1. The maximum time limit was set to 600 seconds (10 minutes), 

and the MIP Gap was set to 0%.  

From Table 8, it is evident that the performance of DT and DDT formulations are in 

accordance with the table proposed by [46]. The OOE, however, did not perform as 

expected. Though [46] suggested using the OOE formulation for solving highly cumulative 

instances and instances with high PR, it performed in accordance with the results in Table 

7 only when the instance size was small. The formulation did not solve to optimality even 

after 600s when the number of activities was increased to 30. [4] showed that OOE fails to 

solve an instance with 32 activities even after 3600s. The last line in Table 8 ranks the 

formulations based on the computation speed and the MIP gap from best to worst. Since 

the results were promising in the case of time-indexed formulation, it was considered for 

further testing and analysis. 
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Table 8. Computation time comparison for different MILP formulations tested on NSWPP instances 

 

4.3 The Priority-Duration formulation (PD) 

As discussed earlier in section 2.5, the NSWPP is a priority dominant project. Through 

interviews with the project leaders and schedulers at Thales and FMFCS, it was found that 

it is desirable to schedule all the high priority activities first and as early as possible [1], 

[20]. They mentioned the contingencies in the NSWPP and emphasized that by scheduling 

the high priority activities at its earliest possible time, it will allow them to finish all the 

mission-critical activities without having to go overboard with the project makespan. 

Therefore, rather than minimizing the makespan, the objective function from the time-

indexed formulation was modified to minimize the total weighted start time of the project 

while scheduling all the high priority activities before the low priority ones and for 

activities within the same priority, the ones with a longer duration are scheduled before the 

shorter ones 

Minimize 𝑍 =   
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

 (𝜀 + 𝐷𝑖)
𝛼 𝑡 (29) 

Where 𝑥𝑖,𝑡 = {
1,   if activity 𝑖 starts at time 𝑡
0, otherwise                                
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 𝑝𝑖:  Priority of activity i 

 𝐷𝑖: Duration of activity i 

  𝜃: Weight parameter used to schedule higher priority activities earlier than 

lower priority activities, respectively in the objective function (𝜃 > 0). 

  𝛼: Parameter used to ensure that the longer duration activities are scheduled 

before the shorter ones for activities within the same priority (𝛼 > 1). 

  ε: Parameter of very small positive value to account for milestones with no 

duration (𝜀 ≥ 0). 

The weight 𝜃 increases the objective function coefficient value for priority-1 activities 

more than that of priority 2 and 3 activities starting at the same time period and ensures 

that they are scheduled first. In the remainder of this thesis, 𝜃 is set to 5 by default. The 

reason for 𝜃 being equal to 5 has to do with Gurobi’s objective function co-efficient ratio 

precision limitation which is discussed in the next section. 

The weight 𝛼 acts as a tiebreaker and ensures that the longer duration activities get 

scheduled before the shorter duration ones for activities with the same priority. When the 

activities under consideration are of the same priority, if 𝛼 is set to 1, there are high 

possibilities for different sequences of activities to yield the same objective function. This 

makes the process of distinguishing between a good and a lousy schedule difficult. For 

example, let’s consider the two alternative schedules with 3 priority-1 activities, as shown 

in Figure 13. If 𝛼 = 1, then both schedules give the same objective function value while it 

is evident that schedule 1 is better than schedule 2. Without loss of generality and for ease 

of argument, we use ε=0 to calculate the objective function in both cases. 
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Figure 13. Representation of a good and a bad schedule 

 

Schedule 1:      𝑍 = (6 × 0) + (3 × 6) + (1 × 9) = 27 

Schedule 2:      𝑍 = (1 × 0) + (3 × 1) + (6 × 4) = 27 

If 𝛼 > 1, say 1.1, schedule 1 gets a lower objective function value than schedule 2  

Schedule 1:      𝑍 = (61.1 × 0) + (31.1 × 6) + (11.1 × 9) = 29.09 

Schedule 2:      𝑍 = (11.1 × 0) + (31.1 × 1) + (61.1 × 4) = 32.05 

Therefore, when 𝛼 > 1, it helps to break the tie and obtain a better schedule where the 

longer duration activities start before the shorter duration ones. In the remainder of this 

thesis, 𝛼 is set to 1.1 by default. 

4.4 Gurobi Numerical Issues 

The values of 𝜃 and 𝛼 plays an important role while solving the model using Gurobi. The 

algorithms used in Gurobi are sensitive to the numerical values encountered during 

optimization, and the software can produce erroneous results in the presence of numerical 

issues [87]. To prevent this, certain parameters are to be dealt with care. The issue that had 

a prominent effect on the solution quality was the objective function coefficient ratio. 

During the initial phase of testing, the value of 𝜃 was set to 10 and that of 𝛼 was set to 2. 

Although these values produced a large difference in the objective function coefficient 
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value between activities of different priority levels which in turn helps to solve the instance 

quickly, it caused the objective function coefficient ratio to be very large. 

For example, let’s consider a project with a time horizon of 200 days with a priority-3 

activity of duration 1 day, and a priority-1 activity with a duration of 20 days.  Furthermore, 

the priority-3 activity has a time window (i.e., range of start time ES–LS) of (1-199) days. 

The priority-1 activity has a time window of (1-180) days. Then, the objective function 

coefficients (i.e., 
1

𝑝𝑖
10 (𝜀 + 𝐷𝑖)

2𝑡) will be as follows for both cases: 

𝑐1 = 
1

110
 ×  202 × 180 = 72000     (maximum value) 

𝑐3 = 
1

310
 ×  12 × 1 = 1.694 × 10−5   (minimum value)   

Objective function Coefficient ratio =  
72000

1.694 × 10−5
= 4.25 × 109 

Because of such a large ratio, Gurobi scheduled the activities very poorly. In some cases, 

the priority-3 activities were not at all optimized. They were scheduled at a time period 

equal to their LS time. 

Given that the objective function coefficient ratio is recommended to be less than 109, the 

lesser the better, to eliminate the possibility of erroneous solution [87], the values of 𝜃 and 

𝛼 were set to 5 and 1.1 respectively, which resulted in the improvement of the objective 

function coefficient ratio (1.1804 × 106 ≪ 109). 

In addition to the above-mentioned issue, Gurobi can sometimes return non-integer values 

for integer variables, especially for a MILP model. Thus, 0.9999934543 can be returned 
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instead of 1. This happens because the integer feasibility tolerance limit is set to 1𝐸−5 by 

default [88]. Since a value like 0.9999934543 falls within default tolerance  value ( 1 - 

0.9999934543= 6.5𝐸−6 ),  Gurobi considers it to be feasible [88]. This can be prevented 

by appropriately tightening the tolerance [88]. The integer feasibility tolerance in Gurobi 

ranges between 1𝐸−9 to 1𝐸−1 and during experimentation the value was set to 1𝐸−7 to 

prevent erroneous values. However, the user must be careful not to tighten the value too 

much as it can significantly increase the solution time [88]. 

4.5 Solution Comparison Criteria 

The objective function in the PD formulation does not aim to minimize the makespan. It 

minimizes the total weighted start time of the project while scheduling all the high priority 

activities before the low priority ones and for activities within the same priority, the ones 

with a longer duration are scheduled before the shorter ones. Since makespan cannot be 

used as an effective metric to differentiate between a good schedule and a bad schedule, a 

new metric called the average priority-1 duration weighted centroid (DWC) is used. This 

measure was developed by [19] and is defined as follows. 

Average Priority − 1 Duration Weighted Centroid =  
𝛴𝑖 ∈ℙ1 [ 

(𝑥𝑠𝑡𝑎𝑟𝑡+𝑥𝑓𝑖𝑛𝑖𝑠ℎ) ×𝐷𝑖
2

]

𝑛ℙ1
 (30) 

Where ℙ1 is the set containing priority-1 activities and 𝑛ℙ1is the number of priority-1 

activities. 
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Figure 14. Differentiating a good schedule from a bad schedule using Average Priority-1 Duration Weighted Centroid 

The schedules shown in Figure 14 are considered. If makespan is used as a performance 

measure, all three schedules will end up having the same value of 16, although it is evident 

that schedule 3 is undesirable. The average priority-1 DWC clearly distinguishes between 

a good and a bad schedule by considering only the priority-1 activities in its formula, thus 

eliminating any bias introduced by lower priority activities. Smaller the value of average 

priority-1 DWC, the better the schedule because a smaller value represents a front-loaded 

schedule with all the priority-1 activities scheduled at the earliest. 

4.6 Comparative test between Discrete-Time and Disaggregated Discrete-

Time formulations 

There are two variants of time-indexed formulation: Discrete-Time and Disaggregated 

Discrete-Time. They differ only in the way the precedence constraint is formulated as 

discussed in section 3.3. To decide between DT and DDT, tests were conducted on a total 

of 50 random instances generated on the Dal-Randomizer to measure the computational 

speed of both formulations. Table 9 shows the characteristics of the instances. 
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Table 9. Characteristics of the Dal-R 100 test instances  

The computation times for solving each instance using DT and DDT formulations were 

recorded, and a paired t-test was used to determine the best by measuring the mean 

difference between the two formulations with the assumption that the relative difference 

between the solutions (solve time, makespan etc.) for the same instance is normally 

distributed.  

A t-test was used since the sample size selected was not too large (i.e., <100) [89]. A 

confidence interval of 90%, i.e., an alpha value of 0.10 was used for all the t-tests. A 90% 

CI was selected instead of 95% CI or 99% CI as the chosen sample size was just 50. To be 

95% or 99% definite about the results, the number of test samples need to be high (more 

than 500) so that a strong result can be obtained with a very small margin of error [90]. 
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4.6.1 Computation Time Comparison  

 

Figure 15. Computation time comparison between DT and DDT formulation 

The test result shows that DT formulation performs 57% ± 4.4% faster than the DDT 

formulation at 90% CI. 

The testing concluded that the DT formulation exhibits superior computational 

performance over DDT for solving NSWPP instances. Thus, the constraints from the DT 

formulation were incorporated into the priority-duration formulation, as shown in the 

following.  

Minimize   𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

 (𝜀 + 𝐷𝑖)
𝛼 𝑡 (31) 

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥  𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖                                                                              ∀(𝑖, 𝑗) ∈ 𝑃     (32) 

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤  𝐵𝑘                                         ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅     (33) 
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 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

=  1                                                                                                               ∀ 𝑖 ∈ 𝐴     (34) 

𝑥𝑖,𝑡 ∈ {0,1}                                                                                                     ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻    (35) 

 

4.7 Comparison between minimization and maximization models 

In this thesis, the developed MILP is a minimization model. A maximization formulation 

with similar constraints was proposed by [19], as shown in equation (36), to deal with the 

NSWPP.  

Maximize     𝑍 =     
100 𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝐴

(𝜀1 +𝐷𝑖)
𝛼(1 − 𝜀2𝑡) (36) 

The validity of both models was analyzed through experimentation on instances shown in 

Table 9 with the condition that both models should give similar solutions, and if the 

solution from the minimization model were to be plugged into the maximization model, 

the objective function value should equal that of the maximization model.  

The experimental results showed that both the formulations produce similar solutions, as 

depicted in Figures 16 and 17. Thus, proving that both formulations are suitable for 

scheduling activities in NSWPP. 
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Figure 16. Average priority-1 DWC comparison between minimization and maximization model 

 

Figure 17. Makespan comparison between minimization and maximization model 

During the tests, it was observed that the minimization model performed faster than the 

maximization model. To analyze this further, the t-test was used on the solutions times for 

both models. From Figure 18, the test showed that the minimization model performs 12.9% 

± 7.1% faster than the maximization model at 90% CI. Since the minimization model 

proved to be computationally faster, it was used in the remaining experimentations. 
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Figure 18. Computation time comparison between minimization and maximization model 

 

4.8 Computation time growth for NSWPP  

It has been established that RCPSP is an NP-hard problem, and thus it exhibits an 

exponential increase in computation time with an increase in the instance size. NSWPP 

being a variant of RCPSP also exhibits similar behaviour. To show this, an experiment was 

conducted using the PD formulation on seven NSWPP instances generated on the Dal-

Randomizer with the number of activities ranging between 50 to 200 and increasing in 

increments of 25. Table 10 shows the characteristics of the instances.  

 

Table 10. Characteristics of the Dal-R test instances used to show the growth in computation time for NSWPP 
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From Figure 19, the computation time grows exponentially as the size of the problem 

increases. The instance with 200 activities ran for more than 7 hours without solving to 

optimality when solved using the regular optimization method wherein the entire instance 

is solved at once. 

To reap the benefits of the exact solution method to solve large NSWPP projects, it is 

important to make sure that the instances are solved within a short time frame irrespective 

of its size. 

 

Figure 19. Computation time growth with an increase in instance size for regular optimization 

 

The following chapter discusses the development of matheuristic methods to schedule 

large NSWPP problems efficiently. 
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Chapter 5: Development of an efficient 

matheuristic approach and numerical 

experiments 
 

In the course of developing an efficient matheuristic approach, different decomposition 

strategies were examined sequentially. The results from the primary experimentation were 

analyzed to understand the merits and demerits of the opted strategy, and this knowledge 

was used to set-up subsequent experiments to improve the matheuristic. This chapter 

details different decomposition strategies used for the matheuristic approach and their 

results 

5.1 Multi-step Optimization Version 1  

The developed multi-step optimization (MSO-1) is a matheuristic technique where a large 

instance is solved in multiple iterations by decomposing its list of activities into subgroups 

and then iteratively optimizing each subgroup using the priority-duration formulation.  

Iteration 1 ∶                     Min 𝑍 =    
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ ℙ1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (37) 

Iteration 2 ∶                      Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ ℙ2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (38) 

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥  𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖                                                                              ∀(𝑖, 𝑗) ∈ 𝑃     (39) 



66 
 

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤  𝐵𝑘                                        ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅     (40) 

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

=  1                                                                                                               ∀ 𝑖 ∈ 𝐴     (41) 

𝑥𝑖,𝑡 ∈ {0,1}                                                                                                      ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻    (42) 

Where, A ⊃ ℙ1, ℙ2  

   ℙ1 is the subgroup consisting of only priority-1 activities.  

   ℙ2 is the subgroup consisting of only priority 2 and 3 activities. 

Unlike existing matheuristic approaches for RCPSP, the proposed approach does not create 

subproblems. It operates on the entire problem during every iteration but only considers 

the activities of the “in-process” subgroup in the objective function. Therefore, only the 

activities considered in the objective function will be optimized. The remaining activities 

get scheduled in any timeslot within their time window that satisfies the precedence and 

resource constraints. The following describes the steps required to implement MSO-1 with 

the help of the arbitrary instance generated on the Dal-Randomizer as shown in Figure 20. 
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Figure 20. The network structure of the arbitrary instance with 20 activities 

 

Figure 21. Activity decomposition after sorting the arbitrary instance with 20 activities 
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Figure 22. Representation of the change in data after the first iterations in the MSO-1 

Step 1: Sort the activities in an ascending order based on their priority numbers and create 

two subgroups with the 1st subgroup (ℙ1) consisting of only priority-1 activities 

and the 2nd subgroup (ℙ2) consisting of priority-2 and priority-3 activities, as shown 

in Figure 21.  

Step 2: For the first iteration, consider only the activities of the 1st subgroup (ℙ1)  in the 

objective function and optimize it. At the end of the first iteration, fix the time 

window (i.e., ES time and LS time) of the activities in ℙ1 to their start times from 

the solution, as shown in Figure 22. Once the time window of the optimized 

activities gets fixed, it will remain fixed until the entire instance is solved. 

Step 3: For the second iteration, consider only the activities from the 2nd subgroup (ℙ2)  in 

the objective function and optimize it. 
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Decomposing the activities helps to reduce the computational difficulty and solve the given 

problem quickly. Fixing the time-window of the activities in ℙ1 to their start time values 

from the solution prevents any changes to the schedule during the subsequent iterations.  

Figure 23 shows the improvement in computational time for using MSO-1 over the regular 

optimization on the instances shown in Table 10. While the regular optimization ran for 

over 7 hours without generating an optimal solution for an instance with 200 activities, the 

MSO-1 solved the same instance in under 10 minutes.  

 

Figure 23. Computation time comparison between Regular Optimization and MSO-1 with an increase in instance size 

It should be noted that for computation time comparisons, only the time taken for Gurobi 

to solve the instance was considered. The pre-processing time taken in-between iterations 

to update the datasheet and to generate the new LP file was not considered because the pre-

processing time can vary depending on the software being used. The author used MS Excel 

VBA to interact with multiple software such as – notepad, excel, Gusek, and Gurobi. While 

data updating in-between iterations was done in 5s – 15s, the generation of the LP file took 

the longest and it grew with an increase in the instance size (between 20 seconds to 5 
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minutes for the number of activities ranging between 100 to 500). The interaction between 

multiple software and the pre-processing time can be reduced considerably or eliminated 

with the use of efficient software having a powerful in-built solver to optimize the problem 

directly without having to generate an LP file. 

5.1.1 Multi-step Optimization-1 vs. Regular Optimization  

To analyze the efficiency and solution quality, MSO-1 was compared with the regular 

optimization technique. Both approaches were tested on 50 instances generated on the Dal-

Randomizer. The details of the test instances are shown in Table 9. 

5.1.1.1 Computation time comparison 

 

Figure 24. Computation time comparison between MSO-1 and Regular Optimization 

 

The tests showed that MSO-1 is 25.7% ± 7.2% faster than the regular optimization at 90% 

CI, which is a significant improvement.  
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5.1.1.2 Average Priority-1 DWC comparison 

 

Figure 25. Average priority-1 DWC comparison between MSO-1 and Regular Optimization 

The MSO-1 gives identical average priority-1 DWC value to that of regular optimization 

at 90% CI. Since the priority-1 activities are weighted so greatly in the PD formulation, 

MSO-1 gives similar DWC values as regular optimization. 

5.1.1.3 Makespan comparison 

 
Figure 26. Makespan comparison between MSO-1 and Regular Optimization 
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MSO-1 gives 0.31% ± 0.6% longer makespan than regular optimization at 90% CI which 

is not statistically significant. Therefore, MSO-1 gives solutions identical to that of regular 

optimization while performing 25% faster.  

Although there are advantages of using MSO-1, it comes with certain drawbacks. This 

technique is not beneficial if the instance under consideration consists of a large number of 

activities belonging to the same priority. From the experiment discussed in this section, if 

all the 100 activities were of the same priority number, say priority-1, then creating the 

activity subgroups from the large instances would not be possible using the MSO-1 

decomposition technique. As a result, MSO-1 would perform similarly to the regular 

optimization and exhibit similarly large computational time. Thus, Multi-step optimization 

version 2 presented in the next section was developed to overcome this drawback. 

5.2 Multi-step Optimization Version 2  

This version divides the activities into n subgroups, A ⊃ 𝑆1, 𝑆2,…, 𝑆𝑛, that are iteratively 

optimized using the priority-duration formulation.  Thus, the objective functions for each 

iteration are: 

Iteration 1 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (43) 

Iteration 2 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (44) 

    ……….. 
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Iteration 𝑛 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ 𝑆𝑛

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (45) 

The constraints remain the same as before. 

 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥  𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖                                                                              ∀(𝑖, 𝑗) ∈ 𝑃     (46) 

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤  𝐵𝑘                                          ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅     (47) 

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

=  1                                                                                                               ∀ 𝑖 ∈ 𝐴     (48) 

𝑥𝑖,𝑡 ∈ {0,1}                                                                                                     ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻    (49) 

Similar to MSO-1, MSO-2 also operates on the entire problem during every iteration by 

only optimizing the activities of the “in-process” subgroup. The only difference between 

the two versions is the sorting technique used to create the subgroups. The following 

describes the steps required to implement MSO-2 with the help of the arbitrary instance 

shown in Figure 20. 
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Figure 27. Activity decomposition after applying three-level sorting to the arbitrary instance with 20 activities 

 

Figure 28. Representation of the change in data after the first iterations in the MSO-2 

Step 1: Sort the activities on three levels. The first level by priority number (smallest to 

largest), the second level by their ES time (shortest to longest), and the third level 

by their duration (longest to shortest). After sorting, create subgroups of the desired 

size, as shown in Figure 27. 
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 Step 2: Start the first iteration by considering only the activities of the 1st subgroup (𝑆1)  

in the objective function and optimize it. At the end of the first iteration, fix the 

time window (i.e., ES time and LS time) of the activities in 𝑆1 to their start times 

from the solution, as shown in Figure 28. Once the time window of the optimized 

activities gets fixed, it will remain fixed until the entire instance is solved.  

Step 3: Start the second iteration by considering only the activities of the 2nd subgroup (𝑆2)  

in the objective function and optimize it. At the end of the second iteration, fix the 

time window (i.e., ES time and LS time) of the activities in 𝑆2 to their start times 

from the solution. Once the time window of the optimized activities gets fixed, it 

will remain fixed until the entire instance is solved. 

Step 4: Repeat the steps by considering the next subgroup and follow the same until all the 

subgroups are optimized. 

Decomposing the activities using the three-level sorting technique is advantageous because 

it helps to create ideal subgroups that mimic the objective function of the PD formulation 

by ensuring that the priority-1 activities with the shortest ES time and the longest duration 

are scheduled first. Also, since the time window of the activities in the previously optimized 

subgroup gets fixed at the end of each iteration, as shown in Figure 28, it is important to 

use three-level sorting as it ensures that the activities with lower priority or shorter duration 

are not present in the earlier subgroups.  If not, the resulting schedule could be far away 

from the optimum.  

Determining the size of the subgroup is an open-problem. For testing MSO-2 on NSWPP 

instances, the activities were arbitrarily broken into subgroups of size 50. The size of the 
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subgroup is determined such that it is small enough to be solved easily in a reasonable 

amount of time using a MILP model and, at the same time, large enough to be able to 

explore relevant resource allocations. 

No time limit was imposed for the execution of the MILP model, as interrupting the 

optimization process would decrease the probability of getting near the optimum solution. 

Figure 29 shows the computation times of MSO-1, MSO-2 and the regular optimization 

tested on the instances shown in Table 10. While the regular optimization ran for over 7 

hours without generating an optimal solution for an instance with 200 activities, MSO-2 

solved the same instance in under 4 minutes while MSO-1 took a little under 10 minutes. 

 

Figure 29. Computation times comparison between Regular Optimization, MSO-1 and MSO-2  

5.2.1 Multi-step Optimization-2 vs. Regular Optimization  

To analyze the efficiency and solution quality, MSO-2 was compared with the regular 

optimization technique. Both approaches were tested on 50 instances generated on the Dal-

Randomizer. The details of the test instances are shown in Table 9. 
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5.2.1.1 Computation time comparison 

 

Figure 30. Computation time comparison between MSO-2 and Regular Optimization 

The tests showed that MSO-2 is 21.8% ± 8.5% faster than the regular optimization at 90% 

CI, which is a significant improvement.  

5.2.1.2 Average Priority-1 DWC comparison 

 

Figure 31. Average Priority-1 DWC comparison between MSO-2 and Regular Optimization 
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The MSO-2 gives 0.39% ± 0.2% larger average priority-1 DWC value than regular 

optimization at 90% CI. The result shows that the solution obtained from the regular 

optimization is better when compared to the matheuristic solution and this is expected 

because a solution obtained from a pure optimization technique is always optimum. 

However, the interesting fact is that MSO-2 gives a solution that is just 0.39% away from 

the optimum while performing 21.8% faster. Therefore, a deviation of such a small 

magnitude would be considered negligible and “forgivable” in a practical setting. 

5.2.1.3 Makespan comparison 

 

Figure 32. Makespan comparison between MSO-2 and Regular Optimization 

MSO-2 gives 0.15% ± 0.2% longer makespan than regular optimization at 90% CI. Again, 

MSO-2, on average, gives a makespan that is just 0.15% away from the optimal value while 

obtaining the result 21.8% faster. This small deviation would again be negligible in a 

practical scenario. 
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From the results discussed above, it is evident that the multi-step optimization v2 can solve 

a large NSWPP in a much shorter time while generating results that are extremely close to 

the optimum. 

5.3 Multi-step Optimization Version 3 

A third version of the proposed multi-step optimization matheuristic MSO-3 was 

developed by combining the subproblem approach and MSO-2 with the aim of improving 

solution time for solving large NSWPP instances. Instead of considering the entire instance 

during every iteration, as in MSO-2, subproblems were created out of the decomposed 

activities and then they are solved iteratively using the priority-duration formulation.  

In MSO-3, the size of the subproblem increases with every iteration as shown in Figure 33 

(i.e., Iteration i optimizes subproblem SPi made of i subgroups S1,..,Sn).  

Here, A ⊃ 𝑆1, 𝑆2,…, 𝑆𝑛  

Iteration 1 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP1

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (50) 

Iteration 2 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP2

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (51) 

    ……….. 

Iteration 𝑛 ∶                     Min 𝑍 =     
𝑥𝑖,𝑡

𝑝𝑖
𝜃

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖𝑖 ∈ SP𝑛

. (𝜀 + 𝐷𝑖)
𝛼. 𝑡 (52) 

The constraints remain the same as before. 
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 𝑡𝑥𝑗,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≥  𝑡𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

+ 𝐷𝑖                                                                  ∀(𝑖, 𝑗) ∈ 𝑃 = SP𝑛     (53) 

 𝑏𝑖,𝑘

𝑛

𝑖=1

 𝑥𝑖,𝜏

min (𝐿𝑆𝑖,𝑡)

𝜏=max (𝐸𝑆𝑖,𝑡−𝐷𝑖+1)

 ≤  𝐵𝑘                                         ∀𝑡 ∈ 𝐻, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑅     (54) 

 𝑥𝑖,𝑡

𝐿𝑆𝑖

𝑡=𝐸𝑆𝑖

=  1                                                                                                               ∀ 𝑖 ∈ 𝐴     (55) 

𝑥𝑖,𝑡 ∈ {0,1}                                                                                                     ∀ 𝑖 ∈ 𝐴, ∀𝑡 ∈ 𝐻    (56) 

The following describes the steps required to implement MSO-3 with the help of the 

arbitrary instance shown in Figure 20. 

 

Figure 33. Representation of MSO-3 
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Step 1: Sort the activities on three levels (priority, ES, & duration) as in MSO-2 and create 

subgroups of the desired size. For experimentations with MSO-3, the size of the 

subgroup is maintained at 50, but other sizes can be used. 

Step 2: Create subproblem-1 with information on the precedence pairs, processing 

duration, resource availability, and resource demand for the activities belonging to 

subgroup-1. 

Step 3: Optimize subproblem-1 and at the end of the first iteration, fix the time window of 

the activities in subproblem-1 to their start times from the solution. 

Step 4: Create the next subproblem (i.e., subproblem-2) with information on the precedence 

pairs, processing duration, resource availability, and resource demand for the 

activities belonging to subgroup-1 and subgroup-2. Since the time window of the 

activities in subgroup-1 gets fixed, it will not add to the computational time of 

subproblem-2. Also, the presence of subgroup-1 ensures that when subgroup-2 is 

being optimized, the precedence relationships are not violated. 

Step 5: Optimize subproblem-2 and, at the end of the second iteration, fix the time window 

of the activities in subproblem-2 to their start times from the solution. 

Step 6: Repeat Steps 4–5 above for each of the remaining subgroups adding one subgroup 

at a time. 

It is essential to add the activities from the previous subproblem when a new subproblem 

is created in order to satisfy the precedence constraints. When the activities are sorted on 

three levels and decomposed, as shown in Figure 27, the predecessor of an activity need 
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not be present in the same subgroup. If we create subproblems by just using every single 

subgroup, then we get the subproblems, as shown in Figure 34, where it is evident that the 

activity-3 is in the subproblem-1 and its successors, i.e., activities 4,5 and 6 are present in 

subproblem-2. Similarly, activity-19 is present in subproblem-1 and its successor, activity-

20, is in subproblem-3. In such a situation, the precedence relationship can be violated, and 

the succeeding activity can start before the start/completion of its predecessor if the 

resources are available. 

 

Figure 34. The network structure of the subproblems when created using only individual subgroups 

 

The main difference between MSO-2 and MSO-3 is that while MSO-2 operates on the 

entire instance during every iteration by only optimizing the activities of the “in-process” 

subgroup, MSO-3 optimizes individual subgroups during every iteration by including the 

activities from the previously optimized subgroup.   

Consider the arbitrary instance with twenty activities, as shown in Figure 20. The activities 

are sorted on three-level and decomposed into 4 subgroups with 5 activities each, as shown 

in Figure 27.  
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When using MSO-2, only the 5 activities from subgroup-1 will be considered in the 

objective function and optimized during the first iteration. Although the remaining 15 

activities are not considered in the objective function, the solver still roughly schedules the 

remaining activities in any timeslot within their time window that satisfies the precedence 

and resource constraints. This rough scheduling of the remaining activities adds to the 

computation time during initial iterations. As a result, the total solve time increases. MSO-

3 eliminates this process by only optimizing individual subgroups at a time. This means, 

only the 5 activities from subgroup-1 will be considered in the subproblem-1 and it gets 

optimized during the first iteration. For the second iteration, although the activities from 

the previously optimized subgroup (subgroup -1) is included while solving the subproblem-

2, the computation time to solve the subproblem-2 will not be affected since the time 

window of the first 5 activities will be fixed to their start time values from the solution as 

shown in Figure 35. Therefore, no matter how large the problem, MSO-3 solves individual 

subgroups during every iteration and, in turn, solves the entire instance quickly.  

 

Figure 35. Representation of the change in data after the first iterations in the MSO-3 
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Figure 36 shows the improvement in computational time for using MSO-3 over MSO-2 on 

the instances shown in Table 10. While MSO-2 took around 4 minutes to solve an instance 

with 200 activities, MSO-3 solved the same instance in under 0.5 minutes. 

 
Figure 36. Computation time comparison between MSO-3 and MSO-2 

 

To further analyze the speed and solution quality, MSO-3 was compared with regular 

optimization and MSO-2. All three approaches were tested on 50 instances generated on 

the Dal-Randomizer. The details of the test instances are shown in Table 9. 
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5.3.1 Computation time comparison  

 

Figure 37. Computation time comparison between MSO-3 and Regular Optimization  

 

The test showed that MSO-3 is 59% ± 4% faster than the regular optimization at 90% CI, 

which is a significant improvement.  

 

Figure 38. Computation time comparison between MSO-3 and MSO-2  

 

MSO-3 is 45% ± 3.3% faster than MSO-2 at 90% CI, which is a significant improvement.  
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5.3.2 Average Priority-1 DWC and Makespan comparison 

The average priority-1 DWC and makespan values produced by MSO-3 are similar to those 

obtained for MSO-2, as presented in Figures 31 and 32. Therefore, MSO-3 gives the 

average priority-1 DWC that is just 0.39% away from the optimal value and the makespan 

that is only 0.15% away from the optimal value while performing 59% faster than the 

regular optimization. Thus, by combining the benefits of the subproblem approach and 

MSO-2, the proposed matheuristic was made much more efficient for tackling large 

NSWPP instances. 

5.4 Influence of network indicator on the computation time of MSO-3 

This section discusses the influence of network indicators on the computational effort 

required to solve an instance using MSO-3. Table 9 represents the network characteristics 

of the Dal-Randomizer instances used for experimentation. When using MSO-3, the 

network indicator value changes during every iteration because the main problem is 

decomposed into subproblems and these subproblems have different network indicators, 

as shown in Figure 39.  

For example, consider an instance with 100 activities being solved using MSO-3. Let’s 

assume that the size of the subgroup is 50. When the main problem is sorted and 

decomposed, it gives 2 subgroups with 50 activities each. The 1st subproblem will optimize 

the activities in subgroup-1. The 2nd subproblem consists on activities from subgroups 1 

and 2. Though, we include the activities from the 1st subproblem when solving the 2nd 

subproblem, it does not have any influence over the computational effort to solve the 2nd 

subproblem as the time window of the 1st subproblem gets fixed at the end of the iteration. 

The only reason why we include the activities from the 1st subproblem is to ensure that the 
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precedence constraints are satisfied. So technically, only 50 activities are optimized during 

every iteration. 

 

Figure 39. Changes in network characteristics when the main problem is decomposed into subproblems in MSO-3 

For studying the influence of the network indicators on the computational speed, the values 

of NC, RC and DR were calculated for every subproblem solved when experimenting on 

the fifty Dal-R100 instances shown in Table 9 and later analyzed to understand the trend.  

 

Figure 40. Influence of Resource Constrainedness on the computation time for MSO-3 

From Figure 40, the average computation time shows an increasing trend with an increase 

in the resource constrainedness value. The results are in accordance with the chart shared 

by [82]. From Figure 11, the area between RC values ranging from 0.25 to 0.78 is called 

the “NP-hard region” or the “phase transition region” where the complexity of an instance 

increases and then drops which resembles a bell-curve pattern [82]. The computational 
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effort is the greatest when RC value is between 0.5 - 0.73. [82] also mentioned that though 

the computational effort is greatest in the phase transition region (denoted as NP-hard 

region in Figure 11), the instance need not be computationally difficult since the variance 

is also high in that region [82]. This explains the rise and fall in computational time even 

when RC value is within the “NP-hard region”. In addition, the network complexity (NC) 

value also keeps changing during every iteration and it also has an influence over the 

computational time. 

 

Figure 41. Influence of Network Complexity on the computation time for MSO-3 

From Figure 41, the average computation time shows a decreasing trend with an increase 

in the network complexity value. A high network complexity value denotes a high number 

of precedence pairs. If the number of precedence pair is high, then the computational effort 

required would be less because of the smaller solution space. Since other contributing 

factors, such as the RC value, keeps changing with every iteration, a rise in computational 

time could be seen even when the NC value is high. 
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Figure 42. Influence of Disjunction Ratio on the computation time for MSO-3 

From Figure 42, the average computational time shows a decreasing trend with an increase 

in the DR value. Since DR is the product of RC and NC and because of high variance of 

RC on its influence over the solution time, a rise in computational time could be seen even 

when the DR value is high. 

5.5 SSGS vs. MSO-3 

The results from experimentation on MSO-3 shows that it is capable of producing near-

optimal solution for NSWPP instances. Since it is still a heuristic, it is important to compare 

MSO-3 with existing state-of-the-art heuristics to study its benefits. 

The most commonly used heuristic for solving RCPSP is the serial schedule generation 

scheme (SSGS). The SSGS is a scheduling algorithm that makes use of the activity 

increment approach to schedule each project activity at the earliest possible time within 

their precedence and resource constraints [91]. The quality of the schedule generated by 

the SSGS depends on the sequence of activity in the given data because it moves along the 

list from the top to the bottom while selecting and scheduling the next activity in the list at 

every step [91].  
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5.5.1 Experiment 1 

In this experiment, a comparative test for average priority-1 DWC and makespan was 

conducted between SSGS and MSO-3 on instances from the Dal-Randomizer. The test was 

conducted on 5 sets of 10 instances each, with the number of activities in each set 

increasing in increments of 100 (set 1 consists of 10 instances with 100 activities, set 2 

consists of 10 instances with 200 activities, etc.) The details of the test instances are shown 

in Table 11. 

 

Table 11. Characteristics of test instances used for the SSGS and MSO-3 comparison 

Three-level sorting, as in the case of MSO-3, was employed on the activities before solving 

each instance in SSGS. The same instances were also solved using MSO-3 and resulting 

solutions were compared using a t-test. For solving the instances with MSO-3, the activities 

were broken into subgroups of 50. 
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5.5.1.1 Average Priority-1 DWC comparison 

 

Figure 43. Average Priority-1 DWC comparison between SSGS and MSO-3 

 

Table 12. Percentage mean difference and margin of error for Average Priority-1 DWC between SSGS and MSO-3 

From Figure 43, it is evident that the average priority-1 DWC value given by the MSO-3 

is always statistically better when compared to SSGS irrespective of the instance size.  This 

is because the MILP model searches the solution space in-depth when compared to the 

heuristics.  

Table 12 reads as follows: For instances with 100 activities, the SSGS gives 8.6% ± 2% 

larger average priority-1 DWC value when compared to MSO-3 at 90% CI.  
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5.5.1.2 Makespan comparison 

 

Figure 44. Makespan comparison between SSGS and MSO-3 

 

Table 13. Percentage mean difference and margin of error for makespan between SSGS and MSO-3 

 

Table 14. Mean and Maximum difference in makespan between SSGS and MSO-3 

Table 13 shows the percentage mean difference and margin of error for makespan between 

SSGS and MSO-3. Though the results are not statistically significant in all cases, the SSGS, 

on average, gives a longer makespan in comparison to MSO-3 irrespective of the instance 

size, as shown in Table 14.  
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5.5.1.3 Computational Time for Multi-Step Optimization Version 3 

The computational speed of a heuristic like SSGS is not surprising. The instances with 500 

activities were solved in under 3 seconds with the SSGS. The interesting part was the speed 

at which the MSO-3 was able to solve the same instances while generating better quality 

solutions. From Figure 45, the instances with 500 activities were solved in under 35 

seconds on average. This shows that the multi-step optimization can be used to schedule 

large projects quickly.  

 

Figure 45. The computation time for MSO-3 

The project leaders and schedulers consider it acceptable to wait for 1-2 minutes for an 

automatically generated schedule for a large NSWPP project [1], [20]. Therefore, even 

though MSO-3 is not as fast as the SSGS, it is still beneficial as it will produce a solution 

of better quality than the SSGS within the permissible time. 

5.5.2 Experiment 2  

This section explains the influence of the size of the subgroup on the computational speed 

and solution quality for MSO-3. When using MSO-3, if the size of the subgroup is small, 

then it leads to a poor quality solution where the higher priority activities will not be 



94 
 

effectively scheduled. If the subgroup is very large, then the quality of the solution will 

improve, but the computational effort required to solve the problem increases significantly. 

Figures 46 and 47 show that, as the size of the subgroup increases, the average priority-1 

DWC value improves but at the cost of computational efficiency. The improvement is very 

much prominent when the size of the problem is large. 

 

Figure 46. Influence of subgroup size on Average Priority-1 DWC for MSO-3 

 

Table 15. Percentage mean difference and margin of error for Average Priority-1 DWC for different subgroup sizes 
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Figure 47. Influence of the subgroup size on the computation time for MSO-3 

 

Table 16. Average percentage increase in computation time for MSO-3 with an increase in subgroup size 

The computational time for instances with 400 activities shows a more significant increase 

than any other instances, even higher than the 500 activity instances when the subgroup 

size is increased. The reason for this is firstly, due to small sample size, a high variance in 

computation time is seen for 400 activity instances and secondly, the increase is because 

of the characteristics of the subproblems. As mentioned in Section 5.4, the resource 

constrainedness, the number of precedence pairs and other factors keep changing with 

every iteration. So, even though we are optimizing only 50, 65 or 80 activities at a time, 

the computational time can vary greatly.  
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Figure 48. Influence of subgroup size on the Makespan for MSO-3 

 

Table 17. Percentage mean difference and margin of error for Makespan between different sized subgroups with an 

increase in instance size 

For the makespan, however, as the size of the subproblem increases, the makespan can 

extend, reduce, or remain the same. Since reducing makespan is not our primary objective, 

when the higher priority activities get scheduled at the earliest, the lower priority activities 

get pushed a little further. From Table 17, though the makespan can get extended, the 

changes are not significant because of high variability.  
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Since the goal in an NSWPP is to obtain a good quality solution quickly and be able to do 

frequent rescheduling when required due to the high uncertainty in the naval environment, 

subgroup size 50 was used for the experimentation as it offered a better speed/quality trade-

off. 

 

5.5.3 Experiment 3 

The last experiment uses Gurobi’s capability of accepting an initial solution to generate a 

feasible incumbent objective function within a couple of seconds and then improve the 

solution further to reach the optimum eventually.  In this case, an initial solution for the 

given instance generated using the SSGS is sent to Gurobi along with the LP file to be 

solved. This method is labelled SSGS+optimizer. 

In this experiment, the solution quality of SSGS+optimizer and MSO-3 were compared 

after a time limit of 600 seconds. For testing, 18 Dal-Randomizer instances with an average 

of 512 activities and 53 resource types were considered. The details of the test instances 

are shown in Table 18. The network structure of instances used for this experiment was 

similar to that shared by Thales, as shown in the Figure 49. Since these instances had a 

higher network complexity, a larger subgroup of 150 activities was selected to experiment 

with MSO-3, as it would be beneficial to get a near-optimal solution without overly 

increasing the computational time. In addition, while testing MSO-3, a maximum time limit 

of 300 seconds was enforced for every iteration. 
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Table 18. Characteristics of test instances used for comparing SSGS+Optimizer and MSO-3 

 

Figure 49. The network structure of the Thales shared test instances 

 

Figure 50. Average Priority-1 DWC comparison between MSO-3 and SSGS+Optimizer 
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Figure 51. Computation time comparison between MSO-3 and SSGS+Optimizer 

The experimental results show that MSO-3 gives 7% ± 1.2% smaller priority-1 DWC value 

when compared to SSGS+optimizer while performing 76% ± 6.5% faster at 90% CI. The 

results show that even without an initial solution, the MSO-3 can perform very efficiently 

and deliver a much better solution than the state-of-the-art heuristics. 
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Chapter 6: Conclusion and Future 

Research 
Generating the baseline schedule, managing the activities, and controlling the risks arising 

from the NSWPP activities is a very onerous yet interesting venture. The industry-specific 

network structure, priority constraints, space constraints, and operational constraints 

witnessed in the NSWPP are an addition to the classic resource-constrained project 

scheduling problem. Using heuristic algorithms and commercial software running on 

heuristics to schedule such projects results in solutions that are generally far from the 

optimal value. In a challenging environment such as the NSWPP, a heuristic would make 

the project last longer by giving an overdrawn makespan.  

The matheuristic method proposed in this paper helps to intelligently schedule the NSWPP 

activities in a practical way that is mandated by the naval industry. The experimental results 

show that the multi-step optimization method can schedule large RCPSP instances in a 

short time frame while generating a near-optimal solution. 

Finally, the comparative test between serial schedule generation scheme (SSGS) and multi-

step optimization shows that the latter provides a better-quality solution. For the makespan, 

while the SSGS can produce shorter makespan than multi-step optimization at times, on 

average, the multi-step optimization produces a shorter makespan than the SSGS. 

Many potential areas for research were identified during the project, but only a few could 

be explored due to time constraints. The following are potential areas where the 

matheuristic can be extended. 
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The multi-step optimization could be extended to solve the multi-mode resource-

constrained NSWPP project where activities can be given an option to execute in a different 

mode with each mode having a unique activity duration and resource demands. 

Parallel to this research, [19] conducted research on rescheduling NSWPP projects using a 

multi-mode RCPSP model to reduce the deviation days of delayed activities with regards 

to the baseline schedule. It would be interesting to use multi-step optimization for 

rescheduling the NSWPP. The single-mode multi-step optimization can be used to generate 

an aggregated schedule for the entire project, which will act as a baseline. Later during the 

project monitoring and control phase, the multi-mode multi-step optimization can be 

integrated with Bertrand’s re-scheduling formulation to re-schedule a small group of 

activities that will execute in the near future, say around 50. This approach could optimally 

assign overtime to the activities that have the biggest impact on the baseline schedule and 

prevents change to the start time of all the activities in the schedule. 

The priority-duration formulation may be tested for varying resource availability. This is 

an interesting topic under the RCPSP rescheduling policy. Not only does the varying 

resource availability bear the tendency to break the baseline schedule, but there can also be 

situations where it can help to improve the baseline schedule by planning the activities to 

execute early due to an increase in resource availability.   
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Appendices 
 

Appendix - 1 

 

Figure 52. The network structure of Polytechnique University shared test instance 

 

 

Figure 53. The network structure of Dal- Randomizer test instance 
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Appendix – 2 

The priority- duration formulation and example data format 

param H:= 40;  #Planning Horizon 

param R:= 10;  #Resource Type 

param n:= 10;  #No. of activities 

  

set A, default{1..n}; # set of activities 

set P within A cross A; #predecessor pairs 

set RR, default {1..R}; #set of resources 

param D{i in A}; #Duration of activity 

param RD{i in A, k in RR}; #Resources demand for activity i 

param AV{k in RR}; #Resource Availability 

param ES{i in A} ; #Early Start time 

param LS{i in A} ; #Late Start time 

param PR{i in A}; #priority of the activity 

  

var x{i in A, t in ES[i]..LS[i]}, binary; 

  

minimize MS:  sum{i in A,t in ES[i]..LS[i]}  t * x[i,t] * ((1/PR[i])**5)* (0.01 + D[i])**1.1;  

  

s.t. one{(i,j) in P} : sum{t in ES[j]..LS[j]} t*x[j,t] >= sum{t in ES[i]..LS[i]} t*x[i,t] + D[i]; 

s.t. two{t in 0..H,k in RR}: sum{i in 1..n, s in max(t-D[i]+1,ES[i])..min(LS[i],t)} RD[i,k]*x[i,s] <= AV[k]; 

s.t. three{i in A}:sum{t in ES[i]..LS[i]} x[i,t] = 1; 

  

solve;  

  

display MS,x; 

  

end; 

  
data;             

             

set P :=           

(2,3),        

(6,7),        

(8,9);        

             

param: D ES LS PR:=         

1 5 0 95 1         

2 16 0 84 3         

3 17 16 83 3         

4 4 0 96 1         

5 8 0 92 3         

6 8 0 92 1         

7 16 8 84 1         

8 4 0 96 2         

9 18 4 82 2         

10 7 0 93 2   ;  
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param AV   :=           

1 35            

2 35            

3 35            

4 35            

5 35            

6 35            

7 35            

8 35            

9 35            

10 35   ;           

             

param RD: 1 2 3 4 5 6 7 8 9 10   := 

1 0 0 0 0 7 0 0 0 0 0   

2 0 0 0 26 0 0 0 0 0 0   

3 0 0 0 0 0 10 32 0 0 0   

4 0 0 0 0 0 0 0 0 0 0   

5 1 0 0 0 18 0 0 0 0 0   

6 0 0 0 0 16 0 0 0 0 0   

7 0 0 0 0 16 0 35 0 0 0   

8 0 0 0 0 0 0 0 0 0 35   

9 0 1 0 0 0 0 0 0 0 0   

10 1 5 0 0 0 0 0 0 0 0  ; 

             

end; 


