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ABSTRACT 

In parallel to growing building electrification initiatives, the cost of lithium-ion batteries 

has fallen by over 85% since 2010. These factors have driven interest in using lithium-ion 

batteries to reduce demand charges in commercial and industrial buildings. 

The research objective was to develop new models and control strategies for using batteries 

for demand charge management in Nova Scotia’s commercial and industrial sector with 

basic monthly billing data for peak demand prediction. This research used four years of 15 

minute electrical load data for 248 commercial buildings, across eight building categories, 

from Nova Scotia Power to explore the relationships between the peak demand, average 

load and monthly load factor of a building and the potential for demand savings, categories 

of buildings that are of interest, and the peak demand prediction accuracy with basic 

monthly billing data.  

A new MATLAB battery model was developed to perform iterative demand reduction 

simulations across a range of battery capacities, inverter power rates, and demand reduction 

targets. New visualization methods were developed to sort results by both building size and 

load factor so trends between buildings load characteristics and demand savings results can 

be identified quickly. 

Key findings of the research were that buildings with an average monthly load factor under 

40% and an average load of less than 50 kW are the best candidates for using a battery in 

a demand charge management application. There were limited opportunities in the Hotel 

and Utility categories because of the high average loads and average monthly load factors. 

While in the Commercial, Retail, and Industrial there are strong opportunities for demand 

charge reduction, provided the buildings meet the average load and average monthly load 

factor guidelines above. Finally, there are diminishing returns for demand savings with 

larger battery pack sizes. Smaller battery packs offer the most demand savings per unit of 

battery capacity and the largest percentage of total demand reduction per unit of battery 

capacity. 
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CHAPTER 1 INTRODUCTION 
 

Despite interest in behind-the-meter (BTM) battery energy storage systems (BESS) to 

reduce electric utility bills, there has not been significant market uptake to date. There 

are still market barriers due to equipment cost and there are a lack of performance 

models and engineering consultants with capability and expertise to assess project 

sizing and economics quickly and accurately for BESS. The following thesis explores 

the opportunities of BESS for demand charge reduction in Nova Scotia, Canada for a 

variety of commercial, institutional, and industrial (C&I) customer types. New sizing 

methods and screening guidelines are developed that can be used for building owners, 

operators, and consultants in shortlisting candidate sites and sizing for BESS. 

 

1.1 Background 
 

 

According to the International Energy Agency (IEA) [1], buildings, and their 

construction, account for 40% of direct and indirect global emissions and more than 

33% of final energy use. Buildings are the third highest emissions sector of the 

economy in Nova Scotia, representing 14% of all emissions [2]. Reducing the 

emissions impact of buildings is of increasing importance given rising concerns on the 

affects of climate change. Part of the emissions reduction effort will be focused on 

electrification for space heating, including outright bans on fossil fuels in some cities, 

electrification of buildings, and on-site charging infrastructure for electric vehicles [3] 

[4]. This move towards electrification is expected to drive increased demand for 

electrical energy which will put increased stress on the electrical grid [5].  

 

The electricity grid produces and consumes electrical power in real time with virtually 

no energy storage. Utilities are required to have suitable generation, transmission, and 

distribution capacity available to always serve all customer loads. Electric utilities 

charge their customers for the cost to produce electrical energy as well as for the 

infrastructure required to deliver that energy to customers. Depending on the customer 

type, utility tariffs can be in a form of energy charges ($/kWhelc) and or demand 

charges ($/kWpd/mo or $/kVApd/mo).  
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Residential tariffs tend to blend energy and infrastructure costs into one energy charge 

($/kWhelc), while demand charges ($/kWpd/mo) are typically applied to larger 

commercial, institutional, or industrial (C&I) customers to compensate utilities for 

their infrastructure investments required to deliver peak power. The relationship 

between these charges is distinct to a particular utility jurisdiction and each customer 

class, with some very large customers having custom tariffs.  

 

Demand charges typically represent 30-70% of a C&I ratepayer’s electric utility bill 

depending on the demand charge rate, energy rate, and load factor of a particular 

ratepayer [6]. This research focuses on Nova Scotia, and Nova Scotia Power (NSP) 

defines Load Factor (LF) as the total amount of electrical energy used by a customer 

in a billing period, divided by the customers peak demand in the billing period, 

multiplied by the number of hours in the billing period as shown in Equation (1) 

below. Load factor is unitless and expressed as a percentage that can range from 0% - 

100%. 

 

𝐿𝐹 =  
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝐵𝑖𝑙𝑙𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑 (𝑘𝑊ℎ𝑒𝑙𝑐)

𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝐵𝑖𝑙𝑙𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑 (𝑘𝑊𝑝𝑑)  ×  𝐻𝑜𝑢𝑟𝑠 𝑖𝑛 𝐵𝑖𝑙𝑙𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑 (ℎ)
 (1)  

 

Demand charges allow utilities to recover the costs of infrastructure from those 

ratepayers who contribute to the need for infrastructure capacity. Building owners will 

be subject to increasing demand charges on their bill, even if peak demand charge 

rates ($/kWpd/mo) remain constant, as building heating systems are electrified, and 

charging stations are added for electric vehicles (EVs). Research from the Rocky 

Mountain Institute indicates that most EV charging in commercial buildings takes 

place in the morning which could shift building peak loads or create a dual peak load 

profile, putting upward pressure on demand charges for buildings [7].  

 

In contrast to billing for electrical energy consumption, utilities use an interval meter 

to determine the demand charge by measuring the maximum average rate of energy 

consumption over a defined time interval, for example 15 minutes (min) [8]. Since 

demand charges are based on the maximum average rate of electrical energy 
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consumption within a given time interval, they are influenced by how a ratepayer 

consumes electrical energy and the shape of their load with respect to time.  

 

In parallel to the growing demands for electrical energy, the cost of lithium ion 

batteries (LIBs) have declined significantly in recent years. Bloomberg has reported 

that LIB costs have fallen by over 85% since 2010 [9], dropping from approximately 

$1,160 USD per kWh of capacity ($/kWhcap) in 2010 to $137/kWhcap in 2020. Shown 

below in Figure 1 is cost declines in LIB pack pricing from 2010 to 2020 using data 

from Bloomberg [10] [11] [12] . The Bloomberg pricing includes total pack prices 

over the 2010-2020 timeframe, and breakouts of the cell costs and balance of pack 

costs from 2013 to 2020.  

 
Figure 1: LIB Pack Pricing 2010-2019 [9] 

LIB price declines to date have primarily been driven by increased production 

volumes and adoption of battery powered consumer electronics including cell phones 

and laptops. LIB costs have also been driven down by the rise of electric vehicles 

(EVs) and electricity grid scale energy storage. Bloomberg estimates that out to 2025, 

EVs will be the primary driver of new LIB battery capacity as shown in the demand 

forecast below in Figure 2 using Bloomberg data. 
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Figure 2: LIB Demand Forecast for Consumer Electronics and Electric Vehicles [13] 

 
Bloomberg is projecting that by 2030 the price of an LIB battery pack will be 

$62/kWhcap, in 2018 dollars, as shown below in Figure 3 using their data. 

 
Figure 3: Bloomberg Price Forecast for LIBs to 2030 [12] 

The cost reductions to date for LIBs, as well as projections of future price declines, 

have increased interest in BTM BESS to reduce demand charges in C&I buildings.  

 

A BESS can reduce the demand charge of a C&I building by discharging during a 

peak demand period. The result of the battery discharging is a reduction of the net 
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peak demand that that the building draws from the electrical grid. The net peak 

demand is measured by the interval meter on the building and is what the customer is 

billed for. It should be noted that the discharge strategy for demand charge 

management is different from energy arbitrage with Time-of-Use (TOU) rates. In 

contrast to using a battery to exploit a time-based differential in energy rates set by the 

utility, demand charge management is much more dependent on the building’s pattern 

of electrical energy usage and must forecast upcoming demand peaks. 

  

According to the National Renewable Energy Laboratory (NREL) [14], the economic 

viability of BTM energy storage for demand reduction is linked to the demand charge 

tariff in each utility jurisdiction and the amount of demand that can be reduced from 

the peak demand of a building. Research from NREL indicates that over 25% of 

commercial customers in the US are in jurisdictions where the demand charge tariffs 

are more than $15/kWpd/mo which NREL suggest presents opportunities for BTM 

energy storage [8]. 

 

1.2 Commercial and Industrial Buildings in Canada 
 

Electrical energy generation and consumption has been growing steadily in Canada for 

decades as shown below in Figure 4 using data from BP Statistical Review of World 

Energy [15]. The data from BP shows that economy wide electricity generation in 

Canada rose by nearly 43% from 1985 to 2019.  
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Figure 4: Gross Annual Electricity Generation in Canada 

 

Increasing electrical usage for the C&I sector in Canada is reported in the Natural 

Resources Canada (NRCan) National Energy Use Database (NEUD) from the Office of 

Energy Efficiency (OEE). Data from NRCan [16] indicates that total electricity 

consumption has increased 43% from 1990 to 2018 as shown below in Figure 5. 

Specific electricity consumption, measured in energy use per meters squared of building 

space (kWhelc/m2), has declined 5% due to energy efficiency initiatives. 

 

 
Figure 5: NRCan Commercial & Institutional Energy Use [16] 
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Overall energy usage in Canadian C&I buildings is changing as well. Auxiliary 

equipment (ex. computers) showed the largest increase from 1990 to 2018, increasing 

approximately 118%, due to an increased number of auxiliary devices per person and 

increased reliance on computers in the workspace as shown below in Figure 6 with data 

from NRCan.  

 
Figure 6: End Use of Energy in Canadian Commercial and Institutional Buildings 

Natural gas remains the primary source of space and water heating in Canada. In 2000 it 

accounted for 51%, and 2018 in 49%, of C&I primary energy consumption while 

electricity consumption went from 38% to 46% over the same period. The proportion of 

heating energy delivered by natural gas is likely to continue to decline, and electricity 

consumption increase, over time due to emissions reduction efforts. The Canadian Green 

Building Council (CaGBC) [4] is recommending that 20% of all buildings over the age 

of 35-years fuel switch to electricity for low and medium emissions electric grids. 

 

In their 2020 Integrated Resource Plan (IRP), NSP  [17] found that increasing 

electrification for heating and transportation will put upward pressure on both total 

energy production and peak demand in future years. Under a high electrification scenario 

and low demand side management scenario, NSP estimates that total energy 

consumption could increase 9% from 11,531 GWhelc in 2021 to as much as 12,572 

GWhelc in 2030 as shown in Figure 7. Under the same scenario NSP estimates that peak 

demand will increase 26% from 2,205 MWpd in 2021 to 2,784 MWpd in 2030, as shown 
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in below in Figure 8. 

 

 
Figure 7: NSP Annual Energy Sales Forecast 2021-2045 [17] 

 

Figure 8: NSP Peak Demand Forecast 2021- 2045 [17] 

Increases in the NSP peak demand may necessitate infrastructure investments that result 

in higher demand charges for C&I customers to compensate the utility for those 

infrastructure investments. Studying the opportunities to use a BESS for demand charge 

management is important given the moves towards electrification, the resultant upward 

pressure on utility infrastructure requirements, and the declining BESS costs. 
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1.3 Relevance, Objective and Hypothesis 
 

According to McLaren et al. [18], approximately 20% of the costs for a commercial 

energy storage project are related to Engineering, Procurement, Construction, and 

Development/Soft Costs as shown in below in Figure 9 using data from McLaren et al.’s 

presentation: Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects 

in the U.S. The total capital costs assumed in this scenario is $883/kWhcap. 

 

 
Figure 9: Breakdown of Costs for Commercial BESS 

 

The questions that this research is aiming to address are as follows: 

 

• What correlations exist between building monthly load characteristics (ex. peak 

demand, average load, load factor) and the demand reduction potential of a 

BESS at that site? 

• Are there specific building categories (ex. hotel, educational, health care etc.) 

that are more conducive to energy storage due to their load characteristics? 

• What level of prediction accuracy of peak demand can be obtained with basic 

interval meter billing information (ex. peak demand and total energy 

consumption)? 

• Are there normalized recommended storage and inverter sizing that can be made 

on a per kWelc basis based on the buildings average load or peak load during a 
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billing cycle? 

• What level of demand savings could a commercial building owner expect to see 

with a BESS installed and how is this related to building load characteristics and 

categories? 

 

The objective of this research is to develop new models and control strategies for BESS 

used for demand charge management in Nova Scotia’s C&I sector using basic input data 

from a building owner or operator. The research will evaluate the technical performance 

of a range of BESS sizing and power characteristics and use the results to produce 

guidelines that can be used by building owners and project developers to quickly screen 

candidate buildings for BESS eligibility. The ability to quickly screen candidate 

buildings will assist in reducing the soft costs (e.g. engineering, customer acquisition 

and project development) and providing greater confidence and reduced sales cycles for 

project developers of BESS installations identified by McLaren et al. above.  

 

Currently, building owners or operators that may be considering energy storage have 

limited tools or rules to determine the approximate size of the energy storage system and 

indicative peak demand charge savings in kilowatts (kWpd). Additionally, building 

owners do not have a method to identify the approximate cycling use, or energy 

throughput, of the battery under a demand charge reduction control strategy. The cycling 

of the battery, or energy throughput, can be used as an indicator of lifespan using cell 

cycling curves from the original equipment manufacturer. The expected battery lifespan 

sets the technical upper bound on an acceptable simple payback period for the project.  

 

A lack of guidelines in this space means that typically sub-metering projects and 

engineering studies need to be conducted to properly evaluate the potential for battery 

energy storage for a particular building. Site specific engineering is both time and cost 

intensive and will have a limiting impact on large scale adoption of BESS in buildings.  

 

This research contributes new research results by concentrating on developing peak 

demand prediction methodologies and normalized battery sizing guidelines based on 

simple building load characteristics. 
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The hypothesis of the research is that the repeatability of the monthly load factor of the 

building and average load will be strong indicators of energy storage sizing and 

operation in a practical application for a given C&I building.  
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CHAPTER 2 LITERATURE REVIEW 
 

The literature for grid-tied BESS focuses predominately on the residential market and 

specifically for applications with solar photovoltaics (PV). It is typical to analyze 

BESS under a TOU utility rate structure rather than a demand charge structure. The 

TOU use case focuses primarily on using the BESS for energy arbitrage between high 

and low energy rate ($/kWhelc) periods during a day while demand charge management 

focuses on reducing the peak demand during the billing period.  

Most of the research that does look at demand charge reduction focuses on a limited 

building sample size or uses a representative building load profile from a synthesized 

dataset rather then actual building load data. Research that examines the relation 

between load factor and battery capacity utilizes load factor on an annual basis rather 

then examining it over the typical billing period of one or two months. This approach 

may lead to results that are skewed based on seasonal variation in building usage, for 

example an educational facility. 

 

2.1 Demand Charges 
 

MacLaren et al. [8] study and summarize utility tariffs throughout the United States to 

explore market opportunities for BESS. They find over 25% of the commercial 

customers in the US have access to utility tariffs with demand charges over 

$15/kWpd/mo. The research also found that approximately 15% of commercial 

customers are eligible for rates with demand charges more than $20/kWpd/mo. 

However, there can be significant variability in demand charge rates within a given 

state based on the different utilities that may operate in the state. As an example, one 

utility in New York has maximum demand charge over $50/kWpd/mo, but an average 

across all utilities in New York is less than $10/kWpd/mo. This study points to the 

markets that may have economic potential in the US for BESS, the scale of the market, 

and the regional variability of electricity tariffs. MacLaren et al. provides a list and a 

map of jurisdictions where for BESS may be economical for demand charge 

management due to the demand charge rates, but they do not present analysis based on 

building load profiles, any economic analysis, sizing tools or discharge strategies. 
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Long et al. [19] used a statistical analysis to explore the economics of BESS to reduce 

demand charges in commercial buildings using the US Department of Energy (DOE) 

Commercial Reference Buildings dataset. The DOE Commercial Reference Buildings 

are referenced several times in the literature and are available for public download 

from the DOE’s Office of Energy Efficiency and Renewable Energy website [20]. The 

Commercial Reference Buildings were developed by NREL and detailed in research by 

Deru et al [21]. A regression analysis was performed to rank the importance of 

variables in determining the economics of a project. The variables included battery cost 

($/kWhcap), demand charge rate ($/kWpd/mo), the average of the twelve months’ peak 

demand over the year, among others. Long et al. [19] proposed the Load Profile Metric 

(LPM) characteristic to test the importance of the building’s load shape on battery 

sizing and economic returns. First, the efficiency of a given BESS at reducing a 

buildings demand is defined as the difference between the old and new peak demand 

divided by the BESS power rating (kWinv). Next, the Load Profile Metric was 

calculated by normalizing all the building load profiles by their annual energy 

consumption and assigning them equal annual energy consumption. The paper does not 

specify the annual energy consumption that was assigned to all buildings. Next, a 

series of demand reduction tests are run on the adjusted load profiles using battery 

sizes ranging from 0-30 kWhcap in steps of 2.5 kWhcap. It is not stated in the paper if the 

model uses the known demand peak from the building load profile or a predicted peak. 

The demand reduction efficiency results of those trials are then averaged to produce a 

LPM value for that building category. Results show that demand charge rate ($/kWpd) 

and battery storage cost ($/kWhcap) are the two key indicators of project economic 

viability. Additionally, it was found that the LPM was not a strong indicator of project 

economic viability, but it was a strong indicator of battery sizing. This research 

concludes that the technical considerations that influence battery sizing are based on 

load shape, while the economics are primarily driven by the demand charge rate 

relative to the battery cost. Based A Statistical Analysis of the Economic Drivers of 

Battery Energy Storage in Commercial Buildings by Long et al. [19], opportunities 

exist to use actual building load data to explore additional indicators that may be better 

predictors of economic viability of BESS. 

 



14  

D’Aprile et al. [22] present results from a proprietary BESS dispatch model that 

considers real world load profiles, battery characteristics and electricity tariffs. Based 

on their findings, most North American C&I customers have breakeven cost for BESS 

at demand charge rates of $9/kWpd/mo and BESS costs of approximately $400/kWhcap. 

Although it is not specifically stated what time resolution the building load profiles 

were, the commentary notes that 15 min or lower resolution is needed to identify 

project opportunities. Additionally, the results indicated that increasing the charge and 

discharge rate of the BESS can improve its economic viability. How the charge and 

discharge rate affect the economics is not quantified in the paper but is an important 

consideration for project developers, particularly as BESS technology advances allow 

for higher rates. D’Aprile et al.’s research specifically references modelling and data 

collection as being key barriers to the identification and ranking of BESS opportunities 

which limits market adoption. D’Aprile et al. state that access to real world building 

load profile data will be important to determining which BESS projects will be 

economic due to the variability of how different buildings use energy during the day. 

They also conclude that the use of building load profile data will be critical to 

determining the viability of BESS for C&I customers.  

Gagnon et al. [23] studied the affects of BESS combined with solar PV to reduce 

demand charges for commercial customers. Their research studied a variety of demand 

charge rate structures including seasonal variation in demand rates, billing frequency, 

time averaging interval, coincidence with system peak periods and tiered demand 

billing. The building load profiles used were the US DOE Commercial Reference 

Buildings. The paper notes that common averaging windows for demand charge 

calculation typically range between 15 min and 60 min. The smallest time step 

analyzed in the report was a 30 min demand charge window which is specifically 

identified as a limitation by the authors. No explanation is given to the selection of the 

30 min minimum, but the load profile time step for the US DOE Commercial 

Reference Buildings is 1.0 hour (h) and the solar data used in the research is 30 min, 

which is likely why the minimum analysis period was 30 min. The authors note that 

savings tend to decrease with longer averaging periods, so the 15 min demand charge 

window would probably result in better savings then those presented in the paper. Ten 

solar system sizes and ten battery system sizes are analyzed. The solar system sizes are 
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in 10% increments of the annual energy consumption, while the battery inverter system 

sizes are in 10% increments of the building lifetime peak demand. BESS capacity 

(kWhcap) was designed for 3.0 h operation at the inverter rating. This approach means 

different battery and inverter sizes will be used on each building, with none of them 

likely to exactly correspond to commercially available products. The battery discharge 

strategy assumes perfect foresight of the peak demand in the billing period. Gagnon et 

al. show that that increasing storage size has diminishing returns as the peaks become 

wider which requires each subsequent kWpd of demand savings to have more battery 

capacity (kWhcap). The implication of this result is that small battery capacities tend to 

return better results from an optimization perspective, but there are practical limitations 

to this approach; for example, the minimum size and expansion increments are dictated 

by those commercially available by a supplier. The research found that demand charge 

savings tended to be lowest under basic demand charge tariffs that are unrelated to a 

defined system peak time (ex. 12:00 – 16:00). Gagnon et al. find that there is a high 

degree of variability in demand charge savings based on building type, location and 

solar and battery system size. Various project locations are also analyzed and some of 

the variation is attributable to the differences in solar resource available at the various 

cities used in the analysis.  

Darghouth et al. [24] studied how utility rate design affected the economics of BESS. 

The study looks at how a BESS can provide utility bill savings for customers from both 

energy arbitrage and demand savings. No system level benefits are considered. The 

research describes how a variety of rate design characteristics affect the economics of 

BESS and the relative importance of those characteristics. Aspects related to demand 

charge that are studied are the price of the demand charge ($/kWpd), non-coincident 

and peak time pricing, peak duration, time averaging interval, seasonal variation in 

demand charge rates and ratchetting rates. In total they had access to one year (2012) 

of 5 min interval data from 100 commercial buildings using the EnerNOC database. 

The dataset, known as the EnerNOC GreenButton Data, is anonymous data for 

commercial and industrial buildings and is available for public download for non-

commercial purposes [25]. Despite the high number of buildings in the database, the 

study selects only three representative load profiles to conduct the analysis: a shopping 

centre, a shopping centre with solar PV, and a manufacturing facility, which all display 
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a different load profile shape. Except for the varying load profile shapes, no 

explanation is provided as to why the other 97 buildings were not utilized, and no 

results are shown for other facilities. This makes the results of the study hard to 

translate to other facilities as no general trends can be established when only three 

buildings are analyzed. The shopping centre without PV represents a consistent 

daytime load whereas the shopping centre with PV exhibits a morning and evening 

peak with a trough mid day due to the PV energy production. The manufacturing 

facility displays relatively constant load throughout the day. The storage is dispatched 

according to a HOMER model that uses perfect foresight. BESS inverter size was 

selected as 20% of the building peak annual load, and battery sizes of 1.0 h, 2.0 h and 

4.0 h were tested. Darghouth et al. found that savings from a BESS was dependent on 

load shape and that buildings with peaky loads tended to have the most savings. In this 

study, “peaky” was the shopping centre with PV. The study found that storage was not 

effective in “flatter” load profiles since the BESS could not sustain the long durations 

required to effectively reduce the peak. “Flatter” and “peaky” were terms used by the 

authors to describe the load profile but were not quantified in the research. The study 

quantified and compared the normalized annual bill savings by BESS power rating 

($/kWinv) for the various demand charge rate design features discussed above. 

Darghouth et al. show that the demand charge rate ($/kWpd) was the most significant 

factor on the economic outcome of the BESS. Peak time pricing and the averaging 

window also have a material affect on the savings, while the presence of seasonally 

adjusted demand charge rates and ratcheting demand charges had minimal affects. 

Demand charges that have specific time based “peak periods” (ex. 1200: - 16:00) tend 

to restrict the duration that the BESS must discharge over to reduce the billed demand 

charge, as the demand charge is only based on peak demand during the “peak period”. 

Restricting the discharge time window increases the opportunity for BESS to provide 

more significant demand reductions.  

Neubauer et al. [26] use NREL’s Battery Lifetime Analysis and Simulation Tool 

(BLAST) to analyze how the energy and power characteristics of a BESS affect 

demand reduction project economics for commercial customers. The authors applied it 

to two categories: (1) BESS solely for demand charge management, and (2) BESS 

when combined with solar PV. One year of load data for 98 commercial buildings was 
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taken from EnerNOC’s online database and combined with solar generation data using 

historical solar irradiance data to create a net building load. The net building load was 

created with a 5 min time interval, prior to demand charge management by the BESS. 

Project economics for the were tested using a commercial rate structure from Southern 

California Edison that includes a regular time independent demand charge, but also 

includes additional seasonal and on-off peak demand charges. First a maximum battery 

size, Emax, is defined as the largest amount of energy required to completely flatten the 

daily load variability in the building over the course of the year. This value is 

calculated by identifying the average load for each day and summing the total energy 

above the daily average. The largest value identified over the course of the year is then 

defined as Emax. The BLAST model used a perfect 48.0 h forecast of building loads to 

show the maximum possible demand charge savings over a two day period to compare 

the value of demand charge savings to time shifting energy. The authors note that the 

two day forecast and analysis period is not representative of a typical commercial 

building’s billing cycle, but is selected in this case to demonstrate the upper limit of 

potential demand reduction during the analysis period. Although this may be true in an 

academic sense, its not the practical case for C&I building owners, as they are typically 

billed on a monthly cycle. The way Emax is defined can lead to large values, in some 

cases Emax exceeds 10,000 kWhcap. The result of this is that BESS energy capacities 

were set as relatively small percentages of Emax, in the analysis 0.5%, 1%, 2%, 3%, 

5,%, 7%, and 10% of Emax were used. The power ratings used in the analysis were set 

by defining a power rate that resulted in constant full power discharge times of 0.5 h, 

1.0 h, 2.0 h, and 4.0 h of BESS energy capacity.  

Under the tariff structure, Neubauer et al. showed that demand charge reduction was a 

much more potent indicator of project economics then energy arbitrage with TOU 

rates. In some of the cases analyzed, demand charge reduction was as more than 10 

times more affective at reducing the utility bill of a building than energy arbitrage with 

TOU. They also found that even the longest 4.0 h duration storage typically only 

reduced the building load by 85% of the inverter rating. Smaller BESS capacities have 

lower load reduction percentages as function of inverter rating and become more 

variable based on the building load shape. Project economics are assessed on a real 

dollar ($) basis as opposed to a normalized basis. Battery costs are assumed to be the 
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sum of $300/kWhcap for energy storage component and $300/kWinv for the inverter 

component. The results indicate that the higher power 0.5 h BESS exhibited the fastest 

payback periods with results between 3-10 years depending on the energy capacity (% 

of Emax) used. The payback period for 0.5 h and 4.0 h power ratings displayed opposite 

behavior with respect to increasing energy capacity (% of Emax). The lower power 

systems exhibited shorter payback periods with larger battery capacities, while the 

higher power systems exhibited longer paybacks with larger battery capacities.  

Next, Neubauer et al. looked at payback periods in terms of battery capacity (kWhcap) 

and inverter rating (kWinv) and found that systems with inverter ratings of <= 30.5 

kWinv and capacities of <=15.5 kWhcap made up 75% of the systems with the lowest 

payback periods, despite the median building load being 569 kWelc. This led Neubauer 

et al. to the conclusion that longer duration systems can achieve higher demand 

reductions as a fraction of their inverter rating, but they are less economic than smaller 

capacity systems that have lower demand reductions as a fraction of their inverter 

rating. They state that the reason for this is that there is a non-linear association 

between an incremental demand reduction (kWpd) and the energy capacity (kWhcap) 

required to complete it. Although the payback in years may be superior to a larger 

duration storage system, they note that the economic returns in monetary value for 

smaller systems may dissuade building owners from adopting them, moving more 

users into higher capacity systems that have longer paybacks but create larger 

monetary savings. This trend will also be influenced by the battery capacities that are 

available from the suppliers, as well as the fixed project development costs, such as 

engineering and customer acquisition. The non-normalized economics of this paper 

means that the reader can not quickly determine how the economics may change under 

conditions with different inverter or battery capacity pricing. Additionally, no guidance 

is provided as to which categories of buildings may be of interest for project 

developers.   

Doluweera et al. [27] studied five different commercial building types to assess the 

economic opportunities for BESS to reduce C&I demand charges in Canada, given the 

rates in New Brunswick, Ontario, Saskatchewan, Alberta, and British Columbia. The 

OpenEI [28] building load datasets were used for analysis. The OpenEI dataset is 
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published by the US DOE and available for public download. It includes representative 

hourly load profiles for commercial and residential buildings. The 16 commercial 

building included in the dataset are from the US DOE Commercial Reference 

Buildings research. 

Since the dataset is based in the US, Doluweera et al. selected commercial buildings 

located in areas with similar climatic conditions to the provinces under consideration. 

Five building types were considered due to differing energy use patterns and various 

load factors. Doluweera et al. defined the average annual load factor of a building as 

the average annual load divided by the annual maximum peak demand. Defining the 

average annual load factor in this manner will not accurately represent the monthly 

load factor unless there is a relatively consistent ratio of average load to peak demand 

monthly. The average annual load factors for a strip mall, large office building, 

hospital, hotel, and secondary school were 30%, 40%, 70%, 60%, and 30% 

respectively. Next, an Emax value for each facility is calculated using the same formula 

as Neubauer et al.. Doluweera et al. follow the same methodology, BESS capacity 

selection and discharge duration power as Neubauer et al. [26]. They employ a setpoint 

based discharge strategy established on the fixed control method proposed by Chua et 

al. In this method, a maximum building load is set and the batteries will discharge the 

required power to bring the net building load back to the fixed value. This method does 

not consider the remaining energy in the battery prior to making a discharge decision, 

or adjust its output based on a failed discharge attempt during the billing cycle.  

Doluweera et al. determine the optimum project economics by performing iterative 

economic analyses on a building’s load profile using various BESS power and energy 

configurations and then plotting the internal rate of return (IRR) versus the power-to-

energy ratios of the BESS configurations. Economic analysis is performed for the 

general commercial rate structures in New Brunswick, Ontario, Saskatchewan, Alberta, 

and British Columbia. The demand charge rates varied by province with all provinces 

but Alberta using a monthly billing cycle for measuring the demand charge. Monthly 

demand charge rates ranged between $8.538/kWpd/mo (Ontario) to $14.28/kWpd/mo 

(New Brunswick), while Alberta implements a daily demand charge rate of 

$0.47769/kWpd/day. Ontario also has a Global Adjustment rate that acts like a demand 
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charge coincident to the overall system peak during the year. Alberta employs a daily 

demand charge that has separate rates based on the time of day in which the building 

peak occurs (on-peak versus off-peak). Although Doluweera et al. show some 

quantitative results graphically, most of the discussion is qualitative. The authors 

estimate the IRR if a BESS were installed in various years between 2018 and 2040 

using BESS capital cost ranges and operation and maintenance (O&M) costs from 

Lazard for the five building types in the five provinces. Lazard is a research firm 

known for their annually published reports on the Levelized Cost of Energy (2020 was 

v. 14) and the Levelized Cost of Storage (2020 was v. 6). Their two reports are often 

cited in the clean technology industry as indicative of the competitiveness of 

intermittent renewables (solar and wind), and energy storage, versus conventional 

thermal (fossil fuel and nuclear) electricity generation. Lazard’s [29] annual reports are 

available online for public download on their website. The installed cost range 

presented for 2020 are between $201-$447 CAD/kWhcap and $59-$130 CAD/kWhcap in 

2040. The current 2020 costs appear low in comparison to the battery pack estimates 

by Bloomberg [10], and cost projections to 2040 are speculative. They find that BESS 

will have a positive IRR under most of the studied scenarios by 2025 and in all 

scenarios except strip malls and large office buildings in Ontario by 2030. The load 

shape and the rate structure are found to be the primary drivers of project economics 

and the authors conclude that BESS sizing will be site specific to a particular customer 

but do not specify what drives the BESS sizing. The conclusion that the important 

drivers of economics are load shape and tariffs. This indicates that buildings from 

different categories with similar load shapes and tariffs would have similar results. It is 

not clear in this paper if that is the case or not. Although the load shape discussion is 

not quantified, Doluweera et al. found that a “flat load profile” with minimal variation 

between the maximum and minimum loads in the month will reduce the economics of 

a BESS. Conclusions are not drawn on how this relates to the annual average load 

factor, but it would indicate that buildings with a higher monthly load factor would 

have poorer economics than those with a lower load factor. Doluweera et al. suggest 

that potential new research should include more advanced methods for battery sizing 

selection that consider battery degradation and integration of solar PV. 
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MacLaren et al. [30] evaluated the important elements that influence the economics of 

BESS and solar PV in commercial buildings using NREL’s Renewable Energy 

Optimization Model (REopt). The functionality of the REopt program is discussed in 

detail in subsection 2.3 Control Strategy. Their study analyzed a variety of solar and 

storage sizes for 16 commercial building types using the US DOE Commercial 

Reference Buildings. A total of 17 cities across the United States and 73 electric utility 

tariffs from different jurisdictions were used in the analysis. In total, the study looked 

at over 24,000 different scenarios. MacLaren et al. studied project economics under 

combinations of seven rate structures including energy charges, tiered energy charges, 

TOU energy charges, fixed non-coincident demand charges, tiered demand charges, 

TOU demand charges and no demand charges. Four different costing models were used 

for the solar system, battery inverter, battery energy storage and equipment 

replacement costs. MacLaren et al. found that a BESS was economic for only one 

location (Boulder, CO) and one building type (Large Office) under the high-cost 

technology scenario ($1,332/kWinv for the inverter and $290/kWhcap for battery 

capacity), and only improving to two economic options for a BESS in the stretch 

technology cost scenario ($787/kWinv for the inverter and $106/kWhcap for battery 

capacity). The installed cost figure of $106/kWhcap for BESS capacity is particularly 

low, especially in reference to Bloomberg’s 2024 LIB pack cost of $96/kWhcap, leaving 

little room for the inverter, thermal management, other equipment, installation, and 

overhead. MacLaren et al. found the optimum system sizes increased with decreasing 

technology costs for both solar PV and BESS, and optimum BESS energy capacity was 

found to increase with annual building energy consumption. MacLaren et al. found cost 

savings opportunities for every building type analyzed for solar PV combined with 

BESS, significantly more than the economically viable opportunities for a BESS alone. 

The results showed that most of the utility bill reductions in solar plus BESS scenarios 

were attributable to energy savings from solar and not demand savings, but that the 

combination of solar and BESS significantly increases the demand savings versus a 

storage only scenario. Although this research does not explore why the savings are 

higher for the combination of solar and storage, this is like the results found by Gagnon 

et al. but in contrast to the results of Neubauer et al. [26]. Gagnon et al. [23] found that 

the production profile of solar could narrow the peak demand width of a commercial 
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building in the morning and evening meaning less battery capacity was required to 

reduce the peak. Additionally, Gagnon et al. found that storage could effectively reduce 

mid-day peaks that may occur due to a sudden reduction in solar output, for example 

during cloud cover. Neubauer concludes that this may be due to the solar system 

providing some demand savings for the buildings, but this could be skewed because the 

analysis is being modelled in Los Angeles which has a very different solar resource to 

other parts of the country. Neubauer cautions that most buildings report minimal 

demand reduction from a solar installation and that the results could change 

significantly based on solar system size and other factors like incentives. Gagnon et 

al.’s findings conceptually align with the white paper released by NREL [31] 

discussing demand charge reductions from solar installations on commercial buildings 

where, depending on the building’s load profile, solar can narrow morning and evening 

peaks which could then be more easily reduced with energy storage.  

 

Wu et al. [32] propose an optimization formula to determine the trade offs between 

peak demand reduction and energy cost arbitrage in an office building using 

synthesized load profiles for the analysis. To quantify economic benefits, a fixed 200 

kWinv / 800 kWhcap battery is selected, and one utility rate structure is provided for four 

test case jurisdictions. A typical office building is used in the analysis and a test is run 

in San Francisco, Chicago, Houston, and New York City to test the effects of different 

climatic conditions. The building load data is referenced as coming from ASHRAE 

research by Sun et al. [33]. Although the data timestep is not explicitly referenced, a 

load profile figure shows a 1.0 h timestep between readings. The reader is not provided 

any information on the peak or average load for the office building, or a description of 

its load shape. The results are all presented in dollar amounts, pre and post BESS 

installation. The same utility tariffs are applied in all four test cases including summer 

and winter on, off and mid peak pricing as well as a $30/kWpd/mo demand charge. 

MacLaren et al. [8] showed that 15% of US customers have access to demand charges 

above $20/kWpd/mo, but $30/kWpd/mo tends to be a high demand charge rate. Wu et 

al. find that demand charge mitigation is a stronger economic driver then energy 

shifting and that the demand reduction potential is based on a building’s load shape. It 

is noted that demand savings tend to increase as load factor decreases, but not when 
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load factor is calculated on an annual basis due to seasonal variations in building 

energy consumption. Like other work by Wu [34], this paper shows that battery sizes 

around the optimum have similar economic outcomes so sizing availability is 

important. The paper notes that work needs to be done to create guidelines for energy 

storage sizing. No results are shown in normalized fashion, so it is difficult to compare 

the findings between the different facilities with differing load sizes or profiles. As in 

[34], no results or discussion are presented for the full set of 68 buildings available to 

them which makes it challenging to see how the results can be transferred to a broader 

context (i.e. general sizing guidelines or rules of thumb). 

Shown below in Table 1 is a summary of the literature discussed above. The following 

observations can be drawn: 

• Much of the research uses the US DOE Commercial Reference Building dataset 

which has a 1.0 h time resolution, which is not well suited to capturing peak 

demand events that are billed on a 15 min interval. 

• The number of distinct buildings in the analysis tends to be small, because of 

the use of the US DOE Commercial Reference Building dataset. Although the 

research may study a variety of climatic conditions to increase the number of 

cases analyzed, the load profile underpinning the modelling is the same except 

for variations due to heating and cooling loads. This “representative” building 

load profile approach may not be the most appropriate way to draw conclusions 

on the economics of BESS with much of the research indicating it is customer 

or site specific. More research should be done to assess if there is commonality 

between those site-specific scenarios that could be used in project guidelines.  

• The demand charge rate is consistently a key driver of project economics. 

• Load shape appears to be an indicator of battery size, but there is room for 

expanded research on this topic. 

• Long term technology cost projections are speculative, so the use of 

normalization is helpful in avoiding assuming a specific technology cost for 

battery storage. 
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Table 1: Demand Charge Literature Review Summary 

  Rate Structures 
Studied 

Number and 
Type of 

Buildings 
Studied 

Load Profile 
Data Source Data Time Step Load Shape Demand Charge 

Rate Battery Sizing BESS Capital 
Cost 

Normalization in 
Analysis 

MacLaren et 
al. 

Size of demand 
charges  

($/kWpd/mo) in the 
US. 

All US C&I 
buildings NA NA NA 

Referenced as  
$15/kWpd/mo when 
BESS is economic, 
but not studied here 

NA NA NA 

Long et al. 
Regular non-

coincident demand 
charge ($/kWpd/mo) 

16 Building 
Types, 15 climate 

zones  

US DOE 
Commercial 
Reference 
Buildings 

1 h Indicator of 
BESS sizing 

Indicator of project 
economic viability 

Linked to load 
shape 

$600-
$1500/kWhcap 

range, 
projects most 

likely to 
economic 

when costs 
are low 

Load profiles 
normalized to 

determine Load 
Profile Metric 

D’Aprile et 
al. 

Regular non-
coincident demand 
charge ($/kWpd/mo) 

Not discussed 

Identified as 
critical to 
assessing 
project 

economic 
viability, 

source not 
listed 

Not discussed, but 
15 min or less 
discussed as 
necessary to 

identify project 
opportunities 

Not 
discussed 

BESS economic with 
demand charges 

above $9/kWpd/mo 
Not discussed 

BESS 
economic 

with capital 
costs below 
$400/kWhcap 

Project profitability 
normalized by 

battery capacity  
($/kWhcap) 

Gagnon et al. 

Variety: energy, 
coincident and non-
coincident demand 

charges, time of use, 
and averaging 

intervals 

16 Building 
Types, 15 cities 

US DOE 
Commercial 
Reference 
Buildings 

1.0 h for load 
profile, 30 min for 

solar PV 

Not 
discussed 

Savings increase with 
shorter averaging 

periods 

Smaller 
batteries tend 

to provide 
better return 

on investment 

Not discussed 
- economic 

results 
normalized 

Demand reduction 
shown as a 
percentage 

Darghouth et 
al. 

Regular non-
coincident demand 

charge  
($/kWpd/mo), and 

peak hours 

Thee studied, 
representing three 
types: shopping 
centre, shopping 
centre with PV, 

and 
manufacturing 

EnerNOC, 1 
year 5 min 

Qualitative - 
"peaky" load 
profiles have 

the most 
savings, 

"flat" load 
profiles have 

the least 

Demand charge rate 
was the most 

significant indicator 
of project economic 

viability 

Inverter set at 
20% of annual 
peak demand, 
with 1.0 h, 2.0 

h, and 4.0 h 
duration 

Not discussed 
- economic 

results 
normalized 

Annual bill savings 
normalized by 
BESS inverter 

power 
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 Rate Structures 
Studied 

Number and 
Type of 

Buildings 
Studied 

Load Profile 
Data Source Data Time Step Load Shape Demand Charge 

Rate Battery Sizing BESS Capital 
Cost 

Normalization in 
Analysis 

Neubauer et 
al. 

Regular non-
coincident demand 

charge ($/kWpd/mo), 
seasonal on/off peak 

times 

98 EnerNOC, 1 
year 5 min 

Not 
specifically 
discussed, 

but it would 
have a 

relation to 
Emax 

More important to 
project economics 

then energy arbitrage 

Based on %s 
of the energy 
required to 

flatten the load 
during the day. 
Fixed hour rate 

discharges 

$300/kWhcap 
for capacity 

and 
$300/kWinv 

for the 
inverter, no 

other pricing 
tested 

Not discussed 

Doluweera et 
al.  

Regular non-
coincident demand 

charge ($/kWpd/mo), 
and non-coincident 
daily ($/kWpd/day) 

5 

US DOE 
Commercial 
Reference 
Buildings 

1 h 

Annual load 
factor 

studied, 
results 

discussed 
qualitatively, 

shape is a 
major driver 
of economics 

Major driver of 
economics 

Noted as site 
specific, no 
guidance or 
conclusions 

drawn 

Range of 
prices tested 

from 
$447/kWhcap 

in 2020 to 
$59/kWhcap in 

2040 

Not discussed 

MacLaren et 
al. 

73 different utility 
tariff models across 

the US 

16 Building types, 
17 cities 

US DOE 
Commercial 
Reference 
Buildings 

1 h 

More load 
variability 

(lower 
annual load 
factor) the 
higher the 
savings are 

Higher demand 
charges result in the 
optimal battery size 

increasing 

No 
relationship 

between load 
shape and 

optimal size, 
highly site 

specific 

High, mid, 
and low 

technology 
costs studied 

Total savings 
presented as 
percentages 

Wu et al. Four utility rates 
from different cities 

1 Building type, 4 
cities ASHRAE 1 h 

Economics 
improve as 

monthly load 
factor 

decreases 

Demand charge rate is 
a primary driver of 

economics 

Sizing linked 
to "load shape" 
and not "load 

factor". This is 
not quantified. 

High, mid, 
and low 

technology 
costs studied 
just inverter 

($/kWinv) and 
energy 

capacity 
($/kWhcap) 

Not discussed 
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2.2 Evaluation Metrics 

 

When studying the affects of both solar and storage on commercial demand charges, 

Gagnon et al. [23] define a Cooperation Ratio, shown below in Equation (2), as the 

ratio of the total demand reduction of a PV system combined with a BESS to the 

demand reduction of PV added to the demand reduction of a BESS when both are 

treated independently. 

 

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
(𝑆𝑜𝑙𝑎𝑟 𝑎𝑛𝑑 𝐵𝐸𝑆𝑆 𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑒𝑚𝑎𝑛𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

(𝑆𝑜𝑙𝑎𝑟 𝑂𝑛𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) + (𝐵𝐸𝑆𝑆 𝑂𝑛𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
 (2)  

 

 

A Cooperation Ratio > 1 indicates that the combination of the two technologies 

reduces demand greater then then the sum of the two individual technologies. Their 

research found that cooperation ratios increased with increasing PV system size 

because the larger solar systems tended to create taller, thinner peaks in net load that 

the BESS could be effectively discharged to address. 

Darghouth et al. [24] define Demand Charge Reduction Efficiency, shown below in 

Equation (3) as the monthly peak demand reduction divided by the BESS inverter 

power rating, both measured in kW. 
 

𝐷𝑒𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑟𝑔𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

=  
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑘𝑊𝑝𝑑)

𝐵𝐸𝑆𝑆 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 (𝑘𝑊𝑖𝑛𝑣)
 

(3)  

 

Demand charge reduction efficiency is then plotted for various battery system sizes 

(ex. 1.0 h, 2.0 h, and 4.0 h). The study found that longer duration storage could reduce 

demand charges over wider peaks, but that there are diminishing returns in the demand 

charge reduction efficiency with longer duration storage. The results are limited given 

that only three battery sizes were tested, especially in the context of the shopping 

centre having a repetitive 8.0 h load profile (8am – 4pm) throughout the year.  

Fisher et al. [35] develop a metric called the Threshold Ratio to estimate the economics 

and optimal sizing of a BESS. Fisher et al. study the load shape of the building rather 
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then the demand charge rate structure of a particular region. The Threshold Ratio 

measures the efficiency of a BESS at reducing demand and is based on the building’s 

total energy consumption during the peak period relative to the battery size. No 

formula, or a specific threshold, is provided by Fisher et al. to define the Threshold 

Ratio, but an iterative step process is provided which is outlined below. Their research 

uses 665 C&I buildings from North and South Carolina that are published by 

EnerNOC, now Enel-X. The data used is 15 min interval data for one year (2013). The 

model assumes perfect foresight. First, a target threshold is defined as the peak 

building demand (kWpd) over the time series, subtract the BESS inverter rating (kWinv). 

Next, a Spike-to-Battery ratio is calculated as the ratio of the annual average of energy 

within the largest monthly peak demand relative to a target threshold, divided by the 

energy capacity of the BESS. The target threshold is based on an assumed maximum 

battery inverter discharge power, in this case 10 kWinv. No justification is provided for 

how or why this value was selected. The average energy is used in the formula so that 

the Spike to Battery Ratio is unitless in relation to the BESS capacity. The formula for 

the Spike to Battery Ratio is shown below in Equation (4). 

𝑆𝑝𝑖𝑘𝑒 𝑡𝑜 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑎𝑡𝑖𝑜 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑎 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆𝑝𝑖𝑘𝑒 𝑎𝑏𝑜𝑣𝑒 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑘𝑊ℎ)

𝐵𝐸𝑆𝑆 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊ℎ𝑐𝑎𝑝)
 

 

(4)  

In the case where a specific BESS capacity (kWhcap) size is not large enough to reduce 

the average monthly peak demand event (i.e. Spike to Battery Ratio > 1) a lower 

discharge power then the maximum 10 kWinv must be used to ensure the battery is not 

depleted. To determine the target threshold value, the Spike-to-Battery ratio is re-

calculated for each month using a range of intermediate discharge powers. Next, the 

lowest monthly intermediate power value, where the Spike-to-Battery ratio is greater 

than or equal to one 1, is divided by the BESS inverter power rating in kWinv.  

The average of these ratios over the course of the year is the Threshold Ratio. Fisher et 

al. use a linear optimization with perfect foresight of the building load to select a 

battery size that minimizes the utility bills for the building owner. They cite research 

with error ranges of 5-10% for predictive models, drawing the conclusion that their 

results are transferrable to a load forecasted scenario. No details on how the 
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optimization process works or what battery sizes are selected relative to building load 

or other metrics are presented. The results are shown as utility bill savings normalized 

by battery capacity ($/kWhcap). The optimization was run for 665 buildings and a non-

linear equation was used as a line of best fit to describe the relationship between 

Threshold Ratio and the normalized utility bill savings. This was tested for BESS 

inverters with various power capacities ranging from 15%-30% of a building maximum 

demand. The results showed that normalized revenue was consistent across all tested 

BESS inverter ratings, assuming a fixed discharge duration of 1.0 h. Using a fixed 1.0 

h discharge duration means that the affect of discharge rate, or the ratio of BESS 

energy capacity to inverter rating, is not explored in the research. The fixed 1.0 h rate 

may not be an accurate representation of the types of BESS systems that are 

commercially available, and the model does not explore if there were solutions that 

provided better normalized savings by moving to a larger battery capacity relative to its 

inverter power rating (i.e. 2.0 h, 4.0 h, or 8.0 h BESS).  

MacLaren et al. define load factor as the average load divided by the peak demand on 

an annual basis. This contrasts with the typical commercial billing period of one 

month. The study found that when defined this way, load factors varied between 

approximately 40% - 70%. This study evaluated the business case for a BESS as part 

of a combined solar PV plus BESS system. The results are presented as a percentage of 

total utility bill savings, for demand and energy. Most of the results are shown for both 

when both technologies are used together. While this approach is valuable for assessing 

hybrid installations, assessing the storage only results is difficult since research from 

Gagnon et al. shows that PV tends to narrow peak demand and improve BESS 

performance. Similar results are found by MacLaren et al. in the limited test case that 

shows the technologies separately and combined. The results show a trend towards 

greater savings as load factor decreases (more load variability), but the results are not 

presented to show how those savings are generated. For example, Gagnon et al. and 

Neubauer et al. show that combinations of solar and storage can decrease demand, but 

the demand savings presented in MacLaren et al.’s report are not prescribed to solar, 

storage, or the incremental value of the combined approach.  

The study indicates that demand savings tend to be higher in projects with “more 
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variability in load profile”, but it is not clear if MacLaren et al. mean load factor, or if 

they are referring to some other measure of variability that is not defined. This reader 

assumes more variability means lower load factor since load factor is the independent 

variable shown on the abscissa axis of the analysis. The study showed no correlation 

between load variability and the optimum battery capacity and inverter size. Again, it is 

assumed that load variability in this case refers to load factor. This may be because 

load factor is being defined on an annual basis rather than the monthly billing cycle 

that demand savings would be calculated over which could mask affects of seasonal 

changes in usage for certain buildings. Whether load factor is being defined on an 

annual or monthly basis, this result is not intuitive and should be explored further as 

Long et al. found a strong relationship between their Load Profile Metric, which was 

representative of load shape, as a strong indicator of battery sizing. The results where 

the relationship between battery sizing and load factor are presented do not indicate if 

solar was being applied or not, but the title of the research, and other results, suggest 

PV would be included. This obscures the results from a BESS only case since the PV 

system tends to depress load during the day and shorten peak windows. Although PV 

tends to depress load, it is not necessarily reliable for demand charge management as 

shown in MacLaren et al.’s [30] analysis of utility bill savings for a PV only test case. 

MacLaren et al. found in some cases as much as 4 times the difference in the optimum 

normalized battery duration (kWhcap/kWinv) for buildings of the same type and with 

similar load factors. This result is not intuitive and should be explored further but is 

absent from their discussion.  

Shown below in Table 2 is a summary of the literature discussed above. The following 

observations can be drawn: 

• The evaluation metrics need to be intuitive and easy to implement if they are 

going to be used in guidelines to assist project developers and building owners 

quickly assess the viability of a BESS project. 

• Metrics should be based on the demand charge billing cycle, not an annual 

basis. Limited focus on quantifying the monthly load shape and what role it 

may play in either battery sizing or economics.  
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Table 2: Evaluation Metrics Summary 

  Evaluation 
Metric Based On Positive 

Indicator of 
Ease of Implementation / 

Transferability Draw Backs 

Long et al. Load Profile 
Metric 

Normalized load 
profiles, set annual 

energy equal, average  
Battery sizing 

Annual load profiles 
required. Relatively 
straightforward to 

calculate 

Based on averaging 
annual data when 

demand charges are 
billed monthly 

Gagnon et al. Cooperation 
Ratio 

Assessing incremental 
increased demand 
savings when solar 

and storage are 
combined 

Cases where 
hybrid projects 

will be economic 

Easy to calculate, but still 
requires a method to 

determine the demand 
reductions 

No use in storage only 
applications 

Darghouth et al. 

Demand 
Charge 

Reduction 
Efficiency 

Monthly demand 
reduction relative to 

inverter size 

Used to compare 
effectiveness of 

BESS with 
different 

capacities  

Easy to calculate and 
intuitive 

It is a metric for 
comparing results, does 
not help assess how to 

size or control the BESS 

Fisher et al. Threshold 
Ratio 

Energy in a demand 
event, relative to a 

setpoint, in 
comparison to the 
BESS power and 

energy ratings 

Non-linear 
equation used to 

fit Threshold ratio 
to normalized 

savings based on 
battery capacity 

($/kWhcap) 

Iterative calculations 
required, once 

spreadsheets were 
established it could be re-

used 

Not in any way intuitive 
or easy to understand for 

your average building 
owner or project 

developer 

MacLaren et al. Load Factor Annual average load 
to annual peak demand 

Generally lower 
load factor leads 
to greater savings 

Very easy to calculate 
with annual electricity 

bills 

Annual basis when 
demand charges are 
typically calculated 

monthly 

 

2.3 Control Strategy 

Chua et al. [36] develop and test three different control strategies for demand charge 

reduction on two commercial buildings at the Universiti Tunku Abdul Rahman 

(UTAR) in Malaysia. The thee control strategies presented and tested in the paper are a 

fixed, adaptive, and fuzzy logic based peak reduction strategies. A fixed size BESS 

with a 15 kWinv inverter and 64 kWhcap lead acid battery is used in the experiment. No 

justification is provided for the system sizing relative to the buildings loads. In the 

fixed control strategy, a maximum building load is set, and the batteries will discharge 

the required power to bring the net building load back to the fixed value. The adaptive 

threshold control strategy is like the fixed control, except that during discharge phase 

the upper power limit is adjusted if load remains above the setpoint for over a certain 

time. The length of time before the adjustment is made is not defined in the paper. The 

fuzzy logic control strategy uses the amount of available energy in the battery, and the 



31  

current discharge time, to determine the battery’s power output. Chua et al. present a 

matrix that determines the output power based on the two input variables. The first two 

methods presented by Chua et al. do not consider the remaining energy in the battery 

and none consider the high load event previously seen in the month. The remaining 

energy in the battery is relevant for demand reduction as it will influence both the 

maximum rate of discharge in each time interval, and the duration that a given 

discharge power can be sustained for. The previous high demand point in the month 

may be the set point defined by Chua et al., or it may be some higher value if the set 

point was missed on a previous attempt. Failing to change the demand charge setpoint 

to the previously max in the billing period will result in the battery discharging at an 

unnecessarily high rate during a future demand event and again missing the peak. 

 

Salis et al. [37] propose an adaptive discharge methodology for BESS to reduce 

demand charges in a commercial building. They claim that previously published 

discharge strategies focused on reducing building demand on a day-by-day basis 

without a need to potentially adjust the limit during the day. Salis et al.’s discharge 

strategy adjusts the demand reduction setpoint within the month based on the highest 

observed net demand while preforming demand charge management in that month. 

This method accounts for the case where a previous demand reduction target may have 

been missed due to depleted battery capacity and a new target needs to be set to 

account for the previously seen net peak during the billing period. Salis et al. utilize a 

historical record of building loads and the corresponding historical ambient 

temperatures, and a forecast of upcoming mean temperatures to predict the building 

load. The building load forecast is based on combining several forecast techniques. 

The first forecast technique, Zα, utilizes the current building load, forecasted ambient 

temperature, the average building load for the same week one year previously, the 

average load for the same weekday, and the average load for the same time interval. 

The second method, Zβ, uses combinations of sub forecasts that all use the ambient 

temperature from a weather forecast, the average load over the previous five-time 

intervals, and the forecast error over previous time intervals. The Zβ combinations 

analyzed include the forecast with the lowest historical error over the entire analysis 

period, a weighting of the different forecasts, and whichever forecast has the lowest 
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error over individual time intervals. Salis et al. define a “Ratchet Rule” which 

implements a discharge strategy based on the maximum net-building load observed 

previously within the month. Salis et al. analyze their technique using four buildings: 

two apartments, an office, and a university building by comparing the demand 

reduction using the forecast to the optimum demand reduction using perfect foresight. 

Without using the “Ratchet Rule”, Salis et al.’s control strategy, using the Zβ forecast, 

results in demand reductions between 41%-66% of the ideal demand reduction 

depending on the building type. When the “Ratchet Rule” is implemented, and using 

the Zβ forecast, the results improve significantly to between 55%-90% of the ideal 

demand reduction based on the building type and the Zβ option used. What is not clear 

in this paper is over how many different demand set points do these improved results 

occur. If the demand setpoint was set too low, the “Ratchet Rule” would engage often 

and likely improve the results. Conversely, if the demand setpoint was not set low 

enough, the “Ratchet Rule” would rarely engage and not show an improvement. 

 

NREL’s System Advisor Model (SAM) has a tool that project developers or building 

owners could use for evaluating PV and BESS projects. DiOrio [38] describes the 

battery control methodology used in SAM. The battery model uses one of two methods, 

selectable by the user, for assessing the peak demand. The first is perfect foresight and 

the second assumes the coming day is identical to the previous day. In each case the 

daily load profile is scanned and the loads by time step are sorted from largest to 

smallest. Next a Target Power is selected by the user or can be calculated by SAM. 

When calculated by SAM, the Target Power is selected to ensure that the battery does 

not fully discharge either by perfect foresight or by assuming the following day is 

identical to the proceeding day. The BESS will discharge when the building load is 

above the Target Power and recharge when the building load is below the Target Power.  

The Target Power is reset each 24.0 h period which does not match with how 

commercial customers are typically billed, except for some real-time pricing markets 

like Alberta.  

Shown below in Table 3 is a summary of the literature discussed above. The following 

observations can be drawn: 
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• In all the control strategies reviewed, none assists the user in defining the 

demand charge setpoint based on characteristics of the building. This is a 

crucial missed opportunity as even a perfect control strategy will not provide 

optimal returns if the setpoints are too high and will have reduced effectiveness 

if they are set too low. 
 

Table 3: Control Strategy Summary 

  Strategy Based On Positives Draw Backs 

Chua et al. Thee studied, fixed, adaptive 
and fuzzy logic 

Demand thresholds set by 
the user 

Simple and easy to 
implement 

First two methods do not 
consider the energy in the 
battery, none consider a 

previously missed demand 
event 

Salis et al. 

Forecast building load and 
adapt demand reduction 
setpoint based on highest 

observed net demand within the 
month - "Ratchet Rule" 

Demand thresholds set by 
the user 

Utilizes a forecast rather than 
perfect foresight. Adapting 
"Ratchet Rule" significantly 

improved results 

Does not help the user 
determine the demand 

reduction threshold 

DiOrio 

User selects perfect foresight or 
predicted method that assumes 
following day is identical to the 

previous day. 
 

Demand reduction is based on a 
24.0 h period instead of a 

typical 1 mo billing period. 

Target Power set by the 
user or calculated to ensure 
the battery does not fully 

discharge each day. 

Simple forecast tool and easy 
to implement.  

No reset of Target Power if 
the BESS fails to achieve 

objective.  

 

2.4 Battery Sizing 

NREL’s BLAST [39] is a model for assessing the lifespan of batteries in applications 

including BESS, EVs and grid services applications. There is a specific version of the 

model tailored to demand charge management called BLAST-BTM Lite that includes 

tools for sizing the BESS. Neubauer [40] describes the battery sizing methodology in 

the BLAST Documentation manual. BLAST-BTM Lite uses a similar methodology as 

Neubauer et al. described, and is detailed in subsection 2.1 Demand Charges, where 

users can input BESS energy capacities as percentages of EMax, which is defined as the 

largest amount of energy required to completely flatten the daily load variability in the 

building over the course of the year. The default range in BLAST to select the BESS 

capacities (kWhcap) for analysis are between 1% - 20% of EMax. The user then selects 
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discharge durations to test with defaults between 0.5 h and 4.0 h at full power as proxy 

for the inverter power rating. In this case the user is defining the boundaries of the 

BESS properties in terms of both power and energy that the model will test. The model 

then calculates and plots the IRR for each battery capacity (i.e. 1% - 20% of EMax) as a 

function of power to energy ratio which is defined by the discharge durations (i.e. 0.5 h 

and 4.0 h at full power). The model will search along the plot of IRR as a function of 

power to energy ratio for each battery size to find the battery capacity and power to 

energy ratio with the maximum IRR. The searching function starts at the maximum 

power to energy ratio and moves to lower power to energy ratios (increasing storage 

capacity) to check if the IRR increases. The search function terminates when an IRR is 

returned that is less than the previously returned IRR. In a rare case there may be a dual 

peak and this methodology will always identify the first peak in IRR. Moving to larger 

storage systems may be the global peak but could also be a local peak under certain 

circumstances. Neubauer acknowledges that this could be the case but indicates that it 

has not been shown over any test cases explored by NREL. Although this model does 

suggest analysis ranges for both power and energy, the user is not provided any 

guidance as to how these may need to be adjusted based on the specifics of their 

building load profile.  

 

Wu et al. [34] propose a sizing strategy for BESS for demand charge reduction based 

on a metric they call the “incremental levelized annual benefit”. Wu et al. define the 

incremental benefit as the difference between the increased demand charge savings and 

increased cost of a larger battery bank for a given building. The research develops 

equations to evaluate demand charge savings and incremental battery cost based on the 

incremental demand reduction, and time associated with that reduction. Those 

equations are then solved to determine the maximum economic benefit. Wu et al. 

suggest increasing battery bank sizing until the point at which the incremental benefit, 

net of the incremental battery cost, is zero. One of the challenges of this approach is 

that it treats the battery and inverter sizes as small (ex. 1 kWhcap, 1 kWinv) discrete 

values that a building owner can incrementally purchase. In practice, the owner will be 

forced to purchase in significantly larger increments depending on what suppliers have 

available. While appropriate from a theoretical or mathematical optimization, this 
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approach falls short when applied to practical purchasing decisions. Although Wu et al. 

indicate they have load profile data for 68 buildings across six building categories and 

four climate zones, only one building is used as a case study for the economic results. 

The results in the paper show that the economic benefits do not vary considerable for 

battery capacities and inverter sizes around the optimum mark. This does benefit the 

model as it allows the user to select commercially available equipment close to the 

optimal value without expecting a significant decline in economic benefits. It is 

unclear, and not explored in the paper, if the common economic returns around the 

optimum value are common for all building categories, load shapes and climatic 

conditions, or if that is a specific result for the test case analyzed. No trends were 

shown on the full data set making it difficult for a reader to draw conclusions on how 

the findings could be applied to their building without going though the full 

optimization process proposed by Wu et al. The method proposed by Wu et al. uses 

perfect load foresight, as used by Gagnon et al. and Fisher et al., based on an individual 

load profile. Data from the US DOE Commercial Reference Buildings dataset is used 

in a sample analysis. Wu et al. suggest that the method can be applied to an individual 

day, representative of each month’s daily load profile, to calculate the BESS sizing. 

The challenge with this approach is that demand charges are typically set based on the 

highest 15 min energy consumption within a month and building load profiles tend to 

vary day to day. A high load instance within a month can set the demand charge for the 

entire month, regardless of what the usual daily load profile looks like within the 

month. It is not clear from the paper how to select battery sizing based on the daily 

load variations common in commercial buildings. 

 

Chua et al. [41] develop a battery sizing methodology for demand charge reduction in 

commercial buildings. The paper is based around a real-life test case with a lead acid 

BESS installed in a building at the Universiti Tunku Abdul Rahman (UTAR) in 

Malaysia, although it does not appear that the inverter rating (5 kVAinv) or battery 

capacity (21.3 kWhcap) were selected based on the results of the research. The annual 

load curve is not discussed in the paper, but a case study is shown for a specific 

weekday showing a nighttime load of approximately 20 kWelc which rises rapidly from 

07:30 onwards to a peak of 150 kWpd at approximately 14:00, followed by a rapid 
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decline to approximately 40 kWelc at around 18:00 and then a gradual decline back 

down to 20 kWelc. The representative daily load profile for the building is developed 

using two months worth of weekday data. Although due to university occupancy this 

may be a fair assumption for when the load peak will occur, this approach does not 

provide a comprehensive picture of what happens during the weekends and will have 

limited transferability to building types that have less variation in occupancy, or ones 

that experience peaks during the weekends (ex. bars or restaurants). A single variable 

quadratic equation relationship between inverter rating and battery capacity is 

developed by analyzing the size and shape of the generic weekday load profile. It 

should be noted that the equation presented is only relevant to the building analyzed 

and requires knowledge of the load profile size and shape to generate the formula. 

Chua et al. then preform an iterative calculation to determine the battery capacity based 

on the peak demand in the generic load profile and the relationship developed 

previously between inverter rating battery capacity. The methodology used in this 

work can be applied to buildings when the load profile is known, but it does not 

present any guidelines when limited building load data is known. 

Shown below in Table 4 is a summary of the literature discussed above. The following 

observations can be drawn: 

• Battery sizing strategies need to utilize easily accessible building data to 

effectively reduce BESS project soft costs for project developers and building 

owners. All the strategies below rely on knowing the complete building load 

profile, which does not account for the cases where only basic billing 

information is available. 
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Table 4: Battery Sizing Summary 

  Strategy Based On Positives Draw Backs 

NREL 
BLAST - 
Neubauer 

User selectable % of 
Emax 

Largest daily amount of 
energy required to 

completed flatten the daily 
load profile over the course 

of the year 

Easy to understand and 
relatively simple to 

implement 

Full load profile data needs to be 
known. Still fully user selectable, is 
not guided based on building load 

characteristics 

Wu et al. 

Bring the incremental 
benefits of added 

demand charge savings 
subtract added battery 

cost to zero 

Perfect load foresight and 
defining all terms as math 
variables and solving for 

the maximum benefit 

Allows for very precise 
results 

Too complicated for most building 
owners or project developers. BESS 

sold in discreet sizes 

Chua et al. 

Develop a relationship 
between BESS inverter 

and BESS energy 
capacity 

Quadratic equation based 
on load size and shape of a 

generic weekday 

Allows user to capture 
both the energy and power 

ratings of the BESS 

Full load profile data needs to be 
known. Some buildings (ex. 

restaurants) peak on weekends. 

 

2.5 Energy Storage Implementation Guidelines 
 

The US DOE’s Better Buildings Initiative published a report called On-Site Energy 

Storage Decision Guide in April 2017 by Mitchell et al. The report is purported to be a 

decision guide for energy storage; however, there are no guidelines, sizing tools or 

strategies presented to assess a commercial energy storage project. The report is an 

introduction to BESS for commercial building(s). Common energy storage 

technologies including lead acid batteries, capacitors, flow batteries, ice storage and 

LIB are introduced with a summary of the technology characteristics and applications. 

Applications considered include energy arbitrage, demand charge management, power 

factor correction, reliability, and renewables integration. The report identifies the 

potential benefits from BESS to building owners, and demand charge management is 

identified as one of the key benefits. The report notes that demand charge management 

is more effective for buildings with “peaky” rather than “flat” load profiles but does 

not provide any quantification or guidelines around those two terms. The report does 

not offer the reader any suggestions on how to determine if their building is “peaky” or 

“flat” or how to quantify potential benefits of a BESS. The report does not discuss the 

billing cycle for demand charges and its influence on battery discharge strategy and 

project economic viability. The approach taken in this report is helpful for readers that 

are not familiar with the energy storage technology, or technical considerations and 

need a basic primer before deciding to go further with their project. The report presents 
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clear graphical examples of “flat” and “peaky” load profiles that a reader can 

understand the function and value of a BESS for demand charge management, but it 

can not be used to help a building owner or project developer in the sizing or economic 

analysis of a potential project. 

Kintner-Meyer et al.’s [42] research was published in 2010 as joint report between 

Pacific Northwest National Laboratory (PNNL), National Renewable energy 

Laboratory (NREL), and Argonne National Laboratory (ANL). The purpose of the 

report is to outline the various applications and associated value streams in commercial 

buildings for thermal and electrochemical energy storage. Given the changes in the 

energy storage market over the last decade, some of the material presented is out of 

date. For example, thermal storage for air conditioning loads is discussed in relation to 

demand charge management and renewables integration, while the cost and custom 

design complexity are identified as barriers for BESS for load shifting. The analysis 

section of the report has a strong focus on the interaction between BESS and the 

overall power grid through large scale BESS deployment for demand response. For 

example, demand response activity by building operators is modelled in response to 

real time grid energy rate ($/kWhelc) price signals, in contrast to conventional rate 

structures that have fixed, or time blocked, defined rates for energy and demand. The 

focus on overall power grid benefits is unhelpful for a project developer trying to 

assess the impact of a BESS on a particular building. 

Baxter et al. [43] published the Energy Storage Best Practice Guide by the Advancing 

Contracting in Energy Storage (ACES) Working Group. The ACES Working Group is 

a US based consortium including private companies, trade associations and national 

research labs to develop guidelines for energy storage project implementation. The 

document provides guidelines for project development, engineering, economics, long 

term performance, operation, risk management, and standards. It is written in a general 

format to introduce the reader to the basic considerations of developing and contracting 

an energy storage project. It is not written specifically for commercial buildings, but 

for energy storage project implementation more generally. The topics discussed are not 

particular to BESS and would be applicable to most clean energy project development 

including permitting, engineering due diligence, debt financing, maintenance and 
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warranty considerations. It is noted that an independent engineer should assess the 

BESS capacity and inverter rating to ensure that it is suitable for the project 

application, but no guidance is provided on how to either size a BESS or evaluate the 

merits of a BESS size for a particular application. A subsection within the engineering 

chapter that focuses on challenges specifically references that cycling related to the 

control strategy will be important to project investors because of the affect on battery 

life and maintenance. The economic model is discussed as important, but no guidance 

on how to construct or evaluate an economic model is provided. The economics section 

of the report outlines the major categories of services that a BESS can provide and lists 

demand charge reduction as part of the retail category. The economics section starts 

with an introduction to utility rate design. High demand charges referenced here as 

+$20/kWpd/mo, TOU rates and coincident demand charges are listed as favourable 

forms of rate design for BESS project economics. Low demand charges are referenced 

as <$10/kWpd/mo. Annual demand ratchets and flat energy charges were listed as rate 

structures unfavourable to BESS project economics. This observation for the 

unfavorability of annual demand ratches matches the conclusions of Darghouth et al. 

[24]. The relative importance of these rate structures is not discussed, and no further 

clarity is provided in terms of enabling rates other then to define the high and low 

demand charges above. The report is comprehensive and informative from a project 

owner’s perspective when planning how to contract a BESS project but is written too 

broadly to apply as a technical or economical guideline for developing BESS projects 

for commercial buildings.  

Torrie et al.’s [44] report focuses on BESS for commercial buildings in Massachusetts. 

The report provides a brief introduction to BESS in the US and cites demand charges 

of $15/kWpd/mo as a common indication of an economic opportunities for a BESS to 

deliver savings. The report is written for a non-technical audience and dedicates 

sections to defining power and energy and how they relate to BESS projects as well as 

the difference between the behind the meter and in front of the meter. It is noted that a 

BESS can provide the most demand savings for buildings with high peak demand 

relative to average load, meaning a low load factor. This is not quantified or shown 

though experimentation or case studies in the report. Several BESS use cases are 

summarized including demand charge management, energy arbitrage, backup power, 



40  

uninterruptible power supply, renewables firming and power quality improvement. 

Next, several energy storage technologies are compared in terms of use cases, cost, 

lifetime, and pros and cons. The energy storage technologies considered include lead 

acid batteries, LIBs, flow batteries and thermal storage. Financing and funding, 

including Massachusetts specific programs, and are discussed as enablers for these 

projects. Finally, the report summarizes supportive policy alternatives and market 

hurdles for BESS in Massachusetts, although issues like capital cost are applicable 

broadly. The report is an energy storage primer, specifically tailored for the 

Massachusetts market. There is not any technical analysis included or guidelines on 

how to size or operate a BESS for demand charge management, or any of the other 

services outlined in the report. 

Freed et al. [45] published an energy storage guideline on behalf of the New South 

Whale’s Office of Environment and Heritage in Australia. The guide is aimed 

specifically at commercial building owners who are interested in learning the basics of 

energy storage and how the technology could be applied to their facility. Its 

specifically noted in the report that it is not meant as a replacement for an engineering 

review and does not provide any detailed economic feasibility or technical assessment. 

Economic opportunities derived from changing how or when a building uses energy 

from the grid is listed as the main reason to install a BESS. The report starts with 

definitions of basic energy storage terminology including charge, discharge, energy 

and power, depth of discharge, state of charge and cycle life. Time of use rates, 

demand charges, and PV integration are discussed as the business cases in New South 

Whales that allow BESS to save money for commercial buildings. Several bar charts 

are used to illustrate how a BESS can interact with a building load profile and energy 

output of a solar system. When discussing demand charge management, the report sites 

data of past consumption patterns as crucial to a successful implementation. The report 

notes that demand charge management is most effective when the duration of the peak 

is short, but this is described qualitatively rather then quantitative. Other applications 

including off-grid systems and backup power are also described. Next, the report 

provides guidelines for purchasing decisions. First, the report prompts owners to 

answer questions about their current, and future energy and power usage. Next, a flow 

diagram is shown to assist owners in identifying the BESS application (ex. backup, 
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demand charges, PV integration etc.) that best suits their needs. The flow chart is based 

on qualitative yes/no questions rather then specific building technical characteristics. 

Building owners are asked to consider how their building uses energy and to quantify 

variation on a daily, weekly, and seasonal basis. The report then provides a table that 

readers can fill in for energy and demand charges for each month of the year, although 

no directions are given as to how these values should be used to assess the opportunity 

for a BESS. Examples of how to calculate savings for a BESS applying either TOU 

rates or demand charge management are shown. The economic analysis is basic as a 

peak demand threshold is arbitrarily selected and the demand savings multiplied by the 

demand charge rate to calculate the dollar savings. No guidance is provided as to how 

the user should select that threshold value based on building load characteristics. 

Finally, a questions checklist for BESS buyers to ask vendors is presented which 

covers things like battery chemistry, warranty, degradation, operating temperature and 

power and energy capacities.  

Mullendore et al.’s [46] report is a guide to behind the meter PV and storage for 

commercial buildings. The paper starts with the basics of behind the meter PV and then 

provides descriptions for both DC and AC coupled behind the meter PV and storage 

systems. Four case studies are presented for PV and BESS with a primary focus on 

resiliency and the comparison to a conventional diesel generator. The case study for the 

Scripps Ranch Community Recreation Center in San Diego California notes that 

although the system was installed for emergency power purposes, it also savings the 

facility money though demand charge management. The system size for this project is 

listed as 30 kWinv of PV and a 100 kWinv / 100 kWhcap BESS. The combination of the 

two systems saves the facility approximately $2,000 a month in utility bills, but no 

information is provided on the makeup of energy and demand savings. Finally, a 

checklist is provided for building owners prior to considering a PV and BESS project. 

Topics included are: understanding the utility bill, identifying interconnection 

guidelines, identifying critical loads, physical constraints for the PV system, BESS 

technology selection and financial implications. The remarks in the checklist are broad 

and do not provide the reader with any quantitative tools to assess the merits of a 

project.  
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Shown below in Table 5 is a summary of the literature discussed above. The following 

observations can be drawn: 

• None of the guidelines provide quantitative analysis for BESS sizing or 

economics.  

• Most guidelines are written for those first learning about energy storage, so they 

start with the basics of how the technology works and some example 

applications. 

• Demand charge management is consistently discussed as one of the key savings 

opportunities for a behind the meter energy storage system. 

• PV integration or renewables smoothing are commonly discussed. 
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Table 5: Energy Storage Implementation Guidelines Summary 

  Guideline Focus 
Area Technologies Considered Use Cases Considered 

Demand Charge 
Management 
Commentary 

Highlights Draw Backs 
 

 

Mitchell et al. Commercial 
buildings 

Lead acid, LIBs, 
capacitors, flow batteries, 

ice storage 

Energy arbitrage, demand 
charge management, 

power factor correction, 
reliability, and renewables 

integration 

Demand charge 
management is more 
effective for "peaky" 
rather than "flat" load 

profiles 

Good introduction to 
energy storage basics 

No quantitative 
analysis for BESS 
sizing or project 

economics  

 

Kintner-Meyer 
et al. 

Commercial 
buildings 

Thermal storage, battery 
energy storage, phase 

change materials 

Opportunities to provide 
services behind the meter 

and to the grid, wind 
smoothing  

Demand charge 
management is 

primarily discussed in 
relation to thermal 

storage for reducing 
peaks associated with 

HVAC 

Early analysis on how 
behind the meter 

storage can provide 
benefits to the grid 

Dated commentary. 
No technical or 

economic guidelines 
provided. 

 

Baxter et al. 

Contacting energy 
storage, not 

specifically for 
buildings 

NA - written generically NA - written generically NA - written generically 

Informative for project 
developers and 

potential owners on 
project considerations 

from a contracting, 
permitting and 

financing perspective 

No quantitative 
analysis for BESS 
sizing or project 

economics  

 

Torrie et al. 
Commercial 
buildings in 

Massachusetts 
LIBs 

Demand charge 
management, energy 

arbitrage, backup power, 
uninterruptible power 

supply, renewables firming 
and power quality 

improvement.  

Buildings with demand 
charge rates above 

$15/kWpd/mo 
identified as 

opportunities for BESS 

Summary for available 
programs and 

incentives as well as 
policy opportunities for 

BESS 

No quantitative 
analysis for BESS 
sizing or project 

economics  

 

Freed et al.  

Commercial 
buildings in New 

South Whales, 
Australia 

Lead acid, LIBs, and salt Time of use rates, demand 
charges, solar integration 

Detailed knowledge of 
past load profiles is 
identified as critical 

Bar charts that 
demonstrate how the 

BESS interacts with the 
building load profile are 

intuitive 

No quantitative 
analysis for BESS 
sizing or project 

economics, although 
tables to outline the 

important 
considerations are 

provided 

 

Mullendore et 
al. 

Resilience with solar 
and storage for 

commercial 
buildings 

LIBs and PV. Both DC 
and AC coupled 

Focus is on backup power, 
although demand charge 
management is discussed 

in the case studies 

Discussed in case 
studies with a project 

example provided. 
Short on details other 
than system sizing and 

overall utility bill 
savings 

Flow diagrams of DC 
and AC coupled 

systems are easy to 
understand and not 

discussed in any of the 
other guidelines 

No quantitative 
analysis for BESS 
sizing or project 

economics  
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CHAPTER 3 METHODOLOGY 
 

3.1 Overview 
 

The development of battery sizing guidelines was based on the following building input 

data: 

• One-to-two years of electrical utility bills that are typically available to 

any commercial operation seeking invest in a BESS. Bills include the 

following data: 

o Energy consumption (kWhelc) 

o Peak demand (kWelc or kVAelc) 

o Utility rate code (tariff) 

• Building category as defined by the utility (ex. healthcare, hotel, retail, 

educational, etc.) 

 

Using interval-type electricity meter data for many commercial buildings, of various 

categories, in Nova Scotia will demonstrate relationships between the utility bill metrics 

described above and battery sizing and demand reduction potential. The relationships are 

determined by running simulations of different battery sizes and demand charge 

reduction targets on each building and then analyzing the results for patterns.  

 

Four years of building load interval meter electricity data at 15 min timesteps was 

provided by NSP. The data is discussed in detail in Chapter 4. The data set includes 

248 buildings across eight categories defined by NSP. All the data was in either 

spreadsheet (.xls) or comma-separated values (.csv) format.  

 

Shown below in Table 6 are the quantities of buildings by category and examples of 

the use cases for the building category.  
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Table 6: Building Categories and Quantities 

Building Type Number of 
Buildings Building Type Examples 

Commercial 24 Office space 
Community 5 Municipal facilities (ex. ice rinks, community centres, libraires) 
Education 28 Schools 

Health Care 11 Clinics, hospitals 
Hotel 3 Hotels 

Industrial 83 Manufacturing 
Retail 27 Stores and restaurants 
Utility 7 Pumping stations and telecommunications 

 

MATLAB software was chosen as the tool for the analysis because of the large number 

of simulations. A total of 297,600 simulations were conducted across 248 buildings, 

four years of data, five demand reduction increments, six battery capacities, five 

discharge rates, and two monthly peak demand values. The results of those simulations 

are analyzed to determine what conclusions can be drawn as to relationships between 

building load data, category, battery discharge strategy, and sizing. 

 

A MATLAB model was built to use a common demand reduction strategy to analyze 

various battery storage sizes and peak reduction increments for each building. The 

battery sizes in the model were discrete values based on commercially available LIB 

pack sizing. The battery sizes tested in the model were 25, 50, 100, 250, 500, and 1,000 

kWhcap. Five inverter maximum power ratings are used in the tests. The power ratings 

range from 15 min to 12.0 h. The 15 min discharge time is used to examine what 

improvements in demand reduction results are possible as technology battery 

improves. The 2.0 h discharge time reflects commercially available products and the 

4.0 h to 12.0 h rates are used to test if slower rates improve demand reduction results in 

certain categories. Although the battery sizing and inverter power ratings tested are not 

exhaustive, it has sufficient resolution and range to reflect commercially available 

products and typical purchasing increments available for a project. The battery sizes 

and inverter power ratings used in the test are shown below in Table 7.  
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Table 7: Battery Capacity and Inverter Power 

Battery 
Capacity 
(kWhcap)  

15 min Rate 
Inverter 
Power 
(kWinv) 

2.0 h Rate 
Inverter 
Power 
(kWinv) 

4.0 h Rate 
Inverter 
Power 
(kWinv) 

8.0 h Rate 
Inverter 
Power 
(kWinv) 

12.0 h Rate 
Inverter 
Power 
(kWinv) 

 
25 100 12.5 6.3 3.1 2.1  

50 200 25 12.5 6.3 4.2  

100 400 50 25.0 12.5 8.3  

250 1000 125 62.5 31.3 20.8  

500 2000 250 125.0 62.5 41.7  

1,000 4000 500 250.0 125.0 83.3  

 

Comparing the results between the 15 min, 2.0 h, and slower rate scenarios will be 

informative for understanding if significant improvements in results for demand charge 

management applications can be expected as new BESS technology is developed that 

will allow high rates of charge and discharge versus commercially available BESS 

products (130 kWinv / 2.0 h Tesla Powerpack) [47]. 

 

The demand reduction model uses the Monthly Load Factor (MLF) from the same 

month in the previous year to determine the Target Demand (TD). This allows the 

discharge strategy to raise the TD for months with a historically high MLF and to lower 

the TD for months with a historically low MLF. The MLF was treated as one of the 

independent variables that was expected to influence the sizing and demand reduction 

potential of a BESS for a commercial building.  

 

The model used the first year of data (2016) to represent one year of historical utility 

bills that a building owner or project developer would typically have access to.  The 

following years (2017-2019) were tested for demand reduction results using perfect 

foresight and predicted peak demand based on the 2016 bill data. . The model is not a 

learning or training model as it assumes the building owner or project developer only 

has access to utility bill data. The results between the perfect foresight and predicted 

peak demand were compared, as were the demand reduction savings using the various 

rate scenarios. The results are presented with normalized demand reduction savings by 
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building average load (kWpd / kWavg).  

 

The model is based on the alternating current (AC) loads seen in the building rather 

then the direct current (DC) ratings on the battery. An AC model was selected because 

AC electrical system in the building is the point of common coupling for metering. The 

building owner is billed in AC, and commercially available BESS systems, like the 

Tesla Powerpack, market their BESS products with energy capacity rated in AC 

kWhcap and inverter power ratings in AC kWinv. 

 

Fixed AC-DC efficiency conversions of 86% and 100% are used on charge and 

discharge, respectively. Since the model is based on AC loads, it was decided to 

capture the full round-trip energy efficiency while charging so that any energy stored 

within the battery could be considered usable AC capacity. This method is helpful for 

owners and designers as the battery capacity represents the total amount of useful 

energy that can be accessed for demand reduction or other applications. Energy 

efficiency of 86% was selected to align with published material including analysis by 

Lazard (80%-94%) [29], Pacific Northwest National Laboratory (86%) [42], and Tesla 

(88-89.5%) [47]. 

 

The battery capacities, efficiency, and rate are representative of LIB storage 

technology, which is the primary battery storage technology being deployed at 

commercial scale. These parameters could be adjusted to reflect other types of energy 

storage technology, but this research focuses on LIB BESS.  

 

3.2 C&I Energy Storage Model Development 
 

A C&I Energy Storage Model (CIESM) was developed for analyzing various 

buildings, battery sizes and demand reduction targets on buildings in Nova Scotia.  

 

First, an array of building load profiles, for all building categories, is loaded into the 

CIESM. The model can iteratively simulate all the buildings in the array, a category of 

buildings, or a single building.  
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For the first year the model scans the entirety of the building load timeseries to find the 

peak demand in each calendar month, and to calculate the monthly average demand. It 

is assumed that the calendar months and billing months are the same in the analysis. 

The MLF is calculated from the peak monthly demand and average monthly demand as 

shown below in Equation (5). 

 

𝑀𝐿𝐹 =  
Average Monthly Demand (kW𝑎𝑣𝑔)

Peak Monthly Demand (kW𝑝𝑑)
 

 

(5)  

Two examples of the calculation of the MLF are shown below in Table 8 to illustrate 

buildings with a low and high MLF. The first building shown in the table with Load 

Research ID (LRID) 314110 is an Education facility with rate code 11 (general 

commercial tariff). The second building is LRID 354710 is a Hotel with rate code 11.  

 
Table 8: Examples of Monthly Load Factor Calculation 

 

Year Month 

Education - 314110 Hotel - 354710 
Avg. Mon. 

Load 
(kWavg) 

Peak Mon. 
Demand  
(kWpd) 

Monthly 
Load Factor 

(%) 

Avg. Mon. 
Load  

(kWavg) 

Peak Mon. 
Demand  
(kWpd) 

Monthly 
Load 

Factor (%) 

2016 

1 7.3 26 27.9% 480.5 761 63.1% 

2 8.3 24 34.6% 419.5 842 49.8% 

3 7.9 22 35.9% 412.6 723 57.1% 

4 6.5 20 32.7% 337.5 619 54.5% 

5 4.4 15 29.5% 249.4 417 59.8% 

6 4.6 17 27.0% 235.9 426 55.4% 

7 4.6 15 30.7% 293.7 504 58.3% 

8 4.6 16 28.5% 307.1 499 61.5% 

9 6.5 20 32.4% 283.2 524 54.0% 

10 6.5 21 31.2% 270.2 447 60.4% 

11 6.6 22 29.9% 311.8 520 60.0% 

12 5.3 20 26.3% 438.5 791 55.4% 
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Year Month 

Education - 314110 Hotel - 354710 
Avg. Mon. 

Load 
(kWavg) 

Peak Mon. 
Demand  
(kWpd) 

Monthly 
Load Factor 

(%) 

Avg. Mon. 
Load  

(kWavg) 

Peak Mon. 
Demand  
(kWpd) 

Monthly 
Load 

Factor (%) 

2017 

1 5.7 20 28.4% 450.8 721 62.5% 
2 6.1 20 30.5% 455.5 693 65.7% 
3 6.1 19 32.0% 463.7 736 63.0% 
4 5.9 19 30.9% 317.9 533 59.6% 
5 4.8 16 30.1% 314.7 446 70.6% 
6 4.7 15 31.2% 271.0 518 52.3% 
7 4.9 18 27.2% 287.7 542 53.1% 
8 4.6 13 35.1% 311.2 488 63.8% 
9 6.1 19 32.1% 301.7 516 58.5% 
10 6.6 18 36.6% 292.0 418 69.8% 
11 6.1 19 32.1% 375.3 608 61.7% 
12 4.7 18 26.0% 495.5 807 61.4% 

 

 

The values from Table 8 are plotted in Figure 10. Seasonal variations in average load 

and peak demand are apparent for both buildings with higher electrical consumption in 

the winter months and lower consumption in the spring and summer months. No 

seasonal trends are apparent for the MLF. 
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Figure 10: Average and Peak Monthly Load with Monthly Load Factor for Education 314110 (top) and 
Hotel 354710 (bottom) 

 

The control strategy is based on using iteration to determine the optimum battery 

storage size and peak demand reduction potential for a given building. The model 

iteratively simulates incremental demand charge reduction scenarios, down to the 

average demand, by calculating a Target Demand (TD) to use in the analysis.  

 

This approach uses five Demand Increments (DI) of the MLF ranging from 20%, 

which reduces only the highest peaks, to 100% where the building load profile would 

appear as a flat demand at the monthly average. The first step in calculating the TD is 

calculating a Demand Reduction Factor (DRF) that is based on the DI and the MLF. 

The formula for the DRF is shown in Equation (6). 

 

𝐷𝑅𝐹 = (1 − 𝑀𝐿𝐹) × 𝐷𝐼 (%) (6)  
 

The relationship between DRF, MLF for various DIs is plotted below in Figure 11. The 

resultant DRFs for a given MLF narrow as the MLF meaning that the largest spread of 

demand savings results between various DI scenarios would be expected for buildings 

with a lower MLFs and to narrow for buildings with a higher MLF. This conclusion is 

intuitive when considering that a BESS can not reduce the peak demand in the billing 
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period below the average demand load.  

 
Figure 11: Demand Reduction Factor vs Monthly Load Factor for Various Demand Increments 

 

This method allows the DRF and, resultant TD, to vary monthly in absolute terms, and 

as a relative percentage of peak demand, to optimize the use of the battery. The DRF is 

then multiplied by the Peak Monthly Demand (PMD) to determine the TD as shown in 

Equation (7). 

𝑇𝐷 = 𝐷𝑅𝐹 × 𝑃𝑀𝐷 (7)  
 

Examples of calculating the five different DRFs and TDs for May 2017 in buildings Education – 
314110 and Hotel – 354710 are shown in shown below in Table 9 and  

Table 10 respectively. 

 
Table 9: Education – 314110 Example Calculations of Demand Reduction Factor and Monthly Target 
Building Demand 

Education - 314110 
DI  

(%) 
MLF 
(%) 

DRF 
(%) 

Peak Monthly 
Demand (kWpd) 

TD  
(kWpd) 

PMD - MTBD 
(kWpd) 

20.0% 

30.1% 

14.0% 

16 

13.8 2.2 
40.0% 28.0% 11.5 4.5 
60.0% 41.9% 9.3 6.7 
80.0% 55.9% 7.1 8.9 

100.0% 69.9% 4.8 11.2 
 
 

 

Table 10: Hotel – 354710 Example Calculations of Demand Reduction Factor and Monthly Target 
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Building Demand 

Hotel - 354710 
DI  

(%) 
MLF 
(%) 

DRF 
(%) 

Peak Monthly 
Demand (kWpd) 

TD 
(kWpd) 

PMD - MTBD 
(kWpd) 

20.0% 

70.6% 

5.9% 

446 

419.7 26.3 
40.0% 11.8% 393.5 52.5 
60.0% 17.7% 367.2 78.8 
80.0% 23.6% 341.0 105.0 

100.0% 29.4% 314.7 131.3 
 

As shown above, the highest DI (100%) brings the peak monthly demand inline with 

the average monthly demand, while the lowest DI (20%) targets modest reduction in 

peak demand. The demand reduction increments are dependent on the variability in the 

building load because the DRF is based on the MLF. A higher load variability (i.e. low 

MLF) will result in larger step changes than a scenario with a low load variability (i.e. 

high MLF).This is illustrated in Figure 12 and Figure 13 where equivalent DIs of 60% 

result in significantly different DRFs because of the difference in MLF for the two 

buildings. The low MLF (~30%) in Education 314110 means the resultant DRF, for the 

same DI, results in more than twice the relative demand reduction (41.9% vs 17.7%) in 

comparison to Hotel 354710 with a higher MLF (~70%). The result is the model will 

attempt to reduce the peak demand more dramatically in buildings with a low MLF 

than a building with a high MLF. 

 

 
Figure 12: Education 314110 - MBTD for DRF with 60% DI 
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Figure 13: Hotel 354710 - MBTD for DRF with 60% DI 

 

Once the TD has been established, a timestep analysis is performed for the battery and 

building load profile. The maximum battery charge and discharge rates are determined 

by checking the remaining energy in the battery, the time step, and the maximum 

allowable charge and discharge rates (i.e. 15 min or 2.0 h).  

 

Next, the model checks if the building load in the time step, t, is below the TD. If the 

building load is below the TD in the timestep, then the battery charges at a rate, 

inclusive of charging efficiency, which is the minimum of: 

• the maximum defined inverter power rating; 

• the maximum rate defined by the energy remaining in the battery; 

• or a rate which will keep the building load, inclusive of battery charging, under 

the TD.  

 

If the battery is fully charged during the timestep, t, or during a previous timestep, t-1, 

then it remains in standby and cannot accept any additional energy. When the building 

load exceeds the TD, then the battery will exit standby by discharging energy to bring 

the net building load down to the TD.  
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If the building load is greater then the TD in timestep t, then the battery discharges at 

the minimum a rate defined by: 

• the maximum inverter discharge rate; 

• the maximum rate defined by the energy remaining in the battery; 

• or the minimum rate required to reduce the building demand to the TD.  

 

If the battery runs out of energy in timestep t then the battery stops discharging and 

remains in standby until the building load falls below the TD, at which stage the 

battery can recharge.  

 

Next, the remaining battery energy, state of charge (SOC), and net building demand is 

calculated for the time step, t. During a given timestep, t, the battery may not be able to 

reduce the building demand to the TD because the battery becomes fully discharged, or 

the discharge power is insufficient due to the amount of energy remaining in the 

battery or maximum inverter rate. The net building demand could exceed the TD in 

these scenarios. In this case, the TD is reset to be the net building demand in timestep t. 

If, in timestep t, the net building demand exceeds the TD, then the TD is reset prior to 

t+1, to give a new objective demand value for the battery to meet. Resetting the TD to 

the highest observed net building load in the billing period ensures that the battery is 

not discharging in situations that would not produce a reduction in net building 

demand.  

 

A flow chart of the C&I Energy Storage Model is shown below in Figure 14.  
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Figure 14: Control Strategy Flow Chart 
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3.3 Predicting the Peak Monthly Demand 
 

In the first year of analysis, the TD was determined using perfect foresight to identify 

the peak monthly demand in each billing period. While perfect foresight is helpful for 

setting the base case scenario for demand savings, it is not practical from a project 

implementation perspective since a building owner does not have perfect foresight of 

the peak demand. Four simple methods were developed for predicting the peak 

monthly demand. It was assumed that the project developer, or building owner, had 

access to a minimum 12 months of utility bills that contain at least the peak monthly 

demand and total monthly energy consumption. Relying on historical data means the 

methods can be slow to react to large changes in load due to sudden growth (ex. 

heating system electrification or EVs being introduced) or decline in consumption (ex. 

COVID-19). This is a potential drawback of the assessment approach taken, but this 

decision was made to simplify the analysis. Weather data was not used to assess 

correlations between outside ambient temperature and either the monthly peak demand 

or average load for the building. Future work could incorporate historical weather data 

and a weather forecast to improve the peak demand prediction accuracy. 

 

Method 1 uses the Actual Peak Monthly Demand (APMD) from the same month in the 

preceding year as the Predicted Peak Monthly Demand (PPMD) for the current year 

and is shown below in Equation (8).  

 

𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗 =  𝐴𝑃𝑀𝐷𝑌𝑖−1,𝑀𝑗 (8)  
 

Method 2 uses the APMD from the same month in the preceding year and is error 

adjusted based on the average error between the PPMD and the APMD in the current 

year as shown below in Equation (9). 

 

𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗 = 𝐴𝑃𝑀𝐷𝑌𝑖−1,𝑀𝑗  ×  

1
𝑗

∑ 𝐴𝑃𝑀𝐷𝑌𝑖,𝑀𝑗
𝑗−1
1  

1
𝑗

∑ 𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗
𝑗−1
1

 (9)  
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Method 3 uses the APMD from the same month in the preceding year but is adjusted 

based on average error between the Actual Average Monthly Load (AAML) and the 

Predicted Average Monthly Load (PAML). The PAML is calculated as the AAML from 

the same month in the previous year and is adjusted based on the AAML and PAML for 

the previous months in the year, as shown below in Equation (10). 

 

𝑃𝐴𝑀𝐿𝑌𝑖,𝑀𝑗 = 𝐴𝐴𝑀𝐿𝑌𝑖−1,𝑀𝑗  ×  

1
𝑗

∑ 𝐴𝐴𝑀𝐿𝑌𝑖,𝑀𝑗
𝑗−1
1  

1
𝑗

∑ 𝑃𝐴𝑀𝐿𝑌𝑖,𝑀𝑗
𝑗−1
1

 (10)  

 

The formula for the PPMD using Method 3 is shown below in Equation (11). 

 

𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗 = 𝐴𝑃𝑀𝐷𝑌𝑖−1,𝑀𝑗  ×  

1
𝑗

∑ 𝐴𝐴𝑀𝐿𝑌𝑖,𝑀𝑗
𝑗−1
1  

1
𝑗

∑ 𝑃𝐴𝑀𝐿𝑌𝑖,𝑀𝑗
𝑗−1
1

 (11)  

 

Method 4 uses the MLF from the same month in the previous year, the PAML, and an 

average error correction based on the PPMD and APMD to calculate the PPMD as 

shown below in Equation (12).  

 

𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗 =  
𝑃𝐴𝑀𝐿𝑌𝑖,𝑀𝑗

𝑀𝐿𝐹𝑌𝑖−1,𝑀𝑗
 ×

Σ1
𝑗
 𝐴𝑃𝑀𝐷𝑌𝑖,𝑀𝑗−1

Σ1
𝑗
 𝑃𝑃𝑀𝐷𝑌𝑖,𝑀𝑗−1

 (12)  

 

Methods 2-4 use a similar average error ratio concept. In each case, for the first month 

being analyzed beyond the initial year, the PPMD or PAML is assumed to be equal to 

the peak demand or average load in the same month of the previous year since no 

offset ratio can be used. 
 

An example of Method 4 calculations for the PAML and PPMD for 2017-2019 using 

2016 utility billing data is shown below for Education – 314110 and Hotel – 354710 in 

Table 11 and Table 12 respectively.  
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Table 11: Education – 314110 Predicted Average Monthly Demand and Predicted Peak Monthly Demand 

Year Month 

Actual 
Average 
Monthly 

Load 
(kWelc) 

Actual 
Peak 

Monthly 
Demand  
(kWpd) 

Monthly 
Load 

Factor 
(%) 

Predicted 
Average 
Monthly 

Load  
(kWelc) 

PAML 
Cumulative 

Average 
Error 

Offset (%) 

Predicted 
Peak 

Monthly 
Demand  
(kWpd) 

PPMD 
Cumulative 

Average 
Error 

Offset (%) 

PPMD 
Monthly 
Error (%) 

2016 

1 7.3 26 28% - - - - - 

2 8.3 24 35% - - - - - 

3 7.9 22 36% - - - - - 

4 6.5 20 33% - - - - - 

5 4.4 15 30% - - - - - 

6 4.6 17 27% - - - - - 

7 4.6 15 31% - - - - - 

8 4.6 16 28% - - - - - 

9 6.5 20 32% - - - - - 

10 6.5 21 31% - - - - - 

11 6.6 22 30% - - - - - 

12 5.3 20 26% - - - - - 

2017 

1 5.7 20 28% 7.3 28% 26 30% 30% 

2 6.1 20 31% 6.0 13% 12 -5% -39% 

3 6.1 19 32% 6.9 13% 20 -1% 6% 

4 5.9 19 31% 5.7 9% 18 -3% -7% 

5 4.8 16 30% 4.0 5% 14 -4% -12% 

6 4.7 15 31% 4.4 3% 17 -2% 13% 

7 4.9 18 27% 4.5 2% 15 -4% -18% 

8 4.6 13 35% 4.5 1% 16 -1% 26% 

9 6.1 19 32% 6.4 2% 20 -1% 5% 

10 6.6 18 37% 6.4 1% 21 1% 15% 

11 6.1 19 32% 6.5 2% 22 2% 13% 

12 4.7 18 26% 5.2 2% 19 3% 7% 

2018 

1 5.5 20 28% 5.6 0% 19 -5% -5% 

2 6.2 19 33% 6.1 -1% 21 2% 10% 

3 6.3 20 31% 6.1 -1% 19 -1% -7% 

4 5.6 19 30% 5.9 0% 19 0% 2% 

5 4.3 17 26% 4.8 2% 16 -1% -6% 

6 4.7 17 28% 4.6 1% 15 -3% -12% 

7 4.4 16 28% 4.8 2% 18 -1% 14% 

8 4.1 15 27% 4.5 3% 13 -2% -15% 

9 5.9 21 28% 5.9 3% 19 -3% -10% 

10 7.0 20 35% 6.4 1% 18 -4% -10% 

11 7.5 22 34% 6.0 -1% 19 -5% -11% 

12 5.2 18 29% 4.7 -2% 19 -4% 6% 
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Year Month 

Actual 
Average 
Monthly 

Load 
(kWelc) 

Actual 
Peak 

Monthly 
Demand  
(kWpd) 

Monthly 
Load 

Factor 
(%) 

Predicted 
Average 
Monthly 

Load  
(kWelc) 

PAML 
Cumulative 

Average 
Error 

Offset (%) 

Predicted 
Peak 

Monthly 
Demand  
(kWpd) 

PPMD 
Cumulative 

Average 
Error 

Offset (%) 

PPMD 
Monthly 
Error (%) 

2019 

1 6.7 21 32% 5.6 -16% 21 1% 1% 

2 7.2 21 34% 7.2 -8% 22 2% 4% 

3 6.9 22 31% 6.8 -6% 21 0% -4% 

4 6.2 20 31% 6.0 -5% 20 0% 1% 

5 4.9 16 31% 4.6 -6% 18 2% 12% 

6 4.8 21 23% 5.0 -5% 18 -1% -16% 

7 4.5 16 28% 4.6 -4% 17 0% 6% 

8 4.2 16 26% 4.2 -3% 16 -1% -2% 

9 6.4 20 32% 6.1 -3% 22 1% 9% 

10 6.5 20 33% 7.2 -2% 21 1% 3% 

11 6.8 26 26% 7.6 0% 22 -1% -15% 

12 5.2 20 26% 5.3 0% 18 -2% -9% 

 

Table 12; Hotel – 354710 Predicted Average Monthly Demand and Predicted Peak Monthly Demand 

Year Month 

Actual 
Average 
Monthly 

Load 
(kWelc) 

Actual 
Peak 

Monthly 
Demand  
(kWpd) 

Monthly 
Load 

Factor 
(%) 

Predicted 
Average 
Monthly 

Load  
(kWelc) 

PAML 
Cumulative 

Average 
Error 

Offset (%) 

Predicted 
Peak 

Monthly 
Demand  
(kWpd) 

PPMD 
Cumulative 

Average 
Error Offset 

(%) 

PPMD 
Monthly 
Error (%) 

2016 

1 481 761 63% -  - - - 

2 420 842 50% -  - - - 

3 413 723 57% -  - - - 

4 338 619 55% -  - - - 

5 249 417 60% -  - - - 

6 236 426 55% -  - - - 

7 294 504 58% -  - - - 

8 307 499 62% -  - - - 

9 283 524 54% -  - - - 

10 270 447 60% -  - - - 

11 312 520 60% -  - - - 

12 438 791 55% -  - - - 

2017 

1 451 721 63% 480.5 7% 761 6% 6% 

2 455 693 66% 391.9 -4% 743 6% 7% 

3 464 736 63% 428.0 -5% 702 3% -5% 

4 318 533 60% 354.6 -2% 633 6% 19% 

5 315 446 71% 254.3 -5% 400 4% -10% 

6 271 518 52% 246.9 -5% 430 1% -17% 

7 288 542 53% 308.8 -4% 527 0% -3% 

8 311 488 64% 318.6 -3% 517 1% 6% 

9 302 516 58% 291.9 -3% 536 1% 4% 

10 292 418 70% 278.6 -3% 456 2% 9% 
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Year Month 

Actual 
Average 
Monthly 

Load 
(kWelc) 

Actual 
Peak 

Monthly 
Demand  
(kWpd) 

Monthly 
Load 

Factor 
(%) 

Predicted 
Average 
Monthly 

Load  
(kWelc) 

PAML 
Cumulative 

Average 
Error 

Offset (%) 

Predicted 
Peak 

Monthly 
Demand  
(kWpd) 

PPMD 
Cumulative 

Average 
Error Offset 

(%) 

PPMD 
Monthly 
Error (%) 

11 375 608 62% 321.9 -4% 528 0% -13% 

12 496 807 61% 457.3 -5% 823 0% 2% 

2018 

1 538 930 58% 471.9 -12% 752 -19% -19% 

2 456 748 61% 511.7 -1% 928 0% 24% 

3 419 642 65% 468.6 3% 743 4% 16% 

4 361 579 62% 309.2 -1% 496 1% -14% 

5 273 392 70% 317.1 1% 446 2% 14% 

6 286 490 58% 267.0 0% 499 2% 2% 

7 335 535 63% 286.3 -1% 528 2% -1% 

8 365 596 61% 315.6 -3% 486 -1% -18% 

9 296 475 62% 310.3 -2% 534 0% 13% 

10 311 517 60% 298.3 -2% 425 -1% -18% 

11 435 771 56% 384.0 -3% 629 -3% -18% 

12 526 742 71% 512.1 -3% 860 -1% 16% 

2019 

1 567 775 73% 555.9 -2% 972 25% 25% 

2 542 760 71% 464.5 -8% 568 0% -25% 

3 399 668 60% 452.9 -2% 691 1% 3% 

4 323 492 66% 369.8 1% 585 4% 19% 

5 273 371 73% 271.6 1% 372 4% 0% 

6 265 404 66% 284.4 1% 468 5% 16% 

7 328 564 58% 331.1 1% 500 3% -11% 

8 310 479 65% 360.0 3% 571 5% 19% 

9 259 411 63% 288.0 3% 440 5% 7% 

10 278 404 69% 300.3 4% 475 6% 17% 

11 355 600 59% 418.4 5% 698 7% 16% 

12 465 693 67% 499.1 5% 655 6% -5% 

 

Using 2016 as the reference utility billing data, the APMD, PPMD and the monthly 

and cumulative average error for 2017-2019 using Method 4, are shown graphically 

below for Education – 314110 and Hotel – 354710 in Figure 15 and Figure 16 

respectively.  
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Figure 15: Method 4 - Actual and Predicted Peak Monthly Demand 2017-2019 - Education 314110 

 

 
Figure 16: Method 4 - Actual and Predicted Peak Monthly Demand 2017-2019 - Hotel 354710  

 

A sample comparison of the Methods 1-4 for 2017 are shown below for Education – 

314110 and Hotel – 354710 in Figure 17 and Figure 18 and respectively. The APMD 

for each month is 2016 is shown as reference as well.  
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Figure 17: Peak Monthly Demand Prediction Method Comparison - 2017 - Education 314110 

 

 
Figure 18: Peak Monthly Demand Prediction Method Comparison - 2017 - Hotel 354710 

Both building examples demonstrate that the PPMD calculated by Methods 1-4 tracks 

the APMD well for months in which the APMD is close to the previous year. In 

instances where the APMD varies significantly from year to year there are prediction 

errors. A detailed comparison of the prediction Methods by building category and load 

are presented in Chapter 5. 

 

In Methods 3-4 the error adjustment is made on the ratio of actual to predicted results 

rather than the error between the actual and predicted results.  Using the actual and 

predicted results rather than the error introduces a seasonal bias to the adjustment 
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depending on if the annual peak demand for the building is in the summertime or 

wintertime.  

After data from the first year is collected, the PPMD is used to calculate the TD rather 

than using perfect foresight as in the base case scenario. The demand savings results 

from the predicted peak demand scenarios can be compared to the perfect foresight 

case to determine the effect of predicting the peak demand on potential demand 

savings for a building owner. 

 

The sign of the error reported for the PPMD has different implications for how the 

battery will interact with the building. In the case of a positive error, the PPMD is 

higher than the APMD, and as a result a higher DRF will be required to achieve the 

same demand savings and ensure that the battery does not remain inactive during peak 

demand events. In contrast, a negative error means that at the PPMD is below the 

APMD. In this case, in the absence of a lower DRF, the battery will discharge more 

frequently to reduce building demand further than the APMD.  

Depending on the degree of underestimating or overestimating the APMD, and the 

DRF that is applied, there could be asymmetrical effects on demand savings for the 

building owner. A scenario that underestimates the APMD could cause the battery to 

discharge prematurely, run out of energy and result in no demand savings for the 

month. Conversely, overestimating the APMD may result in reduced demand savings 

versus the optimal scenario. The nature of the demand savings results when the APMD 

is overestimated or underestimated is explored in Chapter 5.  
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CHAPTER 4 DATA 
 
 

4.1 Electric Utility Tariffs in Nova Scotia 
 

NSP is a regulated electrical utility that provides electricity generation, transmission, 

and distribution services in the province of Nova Scotia. NSP is the primary electrical 

utility in the province, supplying 95% of these services to over 500,000 customers 

[48]. 

 

In Nova Scotia, different customer classes have differing rate structures that are used to 

bill for electrical services. These rates can include energy charges ($/kWhelc), demand 

charges ($/kWpd or $/kVApd), fixed monthly charges ($/mon), or a combination. The 

value of the different rate components is dependent on the customer class [49]. The 

two usage-based rates are the energy charge and demand charge. Shown below in 

Table 13 are the energy and demand charges for the various customer classes. The 

prices shown below are net of the Fuel Adjustment Mechanism (FAM) credits and or 

chargers, pre-tax, excludes initial billing blocks, and fixed monthly charges are ignored 

as they are typically in the range of $10-20 per month so are small relative to the 

consumption-based portions of the bill. 

 
Table 13: Nova Scotia Power Rates by Customer Class  

Customer Class NSP  
Rate Code 

Energy Charge  
($/kWhelc) 

Demand Charge        
($/kWpd, $/kVApd) 

Residential 02, 03, 04  $   0.16008   $         -  
Small Commercial 10  $   0.14602   $         -  

General Commercial 11  $   0.09266  $      10.497 / kWpd 
Large Commercial 12  $   0.09526   $      13.345 / kVApd 

Small Industrial 21  $   0.09044  $      7.714 / kVApd 
Medium Industrial 22  $   0.08672  $      12.501 / kVApd 

Large Industrial 23  $   0.08987  $      11.995 / kVApd 
 

The economic analysis presented in Section 5.6 utilizes the General Commercial (Rate 

Code 11) tariffs for all the buildings. This approach was selected to focus the analysis 

on the impact of the building load characteristics rather than the differences in demand 

charge rates and energy rates. 
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The average or effective billing rate ($/kWhelc) that any given customer class pays is 

dependent on the characteristics of its load profile in the billing month and the energy 

and demand charges that correspond with that customer’s rate class.  

For customers with a demand charge, the effective billing rate is dependent on their 

LF. In this thesis effective billing rate is defined as the total pre-tax electrical utility 

charges ($) in the billing period divided by the total electrical energy (kWhelc) usage in 

the billing period. Shown below in Figure 19 is the effective billing rate for different 

rate classes depending on the customer’s load factor during that month. For simplicity, 

flat billing period charges and blocked energy charges have been ignored as have fixed 

monthly charges. As shown below, customers with a demand charge and a lower load 

factor have a higher effective billing rate than customers with a higher load factor. A 

low load factor indicates a low average load relative to the peak load in the billing 

period, while a high load factor indicates an average load that is closer to the peak load 

in the billing period. 

 
Figure 19: Effective Billing Rate versus Load Factor 

 

A low load factor results in a larger fraction of the customer’s bill comprised of the 

demand charge relative to the energy charge. Shown below in Figure 20 is the 

percentage of the customer’s electric utility bill that is represented by the demand 

charge based on the customer’s load factor. 
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Figure 20: Demand Charge Percentage of Bill versus Load Factor 

The rate analysis above shows that Large Commercial, Medium Industrial and Large 

Industrial customer classes will have a higher economic incentive to adopt energy 

storage because of a higher percentage of their utility bill represented by the demand 

charge across all load factors. This is driven by the relative demand and energy rate 

components in comparison to Small Industrial and General Commercial. Project 

developers and building owners need to consider not only the percentage of the bill the 

demand charge represents, but also the absolute value of the demand charge reduction, 

as that will be directly proportional to the monetary savings the battery system can 

generate. The demand charge of a commercial building can never be reduced to zero, 

even if the building has a perfectly flat load profile and consumes the same amount of 

power at all points during the month. As shown above in Figure 20, even a building 

with a LF of 100% (Average Load = Peak Demand) will have a demand charge that 

represents 10-15% of the total bill depending on the customer class and corresponding 

demand charge.  

 

 

 

The NSP customer classes are listed below in order of percentage of the utility bill 
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represented by the demand charge for a load factor of 20%, along with their demand 

charge rate for reference: 

1. Medium Industrial (51% @ 20% LF, $12.501/kVApd) 

2. Large Industrial (50% @ 20% LF, $11.995/kVApd) 

3. Large Commercial (49% @ 20% LF, $13.345/kWpd) 

4. General Commercial (44% @ 20% LF, $10.497/kWpd) 

5. Small Industrial (38% @ 20% LF, $7.714/kVApd) 

6. Small Commercial (no demand charge) 

7. Residential (no demand charge) 

 

Figure 20 also demonstrates that the opportunity for a BESS to provide monetary 

demand charge savings for buildings with a load factor above 50% is reduced due to 

the declining fraction of the utility bill that the demand charge represents.  

 

4.2 Nova Scotia Power Data Set 
 

NSP provided Dalhousie University Renewable Energy Storage Laboratory (RESL) 

with commercial and industrial customer interval meter data to explore BESS 

applications. The research benefits from a dataset that includes 248 buildings across 

eight (8) NSP defined building types and three (3) NSP rate class as shown in Table 

14. The dataset covers the four years of 2016-2019 inclusively with 15 min building 

load data. All three rate classes have a demand charge. No Large Commercial or Large 

Industrial customers were represented due to privacy concerns because of the small 

number of those customers in Nova Scotia. 

 

 

 

 

 

 

 
Table 14: Number of Buildings by Rate Class and Nova Scotia Power Classification  
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Building 
Type 

Total 
Buildings in 

Type 

Rate Class 
General Commercial 

(Rate Code 11) 
Small Industrial 
(Rate Code 21) 

Medium Industrial 
(Rate Code 22) 

Commercial 39 39 - - 
Community 9 9 - - 
Education 34 34 - - 

Health Care 18 18 - - 
Hotel 7 7 - - 

Industrial 86 1 41 44 
Retail 48 48 - - 
Utility 7 4 1 2 
 

The availability conditions for the three rate classes included in the data set are shown 

below in Table 15.  

 
Table 15: NSPI Rate Code Availability Conditions for Buildings in the Dataset 

General Commercial  
(Rate Code 11) 

Small Industrial  
(Rate Code 21) 

Medium Industrial  
(Rate Code 22) 

Annual energy consumption  
=> 32,000 kWhelc 

Regular billing demand is  
< 250 kVApd or < 225 kWpd 

Regular billing demand is  
=> 250 kVApd or => 225 kWpd 

 

The data was provided to RESL in Excel (.xlms) and comma separated value (.csv) 

formats. A sample of the data is shown below in Table 16.  
Table 16: NSP Data Sample 

RECORDER 
ID DATE HOUR IN UN  KW KVAR KVAR  

A02410 160101 15 15  KW 203 103 0 0 
A02410 160101 30 15  KW 197 98 0 0 
A02410 160101 45 15  KW 198 102 0 0 
A02410 160101 100 15  KW 195 101 0 0 
A02410 160101 115 15  KW 199 102 0 0 
A02410 160101 130 15  KW 198 106 0 0 
A02410 160101 145 15  KW 197 99 0 0 
A02410 160101 200 15  KW 202 95 0 0 
A02410 160101 215 15  KW 206 97 0 0 
A02410 160101 230 15  KW 210 100 0 0 
A02410 160101 245 15  KW 207 99 0 0 
 

 

 

The data in the columns is organized as follows: 
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1) Recorder ID: Unique meter identification number for the customer 

2) Date: Date in the format YYMMDD 

3) Hour: Time in the format HHMM 

4) IN: Measurement interval of 15 min 

5) UN: Unit of power in kilowatt (kW) 

6) KW: Average power reading, in kilowatts, during that 15-minute interval 

7) KVAR: Lagging reactive power 

8) KVAR: Leading reactive power 

9) “”: placeholder column unless the customer has a net-metered account. In the 

event of a net-metered account this column represents the average exported 

power reading during that 15-minute interval 

 

4.3 Building Load Characteristics in the Dataset 
 

The buildings in the data set vary considerably in terms of average load, peak demand 

and MLF. Figure 21 below illustrates the difference between average load and peak 

demand. The building load is plotted as a function of time for a commercial building in 

Nova Scotia during January 2017. There is a cyclical nature to the load with the daily 

peak occurring during the day and valley at night. The global peak demand in January 

was set at 61 kWpd for this customer, noted with the red circle. The average load over 

the billing period was 40 kWelc, noted with the green line.  
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Figure 21: Example Monthly Load Profile for a Commercial Building 

 

Shown below in Figure 22 is the annual average load distribution by category for 2017. 

The labelled bars on the x-axis represent average load bars of xi-1 < x <= xi. The bins of 

average load range from 0 kWavg < x <= 100 kWavg to 2400 kWavg < x <= 2500 kWavg. 

Nearly half of all the buildings in the dataset have an average annual load of less than 

100 kWavg and there are very few buildings with an average annual load more than 

1000 kWavg.  
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Figure 22: Annual Average Load Distribution by Category – 2017 

 
Shown below in Figure 23 is the annual average load distribution by category for 2017 

only for the buildings with an average annual load of less than or equal to 100 kWavg. 

The bins of average load range from 0 kWavg < x <= 10 kWavg to 90 kWavg < x <= 100 

kWavg. Nearly a third of the total number of buildings with an annual load of less than 

or equal to 100 kWavg have an annual load of less than or equal to 20 kWavg. Of these 

buildings, Industrial represents the largest category.  
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Figure 23: Annual Average Load Distribution by Category, <= 100 kW – 2017 

 
 

Shown below Figure 24 MLF distribution by category for 2017. The MLF bins range 

from 0 % < x <= 5% to 95% < x <= 100%. Most of the buildings and months in the 

dataset have monthly load factors between 20-80%, with few buildings and months on 

the bottom and top 20% extremities. This plot provides some insight into which 

categories will be strong candidates for demand charge reduction and which will not. 

For example, both Industrial and Education have significant data points below a 50% 

MLF, while the Health Care and Hotel categories have most of their data points above 

a 50% MLF. 
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Figure 24: Monthly Load Factor Distribution by Category - 2017 

 

The following sections examine the load characteristics of the buildings in each of the 

categories.  

 

4.3.1 Commercial Buildings 
Shown below in Figure 25 is the average load distribution for the 39 commercial 

buildings in the data set for 2016-2019. The labelled bars on the x-axis represent load 

bars of xi-1 < x <= xi. The bins of average loads for the commercial buildings range 

from 0 kWavg < x <= 35 kWavg to 630 kWavg < x <= 665 kWavg. 
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Figure 25: Commercial Building Average Load Distribution by Year 

Figure 26 shows the average annual load, annual peak demand, and average monthly 

load factor for each building in the commercial category from 2016-2019. The 

buildings are sorted by average annual load in 2017. Most buildings show consistency 

year to year for maximum demand, average load, and average load factor. Presenting 

the data in this manner is useful for identifying buildings where energy storage could 

be effective by comparing the peak demand and load factor for buildings with similar 

average loads.  

 
Figure 26: Commercial – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 
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Shown below in Figure 27 is MLF for each commercial building from 2016-2019 

sorted by average MLF in 2017. There is a wide range in the MLFs observed in the 

commercial buildings with lows of less than 20% and highs above 80%, although 

values outside of those bounds are rare. Additionally, there is a range of MLF 

distributions depending on the building. Some buildings exhibit significant variations 

in MLF from month-to-month, while others are very tightly grouped. This shows the 

value of examining load factor on a monthly rather than annual basis because 

depending on the building, the annual load factor may or may not reflect what happens 

on the customers monthly billing basis.  
 

 
Figure 27: Commercial - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
 

4.3.2 Community Buildings 
Shown below in Figure 28 is the average load distribution for the nine (9) community 

buildings in the data set for 2016-2019. The average loads for the community facilities 

range from 35 kWavg < x <= 70 kWavg to 665 kWavg < x <= 700 kWavg. 



76  

 
Figure 28: Community Buildings Average Load Distribution 

 
Shown below in Figure 29 is the average and max load for each building in the 

community category from 2016-2019 sorted by the average annual observed load in 

2016 along with the average MLF in each year. As with the commercial buildings, the 

data shows reasonable consistency year to year for both max and average load for a 

given building, but there appears to be greater consistency on average load than max 

load. 

 
Figure 29: Community – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 
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Figure 30 shows the MLF for each community building from 2016-2019 arrange by 

average MLF in 2017. There is a smaller range of MLFs in the community building 

than observed in the commercial buildings, with most data points falling between 30% 

and 70%, but the building sample size is considerably smaller. As with the commercial 

category, there is a range month-to-month MLFs with some buildings being more 

tightly distributed than others. 
 
 

 
Figure 30: Community - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
4.3.3 Education Buildings 

Shown below in Figure 31 is the average load distribution for the 34 education 

buildings in the data set for 2016-2019. The average loads for the education buildings 

range from 0 kWavg < x <= 20 kWavg to 360 kWavg < x <= 380 kWavg. 
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Figure 31: Education Buildings Average Load Distribution by Year 

Shown below in Figure 32 is the average load and max demand, and average MLF for 

each building in the education category from 2016-2019 sorted by the average annual 

observed load in 2017. As with the other categories there is consistency in the data 

from year to year for most buildings. There is a trend in this category to lower average 

MLFs for buildings with a larger average load, although this does not apply to all 

buildings in this category. 

 
Figure 32: Education – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 
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Shown below in Figure 33 is the MLF by year for each of the education buildings. The 

education buildings tend to have a lower monthly load factor than the other building 

categories, with a significant number of the monthly load factor instances below 50%. 

There are also buildings that display tight groupings of MLFs consistently below 40% 

which indicates a strong opportunity for demand savings in these buildings.  

 
Figure 33: Education - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
4.3.4 Health Care Buildings 

Shown below in Figure 34 is the average load distribution for the 18 health care 

buildings in the data set for 2016-2019. The average loads for the health care buildings 

range from 0 kWavg < x <= 65 kWavg to 1170 kWavg < x <= 1235 kWavg. 
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Figure 34: Health Care Buildings Average Load Distribution by Year 

Figure 35 shows the average load, max demand and average MLF for each building in 

the health care category from 2016-2019 sorted by the average annual load in 2017.  

 
Figure 35: Health Care – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 

 
Shown below in Figure 36 is the MLF for the health care buildings. In this sample of 

health care buildings there is rarely an observance of a monthly load factor below 30% 

and the month-to-month distributions tend to be tighter than the other building 
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categories.  

A tighter distribution of high MLFs means there will be reduced opportunities for 

demand savings in this category.  

 
Figure 36: Health Care - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
4.3.5 Hotel Buildings 

Figure 37 shows the average load distribution for the 18 buildings in the health care 

category from 2016-2019. The average loads for the hotels range from 70 kWavg < x <= 

105 kWavg to 665 kWavg < x <= 700 kWavg. 
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Figure 37: Hotel Buildings Average Load Distribution by Year 

Figure 35 shows the average load, max demand and MLF for each building in the 

category from 2016-2019 sorted by the average annual load in 2017. It is evident that 

this category exhibit high average MLFs in comparison to the other categories.  

 

 
Figure 38: Hotel – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 

 
Figure 39 shows the MLF or for the hotel category from 2016-2019. Although the 

sample size is small, this category of buildings has consistently high load factors and 
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relatively tight MLF distributions in comparison to other categories. This indicates that 

like the health care category, there will be reduced opportunities for demand reduction.  

 
Figure 39: Hotel - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
4.3.6 Industrial Buildings 

Figure 40 shows the average load distribution for the 86 industrial buildings in the data 

set for 2016-2019. The average loads for the industrial facilities range from 0 kWavg < 

x <= 140 kWavg to 2660 kWavg < x <= 2800 kWavg with approximately 50% of the 

buildings in the first category. 
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Figure 40: Industrial Buildings Average Load Distribution by Year 

 

Figure 41 shows the average load, max demand and average MLF for each building in 

the industrial category from 2016-2019, sorted by the average annual load in 2017. As 

with the other categories, there is reasonable consistency year to year for both max 

demand and average load for a given building. 

 

 
Figure 41: Industrial – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 

Figure 42 shows the MLF by year for the industrial buildings. The industrial category 

exhibits both the largest range in monthly load factors and the largest distributions 

month-to-month. 
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Figure 42: Industrial - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

4.3.7 Retail Buildings 
Figure 43 shows the average load distribution for the 48 retail buildings in the data set 

for 2016-2019. The average load bins for this category range from 0 kWavg < x <= 30 

kWavg to 540 kWavg < x <= 570 kWavg with a broader distribution along the load range 

than most of the other categories. 

 
Figure 43: Retail Buildings Average Load Distribution by Year 
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Figure 44 shows the average load, max demand and average MLF for each building in 

the retail category from 2016-2019 sorted by the average annual load in 2017. This 

category shows a trend towards higher a higher average MLF with increasing building 

average load which was not always the case with categories like industrial.  

 

 
Figure 44: Retail – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 

Figure 45 shows the MLF by year for the retail buildings. The retail category tends to 

have higher monthly load factors than other categories with most of buildings having 

MLFs above 50%. Although these buildings will have a reduced opportunity for 

demand savings, there are several buildings with MLFs under 40% that will have good 

opportunities for demand reduction.  
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Figure 45: Retail - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

 
4.3.8 Utility Buildings 

Figure 46 shows the average load distribution for the seven (7) utility buildings in the 

data set for 2016-2019. The average loads for the utility buildings range from 0 kWavg 

< x <= 20 kWavg to 380 kWavg < x <= 400 kWavg. Except for one building, all others in 

the category had an average load of less than or equal to 100 kWavg.  

 
Figure 46: Utility Buildings Average Load Distribution by Year 
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Figure 47 shows the average load, max demand and MLF for each building in the 

utility category from 2016-2019 sorted by the average annual load in 2017. The small 

sample size makes it difficult to identify any trends with respect to MLF and building 

load, particularly that there is only a single building with an average load of greater 

than 100 kWavg.  

 

 
Figure 47: Utility – Annual Average Load, Peak Demand and Average - Sorted by 2017 Average Load 

Figure 48 shows the MLFs by year for the utility category. Despite the small sample 

size, this category does have buildings with a range of MLFs, and MLF distributions. 
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Figure 48: Utility - Monthly Load Factor by Year - Sorted by 2017 Average Monthly Load Factor 

  
4.4 Data Filtering 

The data supplied by NSP was modified to be used in the MATLAB model. The data 

was imported from Excel (.xls) and CSV (.csv) files into a MATLAB array. The 

following steps are taken to process the data: 

• The date and time are imported and then split into year, month, day, hour, and 

minute values. 

• An additional time array is created using the start and end dates of the dataset to 

allow interpolation of the data. 

• Duplicate timesteps due to the change from daylight savings time to standard 

time in the fall are removed.  

• A linear interpolation is used to fill gaps in power and time due to the change 

from standard time to daylight savings time in the spring. 

• The building load in each timestep is saved in the new MATLAB array.  

 

Several of the buildings have missing data values that could be due to measurement 

errors, power outages, or temporary disconnection of service at the facility. The 

missing data for these buildings is left unchanged and registers as zero (0) kWelc or 

power and zero (0) kVAelc of reactive power. This approach will result in the battery 

charging more than it may otherwise, due to the building load of zero kWelc being 
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below the monthly peak demand target. Depending on when the data is missing 

relative to the regular electrical usage, there is a possibility that this approach 

introduces errors in the demand reduction savings for a building. It was decided not to 

synthesize data for these missing periods because one of the key differentiators of this 

research is the use of real building datasets rather than synthesized or representative 

load profiles. Additionally, the objective of the research is to develop guidelines to 

assist project developers and building owners in assessing the potential for battery 

storage at a site. Missing data will be a realty of some site assessments and project 

developers and building owners may not have the tools at their disposal to create 

representative load profiles to patch missing data.  

 

The dataset includes reactive power (Q) for each building. Although the reactive power 

is saved in the MATLAB array, it is not used in the model, which only utilizes real 

power. The decision to utilize only the real power was made to align the research with 

literature that typically discusses demand on a real power (kWpd) versus apparent 

power (kVApd) basis. The economics analysis presented used General Commercial 

(Rate Code 11) tariffs for all the buildings to remove the differences in demand and 

energy rates from the results. The General Commercial tariffs are based on real power 

(kWpd) which was an additional consideration for this approach. Future research could 

incorporate reactive power to explore the relationship between power factor and 

opportunities for demand charge reduction. Incorporating reactive power would cause 

the billing peaks to increase for the buildings in the Small Industrial and Medium 

Industrial rate classes to increase, but billing peaks for buildings in General 

Commercial would remain the same. The opportunity for peak demand reduction 

would increase when reactive power is considered meaning the results in the research 

are conservative. The degree to which the peak demand reduction results would 

improve would depend on how the inverter was modelled with respect to its ability to 

provide reactive power support.  Incorporating various inverter P-Q curves into the 

model and including the reactive power data is an opportunity for future research.  
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4.5 MATLAB Data Format 
The building data is loaded into MATLAB in an 11 field structure array so that both 

numeric and text values can be stored. The format for the structure array is shown 

below in Table 17. 
Table 17: MATLAB Data Format 

Building 
Category METERID Rate 

Code P16 Q16 P17 Q17 P18 Q18 P19 Q19 

'Utility' '232110' '11M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '312510' '11M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '313610' '11M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '431610' '21M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '511710' '22M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '534510' '22M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

'Utility' '804010' '11M' 1x35137 
double 

1x35137 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

1x35041 
double 

 

The data in the columns of the structure array are organized as follows: 

1) BuildingCategory: NSP defined building category 

2) METERID: NSP defined meter identification number for the customer 

3) RateCode: NSP rate code tag 

4) P16: Array of real power values for 2016 in fifteen-minute increments 

5) Q16: Array of reactive power values for 2016 in fifteen-minute increments 

6) P17: Array of real power values for 2017 in fifteen-minute increments 

7) Q17: Array of reactive power values for 2017 in fifteen-minute increments 

8) P18: Array of real power values for 2018 in fifteen-minute increments 

9) Q18: Array of reactive power values for 2018 in fifteen-minute increments 

10) P19: Array of real power values for 2019 in fifteen-minute increments 

11) Q19: Array of reactive power values for 2019 in fifteen-minute increments 
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CHAPTER 5 RESULTS 
 

The results are presented in four subsections followed by a summary of the major 

findings. First, the predicted peak monthly demand is compared to the actual peak 

monthly demand. Next, sample peak demand reduction scenarios are shown, followed 

by a battery sizing examination. Finally demand reduction results are compared by 

buildings category and the major findings are summarized. 
 
 

5.1 Predicted Peak Monthly Demand 
Four separate methods were trialed, for all building classes and years, to predict the 

peak monthly demand based on the following building characteristics: 

i. Method 1: Based on previous years’ peak monthly demand with no error 

adjustment as shown in Equation (8) on page 56. 

ii. Method 2: Previous year peak monthly demand with error adjustment based 

on cumulative error in the current year of predicted peak monthly demand in 

comparison to actual peak monthly demand as shown in Equation (9) on page 

56. 

iii. Method 3: Previous year peak monthly demand with error adjustment based 

on cumulative error of predicted average monthly demand in comparison to 

actual average monthly demand as shown in Equation (11) on page 57. 

iv. Method 4: Predicted peak monthly demand based on predicted average 

monthly load, and monthly load factor from the previous year, with error 

adjustment based on cumulative error of predicted peak monthly demand in 

comparison to actual peak monthly demand as shown in Equation (12) on 

page 57. 

 

Figure 49 and Figure 50 show the prediction accuracy of Method 1 and Method 2 for 

all categories, buildings, and all months from 2017-2019 in linear and log graphs, 

respectively. Figure 51 and Figure 52 show the same analysis for Method 3 and 

Method 4. In all for plots the data is shown in blue and the line of best fit is shown in 

black. The line of best fit is not used to predict the peak demand, it is used to define the 

results of Methods 1-4 above. The log plots show an additional 1:1 reference line to 

better compare the results that fall below the Y-axis intercept of the line of best fit. 
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All four Methods show a linear fit greater than 0.95 and a coefficient of determination 

(R2) greater than 0.90 between the Predicted Peak Monthly Demand (PPMD) and 

Actual Peak Monthly Demand (APMD). A perfect coefficient of determination would 

be 1.00, meaning that all variation is perfectly captured by the model. A minimum 

acceptable coefficient of determination of 0.85 was selected to ensure that at least 85% 

of the variation in actual peak demands was captured by the prediction method.    

 

Although the error corrections introduced in Methods 2-4 do improve the linear fit 

results to greater than or equal to 0.975, the R2 in Methods 3 and 4 (R2 = 0.942 and R2 

= 0.922 respectively) is lower than the control scenario of using the peak demand of 

the same month in the previous year (R2 = 0.963). Both Method 3 and Method 4 both 

use the Average Monthly Demand in their calculation. Based on these results, future 

work on refining the prediction methods should focus on calculations using the APMD 

rather than introducing the AAMD.  

 

The results show that, provided the project developers or building owners have access 

to at least one year of historical data and that the building equipment and or operation 

has not changed significantly, they do not need to implement complex prediction 

methodologies to estimate monthly peak demands with a high degree of certainty.  
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Figure 49: Predicted Peak Monthly Demand for Method 1 and Method 2 – Linear 

 

 
Figure 50: Predicted Peak Monthly Demand for Method 1 and Method 2 - Log 
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Figure 51: Predicted Peak Monthly Demand for Method 3 and Method 4 – Linear 

 

 
Figure 52: Predicted Peak Monthly Demand for Method 3 and Method 4 - Log 

 

The log plots show that the Y-axis intercept of the line of best fit (black) causes the line 

to not track well for buildings with peak demands under approximately 50 kWpd, even 

if the actual predictions below 50 kWpd still track well as shown by the 1:1 reference 

line. 



96  

 

Method 2 was selected and used in further analysis because it had the highest the 

highest R2 value of 0.971 and a strong linear fit of 0.977 in comparison to the other 

Methods tested. Additionally, as Method 2 is an error corrected version of the monthly 

peak demand from the previous year, it is the simplest form of error corrected peak 

load prediction explored which fits with the intent of the research. 

 

Method 2 was plotted for individual building categories to check if there are 

differences in the fit by category as shown below in Figure 53.  

 

 
Figure 53: Predicted Peak Monthly Demand for Method 2 by Category 

 
All categories have a strong linear fit above 0.90, with Retail having the lowest linear 

fit of 0.904 and Commercial having the closest linear fit of 0.997. The Retail, 

Education and Community categories have the lowest R2 values of 0.904, 0.927 and 

0.930 respectively while the Health Care category has the highest R2 value of 0.981.  

 

Above 750 kWpd there are fewer data points, but there is a noticeable dispersion 

relative to the line of best fit, particularly in Community and Educational, which is 

explored further in Figure 54. 

 



97  

 
Figure 54: Predicted Peak Monthly Demand for Method 2 by Category – Actual Demand > 750 kW 

All categories exhibit a worse linear fit and R2 when only the actual demand values 

above 750 kWpd are considered. The Community, Education and Retail categories 

exhibit particularly poor results with linear fits of 0.295, 0.396, 0.539 respectively and 

R2 values of 0.060, 0.265, and 0.122 respectively. No changes to the prediction 

methods were incorporated since all the categories met the minimum coefficient of 

determination of 0.85 when all the buildings in each category were considered. 

Although no changes were made, these results show do show there are opportunities 

for improvement in the prediction methodology for buildings with peak loads greater 

than 750 kWpd.  

 

A perfect repetition of monthly peak demand from year to year would result in a linear 

fit of 1:1 and R2 of 1.00.To test if the poor results above 750 kWpd were due to 

variability in demand from year to year for the same month, the peak demand in a 

given month and given year was plotted against the peak demand for the same month 

in the previous year as shown below in Figure 55. Plotting the monthly peak demand in 

this manner shows that the Community, Education and Retail categories have 

significant peak demand variability because of the linear fit of 0.135, 0.288 and 0.486 

respectively and R2 values of 0.011, 0.127 and 0.086 respectively.  
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Figure 55: Demand Variability for the Same Month Year to Year – Demand > 750 kW 

Figure 54 and Figure 55 also demonstrates the shortcomings of the prediction methods 

trialed. The results are very similar between the two figures because the performance 

of the prediction method is largely driven by the variability, or lack thereof, in peak 

demand. Since all the methods tested are based on the demand characteristics of the 

same month in the previous year, none of the methods adapt well to large swings in a 

given month from year to year.  

 

Buildings that demonstrate minimal peak demand variability for a given month from 

year to year will be better candidates for a BESS if simple demand prediction methods 

like those trialed are used. Conversely, if buildings have a history of significant 

demand variability, project developers or buildings owners will need to consider more 

complex peak demand prediction methods to maximize demand savings. Future work 

could explore new prediction methods to improve the forecast accuracy for buildings 

that demonstrate significant demand variability year to year.  

 

This research has focused on developing prediction methods that could be used with 

simple billing data. If the building owner had access to detailed historical load profiles 

more complex prediction methods could be developed that consider other load 

characteristics such as daily frequency, rate of change, width, and shape. Electrification 

of transportation and space heating will also change the load profile of buildings, and 

potentially prediction accuracy, going forward. Future work could incorporate load 
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growth modelling to explore the effects of EVs and space heating electrification on the 

load profiles of commercial buildings, prediction accuracy, and the corresponding 

demand charges and implications for BESS use. 

 

5.2 Sample Peak Demand Reductions 
 

Shown below in Figure 56 is an example of the battery providing peak shaving. Two 

battery packs (100 kWhcap and 250 kWhcap) are shown in the simulation, both using the 

same DI of 20%, meaning that the battery will aim for a TD that reduces the predicted 

peak demand 20% in relative terms towards the average demand (i.e. 100% DI would 

reduce the peak demand to the average demand not 0 kWelc). Both battery packs are 

run with the maximum charge and discharge rate limited to 2.0 h. 

 

Although the TD for the two battery packs would have been the same at the start of the 

month, by 2017-09-26 they are different due to the results of previous demand 

reduction discharges earlier in the month. Figure 56 demonstrates one of several ways 

in which a new TD can be set within a month. There is a rapid increase in building 

demand of approximately 100 kWelc above the TD that occurs around 13:00. Due to the 

2.0 h rate limit of 50 kWinv, the 100 kWhcap battery can only mitigate approximately 

50% of this demand increase, while it can be mitigated by the 250 kWhcap battery.  
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Figure 56: Sample Day Peak Demand Reduction with 100 kWh and 250 kWh Battery Packs, Meter ID 
341410, 2017-09-26. 

The full month of 2017-09 is shown below in Figure 57 plotted with building demand 

and battery power.  

 
Figure 57: Sample Month Peak Demand Reduction with 100 kWh and 250 kWh Battery Packs 

In this example, the 250 kWhcap battery can maintain the TD throughout the month, 

while the 100 kWhcap battery has the TD reset twice. The battery power plot 

demonstrates that the battery is only “active” on six days in the month, consequently, 
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the remaining days it is in standby waiting to discharge.  

 

While the discharge frequency of the BESS is dependent on the building load and 

Target Demand, low battery utilization behaviour is characteristic of a demand 

reduction application. The low utilization rate of a battery pack under this scenario 

presents opportunities for alternate revenue streams that could utilize the battery when 

not required for demand reduction, provided the appropriate utility tariffs or service 

agreements where in place to monetize the activity. Examples of additional revenue 

streams include, but are not limited to, frequency regulation, secure power supply, and 

reactive power support. Future work could explore if there is time coincidence, or not, 

between when a utility typically needs these services and when a commercial building 

could expect a demand peak to test which of these services could be practically stacked 

with demand charge reduction. 

 

The demand reduction results for the same building are shown for the full year of 2017 

in Figure 58. The original monthly peak demands are shown in the broken red line, 

along with the corresponding TD for the 100 kWhcap battery pack in green and the 250 

kWhcap battery pack in black.  

 

 
Figure 58: Sample Year Peak Demand Reduction with 100 kWh and 250 kWh Battery Packs 
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The TD is reset in every month for both battery packs which is shown numerically in 

Table 18 below. In most months the 250 kWhcap battery out preforms the 100 kWhcap 

in terms of demand savings, resulting in a total demand reduction over the year of 412 

kWpd versus 276 kWpd for the 100 kWhcap battery. The total demand savings each year 

is the sum of the differences between the original monthly peak demand and the 

highest recorded TD in each month. 
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Table 18: Peak Demand Comparison for 100 and 250 kWh Battery 2017-09 

Month Original Peak 
Demand (kWpd) 

Target Demand  
(kWpd) 40% DI 

Final Target 
Demand  
(kWpd) 

100 kWhcap 

Demand Savings  
(kWpd) 

100 kWhcap 

Final Target 
Demand (kWpd) 

250 kWhcap 

Demand Savings 
(kWpd)  

250 kWhcap 

250 kWhcap - 
Demand Savings 
(kWpd) Relative 
to 100 kWhcap 

250 kWhcap - 
Demand Savings 
(%) Relative to 

100 kWhcap 

January 329 263 306 23 307 22 -1 -4% 

February 326 301 326 0 301 25 25 - 

March 322 278 313 9 283 39 30 333% 

April 398 305 348 50 336 62 12 24% 

May 386 318 370 16 349 37 21 131% 

June 444 326 405 39 399 45 6 15% 

July 453 374 447 6 429 24 18 300% 

August 455 388 444 11 427 28 17 155% 

September 489 375 439 50 434 55 5 10% 

October 429 313 426 3 429 0 -3 -100% 

November 403 319 375 28 370 33 5 18% 

December 382 283 341 41 340 42 1 2% 

Annual Totals 4816 3843 4540 276 4404 412 136 49% 
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In both of the months (January and October) when the 100 kWhcap battery 

outperformed the 250 kWhcap battery it occurred in situations where both battery sizes 

reset the TD during a particular day, but at different points in the day as shown below 

in Figure 59 and Figure 60. This shows that both the building load profile and control 

strategy contribute to situations where a smaller battery can outperform a larger battery 

even with the same peak demand forecasting and original TD.  

 
Figure 59: 100 kWh Outperforming 250 kWh Battery Pack, Meter ID 341410, 2017-01-03. 

 

 
Figure 60: 100 kWh Outperforming 250 kWh Battery Pack, Meter ID 341410, 2017-01-03. 
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Figure 61 compares demand reduction scenarios for both a 20% and 40% DI. The same 

building is used as in the previous analysis, with the date period changed to 2017-09-

05 to 2017-09-06. Only one battery pack (100 kWhcap) is shown in the simulation, but 

two separate DIs, to demonstrate the scenario where a battery runs out energy while 

trying to hold a given TD. TDs representing a 20% and 40% relative reduction in 

predicted peak monthly demand were selected. On 2017-09-05 the building demand 

does not exceed the TD for the 20% DI, so the battery does not discharge. The battery 

does discharge for the 40% DI scenario and is successful in mitigating the peak 

demand on 2017-09-05. On the following day, 2017-09-06, the building demand 

exceeds the TD associated with both the 20% and 40% DIs. The 100 kWhcap battery 

has enough energy capacity to mitigate the 20% DI peak but runs out of energy shortly 

after 12:00 in the 40% DI scenario. When the battery runs out of energy, the 40% DI 

TD is reset due to the building demand returning to its original profile momentarily. At 

this point, the battery charges and discharges based on the new TD. 

 
Figure 61: Day Peak Demand Reduction with 20% and 40% Demand Increment 
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5.3 Demand Savings Results Comparisons 
 

The total demand savings for each building class and DI is summed and shown below 

in Table 19 to assess the benefits of perfect foresight in comparison to using the 

predicted peak demand. The analysis was done using a 250 kWhcap battery and load 

data from 2017. 

 

The results in Table 19 highlight the difference between perfect foresight of peak 

demand and a perfect discharge strategy based on perfect foresight.  This research did 

not investigate the perfect discharge strategy based on perfect foresight of the peak 

demand. The perfect foresight peak demand was used with the same DI and DRF 

formulas to calculate a TD based on the known peak demand. So even with perfect 

foresight of the peak demand, the control strategy and TD will still impact the total 

demand savings.  This can result in some scenarios where the total savings for the 

predicted peak demand can be superior to those realized with perfect foresight because 

of the influence of the control strategy (i.e. DI and resultant TD). 
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Table 19: Predicted Peak and Perfect Foresight – Total Demand Savings by Building Category and Demand Increment – 250kWh Battery - 2017 

 
  Commercial Community Education Health Care Hotel Industrial Retail Utility Total 

 Total Peak Demand Across All 
Buildings (kWpd) 

134566 40059 89124 57950 37813 382103 203970 10359 955944 

 

20% 
DI 

Perfect Foresight 
Total Demand Savings (kWpd) 

10570 2979 9766 4412 2461 27034 13907 533 71661 

Predicted Peak 
Total Demand Savings (kWpd) 

8593 2551 7891 4111 2181 21718 13764 502 61309 

Percent of Perfect Foresight 
Savings with Predicted Peak (%) 81.3% 85.6% 80.8% 93.2% 88.6% 80.3% 99.0% 94.1% 85.6% 

 

40% 
DI 

Perfect Foresight 
Total Demand Savings (kWpd) 

13779 4202 12057 6571 3325 33378 22396 825 96533 

Predicted Peak 
Total Demand Savings (kWpd) 

12020 4020 10880 5989 3291 30584 20134 617 87534 

Percent of Perfect Foresight 
Savings with Predicted Peak (%) 87.2% 95.7% 90.2% 91.1% 99.0% 91.6% 89.9% 74.7% 90.7% 

 

60% 
DI 

Perfect Foresight 
Total Demand Savings (kWpd) 

13978 4500 12623 7178 3165 34802 24395 852 101493 

Predicted Peak 
Total Demand Savings (kWpd) 

13931 3963 12292 6914 3039 32587 23239 769 96735 

Percent of Perfect Foresight 
Savings with Predicted Peak (%) 99.7% 88.1% 97.4% 96.3% 96.0% 93.6% 95.3% 90.3% 95.3% 

 

80% 
DI 

Perfect Foresight 
Total Demand Savings (kWpd) 

13159 3948 11796 6827 3114 33117 23367 756 96084 

Predicted Peak 
Total Demand Savings (kWpd) 

13769 3977 11643 6573 3145 32848 22904 832 95691 

Percent of Perfect Foresight 
Savings with Predicted Peak (%) 104.6% 100.7% 98.7% 96.3% 101.0% 99.2% 98.0% 110.0% 99.6% 

 

100% 
DI 

Perfect Foresight 
Total Demand Savings (kWpd) 

12920 4176 11061 6410 2997 31916 22662 810 92950 

Predicted Peak 
Total Demand Savings (kWpd) 

12987 4085 11201 6395 3029 31874 22609 778 92958 

Percent of Perfect Foresight 
Savings with Predicted Peak (%) 100.5% 97.8% 101.3% 99.8% 101.1% 99.9% 100.2% 104.0% 100.0% 
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Table 19 shows that demand savings increase for all building categories above a 20% 

DI, but savings typically start to decline between 80% and 100% DI as plotted below in 

Figure 62. The results show that over any given category of buildings the operator will 

be better served by using a higher DI to set a lower TD, with the best demand savings 

results realized when a TD is set using a 40% - 80% DI.  

 
Figure 62: Relative Total Demand Savings by Building Category - Predicted Peak 

 

Table 19 shows the predicted peak demand savings relative to perfect foresight 

increase with DI, meaning that the lower the TD is set, relative to a predicted peak, the 

greater confidence a project developer or building owner can have that the BESS 

project is delivering demand savings close to the optimal results if the peak demand 

had been known with perfect foresight. 

 

Shown below in Figure 63 is the total demand savings, as a percentage of total peak 

demand, for all buildings in 2017 utilizing a 250 kWhcap BESS. The results are sorted 

by 20% MLF brackets and for the five (5) DIs tested. The results show that across a 

large cross section of C&I building stock a lower MLF leads to higher demand savings. 

Sorting the results by DI reinforces the conclusion from Figure 62 that the higher DIs 

produce more demand savings but with diminishing returns. The MLF brackets in 

Figure 63 show higher DIs result in strong improvements in demand savings when 

MLF <= 40% but improvements diminish significantly for when the MLF is > 40%. 

This means that for buildings with a low MLF (<= 40%), the default control strategy 

should set lower TDs to maximize savings, but for buildings with a higher MLF this is 

less important as the change in total savings with increasing DI is minimal.  
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Figure 63: Total 2017 Demand Savings by Monthly Load Factor and Demand Increment, 250 kWh BESS 

 

Demand savings when the peak demand is overestimated or underestimated has the 

potential to be asymmetric. When the peak demand is overestimated the battery could 

still deliver demand savings depending on the DI and resulting TD. Alternatively, if the 

peak demand was overestimated and the TD was not set low enough the battery may be 

inactive for the entire billing period. In contrast, in scenarios where the peak demand is 

underestimated, the battery can run out of energy, resulting in a peak demand event. 

Table 20 compares the scenarios where the peak demand is over and underestimated to 

determine if the results are asymmetric, and if so in which direction. 
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Table 20: Comparison of Demand Savings for Overpredicted and Underpredicted Peak Demands 

  Commercial Community Education Health Care Hotel Industrial Retail Utility Total 

 Total Peak Demand Across All 
Buildings (kWpd) 

134566 40059 89124 57950 37813 382103 203970 10359 955944 

 

20% 
DI  

Predicted Peak < Actual Peak - 
Total Demand Savings (kWpd) 

6209 1876 5597 3209 1703 16251 11000 397 46243 

Predicted Peak => Actual Peak - 
Total Demand Savings (kWpd) 

2384 675 2295 901 478 5466 2763 105 15066 

Savings Difference When Predicted 
Peak is Underestimated (%) 160% 178% 144% 256% 256% 197% 298% 280% 207% 

 

40% 
DI  

Predicted Peak < Actual Peak - 
Total Demand Savings (kWpd) 

6537 2334 5975 3795 1854 17564 12756 472 51286 

Predicted Peak => Actual Peak - 
Total Demand Savings (kWpd) 

5483 1686 4905 2194 1437 13020 7378 145 36248 

Savings Difference When Predicted 
Peak is Underestimated (%) 19.2% 38.4% 21.8% 73.0% 29.0% 34.9% 72.9% 224.8% 41.5% 

 

60% 
DI  

Predicted Peak < Actual Peak - 
Total Demand Savings (kWpd) 

6805 1830 5988 3952 1490 17080 12704 519 50368 

Predicted Peak => Actual Peak - 
Total Demand Savings (kWpd) 

7126 2133 6304 2962 1550 15508 10535 251 46367 

Savings Difference When Predicted 
Peak is Underestimated (%) -4.5% -14.2% -5.0% 33.4% -3.8% 10.1% 20.6% 106.9% 8.6% 

 

80% 
DI  

Predicted Peak < Actual Peak - 
Total Demand Savings (kWpd) 

6608 1846 5638 3600 1627 16719 12032 523 48592 

Predicted Peak => Actual Peak - 
Total Demand Savings (kWpd) 

7161 2131 6005 2974 1519 16130 10871 309 47099 

Savings Difference When Predicted 
Peak is Underestimated (%) -7.7% -13.4% -6.1% 21.0% 7.1% 3.7% 10.7% 69.4% 3.2% 

 

100% 
DI  

Predicted Peak < Actual Peak - 
Total Demand Savings (kWpd) 

6189 1786 5435 3599 1465 16292 12162 488 47415 

Predicted Peak => Actual Peak - 
Total Demand Savings (kWpd) 

6798 2299 5766 2796 1564 15582 10447 290 45543 

Savings Difference When Predicted 
Peak is Underestimated (%) -9.0% -22.3% -5.8% 28.7% -6.3% 4.6% 16.4% 68.4% 4.1% 
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The results are asymmetric for the 20% and 40% DI scenarios where the predicted 

peak demand was below the actual peak demand. Across all the buildings tested there 

was more than a 200% increase at the 20% DI and more than a 40% increase at the 

40% DI. This shows that if a building owner were to install a BESS system, and the 

predicted peaks were historically higher than the actual demand, the operator should 

not run a mild demand reduction strategy (i.e. 20% - 40% DI) or there will be 

significant potential demand savings unrealized. Results change by category as the DIs 

increases beyond 40% and when summed across all buildings and categories there is 

less than a 10% difference in savings between the overestimation and underestimation 

scenarios for DIs above 40%. 

 

In Table 21 demand savings are summed by category and DI to determine if there is a 

material change in performance based on inverter power rate. Based on the previous 

results only DIs between 40% and 80% were examined. The results in the table utilize 

a 250 kWhcap battery and charge/discharge rates ranging from 15 min (1000 kWinv 

inverter) to 12.0 h (20.8 kWinv inverter). Although a 15 min rate is not representative of 

commercially available technology for this application, it was analyzed to check the 

sensitivity of the results to the inverter size relative to the battery capacity to check if 

significantly improved results could be expected were battery and inverter technology 

to advance to allow much higher rates of charge and discharge than are commercially 

available.  

 

This model did not adjust the discharge rate of the battery as the SOC changed. Future 

work could explore if a variable discharge rate based on SOC could improve demand 

savings results, and what relation this may have with the base discharge rate (ex. 2.0 h, 

4.0 h etc.). A basic version of this modified control strategy could limit the discharge 

power proportionally to SOC. For example, a 100 kWhcap BESS with a 2.0 h rate (50 

kWinv power) would have a maximum discharge rate of 50 kWinv, 37.5 kWinv, 25 kWinv, 

and 12.5 kWinv at a SOC of 100%, 75%, 50%, and 25% respectively.  
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Table 21: Comparison of Demand Savings by Inverter Power Rate  

  Commercial Community Education Health 
Care Hotel Industrial Retail Utility Total 

% Of 15 
min 

Savings 
 Total Peak Demand - All Buildings (kWpd) 134566 40059 89124 57950 37813 382103 203970 10359 955944  
            

40% 
DI 

15 min Rate - Total Demand Savings (kWpd) 11714 3921 10869 5896 3259 30335 20240 617 86850 100% 

2 hr Rate - Total Demand Savings (kWpd) 12020 4020 10880 5989 3291 30584 20134 617 87534 101% 

4 hr Rate - Total Demand Savings (kWpd) 12537 3885 10904 5863 2922 25376 18452 655 80595 93% 

8 hr Rate - Total Demand Savings (kWpd) 9777 2662 8023 4611 2268 17244 13131 622 58338 67% 

12 hr Rate - Total Demand Savings (kWpd) 5871 1453 4786 2707 1239 10038 7322 554 33970 39% 
            

60% 
DI 

15 min Rate - Total Demand Savings (kWpd) 13724 3740 12490 6663 3119 32463 23233 762 96195 100% 

2 hr Rate - Total Demand Savings (kWpd) 13931 3963 12292 6914 3039 32587 23239 769 96735 101% 

4 hr Rate - Total Demand Savings (kWpd) 14274 4046 12506 6820 2963 28390 20606 794 90399 94% 

8 hr Rate - Total Demand Savings (kWpd) 11327 2942 9336 5136 2557 19241 14832 703 66075 69% 

12 hr Rate - Total Demand Savings (kWpd) 6412 1588 5334 2907 1306 11000 8041 657 37246 39% 
            

80% 
DI 

15 min Rate - Total Demand Savings (kWpd) 13468 3811 11633 6499 3049 32253 23260 832 94805 100% 

2 hr Rate - Total Demand Savings (kWpd) 13769 3977 11643 6573 3145 32848 22904 832 95691 101% 

4 hr Rate - Total Demand Savings (kWpd) 14050 4130 12409 6782 3069 28830 20785 800 90854 96% 

8 hr Rate - Total Demand Savings (kWpd) 11721 3037 9925 5287 2600 20193 15061 732 68557 72% 

12 hr Rate - Total Demand Savings (kWpd) 6569 1660 5610 2996 1313 11552 8223 667 38590 41% 
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When the demand savings results are summed across all categories the results between 

the 15 min and 2.0 h rate have less than a 2% difference depending on the DI. When 

individual categories are examined, there is less than a 10% difference. Although there 

may be individual buildings that benefit from the faster 15 min rate, interestingly in 

many categories the slower 2.0 h rate delivers better overall savings results. This is 

likely due to diurnal nature of building load profiles. Since buildings do not typically 

have narrow 15 min load spikes the slower 2.0 h rate allows the BESS to manage 

broader morning, evening, or daily peaks. The comparison of results between the 15 

min and 2.0 h rates shows that advances in BESS technology that allow for higher rates 

will not unlock significantly more demand charge management opportunities when 

considering a broad section of C&I building stock. The 4.0 h rate delivers reduced, but 

similar results to the 2.0 h rate scenario, but the results drop for 8.0 h and 12.0 h rates. 

This trend holds across all building categories, but the results with 8.0 h and 12.0 h 

rates do not drop off as quick for high MLF categories like Hotel and Health Care 

category. This shows that a commercially available BESS with a 2.0 h or 4.0 h rate will 

work well for demand charge reduction applications, but longer duration systems, or 

control strategies that limit the BESS charge and discharge power, are not well suited 

to this application and should be avoided.  
 

5.4 Demand Savings Analysis by Category 
 

The relationship between the average monthly load factor of a building and demand 

savings is explored in Figure 64 though Figure 76.  

 

The Normalized Demand Savings (NDS) demand savings is plotted against average 

monthly load factor for all building categories, using a common battery pack size of 

250 kWhcap in Figure 64.The NDS for different buildings categories was calculated by 

totalling the demand savings in a given year and dividing the total demand savings by 

the average annual demand of the building as shown in Equation (13) below. 

 

𝑁𝐷𝑆𝑌𝑖,𝑀𝑗 =  
∑ (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑𝑌𝑖,𝑀𝑗  −  𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑𝑌𝑖,𝑀𝑗)

∑ 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑𝑌𝑖,𝑀𝑗

 (13)  
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A common ordinate axis, scaled to the maximum normalized savings in any given 

category, was used to display the results to allow for simplified comparison between 

building categories. Results are shown for the five Demand Increment scenarios 

analyzed, as per the legend in Figure 64.  

 

The following subsections will discuss the building categories individually. The 

commercial category will be introduced first with detailed discussion followed by the 

other categories with notable differences in the individual categories discussed.  
 

 
Figure 64: Normalized Demand Savings vs Average Monthly Load by Category – 250 kWh Battery  

 

5.4.1 Commercial Buildings 
 

Shown below Figure 65 is the same graph for the Commercial category only, with the 

Y-axis scale adjusted appropriately, to examine the trends within the results more 

closely. 
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Figure 65: Normalized Demand Savings vs Average Monthly Load – Commercial Category with 250 kWh Battery 

 

As shown above, buildings with a lower average monthly load factor correspond with 

greater potential savings. Additionally, as the average monthly load factor decreases, 

the range of NDS increases with a greater spread and stratification of results between 

different DIs. This trend shows that as the average monthly load factor for a building 

decreases, the TD should be set lower (higher DI) which tends to result in better 

demand reduction savings. Conversely, for buildings with a higher average monthly 

load factor, there is limited benefit in discharging the BESS more aggressively because 

there is little to be gained in terms of savings, but potentially higher cycling 

degradation on the battery. 
 

Next, the normalized demand savings were examined in the same way over the six 

battery sizes. As expected, larger battery sizes result in larger demand savings, but the 

trend towards diminishing returns identified previously is also evident on these plots, 

particularly for the three largest battery sizes considered.  

 

There was evidence of stratification of results based on Demand Increment in Figure 

65 with the 250 kWhcap battery, and it is more pronounced for larger batteries when all 

the battery pack sizes are examined below in Figure 66. 
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Figure 66: Normalized Demand Savings vs Average Monthly Load by Battery Size - Commercial 

The stratification of NDS as DIs increase means that larger battery sizes allow a lower 

TD to be set (higher DI) resulting in increased savings versus the smaller battery pack 

sizes. 
 

Lower average monthly load factors provide a better opportunity for demand savings. 

In the case of the Commercial category, an average MLF of less than 40% indicates a 

good opportunity for demand savings across all DIs. Additionally, the trend is non-

linear, meaning the buildings with average monthly load factors in the 20-30% range 

generate significantly better results. 

As expected, the 20% and 40% DI tend to result in lower demand savings than the 

60%, 80% and 100% DIs. Across all battery sizes there does not appear to be increased 

demand savings associated with the 100% DI versus the 80% DI. This means that there 

is limited value in trying to reduce the predicted peak demand to the predicted average 

(100% Demand Increment) as it does not result in more savings. Future research could 

explore if a higher DI has any correlation with either a higher frequency of charge and 

discharge and or a higher throughput of battery energy. Either of these scenarios could 

introduce additional operations and maintenance costs on the BESS.  
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5.4.2 Community Buildings 
 

Shown below in Figure 67, are the results for the Normalized Demand Savings versus 

Average Monthly Load Factor for the Community category. The same trend of a lower 

Average Monthly Load Factor resulting in an increased opportunity for demand 

savings is also observable. The buildings under consideration in this category have 

limited samples with an Average Monthly Load Factor of less than 40% so the 

opportunities for demand savings are reduced. Although the scale as been changed, the 

demand reduction results for Community and Commercial facilities are similar for 

buildings of a similar load factor.  
 

  
Figure 67: Normalized Demand Savings vs Average Monthly Load by Battery Size - Community 

 
5.4.3 Education Buildings 

 

Shown below in Figure 68, are the results for the Education category. The same trends 

of a non-linear improvement in results at lower load factor is observable for this 

category. Interestingly, the Education category appears to have some promising 

buildings even with the smallest battery size tested, with Normalized Demand Savings 

in the range of 10-20 kWpd / kWavg. In contrast, the Commercial category did not 

realize savings in this range until the larger (250 kWhcap+) batteries were used. Figure 

79 in Section 5.5 on page 125 explores the relationship between building average load, 

MLF and demand savings. The results show that small buildings (average load of <= 
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50 kWavg) with a low MLF produce the best demand savings results. In 2017 the 

Education category had a total of 128 building-months for building with an annual 

average load of <= 50 kWavg and a MLF of less than 40%. In contrast, the Commercial 

category had 61 buildings-months with the same load characteristics. The higher 

number of buildings-months that fit these load characteristics is why the Education 

category can outperform the Commercial category for demand reduction savings that 

are normalized by building average load.  

 

There are also a greater number of poor demand savings results for buildings with a 

MLFs of less than 40%. This is because the Education category has a high number of 

buildings with an average load of > 100 kWavg and a MLF of less than 40%. The 

Education category has 45 building-months with these load characteristics in 

comparison to only seven (7) for the commercial category. 

 
Figure 68: Normalized Demand Savings vs Average Monthly Load by Battery Size - Education 

 
To examine if the poor results are a result of prediction accuracy or building load 

characteristics, the monthly NDS was plotted versus the monthly predicted peak 

demand relative to the monthly actual peak demand as shown below in Figure 69 and 

Figure 70 for DI of 20% and 60% respectively. The MLF of the buildings is color coded 

and the annual average building load is denoted by marker size.  
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Figure 69: Normalized Demand Savings vs Relative Monthly Peak Demand, Education, 250 kWh Battery, 20% DI 

 

 
Figure 70: Normalized Demand Savings vs Relative Monthly Peak Demand, Education, 250 kWh Battery, 60% DI 

The results above show that for scenarios where a low DI was used the best demand 

savings tended to be in scenarios where the predicted demand was low relative to the 

actual peak demand. This confirms that even with perfect foresight of the monthly 

peak demand, if the TD for the battery is not set low enough there will be demand 

reduction potential, and economic benefits, left uncaptured.  
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The highest demand reduction results are grouped around scenarios where the PPMD 

is close to the APMD which makes sense intuitively. Taken together the results from 

the two figures show that better prediction accuracy results in better demand savings, 

provided the battery is being run aggressively enough. These results mean that building 

operators or project developers will be best suited by selecting higher demand 

reduction targets rather than lightly operating the battery (ex. DI < 20%). 

 

These results continue to show the same trends identified earlier, where large buildings 

(ex. average load > 100 kWavg) with higher monthly load factors (ex. MLF >50%) are 

poor candidates for demand reduction from a BESS. These trends persist even in 

scenarios where the predicted peak monthly demand very closely matched the actual 

peak monthly demand. This means that even in scenarios with high forecast accuracy, 

the average load and monthly load factor of the building are key determining factors 

for demand reduction potential. 

 

5.4.4 Health Care Buildings 
 

Shown below in Figure 71 are the results for the Health Care category. The Heath Care 

category exhibits similar characteristic to the previous categories in terms of lower 

average MLFs having a better opportunity for demand savings and diminishing returns 

for larger battery sizes.  
 

 
Figure 71: Normalized Demand Savings vs Average Monthly Load by Battery Size – Health Care 
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5.4.5 Hotel Buildings 
 

Shown below in Figure 72 are the results for the Hotel category. Although the sample 

size for the Hotel category is small, the results are grouped closely. The Hotel category 

in particular exhibits poor opportunities for demand reduction because of the 

combination of high average loads and high MLFs. Uniquely, the Hotel category does 

not have a single building-month with a MLF of less than 50%. Additionally, this 

category has the highest minimum average load, with only a single building with an 

average load below 100 kWavg. Across all categories when buildings have average 

monthly load factors above 60% the NDS are typically less than 5 kWpd/kWavg except 

for the largest battery sizes.  

 

As shown in Table 21, the Hotel category retains higher total demand charge savings 

with slower discharge rates (ex. 8.0 h) relative to other categories. Buildings in other 

categories with the same load characteristics of the Hotel category (i.e. high average 

load and MLF), may benefit from a slower charge and discharge rate to attempt to 

offset the broader load profiles. This means that as new low cost, long duration storage 

technology becomes available buildings with these load characteristics should be 

revisited.    

 
Figure 72: Normalized Demand Savings vs Average Monthly Load by Battery Size – Hotel  
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5.4.6 Industrial Buildings 
 

Shown below in Figure 73 are the results for the Industrial category.  
 

 
Figure 73: Normalized Demand Savings vs Average Monthly Load by Battery Size – Industrial  

 
 

The non-linear nature of the results is particularly evident in this category because of 

the buildings with an average monthly load factor below 20%. The Industrial category 

also has examples of buildings with average monthly load factors less than 40% that 

exhibit particularly poor results for normalized demand savings. Figure 41 showed that 

the Industrial category had large buildings (average loads >500 kWavg) that had 

average monthly load factors below 40%. To confirm if the buildings with high 

average loads are the ones with poor demand reduction results, the monthly NDS is 

plotted against the relative monthly peak demand and buildings with a monthly load 

factor above 40% are screened out. The marker sizes in correspond to the building 

average load and the are color coded to the monthly load factor. 
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Figure 74: Normalized Demand Savings vs Relative Monthly Peak Demand, Industrial, 250 kWh Battery, 60% DI 

 

The results above confirm that the buildings with poor performance below a 40% 

monthly load factor tend to have a high average load and tend to have a higher load 

factor even in the 0% - 40% monthly load factor bracket. These results reinforce the 

importance of both a low monthly load factor and a low building load as indicators of 

an opportunity for peak demand reduction with a BESS. 

 

5.4.7 Retail Buildings 
 

Shown below in Figure 75 are the results for the Retail category which exhibits similar 

characteristics to the buildings discussed above.  
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Figure 75: Retail Buildings – Normalized Demand Savings vs Average Monthly Load by Battery Size 

 
5.4.8 Utility Buildings 

 

Shown below in Figure 76 are the results for the Utility category. There are only seven 

buildings in this category, but a range of average monthly loads and building sizes.  

 

 
Figure 76: Utility Buildings - Normalized Demand Savings vs Average Monthly Load by Battery Size 

 
The Utility category is unique in that the most promising buildings from a demand 

reduction perspective have average monthly load factors in the 40-60% range in 
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comparison to other categories. This is because the utility category has more building-

months with an average load below 50 kWavg and an average load factor below 50% 

than building-months with both a low average load and load factor as shown in Figure 

77.

 
Figure 77: Normalized Demand Savings vs Relative Monthly Peak Demand, Industrial, 250 kWh Battery, 60% DI 

 
 
 

5.5 Battery Sizing 
 

Battery pack sizes of 25, 50, 100, 250, 500, and 1000 kWhcap were used in the model. 

This distribution is representative of battery pack sizes that are commercially available 

on the market.  

 

Figure 79 shows the optimum predicted demand savings for each building, sorted by 

category, for all the battery pack sizes. The optimum predicted demand savings is 

based on the predicted peak building demand and the best demand reduction results on 

a monthly basis when all the DI scenarios are considered. Across all categories and 

battery sizes it is evident that there are technical diminishing returns for larger battery 

sizes because the rate of change for the demand savings is decreasing with larger 

battery sizes. Fixed costs such as engineering, installation, and customer acquisition 

would favour larger battery pack sizes. There are also clear differences in the 

effectiveness of battery packs to reduce peak building demand by building category. 



126  

Although data for 2018 and 2019 is not shown here, the results for both years are like 

2017.  

 

The results of the Commercial and Education building categories show that there are 

significant opportunities for demand reductions in the range of 10-20% even with the 

smallest two battery pack sizes (25 kWhcap and 50 kWhcap). The results show that the 

Industrial category has particularly strong opportunities for demand reductions with 

relatively small battery pack sizes due to the high number of buildings in the category 

that have both a low average load and a low MLF.  

 

As identified previously, the poor demand reduction results for the Hotel category are 

due to the combination of high average load and high MLF. As with the other 

categories, there is diminishing returns with the larger battery pack sizes. 

 

To determine if there were common characteristics between the buildings that are the 

most promising from a demand reduction perspective the demand savings for each 

battery size was plotted with color coding for average MLF and marker size for 

average building load as shown in Figure 79. 

 

In Figure 80 the specific demand savings relative to the battery pack size 

(kWpd/kWhcap) are compared per battery size. This confirms that there are diminishing 

returns in both relative (%) and absolute (kWpd) demand savings as the battery pack 

sizes increases.  
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Figure 78: Relative Demand Savings Versus Battery Pack Size - 2017 
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Figure 79: Demand Savings Percentage by Category and Battery Pack Size - 2017 
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Figure 80: Specific Demand Savings (kW/kWh) Versus Battery Pack Size - 2017 
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Across all buildings in all categories there are two clear trends that are evident when 

the results are plotted in this manner:  

• It is difficult to deliver large demand reductions, in relation to a buildings load 

or original demand, in buildings that have a large average load. Some of this 

may be explained by the tendency of these buildings towards a higher average 

monthly load factor. Consistently buildings with an average load of less than 50 

kWavg offer the best opportunities to reduce the demand of buildings relative to 

the original demand. 

• A BESS in buildings with an average load above 100 kWavg can deliver the 

highest demand reductions in kWpd relative to BESS capacity in kWhcap, but 

these demand reductions will not be meaningful in relation to the original 

demand of the building.  

• Buildings with an average monthly load factor of less than 40% tend to offer 

the best opportunities for demand reductions.  

• Based on these two trends, building categories with the best opportunities for 

batteries to provide demand savings are Commercial, Education, Industrial and, 

to a lesser extent, Retail buildings because they have buildings that match the 

load characteristics identified above. 

 

The tendency for the best demand reduction results coming from buildings with 

average loads of under 50 kWavg and monthly average load factor of less than 40% was 

consistent across building categories with a strong fit between actual and predicted 

peak demand (ex. Commercial) and categories with a poor fit between actual and 

predicted peak demand (ex. Retail). For example, the Retail, Education and 

Community categories had the lowest R2 values of 0.904, 0.927 and 0.930 respectively, 

but there are still strong opportunities for demand reduction, provided the buildings 

meet the average load and average load factor criteria above. Since the buildings with a 

smaller load tend to offer the best opportunities for the demand reduction, prediction 

accuracy for those small buildings is more important than for larger buildings where 

the likelihood of savings tends to be smaller, even in the categories with a relatively 

strong fit for the predicted peak demand.  
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5.6 Economic Analysis 
The specific demand savings (kWpd/kWhcap) introduced in Figure 80 is a useful metric 

for evaluating the economics of a BESS project in isolation from the total utility bills 

since demand charges are based on a per kWpd basis and BESS pricing is typically 

listed specifically on an energy basis ($/kWhcap). 

 

Figure 80 shows that for a 2.0 h rate limit and a 250 kWhcap BESS, most buildings 

have specific demand savings between 1-5 kWpd/kWhcap on an annual basis. Shown 

below in Figure 81 is the simple payback, ignoring operations and maintenance costs, 

of BESS projects calculated across a range of net battery costs ($/kWhcap) and specific 

demand savings (kWpd/kWhcap). The calculations are shown for three demand charge 

rates of $5/kWpd, $10/kWpd, and $15/kWpd. The center chart with the $10/kWpd is close 

to the demand charge NSP uses in the General Commercial rate code of $10.497/kWpd. 

 
Figure 81: Simple Payback for a Range of Specific Demand Savings and Battery Costs 

 
A line has been drawn for simple paybacks of less than 10 years. Simple paybacks 

beyond 10 years would be outside the warranty period for commercially available 

BESS systems. Given the demand charge rates in Nova Scotia, and assuming a $400-

$500/kWhcap capital cost of commercially available BESS, there are a limited number 

of buildings with a simple payback of less than 10 years in 2021. 

 

Analyzing Figure 79 and Figure 80 together shows that buildings with an average load 

of less than 50 kWavg have the best demand reduction opportunities as a percentage of 

original load, but a BESS in these buildings will not deliver the highest absolute 

demand savings relative to the capacity of the battery. Conversely, buildings with an 

Specific Demand Savings (kW / kWh) Specific Demand Savings (kW / kWh) Specific Demand Savings (kW / kWh)

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
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average load above 100 kWavg have the highest absolute demand reductions relative to 

BESS capacity, but those savings represent a smaller impact on the total annual 

demand of a building. Shown below in Figure 82 is the percentage of utility bill 

savings that can be realized for individual buildings in each category by installing a 

250 kWhcap battery. The analysis assumes all buildings utilize the General Commercial 

(Rate Code 11) tariffs. This approach was selected so the results reflect the differences 

in building load characteristics rather than the differences in demand charge rates and 

energy rates. 

 

The smaller buildings with average loads of less than 50 kWavg and MLFs below 40% 

consistently have the best results in terms of bill savings. This trend holds true across 

the six BESS capacities tested. Although only the 250 kWhcap results are shown here, 

the results for the 1000 kWhcap BESS were plotted and the diminishing returns noted in 

Figure 79 were apparent in the utility bill savings plot as well. This highlights that 

although some large buildings may have a load profile that allows a BESS to achieve a 

high specific demand savings (kWpd/kWhcap) relative to a smaller building, the 

resulting economics of the project will not be material to the building owner, relative to 

the utility bill, making a BESS project unlikely to proceed.  
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Figure 82: Utility Bill Savings with a 250 kWh BESS vs Average Monthly Load Factor - 2017 
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5.7 Summary of Results 
This chapter details the results of modelling a range of battery sizes and demand 

reduction scenarios for the commercial buildings. Key findings are listed below: 

 

• Simply using the peak demand from the same month in the previous year 

yields a reasonably strong (>0.95 linear fit, >0.90 R2) agreement between 

predicted and actual peak demand so complex prediction methodologies are 

not required. Introducing an error adjustment improves (>0.975 linear fit, 

>0.95 R2) the prediction results, although this varies by category.  

• Buildings with average MLF under 40% and average loads of less than 50 

kWavg consistently produce the highest demand savings, relative to building 

load and original peak demand, across all battery sizes and DIs. 

• Buildings with a lower load factor present better opportunities for demand 

savings, and the trend is non-linear so buildings with average monthly load 

factors in the 20-30% range generate significantly better results. 

• There are limited opportunities in the Hotel and Utility categories because of 

the high average loads and high average MLFs. Categories with a higher MLF 

retain total demand savings with slower discharge rates (ex. 4.0 h, 8.0 h and 

12.0 h) better than categories with lower MLFs. This meaning the high MLF 

categories are better candidates for long duration storage.   

• The Commercial, Education, Retail, and Industrial categories all show strong 

opportunities for demand charge reduction, provided the buildings meet the 

average load and average month load factor guidelines above.  

• Since buildings do not typically have narrow 15 min load spikes the slower 

2.0 h rate allows the BESS to manage broader morning, evening, or daily 

peaks. This means for demand charge reduction applications, advances in 

BESS technology that allow for higher rates will not significantly improve 

demand savings results versus the commercially available 2.0 h when 

considering a broad section of C&I building stock. Conversely, a BESS with 

a duration above 4.0 h, or control strategies that limit the BESS charge and 

discharge power beyond 4.0 h, will result in reduced savings so are not well 

suited to demand charge management applications and should be avoided.  
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• Across all categories of buildings, and nearly all individual buildings, there 

are technical diminishing returns in terms of demand savings for larger 

battery pack sizes. This means smaller battery packs tend to deliver the most 

demand savings (kWpd) per unit of battery capacity (kWhcap). Although 

battery capacity is a major driver of cost, high fixed project costs such as 

engineering, installation, and customer acquisition will favor larger battery 

pack sizes. If fixed costs are low, smaller battery packs will tend to offer a 

better return on investment. Although this may be the case in modelling, in 

practice building owners and project developers may be constrained by 

product availability to larger battery packs that do not reflect the ideal or 

optimized modelling scenario. 

• The building load profile and control strategy can contribute to situations 

where a smaller battery can outperform a larger battery even when the same 

peak demand forecasting and original TD are used.  

• Low battery utilization behavior is emblematic of a demand reduction 

scenario. This presents opportunities for alternate revenue when the battery is 

not required for peak demand management. Examples include, but are not 

limited to, frequency regulation, secure power supply, and reactive power 

support.  

• Across a broad cross section of buildings, the best demand savings results 

were realized when a TD is set using a 60% - 80% DI. The predicted peak 

demand savings relative to perfect foresight increase with DI, meaning that 

the lower the TD is set, relative to a predicted peak, the greater confidence a 

project developer or building owner can have that the BESS project is 

delivering demand savings close to the optimal results if the peak demand 

had been known with perfect foresight.  

• If a building owner were to install a BESS system, and the predicted peaks 

were historically higher than the actual peak demand, the operator should not 

run a mild demand reduction strategy (i.e. 20% - 40% DI) or there will be 

significant potential demand savings unrealized. 

  



136  

CHAPTER 6 CONCLUSIONS AND 

RECOMMENDATIONS 
 

6.1 Conclusions and Recommendations  
Buildings account for 40% of global emissions and over 33% of final energy use. 

Given the concerns of addressing climate change, electrification of buildings will be 

key to reducing long term emissions impacts. Electrification of space heating and 

transportation sectors will increase demand for electrical energy which will require 

utilities to recoup the costs of their corresponding infrastructure investments.  

 

Utilities use demand charges to recover infrastructure costs from ratepayers who 

contribute to the need for grid capacity. Presently demand charges represent 30-70% of 

a C&I ratepayer’s electric utility bill. As building heating systems are electrified, and 

charging stations are added for EVs, building owners will have increasing demand 

charges in monetary terms, even if demand charge rates remain constant.  

 

In parallel to growing electrification initiatives, the pack cost of LIBs has fallen by 

over 85% since 2010. These cost declines have driven interest in using batteries to 

reduce demand charges in C&I buildings. Despite the growing interest, using a BESS 

to mitigate demand charges in exceeding rare when the stock of C&I buildings is 

considered.  

 

This research explored the following issues relevant to advancing the use of BESS in 

demand charge management applications in Nova Scotia: 

• Correlations between building load characteristics that can be found on, or 

calculated from, a typically utility bill (ex. peak demand, average load, load 

factor) and the potential for demand savings as well as the peak demand 

prediction accuracy using the same billing data. 

• The demand savings that a C&I building owner could expect based on building 

load characteristics and category. 

• An analysis of which building categories are more conducive to demand 

savings with a BESS and why. 
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To address these topics a literature review was undertaken. Several important gaps 

were identified in the existing literature that informed the research: 

• The literature relies heavily on the US DOE Commercial Reference Building 

dataset. This dataset has a 1.0 h time resolution which is not aligned with the 15 

min billing period used in Nova Scotia. 

• Evaluation metrics proposed in the literature are not easy enough to be used as 

guidelines to allow for rapid screening candidate BESS applications. 

• A significant portion of the literature focus on building load characteristics on 

an annual basis when demand charges are typically billed monthly.  

• The control strategies reviewed did not help the user to define demand 

reduction targets based on the load characteristics of the building. This is 

missed opportunity as the effectiveness of the control strategy will be reduced 

if the demand reduction targets are either too high or too low.  

• Existing BESS guidelines are written for those first learning about energy 

storage and provide quantitative analysis to help building owners or project 

developers screen project opportunities.  

 

To study BESS applications in Nova Scotia, NSP provided RESL with C&I interval 

meter data from 248 buildings across eight (8) NSP defined building types. The dataset 

covers the four years of 2016-2019 inclusively with 15 min building load data and 

includes a range of building sizes from average loads of < 10 kWavg to > 2000 kWavg. 

 

The research contributions of this work are: 

• A new MATLAB battery model was developed to perform iterative demand 

reduction simulations across a range of battery capacities, inverter power rates, 

and demand reduction targets. 

• New methods were developed to accurately predict the monthly peak demand 

of a building without needing the full load profile, only one year of basic utility 

billing data.  

• New visualization methods to sort results by both building size and load factor 

so trends between buildings load characteristics and demand savings results can 
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be identified quickly. 

• New guidelines for project developers and building owners to screen candidate 

buildings for demand charge reduction applications based on building average 

load, monthly load factor and building category. 

 

To address the guidelines aspect of the research objectives, listed below are practical 

recommendations that can be used by building owners, project developers, and other 

industry participants when considering a BESS project for C&I buildings: 

• Buildings with average MLF under 40% and average loads of less than 50 

kWavg consistently produce the highest demand savings across all battery 

sizes and DIs. Use monthly billing data to screen candidate buildings by both 

average load (<= 50 kW) and monthly load factor (<= 40%). Buildings that 

meet both criteria should be pursued for BESS projects. 

• With commercially available technology, do not pursue BESS projects in 

Utility and Hotel building categories because the high average load and high 

monthly load factors typical of these buildings limit the effectiveness of a 

BESS for demand charge reduction. As new low cost long duration storage 

becomes available these categories should be revisited. 

• The Commercial, Retail, and Industrial categories all show strong 

opportunities for demand charge reduction, provided the buildings meet the 

average load and average month load factor guidelines above.  

• Historical billing data can be used to accurately predict the peak monthly 

demand of C&I buildings without complicated methodologies, provided the 

buildings have a peak demand of less than 750 kWpd. 

• Across all categories of buildings, and all building sizes, there are 

diminishing returns for demand savings with larger battery pack sizes. 

Smaller battery packs offer the most demand savings per unit of battery 

capacity and the largest percentage of total demand reduction per unit of 

battery capacity. Provided fixed costs like engineering, installation, and 

customer acquisition can be minimized, building owners will find that smaller 

battery packs provide the best return on investment. 

• When developing BESS projects, the demand reduction targets should be set 
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to at least a 60% reduction relative to the average load to achieve optimum 

demand savings.  

• A BESS used in a demand charge management application has low 

utilization. Consider what other value, or revenue, streams may be available 

to improve project returns. Examples of additional revenue streams could 

include, but are not limited to, frequency regulation, energy rate arbitrage, 

reactive power support, and backup power.  

• Maintenance on a BESS system used for demand charge management should 

be conducted in the evenings or on weekends to minimize the possibility that 

a peak demand event corresponds with the downtime for maintenance. 

 

6.2 Research Recommendations 
Listed below are recommendations for future research: 

• New peak demand prediction methods could be explored to improve the 

forecast accuracy for buildings that demonstrate significant demand variability 

year to year and for buildings with peak demands greater than 750 kWpd. This 

research could incorporate historical weather data and a future weather forecast, 

ambient temperature, humidity, load shape, change in load rate (ramp rate), and 

daily load amplitude and frequency among others. A starting point for this 

research could be a literature and best practices review on how electric utilities 

conduct day ahead and system peak demand forecasting.  

• Study if lower demand targets have any correlation with either a higher 

frequency of charge and discharge and or a higher throughput of battery energy 

to determine if there could be different operations and maintenance 

considerations for a BESS based on control strategy decisions. 

• Explore if a variable discharge rate based on SOC could improve demand 

savings results, and what relation this may have with the base discharge rate 

(ex. 2.0 h, 4.0 h etc.). This new methodology could include a timer based on 

how long the battery has been discharging to estimate the remaining duration of 

the peak demand event and adjust the discharge rate accordingly.  

• Research could be conducted on a broad range of existing rate codes and 

potential future rate codes in Nova Scotia (ex. TOU) or other jurisdictions (ex. 
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seasonally varying demand charges, ratcheted demand charges etc.).  

• Incorporate reactive power into the model to study the relationship between the 

power factor of a building and opportunities to use a BESS for demand charge 

reduction, particularly for the rate codes that base the demand charge on kVApd. 

Future research on this topic should also include various P-Q inverter curves to 

explore how the reactive power characteristics of the inverter may help or 

hinder addressing peak demand.   

• Electrification of space heating and the addition of EV chargers will change the 

load profile of commercial buildings because of the distinctly different use 

case. Electric load growth modelling for EVs and space heating could be 

incorporated to explore the effects on the load profile, peak demand, the 

corresponding demand charges and implications for BESS use.  

• Explore what improvement in demand charge reduction results can be achieved 

by adding both a solar PV and BESS system to the building. In Nova Scotia the 

addition of solar energy is only likely to improve the demand charge 

management results for buildings that have an afternoon summertime peak due 

to cooling loads. In contrast, electrically heated buildings with a winter morning 

peak will see limited improvements in demand reduction, if any, from a solar 

PV system.  
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