
ON DOMINATING SETS AND THE DOMINATION
POLYNOMIAL

by

Iain Angus Cameron Beaton

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2021

© Copyright by Iain Angus Cameron Beaton, 2021



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graph Theory Definitions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Domination Polynomial . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Optimal Domination Polynomials . . . . . . . . . . . . . 13

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Optimality for Domination Polynomials . . . . . . . . . . . . . . . . . 15

Chapter 3 The Average Order of Dominating Sets of a Graph . . 29

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Extremal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Upper bounds based on minimum degree . . . . . . . . . . . . . . . . 36

3.4 Lower bounds for trees . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Distribution of Average Order of Dominating Sets . . . . . . . . . . . 52

Chapter 4 On the Unimodality of Domination Polynomials . . . . 59

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Paths, Cycles and Complete Multipartite Graphs . . . . . . . . . . . 61

4.3 Almost all graphs are unimodal . . . . . . . . . . . . . . . . . . . . . 65

4.4 A Non-increasing Segment of Coefficients . . . . . . . . . . . . . . . . 68

ii



Chapter 5 The Roots of Domination Polynomials . . . . . . . . . . 76

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Edges Coronas and Domination Polynomials . . . . . . . . . . . . . . 77

5.3 Closure of Real Domination Roots . . . . . . . . . . . . . . . . . . . . 93

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Optimal Domination Polynomials . . . . . . . . . . . . . . . . . . . . 98

6.2 The Average Order of Dominating Sets of a Graph . . . . . . . . . . 99

6.3 On the Unimodality of Domination Polynomials . . . . . . . . . . . . 100

6.4 The Roots of Domination Polynomials . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix A Optimal Graphs of Small Order . . . . . . . . . . . . . . 114

Appendix B Domination Roots of Small Graphs . . . . . . . . . . . . 117

iii



List of Tables

2.1 The (n,m)-optimal graphs up to order 3 . . . . . . . . . . . . . 15

2.2 The (n,m)-optimal graphs of order 4 . . . . . . . . . . . . . . . 16

4.1 Domination polynomials for paths and cycles of small order to-
gether with the location of their mode mn . . . . . . . . . . . . 61

4.2 Domination polynomials for graphs Ln. . . . . . . . . . . . . . 64

6.1 Smallest Domination Roots for n ≤ 9 . . . . . . . . . . . . . . 106

A.1 The (n,m)-least optimal and (n,m)-optimal graphs up to order 7116

B.1 The domination roots for all graphs up to order 9 . . . . . . . . 120

iv



List of Figures

1.1 Examples of common families of graphs . . . . . . . . . . . . . 5

1.2 Examples of graph products . . . . . . . . . . . . . . . . . . . 6

1.3 A graph on seven vertices . . . . . . . . . . . . . . . . . . . . 7

1.4 A path on three vertices . . . . . . . . . . . . . . . . . . . . . 9

3.1 A graph on seven vertices . . . . . . . . . . . . . . . . . . . . 30

3.2 A vertex labelled P5 . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 The bounds from Theorem 3.3.4 and Corollary 3.3.8 compared
to avd(G) for n = 8 and n = 9. . . . . . . . . . . . . . . . . . 45

3.4 An example of B(T, v, u) and B(T, v, w). . . . . . . . . . . . . 48

3.5 Distribution of ˆ︃avd(G) for all graphs of order 9 . . . . . . . . 55

4.1 The only graph of order 9 which is not log-concave . . . . . . 60

4.2 The graph Ln . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 C4 ⋄K2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Pn ⋄G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Cn ⋄G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Limit of the roots of D(Cn ⋄K1, x) . . . . . . . . . . . . . . . 91

6.1 A vertex labelled graph . . . . . . . . . . . . . . . . . . . . . . 100

6.2 The distribution of XP100 . . . . . . . . . . . . . . . . . . . . . 105

v



Abstract

A dominating set S of a graph G of order n is a subset of the vertices of G such

that every vertex is either in S or adjacent to a vertex of S, and the domination

number G, denoted γ(G), is the cardinality of the smallest dominating set of G. The

domination polynomial is defined by D(G, x) =
∑︁n

γ(G) di(G)xi where di(G) is the

number of dominating sets in G with cardinality i. In this thesis we will consider four

problems related to the domination polynomial. We begin by studying the optimality

of domination polynomials. We will investigate the average order of dominating sets

of graphs. We will explore the unimodality of the domination polynomials. Finally

we will analyse the roots of domination polynomials.
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Chapter 1

Introduction

1.1 Overview

A subset of the vertices S of a graph G is a dominating set if every vertex in G

is either in S or adjacent to at least one vertex in S. Dominating sets is a well-

studied topic in graph theory. A 1991 bibliography on domination in graphs [53] by

Hedetniemi and Laskar traced domination back to the graph theory texts of König

(1950), Berge (1958) and Ore (1962). Dominating sets can be applied to the problem

of preserving energy in wireless sensor network [74]. A wireless sensor network is a

network of spatially dispersed sensors that monitor and record the physical conditions

of a geographical location. At all times the active sensors must cover the entire

geographical location. However some sensors can be left inactive for a period of time

so long as a dominating set of sensors is left active. Dominating sets can also be used

to summarize text documents [79]. One can consider a text document as a graph

where the sentences of the document are vertices and two vertices are joined by an

edge if the corresponding sentences are related. A dominating set in this graph would

then be a collection of sentences which collectively relate to all other sentences in the

document. One could also reduce the redundancy of the text summary by imposing

an additional restriction to ensure no two sentences in the dominating set relate to

each other. This would form what is called an independent dominating set in the

graph.

Early problems in the research on dominating sets were related to determining

the domination number; the cardinality of the smallest dominating set. For a graph

G, the domination number of G is denoted γ(G). In 1968, Vizing [87] posed one of

the longest standing conjectures regarding the domination number of the Cartesian

product of graphs. Vizing’s conjecture posits that for two graphs G and H that

γ(G□H) ≥ γ(G)γ(H),

1
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where G□H denotes the Cartesian product of G and H. Vizing’s conjecture has been

shown to hold if G and H have special properties. Some of these properties include:

one of G or H is a has domination number 1 or 2, one of G or H is a path or cycle,

both of G and H are chordal. In 2000 Clark and Suen [39] showed for any two graphs

G and H that γ(G□H) ≥ γ(G)γ(H)
2

. To date this is the best known bound for graphs

without any special properties. See [83] for a survey of results regarding Vizing’s

conjecture.

Another salient open problem regards the domination number of maximal planar

graphs. A graph is considered planar if it can be drawn in two dimensions without

two edges crossing. Furthermore a graph is maximally planar if the addition of any

edge makes the resultant graph no longer planar. In 1996, Matheson and Tarjan [71]

proved any maximal planar graph of order n has a dominating number at most n
3
.

In the same paper, Matheson and Tarjan conjectured that every sufficiently large

maximal planar graph of order n has a dominating number at most n
4
. In 2010, King

and Pelsmajer [57] proved this conjecture for graphs of maximum degree at most 6.

More recently in 2020, S̆pacapan [82] improved the upper bound to 17n
53

for all graphs

of order n > 6.

Rather than studying the cardinality of the smallest dominating set, one can

consider counting the number of dominating sets of each cardinality. One generating

polynomial which encodes the number of dominating sets of each cardinality is the

domination polynomial. The domination polynomial was introduced independently

by Arocha and Llano in 2000 [21] and in 2008 by Alikhani and Peng [13]. In the

past decade the domination polynomial has been well-studied. A natural area of

interest is computing the domination polynomial [8, 9, 13, 14, 17, 21, 67]. Another

area of interest is identifying which non-isomorphic graphs have the same domination

polynomial [1,3,4,7,11,16,20,62]. Analytical properties of the domination polynomial

such as the location of the roots of domination polynomials have also been researched

[2, 5, 37, 73].

This thesis discusses four problems related to the domination polynomial. In

Chapter 2, we discuss optimizing the domination polynomial. We consider a graph

G optimal if the domination polynomial of G evaluated at x is greater than or equal

to the domination polynomial of H evaluated at x for all x ≥ 0 and all graphs H in a
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particular class of graphs. We investigate optimal graphs in all of the classes of graphs

which have a fixed number of edges and vertices. We consider each class of graphs

over the domain [0,∞) and completely classify when an optimal graph exists. In

Chapter 3 we discuss the average cardinality of the dominating sets in a graph. Most

graphs have many different dominating sets of varying cardinalities. The average

cardinality of the dominating sets in a graph is simply the sum of all the cardinalities

of all dominating set divided by the total number of dominating sets. For a graph

G, the average cardinality of the dominating sets in G can be determined by the

logarithmic derivative of the domination polynomial of G evaluated at 1. For a graph

G with n vertices, we will show that the average cardinality of a dominating set in G

is at least n
2
. If G has no isolated vertices then we show that the average cardinality

of a dominating set is at most 3n
4

but conjecture a tighter upper bound of 2n
3
. If the

minimum degree of G is at least 2 ln2(n) we show that the average cardinality of a

dominating set is at most n+1
2
. In Chapter 4 we present certain families for which

the domination polynomial is unimodal. A polynomial f(x) = a0 + a1x+ · · ·+ anx
n

is considered unimodal if its sequence of coefficients is non-decreasing and then non-

increasing. That is, f(x) is unimodal if there exists a k such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak−1 ≥ · · · ≥ an.

In this case we would say k is a mode of f(x). Note by this definition, f(x) may have

multiple modes and still be unimodal. This definition is also similar to the notion of

unimodality in statistics for discrete distributions. Alikani and Peng [17] conjectured

that all domination polynomials are unimodal. We provide significant evidence by

showing that the domination polynomials of almost all graphs are unimodal. In

Chapter 5, we investigate the real roots of domination polynomials. Brown and Tufts

[37] showed that the collection of all roots of all domination polynomials are dense

in the complex plane. Despite this, one can observe that no domination polynomial

has a real root in the interval (0,∞). We will show that there are no other zero-free

intervals on the real line by showing the real roots of the domination polynomial are

dense on the interval (−∞, 0]. Finally in Chapter 6 we conclude with some discussion

and open problems.



4

1.2 Graph Theory Definitions

The reader is directed to West’s textbook [89] for standard graph theory definitions.

In this thesis we will be considering only simple and undirected graphs (although

multiple edges do not affect domination). We remark that in the context of domi-

nating sets the assumption for the graph to be simple is not needed. However, only

considering simple graphs will streamline our discussions. A graph G = (V,E) is a

set of vertices V (G) together with an edge set E(G) of unordered pairs of vertices.

The cardinality of the vertex set V (G) and edge set E(G) is referred to as the order

and size of G. Two vertices u, v ∈ V (G) are said to be adjacent if there exists an

edge e ∈ E(G) with e = {u, v}. In such a case u and v are incident with e (e is

incident with u and v). It is common for edge {u, v} to be denoted uv. The degree

of vertex v ∈ V (G) is the number of edges incident with v, which is the same as the

number of vertices adjacent to v. We denote the degree of v as deg(v). The maximum

and minimum degree of any vertex in G are denoted ∆(G) and δ(G), respectively. If

∆(G) = δ(G) = k we say the graph is k−regular. A graph is connected if there is a

path between every pair of vertices in its vertex set and disconnected otherwise. Two

graphs G and H are isomorphic if there is a bijection f : V (G) → V (H) such that u

and v are adjacent if and only if f(u) and f(v) are adjacent. In this thesis we do not

distinguish between two isomorphic graphs.

The set of vertices NG(v) = {u : uv ∈ E(G)} is called the open neighbourhood of

v. Similarly NG[v] = N(v)
⋃︁
{v} is called the closed neighbourhood of v. It is common

for the subscript G to be omitted from the notation when only referring to one graph.

For S ⊆ V (G), the closed neighbourhood N [S] of S is simply the union of the closed

neighbourhoods for each vertex in S. For vertices u, v ∈ V (G), if v has degree 1 and

N(v) = {u} then we refer to v as a leaf vertex and u as a stem vertex. If deg(v) = 0

then v is called isolated. If deg(v) = n− 1 then v is called universal.

The complement of a graph G, denoted Ḡ, has the same vertex set as G but

E(Ḡ) = {uv : u ̸= v and uv /∈ E(G)}. There are many common families of graphs,

here we define the families used in this thesis.

� The complete graph of order n, denoted Kn, is the graph on n vertices where

every pair of vertices is adjacent.
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� The empty graph of order n, denoted Kn, is the complement of Kn. That is,

no two vertices of the empty graph are adjacent.

� The cycle graph of order n, denoted Cn, has the vertex set V (Cn) = {v1, . . . , vn}
and edge set E(Cn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn}.

� The path graph of order n, denoted Pn, has the vertex set V (Pn) = {v1, . . . , vn}
and edge set E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1}. Equivalently, a Pn can be

obtained by removing any edge from Cn.

� A complete multipartite graph, denoted Kn1,n2,...,nk
, has the vertex set {vi,j :

1 ≤ i ≤ k, 1 ≤ j ≤ nk} where vi,j and vk,ℓ are adjacent if and only if i ̸= k.

Equivalently the vertices of the k-partite graph Kn1,n2,...,nk
are partitioned into

to k sets of size n1, n2, ..., nk respectively and edges are added between each

pair of vertices except pairs of vertices in the same set. A complete multipartite

graph with two sets is called complete bipartite. A star graph, denoted K1,n,

is a special case of a complete bipartite graph where one of the subsets of the

partition has exactly one vertex.

Examples of some of the graphs listed above are shown in Figure 1.2.

(a) K6 (b) C5 (c) P5 (d) K1,2,2,4

Figure 1.1: Examples of common families of graphs

It is common to form a new graph from two (or more) other graphs. This process

is typically referred to as a graph product. We will now define several graph products

which will be used in this thesis. In each case we consider two disjoint graphs G and

H.

� The disjoint union of G and H, denoted G ∪ H, has vertex set V (G) ∪ V (H)

and edge set E(G) ∪ E(H). The disjoint union of k copies of the graph G is
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denoted kG. If G is the disjoint union of connected graphs G1 ∪G2 · · · ∪Gk we

call each Gi subgraph a component of G. Note that a connected graph only has

one component.

� The join of G and H is denoted G∨H, with vertex set V (G)∪V (H), and edge

set E(G ∨H) = E(G)
⋃︁
E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

� The lexicographic product (or graph substitution) is defined as follows. Let G

and H be graphs. The graph G[H], formed by substituting a copy of H for

every vertex of G, is constructed by taking a disjoint copy Hv of H, for each

vertex v of G, and joining every vertex in Hu to every vertex in Hv if and only

if u is adjacent to v in G. For example, the complete bipartite graph Kn,n is

the same as K2[Kn].

� The corona of two disjoint graphs G and H, as defined by Frucht and Harary

in [47] and denoted G ◦H, is one copy of G and |V (G)| copies of H where each

vertex v of G is joined to every vertex in a unique copy Hv of H.

� The edge corona of two disjoint graphs G and H is denoted G ⋄ H. Hou and

Shiu [59] defined G⋄H as the graph obtained by taking G and |E(G)| copies of
H and joining the two end vertices of the ith edge of G to every vertex in the

ith copy of H. Note in the case where G has no edges, G ⋄H ∼= G.

Examples of some of the operations listed above are shown in Figure 1.2.

(a) P4 ∨K2 (b) P4[K2] (c) P4 ◦K2 (d) P4 ⋄K2

Figure 1.2: Examples of graph products

For a graph G, S ⊆ V (G) is a dominating set of G if the closed neighbourhood of

S, N [S], is the entire vertex set, V (G). That is to say, if S is a dominating set, then

for each v ∈ V (G), either v ∈ S or there exists u ∈ S which is adjacent to v. The

domination number of G, denoted γ(G), is the cardinality of the smallest dominating

set of G. A dominating set with cardinality γ(G) is called a minimum dominating

set.
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For example, consider the graph G in Figure 1.3, and a subset of its vertices, S =

{v1, v2, v5, v7}. As v1, v2, v5, v7 ∈ S and v3, v4, v6 ∈ N [v7], S is a dominating set. Al-

ternatively, N [v1] = {v1, v2, v3}, N [v2] = {v1, v2, v4, v7}, N [v5] = {v4, v5, v6}, N [v7] =

{v2, v3, v4, v6}. So N [S] = N [v1] ∪N [v2] ∪N [v5] ∪N [v7] = {v1, v2, v3, v4, v5, v6, v7} =

V (G). S is not a minimum dominating set as {v2, v6} is also a dominating set. The

domination number of G is 2 as we have a dominating set of cardinality 2 and there is

no vertex in G which is adjacent to all other vertices, and hence G has no dominating

set of cardinality 1.

v1

v2

v3

v4

v5

v6

v7

Figure 1.3: A graph on seven vertices

1.3 The Domination Polynomial

In general, graph polynomials have been of interest since 1912 when Birkhoff first

defined the chromatic polynomial [25]. The chromatic polynomial, P (G, λ) is a func-

tion which counts, for each positive integer λ, the number of ways to assign λ colours

to each vertex such that adjacent vertices receive different colours. Birkhoff defined

the chromatic polynomial in an attempt to prove the Four Colour Conjecture, which

claimed that any planar graph could be coloured with four colours. Using Birkhoff’s

definition, proving the Four Colour Conjecture was equivalent to proving that no

planar graph has a chromatic polynomial with a root at λ = 4. Although this ap-

proach was unsuccessful, study of the chromatic polynomial became interesting in

its own right. Areas of interest for the chromatic polynomial include computing the
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chromatic polynomial for graphs, locating the roots of chromatic polynomial, find-

ing non-isomorphic graphs with the same chromatic polynomial, and optimizing the

chromatic polynomial. See [43] for a text on the chromatic polynomial.

Another graph theory problem, all-terminal reliability, also involves graph polyno-

mials. All-terminal reliability was introduced to model robustness of a network. The

model has vertices which are always operational but has edges which are operational

independently with probability p ∈ [0, 1]. The all-terminal reliability model asks for

the probability the operational edges form a spanning connected subgraph. The func-

tion which gives this probability, Rel(G, p), is in fact a single variable polynomial.

See [40] for an early book on all-terminal reliability.

Though the previous two polynomials are defined by their output, many graph

polynomials have been introduced as generating functions. One such polynomial is

the independence polynomial, I(G, x). For a graph G, an independent set is a subset

of vertices S ⊆ V (G) such that no two vertices in V are adjacent. The coefficients

of the independence polynomial enumerate the number of independent sets of each

cardinality. That is, for a graph G, the coefficient of xk in I(G, x) is the number of

independent sets of cardinality k. Gutman and Harary [49] were the first to investigate

the independence polynomial in 1983 and it has been well studied ever since. See [70]

for a survey on the results regarding the independence polynomial.

Although independent sets and dominating sets are both well studied areas of

graph theory, an analogous polynomial for dominating sets was only introduced 17

years after the independence polynomial. The domination polynomial was introduced

independently by Arocha and Llano in 2000 [21] and in 2008 by Alikhani and Peng

[13]. We will now define the domination polynomial, which algebraically encodes the

number of dominating sets of each cardinality.

Definition 1.3.1 The domination polynomial D(G, x) of G is defined as

D(G, x) =

|V (G)|∑︂
i=γ(G)

di(G)xi

where γ(G) is the domination number of G and di(G) is the number of dominating

sets of G with cardinality i.
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Consider every subset of vertices for the path of length three shown in Figure

1.4. The empty set is not dominating so d0(P3) = 0. For subsets of size one: {v2}
is dominating but {v1} and {v3} are not, so d1(P3) = 1. For subsets of size two:

{v1, v2}, {v2, v3} and {v1, v3} are all dominating hence d2(P3) = 3. The only subset

of size three is the set of all vertices and hence dominating thus d3(P3) = 1. We

conclude that D(P3, x) = x3 + 3x2 + x.

v1

v2

v3

Figure 1.4: A path on three vertices

The exhaustive approach of checking if each subset of vertices is dominating is

clearly not efficient. Unfortunately, in general, there seems to be no alternative that is

significantly better. However, the domination polynomial is known explicitly for some

families of graphs. Furthermore, we can deduce some coefficients based on particular

properties of the graphs. For example see Lemma 2.2.6 and Lemma 2.2.7 which

together show that the minimum degree of the graph is encoded by the domination

polynomial.

Consider once more the graph G in Figure 1.3. The order of G is 7, so manually

checking each of its 27 = 128 subsets of vertices would be rather time consuming.

However δ(G) = 2, so for each vertex in G the size of its closed neighbourhood is at

least three. If a subset omits fewer than three vertices of V (G), it must intersect the

closed neighbourhood of each vertex in V (G) and hence dominate G. Thus d7(G) =(︁
7
0

)︁
= 1, d6(G) =

(︁
7
1

)︁
= 7, and d5(G) =

(︁
7
2

)︁
= 21. For a subset of size four there

are only two vertices v1 and v5 with closed neighbourhoods of size three. As those

two neighbourhoods do not contain the same vertices, the only subsets of cardinality

four which do not dominate G are missing exactly the closed neighbourhoods of those

two vertices. Thus d4(G) =
(︁
7
3

)︁
− 2 = 33. For a subset of size three, we will again

count the number of subsets which are not dominating sets. As we are omitting four

vertices then any vertex which is not dominated must have degree two or three. For

the vertices of degree two; v5 and v6, there are four subsets of cardinality three which
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omit the closed neighbours of v5 and v6 respectively (for a total of eight). For each of

the vertices of degree three; v2, v3, v4 and v6, there is exactly one subset of cardinality

three which omits their closed neighbours respectively (for a total of four). Hence

d3(G) =
(︁
7
4

)︁
− 4− 2 · 4 = 23. As stated earlier γ(G) = 2, so d0(G) = d1(G) = 0. It is

easy enough to see that the only dominating sets of size 2 are {v2, v6} and {v3, v4} so

d2(G) = 2 and D(G, x) = x7 + 7x6 + 21x5 + 33x4 + 23x3 + 2x2.

Simple combinatorial arguments can be used to calculate the domination polyno-

mial for some families of graphs. For example, any non-empty subset of vertices of

the complete graph Kn is a dominating set. Therefore, d0 = 0 and dk(Kn) =
(︁
n
k

)︁
for 1 ≤ k ≤ n. Using the binomial theorem we can easily obtain that D(Kn, x) =

(x + 1)n − 1. For another example consider the star graph K1,n. Any subset of ver-

tices which contains the only universal vertex of K1,n is dominating. Such dominating

subsets are enumerated by the generating polynomial x(x + 1)n. Alternatively, if a

subset of vertices does not contain the universal vertex, then every other vertex must

be in the subset in order to dominate K1,n. Therefore D(K1,n, x) = x(x+ 1)n + xn.

Naturally when computing graph polynomials of product graphs we seek rela-

tionships with the graph polynomials of the smaller factor graphs. The domination

polynomial is no different. Relationships for the disjoint union, join, lexicographic

product, and corona of graphs are detailed in the next theorem.

Theorem 1.3.2 ([17,37,67]) Let G and H be disjoint graphs on nG and nH vertices

respectively.

(i) D(G ∪H, x) = D(G, x) ·D(H, x).

(ii) D(G ∨H, x) = [(x+ 1)nG − 1][(x+ 1)nH − 1] +D(G, x) +D(H, x).

(iii) D(G ◦H, x) = [D(K1 ∨H, x)]nG = [x(x+ 1)nH +D(H, x)]nG.

(iv) D(G[Kn], x) = D(G, (x+ 1)n − 1).

Interest in the domination polynomial since its introduction has focused on prob-

lems related to

� computing the domination polynomial [8, 9, 13, 14,17,21,67]
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� properties of the coefficient sequence [10,15]

� properties of the roots of domination polynomial [2, 5, 37,73]

� determining non-isomorphic graphs with equivalent domination polynomials [1,

3, 4, 7, 11,16,20,62]

In this thesis we will discuss problems which are new in the context of the dom-

ination polynomial. However, each has been investigated for various other graph

polynomials and graph parameters.

One problem we will discuss is the optimality of domination polynomials. For

two graph G and H, G is said to (weakly) improve H if D(G, x) ≥ D(H, x) for all

x ≥ 0. Optimality has been studied for other graph polynomials such as independence

polynomials [36] on the domain [0,∞), network reliability [22, 27, 28, 35, 48, 72] over

the domain [0, 1], and chromatic polynomials over the natural numbers [77,80].

Another problem we will discuss is the average order of dominating sets in a

graph G, denoted avd(G). For a graph G, avd(G) can be determined by D′(G,1)
D(G,1)

.

Many other average graph parameters have been considered such as mean distance

[44], mean subtree order [63], the average size of an independent set [78], the average

size of a matching [19].

We will also consider the unimodality of domination polynomials. The domination

polynomial of a graph G of order n is considered unimodal if for some 0 ≤ k ≤ n we

have

d0(G) ≤ · · · ≤ dk−1(G) ≤ dk(G) ≥ dk−1(G) ≥ · · · ≥ dn(G).

The unimodality of domination polynomials has been discussed in previous work (see

[10, 17]). However that body of work pales in comparison to the work done on other

graph polynomials. Typically other graph polynomials have been shown to be uni-

modal by showing a stronger condition. A graph polynomial f(G, x) =
∑︁n

i=1 aix
i of a

graph G of order n is log-concave if for every 1 ≤ i ≤ n−1, ai(G)2 ≥ ai−1(G)ai+1(G).

If a polynomial with all positive coefficients is log-concave then it is unimodal. All

matching polynomials have been shown to be log-concave [54, 68]. The chromatic

polynomial has also been shown to be log-concave [60]. In general, independence
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polynomials are not log-concave or even unimodal. However, the independence poly-

nomials of claw-free graphs have been shown to be log-concave [38,50].

This thesis is structured as follows. In Chapter 2 we will study the optimality

of domination polynomials. In Chapter 3 we determine the extremal graphs for the

average order of dominating sets of graphs of order n. We develop bounds for the

average order of domination sets for connected graphs, as well as for trees. We also

introduce a normalized version of the parameter, describe the distribution of these

parameters, and consider the values for Erdös-Renyi random graphs. In Chapter 4 we

extend the families for which unimodality of the domination polynomial is known to

paths, cycles and complete multipartite graphs. More significantly, we will also show

that almost all domination polynomials are unimodal with mode ⌈n
2
⌉. In Chapter 5

we prove that the closure of the real domination roots is the entire nonpositive real

axis. Finally in Chapter 6 we conclude with some discussion and open problems.



Chapter 2

Optimal Domination Polynomials

2.1 Background

Consider a graph G with vertex set V (G) and edge set E(G) (we assume throughout

that all graphs are simple, that is, without loops and multiple edges, as neither of these

affect domination). Let S be a subset of vertices or edges such that S has a particular

graph property, P . Perhaps P is that S is independent, complete, a dominating set

or a matching. The sequences of the number of sets of varying cardinality that

have property P have been studied, particularly through the associated generating

polynomials (which are graph polynomials). Independence, clique, domination and

matching polynomials have all arisen and been studied in this setting.

If the number of vertices n and edges m are fixed, one can ask whether there exist

optimal graphs with respect to a property. In this chapter we will discuss optimal

graphs with respect to domination. Let Sn,m denote the set of (simple) graphs of

order n and size m (that is, with n vertices and m edges). Before we determine if an

optimal graph exists we must define what it means for a graph to be optimal. We

say G ∈ Sn,m is (n,m)-optimal (with respect to domination) if D(G, x) ≥ D(H, x)

for all graphs H ∈ Sn,m and all x ≥ 0 (for any particular value of x ≥ 0, of course,

there is such a graph G, as the number of graphs of order n and size m is finite,

but we are interested in uniformly optimal graphs). For two graphs G and H, we

define the reflexive and transitive relation H ⪯ G if D(H, x) ≤ D(G, x) for all x ≥ 0.

Additionally we say G (weakly) improves H if H ⪯ G. If G improves H but for some

x we have D(H, x) < D(G, x) then we say G strongly improves H.

Now that we have defined a (n,m)-optimal graph, you may be wondering why

use this definition? In the case of domination polynomials, D(G, 1) yields the total

number of dominating sets in G. A natural notion of optimality may be to determine

a graph G ∈ Sn,m which maximizes D(G, 1). However, our definition is a stronger

notion of optimality. The evaluation D(G, x) at various values of x does not always

13
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yield meaningful results. However, for two graphs G and H, if D(G, x) ≥ D(H, x)

for values of x which approach infinity then G has more large dominating sets than

H. Conversely, if D(G, x) ≥ D(H, x) for positive values of x which approach 0 then

G has more small dominating sets than H. Of course, if there is a graph G such that

the counts for dominating sets are each greater than or equal to that for any other

graph of the same order n and sizem, that graph will be (n,m)-optimal. However, our

definition of an (n,m)-optimal graph is slightly more general than simply maximizing

the coefficients of the domination polynomial.

Optimality, in this sense, has been studied for independence polynomials. Brown

and Cox [36] showed that an (n,m)-optimal graph always exists. A (n,m)-optimal

graph is formed by fixing a linear order ⪯ of the vertices, v1 ⪯ v2 ⪯ · · · ⪯ vn and

select the m largest edges in lexicographic order.

Optimality of network reliability (over the domain [0, 1]) has also be well-studied

[22,27,28,35,48,66,72]. Network reliability distinguishes between the family of simple

graphs with n vertices and m edges, Sn,m, and the family of all graphs with n vertices

and m edges Gn,m. In the context of dominating sets, we only consider all graphs as

simple because additional edges between a pair of adjacent vertices does change how

a graph is dominated. However, in the context of network reliability multiple edges

between a pair of vertices can dramatically increase the reliability of the network. For

example, let G be a simple graph where the probability of each edge being operational

is independent and identically p ∈ [0, 1]. Let Gk be the graph G where each of its

edges replaced with k identical edges. In this case, the reliability of Gk is similar to

the reliability of G. In fact, Rel(Gk, p) = Rel(G, 1− (1− p)k) as the probability that

at least one of k edges in a bundle is operational is 1− (1−p)k. In network reliability,

a graph H ∈ Gn,m (H ∈ Sn,m) is Gn,m-optimal (Sn,m-optimal) if Rel(H, p) ≥ Rel(G, p)

for all graphs G ∈ Gn,m (G ∈ Sn,m) and all p ∈ [0, 1]. It was once conjectured that

given m and n, there always exists a Gn,m-optimal graph and an Sn,m-optimal graph.

For simple graphs it was shown that the conjecture held for m ≤ n + 3 [27] and

m ≥
(︁
n
2

)︁
− ⌊n

2
⌋ [66]. Despite this, the conjecture for simple graphs was shown to be

false [66, 72] for m =
(︁
n
2

)︁
− n+2

2
for even n ≥ 6 and m =

(︁
n
2

)︁
− n+5

2
for odd n > 7.

Brown and Cox [35] gave several more values of m where an Sn,m-optimal graph does

not exists. Brown and Cox also gave values of n and m where Gn,m-optimal graphs do
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not exist. It remains an open question to characterize the values of n and m where

Gn,m-optimal graphs (or Sn,m-optimal graphs) exist.

Optimality of chromatic polynomials has also been discussed [69,77,80] but with

a modified notion of optimality. Simonelli [80] defined a graph G ∈ Sn,m as optimal if

there does not exist another graph H ∈ Sn,m with P (G, λ) ≤ P (H, λ) for all natural

numbers λ and P (G, λ) < P (H, λ) for at least one λ. For this definition of optimality,

a necessary condition for a graph G ∈ Sn,m to be optimal is that there exists a λ such

that P (G, λ) > P (H,λ) for all H ∈ Sn,m. Lazebnik [69] determined the graphs which

maximize P (G, 2) for each Sn,m. Additionally Simonelli [80] determined necessary

conditions for bipartite graphs to be optimal.

In this chapter we will study the optimality of domination polynomials. We will

completely characterize the values of n and m for which (n,m)-optimal graphs exist.

2.2 Optimality for Domination Polynomials

We begin our study by observing (n,m)-optimal graphs of small order. Table 2.1

gives all (n,m)-optimal graphs up to order 3.

Order n Size m (n,m)-optimal graph
1 0 K1

2 0 K2

2 1 K2

3 0 K3

3 1 K1 ∪K2

3 2 K1,2

3 3 K3

Table 2.1: The (n,m)-optimal graphs up to order 3

Upon first inspection it may appear that an (n,m)-optimal graph always exists.

However, there is only one simple graph in Sn,m for n ≤ 3 and is hence (n,m)-optimal.

Table 2.2 gives all (n,m)-optimal graphs of order 4 were we can see no (4, 3)-optimal

graph exists. A dash − represents when an (n,m)-optimal graph does not exist for a

given order and size.
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Order n Size m (n,m)-optimal graph

4 0 K4

4 1 K2 ∪K2

4 2 K2 ∪K2

4 3 −
4 4 −
4 5 K4 − e
4 6 K4

Table 2.2: The (n,m)-optimal graphs of order 4

For n = 4 consider the cases when m = 2 and m = 3. For m = 2, note that

K2 ∪K2 and K1,2 ∪K1 are the only simple graphs in G4,3. Furthermore, we have

D(K2 ∪K2, x) = x4 + 4x3 + 4x2

D(K1,2 ∪K1, x) = x4 + 3x3 + x2

Each coefficient of D(K2 ∪ K2, x) is greater than or equal to each corresponding

coefficient of D(K1,2 ∪ K1, x). Therefore we can conclude that D(K2 ∪ K2, x) ≥
D(K1,2 ∪K1, x) for all x ≥ 0 and hence K2 ∪K2 is (4, 2)-optimal.

For n = 4 and m = 3, note that P4, K1,3, and K3 ∪K1 are the only simple graphs

in G4,3. Furthermore, we have

D(P4, x) = x4 + 4x3 + 4x2

D(K1,3, x) = x4 + 4x3 + 3x2 + x

D(K3 ∪K1, x) = x4 + 3x3 + 3x2

Each coefficient of D(K3∪K1, x) is less than or equal to each corresponding coefficient

of both D(P4, x) and D(K1,3, x). Therefore we can conclude that D(K3 ∪ K1, x) ≤
D(P4, x) and D(K3 ∪K1, x) ≤ D(K1,3, x) for all x ≥ 0. Now let f(x) = D(P4, x) −
D(K1,3, x) = x2 − x. Note that f(x) > 0 for x > 1 and f(x) < 0 for 0 < x <

1. Therefore D(P4, x) > D(K1,3, x) ≥ D(K3 ∪ K1, x) for x > 1 and D(K1,3, x) >

D(P4, x) ≥ D(K3 ∪K1, x) for 0 < x < 1 and hence no (4, 3)-optimal graphs exist.



17

The following useful observation compares the coefficients of the domination poly-

nomials of two graphs to determine which domination polynomial is larger when

evaluated at sufficiently large and small values of x.

Observation 2.2.1 Suppose that G and H are graphs with

D(G, x) =

|V (G)|∑︂
j=1

dj(G)xj,

and

D(H, x) =

|V (H)|∑︂
j=1

dj(H)xj.

Then

� if dj(G) = dj(H) for j < ℓ but dℓ(G) > dℓ(H), then D(G, x) > D(H, x) for x

sufficiently small positive values of x and

� if dj(G) = dj(H) for j > t but dt(G) > dt(H), then D(G, x) > D(H, x) for x

sufficiently large.

The reason why this observation holds is the following. If p(x) = alx
l+al+1x

l+1+

· · ·+ al+kx
l+k is a real polynomial with al and al+k nonzero, then by writing

p(x) = xl
(︁
al + al+1x+ · · ·+ al+k−1x

k−1 + al+kx
k
)︁

= xl+k
(︂
al+k +

al+k−1

x
+ · · ·+ al

xk

)︂
we see that for small positive values of x, the sign of p(x) is the same as the sign of

al, and for large positive values of x, the sign of p(x) is the same as the sign of al+k

(we then apply this to the polynomial D(G, x)−D(H, x) with t = l + k).

It follows from Observation 2.2.1 that if for two graphs G and H we have dj(G) ≥
dj(H) for all j then G improves H. In this case we call G coefficient-wise greater than

H. This leads us to a sufficient condition to determine if an (n,m)-optimal graph

exists. If for some graph G ∈ Sn,m we have that G is coefficient-wise greater than

all H ∈ Sn,m then G is (n,m)-optimal. This was the case observed previously when

n = 4 and m = 2.
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For general polynomials, f(x) and g(x), we can have f(x) ≥ g(x) for all x ≥ 0

without having f(x) being coefficient-wise greater than g. For example, 5x2+x+5 ≥
x2 + 4x+ 1 for all x ≥ 0. Despite this there are no known examples of two graphs G

and H where G improves H without also being coefficient-wise greater than H.

Our first result will be regarding the existence of optimal sparse graphs. The fol-

lowing lemma describes an operation that always increases the domination polynomial

on [0,∞).

Lemma 2.2.2 Let G be a graph on n ≥ 3 vertices with at least one isolated vertex x

and at least one edge e = uv. Let H be the graph (G− e) ∪ ux. Then

D(H, x) ≥ D(G, x) for x ≥ 0.

Moreover, if v has degree at least 2, then

D(H, x) > D(G, x) for x > 0.

Proof. We begin by showing that there is an injection from the set of dominating

sets of size i in G into the set of dominating sets of size i in H.

Let Si be a dominating set of size i of G. Note that since x is an isolated vertex,

it appears in every dominating set of G.

� Case 1: If both u and v are in Si then Si dominates in H.

� Case 2: If u ∈ Si, v ̸∈ Si then (Si − x) ∪ {v} is a dominating set of size i in H

which does not dominate in G.

� Case 3: If u /∈ Si, v ∈ Si then Si dominates in H as x ∈ Si and u ∈ N [x].

� Case 4: If neither u nor v are an element of Si both u and v must be dominated

in G− e, and therefore Si a dominating set of H as well.

Thus, every dominating set of size i of G corresponds to a dominating set of H of

size i. Moreover, it is not hard to verify that the dominating sets of H produced are

different. Hence di(H) ≥ di(G) for i ≥ 1 and so D(H, x) ≥ D(G, x) for x ≥ 0 as was

to be shown.
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Moreover, if v has degree at least 2, it has another vertex w ̸= u adjacent to it.

Consider the set S = V (G) − {v, x}. Then S is not a dominating set of G (as it

does not contain x) but it is a dominating set in H. Moreover, S is not a result of

any of the cases above, and hence the mapping above is not onto. It follows that

dn−2(H) > dn−2(G), and so D(H, x) > D(G, x) for x > 0. □

We will now apply this lemma to show the following.

Corollary 2.2.3 Let G be a graph on n ≥ 3 vertices and m ≥ ⌈n
2
⌉ edges. If G has

an isolated vertex, then there exists a graph H of the same order and size with no

isolated vertices such that D(H, x) > D(G, x) for x > 0.

Proof. Let G′ be the graph with no isolated vertices such that G = G′ ∪ rK1

where r ≥ 1 is the number of isolated vertices in G. Then G′ has n − r vertices

and m ≥ ⌈n
2
⌉ edges. We will now show ∆(G′) ≥ 2. Suppose not – that is, suppose

∆(G′) < 2. Then ∆(G′) = δ(G′) = 1 and G′ must be the graph mK2. However, then

G′ has 2m ≥ n > n − r edges which is a contradiction as r ≥ 1. Thus there indeed

exists a vertex v ∈ G′ with degree two or more.

Let u ∈ N(v) and H be the graph constructed in Lemma 2.2.2 by removing the

edge uv from G and adding an edge from u to an isolated vertex. By Lemma 2.2.2,

D(H, x) > D(G, x) for x > 0 and H has one less isolated vertex. Hence by iterating

this process we will find a graph with no isolated vertices which improves G. □

Using the previous result, we can now prove that optimal sparse graphs exist.

Two non-isomorphic graphs can have the same domination polynomial, thus it is

possible for two graphs from Sn,m to both be (n,m)-optimal. If G ∈ Sn,m is the only

(n,m)-optimal graph in Sn,m we call it the unique (n,m)-optimal graph.

Corollary 2.2.4 For a given n ≥ 2 and m = ⌈n
2
⌉, the unique (n,m)-optimal graph

is mK2 if n is even and (m− 2)K2 ∪K1,2 if n is odd.

Proof. Let G be a graph on n vertices and m = ⌈n
2
⌉ edges. By Corollary 2.2.3,

if G has an isolated vertex, there exists a graph H with n vertices, m edges, and no

isolated vertices which improves G. Depending on parity of n, as m = ⌈n
2
⌉ there is
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only one graph with no isolated vertices: mK2 if n is even and (m− 2)K2 ∪K1,2 if n

is odd. Hence these graphs must be the unique (n,m)-optimal graphs in their class

Sn,m. □

Theorem 2.2.5 Let n ≥ 2 and m <
⌈︁
n
2

⌉︁
. Then the unique (n,m)-optimal graph is

mK2 ∪ rK1 where r = n− 2m.

Proof. Any such graph G with n vertices and m <
⌈︁
n
2

⌉︁
must have at least one

isolated vertex. Moreover, by Lemma 2.2.2, if G has a vertex of degree at least 2 then

G can be strongly improved by a graph with one less isolated vertex. It follows that

there is a unique (n,m)-optimal graph which is the one with no vertices of degree at

least 2, namely mK2 ∪ rK1 where r = n− 2m. □

The previous results show that if m ≤
⌈︁
n
2

⌉︁
, a unique (n,m)-optimal graph exists.

To contrast, we will now show that in general optimal graphs need not exist. To do

so, we will need the following lemmas regarding the minimum degree of G.

Lemma 2.2.6 ([3]) Let G be a graph of order n then

dn−j(G) =

(︃
n

j

)︃
for all j ≤ δ(G)

Lemma 2.2.7 Let G be a graph with n vertices. Then

dn−δ(G)−1(G) =

(︃
n

δ(G) + 1

)︃
− |{N [v] : deg(v) = δ(G)}|.

Proof. For any k it is clear that
(︁
n
k

)︁
− dk(G) counts the number of subsets of

V which do not dominate G. Therefore by Lemma 2.2.6 we have that
(︁

n
δ(G)+1

)︁
−

dn−δ(G)−1(G) counts the largest subsets of V which do not dominate G. A subset

S ⊆ V is a dominating set if and only if for every vertex v ∈ V , N [v] ∩ S ̸= ∅.
Therefore the maximum non-dominating subsets of V are of the form {V − N [v] :

deg(v) = δ(G)}. As |{V −N [v] : deg(v) = δ(G)}| = |{N [v] : deg(v) = δ(G)}| we get

our result. □

For a graph G let MG be the collection of all minimum closed neighbours in G.

That is,
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MG = {NG[v] : degG(v) = δ(G)}.

Note that if two minimum degree vertices u and v in G have the same closed neigh-

bourhood in G then their closed neighbours N [u] and N [v] would be the same element

in MG.

Lemma 2.2.8 Let G and H be two graphs on n vertices.

Then

(i) If δ(G) > δ(H) then D(G, x) > D(H, x) for sufficiently large values of x.

(ii) If δ(G) = δ(H) and |MG| < |MH | then D(G, x) > D(H, x) for sufficiently large

values of x.

Proof. To show (i), suppose δ(G) > δ(H). Then by Lemma 2.2.6 and Lemma

2.2.7 we have that dn−j(G) = dn−j(H) for j ≤ δ(G) but dn−δ(G)−1(G) =
(︁

n
δ(G)+1

)︁
>

dn−δ(G)−1(H). Therefore by Observation 2.2.1 D(G′, x) > D(G, x) for sufficiently

large values of x.

To show (ii), suppose δ(G) = δ(H) and |MG| < |MH |. It again follows from

Lemma 2.2.6, Lemma 2.2.7 and Observation 2.2.1 that D(G′, x) > D(G, x) for suffi-

ciently large values of x. □

Theorem 2.2.9 Let ⌈n
2
⌉ < m ≤ n−1. Then for n ≥ 4 an (n,m)-optimal graph does

not exist.

Proof. To reach a contradiction suppose there exists an (n,m)-optimal graph G

with n vertices with n−r edges where 1 ≤ r < ⌊n
2
⌋. Consider the domination number

of G. By Observation 2.2.1, there is no graph with the same order and size of G but

of smaller domination number. This holds because if H had a smaller domination

number than G then di(G) = 0 for i < γ(H), dγ(H)(G) = 0 while dγ(H)(H) > 0, which

by Observation 2.2.1 implies that G is not (n,m)-optimal for small positive values of

x, a contradiction.

Let H = (r − 1)K2 ∪K1,n−2r+1. As H has n vertices, n− r edges and γ(H) = r,

it follows that γ(G) ≤ r. Furthermore γ(G) is bounded below by the number of
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components in G. As G has n vertices and n− r edges, G has at least r components.

Therefore γ(G) ≥ r, and so γ(G) = r. It follows that G must be a disjoint union of

r graphs, each with a universal vertex. As G has n − r edges, G must be a forest

consisting of r star graphs.

As γ(G) = r then di(G) = 0 for i < r. Therefore it follows from Observation 2.2.1

that dr(G) ≥ dr(F ) for every graph F with the same order and size as G. Recall

H = (r−1)K2∪K1,n−2r+1 and note that dr(H) = 2r−1. Thus dr(G) ≥ 2r−1. Now dr(G)

is the number of minimum dominating sets in G, and thus is equal to the product

of the number of minimum dominating sets for each of its r components. However

the only star graph with more than one minimum dominating set is K2, which has

two. Now m > ⌈n
2
⌉ implies G ̸∼= rK2, so G has at most (r − 1) K2 components. It

follows that dr(G) ≤ 2r−1. So dr(G) = 2r−1 and G ∼= H = (r − 1)K2 ∪K1,n−2r+1 as

the last component must also be a star. Furthermore as m = n − r and m > ⌈n
2
⌉

then n− r ≥ n
2
+ 1 which implies n− 2r + 1 ≥ 3.

We will now show that a star graph K1,k is not (k+ 1, k)-optimal for k ≥ 3. This

will imply that any G which has a star component K1,n−2r+1 with n − 2r + 1 ≥ 3,

cannot be (n,m)-optimal. Consider Pk+1. By Lemma 2.2.7, dk−1(Pk+1) =
(︁
k+1
2

)︁
− 2,

while dk−1(K1,k) =
(︁
k+1
2

)︁
− k, and hence dk−1(Pk) > dk−1(K1,k−1) for k ≥ 3. Thus by

Observation 2.2.1, a star graph K1,k is not (k + 1, k)-optimal for k ≥ 3. Thus there

cannot exist an (n,m)-optimal graph for ⌈n
2
⌉ < m ≤ n− 1. □

Now, we will show that (n,m)-optimal graphs do not exist for most values of

m ≥ n− 1. We require the following lemma

Lemma 2.2.10 ([17]) Let G be a graph of order n. Then

d1(G) = |{v ∈ V (G) : deg(v) = n− 1}|.

Before we begin our next lemma, recall from Theorem 1.3.2 (ii) that for a graph

G on n vertices

D(Kr ∨G, x) = ((x+ 1)r − 1)(x+ 1)n +D(G, x).

Lemma 2.2.11 If a graph G of order n and size m ≥ n− 1 is (n,m)-optimal, then

G is of the form Kr ∨H, the join of Kr and H, where 1 ≤ r ≤ n and H is optimal

on n− r vertices and at most mH = n− r − 2 edges.
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Proof. Suppose G is (n,m)-optimal. By Observation 2.2.1, G must both minimize

γ(G) and maximize dγ(G)(G). As m ≥ n − 1 then there exists a graph in Sn,m with

domination number 1 and hence γ(G) = 1. By Lemma 2.2.10 to maximize d1(G) we

need to maximize the number of degree n−1 vertices. Let r be the maximum number

of degree n− 1 vertices G could have with m edges and n vertices. That is,

r = max

(︃
k : m ≥

(︃
k

2

)︃
+ k(n− k)

)︃
.

As m ≥ n− 1 it follows that 1 ≤ r. Moreover we have r ≤ n and G = Kr ∨H where

H has n− r vertices. Furthermore, H does not have enough edges to form a degree

n− r− 1 vertex, otherwise such a vertex would have degree n− 1 in G contradicting

that r is the maximum number of degree n − 1 vertices G could have with m edges

and n vertices. Thus, H has at most n− r − 2 edges.

Finally we show H is (n − r,mH)-optimal where mH ≤ n − r − 2 edges. Let

H ′ be any another graph of equal order and size to H. As G is (n,m)-optimal,

D(G, x) = D(Kr ∨H, x) ≥ D(Kr ∨H ′, x) for all x ≥ 0. By Theorem 1.3.2 (ii),

D(Kr ∨H, x) = ((x+ 1)r − 1)(x+ 1)n−r +D(H, x)

D(Kr ∨H ′, x) = ((x+ 1)r − 1)(x+ 1)n−r +D(H ′, x)

Thus D(H, x) ≥ D(H ′, x) for all x ≥ 0 and H is optimal. □

Theorem 2.2.12 For n ≥ 6 vertices and n − 1 ≤ m <
(︁
n
2

)︁
− 6 there does not exist

an (n,m)-optimal graph for the domination polynomial.

Proof. To show a contradiction suppose a graph G is (n,m)-optimal. By Lemma

2.2.11, G is the join of Kr and H for some r ≥ 0 and optimal graph H with n − r

vertices and at most n − r − 2 edges. Let mH be the number of edges in H; then

m = mH+
(︁
r
2

)︁
+r(n−r) ≥

(︁
r
2

)︁
+r(n−r). It follows from the bounds n−1 ≤ m <

(︁
n
2

)︁
−6

and m ≥
(︁
r
2

)︁
+ r(n− r) that 1 ≤ r < n− 4 and hence |H| = n− r > 4. We will show

G is not (n,m)-optimal by using Lemma 2.2.8 to eliminate the following three cases:

mH < ⌈n−r
2
⌉, mH = ⌈n−r

2
⌉, and mH > ⌈n−r

2
⌉.

Case 1 : mH < ⌈n−r
2
⌉.



24

In this case, H is an (n− r,mH)-optimal graph on n− r vertices and less than ⌈n−r
2
⌉

edges. Using Theorem 2.2.5, H must be the following (n− r,mH)-optimal graph

H = mHK2 ∪ (n− r − 2mH)K1.

Note that n− r − 2mH > 0, so δ(G) = r. Furthermore no two vertices of degree

r are adjacent. Therefore

|MG| = |{v ∈ V (G) : degG(v) = r}| = n− r − 2mH .

Recall that 1 ≤ r < n−4 and |H| = n−r > 4. Let u be a vertex of minimum degree

in G, v be any other vertex in H, and x be a universal vertex in G. Further, let G′ be

the graph formed by replacing the edge vx in G with the edge uv. The graphs G and

G′ have the same size, order and δ(G′) ≥ δ(G). As G is (n,m)-optimal then it follows

from Lemma 2.2.8 (i) that δ(G′) = δ(G), otherwiseD(G′, x) > D(G, x) for sufficiently

large x. Note that every vertex in G′, other than x and u, has the same degree as

they did in G. Furthermore degG′(x) = n−2 > r and degG′(u) = degG(u)+1 = r+1.

Therefore

|MG′ | = |{v ∈ V (G′) : degG′(v) = r}| = n− r − 2mH − 1,

and hence |MG| > |MG′|. It follows from Lemma 2.2.8 (ii) that D(G′, x) > D(G, x)

for sufficiently large x which contradicts G being an (n,m)-optimal graph.

Case 2 : mH = ⌈n−r
2
⌉.

In this case H has n − r vertices and is (n − r,mH)-optimal. By Corollary 2.2.4,

H = mHK2 is uniquely (n−r,mH)-optimal if n−r is even and H = (mH−2)K2∪K1,2

is uniquely (n−r,mH)-optimal if n−r is odd. Also δ(G) = r+1, regardless of parity.

Case 2a: n− r is even.

Recall n− r > 4 so n− r ≥ 6. Without loss of generality let G = Kr ∨H where

H = mHK2 with mH ≥ 3. Note that the vertices of degree r + 1 are exactly the

vertices of H and each degree r+1 vertex in H shares its closed neighbourhood with

its only neighbour in H. Therefore |MG| = mH .



25

Let u1, u2, v1, v2 and x be vertices in G such that x is a universal vertex in G and

u1, u2 and v1, v2 each induce K2 components in H. Note NG[u1] = NG[u2] ∈ MG and

NG[v1] = NG[v2] ∈ MG. Let G′ be the graph formed by replacing the edges xu1,

xu2, xv1 and xv2 with v1u1, v1u2, v2u1 and v2u2. Note the degree of u1, u2, v1 and v2

have all increased from G to G′, whereas degG′(x) = degG(x) − 4 = n − 5 ≥ r + 1.

Furthermore the closed neighbourhood of every other vertex is unchanged and thus

δ(G′) = δ(G) = r + 1. Moreover, the closed neighbourhoods NG[u1] = NG[u2] and

NG[u1] = NG[u2] are in MG −MG′ whereas the only closed neighbourhood possibly

in MG′ − MG is NG′ [x]. Therefore |MG| > |MG′|. It follows from Lemma 2.2.8

(ii) that D(G′, x) > D(G, x) for sufficiently large x which contradicts G being an

(n,m)-optimal graph.

Case 2b: n− r is odd.

Then n − r ≥ 5 and without loss of generality let G = Kr ∨ H where H =

(mH−2)K2∪K1,2 withmH−2 ≥ 1. Let u1, u2, v and x be vertices in G such that x is a

universal vertex in G, {u1, u2} induces a K2 component in H and v is a leaf in the K1,2

component of H. Note NG[u1] = NG[u2] ∈ MG and NG[v] ∈ MG. Let G
′ be the graph

formed by replacing the edges xu1 and xu2 with vu1, vu2. The degrees of u1 and u2

remain r+1 while degG′(x) = degG(x)−2 = n−3 > r+1 and degG′(v) = degG(v)+2 =

r + 3. The closed neighbourhood of every other vertex is unchanged and therefore

δ(G′) = δ(G) = r + 1. Furthermore NG′ [u1] = NG′ [u2] ∈ MG′ and NG′ [v] /∈ MG′ .

As the closed neighbourhood of every other vertex is unchanged, |MG| > |MG′|. It

follows from Lemma 2.2.8 (ii) that D(G′, x) > D(G, x) for sufficiently large x which

contradicts G being an (n,m)-optimal graph.

Case 3 : mH > ⌈n−r
2
⌉.

By Lemma 2.2.11, H is an (n − r,mH)-optimal graph on n − r vertices and

mH > ⌈n−r
2
⌉ edges, where mH ≤ n − r − 2 < n − r − 1. As in case 1, n − r ≥ 5.

By Theorem 2.2.9, there is no (n − r,mH)-optimal graph on n − r vertices and

n− r − 1 > mH > ⌈n−r
2
⌉ edges. Thus this case is a contradiction. □

Clearly for m =
(︁
n
2

)︁
and m =

(︁
n
2

)︁
− 1, unique (n,m)-optimal graphs exist, since

there is only one graph in each case, but we now show that (n,m)-optimal graphs do
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not exist for the remaining values for m.

Theorem 2.2.13 Let n ≥ 6 and m =
(︁
n
2

)︁
−k for 2 ≤ k ≤ 6. Then an (n,m)-optimal

graph does not exist.

Proof. By Observation 2.2.1 and Lemma 2.2.10 we know that an (n,m)-optimal

graph must have the highest number of universal vertices. Additionally, by Obser-

vation 2.2.1, Lemma 2.2.6, and Lemma 2.2.7 we know that an (n,m)-optimal graph

must have the maximum minimum degree amongst all graphs in Sn,m. For each

k = 2, 3, 4, 5, 6 we will show any graph G ∈ Sn,m which maximizes the number of

universal vertices will not maximize the minimum degree.

� For k = 2 there are two graphs with two edges removed. Let G and H be the

graph Kn with the edges of a P3 and 2K2 removed respectively. G has n − 3

universal vertices and minimum degree n − 3 whereas H has n − 4 universal

vertices and minimum degree n− 2. Thus no (n,m)-optimal graph exists when

k = 2.

� For k = 3 any graph in Sn,m has at most n − 3 universal vertices and this

is uniquely achieved by the graph Kn with the edges of a K3 removed. This

graph has n − 3 universal vertices and minimum degree n − 3. However, the

graph Kn with the edges of a 3K2 removed has minimum degree n − 2. Thus

no (n,m)-optimal graph exists when k = 3.

� For k = 4 any graph in Sn,m has at most n − 4 universal vertices which is

achieved by two graphs in Sn,m. These two graph are Kn with the edges of a

C4 and K1 ∨ (K2 ∪K1), removed respectively. Of those two graphs the graph

Kn with the edges of a C4 removed has the larger minimum degree of n − 3.

Hence the graph Kn with the edges of a C4, which we will call G, must be

(n,m)-optimal should one exists. However, for n ≥ 8, the graph Kn with the

edges of a 4K2 removed has minimum degree n− 2 and thus no (n,m)-optimal

graph exists. For n = 6, 7 and k = 4 we were able to verify via Maple that the

graph Kn with the edges of a 2P3 removed is not improved by G and thus no

(n,m)-optimal graph exists.
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� For k = 5 any graph in Sn,m has at most n − 4 universal vertices which is

uniquely achieved by the graph Kn with the edges of a K2∨2K1 removed. This

graph has n − 4 universal vertices and minimum degree n − 4. However, the

graph Kn with the edges of a P3∪K3 removed has minimum degree n−3. Thus

no (n,m)-optimal graph exists when k = 5.

� Lastly, for k = 6 any graph in Sn,m has at most n − 4 universal vertices, and

this is uniquely achieved by the graph Kn with the edges of a K4 removed. This

graph has n − 4 universal vertices and minimum degree n − 4. However, the

graph Kn with the edges of a 2K3 removed has minimum degree n − 3. Thus

no (n,m)-optimal graph exists when k = 6.

Therefore by the above arguments our assertion is true for each 2 ≤ k ≤ 6. □

Corollary 2.2.14 For graphs of order n ≥ 6,

� mK2 ∪ rK1 (where r = n− 2m) is (n,m)-uniquely optimal when m < ⌈n
2
⌉.

� mK2 is uniquely (n,m)-optimal when n is even and m = ⌈n
2
⌉.

� (m− 2)K2 ∪K1,2 is uniquely (n,m)-optimal when n is odd and m = ⌈n
2
⌉.

� No (n,m)-optimal graph exists for ⌈n
2
⌉ < m <

(︁
n
2

)︁
− 1.

� Kn − e is uniquely (n,m)-optimal for m =
(︁
n
2

)︁
− 1, for e ∈ E(G).

� Kn is uniquely (n,m)-optimal for m =
(︁
n
2

)︁
. □

In fact, via some calculations in Maple, Corollary 2.2.14 can been seen to hold for

n < 6 as well, with the exception of K1 ∨ 2K2 which is the unique (n,m)-optimal

graph on five vertices and six edges. Appendix A gives all (n,m)-optimal graphs up

to order 7.

In [42] the domination reliability polynomial was defined as follows. For a given

graph G we assume that vertices are independently operational with probability p ∈
[0, 1]; the domination reliability Drel(G, p) of G is the probability that the operational

vertices form a dominating set of the graph. Note that for a graph G of order n we

have
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Drel(G, p) =
n∑︂

i=γ(G)

di(G)pi(1− p)n−i = (1− p)n
n∑︂

i=γ(G)

di(G)

(︃
p

1− p

)︃i

.

As for all-terminal reliability, the existence of optimal reliability polynomials is

an open area of study. Given that Drel(G, p) = (1 − p)n · D(G, p
1−p

) then from

Corollary 2.2.14 we obtain a complete characterization of values of n and m for which

optimal graphs exist for domination reliability.

Corollary 2.2.15 For n ∈ N and m ≤ ⌈n
2
⌉ uniquely (n,m)-optimal graphs exist for

domination reliability. For ⌈n
2
⌉ < m <

(︁
n
2

)︁
− 1 there are no (n,m)-optimal graphs for

domination reliability with the exception of when n = 5 and m = 6 where a uniquely

(n,m)-optimal graph exists. For m =
(︁
n
2

)︁
− 1 and m =

(︁
n
2

)︁
uniquely optimal graphs

exist for domination reliability.

We have now completely determined all (n,m)-optimal graphs for both the dom-

ination polynomial and domination reliability. Although many (n,m)-optimal graph

exists, most values of n and m yield no (n,m)-optimal graph. This greatly contrasts

the results found for the independence polynomial where (n,m)-optimal graphs ex-

ist for every n and m. The network reliability and chromatic polynomial each have

(n,m)-optimal graphs; however, it remains an open question for most values of n and

m whether an (n,m)-optimal graph exists. In Chapter 6 we discuss future directions

for this problem. In the next chapter we will pivot our focus from the optimality

of the domination polynomial to a new parameter which can be determined via the

domination polynomial.



Chapter 3

The Average Order of Dominating Sets of a Graph

3.1 Background

In the previous chapter we determined which graphs optimize the domination polyno-

mial. Part of optimizing the domination polynomial was maximizing the domination

number γ(G). In this chapter we turn our focus to an alternative parameter, average

order of a dominating set, which can be calculated via the domination polynomial.

Recall that D(G) denotes the collection of dominating sets of G. Then the average

order of dominating sets in G, denoted avd(G), is

avd(G) =
1

|D(G)|
∑︂

S∈D(G)

|S|,

that is, the average cardinality of a dominating set of G.

For graphs with few dominating sets avd(G) is relatively easy to compute using

the above formula. For example, the empty graph Kn has exactly one dominating

set of order n, hence avd(Kn) = n. However, if G has many dominating sets, then

other techniques may be more appropriate to compute avd(G). The average order

of dominating sets in G can be computed as the logarithmic derivative of D(G, x)

evaluated at 1, that is,

avd(G) =
d

dx
ln(D(G, x))

⃓⃓⃓⃓
x=1

=
D′(G, 1)

D(G, 1)
. (1)

This allows us to compute avd(G) quickly when D(G, x) is readily available. For

example, recall the following graph from Chapter 1.

The graph in Figure 3.1 has domination polynomial x7 + 7x6 + 21x5 + 33x4 + 23x3 +

2x2. Using that domination polynomial, one can easily compute the average order of

dominating sets in the graph in Figure 1.3 to be 359
87

≈ 4.126. Moreover as,

D(Kn, x) = (x+ 1)n − 1 and D(K1,n−1, x) = x(x+ 1)n−1 + xn−1,

29
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v1

v2

v3

v4

v5

v6

v7

Figure 3.1: A graph on seven vertices

we have that

avd(Kn) =
n2n−1

2n − 1
and avd(K1,n−1) =

(n+ 1)2n−2 + n− 1

2n−1 + 1
.

It follows from Theorem 1.3.2 (i) that D(G∪H, x) = D(G, x)D(H, x). From this

we can obtain a fundamental result which states that the average order of dominating

sets is additive over components.

Lemma 3.1.1 Let G and H be graphs. Then avd(G ∪H) = avd(G) + avd(H).

Proof. As D(G ∪ H, x) = D(G, x)D(H, x), it follows that D′(G ∪ H, x) =

D′(G, x)D(H, x) +D(G, x)D′(H, x). Therefore,

avd(G ∪H) =
D′(G, 1)D(H, 1) +D(G, 1)D′(H, 1)

D(G, 1)D(H, 1)

=
D′(G, 1)

D(G, 1)
+

D′(H, 1)

D(H, 1)

= avd(G) + avd(H),

which is what we wished to show. □

Although the average order of dominating sets is a novel area of research, there

has been work done on several other graph invariants that are calculated as averages:

� The mean distance (between vertices) in a graph was introduced in 1977 by

Doyle and Graver [44]. Doyle and Graver showed that among all connected
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graphs of order n (that is, with n vertices), the mean distance is maximized by

a path, with mean distance (n+ 1)/3, and minimized by the complete graph,

with mean distance 1.

� The mean subtree order of a graph was introduced in 1983 by Jamison [63].

Jamison showed for any tree T on n vertices, the average number of vertices

in a subtree of T is at least (n+ 2)/3, with that minimum achieved if and

only if T is a path. As the mean subtree order of T is at most n, Jamison

naturally defined the mean subtree order of T divided by n to be the density

of T , and showed that there are trees whose density approaches 1 as n → ∞.

Jamison conjectured that the tree with maximum density is some caterpillar

graph. Additionally, the mean subtree order has been subject to a fair amount

of recent work [52, 64, 86, 88]. The average order of a subtree of a tree was

recently extended to more general graphs by considering induced connected

subgraphs [85].

� The average size of an independent set in a graph was introduced in 1985 by

Linial and Saks [78]. Linial and Saks proved a lower bound on the average size of

an independent set in any bipartite graph. The average size of an independent

set also arises in statistical physics, as the occupancy fraction of the hard-core

model at fugacity 1. Recently, Andriantiana, Misanantenaina, and Wagner [18]

showed that the average number of vertices of an independent set in a graph

of order n is maximized by the empty graph and minimized by the complete

graph. They also showed that the average number of vertices of an independent

set in a tree of order n is maximized by Pn and minimized by K1,n−1.

� In 2020, Andriantiana et al. [19] introduced the average size of a matching

in a graph. Andriantiana et al. showed that the average number of edges in a

matching of a graph of order n is minimized by the empty graph and maximized

by the complete graph. They also showed that the average number of edges in

a matching in a tree of order n is maximized by Pn and minimized by K1,n−1.

� In 2004, Henning [55] introduced the average domination number of a graph to

be the average size, over all vertices, of the smallest dominating set containing
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each vertex. For a graph G, despite the similar name, the average domination

number of G is only tangentially related to the average order of dominating sets

of G.

We remark that if the domination polynomial has all real roots, the average order

of dominating sets of a graph G can also determine the largest coefficient (i.e. the

mode of the coefficients) of D(G, x). The mode of the coefficients will be discussed

in more detail in Chapter 4. In general a positive sequence (a0, a1, · · · , an) can be

expressed as a generating polynomial f(x) = a0 + a1x + · · · + anx
n. Darroch [41]

showed that if f(x) has all real roots, then its mode is at either
⌊︂
f ′(1)
f(1)

⌋︂
or
⌈︂
f ′(1)
f(1)

⌉︂
.

Therefore by (1), ifD(G, x) has all real roots then it mode is at ⌊avd(G)⌋ or ⌈avd(G)⌉.
Oboudi [73] showed that there is an infinite family of graphs G such that D(G, x) has

all real roots. This family includes, for example, K2, P3, G◦K1 for any graph G, and

G ◦K2 for any graph G.

This chapter is structured as follows. In Section 3.2, we determine the extremal

graphs for the average order of dominating sets of graphs of order n. That is, those

that have the largest and smallest average order of a dominating set. In Section 3.3

and Section 3.4, we develop bounds for the average order of dominating sets for

connected graphs, as well as for trees. Section 3.5, introduces a normalized version of

the parameterˆ︃avd(G) by dividing avd(G) by the order of the graph G. We proceed to

describe the distribution of ˆ︃avd(G) over all graph G of order n, and consider ˆ︃avd(G)

for Erdös-Renyi random graphs.

3.2 Extremal Graphs

For a graph G on n vertices, it is clear that avd(G) ≤ n as every dominating set has

cardinality at most n. This bound is achieved by Kn, and this graph is the unique

extremal graph, as every other graph of order n has a dominating set of cardinality

smaller than n. On the other hand, what about the minimum value of avd(G) over

all graphs G of order n? As one might expect, the complete graph Kn is the unique

extremal graph in this case, but the argument will be more involved, and that is what

we shall pursue now.

We shall first need some technical results about the average cardinality of sets in

collections of sets. Let X be a nonempty finite set and P(X) its power set. For any
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nonempty subset A ⊆ P(X) we define the average order of A, denoted av(A) to be

av(A) =
1

|A|
∑︂
A∈A

|A|.

For simplicity, we denote
∑︁

A∈A |A| by S(A). Therefore av(A) = S(A)
|A| .

Lemma 3.2.1 For a nonempty finite set X, let A ⊆ P(X). If there exists r1, r2 ∈ R
and a partition A1,A2, . . . ,Ak of A such that r1 ≤ av(Ai) ≤ r2 for all 1 ≤ i ≤ k,

then r1 ≤ av(A) ≤ r2.

Proof. Now

av(A) =
S(A)

|A|
=

∑︁k
i=1 S(Ai)

|A|
=

∑︁k
i=1 |Ai|av(Ai)

|A|
≥
∑︁k

i=1 |Ai|r1
|A|

=
r1
∑︁k

i=1 |Ai|
|A|

= r1

and

av(A) =
S(A)

|A|
=

∑︁k
i=1 S(Ai)

|A|
=

∑︁k
i=1 |Ai|av(Ai)

|A|
≤
∑︁k

i=1 |Ai|r2
|A|

=
r2
∑︁k

i=1 |Ai|
|A|

= r2,

which is what we wished to show. □

Lemma 3.2.2 For a nonempty finite set X, let A ⊂ B ⊆ P(X). Then

av(B) ≤ av(A) if and only if av(B −A) ≤ av(A).

Proof. Now

av(B) ≤av(A)

⇔ S(B)
|B|

≤S(A)

|A|

⇔ S(A) + S(B −A)

|A|+ |B − A|
≤S(A)

|A|

⇔ S(A)|A|+ S(B −A)|A| ≤S(A)|A|+ S(A)|B − A|

⇔ S(B −A)|A| ≤S(A)|B − A|

⇔ S(B −A)

|B − A|
≤S(A)

|A|
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⇔ av(B −A) ≤av(A),

which is what we wished to show. □

A simplicial complex A is a subset of P(X) such that ∅ ∈ A and A ∈ A implies

P(A) ⊆ A. Simplicial complexes have numerous applications in combinatorics and

algebraic topology (See [33] for various applications). Here we will need a result on

the average size of a set in a simplicial complex.

Proposition 3.2.3 Let A be a simplicial complex on a nonempty finite set X with

n elements. Then for all k ≤ n
2
, we have

|Ak| ≥ |An−k|,

where Ak = {A ∈ A : |A| = k}. Hence av(A) ≤ n
2
.

Proof. Consider the bipartite graph with bipartition (An−k, Ak) where A ∈ An−k

and B ∈ Ak are adjacent if and only if B ⊆ A. As A is a simplicial complex,

the degree of each A ∈ An−k is
(︁
n−k
k

)︁
and the degree of each vertex B ∈ Ak is at

most
(︁
n−k
n−2k

)︁
=
(︁
n−k
k

)︁
. Therefore there are exactly |An−k|

(︁
n−k
k

)︁
edges incident with

the vertices of An−k and at most |N(An−k)|
(︁
n−k
k

)︁
edges incident to the vertices of

N(An−k). As the number of edges incident to the vertices of An−k must equal the

number of edges incident to the vertices of N(An−k), |An−k|
(︁
n−k
k

)︁
≤ |N(An−k)|

(︁
n−k
k

)︁
.

Therefore |An−k| ≤ |N(An−k)| ≤ |Ak|.
Now let Bk = An−k∪Ak. Note that av(Bk) ≤ n

2
and B1,B2, . . . ,B⌊n

2
⌋ is a partition

of A. It follows from Lemma 3.2.1 that av(A) ≤ n
2
. □

Finally, recall Lemma 2.2.6 which states for a graph G of order n,

dn−k(G) =

(︃
n

k

)︃
for all k ≤ δ(G), where δ(G) is the minimum degree of G.

Theorem 3.2.4 Let G be a graph of order n. Then avd(G) ≥ n2n−1

2n−1
with equality if

and only if G ∼= Kn.
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Proof. Let D(G) be the collection of subsets S ⊆ V (G) such that V (G) − S is a

dominating set of G. Note D(G) is a simplicial complex. Therefore by Proposition

3.2.3 for all k ≤ n
2
,

dn−k = |{S ∈ D(G) : |S| = k}| ≥ |{S ∈ D(G) : |S| = n− k}| = dk.

Now consider the mean order of all dominating sets except for the dominating set

V (G). Let D∗(G) = D(G)− {V (G)}. Note that

av(D∗(G)) =
D′(G, 1)− n

D(G, 1)− 1
.

As dn−k ≥ dk for all k ≤ n
2
it follows that

D′(G, 1)− n

D(G, 1)− 1
= av(D∗(G)) ≥ n

2
.

Now suppose G ̸∼= Kn. Note that D(G, 1) < 2n − 1 as G must have at least one

non-universal vertex, and hence at least two subsets which are not dominating. Then

avd(G) =
n+D′(G, 1)− n

D(G, 1)

=
n

D(G, 1)
+

(︃
D(G, 1)− 1

D(G, 1)− 1

)︃
D′(G, 1)− n

D(G, 1)

=
n

D(G, 1)
+

(︃
D(G, 1)− 1

D(G, 1)

)︃
D′(G, 1)− n

D(G, 1)− 1

≥
(︃

1

D(G, 1)

)︃
n+

(︃
D(G, 1)− 1

D(G, 1)

)︃
n

2
.

Now we have a convex combination of n and n
2
. As D(G, 1) < 2n− 1 we can shift the

weight in the convex combination closer to the smaller quantity n
2
.

avd(G) >

(︃
1

2n − 1

)︃
n+

(︃
2n − 2

2n − 1

)︃
n

2

=
n

2n − 1
+

n(2n−1 − 1)

2n − 1

=
n2n−1

2n − 1
= avd(Kn).

Therefore if G ̸∼= Kn then avd(G) > avd(Kn). Clearly if G ∼= Kn then avd(G) =

avd(Kn). Therefore avd(G) = avd(Kn) if and only if G ∼= Kn. □
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3.3 Upper bounds based on minimum degree

For a graph G on n vertices, we have seen that avd(G) ≤ n, with the bound achieved

uniquely by Kn. However, can we say more if we insist on the graph being connected?

Or even just having no isolated vertices? We shall do so first in terms of δ, the

minimum degree.

For a dominating set S of a graph G, let

a(S) = {v ∈ S : S − v /∈ D(G)},

the set of critical vertices of S with respect to domination (in that their removal makes

the set no longer dominating). This parameter is key to improving the upper bound.

We will first need an expression for the sum of |a(S)| over all dominating sets. Before

we begin we will partition D(G). Let D+v(G) denote the collection of dominating sets

which contain v. Moreover D−v(G) denote the collection of dominating sets which do

not contain v. That is:

D+v(G) = {S ∈ D(G) : v ∈ S}

D−v(G) = {S ∈ D(G) : v /∈ S}.

Lemma 3.3.1 Let G be a graph of order n. Then

∑︂
S∈D(G)

|a(S)| = 2D′(G, 1)− nD(G, 1).

Proof. For a vertex v ∈ V (G) let av(G) = {S ∈ D(G) : S − v /∈ D(G)}. We

will now show that there is a one-to-one correspondence between D+v(G) − av(G)

and D−v(G). For any S ∈ D+v(G) − av(G), we have S − v ∈ D(G) so clearly

S− v ∈ D−v(G). Furthermore, if S ∈ D−v(G), then S ∪{v} ∈ D+v(G) and S ∪{v} /∈
av(G). As the maps are injective, it follows that |D+v(G) − av(G)| = |D−v(G)| and
as av(G) ⊆ D+v(G), we have |av(G)| = |D+v(G)| − |D−v(G)|.

Now consider
∑︁

v∈V (G) |D+v(G)|. Every dominating set of cardinality i is counted

once for every vertex it contains (i.e. i times). Therefore
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∑︂
v∈V (G)

|D+v(G)| =
n∑︂

i=1

i · di(G) = D′(G, 1) (2)

Now consider
∑︁

v∈V (G) |D−v(G)|. Every dominating set of cardinality i is counted

once for every vertex it does not contains (i.e. n− i times). Therefore

∑︂
v∈V (G)

|D−v(G)| =
n∑︂

i=1

(n− i) · di(G) = nD(G, 1)−D′(G, 1). (3)

Therefore

∑︂
S∈D(G)

|a(S)| =
∑︂

v∈V (G)

|av(G)| =
∑︂

v∈V (G)

(|D+v(G)| − |D−v(G)|) = 2D′(G, 1)−nD(G, 1),

which is what we wished to show. □

In order to get to our upper bound, we need to partition a(S). Let S be a

dominating set of G containing the vertex v. By definition v ∈ a(S) if and only if

S − v is not a dominating set in G. Therefore v ∈ a(S) if and only if there exists

u ∈ N [v] such that among the vertices of S, u is only dominated by v (u could very

well be v). We will call such a vertex u a private neighbour of v with respect to S.

Let PrivS(v) denote the collection of all private neighbours of v with respect to S,

that is,

PrivS(v) = {u ∈ N [v] : N [u] ∩ S = {v}}.

Note that v ∈ a(S) if and only if PrivS(v) ̸= ∅. Moreover, for v ∈ a(S), note that

PrivS(v) ∩ S ⊆ {v}. We now partition a(S) = a1(S) ∪ a2(S), where

a1(S) = {v ∈ a(S) : PrivS(v) ∩ (V − S) ̸= ∅}

a2(S) = {v ∈ a(S) : PrivS(v) = {v}}.

(We allow either to be empty.) Note that if v ∈ a2(S) then N(v) ⊆ V − S. We can

partition V − S = N1(S) ∪N2(S), where

N1(S) = {v ∈ V − S : |N [v] ∩ S| = 1}

N2(S) = {v ∈ V − S : |N [v] ∩ S| ≥ 2}.
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That is, N1(S) is the set of those vertices outside of S that have a single neighbour

in S, and N2(S) are those that have more than one neighbour in S. (Again, we allow

either to be empty.)

As an example consider the labelled P5 in Figure 3.2. Let S be the dominating

set S = {v2, v3, v5}. Now a(S) = {v2, v5} with a1(S) = {v2} and a2(S) = {v5}.
Furthermore N1(S) = {v1} and N2(S) = {v4}. Alternatively, let S ′ = {v1, v3, v5}.
Now a(S ′) = {v1, v3, v5} with a1(S

′) = ∅ and a2(S
′) = {v1, v3, v5}. Additionally

N1(S
′) = ∅ and N2(S

′) = {v2, v4}.

v1 v2 v3 v4 v5

Figure 3.2: A vertex labelled P5

Lemma 3.3.2 Let G be a graph. For any S ∈ D(G), |a1(S)| ≤ |N1(S)|.

Proof. For any v ∈ N1(S), N [v]∩S ∈ a1(S). By definition, for every u ∈ a1(S) we

have PrivS(u) ∩ (V − S) ̸= ∅. Fix any v ∈ PrivS(u) ∩ (V − S). Note v ∈ N1(S) such

that N [v] ∩ S = {u}. Therefore the map f : N1(S) → a1(S) where f(v) = N [v] ∩ S

is surjective, so |N1(S)| ≥ |a1(S)|. □

For a graph G containing a vertex v, let pv(G) denote the collection of subsets of

V −N [v] which dominate G − v (and hence they dominate G −N [v] as well). Now

let pv(G, i) be the collection all i-subsets of pv(G). Moreover let Di(G) denotes the

collection of dominating sets of order i. In the next Lemma we will show there is

a bijection from
∑︁

S∈Di(G) |a2(S)| to
∑︁

v∈V (G) |pv(G, i − 1)|. This together with the

inequality |a1(S)| ≤ |N1(S)| will allow us to bound
∑︁

S∈D(G) |a(S)|. This will then

allow us to use inequality (7) to determine a segment of non-increasing coefficients.

Lemma 3.3.3 Let G be a graph. Then

∑︂
S∈Di(G)

|a2(S)| =
∑︂

v∈V (G)

|pv(G, i− 1)|.
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Proof. To begin let

Ai,2 =
⋃︂

S∈Di(G)

{(v, S) : v ∈ a2(S)} and Pi−1 =
⋃︂

v∈V (G)

{(v, S) : S ∈ pv(G, i− 1)}.

Note that |Ai,2| =
∑︁

S∈Di(G) |a2(S)| and |Pi−1| =
∑︁

v∈V (G) |pv(G, i − 1)|. Therefore

it suffices to show there is a bijection from Ai,2 to Pi−1. Consider the mapping

f(v, S) = (v, S − v). We will first show f : Ai,2 → Pi−1. For any (v, S) ∈ Ai,2 as

v ∈ a2(S) then by definition S− v /∈ Di−1(G) and some vertex in G is not dominated

by S−v. In order to show (v, S−v) ∈ Pi−1 it suffices to show that v is the only vertex

not dominated by S − v (and hence S − v ∈ pv(G, i− 1)). As S is a dominating set,

then any vertex not dominated by S − v must have been dominated by v and hence

is in N [v]. As v ∈ a2(S) then by definition N [v] ∩N1(S) = ∅ and hence every vertex

in V − S which was dominated by v is also dominated by some other vertex in S.

Therefore the only vertex which could possibly not be dominated by S − v is v itself.

Therefore v must be the only vertex not dominated by S − v and (v, S − v) ∈ Pi−1.

We now begin showing f is bijective by first showing it is injective. Suppose that

there exists (v, S), (v′, S ′) ∈ Ai,2 such that f(v, S) = f(v′, S ′). Then (v, S − v) =

(v′, S ′ − v′) and hence v = v′. Furthermore (S − v) ∪ {v} = (S ′ − v′) ∪ {v′} and

thus S = S ′. Therefore (v, S) = (v′, S ′) and hence f is injective. It remains to show

f is surjective. For any (v, S ′) ∈ Pi−1 we have S ′ ∈ pv(G, i − 1). By definition of

pv(G, i − 1), S ′ /∈ D(G) but the only vertex not dominated by S ′ is v. Therefore

S = S ′ ∪ {v} is a dominating set of cardinality i with v ∈ a(S). However every

neighbour of v is already dominated by S − v; therefore, N(v) ∩ N1(S) = ∅ and

v ∈ a2(S). Thus f(v, S) = (v, S ′) so f is surjective and hence bijective. □

We are now ready to improve our upper bound on the average order of dominating

sets for a graph with no isolated vertices.

Theorem 3.3.4 Let G be a graph of order n ≥ 2 and minimum degree δ ≥ 1. Then

avd(G) ≤ 2n(2δ − 1) + n

3(2δ − 1) + 1
,

and so avd(G) ≤ 3n
4
.
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Proof. By summing the equality in Lemma 3.3.3 over all i we can obtain

∑︂
S∈D(G)

|a2(S)| =
∑︂

v∈V (G)

|pv(G)|. (4)

We will now show (2deg(v) − 1)|pv(G)| ≤ |D−v(G)|. For now fix v ∈ V (G). By

definition every S ∈ pv(G) dominates G − v but does not contain any vertices of

N [v]. Therefore for any non-empty T ⊆ N(v), we have S ∪ T ∈ D−v(G). Let Av =

{(S, T ) : S ∈ pv(G), T ⊆ N(v), and T ̸= ∅} and note that |Av| = (2deg(v) − 1)|pv(G)|.
We will now show the mapping f : Av → D−v(G) defined by f((S, T )) = S ∪ T

is injective and hence |Av| ≤ |D−v(G)|. Suppose (S1, T1), (S2, T2) ∈ Av. Then if

f(S1, T1) = f(S2, T2) then S1 ∪ T1 = S2 ∪ T2. However by the definition of the

sets in pv(G), S1, S2 ⊆ V − N [v] and hence S1 ∩ T1 = ∅ and S2 ∩ T2 = ∅. As

S1 ∪ T1 = S2 ∪ T2 then S1 = S2, T1 = T2 and (S1, T1) = (S2, T2). Therefore f is

injective and |Av| ≤ |D−v(G)|. As |Av| = (2deg(v) − 1)|pv(G)| then together with (3)

and (4) we obtain

∑︂
S∈D(G)

|a2(S)| =
∑︂

v∈V (G)

|pv(G)|

≤
∑︂

v∈V (G)

|D−v(G)|
2deg(v) − 1

≤
∑︂

v∈V (G)

|D−v(G)|
2δ − 1

=
nD(G, 1)−D′(G, 1)

2δ − 1
.

By Lemma 3.3.2, |a1(S)| ≤ |N1(S)|. So together with (3) we obtain

∑︂
S∈D(G)

|a1(S)| ≤
∑︂

S∈D(G)

|N1(S)|

≤
∑︂

S∈D(G)

|V − S|

=
∑︂

v∈V (G)

|D−v(G)|

= nD(G, 1)−D′(G, 1).
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By Lemma 3.3.1,
∑︁

S∈D(G)

|a(S)| = 2D′(G, 1)− nD(G, 1), and hence from

∑︂
S∈D(G)

|a(S)| =
∑︂

S∈D(G)

|a1(S)|+
∑︂

S∈D(G)

|a2(S)|

we have that

2D′(G, 1)− nD(G, 1) ≤ nD(G, 1)−D′(G, 1) +
nD(G, 1)−D′(G, 1)

2δ − 1
.

From this it follows that

D′(G, 1)

D(G, 1)
≤ 2n(2δ − 1) + n

3(2δ − 1) + 1
.

Finally, one can verify that as δ ≥ 1,

2n(2δ − 1) + n

3(2δ − 1) + 1
≤ 3n

4
,

and we are done. □

Theorem 3.3.4 shows that all graphs G with no isolated vertices have avd(G) ≤ 3n
4
.

However, for δ ≥ 4 the bound can be improved again, if we are even more careful

with our counting. Again, we shall need a couple of technical lemmas first.

Lemma 3.3.5 For any graph G,

∑︂
S∈D(G)

|N1(S)| =
∑︂

e∈E(G)

|D(G)−D(G− e)|.

Proof. It suffices to show that for every dominating set S ∈ D(G), there are

exactly |N1(S)| edges e = {u, v} in G such that S /∈ D(G− e). For every S ∈ D(G)

consider the edge e in G. If e goes from a vertex v ∈ N1(S) to some vertex in S then

v is not dominated by S in G− e, so S ∈ D(G)−D(G− e).

Conversely suppose e does not go from a vertex in N1(S) to some vertex in S; we

need to show that S /∈ D(G) − D(G − e). Note that in G − e, the set S necessarily

dominates every vertex other than possibly u and v. Therefore S ∈ D(G− e) if and

only if S dominates both u and v in G− e. Consider the following 3 cases:

Case 1: u, v ∈ S. Then both u and v dominate themselves in S, so S is a dominating

set in G− e. Therefore S /∈ D(G)−D(G− e).
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Case 2: u, v /∈ S. As S is a dominating set of G, there exist vertices x, y ∈ S (possibly

x = y) such that x and y are adjacent to u and v respectively in G. Note that x and

y are still adjacent to u and v respectively in G− e. Therefore S is a dominating set

in G− e and S /∈ D(G)−D(G− e).

Case 3: Either u ∈ S and v /∈ S, or u /∈ S and v ∈ S. Without loss of generality

suppose u ∈ S and v /∈ S. As e does not go from a vertex in N1(S) to some vertex

in S then v /∈ N1(S) and therefore v ∈ N2(S). By definition of N2(S), there exists at

least one other vertex x ∈ S adjacent to v. Therefore x is still adjacent to v in G− e

and S is a dominating set in G− e. Therefore S /∈ D(G)−D(G− e).

Therefore for every dominating set S ∈ D(G), the number of edges e in G which

have S ∈ D(G) − D(G − e) is exactly the number of edges from N1(S) to S. By

definition of N1(S), each vertex in N1(S) is adjacent to exactly one vertex in S.

Therefore, the number of edges e in G which have S ∈ D(G) − D(G − e) is exactly

|N1(S)|. □

Lemma 3.3.6 ([67]) Let G be a graph. For every edge e = {u, v} of G,

|D(G)−D(G− e)| = |pu(G− e)|+ |pv(G− e)| − |pu(G)| − |pv(G)|.

□

We are now ready to prove another upper bound for avd(G).

Theorem 3.3.7 For any graph G with no isolated vertices,

avd(G) ≤ n

2
+
∑︂

v∈V (G)

deg(v)

2deg(v)+1 − 2
.

Proof. By Lemma 3.3.2, Lemma 3.3.5, and Lemma 3.3.6, we obtain

∑︂
S∈D(G)

|a1(S)| ≤
∑︂

e∈E(G)

(|pu(G− e)|+ |pv(G− e)| − |pu(G)| − |pv(G)|)

=
∑︂

v∈V (G)

∑︂
u∈N(v)

(|pv(G− uv)| − |pv(G)|).
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Together with (4) we obtain∑︂
S∈D(G)

|a(S)| =
∑︂

S∈D(G)

(|a1(S)|+ |a2(S)|)

≤
∑︂

v∈V (G)

∑︂
u∈N(v)

|pv(G− uv)| −
∑︂

v∈V (G)

(deg(v)− 1)|pv(G)|.

Furthermore as G has no isolated vertices we obtain

∑︂
S∈D(G)

|a(S)| ≤
∑︂

v∈V (G)

∑︂
u∈N(v)

|pv(G− uv)|. (5)

For each v ∈ V (G) and e = {u, v} ∈ E(G) consider S ∈ pv(G−e). For any nonempty

T ⊆ N [v] − {u}, we have S ∪ T ∈ D(G − e) ⊆ D(G) and all such sets are distinct.

Therefore (2deg(v) − 1)|pv(G− e)| ≤ |D(G)| (where the degree is in the graph G) and

together with Lemma 3.3.1 and (5) we obtain

2D′(G, 1)− nD(G, 1) =
∑︂

S∈D(G)

|a(S)| ≤
∑︂

v∈V (G)

deg(v) ·D(G, 1)

2deg(v) − 1
,

from which it follows that

D′(G, 1)

D(G, 1)
≤ n

2
+
∑︂

v∈V (G)

deg(v)

2deg(v)+1 − 2
,

which is what we wished to show. □

Corollary 3.3.8 For a graph G with minimum degree δ ≥ 1, we have

avd(G) ≤ n

2

(︃
1 +

δ

2δ − 1

)︃
.

In particular, if δ ≥ 2 log2(n), then avd(G) < n+1
2
.

Proof. Let f(x) = x
2x+1−2

. It is not hard to verify that for x ≥ 1, f(x) is a

decreasing function. Therefore for all v ∈ V (G), f(deg(v)) ≤ f(δ), and by Theorem

3.3.7

avd(G) ≤ n

2
+
∑︂

v∈V (G)

deg(v)

2deg(v)+1 − 2
≤ n

2
+

n · δ
2δ+1 − 2

=
n

2

(︃
1 +

δ

2δ − 1

)︃
.
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Now suppose δ ≥ 2 log2(n). As δ ≤ n − 1, we know that 2 log2(n) ≤ n − 1. Again,

one can verify that 2f(δ) = δ/(2δ − 1) is decreasing for δ ≥ 1, so

avd(G) ≤ n

2

(︃
1 +

δ

2δ − 1

)︃
≤ n

2

(︃
1 +

2 log2(n)

22 log2(n) − 1

)︃
≤ n

2

(︃
1 +

n− 1

n2 − 1

)︃
=

n

2

(︃
1 +

1

n+ 1

)︃
<

n

2

(︃
1 +

1

n

)︃
=

n+ 1

2
,

which is what we wished to show. □

Theorem 3.3.4 and Corollary 3.3.8 give two different upper bounds for avd(G)

based on δ(G). Figure 3.3 plots avd(G) sorted by minimum degree for all graphs of

order n = 8 and n = 9, respectively. The curve in Figure 3.3 is the minimum of the

two bounds of Theorem 3.3.4 and Corollary 3.3.8 evaluated for each integer 0 ≤ δ ≤ n

and linearly interpolated between each point.

Our best upper bound for all isolate-free graphs remains avd(G) ≤ 3n
4
. However

by Corollary 3.3.8 if δ(G) ≥ 4 then avd(G) ≤ 19n
30

< 2n
3
. In fact, all graphs up to

order 9 with no isolated vertices have avd(G) ≤ 2n
3
. This leads us to the following

conjecture.

Conjecture 3.3.9 Let G be a graph with n ≥ 2 vertices. If G has no isolated vertices

(so, in particular, if G is connected) then avd(G) ≤ 2n
3
.

We can show that the upper bound in Conjecture 3.3.9 is achieved for all n ≥ 2:

For n = 2 and n = 3, avd(K2) =
4
3
and avd(K1,2) = 2. For any n ≥ 4, there exist

non-negative integers k and ℓ such that n = 2k+3ℓ. Then by Lemma 3.1.1 any graph

of the form H = kK2∪ℓK1,2 will have avd(H) = 2n
3
. These graphs are not connected,

but one can insist on connectivity as follows. Let G be any connected graph on k+ ℓ
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(a) Graphs of order 8 (b) Graphs of order 9

Figure 3.3: The bounds from Theorem 3.3.4 and Corollary 3.3.8 compared to avd(G)
for n = 8 and n = 9.

vertices, and let G′ be the graph obtained by adding one leaf to k vertices of G and

two leaves to the other ℓ vertices of G. Note that G′ is connected. Oboudi [73] showed

that D(G′, x) = D(H, x) and therefore avd(G′) = avd(H) = 2n
3
.

While we are unable to prove Conjecture 3.3.9, we can provide some evidence for

it. A graph G is called quasi-regularizable if one can replace each edge of G with a non-

negative number of parallel copies, so as to obtain a nonempty graph where every

vertex has the same degree with possibly multiple edges between pairs of vertices

(i.e. a nonempty regular multigraph). In particular, any graph which contains a

spanning subgraph which is both regular and nonempty is quasi-regularizable. More

specifically, any graph which has a perfect matching or is Hamiltonian (i.e. contains

a spanning cycle) will also be quasi-regularizable. Berge [24] characterized quasi-

regularizable graphs as those for which |S| ≤ |N(S)| holds for every independent set

S of G. We will now show that for quasi-regularizable graphs, Conjecture 3.3.9 holds.

Theorem 3.3.10 If G is a quasi-regularizable graph, then avd(G) ≤ 2n
3
.

Proof. We begin by showing that |a(S)| ≤ n−|S| for every S ∈ D(G). By Lemma

3.3.2, |a1(S)| ≤ |N1(S)|. Therefore it suffices to show that |a2(S)| ≤ |N2(S)|. For

every v ∈ a2(S), we have N(v) ⊆ V − S, as otherwise PrivS(v) ̸= {v}. Furthermore,
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N(v) ⊆ N2(S) as otherwise v ∈ a1(S). Therefore a2(S) is an independent set with

N(a2(S)) ⊆ N2(S). As G is a quasi-regularizable graph then |a2(S)| ≤ |N(a2(S))| ≤
|N2(S)|, so

|a(S)| = |a1(S)|+ |a2(S)| ≤ |N1(S)|+ |N2(S)| = n− |S|.

Finally, as |a(S)| ≤ n − |S| then
∑︁

S∈D(G)

|a(S)| ≤ nD(G, 1) − D′(G, 1). Thus

together with Lemma 3.3.1 we obtain

2D′(G, 1)− nD(G, 1) ≤ nD(G, 1)−D′(G, 1) ⇒ avd(G) =
D′(G, 1)

D(G, 1)
≤ 2n

3
,

which is what we wished to show. □

We will now extend a weaker version of the previous result. A matching in a

graph is subset of edges such that no two edges are incident to the same vertex. Let

ν(G) denote the matching number of G, that is, the largest cardinality of a matching.

We alter the proof of the previous theorem to put avd(G) in terms of ν(G). This

will not improve the bound from Theorem 3.3.10 for graphs with perfect matchings.

However there are graphs which contain near perfect matchings which are not quasi-

regularizable and therefore not subject to the bound in Theorem 3.3.10, for example

paths of odd order. However, we can get an upper bound via the matching number.

Theorem 3.3.11 Let G be a graph of order n. Then avd(G) ≤ n− 2ν(G)
3

.

Proof. We begin by showing that |a(S)| ≤ 2(n− ν(G))− |S| for every S ∈ D(G).

By Lemma 3.3.2, |a1(S)| ≤ |N1(S)|. Therefore, it suffices to show that |a2(S)| ≤
|N2(S)|+n−2ν(G). For every v ∈ a2(S), we have N(v) ⊆ V −S otherwise PrivS(v) ̸=
{v}. Furthermore, N(v) ⊆ N2(S) otherwise v ∈ a1(S). Fix a maximum matching

in G. Each vertex in a2(S) is either unmatched or matched with a vertex in N2(S).

Note that there are exactly n− 2ν(G) unmatched vertices in G. Therefore |a2(S)| ≤
|N2(S)|+ n− 2ν(G).

Finally, as |a(S)| ≤ 2(n− ν(G))− |S| we have

∑︂
S∈D(G)

|a(S)| ≤ 2(n− ν(G))D(G, 1)−D′(G, 1).
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Thus together with Lemma 3.3.1 we obtain

2D′(G, 1)− nD(G, 1) ≤ 2(n− ν(G))D(G, 1)−D′(G, 1),

which implies

avd(G) =
D′(G, 1)

D(G, 1)
≤ n− 2ν(G)

3
.

This completes the proof. □

3.4 Lower bounds for trees

In this section we turn to trees (which are connected and, if they are nontrivial, have

δ ≥ 1). For every n ≥ 2 there is a tree T of order n with avd(T ) = 2n
3
, satisfying the

upper bound from Conjecture 3.3.9 for isolate-free graphs. Such trees are constructed

as follows. Let n = 2k + 3ℓ for k, ℓ ≥ 0 and T be a tree on k + ℓ vertices. Now let

T ′ be the tree obtained by adding one leaf to k vertices of T and two leaves to the

other ℓ vertices of T . Now we have that avd(T ′) = 2n
3
as T ′ is in the family of graphs

described following Conjecture 3.3.9. We can classify trees T ′ as being a tree such

that every non-leaf vertex has exactly one or two leaf neighbours. Recently, Erey [46]

proved that the upper bound from Conjecture 3.3.9 was in fact the upper bound for

trees (and forests). That is if T is a tree of order n then avd(T ) ≤ 2n
3
. Furthermore

Erey showed that avd(T ) = 2n
3

if and only if every non-leaf vertex in T has exactly

one or two leaf neighbours.

However, what about the lower bound? In Theorem 3.2.4, we showed that the

lower bound for a graph G of order n is n2n−1

2n−1
, which is achieved only by Kn, but

these graphs are far from being trees. We show now that avd(T ) ≥ avd(K1,n−1), and

the argument is even more involved than for the lower bound for general graphs. For

this we require a result similar to that of Proposition 3.2.3. However the proof of this

is considerably more involved. For a tree T of order n, recall that D(T ) denotes the

collection of all dominating sets in T . For now fix S ∈ D(T ). Recall that in the proof

of Proposition 3.2.3, it was important to bound the number of subsets S ′ ⊆ S where

S ′ is also a dominating set and |S ′| = k. Let
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domk(S) = |{S ′ ⊆ S : S ′ ∈ D(T ) and |S ′| = k}|.

The trivial upper bound, which was used in the proof of Proposition 3.2.3, is simply

domk(S) ≤
(︁|S|

k

)︁
, but we need something stronger for trees. Recall that a(S) = {v ∈

S : S−v /∈ D(T )}. Therefore for any S ′ ⊆ S, if S ′ ∈ D(T ) then a(S) ⊆ S ′. Therefore

domk(S) ≤
(︁|S|−|a(S)|

k−|a(S)|

)︁
. However this is only useful if a(S) ̸= ∅. On the other hand,

when a(S) = ∅, S is a double dominating set [51], that is, a subset S ⊆ V (G) such

that for every vertex v ∈ V (G), |N [v] ∩ S| ≥ 2. The order of the smallest double

dominating set is denoted γ×2(G). Note that for a dominating set S of a tree T , if

|S| < γ×2(T ) then a(S) ̸= ∅ and so |a(S)| ≥ 1. In the next lemma we will show

γ(T ) + γ×2(T ) ≥ n + 1. Then |S| > γ×2(T ) will imply that n + 1 − |S| < γ(T ) and

hence domk(S) = 0 for k ≤ n+ 1− |S|. This will be crucial in proving Lemma 3.4.3

which implies avd(T ) ≥ n+1
2
.

Theorem 3.4.1 If T is a nontrivial tree then γ×2(T ) + γ(T ) ≥ n+ 1.

Proof. We can assume that n ≥ 3, as if n = 2, then T = K2 and so γ×2(T ) = 2,

γ(T ) = 1 and the result holds. Set V (T ) = V . It is sufficient to show that for any

double dominating set S, we have γ(T ) ≥ n − |S| + 1. Note any dominating set

must contain at least one vertex from each closed neighbourhood in G. If m vertices

v1, . . . , vm have pairwise disjoint closed neighbourhoods, then γ(T ) ≥ m. Therefore

it is sufficient to show that for any double dominating set S, there exists a collection

of |V − S|+ 1 vertices with pairwise disjoint closed neighbourhoods. We will induct

on the number of vertices in V − S. For v ∈ V and u ∈ N(v) let B(T, v, u) denote

the set of vertices in the same component as u in T − v (See Figure 3.4).

B(T, v, u)
B(T, v, w)

ℓ

w

v

u

u′

...
...

...
...

Figure 3.4: An example of B(T, v, u) and B(T, v, w).
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Let S be a double dominating set. This implies that S contains every leaf and stem

of T (as a stem in a tree is a vertex adjacent to a leaf). Our inductive hypothesis is

as follows: there exists a collection of |V −S|+1 vertices with pairwise disjoint closed

neighbourhoods. The case where |V − S| = 0 is clearly true for any nontrivial tree.

Assume for any nontrivial tree and some k ≥ 0 that if |V −S| ≤ k, then our inductive

hypothesis holds. Now let S be a double dominating set so that |V −S| = k+1. Note

that for any leaf in T , both it and its stem (i.e., the leaf’s only neighbour) must both

be in S, otherwise S is not a double dominating set. Fix a leaf ℓ ∈ V . Now choose a

vertex v /∈ S which is at maximum distance from ℓ. Note that v is not a leaf nor a

stem, as otherwise v ∈ S which contradicts v /∈ S. Therefore deg(v) ≥ 2 and v ̸= ℓ.

Let w ∈ N(v) be the only neighbour of v which is closer to ℓ than v (See Figure

3.4). Note that w ̸= ℓ, as otherwise v would be a stem and hence belongs to S. As

deg(v) ≥ 2, we can choose u ∈ N(v) − {w}. Note that every vertex in B(T, v, u) is

further from ℓ than v and therefore B(T, v, u) ⊆ S. Moreover, as v is not a stem,

deg(u) ≥ 2. Therefore, we can choose u′ ∈ N(u)− {v}. Note that N [u′] ⊆ B(T, v, u)

(as in Figure 3.4). Now set T ′ = B(T, v, w) and S ′ = S ∩ B(T, v, w). Clearly T ′ is a

nontrivial tree as w, ℓ ∈ T ′. Note that NT [w] = NT ′ [w]∪{v}, and that for every other

vertex x ∈ V (T ′), we haveNT [x] = NT ′ [x]. As v /∈ S, |NT ′ [x]∩S ′| = |NT [x]∩S| ≥ 2 for

all x ∈ V (T ′). Therefore S ′ is a double dominating set of T ′. Finally, the only vertex in

V (T )−V (T ′) which was not in S was v, as v was the furthest vertex from ℓ which was

not in S. Therefore |V (T ′)−S ′| = |V (T )−S|−1 = k and by our induction hypothesis

there exists a collection of k + 1 vertices with disjoint closed neighbourhoods in T ′.

Let P denote this collection. As v /∈ NT [u
′], we have NT [x] ∩ NT [u

′] = ∅ for all

x ∈ V (T ′). Therefore P ∪ {u′} is a collection of k + 2 = |V − S| + 1 vertices with

pairwise disjoint closed neighbourhoods in T . □

We need three additional lemmas on the way to finding the tree of order n with

the least average order of dominating sets. The first is due to Blidia et al.

Lemma 3.4.2 ([26]) For every nontrivial tree T , we have 2γ(T ) ≤ γ×2(T ). □

Lemma 3.4.3 If T is a tree of order n, then dn−k ≥ dk+1 for all k such that k+1 ≤
n+1
2
.
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Proof. Fix k such that k + 1 ≤ n+1
2
. If k + 1 < γ(T ) then clearly dn−k ≥ dk+1

holds as dk+1 = 0. So suppose for the remainder of this proof that k + 1 ≥ γ(T ).

We will now use Hall’s Theorem again. As before, let Dk denote the collection of

all dominating sets of order k. We now construct a bipartite graph with bipartition

(Dk+1, Dn−k); two vertices A ∈ Dk+1 and B ∈ Dn−k are adjacent if A ⊆ B. As every

superset of a dominating set remains dominating, the degree of each A ∈ Dk+1 is(︁
n−k−1
n−2k−1

)︁
=
(︁
n−k−1

k

)︁
. By the same argument used in the proof of Proposition 3.2.3,

it suffices to show that for every B ∈ Dn−k, there are at most
(︁
n−k−1

k

)︁
subsets of B

which are in Dk+1.

By Theorem 3.4.1, we have γ×2(T )+γ(T ) ≥ n+1 and hence k+1 ≥ n+1−γ×2(T ).

We now consider two cases:

Case 1: Suppose that k + 1 > n + 1 − γ×2(T ), i.e., that γ×2(T ) > n − k. For any

dominating set B ∈ Dn−k there exists a vertex v ∈ T such that N [v] ∩ B contains

exactly one vertex. Let {u} = N [v]∩B. Then u is in every dominating set contained

in B. Thus we must choose k other element from B − u to get a dominating set in

Dk+1. Hence there are at most
(︁
n−k−1

k

)︁
subsets of B which are also in Dk+1.

Case 2: Suppose that k + 1 = n + 1 − γ×2(T ), i.e., that γ×2(T ) = n − k. As

γ×2(T ) + γ(T ) ≥ n + 1, we have γ(T ) ≥ k + 1. Furthermore, as γ(T ) ≤ k + 1, it

follows that k + 1 = γ(T ). For any dominating set B ∈ Dn−k, if B is not a double

dominating set, then by the argument of Case 1, there are at most
(︁
n−k−1

k

)︁
subsets

of B which are also in Dk+1. So suppose B is a double dominating set. Let m

be the number of stems in T . If m = 1 then T = K1,n−1. It is easy to see that

k + 1 = γ(K1,n−1) = 1, so n − k = n. Furthermore, dn(K1,n−1) = d1(K1,n−1) = 1,

and therefore dn(K1,n−1) ≥ d1(K1,n−1). Now suppose m ≥ 2. Choose two stems s1

and s2 along with leaves ℓ1 and ℓ2 which are adjacent to s1 and s2 respectively. As

B is a double dominating set we have s1, s2, ℓ1, ℓ2 ∈ B, otherwise ℓ1 or ℓ2 will not be

double dominated. Furthermore if A ⊆ B such that A ∈ Dk+1, then A is a minimum

dominating set. Therefore A contains exactly one of si or ℓi for each i = 1, 2 and the

remaining k − 1 vertices of A are chosen from the remaining n− k − 4 vertices in B.

Therefore there are at most 4
(︁
n−k−4
k−1

)︁
subsets A ⊆ B such that A ∈ Dk+1. It suffices

to show that 4
(︁
n−k−4
k−1

)︁
≤
(︁
n−k−1

k

)︁
. Using Vandermonde’s Convolution we obtain
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(︃
n− k − 1

k

)︃
=

(︃
n− k − 4

k

)︃
+ 3

(︃
n− k − 4

k − 1

)︃
+ 3

(︃
n− k − 4

k − 2

)︃
+

(︃
n− k − 4

k − 3

)︃
.

Note that
(︁
n−k−4

k

)︁
+
(︁
n−k−4
k−2

)︁
≥
(︁
n−k−4
k−1

)︁
when n − k − 4 ̸= 0. Therefore 4

(︁
n−k−4
k−1

)︁
≤(︁

n−k−1
k

)︁
when n− k − 4 ̸= 0. So suppose n− k − 4 = 0. As γ×2(T ) = n− k, we have

γ×2(T ) = 4. By Lemma 3.4.2, 2γ(T ) ≤ γ×2(T ). Therefore γ(T ) ≤ 2. Furthermore

as T has two stems, γ(T ) ≥ 2 and therefore γ(T ) = 2. Now γ×2(T ) + γ(T ) =

n−k+k+1 = n+1, so n = 5. There is exactly one tree, P5, with γ(T ) = 2,γ×2(T ) = 4

and n = 5. However, D(P5, x) = x5 + 5x4 + 8x3 + 3x2 which satisfies dn−k ≥ dk+1 for

k + 1 ≤ n+1
2
.

We have now shown for all trees of order n that dn−k ≥ dk+1 for all k such that

k + 1 ≤ n+1
2
. □

Bród et al. proved the following useful fact.

Lemma 3.4.4 ([31]) The star K1,n−1 has the most dominating sets amongst all trees

of order n. □

Theorem 3.4.5 If T is a tree of order n, then avd(T ) ≥ avd(K1,n−1), with equality

if and only if T ∼= K1,n−1.

Proof. By Lemma 3.4.3, avd(T ) ≥ n+1
2

and dn−k ≥ dk+1 for k+1 ≤ n+1
2
. Suppose

T ̸∼= K1,n−1, so γ(T ) ≥ 2 and d1(T ) = 0. Now consider the mean order of all

dominating sets except for the dominating set V (T ). Let D∗(T ) = D(T ) − {V (T )}.
Note that

av(D∗(T )) =
D′(T, 1)− n

D(T, 1)− 1

For k+1 ≤ n+1
2

let Bk = Dn−k(T )∪Dk+1(T ). Note that av(Bk) ≥ n+1
2

as dn−k ≥ dk+1.

Furthermore B1, . . . ,B⌊n+1
2

⌋ is a partition of D∗(T ). It follows from Lemma 3.2.1 that

we have

D′(T, 1)− n

D(T, 1)− 1
= av(D∗(T )) ≥ n+ 1

2
.
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Therefore

avd(T ) =
n+D′(T, 1)− n

D(T, 1)

=
n

D(T, 1)
+

(︃
D(T, 1)− 1

D(T, 1)

)︃
D′(T, 1)− n

D(T, 1)− 1

≥
(︃

1

D(T, 1)

)︃
n+

(︃
D(T, 1)− 1

D(T, 1)

)︃
n+ 1

2
.

By Lemma 3.4.4, we have D(T, 1) ≤ D(K1,n−1, 1). Therefore we can shift the weight

in the convex combination closer to the smaller quantity n+1
2

avd(T ) ≥
(︃

1

D(K1,n−1, 1)

)︃
n+

(︃
D(K1,n−1, 1)− 1

D(K1,n−1, 1)

)︃
n+ 1

2

>

(︃
1

D(K1,n−1, 1)

)︃
(n− 1) +

(︃
D(K1,n−1, 1)− 1

D(K1,n−1, 1)

)︃
n+ 1

2

=
n− 1

2n−1 + 1
+

(︃
2n−1

2n−1 + 1

)︃
n+ 1

2

=
n− 1 + 2n−2(n+ 1)

2n−1 + 1
= avd(K1,n−1).

(In order to prove the second inequality above, we use the fact that if A ≥ a > 0 and

1 ≥ x ≥ y > 0, then xA + (1 − x)a ≥ yA + a(1 − y) with A = n, a = (n + 1)/2,

x = 1/D(T, 1) and y = 1/D(K1,n−1, 1).) □

3.5 Distribution of Average Order of Dominating Sets

We’ve considered upper and lower bounds for avd(G). However, more generally,

what are the possible values for avd(G)? If G is a graph of order n, we showed in the

previous section that avd(G) ∈ (n
2
, n], but it seems unlikely that one can say precisely

what values in the interval are average orders of dominating sets. A natural variant

of avd(G) is ˆ︃avd(G) = avd(G)
n

which we shall refer to as the normalized average order

of dominating sets in G. (Similar kinds of normalized graph parameters have been

investigated throughout the literature – see [52,63,86], for example.)

We start with some examples. We say that a graph contains a simple k-path if

there exist k vertices of degree two which induce a path in G.
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For example, the path Pn contains a simple k-path for every k ≤ n − 2 (but not

for k ≥ n − 1), and the cycle Cn contains a simple k-path for every k ≤ n − 1 (but

not for k = n). The following holds for graphs which contain simple 3-paths.

Theorem 3.5.1 ([67]) Suppose G is a graph with vertices u, v, w which form a sim-

ple 3-path. Then

D(G, x) = x(D(G/u, x) +D(G/u/v, x) +D(G/u/v/w, x))

where G/u is the graph formed by joining every pair of neighbours of u and then

deleting u. □

There is no known “nice” closed formula for all coefficients of D(Pk, x) and

D(Ck, x) respectively. This makes determining the average order of dominating sets

in paths and cycles difficult. We will now show that for a family of graphs satisfying a

recurrence relation similar to that in Theorem 3.5.1, we can calculate the limit of the

normalized average order of dominating sets as n → ∞. First we shall put forward

a way to calculate the limits of average values of functions of a certain type (which

include those that arise from solving linear polynomial recurrences).

Theorem 3.5.2 Suppose functions fn(x) satisfy

fn(x) = α1(x)(λ1(x))
n + α2(x)(λ2(x))

n + · · ·+ αk(x)(λk(x))
n

where αi(x) and λi(x) are fixed non-zero analytic functions, such that |λ1(1)| >
|λi(1)| for all i > 1. Then

lim
n→∞

f ′
n(1)

nfn(1)
=

λ′
1(1)

λ1(1)
.

Proof. As |λ1(1)| > |λi(1)| for all i > 1 then limn→∞
λi(1)

n

λ1(1)n
= 0 for all i > 1.

Furthermore,

lim
n→∞

f ′
n(1)

nfn(1)
= lim

n→∞

k∑︁
i=1

(α′
i(1)λi(1)

n + nαi(1)λi(1)
n−1λ′

i(1))

n
k∑︁

i=1

αi(1)λi(1)n
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= lim
n→∞

k∑︁
i=1

α′
i(1)λi(1)

n+nαi(1)λi(1)
n−1λ′

i(1)

λ1(1)n

n
k∑︁

i=1

αi(1)λi(1)n

λ1(1)n

= lim
n→∞

α′
1(1) +

nα1(1)λ′
1(1)

λ1(1)

nα1(1)

= lim
n→∞

α′
1(1)

nα1(1)
+

λ′
1(1)

λ1(1)
=

λ′
1(1)

λ1(1)
,

which is what we wished to show. □

Theorem 3.5.3 lim
n→∞

ˆ︃avd(Pn) = lim
n→∞

ˆ︃avd(Cn) ≈ 0.618419922.

Proof. For both paths and cycles, we have a sequence of graphs (Gn)n≥1 which

satisfy the recurrence in Theorem 3.5.1,

D(Gn, x) = x(D(Gn−1, x) +D(Gn−2, x) +D(Gn−3, x)),

for all n ≥ 5. As Gn follows the homogeneous linear recurrence relation D(Gn, x) =

x(D(Gn−1, x)+D(Gn−2, x)+D(Gn−3, x)), we haveD(Gn, x) = α1(x)λ1(x)
n+α2(x)λ2(x)

n+

α3(x)λ3(x)
n where each λi(x) satisfies

λi(x)
3 − xλi(x)

2 − xλi(x)− x = 0.

We solve this cubic polynomial (see also [8]). The solutions are

λ1(x) =
x

3
+ p(x) + q(x),

λ2(x) =
x

3
− p(x)− q(x) +

√
3

2
(p(x)− q(x)) i,

λ3(x) =
x

3
− p(x)− q(x)−

√
3

2
(p(x)− q(x)) i,

where

p(x) =
3

√︄
x3

27
+

x2

6
+

x

2
+

√︃
x4

36
+

7x3

54
+

x2

4
,

q(x) =
3

√︄
x3

27
+

x2

6
+

x

2
−
√︃

x4

36
+

7x3

54
+

x2

4
.
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Note that |λ1(1)| ≈ 1.83929 > |λ2(1)| = |λ3(1)| ≈ 0.73735.

Therefore by Theorem 3.5.2, we have lim
n→∞

avd(Gn)
n

=
λ′
1(1)

λ1(1)
. It follows that

lim
n→∞

avd(Gn)

n
=

λ′
1(1)

λ1(1)

=
1
3
+ p′(1) + q′(1)

1
3
+ p(1) + q(1)

=

1
3
+ 27

√
33+187

66(19+3
√
33)

2
3
− 27

√
33−187

66(19−3
√
33)

2
3

1
3
+ (19+3

√
33)

1
3

3
+ (19−3

√
33)

1
3

3

=
1

3
+

(88− 8
√
33)(19 + 3

√
33)

1
3

1056
+

(55− 7
√
33)(19 + 3

√
33)

2
3

1056
,

which we will denote by r. By Theorem 3.5.1, both Cn and Pn satisfy the same

recurrence as Gn and hence lim
n→∞

avd(Pn)
n

= lim
n→∞

avd(Cn)
n

= r ≈ 0.618419922. □

For all graphs of order 9 we counted the number of graphs with ˆ︃avd(G) ∈ [1
2
+

k
20n

, 1
2
+ k+1

20n
) for each integer 0 ≤ k ≤ 10n − 1. Figure 3.5 shows the linearly inter-

polated distribution of ˆ︃avd(G) for all graphs of order 9. The distribution appears to

be skewed towards 1
2
. However, our next result shows that ˆ︃avd(G) can be arbitrarily

close to any value in
[︁
1
2
, 1
]︁
.

Figure 3.5: Distribution of ˆ︃avd(G) for all graphs of order 9

Proposition 3.5.4 The set
{︂ˆ︃avd(G) : G is a graph

}︂
is dense in [1

2
, 1].
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Proof. It suffices to show that for every rational number a
b
∈ [1

2
, 1] (a and b

positive), there exists a sequence of graphs (Gk)k≥1, where Gk has order nk, such

that limk→∞ nk = ∞ and limk→∞
avd(Gk)

nk
= a

b
. Let Gk = (2b − 2a)Kk ∪ (2a − b)Kk.

Note that such a graph exists as a
b
∈ [1

2
, 1] and hence a ≤ b ≤ 2a. Additionally, Gk

has order (2b − 2a)k + (2a − b)k = bk. Recall that D(Kk, x) = (x + 1)k − 1 and

D(Kk, x) = xk. Therefore

lim
k→∞

avd(Kk)

k
= lim

k→∞

k2k−1

k(2k − 1)
= 0.5 and lim

k→∞

avd(Kk)

k
= 1.

Therefore by Lemma 3.1.1, we have

lim
k→∞

avd(Gk)

bk
= lim

k→∞

(2b− 2a)avd(Kk) + (2a− b)avd(Kk)

bk

= lim
i→∞

(2b− 2a)avd(Kk)

bk
+ lim

k→∞

(2a− b)avd(Kk)

bk

=
(2b− 2a) · 0.5

b
+

2a− b

b
=

a

b
,

which is what we wished to show. □

While we have shown that the closure of the normalized average order of dom-

inating sets is the interval [1/2, 1], where do most values lie? Let G(n, p) denote

the sample space of random graphs on n vertices where each edge is independently

present with probability p (any such graph is often called an Erdös-Renyi graph). We

will now show that with probability tending to 1, the normalized average order of

dominating sets of a random graph approaches 1
2
(even if the graph is sparse with p

close to 0); this explains the “bundling up” of values near n/2 in Figure 3.5. First we

require Hoeffding’s well known bound on the tail of a binomial distribution.

Theorem 3.5.5 ([56]) Let X = X1 + · · · + Xn where X1, . . . , Xn are identical in-

dependent Bernoulli random variables each with probability of success p. Then we

have

Prob (X ≤ (p− ε)n)) ≤ e−2ε2n,

where ε > 0. □



57

Theorem 3.5.6 Let Gn ∈ G(n, p) for p ∈ (0, 1). Then with probability tending to 1,

1

2
≤ˆ︃avd(Gn) ≤

1

2
+

1

2n
.

Proof. It follows from Theorem 3.2.4 that ˆ︃avd(Gn) ≥ 1
2
. Therefore it is sufficient

to show that ˆ︃avd(Gn) ≤ 1
2
+ 1

2n
.

The degree of any vertex v of Gn has a binomial distribution Xv with N = n− 1,

and hence has mean p(n−1). From Theorem 3.5.5 it follows that for any fixed ε > 0,

Prob (Xv ≤ (p− ε)(n− 1)) ≤ e−2ε2(n−1).

Thus

Prob

(︄⋃︂
v

(Xv ≤ (p− ε)(n− 1))

)︄
≤ ne−2ε2(n−1) → 0.

It follows that δ(Gn) > (p− ε)(n− 1) > 2 log2(n) with probability tending to 1. By

Corollary 3.3.8, if δ(Gn) ≥ 2 log2(n) then avd(Gn) ≤ n+1
2
. Therefore with probability

tending to 1, ˆ︃avd(Gn) ≤
n+ 1

2n
=

1

2
+

1

2n
,

and we are done. □

The result in Theorem 3.5.6 states that for Gn ∈ G(n, p) with constant p ∈ (0, 1)

then almost surely ˆ︃avd(Gn) → 1
2
as n → ∞. We remark that it is unlikely, but not

impossible that the randomly selected graph is Kn in which caseˆ︃avd(Gn) = 1 and the

theorem fails. Furthermore we remark that p need not be constant for the theorem

to hold. In fact p only needs to satisfy (p−ε)(n−1) > 2 log2(n) for some ϵ > 0 which

satisfies ne−2ε2(n−1) → 0 as n → ∞. This can be achieved by choosing, for example,

p = 2
√︂

ln(n)
n−1

and ϵ =
√︂

ln(n)
n−1

. In this case

ne−2ε2(n−1) = ne−2 ln(n) =
1

n
→ 0.

and (p− ε)(n− 1) =
√︁

(n− 1) ln(n) > 2 log2(n) for large enough n.

In this chapter we defined a new graph parameter, avd(G). For any graph G on n

vertices we showed n
2
< avd(G) ≤ n while giving tighter bounds n+1

2
< avd(G) ≤ 2n

3

when G is a tree. Additionally we introduced ˆ︃avd(G) and showed that although the

values of ˆ︃avd(G) were dense in [1
2
, 1], almost all graphs have ˆ︃avd(G) = 1

2
. In Chapter
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6 we will discuss future directions of research for this average parameter. In the next

chapter we will investigate the unimodality of the domination polynomial. Many

techniques from this chapter will be used in next chapter. This will be most evident

in Section 4.4



Chapter 4

On the Unimodality of Domination Polynomials

4.1 Background

A question for any graph polynomial is: what is the shape of the coefficient sequence?

Beyond increasing or decreasing it is next natural to inquire whether or not the

sequence of coefficients is unimodal: a polynomial with real coefficients a0 + a1x +

· · ·+ anx
n is said to be unimodal if there exists 0 ≤ k ≤ n, such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak−1 ≥ · · · ≥ an

(in such a case, we call the location(s) of the largest coefficient the mode). To show

a polynomial is unimodal, it has often been helpful (and easier) to show a stronger

condition, called log-concavity, holds, as the latter does not require knowing where

the peak might be located. A polynomial is log-concave if for every 1 ≤ i ≤ n − 1,

a2i ≥ ai−1ai+1. It is not hard to see that a polynomial with positive coefficients that is

log-concave is also unimodal, and log-concavity has the advantage over unimodality

that the peak need not be specified.

A variety of techniques have been used to show many graph polynomials are log-

concave, and hence unimodal, including:

� real analysis (log-concavity of the matching polynomial [54] and the indepen-

dence polynomial of claw-free graphs [38]),

� homological algebra (June Huh’s proof of the log concavity of chromatic poly-

nomials), and

� combinatorial arguments (the arguments of Krattenthaler [68] and Hamidoune

[50] that reproved the log concavity of matching polynomials and independence

polynomial of claw-free graphs, respectively, as well as Horrocks’ [58] result that

59
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the dependent k-set polynomial is log-concave (a subset of vertices is dependent

iff it contains an edge of the graph).

What can we say about the shape of the domination polynomial? For simplicity

we say graph G is log-concave or unimodal if its domination polynomial is log-concave

or unimodal respectively. Calculations show that every graph of order at most 8 is

log-concave. However the domination polynomial of the graph on 9 vertices in Figure

4.1 is

D(G, x) = x9 + 9x8 + 35x7 + 75x6 + 89x5 + 50x4 + 7x3 + x2

which is not log-concave as d3(G)2 = 49 but d4(G)d2(G) = 50. Although not all

domination polynomials are log-concave they are conjectured to be unimodal [17].

Figure 4.1: The only graph of order 9 which is not log-concave

Conjecture 4.1.1 ([17]) The domination polynomial of any graph is unimodal.

To date, only a little progress has been made on Conjecture 4.1.1. This progress is

summarized in the following theorem

Theorem 4.1.2 ([10]) For n ≥ 1 and any graph G:

(i) The friendship graph Fn
∼= K1 ∨ nK2 is unimodal.

(ii) The graph formed by adding a universal vertex to nK2 ∪K1 is unimodal.

(iii) G ◦Kn is log-concave and hence unimodal.

(iv) G ◦ P3 is log-concave and hence unimodal.
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n D(Pn, x) mn

1 x 1
2 x2 + 2x 1
3 x3 + 3x2 + x 2
4 x4 + 4x3 + 4x2 3

n D(Cn, x) mn

3 x3 + 3x2 + 3x 2
4 x4 + 4x3 + 6x2 2
5 x5 + 5x4 + 10x3 + 5x2 3
6 x6 + 6x5 + 15x4 + 14x3 + 3x2 4

Table 4.1: Domination polynomials for paths and cycles of small order together with
the location of their mode mn

In this chapter we extend the families for which unimodality of the domination poly-

nomial is known to paths, cycles and complete multipartite graphs. We will also

show almost all domination polynomials are unimodal with mode ⌈n
2
⌉. Finally we

will discuss when the sequence of coefficients is non-increasing.

4.2 Paths, Cycles and Complete Multipartite Graphs

There is no useful closed formula for the coefficients of D(Pn, x) and D(Cn, x). How-

ever, recall the following recurrence relations from Theorem 3.5.1,

� D(Pn, x) = x(D(Pn−1, x) +D(Pn−2, x) +D(Pn−3, x))

� D(Cn, x) = x(D(Cn−1, x) +D(Cn−2, x) +D(Cn−3, x))

Now consider Table 4.1, which displays D(Pn, x), D(Cn, x), and their respective

modes mn.

Note that for both paths and cycles, consecutive modes differ by at most one in

these small cases. We will now show that these observations for small n are sufficient

to prove that the domination polynomials of all paths and cycles are unimodal.

Theorem 4.2.1 Suppose we have a sequence of polynomials (fn)n≥1 with non-negative

coefficients which satisfy

fn = x(fn−1 + fn−2 + fn−3) (6)

for n ≥ 4. Let Pn denote the property that for all i ∈ {1, 2, . . . , n}, fi is unimodal

and there exists a sequence of modes m1, . . . ,mn of each fi respectively such that

0 ≤ mi −mi−1 ≤ 1 for all 2 ≤ i ≤ n. If P4 then Pn holds for all n ≥ 1 (and so each

fn is unimodal).
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Proof. We will prove our assertion via induction on n ≥ 4. Our base case is

satisfied by the assumption that P4 holds. For some k ≥ 4, suppose Pk holds, and so

Pj holds for all 1 ≤ j ≤ k. To show Pk+1 holds it suffices to show fk+1 is unimodal

with a mode mk+1 = mk or mk + 1. By our inductive hypothesis, fk, fk−1, and

fk−2 are all unimodal with modes mk, mk−1, and mk−2 respectively. Additionally,

mk−1 ≤ mk ≤ mk−1 + 1 and mk−2 ≤ mk−1 ≤ mk−2 + 1. For simplicity let mk = m.

Note that m− 2 ≤ mk−2 ≤ mk−1 ≤ mk = m. Furthermore for each n ≥ 1 let

fn =
∞∑︂
j=0

an,jx
j.

Therefore for n = k, k − 1, k − 2 we have

an,0 ≤ an,1 ≤ · · · ≤ an,m−2 and an,m ≥ an,m+1 ≥ · · · .

By the recursive relation (6) we see that ak+1,0 = 0 and for each j ≥ 1

ak+1,j = ak,j−1 + ak−1,j−1 + ak−2,j−1.

Therefore

0 = ak+1,0 ≤ ak+1,1 ≤ · · · ≤ ak+1,m−1 and ak+1,m+1 ≥ ak+1,m+2 ≥ · · · .

We will now show ak+1,m−1 ≤ ak+1,m. Consider the following two cases:

Case 1: m− 1 ≤ mk−2 ≤ m

As m − 1 ≤ mk−2 then the modes of fk, fk−1, and fk−2 are each at least m − 1.

Thus ak,m−2 ≤ ak,m−1, ak−1,m−2 ≤ ak−1,m−1, and ak−2,m−2 ≤ ak−2,m−1. Therefore

ak+1,m−1 = ak,m−2 + ak−1,m−2 + ak−2,m−2

≤ ak,m−1 + ak−1,m−1 + ak−2,m−1

= ak+1,m.

Case 2: mk−2 = m− 2

By the recursive relation the polynomials follow we obtain ak,0 = 0 and ak,j =

ak−1,j−1 + ak−2,j−1 + ak−3,j−1 for each j ≥ 1. Note ak,m ≥ ak,m−1 because the mode of

fk is m. Therefore
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ak−1,m−1 + ak−2,m−1 + ak−3,m−1 ≥ ak−1,m−2 + ak−2,m−2 + ak−3,m−2.

Let the mode of fk−3 be mk−3. By our inductive hypothesis mk−3 ≤ mk−2 = m − 2,

and therefore ak−3,m−1 ≤ ak−3,m−2. Furthermore

ak−1,m−1 + ak−2,m−1 ≥ ak−1,m−2 + ak−2,m−2.

Again the mode of fk is m so ak,m−1 ≥ ak,m−2. Hence

ak+1,m−1 = ak,m−2 + ak−1,m−2 + ak−2,m−2

≤ ak,m−1 + ak−1,m−1 + ak−2,m−1

= ak+1,m.

As ak+1,m−1 ≤ ak+1,m then fk+1 is unimodal with mode at either m or m + 1.

Therefore Pk+1 holds and by induction Pn holds for all n ≥ 1. □

Note that for a vertex u in either Pn or Cn, Pn/u ∼= Pn−1 and Cn/u ∼= Cn−1.

Thus by Theorem 3.5.1, the recursion for paths and cycles (which are stated at

the beginning of Section 4.2) is equivalent to recursion relation (6). It follows from

Theorem 4.2.1 and Table 4.1 that the following corollary holds.

Corollary 4.2.2 For n ∈ N and n ≥ 3, Pn and Cn are unimodal. □

We remark that Theorem 4.2.1 can be leveraged to show many other families of

graphs which contain simple k-paths are unimodal. For example, let Ln denote a

path on n− 2 vertices with a K2 joined to one of the leaves (See Figure 4.2).

. . .

Figure 4.2: The graph Ln
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n D(Ln, x) mn

4 x4 + 4x3 + 5x2 + x 2
5 x5 + 5x4 + 9x3 + 6x2 3
6 x6 + 6x5 + 14x4 + 14x3 + 4x2 4
7 x7 + 7x6 + 20x5 + 27x4 + 15x3 + x2 4

Table 4.2: Domination polynomials for graphs Ln.

For n ≥ 5, Ln contains a simple n − 4-path and therefore by Theorem 3.5.1 follows

the recurrence relation (6). Furthermore, Table 4.2 shows that the base condition in

Theorem 4.2.1 holds for four consecutive values of n – 4,5,6 and 7. It follows that Ln

is unimodal for n ≥ 4.

We shall now show complete multipartite graphs are unimodal. We shall rely on an

important result of Alikhani et al. that shows that the coefficients of the domination

polynomial are non-decreasing up to n
2
.

Proposition 4.2.3 ([17]) Let G be a graph of order n. Then for every 0 ≤ i < n
2
,

we have di(G) ≤ di+1(G).

We are now ready to proceed.

Theorem 4.2.4 For n1, . . . , nk ∈ N, the complete multipartite graph Kn1,...,nk
is uni-

modal.

Proof. Set G = Kn1,...,nk
. Consider any subset of vertices S ⊆ V (G) which is

dependent. Therefore S contains two adjacent vertices u and v. Note that as G

is complete multipartite, each of u and v are adjacent to every vertex in G except

the other vertices in their respective parts. As u and v are adjacent, they are not

in the same part of G and hence S dominates G. Let f(x) = fG(x) denote the

dependent polynomial of G (the generating function of the number of dependent sets

of cardinality k in G). As mentioned earlier, f(x) is log-concave [58]. Furthermore

D(G, x) = f(x) +
k∑︂

i=1

xni ,
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as the only dominating sets which are not dependent sets consist of every vertex in

one of the k parts of G. Let G have n vertices. By Proposition 4.2.3 di(G) ≤ di+1(G)

for every 0 ≤ i < n
2
. That is

d1 ≤ d2(G) ≤ · · · ≤ d⌈n
2
⌉

First suppose that every nj < n
2
. Then di(G) = fi for all i ≥ n

2
where fi is the

coefficient of xi in f(x). Note that this means d⌈n
2
⌉ = f⌈n

2
⌉. Furthermore as f(x) is

log-concave then f(x) is unimodal and hence D(G, x) is unimodal. So suppose there

exists some nj ≥ n
2
. Note that there is either exactly one nj ≥ n

2
or G ∼= Kn

2
,n
2
.

First suppose there is exactly one nj ≥ n
2
. Then di(G) = fi for all i ≥ n

2
except for

dj(G) = fj+1. As the sequence f(x) is log-concave and hence unimodal then the only

way for the sequence to not be unimodal is for fj = fj+1 < fj+2 or fj−2 > fj−1 = fj.

However each case would contradict f(x) being log-concave.

Now suppose G ∼= Kn
2
,n
2
. Note that every subset of vertices which contains at

least n
2
+ 1 vertices is a dominating set as it necessarily contains vertices from both

parts. Therefore di(G) =
(︁
n
i

)︁
for all i ≥ n

2
+ 1. Furthermore di(G) is non-increasing

for i ≥ n
2
+ 1 and hence G is unimodal. □

4.3 Almost all graphs are unimodal

In this section we will show that the domination polynomial of almost all graphs is

unimodal with mode ⌈n
2
⌉, and hence that any counterexamples to unimodality are

relatively rare.

We will now show graphs with minimum degree at least 2 log2(n) are unimodal.

We begin with a few preliminary definitions and observations. For a graph of order

n, let ri(G) be the proportion of the subsets of vertices of G with cardinality i which

are dominating. That is,

ri(G) =
di(G)(︁

n
i

)︁ .

Note that 0 ≤ ri(G) ≤ 1. For all 1 ≤ i ≤ n, let Di(G) denote the collection of

dominating sets of cardinality exactly i. Note for any dominating set S ∈ Di(G) and

any vertex v ∈ V − S, S ∪ {v} ∈ Di+1(G). More specifically if we let Ai+1 = {(v, S) :
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S ∈ Di+1(G), v ∈ S} and Bi = {(v, S) : S ∈ Di(G), v /∈ S} there is an injective

mapping f : Bi → Ai+1 defined as f(v, S) = (v, S∪{v}). Therefore |Ai+1| ≥ |Bi| and
equivalently (i+ 1)di+1(G) ≥ (n− i)di(G). Furthermore

ri+1(G) =
di+1(G)(︁

n
i+1

)︁ ≥ (n− i)di(G)

(i+ 1)
(︁

n
i+1

)︁ =
di(G)(︁

n
i

)︁ = ri(G).

This allows us to obtain the following lemma.

Lemma 4.3.1 Let G be a graph on n vertices, and k ≥ n
2
. If rk(G) ≥ n−k

k+1
then

di+1(G) ≤ di(G) for all i ≥ k. In particular, if k = ⌈n
2
⌉ then G is unimodal with

mode ⌈n
2
⌉.

Proof. Set di = di(G) and ri = ri(G) for all i. Note that

di+1 ≤ di ⇔ ri+1

(︃
n

i+ 1

)︃
≤ ri

(︃
n

i

)︃
⇔ ri+1

ri
≤ i+ 1

n− i
⇔ ri

ri+1

≥ n− i

i+ 1
.

Therefore for each i, if ri ≥ n−i
i+1

then di+1 ≤ di as ri+1 ≤ 1. So suppose for some

k ≥ n
2
, rk(G) ≥ n−k

k+1
. Then for any i ≥ k we have

ri(G) ≥ rk(G) ≥ n− k

k + 1
≥ n− i

i+ 1

and hence di+1 ≤ di. Finally, if k = ⌈n
2
⌉ then together with Proposition 4.2.3 we

have

d1 ≤ d2 ≤ · · · ≤ d⌈n
2
⌉ ≥ · · · ≥ dn,

which is what we wished to show. □

Theorem 4.3.2 If G is a graph with n vertices with minimum degree δ(G) ≥ 2 log2(n)

then D(G, x) is unimodal with a mode at ⌈n
2
⌉.

Proof. Set δ = δ(G), di = di(G) and ri = ri(G) for all i. Let ni denote the number

of non-dominating subsets S ⊆ V (G) of cardinality i. Note that ni =
(︁
n
i

)︁
− di and

hence
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ri = 1− ni(︁
n
i

)︁ .
We will now show ni ≤ n

(︁
n−δ−1

i

)︁
. For each vertex v ∈ V let ni(v) denote the number

of subsets which do not dominate v. A subset S does not dominate v if and only if it

does not contain any vertices in N [v]. Therefore ni(v) simply counts every subset of

V (G) with i vertices which omits N [v]. Hence ni(v) =
(︁
n−deg(v)−1

i

)︁
. Furthermore any

non-dominating set of order i must not dominate some vertex of G. Therefore

ni ≤
∑︂
v∈V

ni(v) =
∑︂
v∈V

(︃
n− deg(v)− 1

i

)︃
≤
∑︂
v∈V

(︃
n− δ − 1

i

)︃
= n

(︃
n− δ − 1

i

)︃
,

and

ri =1− ni(︁
n
i

)︁
≥1−

n
(︁
n−δ−1

i

)︁(︁
n
i

)︁
=1− n(n− δ − 1)!

i!(n− δ − 1− i)!
· i!(n− i)!

n!

=1− (n− 1− δ)!

(n− 1)!
· (n− i)!

(n− i− δ − 1)!

≥1− (n− i)(n− i− 1)(n− i− 2) · · · (n− i− δ)

(n− 1)(n− 2) · · · (n− δ)
.

Note that for any k ≥ 0, n−i−k
n−k

≥ n−i−k−1
n−k−1

holds as i ≥ 0. Therefore

n− i

n
≥ n− i− 1

n− 1
≥ · · · ≥ n− i− δ

n− δ
.

and so

ri ≥ 1− (n− i)

(︃
n− i

n

)︃δ

.

Now let f(x, δ) = 1−(n−x)
(︁
n−x
n

)︁δ
and g(x) = n−x

x+1
for x, δ ∈ [0, n]. Note that f(x, δ)

is an increasing function of both x and δ and g(x) is also a decreasing function of x.

By Lemma 4.3.1, it suffices to show f(n
2
, 2 log2(n)) ≥ g(n

2
). Note

f
(︂n
2
, 2 log2(n)

)︂
= 1− n

2

(︃
1

2

)︃2 log2(n)

= 1− n

2n2
= 1− 1

2n
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and

g
(︂n
2

)︂
=

n
2

n
2
+ 1

=
n

n+ 2
= 1− 2

n+ 2
.

Therefore f(n
2
, 2 log2(n)) ≥ g(n

2
) if and only if 2

n+2
≥ 1

2n
which holds for all n ≥ 1. □

Recall that G(n, p) denotes the Erdös-Rényi random graph model on n vertices

(each edge is independently present with probability p).

Theorem 4.3.3 Fix p ∈ (0, 1). Let Gn ∈ G(n, p). Then with probability tending to

1, D(Gn, x) is unimodal with a mode at ⌈n
2
⌉.

Proof. It follows from the proof of Theorem 3.5.6 that for sufficiently large n,

δ(Gn) > 2 log2(n) with probability tending to 1. By Theorem 4.3.2, it follows that,

with probability tending to 1, D(Gn, x) is unimodal with a mode at ⌈n
2
⌉. □

4.4 A Non-increasing Segment of Coefficients

In light of not being able to prove domination polynomials are unimodal, we can

focus on proving that various portions of the coefficient sequence are increasing or

decreasing. For a graph G on n vertices, Proposition 4.2.3 states that

d1(G) ≤ d2(G) ≤ · · · ≤ d⌈n
2
⌉−1 ≤ d⌈n

2
⌉.

Furthermore, Lemma 2.2.6 states that dn−j(G) =
(︁
n
j

)︁
for all j ≤ δ(G). Therefore

dn−δ(G) ≥ dn−δ(G)+1 ≥ · · · ≥ dn−1 ≥ dn.

In this section we will show if G has minimum degree δ(G) ≥ 1 then

d⌊ 3n
4
⌋ ≥ d⌊ 3n

4
⌋+1 ≥ · · · ≥ dn−1 ≥ dn.

Note that this can fail when δ(G) = 0 if G has sufficiently many isolated vertices.

For example D(K1,2 ∪ 7K1, x) = x10 + 3x9 + x8.

Many of the techniques used in this section will mirror those used in Section 3.3.

For a graph G, recall D(G) denotes the collection of dominating sets of G. Now let



69

Di(G) = {S ∈ D(G) : |S| = i}. For a dominating set S of G we have previously

defined

a(S) = {v ∈ S : S − v /∈ D(G)},

the set of critical vertices of S with respect to domination (in that their removal

makes the set no longer dominating). In Section 3.3 we showed avd(G) could be

expressed in terms of the sum of |a(S)| over all S ∈ D(G). For simplicity let a(G, i)

denote the sum of |a(S)| over all S ∈ Di(G). That is,

a(G, i) =
∑︂

S∈Di(G)

|a(S)|.

In the next lemma we will now show the significance of a(G, i).

Lemma 4.4.1 For a graph G with n vertices.

a(G, i) =
∑︂

S∈Di(G)

|a(S)| = idi(G)− (n− i+ 1)di−1(G).

Proof. Let

Ai =
⋃︂

S∈Di(G)

{(v, S) : v ∈ a(S)} and Ai =
⋃︂

S∈Di(G)

{(v, S) : v ∈ S − a(S)}.

Note that |Ai| = a(G, i). For every S ∈ Di(G) and v ∈ S either (v, S) ∈ Ai or

(v, S) ∈ Ai. As Ai ∩Ai = ∅ then |Ai|+ |Ai| = idi(G), that is, a(G, i) = idi(G)− |Ai|.
Now let

Di−1 =
⋃︂

S∈Di−1(G)

{(v, S) : v ∈ V − S}.

Note that |Di−1| = (n − i + 1)di−1(G) and hence it suffices to show |Di−1| = |Ai|.
For any (v, S) ∈ Ai as v ∈ S − a(S) then by definition S − v ∈ Di−1(G) and hence

(v, S − v) ∈ Di−1. Now consider the map f : Ai → Di−1 where f(v, S) = (v, S − v).

It suffices to show f is bijective. For any two (v, S), (u, T ) ∈ Ai suppose f(v, S) =

f(u, T ). Then u = v, S − u = T − v and hence S = T . Therefore f is injective.
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For any (v, S ′) ∈ Di−1 note that S ′ ∪ {v} ∈ Di(G). Therefore (v, S ′ ∪ {v}) ∈ Ai and

f(v, S ′ ∪ {v}) = (v, S ′). Thus f is subjective and hence bijective. □

It follows from Lemma 4.4.1 that if di(G) ≤ di−1(G) then

a(G, i) = idi(G)− (n− i+ 1)di−1(G) ≤ (2i− n− 1)di(G).

Furthermore, if di(G) > di−1(G) then

a(G, i) = idi(G)− (n− i+ 1)di−1(G) > (2i− n− 1)di(G).

Therefore we have that di(G) ≤ di−1(G) if and only if

a(G, i) ≤ (2i− n− 1)di(G). (7)

From Section 3.3, for a dominating set S ∈ D(G), we can partition V −S as N1(S)∪
N2(S), where

N1(S) = {v ∈ V − S : |N [v] ∩ S| = 1}

N2(S) = {v ∈ V − S : |N [v] ∩ S| ≥ 2}.

Furthermore, recall the partition a(S) = a1(S) ∪ a2(S), where

a1(S) = {v ∈ a(S) : N [v] ∩N1(S) ̸= ∅}

a2(S) = {v ∈ a(S) : N [v] ∩N1(S) = ∅};

for any vertex v ∈ a2(S), it must be the case that N(v) ⊆ N2(S). Before we prove

Theorem 4.4.2 we require the following inequality proven in Lemma 3.3.2. For a graph

G and any S ∈ D(G),

|a1(S)| ≤ |N1(S)|.

For graph G containing a vertex v recall that pv(G, k) denote the collection of

k-subsets of V − N [v] which dominate G − v (and hence they dominate G − N [v]

as well). Equivalently pv(G, k) is the collection of k-subsets which dominate every

vertex except v. We showed in Lemma 3.3.3 that
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∑︂
S∈Di(G)

|a2(S)| =
∑︂

v∈V (G)

|pv(G, i− 1)|.

This together with the inequality |a1(S)| ≤ |N1(S)| will allow us to bound a(G, i).

This will then allow us to use inequality (7) to determine a segment of non-increasing

coefficients.

Theorem 4.4.2 Let G be a graph with n ≥ 2 vertices and minimum degree δ ≥ 1.

Then di(G) ≤ di−1(G) for all

i ≥ n(2δ + 1) + δ

3δ + 1
.

In particular di(G) ≤ di−1(G) for i ≥ 3n+1
4

.

Proof. From Lemma 3.3.3 we have

∑︂
S∈Di(G)

|a2(S)| =
∑︂

v∈V (G)

|pv(G, i− 1)|. (8)

We will now show the following inequality holds:

∑︂
v∈V (G)

deg(v)|pv(G, i− 1)| ≤
∑︂

S∈Di(G)

|a1(S)|. (8)

Let

Ai,1 =
⋃︂

S∈Di(G)

{(v, S) : v ∈ a1(S)},

and

Pi−1,1 =
⋃︂

v∈V (G)

{(u, S) : S ∈ pv(G, i− 1) and u ∈ N(v)}.

Note that |Ai,1| =
∑︁

S∈Di(G) |a1(S)| and |Pi−1,i| =
∑︁

v∈V (G) deg(v)|pv(G, i − 1)|.
Therefore it suffices to show there is a injection from Pi−1,1 to Ai,1. Consider the

mapping g(u, S) = (u, S ∪ {u}). We will first show g : Pi−1,1 → Ai,1. For any

(u, S) ∈ Pi−1,1 there is exactly one v ∈ V (G) such that S ∈ pv(G, i − 1)) and

u ∈ N(v). Note v is the only vertex not dominated by S. Furthermore S ∪ {u} is a

dominating set of cardinality i where v is adjacent to exactly one neighbour, u, in S.

Therefore v ∈ N1(S) and thus u ∈ a1(S). Therefore g(u, S) = (u, S ∪ {u}) ∈ Ai,1.
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We will now show that g is injective. Suppose that there exists (u, S), (u′, S ′) ∈
Pi−1,1 such that g(u, S) = g(u′, S ′). Then (u, S ∪ {u}) = (u′, S ′ ∪ {u′}) and hence

v = v′. Furthermore S ∪ {u} = S ′ ∪ {u′} and thus S = S ′ as u /∈ S and u′ /∈ S ′.

Therefore (u, S) = (u′, S ′) and g is injective. Furthermore the inequality in (8) holds

and together with (8) we obtain

∑︂
S∈Di(G)

δ·|a2(S)| =
∑︂

v∈V (G)

δ·|pv(G, i−1)| ≤
∑︂

v∈V (G)

deg(v)|pv(G, i−1))| ≤
∑︂

S∈Di(G)

|a1(S)|.

Furthermore

a(G, i) =
∑︂

S∈Di(G)

|a(S)| =
∑︂

S∈Di(G)

|a1(S)|+
∑︂

S∈Di(G)

|a2(S)| ≤
∑︂

S∈Di(G)

(︃
1 +

1

δ

)︃
|a1(S)|.

By Lemma 3.3.2, |a1(S)| ≤ |N1(S)| ≤ n− i for each S ∈ Di(G) and hence

a(G, i) ≤
∑︂

S∈Di(G)

(︃
1 +

1

δ

)︃
(n− i) =

(︃
1 +

1

δ

)︃
(n− i)di(G).

From equation (7), di(G) ≤ di−1(G) if and only if a(G, i) ≤ (2i − n − 1)di(G). One

can see that provided di(G) > 0 , then(︃
1 +

1

δ

)︃
(n− i)di(G) ≤ (2i− n− 1)di(G)

is equivalent to

i ≥ n(2δ + 1) + δ

3δ + 1
.

Note that when δ ≥ 1 and n ≥ 2 then γ(G) ≤ n
2
hence di(G) > 0 for i ≥ n

2
. As

n(2δ+1)+δ
3δ+1

≥ n
2
then from equation (7) we have di(G) ≤ di−1(G) for i ≥ n(2δ+1)+δ

3δ+1
.

Finally note that aδ+b
cδ+d

is a non-increasing function of δ if and only if bc ≥ ad.

Therefore n(2δ+1)+δ
3δ+1

= (2n+1)δ+n
3δ+1

is non-increasing if and only if 3n ≥ 2n+ 1, which is

certainly true for n ≥ 2. Therefore for all δ ≥ 1 we have 3n+1
4

≥ n(2δ+1)+δ
3δ+1

and hence

di(G) ≤ di−1(G) when i ≥ 3n+1
4

. □

Theorem 4.4.2 and Theorem 4.2.3 imply that if a graph without isolated vertices

is unimodal then its mode is between n
2
and 3n+1

4
. Using Maple we have verified that

all graphs with up to 9 vertices are unimodal. Furthermore the modes of graphs with

no isolated vertices were bounded above by 2n
3
. This leads to the following conjecture.
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Conjecture 4.4.3 Let G be a graph with n ≥ 2 vertices. If G has no isolated vertices

then di(G) ≤ di−1(G) for i ≥ ⌈2n
3
⌉.

If a graph G without isolated vertices is unimodal then Conjecture 4.4.3 puts an

upper bound on the mode ofD(G, x). That is, Conjecture 4.4.3 posits that a unimodal

domination polynomial D(G, x) has mode at most ⌈2n
3
⌉. This parallels Conjecture

3.3.9 which puts forth that avd(G) ≤ 2n
3
. Furthermore, the family of graphs with

avd(G) = 2n
3
given after Conjecture 3.3.9 are each unimodal with mode at either ⌈2n

3
⌉

or ⌊2n
3
⌋. Recall each graph G′ in this family is obtained by taking any graph G on

k + ℓ vertices and adding one leaf to k vertices of G and two leaves to the other ℓ

vertices of G. The fact that each of these graphs are unimodal follows from the fact

that they all have real roots [73]. Additionally, Darroch [41] showed that if D(G, x)

has all real roots then it has mode ⌊avd(G)⌋ or ⌈avd(G)⌉.
So far, most of this section has paralleled the results and techniques from Section

3.3. The remainder of this section will not be any different. We will show Conjecture

4.4.3 holds for quasi-regularizable graphs. Recall a quasi-regularizable graph can be

characterized as a graph for which |S| ≤ |N(S)| holds for any independent set S of

G. We will also show di(G) ≤ di−1(G) for i ≥ n − 2ν(G)+1
3

where ν(G) denotes the

matching number of G.

Theorem 4.4.4 If G is a quasi-regularizable graph di(G) ≤ di−1(G) for i ≥ 2n+1
3

.

Proof. Let S be a dominating set of G. Recall from the proof of Theorem 3.3.10

that |a(S)| ≤ n− |S| because G is a quasi-regularizable graph. Therefore

a(G, i) =
∑︂

S∈Di(G)

|a(S)| ≤
∑︂

S∈Di(G)

(n− |S|) = (n− i)di(G).

From equation (7), we have di(G) ≤ di−1(G) if and only if a(G, i) ≤ (2i−n−1)di(G).

As the inequality (n − i)di(G) ≤ (2i − n − 1)di(G) is satisfied for i ≥ 2n+1
3

, we are

done. □

As mentioned previously, any graph which contains a perfect matching is quasi-

regularizable. Recall a matching in a graph is a subset of edges such that no two edges

are incident to the same vertex. Let ν(G) denote the matching number of G, that
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is, the largest cardinality of a matching. We alter the proof of the previous theorem

to bound the mode of D(G, x) in terms of the matching number ν(G). This will not

improve the bound from Theorem 4.4.4 for graphs with perfect matchings. However

there are graphs which contain near perfect matchings, such as paths of odd order,

which are not quasi-regularizable and therefore not subject to the bound in Theorem

4.4.4.

Theorem 4.4.5 Let G be a graph with n vertices. Then di(G) ≤ di−1(G) for

i ≥ n− 2ν(G)− 1

3
.

Proof. Let S be a dominating set. We begin by showing that |a(S)| ≤ 2n −
2ν(G) − |S| by showing |a1(S)| + |a2(S)| ≤ |N1(S)| + |N2(S)| + n − 2ν(G). By

Lemma 3.3.2, we have |a1(S)| ≤ |N1(S)|. Therefore it suffices to show that |a2(S)| ≤
|N2(S)|+ n− 2ν(G).

From the proof of Theorem 4.4.4 we know that for every vertex v ∈ a2(S), it must

be the case that N(v) ⊆ N2(S). Now, fix a maximum matching in G. Each vertex

in a2(S) is either unmatched or matched with a vertex in N2(S). Note there are at

most n− 2ν(G) unmatched vertices in G. Therefore |a2(S)| ≤ |N2(S)| + n− 2ν(G).

Furthermore

a(G, i) =
∑︂

S∈Di(G)

|a(S)| ≤
∑︂

S∈Di(G)

(2n− 2ν(G)− |S|) = (2n− 2ν(G)− i)di(G).

From equation (7), we have di(G) ≤ di−1(G) if and only if a(G, i) ≤ (2i−n−1)di(G).

As (2n− 2ν(G)− i)di(G) ≤ (2i− n− 1)di(G) is satisfied for i ≥ n− 2ν(G)−1
3

, we are

done. □

Although the unimodality conjecture remains open for domination polynomials,

we have been able to show that almost all domination polynomials are unimodal. An

old theorem from Newton (See [29]) states that a polynomial with positive coefficients

is log-concave (and hence unimodal) if it is real-rooted, that is, it has all real roots.

More generally, if the roots lie in the sector
{︁
z ∈ C : 2π

3
< | arg(z)| < 4π

3

}︁
the polyno-

mial is also log-concave [30]. Thus the location of the roots of graph polynomials are
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of interest and this motivates our next chapter. In fact, in Section 5.2 we will show

that for a particular family of graphs, the roots of their domination polynomials lie

in
{︁
z ∈ C : 2π

3
< | arg(z)| < 4π

3

}︁
and are therefore log-concave.



Chapter 5

The Roots of Domination Polynomials

5.1 Background

For many graph polynomials, the location and nature of the roots have been (and

continue to be) active areas of study. For example, the roots of chromatic polynomials

(usually referred to as chromatic roots) have been of interest since the inception of

chromatic polynomials, as the infamous Four Color Conjecture (now the Four Color

Theorem) was equivalent to stating that 4 is never a chromatic root of a planar graph.

While it is clear that the real chromatic roots are nonnegative (as the polynomial has

coefficients that alternate in sign), it is not hard to show that (0, 1) is always a root-

free interval for chromatic roots. Are there others? In fact, a combination of results

by Thomassen [84] and Jackson [61] proved that the closure of real chromatic roots

is exactly the set {0, 1} ∪ [32/27,∞) (and hence, surprisingly, (1, 32/27) is chromatic

root-free). For all-terminal reliability polynomials (the probability that a graph is

connected, given that the edges are independently operational with probability p),

the closure of their real roots [34] is precisely {0}∪ [1, 2]. We remark that, in contrast

to the real case, the closure of the complex chromatic roots is the entire complex plane

[81], while the closure of the complex all-terminal roots is not yet known (while it

contains the unit disk centered at z = 1 [34], there are some roots just outside the

disk [32,75]).

In this chapter we investigate the roots of domination polynomials. The domina-

tion polynomials and their roots, domination roots) have been of significant interest

over the last 10 years(c.f. [6]). Alikhani characterized graphs with two, three and four

distinct domination roots [2,5]. In [73] Oboudi gave a degree dependent bound on the

modulus of domination roots for a given graph. Brown and Tufts [37] showed that

domination roots are dense in the complex plane. In this Chapter we will discuss two

problems related to domination roots. In Section 5.2 we will provide a closed form of

D(Cn ⋄H, x) and then bound the roots of D(Cn ⋄K1, x). We will then use a classical

76



77

result from Brenti [30] to show that the location of the roots of D(Cn ⋄K1, x) imply

that D(Cn ⋄K1, x) is log-concave. In Section 5.3 we will show that the closure of the

real domination roots is (−∞, 0].

5.2 Edges Coronas and Domination Polynomials

The edge corona is a graph product first introduced in 2010 by Hou and Shiu [59]. Hou

and Shiu defined the edge corona as a variant to the corona of two graphs introduced

by Frucht and Harary [47]. Hou and Shiu considered the edge corona in the context

of the adjacency spectrum and Laplacian spectrum, while they also considered the

number of spanning trees of edge coronas.

For two graphs G and H let m denote the number of edges in G. Recall the edge

corona G ⋄H of graphs G and H, G ⋄H, as the graph obtained by taking G and m

copies of H and joining the two end vertices of the ith edge of G to every vertex in

the ith copy of H. Note in the case where G has no edges G ⋄H ∼= G. An example

of C4 ⋄K2 is shown in Figure 5.1.

Figure 5.1: C4 ⋄K2

There is similar graph operation called the corona [47] G ◦ H which is defined by

taking |V (G)| copies of H and joining the ith vertex in G to the ith copy of H.

The corona operation was shown to have nice properties with respect to domination.

Particularly, for any pair of graphs G and H we have γ(G ◦ H) = |V (G)|. The

edge corona operation also behaves nicely with respect to domination. For any graph

G and H we have γ(G ⋄ H) = |V (G)| − α(G) were α(G) is the size of the largest

independent set of G. Coronas of a graph have also been studied in the context of

domination polynomials [67]. In particular, for any graph G the set of domination

roots of G ◦K1 is {0, 2}.
In this section we will study the domination polynomials of edge coronas. We will

provide a closed form of D(Cn⋄H, x) in terms of D(H, x). We will use the closed form
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of D(Cn ⋄H, x) to show the log-concavity of D(Cn ⋄K1, x) via the location of their

roots. Along the way we will also show D(Pn ⋄H, x) satisfies a two term recurrence

relation. We first require the following results.

For a graph G, a vertex v ∈ V (G) is domination-covered if every dominating set

of G− v includes at least one vertex adjacent to v in G. Therefore if v is domination

covered, the collection of dominating sets of G which do not contain v is exactly the

collection of dominating sets of G − v. Kotek et al. classified all such vertices as

follows.

Theorem 5.2.1 ([67]) Let G be a graph. A vertex v ∈ V (G) is domination-covered

if and only if there is a vertex u ∈ N(v) such that N [u] ⊆ N [v]. □

For two graphs G and H, any non-isolated vertex v in G in the edge corona G ⋄ H
contains the closed neighbourhood of every vertex in every copy of H for which v is

joined. Therefore by Theorem 5.2.1, every vertex of G in G⋄H is domination-covered.

This will be useful in the proofs of Theorem 5.2.2 and Theorem 5.2.6.

For graphs G and H on nG and nH vertices respectively, recall the following result

from Theorem 1.3.2 (ii):

D(G ∨H, x) = ((1 + x)nG − 1)((1 + x)nH − 1) +D(G, x) +D(H, x).

We will require two special cases of Theorem 1.3.2 (ii):

� D(G ∨K1, x) = x(1 + x)nG +D(G, x)

� D(G ∨K2, x) = (x2 + 2x)(1 + x)nG +D(G, x).

We now provide a recursive formula for the corona of paths and any fixed graph

G (we remark that in [12] Alikhani proved Theorem 5.2.2 for the restricted case of

domination polynomials of cactus chains Pn ⋄K1).

Theorem 5.2.2 Let G be a graph with r ≥ 1 vertices, and let n ≥ 4. Then

D(Pn ⋄G, x) = β1 ·D(Pn−1 ⋄G, x) + β2 ·D(Pn−2 ⋄G, x),

where

β1 = x(1 + x)r +D(G, x)

β2 = ((1 + x)r −D(G, x)) · x(1 + x)r
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Proof. Set PGn = Pn ⋄ G. Consider the labelling of PGn in Figure 5.2 where

Gi
∼= G for all 1 ≤ i ≤ n− 1.

G1 Gn−2 Gn−1

v0 v1 vn−3 vn−2 vn−1

. . .

Figure 5.2: Pn ⋄G

For each 1 ≤ i ≤ n − 1 let Hi be the subgraph of PGn induced by vi and Gi. Note

Hi
∼= G∨K1 and PGn−Hn−1 is isomorphic to PGn−1. For a subset S ⊆ V (PGn) let

S[Hn−1] and S[V − Hn−1] be the subset of S restricted to the vertices of Hn−1 and

PGn −Hn−1, respectively.

We will now show β1 ·D(Pn−1⋄G, x) and β2 ·D(Pn−2⋄G, x) together are generating

functions for all subsets S which are dominating. To do so we will consider whether

or not S[Hn−1] dominates Hn−1.

Case 1: S[Hn−1] is a dominating set of Hn−1

As S[Hn−1] is a dominating set of Hn−1
∼= G ∨ K1, S[Hn−1] is non-empty and vn−2

is also dominated by some vertex in S[Hn−1]. We will now show for this case that

S dominates PGn if and only if S[V − Hn−1] dominates V − Hn−1. If S[V − Hn−1]

dominates PGn − Hn−1 then clearly S is a dominating set of PGn. So suppose

S[V − Hn−1] does not dominate PGn − Hn−1. If S were to dominate PGn, then

S[V −Hn−1] must be a dominating set of PGn−Hn−1−vn−2 which does not dominate

vn−2. However, because r ≥ 1, we have that vn−2 is a domination-covered vertex of

PGn−Hn−1 and hence every dominating set of PGn−Hn−1−vn−2 must also dominate

PGn − Hn−1. Thus S[V − Hn−1] dominates PGn − Hn−1, which is a contradiction.

Therefore S dominates PGn if and only if S[V −Hn−1] dominates V −Hn−1. Note the

dominating sets of Hn−1 are enumerated by D(G∨K1, x) and the dominating sets of

PGn −Hn−1
∼= PGn−1 are enumerated by D(Pn−1 ⋄G, x). Therefore all dominating

sets of PGn for this case can be enumerated by
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D(G ∨K1, x)D(Pn−1 ⋄G, x) = β1 ·D(Pn−1 ⋄G, x). (5.1)

Case 2: S[Hn−1] is not a dominating set of Hn−1

For this case it is easy to see that S dominates PGn if and only if S[V − Hn−1]

dominates V − Hn−1 and vn−2 ∈ S[V − Hn−1]. To enumerate the dominating sets

in PGn−1 that contain vn−2, we notice that, for similar reasons, these are precisely

the dominating sets in PGn−2 along with vn−2 and any subset of V (Gn−2). Note

the non-dominating sets of Hn−1 are enumerated by (1 + x)r+1 −D(G ∨K1, x), the

subsets of Hn−2 containing vn−2 are enumerated by x(1+x)r and the dominating sets

of PGn−2 are enumerated by D(Pn−2 ⋄ G, x). Therefore all dominating sets of PGn

for this case can be enumerated by

((1 + x)r+1 −D(G ∨K1, x)) · x(1 + x)r ·D(Pn−2 ⋄G, x) = β2 ·D(Pn−2 ⋄G, x). (5.2)

Which is what we wished to show. □

We will now prove that Cn⋄G also follows the same recursion as in Theorem 5.2.2.

First we need a few minor results. For a graph G with vertex v let D+v(G, x) and

D−v(G, x) denote the respective polynomials which enumerate the dominating sets

which contain v and do not contain v, respectively. Note that D(G, x) = D+v(G, x)+

D−v(G, x). Now consider the dominating sets of Pn ⋄ G which do not contain v0 (as

labelled in Figure 5.2). For n ≥ 4 the arguments in the proof of Theorem 5.2.2 are

still satisfied for D−v0(Pn ⋄G, x) and D+v0(Pn ⋄G, x), yielding the following corollary.

Corollary 5.2.3 For any graph G with r vertices and a path on n ≥ 4 vertices then

D−v0(Pn ⋄G, x) = β1 ·D−v0(Pn−1 ⋄G, x) + β2 ·D−v0(Pn−2 ⋄G, x),

D+v0(Pn ⋄G, x) = β1 ·D+v0(Pn−1 ⋄G, x) + β2 ·D+v0(Pn−2 ⋄G, x),

where v0 is labelled in Figure 5.2 and

β1 = x(1 + x)r +D(G, x)

β2 = ((1 + x)r −D(G, x)) · x(1 + x)r.

□
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Note in Theorem 5.2.2, β1 and β2 do not depend on n. This allows for the following

useful lemma.

Lemma 5.2.4 For a graph G and integers n, k > 0 such that n− k ≥ 4 let fn(x) be

fn(x) =
k∑︂

i=0

c1,i ·D(Pn−i ⋄G, x)+
k∑︂

i=0

c2,i ·D−v0(Pn−i ⋄G, x)+
k∑︂

i=0

c3,i ·D+v0(Pn−i ⋄G, x)

where each cj,i = cj,i(x) is a function that does not depend on n and v0 is as labelled

in Figure 5.2. Then fn(x) satisfies the same recurrence as D(Pn−k ⋄G, x). That is,

fn(x) = β1 · fn−1(x) + β2 · fn−2(x),

where

β1 = x(1 + x)r +D(G, x)

β2 = ((1 + x)r −D(G, x)) · x(1 + x)r

□

Proof. By Theorem 5.2.2 and Corollary 5.2.3 for each 0 ≤ i ≤ k we have

D(Pn−i ⋄G, x) = β1 ·D(Pn−1−i ⋄G, x) + β2 ·D(Pn−2−i ⋄G, x),

D−v0(Pn−i ⋄G, x) = β1 ·D−v0(Pn−1−i ⋄G, x) + β2 ·D−v0(Pn−2−i ⋄G, x),

D+v0(Pn−i ⋄G, x) = β1 ·D+v0(Pn−1−i ⋄G, x) + β2 ·D+v0(Pn−2−i ⋄G, x).

Therefore

fn(x) =
k∑︂

i=0

c1,i(x)D(Pn−i ⋄G, x) +
k∑︂

i=0

c2,i(x)D−v0(Pn−i ⋄G, x)

+
k∑︂

i=0

c3,i(x)D+v0(Pn−i ⋄G, x)

=
k∑︂

i=0

c1,i(x) · (β1 ·D(Pn−1−i ⋄G, x) + β2 ·D(Pn−2−i ⋄G, x))
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+
k∑︂

i=0

c2,i(x) · (β1 ·D−v0(Pn−1−i ⋄G, x) + β2 ·D−v0(Pn−2−i ⋄G, x))

+
k∑︂

i=0

c3,i(x) · (β1 ·D+v0(Pn−1−i ⋄G, x) + β2 ·D+v0(Pn−2−i ⋄G, x))

=β1

k∑︂
i=0

c1,i(x) ·D(Pn−1−i ⋄G, x) + β2

k∑︂
i=0

c1,i(x) ·D(Pn−2−i ⋄G, x))

+ β1

k∑︂
i=0

c2,i(x) ·D−v0(Pn−1−i ⋄G, x) + β2

k∑︂
i=0

c2,i(x) ·D−v0(Pn−2−i ⋄G, x))

+ β1

k∑︂
i=0

c3,i(x) ·D+v0(Pn−1−i ⋄G, x) + β2

k∑︂
i=0

c3,i(x) ·D+v0(Pn−2−i ⋄G, x))

=β1 · fn−1(x) + β2 · fn−2(x).

Therefore our assertion is true. □

Kotek et. al. [67] defined an irrelevant edge of graph G to be an edge e such that

D(G, x) = D(G− e, x), and completely classified all such edges as follows.

Theorem 5.2.5 ([67]) Let G be a graph. An edge e = {u, v} is an irrelevant edge

in G if and only if u and v are domination-covered in G− e.

We are now ready to show D(Cn⋄G, x) follows the same recursion as D(Pn⋄G, x).

Theorem 5.2.6 For any graph G with r vertices and a cycle on n ≥ 5 vertices then

D(Cn ⋄G, x) = β1 ·D(Cn−1 ⋄G, x) + β2 ·D(Cn−2 ⋄G, x),

where

β1 = x(1 + x)r +D(G, x)

β2 = ((1 + x)r −D(G, x)) · x(1 + x)r

Proof. A labelling of D(Cn ⋄ G, x) is shown in Figure 5.3, where Gi
∼= G for all

0 ≤ i ≤ n− 1.

Consider the edge e = {v0, vn−1}. Both N [v0] and N [vn−1] contain the closed

neighbourhoods of each vertex in G1 and Gn−1 respectively. Therefore they are both

domination-covered in (Cn⋄G)−e and hence by Theorem 5.2.5 e is an irrelevant edge.
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G0

G1 Gn−2 Gn−1

v0 vn−1

e

. . .

Figure 5.3: Cn ⋄G

For simplicity let CGn denote the graph (Cn⋄G)−e. Note D(CGn, x) = D(Cn⋄G, x)

as e is an irrelevant edge.

Now CGn −G0
∼= Pn ⋄G so let PGn denote CGn −G0. For a dominating subset

of vertices S ⊆ V let S[G0] and S[PGn] be the subsets of S restricted to the vertices

of G0 and PGn respectively. Similar to the proof of Theorem 5.2.2 we will now

determine a generating function for all such dominating sets S. To do so we will

consider whether or not S[G0] dominates G0. If S[G0] dominates G0 we will show all

such dominating sets S are enumerated by

D(G, x) ·D(Pn ⋄G, x). (5.3)

If S[G0] does not dominateG0, we will show all such dominating sets S are enumerated

by

((1+x)r−D(G, x)) ·(x(1+x)rD+v0(Pn−1⋄G, x)+2x(1+x)rD−v0(Pn−1⋄G, x)), (5.4)

Then together with equations (5.3) and (5.4), D(Cn ⋄ G, x) can be written in terms

of D(Pn ⋄G, x), D−v0(Pn−1 ⋄G, x), and D+v0(Pn−1 ⋄G, x). Therefore by Lemma 5.2.4

it will follow that our recursion is satisfied for n ≥ 5. We conclude this proof with

these two cases.

Case 1: S[G0] is a dominating set of G0

If S[G0] is a dominating set of G0 then S[G0] is non-empty and also dominates v0 and

vn−1. Note v0 and vn−1 are both domination-covered vertices. It follows for the same
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argument of case 1 in the proof of Theorem 5.2.2 that S is a dominating set if and only

if S[PGn] is a dominating set of PGn. The dominating sets of G0 are enumerated by

D(G, x) and the dominating sets of PGn are enumerated by D(Pn ⋄G, x). Therefore

all dominating sets of CGn for this case can be enumerated by equation (5.3).

Case 2: S[G0] is not a dominating set of G0

If S[G0] is not a dominating set of G0 then at least one of v0 or vn−1 must be in S in

order for S to dominate CGn. Additionally S[PGn] must also be a dominating set

of PGn which contain at least one of v0 or vn−1. The non-dominating sets of G0 are

enumerated by (1 + x)r −D(G, x). Therefore it suffices to show the dominating sets

of PGn which contains at least one of v0 or vn−1 are enumerated by

x(1 + x)rD+v0(Pn−1 ⋄G, x) + 2x(1 + x)rD−v0(Pn−1 ⋄G, x).

We will show the dominating sets of PGn with contain both v0 and vn−1 are enumer-

ated by

x(1 + x)rD+v0(Pn−1 ⋄G, x)

and the dominating sets of CGn − G0 with contain exactly one of v0 or vn−1 are

enumerated by

2x(1 + x)rD−v0(Pn−1 ⋄G, x).

Similar to the proof of Theorem 5.2.2, let Hn−1 be the subgraph of Pn ⋄ G induced

by vn−1 and Gn−1. Furthermore let S[Hn−1] and S[V − Hn−1] be the subset of S

restricted to the vertices of Hn−1 and PGn −Hn−1.

First consider the dominating sets S of PGn with contain both v0 and vn−1. As

vn−1 is a universal vertex of Hn−1 then S[Hn−1] dominates Hn−1. Thus by a similar

argument used in case 1 of the proof of Theorem 5.2.2, S is a dominating set of PGn

(which contains v0) if and only if S[PGn −Hn−1] is a dominating set of PGn −Hn−1

(which contains v0). Note the subsets of Hn−1 which contain vn−1 are enumerated

by x(1 + x)r and the dominating sets of PGn −Hn−1
∼= PGn−1 which contain v0 are

enumerated by D+v0(Pn−1 ⋄G, x). Therefore all dominating sets of PGn for this case

can be enumerated by equation x(1 + x)rD+v0(Pn−1 ⋄G, x).

Now consider the dominating sets S of PGn with contain exactly one of v0 or vn−1.

Without loss of generality suppose v0 /∈ S and vn−1 ∈ S. Again as vn−1 is a universal
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vertex of Hn−1 then S[Hn−1] dominates Hn−1. Thus by a similar argument used in

case 1 of the proof of Theorem 5.2.2, S is a dominating set of PGn (which does not

contains v0) if and only if S[PGn −Hn−1] is a dominating set of PGn −Hn−1 (which

does not contains v0). Note the subsets of Hn−1 which contain vn−1 are enumerated

by x(1 + x)r and the dominating sets of PGn −Hn−1
∼= PGn−1 which do not contain

v0 are enumerated by D(−v0Pn−1 ⋄ G, x). Therefore all dominating sets of PGn for

this case can be enumerated by equation 2x(1 + x)rD−v0(Pn−1 ⋄G, x). □

We are now ready to derive the closed form of D(Cn ⋄ G, x). We will do so by

solving for the general solutions of the recursion from Theorem 5.2.6 and then show

D(Cn ⋄G, x) always has the same specific solution for any graph G.

Theorem 5.2.7 For any graph G with r vertices and a cycle on n ≥ 3 vertices,

D(Cn ⋄G, x) =

(︄
β1 +

√︁
β2
1 + 4β2

2

)︄n

+

(︄
β1 −

√︁
β2
1 + 4β2

2

)︄n

where

β1 = x(1 + x)r +D(G, x)

β2 = ((1 + x)r −D(G, x)) · x(1 + x)r

Proof. For n ≥ 5 we know from Theorem 5.2.6 that D(Cn ⋄ G, x) follows this

homogeneous linear recursive relation

D(Cn ⋄G, x) = β1 ·D(Cn−1 ⋄G, x) + β2 ·D(Cn−2 ⋄G, x). (5.5)

Therefore D(Cn ⋄G, x) = s1 · λn
1 + s2 · λn

2 where each λi = λi(x) satisfy

λ2
i − β1λi − β2 = 0.

The solutions of this quadratic equation are

λ1 =
β1 +

√︁
β2
1 + 4β2

2
and λ2 =

β1 −
√︁
β2
1 + 4β2

2
.

It suffices to show D(Cn ⋄G, x) = λn
1 + λn

2 for n = 3 and n = 4 as all other cases will

follow from the recursion in equation (5.5). Let S be a dominating set of Cn ⋄G. We

will now determine the generating function of S for n = 3 and n = 4. In each case
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we will partition the generating function of S by considering the number of copies of

G which are dominated by the vertices in Cn which are contained in S. Let S[Cn]

denote the vertices of S restricted to the vertices of Cn.

First consider n = 3. For any dominating set S of C3 ⋄ G consider how many

vertices are in S[C3]:

� If S contains 2 or 3 vertices of the C3, then all three copies of G are dominated

by these vertices. Therefore S could contain any subset of the vertices of each

copy of G and the generating function for these dominating sets is given by

(x3 + 3x2)(1 + x)3r.

� If S contains exactly one vertex of C3, then two of the copies of G will be dom-

inated by these vertices and one will not. Therefore S could contain any subset

of the vertices of the two dominated copies of G and must contain a dominating

set in the other copy of G. The generating function for these dominating sets

is given by 3x(1 + x)2rD(G, x).

� If S does not contain any vertices of C3 then S must contain a dominating set

in each copy of G. The generating function for these dominating sets is given

by (D(G, x))3.

Therefore

D(C3 ⋄G, x) = (x3 + 3x2)(1 + x)3r + 3x(1 + x)2rD(G, x) + (D(G, x))3.

Furthermore

λ3
1 + λ3

2 =β3
1 + 3β1β2

=(x3 + 3x2)(1 + x)3r + 3x(1 + x)2rD(G, x) +D(G, x)3

=D(C3 ⋄G, x).

Now consider where n = 4. For any dominating set S of C3 ⋄ G again consider

how many vertices are in S[C4].
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� If S contains 4 or 3 vertices of the C4, then all four copies of G are dominated

by these vertices. In each case S could contain any subset of the vertices of

each copy of G and the generating function for these dominating sets is given

by (x4 + 4x3)(1 + x)4r.

� If S contains two non-adjacent vertices of the C4, then all four copies of G are

dominated by these vertices. In each case S could contain any subset of the

vertices of each copy of G and the generating function for these dominating sets

is given by 2x2(1 + x)4r.

� If S contains two adjacent vertices of the C4, then three copies of G are domi-

nated by these vertices and one is not. Therefore S could contain any subset of

the vertices of the three dominated copies of G and must contain a dominating

set in the other copy of G. The generating function for these dominating sets

is given by 4x2(1 + x)3rD(G, x).

� If S contains exactly one vertex of C4, then two of the copies of G will be

dominated by these vertices and the other two will not. Therefore S could

contain any subset of the vertices of the two dominated copies of G and must

contain a dominating set in the other two copies of G. The generating function

for these dominating sets is given by 4x(1 + x)2r(D(G, x))2.

� If S does not contain any vertices of C4 then S must contain a dominating set

in each copy of G. The generating function for these dominating sets is given

by (D(G, x))4.

Therefore

D(C4 ⋄G, x) =(x4 + 4x3 + 2x2)(1 + x)4r + 4x2(1 + x)3rD(G, x)

+ 4x(1 + x)2r(D(G, x))2 + (D(G, x))4.

Furthermore

λ4
1 + λ4

2 =β4
1 + 4β2

1β2 + 2β2
2
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=(x4 + 4x3 + 2x2)(1 + x)4r + 4x2(1 + x)3rD(G, x)

+ 4x(1 + x)2r(D(G, x))2 + (D(G, x))4.

=D(C4 ⋄G, x).

Therefore D(Cn ⋄G, x) = λn
1 + λn

2 for all n ≥ 3. □

We will now showD(Cn⋄K1, x) is log-concave by bounding the location of its roots.

In Chapter 4 we primarily discussed combinatorial arguments to show a polynomial

was log-concave. However it is possible to show a polynomial is log-concave simply

by the location of its roots. We will now call on a Theorem from Brenti et al. [30].

Theorem 5.2.8 ([30]) If all the roots z of a polynomial f(x) with positive coeffi-

cients are in the region

{︃
z ∈ C :

2π

3
< | arg(z)| < 4π

3

}︃
then the sequence of coefficients of f(x) is strictly log-concave.

We will now bound the roots of D(Cn ⋄ K1, x) to the two blue curves shown

in Figure 5.4 (appears on page 91). It will then follow from Theorem 5.2.8 that

D(Cn ⋄K1, x) is log-concave.

Theorem 5.2.9 For n ≥ 3, D(Cn ⋄K1, x) is log-concave.

Proof. Using Theorem 5.2.7 with r = 1 and D(K1, x) = x we have β1 = x2 + 2x,

β2 = x2 + x and

D(Cn ⋄K1, x) = (λ1(x))
n + (λ2(x))

n ,

where

� λ1(x) =
x2+2x+

√
x4+4x3+8x2+4x

2

� λ2(x) =
x2+2x−

√
x4+4x3+8x2+4x

2
.
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For z ∈ C, if D(Cn ⋄K1, z) = 0 then |λ1(z)| = |λ2(z)|, that is,

⃓⃓⃓
z2 + 2z +

√
z4 + 4z3 + 8z2 + 4z

⃓⃓⃓
=
⃓⃓⃓
z2 + 2z −

√
z4 + 4z3 + 8z2 + 4z

⃓⃓⃓
.

Clearly this is satisfied for z = 0 and z = −2 as z2+2z = 0. Thus suppose z ̸= 0,−2.

Divide both sides by |z2 + 2z| and multiply the right hand side by | − 1| to obtain

⃓⃓⃓⃓
⃓1 +

√
z4 + 4z3 + 8z2 + 4z

z2 + 2z

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓− 1 +

√
z4 + 4z3 + 8z2 + 4z

z2 + 2z

⃓⃓⃓⃓
⃓.

This implies that
√
z4+4z3+8z2+4z

z2+2z
must be purely imaginary, and hence

(︄√
z4 + 4z3 + 8z2 + 4z

z2 + 2z

)︄2

=
z4 + 4z3 + 8z2 + 4z

z4 + 4z3 + 4z2
(5.6)

must be real and negative. As z ̸= 0 then be can factor out a z from the numerator

and denominator. Furthermore if we multiple the numerator and denominator of

(5.6) by the conjugate of z3 + 4z2 + 4z the resultant fraction would have a positive

denominator and it would suffice to show the resultant numerator is real and negative.

Let f(z) = z3 + 4z2 + 8z + 4, g(z) = z3 + 4z2 + 4z, and z = a+ bi for a, b ∈ R. Then

f(a+ bi) =a3 − 3ab2 + 4a2 − 4b2 + 8a+ 4 + (3a2b− b3 + 8ab+ 8b)i

g(a+ bi) =a3 − 3ab2 + 4a2 − 4b2 + 4a+ (3a2b− b3 + 8ab+ 4b)i

Now multiple the numerator and denominator of (5.6) by the conjugate of g(a+ bi).

The resultant numerator has real part

R(a, b) =(a3 − 3ab2 + 4a2 − 4b2 + 8a+ 4)(a3 − 3ab2 + 4a2 − 4b2 + 4a)

+ (3a2b− b3 + 8ab+ 8b)(3a2b− b3 + 8ab+ 4b)

=a6 + 8a5 + (3b2 + 28)a4 + (16b2 + 52)a3 + (3b4 + 32b2 + 48)a2

+ (8b4 + 36b2 + 16)a+ b6 + 4b4 + 16b2,

and imaginary part
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I(a, b) =− (a3 − 3ab2 + 4a2 − 4b2 + 8a+ 4)(3a2b− b3 + 8ab+ 4b)

+ (a3 − 3ab2 + 4a2 − 4b2 + 4a)(3a2b− b3 + 8ab+ 8b)

=− 4b(2a3 + 2ab2 + 7a2 + 3b2 + 8a+ 4).

Therefore if z = a + bi is a root of D(Cn ⋄ K1, x) with z ̸= 0,−2 it must satisfy

R(a, b) < 0 and I(a, b) = 0. Note that I(a, b) is the product of b and a quadratic of

b. Therefore I(a, b) = 0 if and only if b = 0 or b = ±
√

−(2a+3)(2a3+7a2+8a+4)

2a+3
. In each

case we substituted these values into R(a, b).

� If b = 0, then R(a, b) = a(a3 + 4a2 + 8a + 4)(a + 2)2. Again using Maple we

solve that R(a, b) < 0 when

a ∈

(︄
3
√︁

26 + 3
√
33

3
− 8

3
3
√︁
26 + 3

√
33

− 4

3
, 0

)︄
≈ (−0.7044022572, 0).

� As R(a, b) is an even function of b, without loss of generality suppose

b =

√︁
−(2a+ 3)(2a3 + 7a2 + 8a+ 4)

2a+ 3
.

By assumption b is real and the case where b = 0 was covered previously.

Therefore b2 > 0 and more specifically −(2a + 3)(2a3 + 7a2 + 8a + 4) > 0.

With the use of Maple we can show 2a3 + 7a2 + 8a + 4 has exactly one real

root at a = −2 and is positive for a > −2 and negative for a < −2. Therefore

−(2a + 3)(2a3 + 7a2 + 8a + 4) > 0 when a ∈
(︁
−2,−3

2

)︁
. Again using Maple we

substituted b into R(a, b) and solved for when R(a, b) < 0 and a ∈
(︁
−2,−3

2

)︁
.

We obtain

a ∈

(︄
−2,−

3
√︁

26 + 3
√
33

6
+

4

3
3
√︁
26 + 3

√
33

− 4

3

)︄
≈ (−2,−1.647798871).

The curves defined by each case, as well as z = 0,−2 are shown in blue in Figure

5.4. Note for any n ≥ 3, the roots of D(Cn ⋄G, x) are contained within one of these
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Figure 5.4: Limit of the roots of D(Cn ⋄K1, x)

curves. Also in Figure 5.4 we provide the lines which border the region {z ∈ C : 2π
3
<

| arg(z)| < 4π
3
} from Theorem 5.2.8 in red.

We will show that all of the non-real roots are contained in the box B = {a + ib :

a ∈ (−2,−13
8
), b ∈ (−2, 2)}. Note that B is contained within the region of Theorem

5.2.8 and therefore as D(Cn ⋄ G, x) has all positive coefficients then D(Cn ⋄ G, x) is

log-concave. As we have already shown a ∈ (−2,−1.647798871) (note −13
8
= −1.625)

it suffices to show |b| < 2. Recall

b =
±
√︁
−(2a+ 3)(2a3 + 7a2 + 8a+ 4)

2a+ 3
= ±

√︃
−2a3 + 7a2 + 8a+ 4

2a+ 3
.

We can simplify b via polynomial division to

|b| =
√︃

−(2a+ 3)(a2 + 2a+ 1) + 1

2a+ 3
=

√︃
−(a+ 1)2 − 1

2a+ 3
.

Note that −1 < −(a + 1)2 < 0 for a ∈ (−2,−1.625) and − 1
2a+3

> 1 for a ∈
(−2,−1.625). Therefore |b| <

√︂
− 1

2a+3
. Furthermore the − 1

2a+3
is decreasing on

the interval (−2,−1.625) and therefore largest at a = −1.625. Finally

|b| <
√︄

− 1

2−13
8

+ 3
=

√︃
− 8

−26 + 24
=

√︃
8

2
= 2.
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All non-roots of D(Cn ⋄ G, x) are contained in B which itself is contained in the

region of Theorem 5.2.8. Therefore, as D(Cn ⋄ G, x) has all positive coefficients,

D(Cn ⋄G, x) is log-concave. □

In Cn ⋄K1 every vertex in the copy of Cn is domination-covered. By Theorem 5.2.5

any additional edge between these vertices would be an irrelevant edge. This gives us

the following simple corollary.

Corollary 5.2.10 For n ≥ 1, consider Cn⋄K1 and let E be the collection of all edges

in Cn. For any subset S ⊆ E, let (Cn ⋄K1) + S denote the graph formed by adding

the edges in S to Cn ⋄K1. Then Cn ⋄K1 + S is log-concave.

The proof of Theorem 5.2.9 shows the roots of D(Cn ⋄ K1, x) are all on one of

the blue curves in Figure 5.4. The following result from Beraha, Kahane, and Weiss

shows that as n gets large the limit set of the roots of D(Cn ⋄ K1, x) is exactly the

blue curves in Figure 5.4.

Theorem 5.2.11 ([76]) Suppose functions fn(x) satisfy

fn(x) = α1(x)(λ1(x))
n + α2(x)(λ2(x))

n + · · ·+ αk(x)(λk(x))
n,

where αi(x) and λi(x) are fixed non-zero analytic functions, such that no αi(x) is

identically zero and that for no pair i ̸= j it is true that λi(x) ≡ ωλj(x) for some

complex number ω of unit modulus. Then z ∈ C is a limit of the roots of fn(z) if and

only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus)

than the others; or

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z), and

αj(z) = 0. □

The proof of Theorem 5.2.9 shows the blue curves in Figure 5.4 are the exact

curves satisfying condition (i) of Theorem 5.2.11. Note condition (ii) of Theorem

5.2.11 cannot be satisfied as α1(x) = α2(x) = 1 ̸= 0. Therefore by Theorem 5.2.11

the collection of roots of D(Cn ⋄K1, x) for all n ≥ 3 are dense on those blue curves

in Figure 5.4.
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5.3 Closure of Real Domination Roots

For our investigation, we now turn to real domination roots, and in particular, their

closure. While Brown and Tufts [37] showed each real number is the limit of domina-

tion roots, not all real numbers are domination roots. For example any positive real

number can not be a domination root as the domination polynomial has all positive

coefficients.

To find the closure of the real domination roots, we will need a graph operation,

graph substitution. Let G and H be graphs. The graph G[H], formed by substituting

a copy of H for every vertex of G, is constructed by taking a disjoint copy of H, Hv,

for each vertex v of G, and joining every vertex in Hu to every vertex in Hv if and

only if u is adjacent to v in G. For example, the complete bipartite graph graph Kn,n

is the same as K2[Kn]. Domination polynomials are well-behaved with regards to

graph substitution of complete graphs .

Lemma 5.3.1 ([37]) Let G be any graph and let Kn be the complete graph on n

vertices. Then

D(G[Kn], x) = D(G, (x+ 1)n − 1).

We now proceed to prove that real domination roots are dense in the negative real

axis.

Theorem 5.3.2 The closure of the real domination roots is (−∞, 0].

Proof. Fix z ∈ (−∞, 0] and ε > 0; we need to show that there is a domination

root z′ in the interval (z − ε, z + ε). Without loss, we can assume that z ̸= −2, 0.

Our proof will essentially be in two parts – for z ∈ (−2, 0) and for z ∈ (−∞,−2). In

either case, note that from Lemma 5.3.1, if z1 is a domination root of some graph G,

then any solution of (z′ + 1)m − 1 = z1 is a domination root (of the graph G[Km]).

If m is an odd integer and z1 < 0 is a domination root, then (z1 + 1)1/m − 1 will

be a real domination root as well. Finally, z′ = (z1 + 1)1/m − 1 ∈ (z − ε, z + ε) iff

z1 ∈ ((z − ε + 1)m − 1, (z + ε + 1)m − 1), so it suffices to show that for some odd

m ≥ 1, the interval ((z − ε+ 1)m − 1, (z + ε+ 1)m − 1) contains a domination root.

Case 1: z ∈ (−2, 0)
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We shall consider two subcases that are similar in approach, splitting at z = −1.

Subcase 1.1: z ∈ (−2,−1)

We can assume that z − ε > −2 and z + ε < −1 by decreasing ε, so that both

(z − ε + 1)m − 1 and (z + ε + 1)m − 1 are in (−2,−1). Observe that if we set

b = −(z − ε+ 1) and a = −(z + ε+ 1), then 1 > b > a > 0. Note that for odd m the

intervals ((z− ε+1)m − 1, (z+ ε+1)m − 1) = (−bm − 1,−am − 1) approach −1 from

the left, that is, the intervals all lie to the left of −1, and both end points approach

−1 as m increases. Moreover, as

−bm+1 − 1 < −am − 1 ↔ b

(︃
b

a

)︃m

> 1,

we conclude that if m is odd and large enough, the left end point of the next interval

(−bm+1−1,−am+1−1) lies inside the previous interval (−bm−1,−am−1). It follows

that the union of all the intervals,⋃︂
m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

will contain an interval (w,−1), with w ∈ (−2,−1).

Now consider the domination polynomial of the complete bipartite graph Kk,ℓ,

which is clearly given by

D(Kk,ℓ, x) = ((x+ 1)k − 1)((x+ 1)ℓ − 1) + xk + xℓ,

so that

D(K2,ℓ, x) = (x+ 1)ℓ(x2 + 2x) + xℓ − 2x.

Now let ℓ be odd. Then D(K2,ℓ,−1) = (−1)ℓ + 2 = 1 > 0. For any δ ∈ (0, 1),

D(K2,ℓ,−1− δ) = −δℓ(δ2 − 1)− (1 + δ)ℓ + 2δ + 2,

which is negative for ℓ sufficiently large. Thus for ℓ large enough, there will be a real

domination root in the interval (−1− δ,−1). By choosing δ = −w− 1 then there is a

root in the interval (w,−1) ⊆
⋃︁

m((z− ε+1)m− 1, (z+ ε+1)m− 1), so some interval

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1) contains a real domination root.

Subcase 1.2: z ∈ (−1, 0)
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The proof of this subcase follows along that of the previous one. We can assume

that z−ε > −1 and z+ε < 0, so that both (z−ε+1)m−1 and (z+ε+1)m−1 are in

(−1, 0). Observe that if we set b = (z−ε+1) and a = (z+ε+1), then 1 > a > b > 0.

Note that the intervals ((z−ε+1)m−1, (z+ε+1)m−1) = (bm−1, am−1) approach

−1 from the right, that is, the intervals all lie to the right of −1, and both end points

approach −1 monotonically as m increases. Moreover, as

bm − 1 < am+1 − 1 ↔ 1 < a
(︂a
b

)︂m
,

we conclude that if m is large enough, the right end point of the next interval (bm+1−
1, am+1−1) lies inside the previous interval (bm−1, am−1). It follows that the union

of all the intervals, ⋃︂
m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

contains an interval (−1, w), with w ∈ (−1, 0).

We again consider the domination polynomial of the complete bipartite graphs

Kk,ℓ, but with equal parts:

D(Kk,k, x) = (x+ 1)2k − 2(x+ 1)k + 2xk + 1.

Then for k odd, D(Kk,k,−1) = 1 + 2(−1)k = −1 < 0. For any δ ∈ (0, 1),

D(Kk,k,−1 + δ) = δ2k − 2δk + 1 + 2(−1 + δ)k,

which is positive for k sufficiently large. Thus for k large enough, there will be a real

domination root in the interval (−1,−1 + δ). By choosing δ = w + 1 then there is a

root in the interval (−1, w) ⊆
⋃︁

m((z− ε+1)m− 1, (z+ ε+1)m− 1), so some interval

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1) contains a real domination root.

Case 2: z ∈ (−∞,−2)

We can assume that z+ε < −2. Again, set a = −(z+ε+1) and b = −(z−ε+1);

note that b > a > 1. Note that for oddm the interval ((z−ε+1)m−1, (z+ε+1)m−1) =

(−bm − 1,−am − 1) has width

(z + ε+ 1)m − 1− ((z − ε+ 1)m − 1) = bm − am

= (b− a)
(︁
bm−1 + bm−2a+ · · ·+ am−1

)︁
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≥ 2εmam,

which is unbounded. Thus the width of the interval ((z−ε+1)m−1, (z+ε+1)m−1)

can be arbitrarily large. We are seeking a domination root in this interval. If we can

show that there is a sequence of real domination roots that tends to −∞ such that

the distance between successive roots is bounded, then if m is odd and large enough,

there will be a domination root in the interval ((z − ε + 1)m − 1, (z + ε + 1)m − 1)

and we are done.

Now the domination polynomial of the star K1,k (yet another complete bipartite

graph!) is, as noted earlier,

D(K1,k, x) = x(x+ 1)k + xk.

Note that if we set x = −R, then

−R(1−R)k + (−R)k = (−1)k+1(R(R− 1)k −Rk).

Thus, setting gk(R) = R(R− 1)k −Rk, we see that R is a root of gk iff −R is a root

of D(K1,k, x), so we turn our attention to gk for the time being. Note that gk(R) = 0

iff (︃
R

R− 1

)︃k

= R (5.7)

Clearly on (1,∞), the left side of (5.7),
(︁

R
R−1

)︁k
, is a decreasing function of R while

the right side, R is obviously increasing. So there is exactly one solution to (5.7),

and hence exactly one root, say rk, of gk, in (1,∞) (it is the unique place where gk

changes sign from negative to positive). Moreover, rk+1 > rk, as

gk+1(rk) = rk(rk − 1)k+1 − rk+1
k

= (rk − 1)rk(rk − 1)k − rk+1
k

= (rk − 1)rkk − rk+1
k

= −rkk

< 0.

What about the differences between successive roots rk? First of all, the derivative

of gk+1(x) = x(x− 1)k+1 − xk+1 is

g′k+1(x) = (x− 1)k+1 + (k + 1)x(x− 1)k − (k + 1)xk
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= (x− 1)k+1 + (k + 1)gk(x),

and so

g′′k+1(x) = (k + 1)(x− 1)k + (k + 1)g′k(x)

= (k + 1)(x− 1)k + (k + 1)((x− 1)k + kgk−1(x)).

As rk−1 > 1, the second derivative of gk+1(x) is clearly non-negative on the interval

[rk−1,∞). Noting from above that gk+1(rk) = −rkk , it follows that

rkk = gk+1(rk+1)− gk+1(rk)

=

∫︂ rk+1

rk

g′k+1(x) dx

≥ (rk+1 − rk)g
′
k+1(rk)

= (rk+1 − rk)(rk − 1)k+1.

Since (rk − 1)k+1 = (rk − 1)(rk − 1)k = (rk − 1)rk−1
k , we find that

rk+1 − rk ≤
rk

rk − 1
≤ r1

r1 − 1
= 2.

Thus, returning back to the domination polynomial of stars, it follows that−ri,−r2, . . . ,

is a decreasing sequence of negative domination roots (of stars) that tend to −∞, and

that have distance bounded between successive terms. It follows that any sufficiently

large subinterval of the negative real axis will contain such a term, and thus we see

that for large enough m, the interval ((z − ε+ 1)m − 1, (z + ε+ 1)m − 1) will contain

(at least) one of these, and we have completed this case as well.

In all cases, there is always a real domination root in an interval ((z − ε+ 1)m −
1, (z + ε + 1)m − 1), so we conclude that the real domination roots are dense in the

interval (−∞, 0]. □

While showing the closure of the real domination roots, the proof of Theorem

5.3.2 omitted z = 0, −1, and −2 (although these “holes” are filled in the closure). It

should be noted 0 and −2 are both domination roots of D(K2, x). However, Oboudi

[73] showed that −1 (and all other odd integers) are not domination roots. Moreover

0 and −2 are conjectured [2] to be the only rational domination roots.



Chapter 6

Conclusion

In this thesis we have discussed four different problems related in some way to the

domination polynomial. In this final chapter, we will focus on what open problems

and conjectures arise from our work.

6.1 Optimal Domination Polynomials

In Chapter 2 we completely characterized the existence of (n,m)-optimal graphs.

Recall Sn,m is the collection of all simple graphs with n vertices and m edges. Fur-

thermore a graph G ∈ Sn,m is (n,m)-optimal if for all H ∈ Sn,m we have D(G, x) ≥
D(H, x) for all x ≥ 0. A natural next step is to consider (n,m)-least optimal

graphs. That is, does there exist a graph G ∈ Sn,m such for all H ∈ Sn,m we

have D(G, x) ≤ D(H, x) for all x ≥ 0? With Observation 2.2.1 and Lemma 2.2.6 we

are easily able to make the following progress to completely characterize (n,m)-least

optimal graphs.

Theorem 6.1.1 Let G be a graph on n ≥ 7 vertices and m =
(︁
n
2

)︁
− k, 2 ≤ k ≤ n− 2

edges. Then an (n,m)-least optimal graph does not exist.

Proof. By Observation 2.2.1 and Lemma 2.2.6 we know that the graph in Sn,m

which minimizes the domination polynomial for values of x as x approaches infinity,

will have the smallest minimum degree amongst all graphs in Sn,m.

Let Gk be Kn with k edges, each incident to the same vertex, are removed. This

is the unique graph of order n and size m =
(︁
n
2

)︁
−k, 2 ≤ k ≤ n−2 that has minimum

degree n − k. That is, Gk minimizes the domination polynomial for values of x

as x approaches infinity. Therefore if an (n,m)-least optimal graph exists, it must

necessarily be Gk. Note that the number of universal vertices in this case is n− k− 1

and by Lemma 2.2.10, d1(Gk) = n − k − 1. By Observation 2.2.1, it is sufficient to

show there exists another graph of order n and size m =
(︁
n
2

)︁
− k with fewer universal

98
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vertices. If k > n
2
, then enough edges can be removed such that no vertex is universal

- all you need to do is to insure you choose a maximum matching and possibly one

other edge so that every vertex was an endpoint of at least one removed edge. If

k ≤ n
2
let G′

k be Kn with the edges of a matching of size k removed. Note G′
k has

n−2k universal vertices. As n−2k < n−k−1 for k ≥ 2 then an (n,m)-least optimal

graph does not exist. □

Corollary 6.1.2 If G is an (n,m)-least optimal graph then G ∼= Kr ∪ H where

H ∈ {Kn−r, Kn−r − e} for some 0 ≤ r ≤ n− 1.

Proof. Let G be an (n,m)-least optimal graph. By Observation 2.2.1 and Lemma

2.2.7 we know that the graph in S which minimizes the domination polynomial for

values of x as x approaches infinity will have the largest number of isolated vertices.

Therefore for some 0 ≤ r ≤ n and least optimal graph H of order n − r, we have

G ∼= Kr ∪ H. In order for G to have the maximum number of isolated vertices, H

must contain at least
(︁
n−r−1

2

)︁
+ 1 edges. As all of the edges of G are contained in H,

we have that m =
(︁
n−r
2

)︁
− k, where 0 ≤ k ≤ n − r − 2. By Theorem 6.1.1, no least

optimal graphs exist for 2 ≤ k ≤ n − r − 2 therefore k ∈ {0, 1} and we obtain our

result. □

It remains an open problem to characterize the values of n and m such that

(n,m)-least optimal graphs exist. Appendix A gives all (n,m)-least optimal and

(n,m)-optimal graphs up to order 7.

6.2 The Average Order of Dominating Sets of a Graph

In Chapter 3 we discussed the average order of dominating sets of a graph. The most

salient open problem is that in Conjecture 3.3.9, namely, avd(G) ≤ 2n
3

among all

connected graphs G of order n. Theorem 3.3.10 showed that avd(G) ≤ 2n
3

for every

quasi-regularizable graph G of order n. Additionally, it follows from Corollary 3.3.8

that if a graph G of order n has minimum degree δ ≥ 4, then avd(G) ≤ 19n
30

and

hence the 2n
3

conjecture holds for almost all graphs. In a recent paper by Erey [46],

Conjecture 3.3.9 has been shown to hold for forests.
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Another avenue of research is investigating the monotonicity of avd(G) with re-

spect to vertex or edge deletion. For example, the removal of any edge or vertex

in a graph does not increase the number of dominating sets. However, this is not

necessarily the case for avd(G). Let G be the graph pictured in Figure 6.1.

v1

v2

v3

v4

v5

v6

Figure 6.1: A vertex labelled graph

We can conclude that D(G, x) = x6 + 6x5 + 12x4 + 10x3 + 5x2 + x and therefore

avd(G) = 25/7. However,

� avd(G− v1) =
58
19

< avd(G) < 13
3
= avd(G− v4),

� avd(G− v5v6) =
39
11

< avd(G) < 78
19

= avd(G− v1v4).

Despite this example, the following conjecture holds for all graphs on up to 7 vertices.

Conjecture 6.2.1 For every nonempty graph G there exists a vertex v and an edge

e such that

avd(G− v) < avd(G) < avd(G− e).

6.3 On the Unimodality of Domination Polynomials

Chapter 4 discusses the unimodality of the domination polynomial. There are two

conjectures which remain open. We first discuss Conjecture 4.1.1, which posits that

every domination polynomial is unimodal. Theorem 4.3.2 shows Conjecture 4.1.1 is

true for graphs with sufficiently high minimum degree (δ > 2 ln2(n)). However, the

conjecture remains elusive for graphs with low minimum degree, and in particular for

trees. Another interesting family of graphs to investigate are graphs with universal

vertices. We verified using Maple that all graphs of order up to 10 which have universal
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vertices are unimodal, with mode at either ⌈n
2
⌉ or ⌈n

2
⌉ + 1. It may be possible that

a technique similar to the one used in Theorem 4.3.2 can yield some results for this

class. Recall that for a graph G of order n, we write ri(G) for the proportion of

subsets of vertices of G with cardinality i which are dominating. That is,

ri(G) =
di(G)(︁

n
i

)︁ .

We showed that if ri(G) is sufficiently close to one then D(G, x) is unimodal with

mode ⌈n
2
⌉. If a graph G with n vertices has a universal vertex then di(G) ≥

(︁
n−1
i−1

)︁
and hence ri(G) ≥ i

n
.

The second conjecture, Conjecture 4.4.3, claims the coefficients of the domination

polynomial are non-increasing after the two-thirds mark. Theorem 4.4.2 shows that

if a graph has no isolated vertices, then di(G) ≤ di−1(G) for i ≥ 3n+1
4

. It would

certainly be worthwhile to investigate further the last half of the coefficients sequence

for graphs with isolated vertices, and the third quarter for those without.

There are many parallels between the results in Chapter 3 and Chapter 4. In

particular Theorem 4.3.2 and Theorem 3.2.4 which together show that if a graph has

minimum degree δ > 2 ln2(n), it is unimodal with mode and mean size at roughly

half the number of vertices. This brings two question to the forefront: Can the mean

and mode be far apart? And what is the median size of dominating sets?

For the former, we observed all graphs up to nine vertices are unimodal with a

mode within one of both the mean and median size of dominating sets. For the

median size, we have the following two results which together parallel the results in

Theorem 4.3.2 and Theorem 3.2.4.

Theorem 6.3.1 For any graph G on n vertices, the median size of dominating sets

in G is at least n
2
.

Proof. Proposition 3.2.3 states that for any graph G on n vertices and all k ≤ n
2
,

we have dn−k(G) ≥ dk(G). Therefore

⌊n
2
⌋∑︂

i=0

di(G) ≤
n∑︂

i=⌈n
2
⌉

di(G),
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and hence the median size of dominating sets in G is at least n
2
. □

Theorem 6.3.2 If G is a graph with n ≥ 2 vertices with minimum degree δ(G) ≥
2 log2(n) then the median size of dominating sets in G is ⌈n

2
⌉.

Proof. Let G be a graph of order n with minimum degree δ ≥ 2 log2(n). For now

let n be even; the proof when n is odd will follow from the even case. From Theorem

6.3.1, the median size of dominating sets in G is at least n
2
. Therefore it suffices to

show that the median size of dominating sets in G is at most n
2
. From Proposition

3.2.3, we have dn−i(G) ≥ di(G) for all i ≤ n
2
. Therefore it is sufficient to show that

n
2
−1∑︂

i=0

(dn−i(G)− di(G)) ≤ dn
2
(G).

Recall from the proof of Theorem 4.3.2 that

ri(G) =
di(G)(︁

n
i

)︁ ≤ 1

and

ri(G) ≥ 1−
n
(︁
n−δ−1

i

)︁(︁
n
i

)︁ ≥ 1− (n− i)

(︃
n− i

n

)︃δ

.

We can now obtain

rn
2
(G) ≥ 1−

(︂
n− n

2

)︂(︃1

2

)︃2 log2(n)

= 1− n

2

(︃
1

n2

)︃
=

2n− 1

2n
,

and

n
2
−1∑︂

i=0

(dn−i(G)− di(G)) =

n
2
−1∑︂

i=0

(︃
rn−i(G) ·

(︃
n

n− i

)︃
− ri(G) ·

(︃
n

i

)︃)︃

=

n
2
−1∑︂

i=0

(︃
n

i

)︃
· (rn−i(G)− ri(G))

≤
n
2
−1∑︂

i=0

(︃
n

i

)︃
·

(︄
1−

(︄
1−

n
(︁
n−δ−1

i

)︁(︁
n
i

)︁ )︄)︄
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=

n
2
−1∑︂

i=0

n

(︃
n− δ − 1

i

)︃
≤n2n−δ−1

≤n2n−2 log2(n)−1

=
n2n−1

n2

=
2n−1

n
.

Finally note that
(︁
n
n
2

)︁
is the largest binomial coefficient of the form

(︁
n
i

)︁
and is

hence larger than the average of all such binomial coefficients. That is

(︃
n
n
2

)︃
≥ 2n

n+ 1
.

Therefore

dn
2
(G) =rn

2
(G)

(︃
n
n
2

)︃
≥
(︃
2n− 1

2n

)︃(︃
2n

n+ 1

)︃
=
(2n− 1)2n−1

n(n+ 1)

≥2n−1

n

≥
n
2
−1∑︂

i=0

(dn−i(G)− di(G)).

Therefore when n is even, the median size of dominating sets in G is exactly n
2
= ⌈n

2
⌉.

In the case where n is odd, a similar argument will show

n−1
2

−1∑︂
i=0

(dn−i(G)− di(G)) ≤ dn−1
2
(G) + dn+1

2
(G).

This implies the median is at either n−1
2

or n+1
2
. However from Theorem 6.3.1, the

median is at least n
2
, and thus in the case when n is odd the median of G must be

n+1
2

= ⌈n
2
⌉ □

One could consider the order of dominating sets in G as a discrete probability

distribution. Let XG be a discrete random variable which represents the order of
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a randomly selected dominating set in a graph G. Then PrG(XG = i) denotes the

probability that XG = i and

Pr(XG = i) =
di(G)

D(G, 1)
.

For a graph G on n vertices with minimum degree δ ≥ 2 log2(n), Theorem 4.3.2,

Theorem 3.2.4, and Theorem 6.3.2 imply that the distribution of XG is unimodal with

mean, median, and mode each close to n
2
. Is it possible that for these graphs, or even

all graphs G, XG is approximately normally distributed? In the case where G = Kn,

XKn is one dominating set (the empty set) away from being a binomial distribution

with p = 1
2
. Therefore, as n gets large, the distribution of XKn will approach a normal

distribution. But what about other graphs? To estimate a normal distribution for

XG we must find the standard deviation of XG. To do so we will determine E[X2
G],

the expected value of X2
G. Let di = di(G). Note

D′′(G, 1) +D′(G, 1) =
n∑︂

i=2

i(i− 1)di +
n∑︂

i=0

idi =
n∑︂

i=2

i2di −
n∑︂

i=2

idi +
n∑︂

i=0

idi =
n∑︂

i=0

i2di.

Therefore,

E[X2
G] =

n∑︂
i=0

i2Pr(XG = i) =
n∑︂

i=0

i2di
D(G, 1)

=
D′′(G, x) +D′(G, x)

D(G, 1)
,

and XG has standard deviation

√︄
D′′(G, 1) +D′(G, 1)

D(G, 1)
−
(︃
D′(G, 1)

D(G, 1)

)︃2

.

As an example consider the path graph P100. With the use of Excel, we have calcu-

lated the mean and standard deviation of XP100 to be 62.0013 and 3.6273 respectively,

and the median and mode XP100 are both 62. In Figure 6.2 we have plotted the exact

distribution of XP100 as a histogram in blue accompanied by the red line which plots

the normal distribution N(62.0013, 3.6273).
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Figure 6.2: The distribution of XP100

6.4 The Roots of Domination Polynomials

In Chapter 5 we discussed the roots of the domination polynomial. Theorem 5.3.2

showed the closure of the set of real domination roots is (−∞, 0]. Additionally we

showed the family of graphs Cn ⋄K1 is log-concave by determining the location of its

domination roots. It may be interesting to further study the location of domination

roots for various families of graphs. In particular, are the real domination roots of

trees dense in (−∞, 0]? We have already seen in the proof of our main theorem that

there are real domination roots of trees (namely stars) that are unbounded, but we

do not know if the closure is the entire nonpositive real axis.

Beyond the closure of domination roots, for each order n it is natural to ask which

graph has the smallest real domination root? It appears (see Table 6.1) that stars,

which we used in case 2, have the extremal roots (and indeed the roots of largest

modulus).

Table B.1 in Appendix B gives plots of the domination roots for all graphs up to

order 9. The values in Table 6.1 are also the roots of maximum modulus for each

order n. There are currently two degree-dependent upper bounds on the modulus of

domination roots.
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n Smallest real domination root (and root of maximum modulus) Graph
1 0 K1

2 2 K1,1

3 -2.618033989 K1,2

4 -3.147899036 K1,3

5 -3.629658127 K1,4

6 -4.079595623 K1,5

7 -4.506323246 K1,6

8 -4.915076186 K1,7

9 -5.309330065 K1,8

Table 6.1: Smallest Domination Roots for n ≤ 9

Theorem 6.4.1 ([73]) Let G be a graph of order n. Then all roots of D(G, x) lie in

the circle with center (−1, 0) and the radius (2n − 1)
1

δ(G)+1 . That is, if D(G, z) = 0

then |z + 1| ≤ (2n − 1)
1

δ(G)+1 .

Theorem 6.4.2 ([23]) Let G be a graph without isolated vertices and with maximum

degree ∆. If D(G, z) = 0 then |z| ≤ 2∆+1.

These results provides a nice bound for graphs with high minimum degree or low

maximum degree. In particular if δ(G) ≥ n
2
then it follows from Theorem 6.4.1 that

the domination roots of G are in the disc |z + 1| < 4. From this it is not hard to see

that the domination roots of almost all graphs are bounded in a disc of fixed radius.

Additionally, it follows from Theorem 6.4.2 that the domination roots of Pn and Cn

are in the disc |z| ≤ 8.

We will now give a uniform bound for all graphs which improves each bound

for most graphs. We will do so using the Enestr öm-Kakeya Theorem which bounds

the roots of a polynomial f in an annulus determined by the ratio of consecutive

coefficients or f .

Theorem 6.4.3 (Enestr öm-Kakeya [45,65]) If f(x) = a0+a1x+ · · ·+anx
n has

positive real coefficients, then all complex roots of f lie in the annulus r < |z| ≤ R

where

r = min

(︃
ai
ai+1

: 0 ≤ i ≤ n− 1

)︃
and R = max

(︃
ai
ai+1

: 0 ≤ i ≤ n− 1

)︃
.
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□

Any dominating set on i vertices can be formed by removing one vertex from a

dominating set on i+1 vertices. Therefore for any graph G, (i+1)d(G, i+1) ≥ d(G, i).

Theorem 6.4.4 Let G be a graph on n vertices. If z is a root of G then |z| ≤ n. □

Each problem discussed in this thesis built upon the work already done for dom-

ination polynomials. The open problems raised here will likely fuel further study of

the domination polynomial.



Bibliography

[1] G. Aalipour-Hafshejani, S. Akbari, and Z. Ebrahimi. On D-equivalence class of
complete bipartite graphs. Ars Comb., 117:275–288, 2014.

[2] S. Akbari, S. Alikhani, M. Oboudi, and Y.-h. Peng. On the zeros of domination
polynomial of a graph. Comb. graphs, 531:109–115, 2010.

[3] S. Akbari, S. Alikhani, and Y. H. Peng. Characterization of graphs using domi-
nation polynomials. Eur. J. Comb., 31:1714–1724, 2010.

[4] S. Akbari and M. R. Oboudi. Cycles are determined by their domination poly-
nomials. Ars Comb., 116:353–358, 2014.

[5] S. Alikhani. On the graphs with four distinct domination roots. Int. J. Comput.
Math., 88(13):2717–2720, 2011.

[6] S. Alikhani. Dominating sets and domination polynomials of graphs. Lambert
Academic Publishing, first edition, 2012.

[7] S. Alikhani. On the D-equivalence Class of a Graph. Kragujev. J. Math., 36:315–
321, 2012.

[8] S. Alikhani. On the domination polynomials of non $P 4$-free graphs. Iran. J.
Math. Sci. Inform., 8(2):49–55, 2013.

[9] S. Alikhani. The Domination Polynomial of a Graph at -1. Graphs Comb.,
29:1175–1181, 2013.

[10] S. Alikhani and S. Jahari. Some families of graphs whose domination polynomials
are unimodal. Iran. J. Math. Sci. Informatics, 12(1):69–80, 2014.

[11] S. Alikhani and S. Jahari. On D-equivalence class of friendship graphs. Filomat,
30(1):169–178, 2016.

[12] S. Alikhani, S. Jahari, and R. Hasni. Counting the number of dominating sets
of cactus chains. Optoelectron. Adv. Mater. - Commun., 8(9-10):955–960, 2014.

[13] S. Alikhani and Y. H. Peng. Dominating sets and domination polynomials of
Cycles. Glob. J. Pure Appl. Math., 4:151–162, 2008.

[14] S. Alikhani and Y. H. Peng. Dominating sets and domination polynomials of
paths. Int. J. Math. Math. Sci., 10:1–10, 2009.

[15] S. Alikhani and Y. H. Peng. Dominating sets and domination polynomials of
certain graphs. II. Opusc. Math., 30:37–51, 2010.

108



109

[16] S. Alikhani and Y. H. Peng. Domination polynomials of cubic graphs of order
10. Turkish J. Math., 35:355–366, 2011.

[17] S. Alikhani and Y. H. Peng. Introduction to domination polynomial of a graph.
Ars Comb., 114:257–266, 2014.

[18] E. O. Andriantiana, V. R. Misanantenaina, and S. Wagner. The average size of
independent sets of graphs. Eur. J. Math., 6(2):561–576, 2020.

[19] E. O. Andriantiana, V. R. Misanantenaina, and S. Wagner. The Average Size of
Matchings in Graphs. Graphs Comb., 36(3):539–560, 2020.

[20] B. M. Anthony and M. E. Picollelli. Complete r-partite Graphs Determined by
their Domination Polynomial. Graphs Comb., 31:1993–2002, 2015.

[21] J. L. Arocha and B. Llano. Mean Value for the Matching and Dominating
Polynomial. Discuss. Math., 20:57–69, 2000.

[22] Y. Ath and M. Sobel. Some conjectured uniformly optimal reliable networks.
Probab. Engrg. Inform. Sci., 14:375–383, 2011.
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Appendix A

Optimal Graphs of Small Order

Table A.1 gives all (n,m)-least optimal and (n,m)-optimal graphs up to order 7. A

dash − represents when an optimal graph does not exist for a given order and size.

Order n Size m (n,m)-least optimal graph (n,m)-optimal graph

1 0 K1 K1

2 0 K2 K2

2 1 K2 K2

3 0 K3 K3

3 1 K1 ∪K2 K1 ∪K2

3 2 K1,2 K1,2

3 3 K3 K3

4 0 K4 K4

4 1 K2 ∪K2 K2 ∪K2

4 2 K1 ∪K1,2 K2 ∪K2

4 3 K1 ∪K3 −
4 4 − −
4 5 K4 − e K4 − e

4 6 K4 K4

5 0 K5 K5

5 1 K3 ∪K2 K3 ∪K2

5 2 K2 ∪K1,2 K1 ∪ 2K2

5 3 K2 ∪K3 K2 ∪K1,2

5 4 − −
5 5 K2 ∪ (K4 − e) −
5 6 K2 ∪K4 K1 ∨ 2K2

5 7 − −
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Order n Size m (n,m)-least optimal graph (n,m)-optimal graph

5 8 − −
5 9 K5 − e K5 − e

5 10 K5 K5

6 0 K6 K6

6 1 K4 ∪K2 K4 ∪K2

6 2 K3 ∪K1,2 K2 ∪ 2K2

6 3 K3 ∪K3 3K2

6 4 − −
6 5 K2 ∪ (K4 − e) −
6 6 K2 ∪K4 −
6 7 − −
6 8 − −
6 9 K1 ∪ (K5 − e) −
6 10 K1 ∪K5 −
6 11 − −
6 12 − −
6 13 − −
6 14 K6 − e K6 − e

6 15 K6 K6

7 0 K7 K7

7 1 K5 ∪K2 K5 ∪K2

7 2 K4 ∪K1,2 K3 ∪ 2K2

7 3 K4 ∪K3 2K2 ∪K1,2

7 4 − −
7 5 K3 ∪ (K4 − e) −
7 6 K3 ∪K4 −
7 7 − −
7 8 − −
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Order n Size m (n,m)-least optimal graph (n,m)-optimal graph

7 9 K2 ∪ (K5 − e) −
7 10 K2 ∪K5 −
7 11 − −
7 12 − −
7 13 − −
7 14 K1 ∪ (K6 − e) −
7 15 K1 ∪K6 −
7 16 − −
7 17 − −
7 18 − −
7 19 − −
7 20 K7 − e K7 − e

7 21 K7 K7

Table A.1: The (n,m)-least optimal and (n,m)-optimal graphs up to order 7



Appendix B

Domination Roots of Small Graphs

Table B.1 gives plots of the domination roots for all graphs up to order 9.

Order n Domination Roots

1

2

Order n Domination Roots
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3

4

5

Order n Domination Roots



119

6

7

8

Order n Domination Roots
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9

Table B.1: The domination roots for all graphs up to order 9
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