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Abstract

Selective maintenance is a strategy used in industrial and military environments where
maintenance is performed between a sequence of missions. This thesis contributes to
the SM literature by introducing and solving the joint selective maintenance and ori-
enteering problem (JSMOP). The JSMOP can be applied to a wide range of systems
that are geographically distributed and maintained by a crew of repair technicians.
The JSMOP model will simultaneously decide the systems to visit and the main-
tenance actions to be performed on the visited systems to meet or exceed a target
reliability.
The multimission selective maintenance problem attempts to identify the mainte-
nance actions to be performed across multiple missions. A second contribution is
made by introducing a new solution method for the multimission SMP in the form of
a hybrid column generation and genetic algorithm. Through numerical experiments
the hybrid column generation and genetic algorithm is shown to outperform other
metaheuristics.
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Chapter 1

Introduction

Reliability has become a greater concern in recent years because high-tech industrial

processes with ever increasing levels of sophistication are prevalent in most engineer-

ing systems (Kamal et al., 2021). To ensure that these complex systems continue

to operate at expected performance levels and avoid unexpected failures, effective

maintenance programs must be developed and implemented. Failures of these highly

complex systems could lead to catastrophic disasters resulting in not only a loss of

equipment or machinery but also in injury or loss of human life in addition to sustain-

ability impacts. An effective maintenance program can indeed improve the reliability

and/or profit of a system and simultaneously reduce potential risks and maintenance

expenditures (Jiang and Liu, 2020a).

Selective maintenance (SM) is a maintenance policy used in both industrial and

military environments where systems are required to perform sequences of missions

separated by breaks of finite length. Examples of these systems include aerospace

equipment, weapon systems, computers, production and manufacturing lines, and

energy production assets. To maintain these systems and ensure they operate at

an acceptable performance level during the missions, maintenance actions need to be

performed during the scheduled break. Due to limited resources such as cost, time, or

limited number of repair technicians it is usually not possible to perform all desirable

maintenance actions during the break duration. The selective maintenance problem

(SMP) seeks to answer the question of what maintenance actions to perform on what

components such that either (i) the system reliability is maximized for the upcoming

mission or (ii) the system meets a specified reliability for the upcoming mission at

cheapest overall cost.

There are many applications where SM could be applied in an industrial setting.
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Computer systems are often utilized throughout the day, but are available to be

maintained after business hours, fleets of delivery vehicles are dispatched each day

but are available in the evening. Production systems are required to operate 24 hours

a day during weekdays but are shutdown for maintenance on weekends. Aircraft are

subject to maintenance between flights with a requirement to operate at extremely

high reliability levels. During the maintenance breaks there may be several systems

within the asset that must be maintained to ensure that the minimum required reli-

ability is achieved. Due to resource constraints, like time or limited technicians, not

every maintenance action could be completed during the break. SM can therefore be

applied to determine the maintenance actions that should be performed in order to

achieve the minimum required reliability at the cheapest cost.

Due to technological developments and a desire to maintain a competitive edge,

companies are expected to manage and maintain equipment and machines more effec-

tively at lower costs. The next generation of manufacturing technology and smart fac-

tories commonly known as Industry 4.0 uses embedded systems and sensors, machine-

to-machine communication, Internet of Things (IoT) and Cyber-Physical Systems

(CPS) technologies to integrate the virtual space with the physical world (Xu et al.,

2018; Kusiak, 2018). These new technological developments have the promise of im-

proving the production and distribution of personalized goods at a cost similar to

mass production. The supply chains, the production systems and logistic networks

will be fully integrated and responsive (Kaynak, 2007; Ivanov et al., 2016). However,

there will still be a need for keeping these highly interconnected systems up and run-

ning. Failures will be very costly in such networks. SM, which is often described as

“doing more with less” (Cassady et al., 2001a), has the ability to provide optimal

maintenance decisions that minimize the probability of failure for these highly inter-

connected systems under resource constraints.

The SMP has received much attention both from academic researchers and indus-

trial practitioners since its introduction in 1998 by Rice et al. (1998). Existing SM

models assume that the maintenance decisions are made and performed on systems

which are all at the same location and are accessible by repair crews without resorting
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to any transportation means. This assumption is not always valid as industrial sys-

tems can be geographically dispersed and their maintenance may require travelling

maintenance crews under transportation time and cost constraints. To fill this gap,

this dissertation proposes a first contribution to the SM literature by introducing a

new framework that combines the classical SMP and technician routing problem. This

new framework has industrial implications as it is applicable to the maintenance of

a wide range of complex systems that are geographically distributed and maintained

from a pool of technicians. The second contribution of the thesis is a new heuristic

solution approach based on the large-scale optimization technique of column gener-

ation combined with the genetic algorithm. Due to the highly combinatorial nature

of the SMP, exact solution methods are not yet capable of solving problems of large

size. This new solution method is shown to outperform other metaheuristics in terms

of solution quality, and thus has the potential to provide cost savings to industries

that apply this maintenance policy.

1.1 Research Objectives and Dissertation Organization

This dissertation is a thesis by articles and is comprised of two manuscripts that have

been submitted for publication. Two themes are explored dealing with a novel ex-

tension and a new solution method for solving large-scale instances of the SMP. Each

theme is developed in a dedicated self-contained chapter that has its own introduction,

literature review, system description, model formulation, numerical experiments, and

conclusion. Motivations and objectives of each research theme are summarized in the

following two subsections. Lastly, the structure of the rest of the present dissertation

is presented.

1.1.1 Theme 1: Optimal joint selective maintenance and orienteering

The quest for sustainable energy production is fueling the growth of offshore wind

electricity generation. Energy producing offshore wind turbines are typically dis-

persed across several remote wind farms and must be maintained and operated with

high reliability levels for long time-periods separated by scheduled maintenance rota-

tions. Due to resource constraints such as travel time, cost, and availability of repair

crews, only a subset of turbines and their components can be selected for maintenance
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operations during maintenance trips.

There have been several studies that have focused on the routing of maintenance

technicians at offshore wind farms (St̊alhane et al., 2015; Dai et al., 2015). How-

ever, the similarity between these papers is that they focus only on the routing and

scheduling of technicians and rely the assumption that maintenance plan to be per-

formed is known. López-Santana et al. (2016) investigate the combined maintenance

and routing optimization problem for a set of geographically distributed machines.

Jia and Zhang (2020) introduce a bi-objective optimization approach for the joint

optimization of maintenance planning and workforce routing for a networked infras-

tructure.

Chapter 2 introduces and solves the joint selective maintenance and orienteering

problem (JSMOP) with an application to offshore wind farms. Varying from other

papers dealing with the combined maintenance and technician routing problem, the

novel joint selective maintenance and orienteering framework proposed in this chap-

ter focuses simultaneously on the routing, the assignment of maintenance crews, and

also the detailed selection of maintenance actions, levels and components. This is a

level of detail that has yet to be studied in other combined maintenance and techni-

cian routing studies. The objective of the proposed formulation is to minimize the

total cost while satisfying a minimum required reliability threshold during the next

operating mission until the next maintenance rotation. A mathematical optimization

model is developped and fully discussed, and solution method in the form of a pat-

tern generation algorithm is presented. Several numerical experiments demonstrate

the efficiency of the solution method and the benefit of jointly optimizing selective

maintenance and orienteering decisions. The SM framework presented in this chapter

is applicable to a wide spectrum of complex and large systems that are geographically

distributed and maintained from a pool of repair technicians.

A manuscript resulting from Theme 1 has been submitted for publication in the

European Journal of Operational Research with submission reference EJOR-D-21-

01297.
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1.1.2 Theme 2: A column generation-based approach for solving the

multimission selective maintenance optimization problem in

large-scale serial k-out-of-n:G systems

The majority of SMP papers make the restrictive assumption that there is a single

break followed by one subsequent mission. The single mission based SM plans are not

optimal for systems that are required to perform multiple missions during their life-

time. The multimission SMP eliminates this restrictive assumption and attempts to

identify the maintenance actions to be performed across multiple inter-mission breaks.

Although the multimission SMP provides a global selective maintenance plan, it is

a more complex and difficult problem to solve than the classic SMP. Because of the

complexity of this optimization problem, exact solution methods cannot be used for

systems of even moderate size. It is thus important to develop efficient heuristics that

can find “good” solutions for moderate and large size problems.

Chapter 3 introduces a new solution method for the multimission SMP in the

form of a hybrid column generation and genetic algorithm. Due to the complexity

of both the system reliability and cost function, the mathematical models that have

been previously suggested to solve the multimission SMP are nonlinear and usually

require the use of approximate or metaheuristic-based solution methods. A solution

method based on the formulation of a restricted master problem (RMP) and multiple

solution generating subproblems that are solved using a genetic algorithm (GA) is

presented. By integrating the GA within the classical column generation framework,

high quality solutions can be obtained very quickly. The proposed solution method is

capable of solving systems comprised of both parallel and k-out-of-n:G subsystems.

The column generation algorithm is shown to obtain near optimal solutions and out-

perform other metaheuristic-based solution methods; it is also shown to be capable

of solving large-scale systems comprised of many subsystems and components in a

reasonable amount of time.

A manuscript resulting from Theme 2 is being reformatted for submission in Com-

puters and Operations Research.
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The rest of the present dissertation is structured around three additional chapters

including a general conclusion chapter. The first theme is the subject of Chapter 2.

This chapter investigates the joint selective maintenance and orienteering problem

(JSMOP). This theme is inspired by the case of maintenance service providers tasked

with servicing offshore wind turbines. A solution method in the form of a pattern

generation algorithm and mathematical model is presented. Several numerical exper-

iments are carried out to demonstrate the efficiency of the solution approach as well

as its ability to achieve valid maintenance and routing decisions. Chapter 3 addresses

the second theme. This chapter introduces a hybrid column generation and genetic

algorithm to efficiently solve the multimission SMP for large multicomponent k-out-

ofn:G systems. The novel solution method is shown to obtain near optimal solutions.

Conclusions and future research extensions are presented in chapter 4.



Chapter 2

Optimal joint selective maintenance and orienteering: A case

study in offshore wind energy

2.1 Introduction

This chapter introduces and optimally solves the joint selective maintenance and ori-

enteering problem. It is inspired by the case of a maintenance services provider tasked

to service offshore wind turbines (OWTs) from a coastal city (See Figure 2.1). Wind

turbines have the proven potential in supplying clean energy across the world in a

sustainable and cost-effective manner. Due to the higher wind speeds, vast amounts

of unoccupied space, and reduced noise pollution, offshore wind power has emerged

as a promising renewable energy source and has seen rapid growth in the last decade.

According to the International Energy Agency (IEA), offshore wind electricity gener-

ation increased by 32% in 2017 to reach 56 TWh and is projected to reach around 606

TWh in 2030 (IEA, 2020). One of the largest cost components of an offshore wind

farm is operation and maintenance (O&M) as it accounts for approximately 25-30%

of the total life cycle costs (Röckmann et al., 2017). It is of importance to develop

optimal O&M plans for offshore wind farms so that the produced energy can be sold

at a competitive price.

Scheduling maintenance for offshore wind farms is an extremely challenging and

complicated task. OWTs are relatively more vulnerable to break downs than the

onshore ones (Irawan et al., 2021), and it has been approximated that they fail 8.3

times per year (Carroll et al., 2016) on average. The resources required to maintain

the turbines such as spare parts and crews of technicians are usually located at an

onshore O&M base and must be transported to the designated OWTs by service ves-

sels. Accessibility to OWTs can often be restricted due to poor weather conditions

and it may not be possible to reach certain OWTs for months (Dai et al., 2015).

7



8

Figure 2.1: Illustration of an offshore wind farm

On average, OWTs are expected to operate at a relatively high reliability level for

long periods/rotations separated by scheduled maintenance breaks. To ensure that

OWTs continue to operate at the expected reliability level and to reduce random

failures, maintenance actions must be performed during scheduled breaks coinciding

with technician visits. During a given maintenance rotation there may be a set of

turbines that have failed and also a set of turbines that have been scheduled for main-

tenance. Due to time and weather constraints, it may not be feasible for maintenance

technicians to visit all turbines. Therefore, it is critical to identify the subset of tur-

bines to visit, the maintenance actions that should be performed at each turbine as

to meet or exceed the expected reliability level (selective maintenance problem), and

also determine the optimal routes for the different crews of technicians (orienteering

problem). Currently, the decision of which maintenance actions to perform and how

the repair crews are routed is made sequentially: the SMP first and then the orien-

teering problem (OP).

The objectives of this chapter are to develop a new mathematical model to solve
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the joint selective maintenance and orienteering problem (JSMOP) for moderately

large systems. The aim of the proposed model is to identify the components and

corresponding maintenance levels to be performed on the visited locations/systems

(e.g. turbines) to meet a required reliability level while also determining the optimal

route for multiple repair crews. Unlike the traditional orienteering problem that aims

to maximize the reward collected, the objective function of the proposed model will

minimize the loss in revenue due to downtime of failed systems, travel cost between

systems, maintenance cost, and a penalty cost incurred for not performing mainte-

nance on a system (either preventive or corrective). The JSMOP is also applicable to

the maintenance of a wide spectrum of complex, large, and critical systems geographi-

cally distributed and maintained from a pool of crews such as bridges, power-stations,

mines, petrochemical plants, and windmills.

The remainder of this chapter is structured as follows. Section 2.2 is a review of

relevant papers dealing with the SMP, OP, routing and scheduling of maintenance

technician problems, and combined maintenance and routing problems. Section 2.3

lists the notation used and the main working assumptions considered. The system

investigated, namely an offshore wind farm, is defined and fully described in Section

2.4. This section also presents reliability computations for an offshore wind turbine

(OWT). Section 2.5 describes the maintenance modeling and total maintenance time

and cost derivation for a single OWT. Section 2.6 presents the mathematical formula-

tions of the sequential and joint optimization approaches to deal with the combination

of the SM and the OP problems. Section 2.7 presents several sets of numerical exper-

iments carried out to validate the proposed optimization models. These experiments

demonstrate the benefit of jointly optimizing the SM and orienteering decisions. Con-

clusions and future research extensions are presented in Section 2.8.

2.2 Literature review

This review sections deals with three topics related to the objective of the proposed

joint model: the SMP, the OP, and the maintenance technician problem.
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2.2.1 The selective maintenance problem

Many military and industrial systems are required to perform a series of missions

with finite breaks between missions. Examples of these systems include aerospace

equipment, weapons, computers, production and manufacturing lines, and energy

production systems. To maintain these systems and ensure they continue to op-

erate at an acceptable performance level during the missions, maintenance actions

usually need to be performed during the scheduled break intervals. The quality of

maintenance action that could be performed varies from minimal repair (for failed

components that are returned to the “as-bad-as-old” state) to perfect replacement

(components return to the “as-good-as-new” state). Due to resource constraints such

as time, cost, and repair person availability, only a subset of system components can

be selected for maintenance operations. The selective maintenance problem (SMP)

aims to identify the optimal subset of components and maintenance actions that will

result in meeting the specified system reliability or maximizing the system reliability

for the upcoming mission(s) under resource constraints.

The original selective maintenance model introduced by Rice et al. (1998) dealt

with a series-parallel system with constant failure rate component and perfect re-

pair of failed components. Due to the nonlinear objective function, an enumeration

method was used to find the optimal solution. In the intervening years since Rice

et al. (1998) proposed the first SMP model, many researchers have expanded upon

their work. These studies have included complex system configurations (Cassady

et al., 2001b; Diallo et al., 2018), multistate systems (Liu and Huang, 2010; Pandey

et al., 2013a), component dependence (Xu et al., 2016; Dao and Zuo, 2017), fleet level

selective maintenance (Khatab et al., 2020; Schneider and Cassady, 2015), multimis-

sion (Chaabane et al., 2020), stochastic break and/or mission duration (Liu et al.,

2018; Khatab et al., 2017), condition-based SMP (Khatab et al., 2018a), and multi-

ple repair channels (Diallo et al., 2019; Khatab et al., 2018b). A literature review of

the SMP is provided in (Xu et al., 2015). A more recent SMP literature review was

conducted by Cao et al. (2018).

The general goal of any SMP model is usually to maximize the reliability R of the
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system under consideration during the mission(s) following one or several intermis-

sion breaks without exceeding the total budget C0. A variant is to minimize the total

maintenance cost C that guarantees a minimum required reliability level R0 during

the subsequent mission(s). The total duration of the maintenance actions T should

not exceed the length of the intermission break(s) T0. These formulations take the

general forms below.

Max R Min C
s.t. s.t.
C ≤ C0 or R ≥ R0

T ≤ T0 T ≤ T0

The SMP has been shown by Rice (1999) to be NP-hard and therefore the variants

also have this property. Hence, the large majority of papers dealing with SMP use

full enumeration method for very small problems (Cassady et al., 2001a,0; Rice et al.,

1998) or use nonlinear solvers or heuristics to find near-optimal solutions (Lust et al.,

2009; Pandey et al., 2013b; Cao et al., 2016; Dao and Zuo, 2016; Ikonen et al., 2020).

Sharma et al. (2017) combined simulation and genetic algorithm to optimize spare

parts forecasting and SM decisions. Cao et al. (2017) used a simulation approach to

maximize system availability for an SMP.

Diallo et al. (2018) introduced the first SMP model for serial k-out-of-n systems.

The k-out-of-n system is a more complex structure than those previously considered

and is a generalization of both the parallel and series configurations. A two-phase

approach is developed which eliminates the need for solving a nonlinear objective

function as the approach converts the SMP to a multidimensional multiple choice

knapsack problem (MMKP). The first phase of the approach involves determining all

possible combinations (patterns) of components and maintenance levels. The second

phase consists of solving the resulting binary integer program (BIP).

All SMP papers assume that the maintenance decisions are made and performed

on systems which are all at the same location and have access to ample repair crews.

This is not always the case since industrial systems can be geographically distributed
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and their maintenance may require traveling maintenance crews under transportation

time and cost constraints. Hence, the need for the proposed joint SM and orienteering

problems. In the following subsection, a brief review of the OP is presented.

2.2.2 The orienteering problem

The OP can be defined on an undirected graph where the start point (vertex 1), and

end point (vertex n) are fixed, and a score is given to the remaining n−2 vertices. The

aim is to identify a path through a subset of these vertices that maximizes the total

path score collected given a time constraint (Tsiligirides, 1984; Golden et al., 1987;

Chao et al., 1996). The OP has been shown by Golden et al. (1987) to be NP-hard.

Vansteenwegen et al. (2011) provide a mathematical model for the basic OP, as well

as models for different extensions such as the team orienteering problem (TOP), and

the OP with time windows. The time dependent orienteering problem (TDOP) is a

variant of the original OP in which the travel time between two vertices depends on

the leaving time of the first vertex. This variant was originally introduced by Fomin

and Lingas (2002) and has been extended by Verbeeck et al. (2017) to include time

windows. Another variant of the OP that has been studied is the capacitated TOP

(CTOP) where customers have demands and vehicles have limited cargo capacity.

The goal of the CTOP is to determine a path for multiple vehicles through a subset

of vertices that maximizes profit collected while satisfying time limits and capacity

constraints. The CTOP was introduced by Archetti et al. (2009) and extended by

Archetti et al. (2013) to allow for incomplete service (CTOP-IS). Afsar and Labadie

(2013) extend the classic TOP by considering that the profit collected at each cus-

tomer vertex is decreasing with time.

Due to the uncertain nature of travel and service times, in addition to collected

profits, some researchers have studied the OP with stochastic elements. Ilhan et al.

(2008) presents the OP with scores that are normally distributed. The objective of

the formulation is to maximize the probability that the profit collected in a given time

limit exceeds a target profit level. Campbell et al. (2011) introduce an interesting

variant of the OP in which both travel and service times are stochastic (OPSTS).

The goal of the OPSTS is to identify a subset of customers and the order in which
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to visit them such that the expected profit is maximized. Zhang et al. (2014) present

the stochastic orienteering problem with time windows where the wait time at each

customer is modelled as a random variable.

The joint SM and OP problem presents unique features that differentiate it from

the OP problems presented above. In particular, the time spent at a location depends

on the required minimum reliability targets, the skills of the repair persons, the

components selected to undergo maintenance and the maintenance levels to be carried

out. Furthermore the time spent at a repair location affects the ability to visit and

complete other repairs later in the trip. The sojourn time at a location is a result of

optimal trade-offs between reliability, time and cost factors.

2.2.3 Combined routing and maintenance technician problems

Numerous studies have focused on the combined routing and scheduling of mainte-

nance technicians. Tang et al. (2007) model the planned maintenance scheduling

problem as a multiple tour maximum collection problem with time-dependent re-

wards. Kovacs et al. (2012) define the service technician routing and scheduling

problem (STRSP) with and without team building and provide mathematical opti-

mization models. The objective of their proposed models is to minimize the sum of

the total routing and outsourcing costs. Goel and Meisel (2013) study the combined

routing and scheduling problem for the maintenance of electricity networks. An op-

timization model is presented with the goal of finding an assignment of maintenance

tasks to workers and a schedule for performing the tasks such that the downtime and

travel costs are minimized. Mathlouthi et al. (2018) consider a multi-attribute TRSP

and propose a mixed integer linear program to address the problem.

There have been a number of studies on the optimization of routing and schedul-

ing of vessels to perform maintenance at offshore wind farms. St̊alhane et al. (2015)

proposed an arc-flow model with the objective of finding a route for multiple repair

crews through a subset of potential offshore wind turbines that require maintenance

while minimizing the overall cost of travel, maintenance, and loss in revenue due to

downtime. The objective function also includes a penalty cost that is incurred when
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a scheduled maintenance action is not performed. It is assumed in this chapter that

the fleet of service vessels is heterogeneous and the planning horizon is a 12-hour

workday. Dai et al. (2015) developed a mathematical model with the aim of routing

a heterogeneous fleet of service vessels to different OWTs while minimizing travel

cost and a penalty cost incurred per day for delaying maintenance tasks on a turbine.

This study considers a planning horizon of multiple days.

The drawback of these studies is that they focused on the routing and scheduling

of maintenance technicians and vessels where the maintenance actions to be per-

formed are assumed known and the problem is simply treated as a routing problem.

López-Santana et al. (2016) present a two-step iterative approach for the combined

maintenance and routing optimization problem for a set of geographically distributed

machines. Jia and Zhang (2020) develop a bi-objective optimization approach for the

joint optimization of maintenance planning and workforce routing for a networked

infrastructure. The objective of the proposed model is to minimize the total mainte-

nance and travel costs while satisfying reliability requirements.

Contrary to most papers dealing with the routing and scheduling of maintenance

technicians, the formulation presented in this chapter focuses simultaneously on the

routing, the assignment of maintenance crews, and also on the detailed selection of

maintenance actions, levels and components. This is a level of detail and decision

making needed in real service settings.

Before presenting the general setting of the JSMOP, the following section describes

the notation used and the main working assumptions.

2.3 Notation and working assumption

2.3.1 Notation

W Set of OWTs/locations, W = {1, 2, ..., N}
Q Set representing the maintenance base (start and finish), Q = {0, N+1}
N Set of nodes defined as N = W ∪Q, with index i
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A Set of arcs (i, i
′
) where i, i

′ ∈ N
tii′(cii′) Time (cost) to traverse arc (i, i

′
)

R Set of repair crews with index r

Si Set of subsystems Sij in OWT i, Si = {1, 2, ..., Ni} with index j

Nij Number of components in subsystem j of OWT i

Kij Minimum number of components that must be functioning in subsys-

tem j of OWT i

Eijk The kth component of subsystem j of OWT i

Aijk(Bijk) Effective age of component Eijk after (before) maintenance

vijk(uijk) Operational status of component Eijk after (before) maintenance

tcijkl(c
c
ijkl) Duration (cost) of CM level l on component Eijk

tpijkl(c
p
ijkl) Duration (cost) of PM level l on component Eijk

Pij Set of patterns generated for subsystem j of OWT i, Pij = {1, · · · ,Pij}
T max Maximum working time (max maintenance trip duration)

Tijp (Cijp) Time (cost) to perform maintenance plan from pattern p for subsystem

j in the ith OWT

cdi Downtime cost rate for non-operating OWT i

tdi Elapsed downtime of failed OWT i at the beginning of the maintenance

trip; tdi = 0 if OWT i is working at the start of the trip

πc
i (πp

i ) Penalty cost per failed (functioning) OWT i that is not vis-

ited/maintained

Rc
ijk Conditional reliability of component Eijk

Rijp Reliability of subsystem j of OWT i when pattern p is selected

Ri Reliability of OWT i

R0 Required minimum OWT reliability level

2.3.2 Main working assumptions

1. Each OWT is comprised of multiple subsystems arranged in a series configura-

tion. Each subsystem is made up of multiple binary components (meaning the

components and OWT as a whole can either be functioning or failed).

2. All OWTs are identical in terms of components technologies, configuration
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(RBD), and maintenance cost and time.

3. Each maintenance action requires exactly one repair crew.

4. Each service vessel carries a single repair crew. Service vessels are required to be

present while maintenance is being performed and have the necessary capacity

to carry any required parts/tools. There is no waiting time when maintenance

is completed at a location.

5. All crews have the skills to perform any required maintenance action.

6. At the start of the maintenance trip/rotation, OWT component statuses as well

as elapsed down times, and component statuses and ages are assumed known.

7. Travel times are negligible compared to component lifetimes so that component

statuses do not change between maintenance crew departure and arrivals at

OWT locations.

2.4 System description and reliability computation

2.4.1 System description

The system modelled is an offshore wind farm composed of N OWTs in addition to

a maintenance base as illustrated in Figure 2.1. The system is viewed as a network

modeled as an undirected graph G = (N ,A) where N = W ∪Q is the set of nodes and

A is the set of arcs. A node i ∈ N can refer either to an OWT or the maintenance

base where the repair crews must start and end their trips. Nodes numbered from

1 to N (i.e., nodes in W ) refer to OWT locations, while nodes 0 and N + 1 (i.e.,

nodes in Q) both refer to the same maintenance base location. An arc (i, i
′
) ∈ A

(i.e., i, i
′ ∈ {0, . . . , N + 1}) is a link between nodes i and i

′
, respectively, the origin

and the destination. Each arc (i, i
′
) ∈ A is characterized by the amount of time tii′

and cost cii′ incurred to traverse it.

Each OWT i is composed of Ni GA(Kij,Nij) (j = 1, . . . , Ni) subsystems in series.

In reliability theory, the k-out-of-n:G configuration is usually denoted as GA(k, n)
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and specifies that the system is functioning if at least k among the n components are

functioning and it is a generalization of both the series and parallel structures.

At the start of a given maintenance rotation/shift, there may be a number of failed

OWTs and other components from other OWTs that have been scheduled for either

PM or CM. At the start of the the rotation, the exact age Bijk as well as the status

of every component Eijk are assumed to be known. The status of component Eijk

before and after the maintenance visit is defined by two binary variables, respectively,

uijk and vijk as follows:

uijk =

⎧⎨⎩1 if component Eijk is functioning at the start of the rotation,

0 otherwise.
(2.1)

vijk =

⎧⎨⎩1 if component Eijk is functioning after the end of the rotation,

0 otherwise.
(2.2)

At the start of a given rotation, the operating state of the OWT i is also defined by

a binary variable Ui as:

Ui =

⎧⎨⎩1 if OWT i has not failed at the start of the rotation ,

0 otherwise.
(2.3)

2.4.2 OWT reliability computation

It is required that each OWT successfully operate the subsequent mission of duration

D at a predetermined required minimum reliability level R0. The mission refers to

the time period between two consecutive scheduled maintenance rotations. In the

present work, the reliability Ri of an OWT i is defined by the probability of this

OWT to operate during the next mission of duration D without failure. To com-

pute the reliability of OWT i, one must first compute Rc
ijk and Rij, the reliability

of component Eijk and the reliability of subsystem Sij respectively. Without loss of

generality, it is assumed that component Eijk has Weibull distributed lifetimes with

the shape and scale parameters βijk and ηijk, respectively.
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Given that component Eijk has an age Aijk at the end of the maintenance rotation

(i.e. at the start of the next mission), the probability that it will survive the next

mission of duration D is defined by the conditional reliability function as:

Rc
ijk = exp

[︄(︃
Aijk

ηijk

)︃βijk

−
(︃
Aijk +D

ηijk

)︃βijk

]︄
. (2.4)

The reliability Rij of the jth subsystem of the ith OWT is obtained from the exact

formulation proposed in (Arulmozhi, 2002):

Rij =

Nij∑︂
ekj=1

ekj−1∑︂
ekj−1=1

· · ·
e2−1∑︂
e1=1

⎛⎝ ekj∏︂
v=e1

Rc
ijv

⎞⎠
⎛⎜⎜⎝

ekj∏︂
u=1

u̸=e1,··· ,ekj

(1−Rc
iju)

⎞⎟⎟⎠ (2.5)

To compute the reliability Rij of each subsystem Sij, the algorithm proposed by

Kuo and Zuo (2003) and exploited in (Diallo et al., 2018) is implemented. Because

the subsystems for each OWT are arranged in a serial configuration, the reliability of

OWT i is computed as:

Ri =
∏︂
j∈Si

Rij. (2.6)

2.5 Maintenance modeling, and total time and cost computation

When an OWT is visited by a repair crew, the components to maintain and the

maintenance actions to be performed on the selected components are known.

For each component Eijk, there are Lijk +1 maintenance levels l ∈ {0, · · · , Lijk} that

can be selected. These maintenance levels include do-nothing, minimal repair, im-

perfect maintenance (IM), and replacement. The do-nothing (l = 0) case refers to no

maintenance being performed on the component, the minimal repair (l = 1) case if

selected will return a failed component to its age just before failure. The replacement

level (l = Lijk) resets the component’s age to 0, while an IM level 1 < l < Lijk if

selected will return the component’s age between that obtained after minimal repair
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and replacement. It should be noted that only failed components are eligible to min-

imal repair.

Commonly used IM models in the literature are: age reduction (Malik, 1979),

hazard rate adjustment (Nakagawa, 1988), and hybrid hazard rate (Lin et al., 2000)

models. Without loss of generality, the age reduction approach is adopted here for

IM modeling. According to this IM model, each IM level l available for component

Eijk is characterized by an age reduction coefficient θijkl (0 ≤ θijkl ≤ 1). Therefore,

when the IM is performed on Eijk, its effective age Bijk is reduced and becomes:

Aijk = θijkl ·Bijk. (2.7)

There are PM and CM durations and costs associated with each maintenance level.

When performed on the component Eijk, a PM of level l requires tpijkl units of time

and costs cpijkl. Similarly, a CM of level l when carried out on the same component

consumes tcijkl unit of times and costs ccijkl monetary units.

The total time required to maintain the ith OWT and the corresponding total cost

incurred are computed as:

Ti =

Ni∑︂
j=1

Nij∑︂
k=1

⎛⎝Lijk∑︂
l=1

tcijkl · (1− uijk) · ξijkl +
Lijk∑︂
l=2

tpijkl · uijk · ξijkl

⎞⎠ (2.8)

Ci =
Ni∑︂
j=1

Nij∑︂
k=1

⎛⎝Lijk∑︂
l=1

ccijkl · (1− uijk) · ξijkl +
Lijk∑︂
l=2

cpijkl · uijk · ξijkl

⎞⎠ (2.9)

where ξijkl is a binary variable which takes the value 1 if maintenance level l is se-

lected to be performed on component Eijk, and 0 otherwise.

For each OWT that has failed, downtime costs are incurred from the instant of

failure until the OWT is brought back to a functioning state through CM actions.
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In addition, when an OWT undergoes preventive maintenance, a downtime cost is

incurred from the instant a repair crew arrives on-site and ends when the scheduled

selective maintenance plan is achieved. If the failed OWT i (i.e., Ui = 0 at the start

of the rotation) is not visited during the maintenance rotation then a penalty cost πc
i

is incurred. Similarly, if the functioning OWT i (i.e., Ui = 1 at the start of the rota-

tion) is not visited during the maintenance rotation then a penalty cost πp
i is incurred.

2.6 Mathematical formulations

It is required that OWTs operate at a predetermined reliability level for the upcoming

mission of duration D, where D refers to the time until the next scheduled mainte-

nance rotation. Thus, the maintenance actions selected for a given OWT must result

in a probability of successfully completing the next mission that is equal or greater

than the required minimum reliability level R0. The goal of the proposed SMOP is

to identify the subset of OWTs that should be visited, the corresponding components

to be maintained, the levels of maintenance to be carried out, in addition to the ap-

propriate routing that should be taken for multiple service vessels transporting the

repair crews to minimize the total cost. It should be noted that, given the limited time

T max allotted to the routing maintenance, the total maintenance time Ti, required

to maintain the ith OWT, must be less than or equal to an upper bound T0i such that:

T0i = T max − (t0i + ti,N+1) (2.10)

where t0i is the required transportation time to reach OWT i from the maintenance

base, while ti,N+1 is the time required to return back.

2.6.1 Pattern generation algorithm

A maintenance pattern p is defined as a combination of components and related main-

tenance levels to be performed, which results in a discrete reliability value Rijp for

the jth GA(Kij,Nij) subsystem of the ith OWT. The pattern generation algorithm

has been demonstrated to be extremely powerful as it removes the need to solve a
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nonlinear objective function or nonlinear constraints (Diallo et al., 2018). The overall

principle of pattern generation is given by Algorithm 1. The list of patterns obtained

from the algorithm can then be used as input data for the optimization models in

both sequential and joint formulations of the SMOP. The output of the algorithm is a

dataset containing i, j, p, Rijp, Tijp, Cijp, and Pij for each pattern for each subsystem

in each OWT.

To illustrate how the pattern generation works, a small GA(1, 2) subsystem is

considered with two levels of maintenance: Do nothing (l = 0) and Replacement (l =

1). If at the start of the rotation maintenance both components are still functioning

then the following list of four patterns will be generated: (0, 0), (1, 0), (0, 1), and

(1, 1). Pattern (1, 0) means that component 1 is replaced and no maintenance action

is performed on component 2, while pattern (1, 1) means that both components are

replaced. If instead at the start of the shift maintenance both component are failed,

only three patterns will be generated: (1, 0), (0, 1), and (1, 1). Here, the pattern (0, 0)

is not eligible because both components are down and at least one of them must be

replaced.

2.6.2 Sequential optimization approach

When dealing with the sequential optimization approach of the SMP and the OP,

the decisions of what maintenance plan to be performed at the level of each OWT

and the routing of the different repair crews are made separately. This is equivalent

to first solving the SMP for all OWTs with the goal of minimizing cost subject to

time constraints and reliability targets, and then solving the routing problem. The

maintenance patterns that are selected for OWTs during the SMP phase are passed

as input data to the routing optimization process where the decision of which OWT to

visit and the path that each repair crew must take are provided. In what follows, the

sequential optimization approach of the SMP and crew routing problem is presented.
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Algorithm 1 Compute Rijp, Cijp, Tijp for all valid patterns for subsystem j in the
OWT i

1: Input data: N , Ni, Kij, Nij, c
c
ijkl, t

c
ijkl, c

p
ijkl, t

p
ijkl, Bijk, θijkl, βijk, ηijk, R0, T0i

2: Initialize: i = 1
3: while i ≤ N do
4: Initialize: j = 1
5: while j ≤ Ni do
6: – Generate an integer numbered set Pij of all valid combination/patterns of

components and their PM or CM levels such that at least Kij components
will be working after maintenance.

7: – Find the cardinality Pij of the set Pij: Pij = |Pij|.
8: Initialize: p = 1
9: while p ≤ Pij do
10: – Calculate related maintenance duration Tijp by summing up all the in-

dividual durations.
11: if Tijp ≤ T0i then
12: – Compute Rc

ijk the conditional reliability for all components Eijk in the
current pattern p using Equation (3.4).

13: – Compute Rijp the reliability of the subsystem j under the current
pattern p using the algorithm developed in (Kuo and Zuo, 2003).

14: if Rijp ≥ R0 then
15: – Calculate related maintenance cost Cijp by summing up all the indi-

vidual costs.
16: – Store values of i, j, p,Rijp, Cijp, Tijp.
17: end if
18: else
19: – Remove current pattern p from the list Pi. (all patterns above p get

shifted down by one position after the removal of p.)
20: – Update p = p− 1 (to account for the removed pattern).
21: – Update Pij = |Pij|.
22: end if
23: p = p+ 1.
24: end while
25: j = j + 1.
26: end while
27: i = i+ 1.
28: end while
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BIP formulation of the selective maintenance problem

The goal of the SMP is to select the maintenance plan to be performed within the

time and reliability constraints such that the maintenance cost is minimized (Rice

et al., 1998). To formulate the corresponding optimization problem, the following

decision variable is introduced:

zijp =

⎧⎨⎩1 if pattern p is selected for subsystem j in OWT i,

0 otherwise.
(2.11)

The BIP formulation for the minimization of the overall maintenance cost that must

be solved for each OWT i is as follows:

Min Zi =
∑︂
j∈Si

∑︂
p∈Pij

Cijp · zijp (2.12)

subject to: ∑︂
p∈Pij

zijp = 1, ∀j ∈ Si (2.13)

∑︂
j∈Si

∑︂
p∈Pij

Tijp · zijp ≤ T0i (2.14)

∑︂
j∈Si

∑︂
p∈Pij

ln(Rijp) · zijp ≥ ln(R0) (2.15)

zijp ∈ {0, 1}, ∀i, j, p (2.16)

In the above optimization model, constraints (2.13) ensure that a single mainte-

nance pattern is selected for each subsystem j of OWT i. Constraints (2.14) ensure

that the maintenance time at the OWT i does not exceed the alloted time window

T0i computed as the maximum working time T max minus the sum of travel times

t0i + ti,N+1 (see Eq. 2.10). Constraint (2.15) ensures that the reliability of an OWT

must be greater than or equal to the target reliability. The term on the left-hand

side of the inequality is the linearization of the OWT’s reliability as given by Eq. (2.6):

Ri =
∏︂
j∈Si

Rij (2.17)
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Because zijp is a binary variable, the equation becomes:

Ri =
∏︂
j∈Si

⎛⎝∑︂
p∈Pij

Rijp · zijp

⎞⎠ (2.18)

After applying the natural logarithm which is a monotonic function to both sides of

the above equation, the result in constraint (2.15) is obtained:

ln(Ri) =
∑︂
j∈Si

∑︂
p∈Pij

ln(Rijp) · zijp (2.19)

MILP formulation of the crew routing problem

Once the SMP has been first solved for each OWT i, the required maintenance time

Ti and cost Ci to perform the corresponding SM plan can be obtained using Eq. (2.8)

and (2.9). They can also equivalently be derived as functions of patterns as follows:

Ti =
∑︂
j∈Si

∑︂
p∈Pij

Tijp · zijp. (2.20)

Ci =
∑︂
j∈Si

∑︂
p∈Pij

Cijp · zijp. (2.21)

At the second step of the sequential optimization approach, the output data resulting

from the SMP solutions are used to model and solve the orienteering problem. The

objective of the vessel routing problem is to find a route for multiple repair vessels

starting and ending at the maintenance base (nodes in Q = {0, N + 1}), such that

the sum of the downtime costs, travel costs, and costs associated with not performing

maintenance actions within the working time is minimized. To develop the corre-

sponding mathematical formulation, the following decision variable is introduced:

xii′r =

⎧⎨⎩1 if arc (i, i
′
) is traversed by repair crew r,

0 otherwise.
(2.22)
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In addition to the above decision variable, two other variables Oir and Iir are intro-

duced. The former is used to track the arrival time of the repair crew r at the level

of the ith OWT, while the later (i.e., Iir) serves to identify the position of node i in

the travel path of the repair crew r.
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The routing optimization problem is formulated as an MILP as follows:

Min Z =
∑︂
i∈W

(πc
i (1− Ui) + πp

i · Ui) ·

⎛⎝1−
∑︂

i′∈N\{0}

∑︂
r∈R

xii′r

⎞⎠
+
∑︂
i∈W

·cdi · (1− Ui) ·

⎛⎝tdi +
∑︂
r∈R

Oir + Ti ·
∑︂

i′∈N\{0}

∑︂
r∈R

xii′r

⎞⎠
+
∑︂
i∈W

cdi · Ui ·

⎛⎝Ti ·
∑︂

i′∈N\{0}

∑︂
r∈R

xii′r

⎞⎠+
∑︂

i∈N\{N+1}

∑︂
i′∈N\{0}

∑︂
r∈R

xii′r · cii′

+
∑︂
i∈W

Ci ·

⎛⎝ ∑︂
i′∈N\{0}

∑︂
r∈R

xii′r

⎞⎠ (2.23)

Subject to: ∑︂
i∈N\{0}

x0ir = 1, ∀r ∈ R (2.24)

∑︂
i∈N\{N+1}

xi,N+1,r = 1, ∀r ∈ R (2.25)

∑︂
i∈N\{N+1}

xii′r =
∑︂

i′′∈N\{0}

xi′ i′′r, ∀r ∈ R;∀i′ ∈ W (2.26)

∑︂
i∈N\{N+1}

∑︂
r∈R

xii′r ≤ 1, ∀i′ ∈ W (2.27)

Oir ≥ 0, ∀i ∈ N ;∀r ∈ R (2.28)

Oi′r ≤ T max ·
∑︂

i∈N\{N+1}

xii′r, ∀i′ ∈ N \ {0};∀r ∈ R (2.29)

O0r = 0, ∀r ∈ R (2.30)

O0r + t0i′ −Oi′r −M0i′ · (1− x0i′r) ≤ 0, ∀i′ ∈ N \ {0};∀r ∈ R (2.31)

Oir + tii′ + Ti −Oi′r −Mii′ · (1− xii′r) ≤ 0, ∀i ∈ W ; ∀i′ ∈ N ;∀r ∈ R

(2.32)

2 ≤ Iir ≤ |N |, ∀i ∈ N \ {0};∀r ∈ R (2.33)

Iir − Ii′r + 1 ≤ (|N | − 1) · (1− xii′r) , ∀i ∈ W ; ∀i′ ∈ N \ {0};∀r ∈ R

(2.34)

xii′r ∈ {0, 1}, ∀i, i′ , r (2.35)
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The objective function (2.23) minimizes the total cost resulting from repair crews

maintenance activities and transportation over the distributed wind turbine farm.

The first term represents the penalty cost incurred when maintenance is not per-

formed on failed or functioning OWTs. The second term represents the increasing

penalty as time passes for failed systems. The third term represents the downtime

cost associated with performing PM. The fourth term represents the transportation

cost, while the fifth term represents the cost of performing the selected maintenance

actions. Constraints (2.24) and (2.25) ensure that the route for each service vessel

starts and ends at the maintenance base. Constraints (2.26) ensure the connectivity

of the route, and constraints (2.27) ensure that each vertex (OWT) is visited at most

once by all repair crews. Constraints (2.28) – (2.32) track the arrival time at each

vertex of the distributed network G. Inequalities (2.33) and (2.34) are the Miller-

Tucker-Zemlin subtour elimination constraints where Mii′ are real numbers of high

values. Constraints (2.35) are binary variables restrictions.

2.6.3 Joint selective maintenance and orienteering problem (JSMOP)

Unlike the sequential model discussed above, the proposed joint selective maintenance

and orienteering problem (JSMOP) allows simultaneous decision-making of the opti-

mal routes for multiple repair crews together with the optimal selective maintenance

plan to be performed at the level of each visited OWT. In contrast to the classic ori-

enteering problem that aims to maximize the reward collected at each vertex (node),

the objective function of the proposed JSMOP formulation will be to minimize the

total cost resulting from maintenance activities, repair crews duties and transporta-

tion. In this chapter, fixed and variable labor costs of repair crews are account for

in the maintenance cost. The resulting JSMOP provides joint optimal solutions to

three optimization problem, namely the selective maintenance problem, the repair

crews assignment problem, and the vessels routing problem. Let cfr and cvr represent

the fixed and variable repair crew cost. To distinguish between repair crews’ qual-

ification levels, repair crew r is characterized by its speed ϵr (ϵr > 0) to perform a

maintenance action. For example, ϵr = 1 means that the repair crew r carries out

the maintenance action in the standard/baseline time duration, while ϵr = 0.5 means

that the repair crew is capable of performing the same maintenance action in half the
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standard duration. It is assumed that faster repair crews have higher costs.

To formulate the JSMOP, the variables Oir and Iir introduced previously are used

to track the arrival time of the repair crew r at each OWT i and identify the position

of node i in the travel path of the repair crew r respectively. The decision variable in

Eq. (2.22) will also be used. Two additional decision variables zijpr and yr are also

introduced and defined as follows:

zijpr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if pattern p is selected for subsystem j in OWT i,

and performed by repair crew r,

0 otherwise.

(2.36)

yr =

⎧⎨⎩1 if repair crew r is used,

0 otherwise
(2.37)

The mathematical JSMOP is formulated as follows:

Min Z =
∑︂
i∈W

(πc
i (1− Ui) + πp

i · Ui) ·

⎛⎝1−
∑︂

i′∈N\{0}

∑︂
r∈R

xii′r

⎞⎠
+
∑︂
i∈W

cdi · (1− Ui) ·

⎛⎝tdi +
∑︂
r∈R

Oir +
∑︂
j∈Si

∑︂
p∈Pij

∑︂
r∈R

Tijp · zijpr · ϵr

⎞⎠
+
∑︂
i∈W

cdi · Ui ·

⎛⎝∑︂
j∈Si

∑︂
p∈Pij

∑︂
r∈R

zijpr · Tijp · ϵr

⎞⎠
+
∑︂
i∈W

∑︂
j∈Si

∑︂
p∈Pij

∑︂
r∈R

Cijp · zijpr

+
∑︂

i∈N\{N+1}

∑︂
i′∈N\{0}

∑︂
r∈R

xii′r · cii′ +
∑︂
r∈R

(︁
ON+1,r · cvr + yr · cfr

)︁
(2.38)
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s.t.: ∑︂
i∈N\{0}

x0ir = 1, ∀r ∈ R (2.39)

∑︂
i∈N\{w+1}

xi,N+1,r = 1, ∀r ∈ R (2.40)

∑︂
i∈N\{N+1}

xii′r =
∑︂

i′′∈N\{0}

xi′ i′′r, ∀r ∈ R;∀i′ ∈ W (2.41)

∑︂
i∈N\{N+1}

∑︂
r∈R

xii′r ≤ 1, ∀i′ ∈ W (2.42)

yr ≥ xii′r, ∀i ∈ N \ {N + 1};∀i′ ∈ W ;∀r ∈ R (2.43)

Oir ≥ 0, ∀i ∈ N ;∀r ∈ R (2.44)

Oi′r ≤ T max ·
∑︂

i∈N\{N+1}

xii′r, ∀i′ ∈ N \ {0}; ∀r ∈ R (2.45)

O0r = 0, ∀r ∈ R (2.46)

O0r + t0i′ −Oi′r −M0i′ · (1− x0i′r) ≤ 0, ∀i′ ∈ N \ {0};∀r ∈ R (2.47)

Oir + tii′ +
∑︂
j∈Si

∑︂
p∈Pij

Tijp · zijpr · ϵr

−Oi′r −Mii′ · (1− xii′r) ≤ 0, ∀i ∈ W ;∀i′ ∈ N \ {0};∀r ∈ R (2.48)

2 ≤ Ii′r ≤ |N |, ∀i′ ∈ N \ {0};∀r ∈ R (2.49)

Iir − Ii′r + 1 ≤ (|N | − 1) · (1− xii′r) , ∀i ∈ W ;∀i′ ∈ N \ {0};∀r ∈ R (2.50)∑︂
p∈Pij

zijpr =
∑︂

i′∈N\{0}

xii′r, ∀i ∈ W ;∀j ∈ Si;∀r ∈ R (2.51)

∑︂
j∈Si

∑︂
p∈Pij

∑︂
r∈R

ln(Rijp) · zijpr ≥ ln(R0), ∀i ∈ W (2.52)

xii′r ∈ {0, 1}, ∀i, i′ , r (2.53)

yr ∈ {0, 1}, ∀r (2.54)

zijpr ∈ {0, 1}, ∀i, j, p, r (2.55)
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The objective function (2.38) minimizes the total cost of performing maintenance

on the distributed systems. The first term represents the penalty cost incurred when

maintenance is not performed on failed or functioning turbines. The second term

represents the increasing penalty for failed turbines.The third term is the downtime

cost associated with performing PM. The fourth term computes the cost of perform-

ing the selective maintenance plan, while the fifth term is the transportation cost.

The last term of the objective function refers to the summation of the fixed cost

and variable labor cost for hiring and using the repair crews. Constraints (2.39) and

(2.40) ensure that the route for each service vessel starts and ends at the maintenance

base. Constraints (2.41) ensure the connectivity of the route, and constraint (2.42)

ensures that each vertex is visited at most once. Constraints (2.43) ensure that repair

crews are available before they can be assigned to maintenance routes. Constraints

(2.44) – (2.48) track the arrival time at each vertex and constraints (2.49) and (2.50)

prevent subtours. Mii′ are large positive numbers (i.e. big M values). Constraints

(2.51) ensure that a single maintenance pattern is selected for every subsystem of

each OWT, however no maintenance pattern will be selected for OWTs that are not

visited. Constraints (2.52) ensure that, after maintenance actions are performed, the

reliability of visited OWTs must be greater than or equal to the required minimum

reliability level. Constraints (2.53) – (2.55) define the binary decision variables xii′r,

yrand zijpr used in the formulation.

2.7 Numerical experiments

In this section, five sets of numerical experiments are conducted using the case and

data from a maintenance firm providing services to an offshore wind farm. The first

set is a validation experiment to ensure the proposed extended model obtains the

same results as previously published articles. The second experiment demonstrates

the benefit of selecting an appropriately scaled value for the big M values used in

the formulation in constraints (2.47) and (2.48). The third experiment compares the

proposed joint model and the sequential model. The fourth and fifth experiments

demonstrate additional features and advantages of the JSMOP optimization model.
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All experiments are run on a Intel�i5 2.9GHz desktop computer with 12GB of

RAM running Windows 10�. All algorithms were coded in Python 3.8. The opti-

mization runs were carried out by Gurobi 9.1 using gurobipy.

2.7.1 Case study

All experiments, except the validation experiment (#1), are carried out using an off-

shore wind farm composed of N = 7 identical OWTs as illustrated in Figure 2.1. As

depicted in Figure 2.2, the RBD of turbine i (i = 1, · · · , 7) is composed of Si = 4

k-out-of-n:G subsystems GA(2, 5), GA(2, 4), GA(1, 3) and GA(1, 2) in series. The

shape and scale parameters, and operational states of each OWT components are

given in the data table in Appendix A. This table lists also the cost and duration

for each maintenance level. To carry out maintenance activities, there are R = 3

identical repair crews with fixed and variable costs set to $150 and $25 respectively.

The required travel times and costs between OWT locations and the maintenance

base are given in Table 2.1 and table 2.2. The other parameters are: πc
i = $12, 500,

πp
i = $10, 000, and cdi = $162/hour. According to data in the table in Appendix A,

OWTs in locations 3, 5 and 7 are failed at the start of maintenance rotation. The

values of elapsed down times tdi are provided in Table 2.3. The duration of the next

mission (i.e., the period that the OWTs operate until the next maintenance rotation)

is of six months (i.e., D = 6 months).

Table 2.1: Traveling time (hours) between turbines and maintenance base

End vertex
Start vertex 0 1 2 3 4 5 6 7

0 0 0.47 0.61 0.54 0.69 0.59 0.76 0.71
1 0.47 0 0.15 0.12 0.25 0.12 0.27 0.25
2 0.61 0.15 0 0.20 0.17 0.10 0.15 0.12
3 0.54 0.12 0.20 0 0.34 0.10 0.29 0.32
4 0.69 0.25 0.17 0.34 0 0.27 0.25 0.12
5 0.59 0.12 0.10 0.10 0.27 0 0.20 0.22
6 0.76 0.27 0.15 0.29 0.25 0.20 0 0.12
7 0.71 0.25 0.12 0.32 0.12 0.22 0.12 0
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Figure 2.2: Reliability structure of the OWT at location i

Table 2.2: Traveling cost ($) between turbines and maintenance base

End vertex
Start vertex 0 1 2 3 4 5 6 7

0 0 17.60 22.84 20.22 25.84 22.10 28.46 26.59
1 17.60 0 5.62 4.49 9.36 4.49 10.11 9.36
2 22.84 5.62 0 7.49 6.37 3.75 5.62 4.49
3 20.22 4.49 7.49 0 12.73 3.75 10.86 11.98
4 25.84 9.36 6.37 12.73 0 10.11 9.36 4.49
5 22.10 4.49 3.75 3.75 10.11 0 7.49 8.24
6 28.46 10.11 10.86 10.86 9.36 7.49 0 4.49
7 26.59 9.36 11.98 11.98 4.49 8.24 4.49 0

Table 2.3: Elapsed downtime tdi of failed OWTs

OWT tdi (hours)

3 48
5 10
7 2
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For all numerical experiments four potential maintenance levels for failed com-

ponents will be considered: do-nothing (l = 0), minimal repair (l = 1), imperfect

maintenance (l = 2) and replacement (l = 3). The same maintenance levels will be

considered for functioning components with the exception of minimal repair. It will

be assumed that the imperfect maintenance level will reduce the age of the compo-

nent by half (θijk2 = 0.5). Except for the last set of experiments, the repair crews are

assumed to be of standard qualification with ϵr = 1, ∀r ∈ R.

2.7.2 Set of experiments #1: validation of the JSMOP model

This set of experiments considers the complex system comprised of three GA(k, n)

subsystems GA(2, 5), GA(3, 8) and GA(4, 10) from experiment set #5 in Diallo et al.

(2018). The goal is to show that the proposed JSMOP model finds the same optimal

maintenance decisions as in Diallo et al. (2018). Given that the JSMOP is a more

general model than the one in Diallo et al. (2018), several parameters should be set to

zero to allow for a valid comparison to take place. In particular, we set i = 1 because

there is only one equipment in the reference experiment and all routing times and

costs are set to 0. The proposed JSMOP is solved for a required minimum reliability

level R0 = 0.70, and different values of T max. The overall results obtained are re-

ported in Table (2.4) along with the optimal results from Diallo et al. (2018). From

Table (2.4), one can indeed conclude that the proposed JSMOP model reaches the

same solutions as in Diallo et al. (2018).

Table 2.4: Results of validation experiment with k-out-of-n:G subsystems

Results from JSMOP From Diallo et al. (2018)
T max Z∗ T ∗ R∗ Z∗ T ∗ R∗

($) (hr) (%) ($) (hr) (%)

100 147 64 70.84 147 64 70.84
60 153 59 71.56 153 59 71.56
56 154 56 70.18 154 56 70.18
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2.7.3 Set of experiments #2: selecting the value of parameter M in

JSMOP

For computational efficiency, M should be as small as possible while ensuring that

constraints (2.47) and (2.48) are enforced. From constraint (2.47), given that O0r = 0,

one may conclude that t0i′ is the smallest possible value that M0i′ could take. Since

Oir can take values within the time interval [0, T max], it follows that values of Mii′ in

constraints (2.48) must satisfy the following inequalities:

Mii′ ≥ T max + tii′ +
∑︂
j∈Si

∑︂
p∈Pij

Tijp · zijpr · ϵr, ∀r ∈ R.

From the above inequalities, the smallest values of Mii′ are thus obtained as:

Mii′ = T max + tii′ + max
{r∈R}

ϵr ·
∑︂
j∈Si

max
{p∈Pij}

Tijp. (2.56)

Several experiments were conducted where the JSMOP is solved using both a large

value (M = 100, 000) and the values suggested by Equation (2.56). The results of

the different experiments with varying target reliabilities and shift lengths are shown

in Table 2.5. The results clearly show that the computation time (CPUt) reduces

significantly for all problem instances when the values suggested by Equation (2.56)

are used.

Table 2.5: CPUt comparison

Values of M from Eq.(2.56) M = 100, 000
R0(%) T max Z∗ ($) CPUt (s) Z∗ ($) CPUt (s)

96.0 15 19,656 100.27 19,656 132.98
98.0 15 41,341 311.48 41,341 383.84
98.0 18 31,818 370.12 31,818 501.92
99.5 25 64,692 260.97 64,692 392.22
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2.7.4 Set of experiments #3: comparison between the JSMOP

formulation and the sequential model

In this set of experiments, the sequential and joint SMOP optimization approaches

are compared. The same OWT farm and its corresponding input data as described

in experiment #2 are considered. The optimization problems resulting from both the

sequential and joint formulations are solved for varying required minimum reliability

levels and T max = 19 hours. The fixed and variable costs for the repair crews are

set to $0 as repair crews are not considered for the current experiments. The results

obtained are reported in Table (2.6) which gives, for each value of the target reliabil-

ity, the optimal cost Z∗ and the total number N∗ of the OWTs visited by the repair

crews. From these results, it is clear that the proposed joint optimization approach

achieves equal or in most cases better solutions than the sequential optimization ap-

proach. Indeed, the joint approach allows not only to select the best combination

of maintenance patterns to meet the target reliability at the lowest cost, but also to

select more expensive patterns that either allow visiting more OWTs or lead to a re-

duction in OWTmaintenance time which in turn may reduce the overall incurred cost.

Table 2.6: Comparison of optimal values

Joint approach (JSMOP) Sequential approach Cost reduction
R0(%) Z∗ ($) N∗ Z∗ ($) N∗ by JSMOP (%)

98.0 21,589 7 30,207 6 28.53
98.8 44,916 5 51,316 4 12.47
99.0 51,962 4 51,962 4 –
99.2 60,607 3 60,809 3 0.33

As expected, the results in Table (2.6) show that as the required minimum reli-

ability R0 increases, the total repair time and cost increase. As a result, the total

number N∗ of OWTs visited per maintenance rotation decrease while the total cost

incurred increase. For all R0 values, the joint approach achieves a lower or equal

objective function value (cost) with at least as many or more OWT visits.

Tables (2.7) and (2.8) give the maintenance patterns selected and the resulting to-

tal maintenance cost Ci and time Ti for each turbine i respectively for R0 = 98.80%.
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For example, the first row of Table (2.7) shows the maintenance pattern selected

for the first turbine: components E112, E114, and E122 are selected for minimal re-

pair (maintenance level l = 1), components E124 and E132 are selected for imperfect

maintenance (maintenance level l = 2), and the component E141 is selected for a re-

placement (maintenance level l = 3). The remaining components are not maintained.

These maintenance actions take a total time of T1 = 9.25 hours and cost C1 = $590.

In Table 2.7, turbines 3 and 7 have a corresponding total maintenance time and a

cost equal to zero meaning that they are not visited during the maintenance rotation.

For the sequential approach, Table 2.8 shows the maintenance patterns selected for

all OWTs followed by the decisions of what OWTs to visit and the routes that the

repair crews should take.

Table 2.7: Patterns and resulting total time and cost: case of the joint optimization
approach

Patterns selected Cost Ci Time Ti

OWT i ($) (hr)

1 (0, 1, 0, 1, 0), (0, 1, 0, 2), (0, 2, 0), (3, 0) 590 9.25
2 (0, 1, 0, 0, 0), (0, 2, 1, 2), (0, 0, 0), (3, 0) 550 9.25
3 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 0 0
4 (0, 2, 1, 0, 0), (0, 1, 0, 1), (0, 0, 0), (2, 0) 400 7.00
5 (0, 1, 0, 0, 0), (0, 2, 0, 1), (2, 0, 0), (3, 1) 640 11.0
6 (0, 1, 0, 0, 1), (0, 0, 0, 2), (0, 2, 0), (3, 0) 515 8.25
7 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 0 0

Table 2.8: Patterns and resulting time and cost: case of the sequential optimization
approach

OWT i Patterns selected Cost Ci Time Ti Visited
($) (hr)

1 (0, 1, 0, 1, 0), (0, 2, 0, 0), (0, 2, 0), (3, 0) 565 9.75
2 (0, 2, 0, 0, 0), (0, 0, 2, 2), (0, 0, 0), (3, 0) 525 9.50
3 (0, 3, 0, 0, 1), (0, 3, 0, 0), (0, 2, 0), (1, 3) 865 15.00
4 (0, 2, 1, 0, 0), (0, 1, 0, 1), (0, 0, 0), (2, 0) 400 7.00 ✓
5 (0, 2, 0, 0, 0), (0, 2, 0, 1), (2, 0, 0), (2, 2) 615 11.75 ✓
6 (0, 1, 0, 0, 1), (0, 0, 0, 2), (0, 2, 0), (3, 0) 515 8.25 ✓
7 (1, 1, 1, 0, 0), (0, 2, 0, 2), (0, 1, 0), (2, 3) 755 12.75 ✓
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Now, if one considers the particular patterns selected for turbines 1, 2, and 5 in

Table 2.7, the joint optimization approach suggests a combination of maintenance

patterns that are more expensive but require less time to be performed. This allows

for more turbines to be visited within the maintenance rotation which in turns leads

to a reduction in the penalty cost, in particular, and in the overall cost in general.

This clearly demonstrates the benefit of jointly solving the SMP and routing problem

rather than making the decisions separately.

2.7.5 Set of experiments #4: impact of target reliability and trip length

To show how the target reliability impacts the SM plan and repair crews paths as-

signment, the JSMOP is solved for a limited duration T max = 16 hours while the

target reliability R0 is varied from 96% to 99%. The results obtained are depicted

in Table (2.9). This table shows the optimal number N∗ of the OWTs visited, the

total cost incurred Z∗, in addition to the CPU times. From these results, one may

observe that when the reliability target R0 increases, the number N∗ of OWTs that

are visited decreases while the resulting total cost Z∗ increases.

Table 2.9: Results obtained for T max = 16 and varying values of R0: case of Experi-
ments #4

R0(%) N∗ Z∗ CPUt (s)

96 7 19,650 37.5
97 6 29,774 500.8
98 6 32,934 233.3
99 3 61,227 13.4

For the particular case where R0 = 97% and T max = 16 hours, Table (2.10) lists

the maintenance patterns selected for each OWT, as well as the resulting cost Ci ($),
time Ti (hr), and OWT reliability Ri (%). In addition, for each one of the repair

crews, Table (2.11) indicates the route, working time, and the required travel cost.

Based on the selected repair crew routes it can be seen that the initially failed OWTs

are visited as early as possible if not immediately. The three available repair crews

each starts their maintenance duties by visiting a failed OWT: the first repair crew
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(r = 1) first visits OWT 7 before completing their route via OWT 4; repair crew

r = 2 first visits the failed OWT 5, then goes to OWT 6 and returns back to the

maintenance base, and the last repair crew visits OWT 3 followed by OWT 1. OWT

2 is the only one that was not selected for maintenance despite its reliability which

is lower than R0 = 97%. As consequence, a penalty cost will be incurred. The path

selected for each repair crew is illustrated in Figure (2.3).

Table 2.10: Maintenance results obtained for R0 = 97% and T max = 16: case of
Experiments #4

OWT i Patterns selected Cost ($) Time (hr) R∗(%)

1 (0, 1, 0, 1, 0), (0, 1, 0, 0), (0, 2, 0), (0, 0) 290 4.25 97.5
2 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) – – 85.3
3 (0, 1, 0, 0, 1), (0, 1, 0, 2), (0, 2, 0), (2, 2) 565 9.75 97.1
4 (0, 0, 1, 0, 0), (0, 1, 0, 1), (0, 0, 0), (0, 0) 200 2.75 97.2
5 (0, 1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 0), (2, 1) 350 6.00 97.6
6 (0, 1, 0, 0, 1), (0, 0, 0, 0), (0, 1, 0), (2, 0) 280 4.50 97.1
7 (1, 1, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0), (1, 3) 580 9.00 97.4

Table 2.11: Repair crew assignment and routing for R0 = 97% and T max = 16: case
of Experiments #4

Repair crews Route Working time (hr) Travel cost ($)
RC1 [0, 7, 4, 0] 13.27 56.92
RC2 [0, 5, 6, 0] 12.05 58.05
RC3 [0, 3, 1, 0] 15.13 42.31

Now, to investigate the impact of the limited duration T max allotted to the main-

tenance rotation on the SM plan and repair crews routes assignment, the JSMOP is

solved for a required minimum reliability R0 = 98% and varied values of the shift du-

ration T max. The benefit of such an investigation can be justified from the fact that,

in real-world wind farm maintenance setting, shift lengths are frequently shortened or

interrupted due to operating environment conditions (e.g., poor weather conditions).

The results obtained for values of T max ∈ {14, 16, 18, 20} are reported in Table

(2.12). For each value of T max, this table gives the optimal number N∗ of the OWT
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Figure 2.3: Illustration of paths selected for each repair crew

to visit, the total cost Z∗ incurred, in addition to the CPU time. From these results,

it is observed that as the shift length is shortened the optimal number N∗ of visited

OWTs decreases while the total cost Z∗ increases.

Table 2.12: Results when the shift length is varied: case of Experiments #4

T max Visited nodes Z∗ CPUt (s)

14 5 41,345 237.5
16 6 32,934 233.3
18 6 31,818 356.7
20 7 23,412 78.2

2.7.6 Set of experiments #5: selecting the optimal number of repair

crews

For this set of experiments, the problem described in experiment #2 is extended to

include R = 3 potential repair crews with different skill levels and costs. For each
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repair crew r ∈ {1, 2, 3}, Table (2.13) shows the repair crews speed coefficients ϵr, the

variable cost cvr and the fixed cost cfr . From these data, repair crew 1 (r = 1) is char-

acterized by speed coefficient ϵ1 = 0.5 which means that the repair crew is capable

of carrying out a maintenance action in half the required standard duration. With a

speed coefficient ϵ2 = 1, the second repair crew has standard/baseline qualification.

The third repair crew is the least skilled with a speed coefficient ϵ2 = 1.2 which means

that it requires 20% more time than repair crew 2 to perform the same maintenance

action.

Table 2.13: Repair crew data: case of Experiments #5

Repair crew r ϵr cvr cfr

1 0.50 40 275
2 1.00 30 200
3 1.20 20 125

The JSMOP is solved for a limited shift duration T max = 15 hours while the re-

quired minimum reliability R0 varies from 86% to 99%. The optimal results obtained,

namely the number N∗ of visited OWTs, the total cost incurred Z∗, the repair crews

used, their routes and the CPU times are depicted in Table (2.14). From this table,

the following observations can be made:

� When the required minimum reliability R0 = 86%, repair crew #1 (the fastest

crew) performs 15 maintenance actions on all 7 turbines for a total maintenance

time of 7.125 hours. According to the detailed experiment results in Appendix

B, the 15 maintenance actions are spread as follows: 14 minimal repairs (MR)

and one imperfect maintenance (IM).

� When R0 increases to 90%, repair crew #1 is no longer capable of visiting all

turbines as more maintenance activities are required meaning spending more

time at the turbines. Therefore, the model adds repair crew #3 to perform the

maintenance actions required at turbine 5. In total, 19 maintenance actions (18

MR and one IM) are conducted and take 11.225 hours (See Appendix B).

� When R0 is further increased to 94%, repair crews #1 and #3 are no longer
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Table 2.14: JSMOP results for varying values of target reliability: case of Experiments
#5

Crews used
R0 N #1 #2 #3 Routes m Tm Z∗ ($) CPUt(s)

86% 7 ✓ [0,3,5,7,4,6,2,1,0] 15 7.125 13,555 94.3

90% 7
✓ [0,3,7,4,6,2,1,0] 16 7.625

14,380 79.7
✓ [0,5,0] 3 3.600

94% 7
✓ [0,3,7,4,6,2,1,0] 22 12.125

16,335 112.7
✓ [0,5,0] 4 4.000

✓ [0,7,4,2,1,0] 20 12.875
98% 6 ✓ [0,3,0] 7 11.750 30,059 387.6

✓ [0,5,0] 5 8.700
✓ [0,7,6,0] 13 11.625

99% 4 ✓ [0,5,0] 6 12.250 52,041 87.7
✓ [0,4,0] 5 8.700

m: number of maintenance actions carried out by repair crew
Tm: duration in hours of maintenance actions carried out by repair crew

capable of visiting all turbines as more high level maintenance activities are

required meaning spending more time at the turbines. Therefore, the model

replaces repair crew #3 with the faster repair crew #2 to perform the mainte-

nance actions required at turbine 5. In total, 26 maintenance actions (23 MR,

two IM, and one Replacement) are conducted and take 16.125 hours. It should

be noted that the number of maintenance actions performed increases as well

as their quality (level): two IM and one replacement are carried out.

� When R0 reaches to 98%, all three repair crews are used. However, the reliabil-

ity requirement is so high that there is not enough time to perform the required

maintenance actions needed. Thus, turbine 6 is not visited hence incurring a

penalty cost. In this case, 32 maintenance actions (21 MR, eight IM, and three

replacements) are performed for a total maintenance time of 33.325 hours. Sim-

ilar model behavior is observed for R0 = 99%. The reliability requirement far

exceeds the capacity of the repair crews for the maintenance rotation time avail-

able. Thus, turbines 1, 2, and 3 are not visited and turbine 3 remains down. In

this case, 24 maintenance actions (9 MR, 12 IM, and three replacements) are

performed for a total maintenance time of 32.575 hours.
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� From these results, one can conclude that as the target reliability is increased the

number of repair crews utilized is increased because it takes longer to carry out

the maintenance actions needed to guarantee increasing reliability. In general,

the computation time also increases as the reliability requirements are increased.

When the repair crew capacity is reached, the number of turbines visited drops

and penalties are incurred.

The sets of experiments carried out above clearly show that the proposed joint

formulation of the SMP and OP is efficient and yields valid maintenance and routing

decisions. The joint formulation is superior to the sequential approach without adding

significant computation burden for small and moderately large systems.

2.8 Conclusion

This chapter introduced a mathematical formulation to optimally solve the joint se-

lective maintenance and orienteering problem. The pattern generation algorithm

developed by Diallo et al. (2018) was extended to generate all feasible maintenance

patterns and eliminate the need for solving a nonlinear formulation. The proposed

model was applied to a real-world problem of selecting the maintenance actions to

be performed on a set of offshore wind turbines and also determining the optimal

route for several repair crews. Multiple numerical experiments were run to show that

the joint model produces cheaper overall solutions than the traditional approach of

sequentially solving the SMP followed by the resulting routing problem. The experi-

ments also demonstrated key characteristics and properties of the model.

Future extensions of the work produced in this chapter include eliminating some

of the assumptions made regarding the way in which maintenance operations are

conducted at offshore wind farms. The assumptions that service vessels are required

to be present while maintenance is being performed and that they can carry only a

single repair crew is not necessarily realistic. It may also be somewhat unrealistic to

assume that service vessels have the necessary capacity to carry any spare parts/tools

that may be required for maintenance. Developing a model that drops the described

assumptions may provide a more accurate and realistic representation of the problem.
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Reliability was used as the desired performance indicator for turbines, however

availability is another common indicator that is often used in practice. An innovative

and novel extension of the SMP and joint JSMOP could be to develop an optimiza-

tion model with an objective of selecting a subset of components and maintenance

actions to be performed on the selected components in which the system availability

over the upcoming mission (mean availability) meets or exceeds an availability tar-

get. The mean system availability refers to the percentage of time that a system is

operable over a mission length and in many industrial applications would be of more

importance than the system reliability. However, availability is much more complex

performance indicator than system reliability.

One last area of future research is the solving of the JSMOP for very large instances

of the problems with hundreds of systems comprised of hundreds of components.

This would require the development of decomposition methods, the use of column

generation to reduce the number of patterns generated, and matheuristics based on

recent developments in the solution of the vehicle routing problem with profits.



Chapter 3

A column generation-based approach for solving the

multimission selective maintenance optimization problem in

large-scale serial k-out-of-n:G systems

3.1 Introduction

Many military and industrial systems are required to perform a series of missions with

finite breaks between missions. Examples of these systems include aerospace equip-

ment, weapon systems, computers, production and manufacturing lines, and energy

production systems. To maintain such systems and ensure they continue to operate

their missions at an acceptable performance level, maintenance actions usually need

to be carried out during scheduled breaks. Due to resource constraints such as time,

cost, and repair-person availability, only a subset of system components can be se-

lected for maintenance operations. Such a maintenance decision problem is known in

the literature as the selective maintenance problem (SMP). The SMP aims to identify

the optimal subset of components to maintain and the level of maintenance actions

to be performed on the selected components so that to meet a specified system per-

formance for the upcoming missions.

The original selective maintenance model was first introduced by Rice et al. Rice

et al. (1998) and considered a series-parallel system where components lifetimes are

exponentially distributed. Accordingly, the only maintenance action considered is

perfect repair of failed components. The objective of the proposed model was to

maximize system reliability for the next mission and an enumeration method was

used to find the optimal SM plan. In the intervening years since Rice et al. (1998)

proposed the first selective maintenance model, many researchers have expanded upon

this work. These studies have included complex system configurations Cassady et al.

(2001b); Diallo et al. (2018), multistate systems Liu and Huang (2010); Pandey et al.

44
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(2013a), component dependence Xu et al. (2016); Dao and Zuo (2017), fleet level

selective maintenance Khatab et al. (2020); Schneider and Cassady (2015), stochastic

break and/or mission duration Liu et al. (2018); Khatab et al. (2017), condition-based

SMP Khatab et al. (2018a), and multiple repair channels Diallo et al. (2019); Khatab

et al. (2018b). A literature review of the SMP is provided in Xu et al. (2015). A

more recent SMP literature review was conducted by Cao et al. (2018).

The majority of the existing models of the SMP deals with the single mission case.

However in real industrial situations, it is often desirable to obtain SM plans for a

time horizon composed of a sequence of alternating missions and breaks. In such

situations, there are clear and strong trade-offs between the maintenance decisions

and long-term resources management. Furthermore, from an optimization point of

view, an optimal global maintenance plan covering all missions at once is better than

sequentially planning the maintenance for multiple single missions separately. This

extended SM decision problem is referred to as the multimission selective maintenance

problem (MMSMP). The resulting combinatorial optimization problem (MMSMOP)

includes a third maintenance decision: selecting the appropriate break during which a

maintenance action will take place. The MMSMOP is usually formulated as a mixed

integer nonlinear problem due to the system reliability. Its complexity increases ex-

ponentially as the number of system components and missions increases.

A limited number of papers dealing with the MMSMP have been published in

the literature. Khatab and Ait-Kadi (2008) develop a SMP optimization model in

multistate systems (MSS) operating several missions. The resulting optimization pro-

gram is solved using a simulated annealing algorithm. Maillart et al. (2009) analyze

the finite and infinite-horizon multimission SMP for series parallel systems. Both

the finite and infinite-horizon problems are formulated as stochastic dynamic pro-

grams. Through numerical experiments it is shown that there is rarely a difference

between the optimal finite and infinite-horizon SM policies. Zhao and Zeng (2016)

propose a model for the multimission SMP where the break duration is exponen-

tially distributed. Pandey et al. (2016) investigate the finite-horizon MMSMP for

a series parallel system and provide a nonlinear programming formulation. In their
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work, the hybrid imperfect maintenance model is used to model the imperfect main-

tenance options. Zhang et al. (2019) extend the work in Pandey et al. (2016) to a

MSS whose components deteriorate according to an homogeneous-time Markov chain.

The authors develop a SM optimization model to determine the maintenance times

and options for each system component to minimize the total maintenance cost under

system reliability requirement.

Recent papers (Jiang and Liu, 2020b; Chaabane et al., 2020; Shahraki et al., 2020)

addressed the MMSMP. Jiang and Liu (2020b) extend the results in (Khatab et al.,

2017) to deal with the MMSMP with uncertain mission duration and component ef-

fective ages. A max-min optimization model is presented and solved using a simulated

annealing-based genetic algorithm. Chaabane et al. (2020) investigate the combined

multimission selective maintenance and repair-person assignment problem. A mixed

integer nonlinear programming model is proposed and solved using a genetic algo-

rithm. Shahraki et al. (2020) also investigate the multimission SMP in MSS where

components are subjected to s-dependency and random IM. The s-dependency be-

tween components is represented by two types of interactions as a function of the

system performance rate in addition to the number of components impacted. A

multi-objective SMOP is then developed to jointly maximize the system reliability

and minimize its corresponding variability.

The majority of the papers discussed above are still based on elementary series-

parallel systems structures. However, more complex structures such as k-out-of-n:G

can be encountered in a wide range of industrial applications including electronics,

telecommunication networks, and power generation (Elsayed, 2012). A k-out-of-n:G

structure, also denoted as GA(k, n), consists of n components and operates if at least

k components operate. It generalizes the series-parallel structure as it refers to a

parallel structure when k = 1, while it reduces to a series structure when k = n. To

our knowledge, Diallo et al. (2018) is the only paper that deals with the SMP in serial

GA(k, n) systems. The authors in (Diallo et al., 2018) propose two new nonlinear

SMP formulations. To solve the resulting SM optimization problems, a two-phase ap-

proach using a binary integer programming (BIP) model is developed: the first phase
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generates all feasible maintenance patterns for each GA(k, n) subsystem, while the

second phase solves a multidimensional multiple-choice knapsack problem (MMKP)

to select the optimal mix of maintenance patterns.

The SM approach proposed in Diallo et al. (2018) considers a serial GA(k, n)

systems operating only one subsequent mission. The present chapter develops a new

approach where the SMP in Diallo et al. (2018) is comprehensively extended to help

maintenance decision makers resolve real industry occurrences of the SMP in serial

GA(k, n) systems operating several missions interspersed by scheduled breaks with

possibly different lengths. The lifetimes of system components are generally dis-

tributed and subjected to a list of several IM levels including replacement. To meet a

minimum required performance level for the next mission, the maintenance activities

are performed on the system components during the break. To avoid unplanned in-

terruptions due to components failures during a mission, it is assumed that minimal

repair can be carried out on failed components. This assumption has been already

adopted in the literature (Chaabane et al., 2020; Khatab and Ait-Kadi, 2008) since

it is not uncommon to find systems where a subsystem is composed of only one com-

ponent or machine. Such a system is indeed investigated in Zhu et al. (2011) as a

machining line of the automobile engine connecting rod. The machining line is com-

posed of 10 subsystems in series where the first subsystem is a single machine. Failure

of the single machine would stop the production line and cause economic losses. Due

to the limited duration allotted to the scheduled breaks, not all components are likely

to be maintained. The objective is to find the optimal decisions minimizing the total

maintenance cost while ensuring a minimum reliability level during the missions. The

combinatorial complexity of the resulting optimization model is naturally higher than

that in Diallo et al. (2018). Therefore, there is a need to develop effective approaches

in solving such complicated non-linear optimization problems.

The objectives of the present chapter are twofold. We first propose an extension

of the SMP in serial GA(k, n) systems under a multimission planing horizon. Given

the high complexity inherent to the resulting MMSMOP, a new solution method is

developed while combining the column-generation (CG) approach with the genetic
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algorithm (GA). Column-generation is an efficient method for solving large linear

programs dealing with a huge number of variables. It was first used by Gilmore and

Gomory (1961) and Gilmore and Gomory (1963) to solve the cutting stock problem

and has since been applied to a wide range of optimization problems. These problems

include, for example, the redundancy allocation problem (Zia and Coit, 2010), vehicle

routing problem (Faiz et al., 2019), shift scheduling (Al-Yakoob and Sherali, 2008),

and dynamic job assignment (Range et al., 2019). Liu et al. (2010) also apply CG to

the passenger rail crew scheduling, and used a GA to solve the induced subproblems.

Dunbar et al. (2020) propose a CG approach where the restricted master problem

is solved exactly and a GA is used to solve the subproblems. The results of this

study indicate that the approach yields improved solutions compared to the current

best-case costs.

Column-generation has yet to be applied to any variant of the SMP. In the present

work, a hybrid CG and GA is proposed for the MMSMP to find efficient and high

quality SM plans. Comprehensive experiments and comparison with other proposed

solution methods highlight better performance of the proposed hybrid solution ap-

proach. For large scale MMSMP, it will be shown that the proposed solution ap-

proach is capable not only of obtaining near optimal solutions but also to outperform

other solution approaches that have been used in the literature. Furthermore, the

experiments conducted will show that the present work will lead to efficient solution

methods for more complex SM problems.

The remainder of this chapter is structured around six additional sections. Section

3.2 presents the system of notation used and the main working assumptions made

in the present work. This section also describes the system investigated and the

associated reliability computations. Section 3.3 presents the imperfect maintenance

model, in addition to the computation of total maintenance time and cost. Section

3.4 presents the MINLP formulation and the corresponding BIP formulation of the

MMSMP. The proposed hybrid solution approach combining CG and GA is developed

in Section 3.5. This section also presents the formulation of the restricted master

problem and subproblems. Section 3.6 presents several sets of numerical experiments
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carried out to validate the proposed SM modeling and solution approach. Conclusions

and future research extensions are presented in section 3.7.

3.2 System description and reliability computation

The system of notation and main working assumptions used in the present chapter

are presented below.

3.2.1 Notation

I Set of subsystems, I = {1, 2, ..., N} with index i

Ji Set of components in subsystem i, Ji = {1, 2, ..., Ni} with index j

M Set of missions, M = {1, 2, ...,M} with index m

Lij Set of preventive maintenance levels available for component Eij,

Lij = {0, 1, ..., Lij} with index l

Pi Set of maintenance patterns generated for subsystem i, Pi =

{1, 2, ..., Pi} with index p

Ki Minimum number of components that must be functioning in sub-

system i

Eij The jth component of subsystem i

Xijm Age of component Eij at the start of break m

Yijm Age of component Eij at the end of break m

hij(t) Failure rate of component Eij

tijl Duration of PM level l on component Eij

cijl Cost of PM level l on component Eij

crij Cost of minimal repair on component Eij

Um Duration of mission m

Dm Duration of break m

Rc
ij Conditional reliability of component Eij during mission m

Rs
im Reliability of subsystem i during mission m

Rm Overall system reliability during mission m

R0m Minimum required reliability level during mission m
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3.2.2 Main working assumptions

1. The system is comprised of multiple subsystems aranged in a series configura-

tion. Each subsystem is made up of multiple binary components (components

and system can either be functioning or failed).

2. During a break, system components do not age, i.e. the age of a component is

operation-dependent.

3. If a component fails during a mission, a minimal repair is performed to bring the

component back to the functioning state. When a minimal repair is performed

on a failed component, its failure rate remains undisturbed. Failures occur

following a non-homogeneous Poisson process (NHPP).

4. The time to perform a minimal repair is negligible compared to the mission

duration.

5. All required limited resources (budget, repair-persons, tools) are available when

needed. Only one repair channel is available meaning that only one component

can be worked on at any given time.

3.2.3 System description

The multimission SMP addressed in the present chapter considers a system comprised

of N subsystems arranged in a series configuration. The ith subsystem (i = 1, · · · , N)

is represented by a Ki-out-of-Ni:G reliability bloc diagram (RBD). In reliability the-

ory, the Ki-out-of-Ni:G structure is usually denoted as GA(Ki, Ni) and specifies that

the system is functioning if and only if at least Ki out of the Ni components are

functioning. Such RBD is a generalization of both the series (case of Ki = Ni) and

parallel (case of Ki = 1) structures. Individual components in each subsystem are

independent and their lifetimes are not necessarily identically distributed.

The system under consideration is required to perform a series of missions each

separated by scheduled maintenance breaks of finite length. It is assumed that the

system has just completed a mission and is entering the first break of a new sequence

of missions. There are M subsequent missions and as many scheduled maintenance
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breaks indexed by m (m ∈ {1, 2, · · ·M}). At the end of mission m the system is

switched off for the (m+1)th break of duration Dm+1 during which maintenance ac-

tions can be performed. The system will be required to operate the following mission

of duration Um+1 at a required minimum reliability level R0,m+1.

Let Xijm and Yijm denote the effective age of component Eij at the start and

end of maintenance break m, respectively. All components are subjected to perfect

inspections that reveal their effective ages Xij1 at the start of the first break. The

duration of these perfect inspections are not included in the break duration. The

recursive relationship between Xijm and Yijm is given by the following equation:

Xij,m+1 = Yijm + Um, ∀m ∈ M \ {M}. (3.1)

3.2.4 Reliability computation

It is required that the system successfully operates all missions at a predetermined

minimum required reliability level. The system reliability for a particular missionm is

defined by the probability that it can successfully complete the mission. To compute

the system reliability for a particular mission, one must first compute Rc
ijm and Rs

im,

the component and subsystem reliabilities, respectively. Given that component Eij

has effective age Yijm at the end of maintenance break m (i.e at the start of mission

m), the probability that it will survive the next mission of duration Um is defined by

the conditional reliability function:

Rc
ijm =

Rij(Yij + Um)

Rij(Yij)
, (3.2)

where Rij(t) refers to the unconditional reliability of component Eij.

Without loss of generality, it is assumed that component Eij has a Weibull dis-

tributed lifetime with shape and scale parameters βij and ηij, respectively. In this
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case, the probability Rc
ijm of component Eij to successfully operate mission m be-

comes:

Rc
ijm = exp

[︄(︃
Yijm

ηij

)︃βij

−
(︃
Yij + Um

ηij

)︃βij

]︄
. (3.3)

The reliability Rs
im of the the ith subsystem is obtained from the exact formulation

proposed in Arulmozhi (2002):

Rs
im =

Ni∑︂
jki=1

jki−1∑︂
jki−1=1

· · ·
j2−1∑︂
j1=1

⎛⎝ jki∏︂
v=j1

Rc
iv

⎞⎠
⎛⎜⎜⎝ jki∏︂

u=1
u̸=j1,··· ,jki

(1−Rc
iu)

⎞⎟⎟⎠ . (3.4)

To compute the reliabilityRs
im of each subsystem, the algorithm proposed by Kuo and

Zuo (2003) is implemented. Because subsystems are arranged in a series configuration,

the overall system reliability for mission m is then computed as:

Rm =
∏︂
i∈I

Rs
im. (3.5)

3.3 Imperfect maintenance modeling, and total maintenance time and

cost computation

For each component Eij, there is a list Lij = {0, · · · , Lij} of Lij +1 preventive main-

tenance levels l ∈ Lij that can be selected during breaks. These maintenance levels

include do-nothing, imperfect maintenance (IM), and replacement. The do-nothing

(l = 0) case refers to no maintenance being performed on the component. The replace-

ment level (l = Lij) resets the component’s age to 0, while an IM level 0 < l < Lij if

selected will return the component’s age between that obtained after minimal repair

and replacement. When carried out on a component Eij, a PM of level l requires tijl

time units, and costs cijl monetary units.

Commonly used IM models in the literature are: age reduction (Malik, 1979),

hazard rate adjustment (Nakagawa, 1988), and hybrid hazard rate (Lin et al., 2000)

models. The age reduction approach is adopted here to model IM. Accordingly, each
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IM level l ∈ Lij available for component Eij is characterized by an age reduction co-

efficient γijl (0 ≤ γijl ≤ 1). Therefore, when the IM is performed on Eij, its effective

age Xijm is reduced and becomes:

Yijm = γijl ·Xijm. (3.6)

For modeling purpose, the following decision variable wijlm is introduced as:

wijlm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if maintenance level l is performed

on Eij during break m,

0, otherwise.

(3.7)

Using Equation (3.7), the total time Tm spent performing maintenance actions during

break m is expressed as:

Tm =
∑︂
i∈I

∑︂
j∈Ji

∑︂
l∈Lij

tijl · wijlm. (3.8)

According to assumption 3, if component Eij fails during a mission, a minimal repair

is performed at a cost of crij monetary units. Thus, the total expected maintenance

cost C can be expressed as:

C =

⎛⎝∑︂
i∈I

∑︂
j∈Ji

∑︂
l∈Lij

∑︂
m∈M

cijl · wijlm + crij ·
∫︂ Yijm+Um

Yijm

hij(t) dt

⎞⎠ , (3.9)

where hij(t) is the failure rate of component Eij, the first term represents the cost of

the PM actions and the second term represents the expected minimal repair cost.

3.4 Mathematical programming formulations

Before establishing the mathematical programming formulations of the multimission

SMP (MMSMP), let us recall that the system is designed to operate the missions at

a predetermined minimum required reliability level. The goal of the MMSMP is to
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jointly select the set of components to be maintained in each break, and the main-

tenance levels to be performed on the selected components to minimize the grand

total maintenance cost subjected to the minimum required reliability level during

each subsequent mission R0m. Thus, the maintenance actions selected must result in

the system meeting or exceeding the minimum reliability for each mission. In this

section we first introduce the mixed integer nonlinear programming formulation of the

MMSMP. The proposed MINLP formulation is an adaptation of the one presented

in (Chaabane et al., 2020) as, in the present work, only a single repair crew is ac-

counted for. Then, a binary integer programming (BIP) formulation of the MMSMP

is proposed based on a pattern enumeration approach. The objective of both pro-

posed optimization models is to minimize the total expected cost while meeting the

required minimum reliability level for each mission.

3.4.1 MINLP formulation of the multimission SMP

The proposed MINLP formulation of the MMSMP is:

min
wijlm∈{0,1}

⎛⎝∑︂
i∈I

∑︂
j∈Ji

∑︂
l∈Lij

∑︂
m∈M

cijl · wijlm + crij ·
∫︂ Yijm+Um

Yijm

hij(t) dt

⎞⎠ (3.10)

subject to:∏︂
i∈I

Rs
im ≥ R0m, ∀m ∈ M (3.11)∑︂

i∈I

∑︂
j∈Ji

∑︂
l∈Lij

tijl · wijlm ≤ Dm, ∀m ∈ M (3.12)

Yijm = Xijm ·

⎛⎝∑︂
l∈Lij

γijl · wijlm

⎞⎠ , ∀j ∈ Ji,∀m ∈ M (3.13)

Xijm+1 = Yijm + Um, ∀i ∈ I,∀j ∈ Ji,∀m ∈ M \ {M} (3.14)∑︂
l∈Lij

wijlm = 1, ∀i ∈ I,∀j ∈ Ji,∀m ∈ M (3.15)

Rc
ijm =

Rij(Yij + Um)

Rij(Yij)
, ∀i ∈ I, ∀j ∈ Ji,∀m ∈ M (3.16)

In the above optimization model, the objective function (3.10) minimizes the grand

total expected maintenance cost. Constraints (3.11) and (3.12) are the minimum
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required reliability level for each mission and breaks duration constraints respectively.

Constraints (3.13) update the effective age of the components at the end of breaks,

while constraints (3.14) are recurrence relations computing the components ages at

the end of each mission. For each component, Constraints (3.15) ensure that a single

maintenance level is selected for each component. Constraints (3.16) are used to

compute the components conditional reliability functions.

3.4.2 BIP formulation with complete subsystem pattern information

In this section, an alternative formulation to the MINLP previously discussed is pre-

sented. This formulation relies on a full enumeration of all maintenance patterns Pi

for each subsystem i ∈ I. A maintenance pattern p ∈ Pi can be defined as a com-

bination of components and related maintenance levels to be performed during each

break. Accordingly, for each pattern p ∈ Pi corresponds a total expected cost Cip and
time Timp to perform the selected maintenance actions during the mth break, as well

as reliability Rs
imp of subsystem i for each mission m ∈ M. A pattern p ∈ Pi is then

represented as a column-vector of Ni×M elements whose values are the maintenance

levels performed on the components of the ith subsystem. In a pattern p ∈ Pi, the

first group of Ni elements represents the maintenance levels performed during the

first (m = 1) break, the second group of Ni elements denote the maintenance levels

carried out during the second (m = 2) break, and so on.

Figure 3.1: Parallel subsystem

To illustrate the generation of maintenance patterns, let us consider a GA(1, 2)

system as shown in Figure 3.1 with two levels of maintenance: Do nothing (l = 0) and

replacement (l = 1). If the system is required to perform a sequence of two missions
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interspersed by two breaks, then all 16 possible maintenance patterns are:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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The first pattern (column-vector) means that no maintenance is performed on both

components during both breaks. The second pattern means that only component E12

is replaced during the first break. According to the third pattern, components E11

andE12 are replaced during the first maintenance break, while no maintenance action

is performed during the second break. The fourth pattern would mean that only

component E11 is replaced during the first break, and only component E12 is replaced

during the second break.

Now, assuming that for each subsystem i ∈ I complete pattern information Pi is

available, the proposed BIP formulation of the multimission SMP with the objective

of minimizing total expected cost is written as:

min
zip

∑︂
i∈I

∑︂
p∈Pi

Cip · zip (3.17)

Subject to:∑︂
p∈Pi

zip = 1, ∀i ∈ I (3.18)

∑︂
i∈I

∑︂
p∈Pi

Timp · zip ≤ Dm ∀m ∈ M (3.19)

∑︂
i∈I

∑︂
p∈Pi

ln(Rs
imp) · zip ≥ ln(R0m) ∀m ∈ M (3.20)

zip ∈ {0, 1}, ∀i ∈ I, p ∈ Pi (3.21)
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In the above optimization model, constraints (3.18) ensure that a single mainte-

nance pattern is selected for each subsystem i. Constraints (3.19) ensure that the

maintenance time during break m does not exceed the available working time. Con-

straints (3.20) guarantee that the system reliability during mission m must be greater

than or equal to the target reliability R0m. The term on the left-hand side of the

inequality is the linearization of the nonlinear systems reliability function of Equation

(3.5). This linearization is obtained by the following procedure:

Rm =
∏︂
i∈I

Rs
im (3.22)

=
∏︂
i∈I

(︄∑︂
p∈Pi

Rs
imp · zip

)︄
.

Rm =
∏︂
i∈I

(︄∑︂
p∈Pi

Rs
imp · zip

)︄
(3.23)

Because zip is a binary variable together with the monotonicity of the natural loga-

rithm function, the result in constraint (3.20) is straightforward obtained as:

ln(Rm) =
∑︂
i∈I

∑︂
p∈Pi

ln
(︁
Rs

imp

)︁
· zip (3.24)

It is worth noting that the full enumeration of all patterns quickly becomes com-

putationally inefficient for systems of even moderate size operating multiple missions.

To overcome this drawback, one may resort to the column-generation (CG) approach

which is discussed in the following section. The CG approach is based on a re-

stricted master problem that is initialized with a small set of patterns, and multiple

sub-problems that are used to generate promising maintenance patterns for each sub-

system.

3.5 Column-generation approach

As pointed out above, the major shortcoming of the BIP formulation is that it relies on

all feasible maintenance patterns being generated at the outset. There is a finite, yet
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extremely large number of feasible patterns that exist for systems of even moderate

size. Generating all patterns up front is not realistic due to storage and CPU time

limitations. This section will describe the CG algorithm that has been developed to

solve the multimission SMP. To apply CG, the BIP given by Equation (3.17-3.21)

in section 3.4.2 is decomposed into a restricted master problem (RMP) and multiple

subproblems also referred to as pricing subproblems. The RMP is a relaxation of the

BIP formulation that starts with only a small subset of feasible maintenance patterns.

The subproblems are solved to generate new maintenance patterns for each subsystem

that are then added to the RMP. Applying CG to the multimission SMP allows us to

generate maintenance patterns iteratively and only add patterns that are promising

to the RMP. Here, promising patterns refer to patterns that have negative reduced

cost.

3.5.1 Restricted master problem

The restricted master problem is formulated as follows:

min
0≤zip≤1

∑︂
i∈I

∑︂
p∈P ′

i

Cip · zip (3.25)

subject to:∑︂
p∈P ′

i

zip = 1, ∀i ∈ I (θi) (3.26)

∑︂
i∈I

∑︂
p∈P ′

i

Timp · zip ≤ Dm ∀m ∈ M (πm) (3.27)

∑︂
i∈I

∑︂
p∈P ′

i

ln(Rs
imp) · zip ≥ ln(R0m) ∀m ∈ M (λm) (3.28)

The formulation presented is almost identical to the BIP formulation, however the

variable zip has been relaxed and only a subset (P ′
i ⊂ Pi) of maintenance patterns

are considered initially. By solving the RMP, the dual variables (θi, πm, λm) can

be obtained and used in the pricing subproblems to identify whether there are any

columns or maintenance patterns that should be added to the set P ′
i. The initial

set of feasible solutions is generated using a simple heuristic of randomly assigning

maintenance actions to be performed on components.
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3.5.2 Pricing subproblems

To each subsystem i ∈ I corresponds a CG sub-problem. Therefore, there are N

column generating subproblems that are used to find promising maintenance patterns.

According to Lübbecke and Desrosiers (2005), the column with the most negative

reduced cost should be added to the RMP. To identify the column that minimizes the

reduced cost for each subsystem the following optimization problem is solved:

min
wijlm∈{0,1}

Ci −
∑︂
m∈M

ln(Rs
im) · λm −

∑︂
m∈M

Tim · πm − θi (3.29)

subject to:

Yijm = Xijm ·

⎛⎝∑︂
l∈Lij

γijl · wijlm

⎞⎠ , ∀j ∈ Ji, ∀m ∈ M (3.30)

Xijm+1 = Yijm + Um, ∀j ∈ Ji,∀m ∈ M \ {M} (3.31)

Rc
ijm =

Rij(Yij + Um)

Rij(Yij)
, ∀j ∈ Ji,∀m ∈ M (3.32)

Ci =
∑︂
j∈Ji

∑︂
l∈Lij

∑︂
m∈M

(︄
cv · tijl · wijlm + crij ·

∫︂ Yijm+Um

Yijm

hij(t) dt

)︄
(3.33)

Tim =
∑︂
j∈Ji

∑︂
l∈Lij

tijl · wijlm, ∀m ∈ M (3.34)

Rs
im ≥ R0m, ∀m ∈ M (3.35)

Tim ≤ T0m, ∀m ∈ M (3.36)∑︂
l∈Lij

wijlm = 1, ∀j ∈ Ji, ∀m ∈ M (3.37)

In the above optimization model, the objective function of Equation (3.29) rep-

resents the pricing operation. Constraints (3.30) allow to update the effective age of

the components at the end of the maintenance break and constraints (3.31) update

the components age at the end of each mission. Constraints (3.32) define the con-

ditional reliability of component Eij during mission m. Constraint (3.33) computes

the total expected cost for subsystem i, while constraint (3.34) gives the time to per-

form the selected maintenance actions for subsystem i during break m. Constraints
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(3.35) ensure that the reliability of subsystem i during mission m meets or exceeds

the minimum reliability target. Constraints (3.36) require that the time to perform

the selected maintenance actions for subsystem i during break m does not exceed the

break duration. Constraints (3.37) ensure that a single maintenance action is selected

for each component of subsystem i.

Solving the subproblems

The subproblems that must be solved to generate new columns are complex nonlinear

and non-convex problems that are extremely difficult to solve to optimality, thus a

heuristic was implemented to find approximate but good-quality solutions within a

reasonable computation time. Specifically, an elitist genetic algorithm is used as it

has been successfully applied to a wide range of combinatorial optimization problems

(McCall, 2005; Talbi, 2009).

The genetic algorithm is inspired by the process of natural selection and begins

with an initial population of size Np individuals. Each individual has a fitness value

and represents a potential solution to the optimization problem. The fitness value

is determined by the fitness function which is defined by the subproblem objective

function (3.29). An individual in the population is represented by a single solution

matrix comprised of Ni rows and M columns. Each gene (element of solution matrix)

takes a value from the set Lij of possible maintenance levels and means that the jth

component of subsystem i is selected to receive maintenance level l, during the mth

scheduled break. The initial population is generated by assigning random values to

elements of the solution matrix.

The elitism ranking procedure is used, where individuals in the population are

ranked based on an increasing order of their fitness values. The best Ns solutions

out of the Np are selected to move on to the next generation. The ratio Ns/Np is

denoted by ξs and describes the number of elites in the population. The partial map-

ping crossover strategy is implemented and two blocks of the parents genomes are

exchanged to produce two children. A set of Nc of new solutions resulting from the

crossover operation is then injected into the next generation. The crossover rate is
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defined as ξc = Nc/Np.

The mutation operation is performed by randomly selecting a parent from the

previous population and then randomly modifying one of it’s genes. The gene to be

modified is selected at random, this process is repeated until Nm new solutions are

formed. The mutation rate is defined as ξm = Nm/Np. To increase the diversity

of individuals in the population, additional solutions are randomly generated and

injected into the next generation. The proportion of these extra solutions is denoted

by ξe. All the mentioned ratios are selected such that their sum is equal to 100%.

The genetic algorithm terminates when a given number of generations Ng is reached

or when no solution improvement is achieved after a given number of generations Ngi.

3.6 Numerical experiments

In this section, four sets of numerical experiments are conducted to demonstrate

the ability of the column generation approach to find valid and in many cases near

optimal solutions. These experiments will also illustrate the benefit of using the

proposed approach opposed to the BIP and other metaheuristics that have been sug-

gested. The first set of experiments compares the column generation algorithm and

the BIP approach with complete subsystem pattern information. The second experi-

ment compares the column generation algorithm and another metaheuristic that has

been suggested to solve the multimission SMP. Experiment 3 is an application to a

real world coal transportation system and experiment 4 demonstrates the ability of

the column generation algorithm to solve systems comprised of many components and

subsystems in reasonable computation time. All experiments are run on a Intel�i5

2.9GHz desktop computer with 12GB of RAM running Windows 10�. All algorithms

were coded in Python 3.8. The optimization runs were carried out by Gurobi 9.1

using gurobipy.

For all numerical experiments, five potential preventive maintenance levels will be

considered: do-nothing (l = 0), imperfect maintenance (0 < l < 4) and replacement

(l = 4). The age reduction coefficients for the different maintenance levels are reported

in Table (3.1).
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Table 3.1: Age reduction coefficients

l 0 1 2 3 4

γijl 1.0 0.4 0.2 0.1 0.0

The default parameters used in the elitist genetic algorithm are set to ξs = 0.1,

ξc = 0.7, ξm = 0.1 and ξe = 0.1 and the population Np = 200. The algorithm

terminates when no solution improvement is achieved after 150 generations or when

the limit of 200 generations is reached

3.6.1 Set of experiments #1: comparison of the BIP and CG approach

This set of experiments considers a system comprised of three GA(1, 2) subsystems

operating multiple missions. The shape and scale parameters, age at the start of the

first maintenance break, time to perform the preventive maintenance levels, and the

cost of minimal repair for each component are displayed in Table 3.2. The cost cijl

induced by a maintenance action of level l when performed on a component Eij is

assumed to be proportional to the maintenance time tijl: cijl = 15× tijl. The system

is required to operate multiple missions of equal duration. Table 3.4 displays the

number of missions that the system must perform, the length of both the missions

and breaks, as well as the minimum target reliability. Table 3.3 displays the system

reliability for 5 missions when no maintenance actions are performed.

The CG and BIP approaches are both used to solve the multimission SMP for

10 different problem instances and the results are displayed in Table 3.4. The CG

approach is run for multiple trials and the average and best costs C∗ are reported,

as well as the standard deviation (σ) of the expected costs, gap and computation time.

From the results displayed it is clear that the CG approach achieves valid and

near optimal solutions for all problem instances as the largest gap is 2.4%. Although

the solution time is higher for the CG algorithm for most problem instances, the BIP

approach was unable to find a solution when M = 5 due to storage limitations (out-of

memory error). From the results presented, one may observe that as the number of
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missions that the system is required to perform is increased the total cost and solution

time also increases.

Table 3.5 displays the best selective maintenance plan for four instances of the

problem. Looking at the maintenance actions selected during mission 1 for the first

instance, actions [4, 4], [2, 3], [4, 0] imply that components 1 and 2 in subsystem 1

are replaced, components 1 and 2 in subsystem 2 receive IM levels l = 2 and l = 3

respectively, and component 1 in subsystem 3 is replaced.

Table 3.2: Component lifetime parameters and maintenance times

Eij βij ηij Xij1 tijl tij2 tij3 tij4 crij

E11 1.32 145 60 3.5 4 4.5 5 25
E12 1.4 160 70 2 2.5 3 4 15
E21 1.35 145 50 3 3.5 4 4.5 35
E22 1.45 150 65 1.5 2 2.5 3.5 25
E31 1.45 160 65 2 2.5 3 3.5 20
E32 1.4 150 55 3.5 4 4.5 5 25

Table 3.3: Mission reliability when no maintenance actions are performed

m 1 2 3 4 5

Rm(%) 65.67 55.34 47.89 42.12 37.48

Table 3.4: Comparison of BIP and CG

BIP CG
M Um Dm R0m Cost ($) CPUt (s) Av. cost ($) Best cost ($) σ($) Gap (%) CPUt (s)

2 60 30 0.80 639.6 0.1 653.2 647.8 3.6 1.3 58.3
2 60 20 0.75 433.1 0.1 444.5 440.5 3.3 1.7 39.9
2 60 20 0.65 216.5 0.1 216.5 216.5 0.0 0.0 15.7
3 60 20 0.60 327.6 3.9 336.6 335.6 1.1 2.4 43.3
3 60 30 0.80 957.6 3.6 983.9 979.5 4.5 2.3 148.2
3 60 20 0.75 664.9 4.3 673.8 670.5 3.9 0.8 101.7
4 60 30 0.80 1280.9 122.1 1308.6 1296.7 8.7 1.2 91.7
4 60 20 0.60 477.9 146.9 492.4 481.1 7.5 0.7 63.9
4 60 20 0.65 557.1 126.4 570.5 563.0 7.0 1.1 108.6
5 60 30 0.80 – – 1654.4 1644.6 6.6 – 373.9
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Table 3.5: Best SM plan

M m SM Plan Rm(%)

2
1 [4, 4], [2, 3], [4, 0] 80.24
2 [0, 3], [4, 3], [4, 4] 80.38

3
1 [0, 0], [0, 0], [0, 0] 65.67
2 [0, 0], [0, 3], [0, 0] 60.24
3 [0, 1], [0, 0], [4, 0] 61.68

4

1 [4, 4], [3, 2], [4, 0] 80.08
2 [0, 3], [2, 4], [4, 4] 80.16
3 [4, 3], [4, 3], [4, 0] 80.35
4 [0, 3], [2, 4], [4, 4] 80.14

5

1 [0, 4], [4, 3], [4, 3] 80.68
2 [4, 3], [0, 4], [2, 4] 80.09
3 [0, 4], [4, 3], [4, 2] 80.39
4 [4, 3], [0, 4], [2, 4] 80.09
5 [0, 4], [4, 3], [4, 2] 80.39

3.6.2 Set of experiments #2: solving the multi-mission SMP for large

parallel systems using CG

This set of experiments is used to compare the column generation approach and the

genetic algorithm presented in Chaabane et al. (2020) in terms of solution quality.

Three different subsystem structures are considered GA(1, 2), GA(1, 3) and GA(1,

5). For each trial table (3.7) displays the subsystem structure, the number of subsys-

tems N , as well as the break and mission durations and minimum required reliability.

For both the column generation and genetic algorithms the average and best cost is

reported as well as the standard deviation (σ) and solution time. The number of

columns generated for the column generation approach is also reported. The parame-

ters used for the genetic algorithm presented by Chaabane et al. (2020) are displayed

in Table 3.6.

The results show that the proposed CG approach achieves equal or better solutions

than the genetic algorithm for 9 of the 12 experiments. For the GA(1, 2) subsystem

structure the GA outperforms the CG approach in the first two runs and is able to

find the optimal solution of $664.9 in run 1. However, as the system size increases

the CG approach achieves better solutions than the GA in most cases. Although
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Table 3.6: Parameters for genetic algorithm

Run Np ξs(%) ξc(%) ξm(%) ξe(%) Ng Ngi

1 100 0.1 0.7 0.1 0.1 2500 750
2 100 0.1 0.7 0.1 0.1 2500 750
3 100 0.1 0.7 0.1 0.1 2000 500
4 100 0.1 0.7 0.1 0.1 2000 500
5 300 0.1 0.7 0.1 0.1 5000 1500
6 300 0.1 0.7 0.1 0.1 5000 1500
7 300 0.1 0.7 0.1 0.1 5000 1500
8 300 0.1 0.7 0.1 0.1 5000 1500
9 100 0.1 0.7 0.1 0.1 2000 500
10 100 0.1 0.7 0.1 0.1 2000 500
11 300 0.1 0.7 0.1 0.1 5000 1500
12 300 0.1 0.7 0.1 0.1 5000 1500

the CG algorithm has longer solution time for larger systems, it is usually able to

find better solutions. From these results, it appears that the CG algorithm is the

preferable method for systems of moderate to large size.
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3.6.3 Set of experiments #3: application to coal transportation system

In this set of experiments, the coal transportation system studied in Liu and Huang

(2010) is considered. The coal transportation system reliability block diagram is

shown in Figure 3.2. The system is comprised of 5 subsystems: 2 conveyors, 2 feed-

ers and a stacker-reclaimer and is made up of 14 total components. The shape and

scale parameters, age at the start of the first maintenance break, time to perform the

preventive maintenance levels, and the cost of minimal repair for each component are

displayed in Table 3.8. The repair crew variable cost cv is set to $15 and the system

is required to perform 10 missions. Table 3.9 displays the system reliability for the

10 missions when no maintenance actions are performed.

Table 3.10 displays the average and best total expected costs, as well as the stan-

dard deviation (σ) and the number of maintenance actions performed when target

reliability is varied. The number of columns generated through the CG procedure

and solution time is also reported. As the target reliability is increased the total

expected cost is increased, this is because more maintenance actions are performed

to ensure the target reliability is met. Tables 3.11 and 3.12 display the detailed SM

plans obtained for the cases where minimum target reliability is set to R0m = 0.65

and R0m = 0.8 respectively. As the target reliability is increased both the solution

time and number of columns generated increases. Several experiments were conducted

where mission length was varied from 70 time units to 100 time units and the other

parameters fixed. The results from these experiments are shown in Table 3.13. As

expected, when mission length is reduced fewer maintenance actions are performed

and the total expected cost decreases.

3.6.4 Set of experiments #4: solving large systems comprised of

k-out-of-n:G subsystems

The final set of experiments are used to demonstrate that the proposed column genera-

tion algorithm can be used to solve the multimission SMP for large systems comprised

of both parallel and GA(k, n) subsystems. For all trials the system is required to

perform 10 missions and the repair crew variable cost cv is set to $15. Table (3.14)
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Figure 3.2: Coal transportation system RBD

Table 3.8: Component lifetime parameters and maintenance times

Eij βij ηij Xij1 tijl tij2 tij3 tij4 crij

E11 1.5 250 100 5.3 6 6.8 7.5 15
E12 2.4 380 150 3 3.8 4.5 6 20
E13 1.6 280 170 4.5 5.3 6 6.8 15
E21 2.6 400 120 2.3 3 3.8 5.3 25
E22 1.5 280 180 5.3 6 6.8 7.5 10
E31 2.4 340 100 3 3.8 4.5 6 15
E32 2.5 260 130 4.5 5.3 6 6.8 30
E33 2.0 280 170 2.3 3 3.8 5.3 25
E41 1.2 260 150 3 3.5 4 4.5 15
E42 1.4 350 120 1.5 2 2.5 3.5 30
E51 2.8 400 180 3 3.8 4.5 6 35
E52 1.5 350 130 4.5 5.3 6 6.8 20
E53 2.4 300 100 2.3 3 3.8 5.3 30
E54 2.2 450 150 3 3.8 4.5 6 15

Table 3.9: Mission reliability when no maintenance actions are performed

m 1 2 3 4 5 6 7 8 9 10

Rm(%) 79.36 60.63 40.96 25.11 14.45 8.05 4.44 2.47 1.39 0.80
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Table 3.10: Varying minimum required reliability

Um Dm R0m k∗ Av. cost ($) Best cost ($) σ ($) Columns CPUt (s)

100 30 0.65 23 2869.1 2853.4 11.9 67 651.9
100 30 0.70 26 3008.7 2958.2 34.1 91 920.7
100 30 0.75 29 3185.5 3156.4 30.4 94 947.9
100 30 0.80 35 3509.2 3476.6 51.9 111 1355.0

k∗: total number of maintenance actions carried out

Table 3.11: Best SM plan obtained for R0m = 0.65

m k∗
m SM plan Rm(%)

1 0 [0, 0, 0], [0, 0], [0, 0, 0], [0, 0], [0, 0, 0, 0] 79.36
2 1 [0, 0, 0], [0, 0], [0, 0, 2], [0, 0], [0, 0, 0, 0] 66.18
3 4 [0, 0, 0], [2, 0], [0, 4, 0], [0, 0], [3, 0, 2, 0] 70.93
4 2 [0, 2, 0], [0, 0], [2, 0, 0], [0, 0], [0, 0, 0, 0] 69.17
5 2 [0, 0, 0], [2, 0], [0, 0, 2], [0, 0], [0, 0, 0, 0] 65.80
6 4 [0, 0, 0], [0, 0], [0, 4, 0], [0, 4], [0, 0, 3, 2] 67.31
7 3 [0, 3, 0], [2, 0], [0, 0, 0], [0, 0], [3, 0, 0, 0] 72.18
8 2 [0, 0, 0], [0, 0], [3, 0, 2], [0, 0], [0, 0, 0, 0] 66.44
9 3 [0, 0, 0], [2, 0], [0, 4, 0], [0, 0], [0, 0, 2, 0] 65.59
10 2 [0, 3, 0], [1, 0], [0, 0, 0], [0, 0], [0, 0, 0, 0] 65.84

k∗
m: number of maintenance actions carried out during break m

Table 3.12: Best SM plan obtained for R0m = 0.8

m k∗
m SM plan Rm(%)

1 1 [0, 0, 0], [0, 0], [0, 0, 3], [0, 0], [0, 0, 0, 0] 81.31
2 4 [0, 3, 0], [2, 0], [0, 4, 0], [0, 0], [2, 0, 0, 0] 83.71
3 4 [0, 0, 0], [3, 0], [3, 0, 2], [0, 0], [0, 0, 3, 0] 80.04
4 3 [0, 2, 0], [0, 0], [0, 3, 0], [0, 4], [0, 0, 0, 0] 81.25
5 4 [0, 0, 4], [2, 0], [0, 0, 2], [0, 0], [3, 0, 0, 0] 80.93
6 5 [0, 3, 0], [1, 0], [0, 3, 0], [4, 0], [0, 0, 2, 0] 83.30
7 3 [0, 0, 0], [2, 0], [4, 0, 0], [0, 0], [0, 0, 0, 3] 80.23
8 5 [0, 3, 0], [2, 0], [0, 0, 3], [0, 0], [2, 0, 2, 0] 80.39
9 3 [0, 0, 0], [2, 0], [0, 4, 0], [0, 4], [0, 0, 0, 0] 82.70
10 3 [0, 3, 0], [2, 0], [3, 0, 0], [0, 0], [0, 0, 0, 0] 80.30

k∗
m: number of maintenance actions carried out during break m
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Table 3.13: Varying mission duration

Um Dm R0m k∗ Av. cost ($) Best cost ($) σ ($) Col. CPUt(s)

70 25 0.75 11 1779.9 1769.0 5.0 37 466.1
80 25 0.75 18 2197.5 2191.3 5.5 67 807.0
90 25 0.75 23 2670.9 2656.3 10.8 87 1265.2
100 25 0.75 30 3215.6 3161.3 48.9 98 1486.7

k∗: total number of maintenance actions carried out

displays the best cost, total number of columns generated, and computation time for

all 18 problem instances. The results displayed highlight the ability of the proposed

approach to provide valid maintenance decisions for large systems comprised of both

parallel and k-out-of-n:G subsystems in a reasonable amount of time.

Table 3.14: Best cost for large systems comprised of both parallel and k-out-of-n:G
subsystems

Structure N Dm Um R0m Best cost ($) Col. CPUt(s)

GA(1, 3)
6 40 100 0.75 4890.4 105 2271.4
8 60 100 0.70 6862.5 132 3282.1

GA(1, 5)
6 40 100 0.80 5738.5 45 1619.7
8 50 100 0.75 7850.3 78 3363.8

GA(2, 3)
6 100 100 0.60 9997.3 195 2691.4
8 100 100 0.40 11419.5 168 1972.3
10 150 100 0.20 12135.8 251 3845.5

GA(2, 5)
6 75 100 0.60 6483.1 107 2072.9
8 100 100 0.60 9148.5 144 2756.7
10 120 100 0.60 12291.4 159 2948.7

GA(1, 6)
6 100 120 0.90 8869.3 94 4057.3
8 100 120 0.90 12123.3 154 6711.8

GA(2, 6)
6 80 100 0.65 7289.9 77 3687.5
8 100 100 0.75 10533.9 151 7504.8

GA(1, 8)
6 150 100 0.85 14873.4 96 4438.3
8 120 120 0.90 15416.6 83 5662.5

GA(4, 10)
6 200 100 0.80 17248.8 129 6476.2
8 200 100 0.80 22649.7 203 11786.2

To further demonstrate the benefit of the column generation approach, the sys-

tem comprised of the GA(1, 6) and GA(1, 8) subsystems is solved using the genetic
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algorithm proposed in Chaabane et al. (2020). Table 3.15 displays the comparison

between the two approaches in terms of average and best cost obtained as well as

the standard deviation (σ) and computation time. From the results displayed, the

column generation approach achieves better solutions than the genetic algorithm for

all problem instances. This comparison further confirms that the column generation

approach is preferable for moderate and large scale systems.

The sets of experiments carried out above clearly show that the proposed column

generation approach for the multimission SMP is efficient and yields valid mainte-

nance decisions. The CG approach is superior in terms of solution quality compared

to other heuristics that have been suggested. The CG algorithm was shown to be ca-

pable of providing maintenance decisions for systems comprised of many components

and subsystems in a reasonable amount of time.
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3.7 Conclusion

This chapter introduced a new solution method for the multimission SMP in the form

of a hybrid column generation and genetic algorithm. The genetic algorithm is used to

solve the complex column generating subproblems and provides high quality solutions

quickly. The proposed solution method was shown to obtain equal or better solutions

than the genetic algorithm proposed in Chaabane et al. (2020) for the majority of

problem instances that were solved. The column generation algorithm was applied to

the real world application of determining the SM plan for a coal transportation sys-

tem required to operate consecutive missions. Multiple numerical experiments were

run to show that the CG approach can be used to solve large systems comprised of

parallel and k-out-of-n:G subsystems.

There are several areas and opportunities where the work presented in this chap-

ter could be extended and improved. The proposed column generation algorithm

will not guarantee optimality because the subproblems are solved using a heuris-

tic rather than an exact solution technique. Developing an exact method to solve

the very difficult subproblems that is also efficient would be of great interest. If an

exact solution method could be developed such as dynamic programming or other

decomposition methods, then a branch-and-price framework could be applied to find

the global optimal solution. Other work on the research presented includes applying

different evolutionary algorithms, swarm algorithms and metaheuristics to solve the

subproblems, as well as using parallel algorithms to reduce computation time.



Chapter 4

Conclusions and research perspectives

The contributions of this Master’s thesis are in the area of selective maintenance for bi-

nary state systems. Selective maintenance has the potential to significantly help many

industries with large maintenance operations like aerospace, mining, transportation,

manufacturing, petro-chemical plants, and offshore energy production systems. The

contributions of this dissertation to the literature on SMP are made in two separate

but dependent research themes. These themes are presented and fully discussed in

Chapters 2 and 3. Chapter 2 introduced a new framework for modeling and optimiz-

ing the joint selective maintenance and orienteering problem. Chapter 3 proposed

and developed a new column generation approach to solve the multimission selective

maintenance problem. The conclusions and future research extensions for the two

themes are discussed below.

The objective of the first theme was to introduce and optimally solve the joint

selective maintenance and orienteering problem. The JSMOP filled a very important

gap which was that all SM models assumed that the maintenance decisions are made

and performed on systems which are all at the same location and have access to

ample repair crews. This assumption is not always valid as many industrial systems

can be geographically dispersed and their maintenance may then require that repair

crews travel under transportation and cost constraints. The proposed joint selective

maintenance and orienteering framework simultaneously makes the decisions of what

systems to visit, the components to maintain, the maintenance levels to be performed,

the assignment of repair crews, and their routing with the goal of minimizing total

cost while satisfying a minimum required reliability threshold. To solve the resulting

difficult optimization problem the two-phase solution approach presented in Diallo

et al. (2018) was successfully used to identify the optimal SM and routing decisions.

Multiple numerical experiments were conducted to demonstrate that the proposed

74
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joint approach can achieve better solutions than the traditional approach of first se-

lecting the maintenance actions to be performed followed by the routing decisions

(sequential approach).

Future extensions of the JSMOP could include using mean availability as the de-

sired performance indicator. Mean availability refers to the percentage of time that

the system is in the functioning state during the mission and is a very common metric

that is used in practice. Developing a model where the systems must meet or exceed

a mean availability would be an innovative extension of the SMP. Another area of

future work could be developing methods to solve very large instances of the JSMOP.

Decomposition methods such as column generation and Lagrangian relaxation have

been utilized to solve many large-scale optimization problems and could potentially

be applied to the JSMOP.

The second theme discussed in Chapter 3 presented a column generation approach

for the multimission SMP. As stated by Schneider (2006) regarding the selective main-

tenance problem, the solution procedures and heuristics that allow for larger, more

realistic-sized problems should be further considered. Column generation has been

one of the biggest success stories in large-scale integer programming and has been

applied to a wide range of different problems. The column generation approach

presented in theme 2 is based on the classical framework where a restricted master

problem is solved given only a subset of feasible solutions together with multiple

column generating subproblems that are used to find new potential solutions. Due

to the complexity of the subproblems, an elitist genetic algorithm was used to find

high quality solutions quickly. Multiple numerical experiments were also performed

to demonstrate the ability of the proposed approach to obtain near optimal solutions

and find valid maintenance decisions for systems of very large size in reasonable com-

putation time. The numerical experiments also showed that the column generation

approach outperformed other heuristics for the majority of the problem instances that

were solved.

Future work dealing with theme 2 would be developing an exact method to solve
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the complex subproblems. Because the subproblems are solved using an evolution-

ary algorithm rather than an exact method, optimality cannot be guaranteed. If an

exact and efficient solution method exists then a branch-and-price framework could

be applied to find the optimal solution. It would also be of interest to apply different

evolutionary algorithms, swarm algorithms and metaheuristics to solve the subprob-

lems. It would also be very useful to apply the large-scale optimization technique of

column generation to other variants of the selective maintenance problem like fleet-

level selective maintenance.

There has been significant research on the selective maintenance problem under

uncertainty. Liu et al. (2018) study the SMP when the break and maintenance du-

rations are stochastic rather than deterministic. Another interesting extension of the

SMP would be to develop new robust and distributionally robust models and their

related solution techniques such as decomposition and relaxation schemes to solve

large-scale SMP under uncertainty.

Fleet level selective maintenance is an extension of the classic SMP where there is

opportunity for further work. All fleet level models assume that the break and mission

durations for all systems in the fleet are identical. In many practical applications this

may not be valid. An important extension would be to consider a situation in which

the break and mission durations are not aligned for each system in the fleet. Finally,

all papers that deal with the joint selective maintenance and repairperson assignment

problem ignore workload balancing. In many scenarios it would be of importance

that all repairpersons/crews are given a relatively even distribution of work.
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Appendix A

Component information for Chapter 2 experiments

Eijk uijk Bijk ηijk βijk tcijk1 tcijk2 tcijk3 tpijk2 tpijk3 ccijk1 ccijk2 ccijk3 cpijk2 cpijk3

E111 1 10 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E112 0 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E113 1 6 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E114 0 10 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E115 1 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E121 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E122 0 4 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E123 1 12 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E124 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E131 1 12 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E132 0 16 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E133 1 14 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E141 1 10 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E142 1 5 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E211 1 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E212 0 6 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E213 1 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E214 1 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E215 1 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E221 1 8 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E222 1 18 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E223 0 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E224 1 9 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E231 1 7 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E232 1 6 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E233 1 12 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E241 1 14 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E242 1 12 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E311 1 11 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

Continued on Next Page
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Eijk uijk Bijk ηijk βijk tcijk1 tcijk2 tcijk3 tpijk2 tpijk3 ccijk1 ccijk2 ccijk3 cpijk2 cpijk3

E312 0 16 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E313 1 7 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E314 1 10 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E315 0 16 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E321 1 12 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E322 0 16 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E323 1 12 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E324 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E331 1 12 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E332 0 16 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E333 1 14 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E341 0 10 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E342 0 12 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E411 1 6 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E412 0 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E413 0 6 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E414 1 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E415 1 4 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E421 1 8 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E422 0 16 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E423 1 6 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E424 0 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E431 1 9 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E432 1 7 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E433 1 10 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E441 1 8 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E442 1 6 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E511 1 10 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E512 0 5 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E513 1 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E514 1 9 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E515 1 11 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E521 1 12 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E522 0 9 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E523 1 12 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225
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Eijk uijk Bijk ηijk βijk tcijk1 tcijk2 tcijk3 tpijk2 tpijk3 ccijk1 ccijk2 ccijk3 cpijk2 cpijk3

E524 0 8 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E531 1 18 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E532 1 8 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E533 1 14 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E541 0 8 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E542 0 8 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E611 1 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E612 0 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E613 1 4 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E614 1 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E615 0 12 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E621 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E622 1 8 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E623 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E624 1 20 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E631 1 10 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E632 0 8 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E633 1 16 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E641 1 12 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E642 1 8 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E711 0 7 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E712 0 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E713 0 5 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E714 1 8 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E715 1 14 26 2 0.75 2 3.5 2 3.5 50 100 200 100 200

E721 1 15 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E722 0 16 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E723 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E724 1 10 28 3.5 1 2.5 4 2.5 4 75 125 225 125 225

E731 1 10 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E732 0 9 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E733 1 13 26 4 0.75 1.75 3.75 1.75 3.75 80 115 220 115 220

E741 0 14 25 3 1 2.25 4 2.25 4 50 100 225 100 225

E742 0 15 25 3 1 2.25 4 2.25 4 50 100 225 100 225



Appendix B

Details of the optimal maintenance actions obtained for

Chapter 2 experiment set #5

Table B.1: Maintenance actions performed for R0 = 86%: case of Experiments #5

OWT i Patterns selected R∗(%)

1 (0, 0, 0, 1, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 88.61
2 (0, 1, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 87.81
3 (0, 1, 0, 0, 1), (0, 0, 0, 0), (0, 0, 0), (1, 1) 86.54
4 (0, 0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 86.32
5 (0, 0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0), (1, 1) 91.11
6 (0, 1, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 90.88
7 (1, 0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 0), (1, 2) 87.37

Table B.2: Maintenance actions performed for R0 = 90%: case of Experiments #5

OWT i Patterns selected R∗(%)

1 (0, 1, 0, 1, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 90.44
2 (0, 1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0), (0, 0) 92.01
3 (0, 0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0), (1, 1) 90.18
4 (0, 0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0), (0, 0) 91.55
5 (0, 0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0), (1, 1) 91.11
6 (0, 1, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 90.88
7 (1, 1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0), (2, 1) 90.55
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Table B.3: Maintenance actions performed for R0 = 94%: case of Experiments #5

OWT i Patterns selected R∗(%)

1 (0, 1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0), (0, 0) 94.93
2 (0, 1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0), (2, 0) 95.96
3 (0, 1, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0), (1, 2) 94.69
4 (0, 1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0), (0, 0) 94.38
5 (0, 0, 0, 0, 0), (0, 1, 0, 1), (0, 0, 0), (1, 1) 94.49
6 (0, 1, 0, 0, 1), (0, 0, 0, 0), (0, 1, 0), (0, 0) 95.24
7 (1, 1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 0), (3, 0) 94.45

Table B.4: Maintenance actions performed for R0 = 98%: case of Experiments #5

OWT i Patterns selected R∗(%)

1 (0, 1, 0, 1, 0), (0, 1, 0, 0), (0, 2, 0), (2, 0) 98.32
2 (0, 1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0), (0, 3) 98.12
3 (0, 1, 0, 0, 1), (0, 2, 0, 2), (0, 2, 0), (1, 3) 98.06
4 (0, 1, 1, 0, 0), (0, 1, 0, 1), (0, 0, 0), (0, 0) 98.07
5 (0, 1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 0), (2, 2) 98.02
6 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 85.17
7 (1, 1, 1, 0, 0), (0, 1, 0, 2), (0, 1, 0), (3, 1) 98.02

Table B.5: Maintenance actions performed for R0 = 99%: case of Experiments #5

OWT i Patterns selected R∗(%)

1 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 81.98
2 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 85.34
3 (0, 0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0), (0, 0) 0
4 (0, 1, 1, 0, 0), (0, 2, 0, 1), (0, 0, 0), (2, 0)] 99.03
5 (0, 1, 0, 0, 0), (0, 2, 0, 1), (2, 0, 0), (2, 3) 99.00
6 (0, 1, 0, 0, 2), (0, 0, 0, 2), (0, 2, 0), (3, 0) 99.05
7 (1, 1, 1, 0, 0), (0, 2, 0, 2), (0, 2, 0), (2, 3) 99.03
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