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ABSTRACT

Although bulimia nervosa (BN) is thought to be associated with impairments in reward-
related decision making, little is known about the decisional processes that contribute to
BN behaviour. Twenty-three participants with moderate-extreme BN were administered a
two-step reinforcement learning task to assess their relative degree of decisional
exploration/exploitation, goal directed versus habitual control, and learning rate before
and after treatment with lisdexamfetamine dimesylate (LDX). BN symptom changes
were also monitored. Paired permutation tests show a statistically significant decrease in
objective binge episodes (Mw-M:=-35.11, p <0.001) and compensatory behaviours (M-
M,=-38.85, p< 0.001) at maintenance drug dosage compared to baseline. However,
reward learning, as far as it is assessed by the task did not seem to contribute to the effect
of LDX on BN behaviour. It is hoped that these findings will contribute to an improved
understanding of the computational nature of decision making among individuals with
BN.
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Bulimia nervosa (BN) is characterized by recurrent episodes of binge eating and
inappropriate compensatory behaviours such as vomiting, laxative use, or excessive
physical activity (Rushing et al., 2003). Although several empirically supported
psychotherapies currently exist for BN patients (e.g., cognitive behavioural therapy),
binge-purge abstinence is typically achieved in less than 50 percent of individuals
receiving treatment (Wilson et al., 2007; Watson et al., 2018). One reason that these
evidence-based treatments may be less effective for some is that they fail to address the
underlying neurobiological mechanisms of BN (Hagan & Forbush, 2021). Presently, BN
pathophysiology is poorly understood (Kekic et al., 2016), and therefore, is not
adequately targeted by existing gold-standard therapies. Efforts to understand BN
pathophysiology are warranted to develop effective treatments that target the
neurobiological underpinnings of the disorder. The following sections explore the current
literature on such underlying neurocognitive mechanisms, with a particular focus on

reward-based decision making.

1.2 ELEMENTS OF REWARD-BASED DECISION-MAKING



Three putative reward-based decision-making deficits in BN involve the following
neurocognitive factors: A) goal directed vs. habitual control balance, B) learning rate, and

C) the exploration/exploitation trade-off.

1.2.1 Goal-Directed Versus Habitual Control

Evidence suggests that performance in reward-related behaviour is driven in part by two
different processes, namely, goal-directed and habitual control (Balleine & O’Doherty,
2010). Goal-directed actions are governed by an expected outcome of a particular action,
and the value assigned to that outcome (Furlong et al., 2014). This behaviour utilises
model-based learning that acknowledges an internal model of cause and effect
contingencies in the environment (Onysk & Series, 2020) and typically moves organisms
toward goal-satisfaction (O’Doherty et al., 2017). Hypothetically, individuals with BN
who exhibit greater goal-directed control would have increased awareness of the long-
term consequences of their binge/purge behaviour (e.g. enamel erosion, esophageal
ulcers, electrolyte changes, tachycardia, and impaired psychosocial function; Dynesen et
al., 2008; Mehler & Rylander, 2015). With this heightened awareness of expected
outcomes, individuals with BN might abstain from bulimia behaviors that lead to long
term consequences, and instead, engage in alternative actions that could optimize positive

outcomes (e.g., physical health and psychosocial functioning).

Unlike goal-directed behaviour, habitual actions are elicited by the perception of a
stimulus (Thorndike, 1898), and occur even when the value of outcomes have lessened,

and are therefore no longer rewarding (Steinglass & Walsh, 2016). Habitual behaviour



uses model-free learning which involves simply repeating actions that were previously
rewarded, without requiring an internal model of cause and effect relationships in the
environment. Though habitual responding is more cognitively efficient than goal-directed
control (O’Dobherty et al., 2017), the approach does not allow for refined decision making
through more detailed world models. It is probable that individuals with BN have a
disproportionate reliance on habit-forming processes (Berner & Marsh, 2014). For
example, binge-eating and purging episodes occur repeatedly, and are typically prompted
by specific stimuli, such as negative affect (Haedt-Matt & Keel, 2011). For instance, an
individual with BN might experience guilt or shame after eating something that is
deemed forbidden. A binge/purge cycle may ensue as an attempt to cope with that
negative emotion. Once learned, this cycle may become perpetuated in a habitual manner.
Though no studies have conclusively determined the influence of habitual-control
(model-free learning) on BN pathophysiology, some studies show reduced utilization of
model-based control in subclinical eating disorder populations (Gillan et al., 2016), as

well as clinical populations with anorexia nervosa (Foerde et al., 2019).

1.2.2 Learning Rate

Learning rate is also an important aspect of reward-related decision-making. This refers
to the ability to update expectations according to prediction error (the difference between
an outcome and a prior expectation regarding that outcome; Addicott et al., 2017). The
reward prediction error can be characterized by a temporal difference (TD) algorithm
(Sutton & Barto, 1981), which is commonly accepted as an adequate description of the

learning process. During TD learning, an agent updates their predictions about the



environment in successive time-steps, and before the final outcome is known. Learning
occurs when there is a change in predictions over time. The TD model (Sutton & Barto,
1981) can be mapped onto regions of the brain that are associated with reward-learning,
and the characteristics of its signal correspond to dopamine (DA) prediction error-
signalling (Montague et al., 1996). Results from Frank et al. (2011) indicate that
individuals with BN have significantly weaker brain response in the bilateral amygdala,
insula and left orbitofrontal cortex to computer TD model generated reward values. This
suggests individuals with BN may have attenuated reward prediction error signalling, and
a reduced learning rate. As a result of this impaired capacity to update the expectations of
actions as they become less rewarding over time, those with BN may be less likely to
reliably predict the consequences of their actions. This might explain, to some degree, the
generally poorer performance on reward learning tasks in BN, and their repeated
engagement in maladaptive binge/purge behaviours. For example, individuals with BN
may continue to regard binge/purge episodes as emotionally relieving behaviours, even

when binging/purging no longer provide relief (i.e., as a result of their low learning rate).

1.2.3 Exploration/Exploitation Trade-off

Another key aspect of decisional strategy is the exploration/exploitation trade-off;
described as a process of assessing the balance between selection of the option of highest
expected value (exploitation), and exploration of the environment for potentially greater
rewards (Auer et al., 2002). In environments with non-stationary reward contingencies,
some level of exploration is required since a presently optimal decision strategy may later

prove suboptimal. This concept is potentially relevant to BN. For example,



binging/purging may initially serve as an effective strategy for regulating negative
emotions (Smyth et al., 2007). However, over time, exploitation of this strategy may
become increasingly harmful to the individual (i.e., by causing physical, psychological
and functional consequences of BN). In contrast, had the individual utilized a more
exploration based learning strategy, they may have developed more adaptive skills for

emotion regulation (e.g., mindfulness).

To our knowledge, there are no published studies of exploration/exploitation balance in
BN, although binge eating disorder (BED) participants have been previously shown to
exhibit excessive exploratory behaviours (Reiter et al., 2016; Morris et al., 2015). Voon
(2015) suggests that this may be a result of a reduced avoidance of uncertainty in the
context of losses, rather than a specific tendency toward exploration. In a previous study
(yet unpublished data), we found that BN participants exhibited reduced exploratory
behaviour during completion of a two-step decision-making paradigm. However, we
could not clearly differentiate between exploration that was directed by the degree of
randomness in environmental rewards or purely random decisions due to value learning

impairments.

1.3 BN AND THE NEURAL BASIS OF DECISION MAKING

1.3.1 Frontostriatal Circuitry
Preliminary research suggests that the aforenoted reward learning deficits in BN patients

may result from differences in the frontostriatal circuitry of individuals with BN



compared to healthy controls (Berner & Marsh, 2014). Research by Wagner et al. (2010)
indicated that a sample of recovered BN women demonstrated altered striatal response to
reward on a monetary task, and difficulty in responding to positive and negative
feedback. Skunde et al. (2016) showed that frontostriatal Aypoactivity may specifically
contribute to dysregulated reward processing and abnormal eating behaviour in those
with BN. On a neurotransmitter level, dysregulated dopaminergic pathways in
frontostriatal circuits are thought to be altered in individuals with BN (Michaelides et al.,

2012; Berner & Marsh, 2014).

1.3.2 General Dopamine Findings in BN

DA is a neurotransmitter that is essential to food-based motivation and food reward
(Baptista, 1999). Research shows that DA metabolites are often reduced in BN patients in
comparison to healthy controls and are inversely correlated with binge frequency
(Jimerson et al.,1992). Further, polymorphisms in dopaminergic genes resulting in lower
DA activity, may predispose individuals to heightened expression of traits that co-occur
with BN; namely, self-harm, novelty/stimulus seeking and impulsivity (Thaler et al.,

2012).

Several studies have investigated the role of catecholaminergic dysfunction in the
development of BN behaviour. Grob et al. (2015) found that remitted BN patients
developed mild eating disorder symptoms following oral administration of the drug,
alpha-methyl-para-tyrosine (AMPT) which induces catecholamine depletion of both DA

and norepinephrine stores (Stine et al., 1997). This suggests that individuals with BN are



vulnerable to eating disorder symptoms in response to decreased catecholamine

neurotransmission.

1.3.3 Dopamine-Related Reward Learning Findings in BN

1.3.3.1 General Reward Learning: DA Findings

Altered reward-related decision-making has been identified as an important
neuropsychological feature of eating disorders, including BN (Wagner et al., 2010; Wu et
al., 2016). Disturbances in reward learning may be related to reduced DA-related reward
functioning. Frank et al. (2011) showed that BN patients exhibited diminished brain DA
responses when learning the associations of visual stimuli and taste rewards. The concept
that reward-learning impairments in BN may be related to DA functioning is similarly
demonstrated by Grob et al. (2012) who experimentally achieved catecholamine
depletion with AMPT in remitted BN participants. The study found that, under
catecholamine depletion, the remitted BN group showed reduced reward learning on a
probabilistic reward task compared to healthy controls. No significant differences in
reward-processing were observed between the remitted BN participants and healthy
controls in the placebo condition. The study findings demonstrate the potential for DA-

related learning deficits in BN.

Catecholaminergic dysfunctions in reward learning may be modulated by the
neurotrophin brain derived neurotrophic factor (BDNF). Preliminary findings by Homan
et al. (2015), showed that AMPT induced differences in plasma BDNF were positively

correlated with AMPT related differences in reward-learning for individuals with



remitted BN. The study suggests a relationship between BDNF and DA in reward

learning among remitted BN patients.

1.3.3.2 Goal-Directed and Habitual Control Related DA Findings

To date, little is known about the effect of DA on goal-directed and habitual control in
those with BN. However, studies have investigated the role of DA among other patient
populations. Overall, these studies indicate that DA depletion is associated with
decreased goal-directed behaviour. De Wit et al. (2012) found that dopaminergic deficits
among Parkinson’s disease patients were associated with impaired goal-directed action.
Pharmacological enhancement of DA with Levodopa has also been shown to increase
goal-directed control in Parkinson’s disease patients (Sharp et al., 2016) and in healthy
controls (Wunderlich et al., 2012). It is feasible that the effect of DA in the arbitration

between goal-directed and habitual action is similar among individuals with BN.

1.3.3.3 Learning Rate Related DA Findings

The effect of DA on learning rate in BN populations is poorly understood. However,
research conducted among healthy adult populations shows that DA is relevant to a
related concept known as reward prediction error signalling. This refers to a teaching
signal that is used to calculate the difference between predicted and actual environmental
outcomes (Wang et al., 2020). Simply put, the prediction error signal is a neurological
mechanism that helps a person learn when an outcome is different than initially expected.
Studies show that DA neurons parallel this signal and report on the difference between

expected and observed reward values (Schultz et al., 1997; Cohen et al., 2012). It is



possible that individuals with BN experience unreliable prediction error signalling
resulting from presumed deficits in DA functioning. As learning rate scales the reward
prediction error signal to govern its influence on learning, it is likely that BN patients

experience impaired learning efficiency relative to healthy populations.

1.3.3.4 Exploration/Exploitation Trade-Off Related DA Findings

DA may also be implicated in the exploration/exploitation trade-off. According to several
recent computational studies, the functional polymorphism, Val158Met, in the catechol-
O-methyltransferase (COMT) gene, is associated with variability in exploratory
behaviour (Kayser et al., 2015). As COMT enzyme activity degrades synaptically
produced dopamine, those presenting with the less active polymorphism (methionine/
methionine) (Met/Met) are thought to demonstrate greater exploration than individuals
with higher activity alleles (Frank et al., 2009). Although no studies have investigated the
dopaminergic basis of exploratory/exploitatory behaviour in BN, it is conceivable that
reduced DA activity among individuals in this group would limit their exploratory

behaviour.

1.4 REINFORCEMENT LEARNING TASK

As discussed, BN symptoms may be governed by reward-based decision-making that is
mediated by the arbitration between goal-directed and habitual control, exploratory and
exploitatory action, and learning rate. We aimed to explore these mechanisms in

individuals with BN using a computational, reinforcement learning framework.

9



Specifically, a two-step reinforcement learning task was used to quantify the degree to
which participant action selection was influenced by these three factors. Furthermore, we
were interested in whether these reinforcement learning factors were affected before,

during and after treatment with lisdexamfetamine dimesylate (LDX).

1.5 LISDEXAMFETAMINE DIMESYLATE

Lisdexamfetamine dimesylate (LDX; Vyvanse) is a prescription medication used in the
treatment of attention-deficit/hyperactivity disorder (ADHD) in children, adolescents, and
adults. There is also significant evidence to support the use of LDX for moderate to
severe BED in adults. In a phase II randomized, placebo-controlled clinical trial
investigating the efficacy of LDX for BED, it was found that those treated with 50
mg/day or 70 mg/day dosages experienced a significant reduction in binge episodes and
binge days from baseline to week 11 of treatment. Compared with the placebo group,
those treated with LDX also experienced greater binge eating cessation and global
improvement in BED symptoms (McElroy et al., 2015). Two identically designed phase
IIT trials produced similar study findings, leading to FDA approval of LDX for moderate

to severe BED treatment in 2015, and ultimately, Health Canada approval in 2016.

Preliminary case reports suggest that LDX may also be effective for treating BN patients
who had not previously responded to other forms of pharmacotherapy and psychotherapy
(Keshen & Helson, 2017). In a 2021 feasibility study examining the potential efficacy of

LDX in adults with BN, Keshen et al. also found that LDX use resulted in a clinically

10



significant reduction in binge episodes and compensatory behaviours from baseline to
end-of-treatment. Little is known about the neural mechanisms by which LDX can
improve the symptoms of BN. However, previous studies suggest that LDX can improve
BED symptoms by normalizing frontostriatal activation via increased DA transmission in
this region (i.e., the same reinforcement learning related brain regions thought to be

relevant in the pathoetiology of BN; Griffiths et al., 2019).

1.6 StuDpY AIMS/ HYPOTHESES

Study data was used to address the questions: A) Does dopaminergic medication affect
exploration/exploitation balance, learning rate and goal-directed control among
individuals with BN? B) Can LDX use produce a clinically meaningful response (i.e.,
reduction in number of binge/purge episodes) that is related to these aspects of

reinforcement learning?

We hypothesized that participants would demonstrate increased exploration, learning rate
and goal-directed control after the initiation of LDX. Further, we hypothesized that this
would correlate with a decrease in binge/purge behaviours. All changes were expected to

occur in a dose-related fashion.

11



CHAPTER 2 METHODS

The study occurred as a sub-project of an existing feasibility study by Keshen et al.

(2021) examining the effectiveness of LDX in BN patients.

2.1 PARTICIPANTS

Participants were recruited from the Greater Halifax Area in Nova Scotia, Canada
handouts were also distributed at relevant locations including university health centres
and psychology clinics. To determine eligibility for a screening visit, interested
participants completed an online pre-screening questionnaire (Appendix A). Potential
participants were called by an investigator for a preliminary screening interview. Those
eligible for study participation were required to attend an in-person screening session at
the Nova Scotia Health Eating Disorder Program (Appendix B). The criteria used in the

evaluation of participant inclusion/exclusion is presented in Appendix C.

In the original feasibility study by Keshen et al. (2021) it was determined that a sample
of 30 participants would allow for a reasonable probability of having a minimum of 20
completers at follow-up. This sample size was based on a dropout rate of 15-30% that
was observed in comparable studies (McElroy et al., 2015) and was deemed appropriate
to measure the feasibility parameters in the primary study. Power calculations were not

completed for this sub-project because the analyses were exploratory and hypothesis

12



generating. Enrollment commenced in September 2018 and was temporarily paused in
March 2020 due to Coronavirus disease (COVID-19) related research restrictions. Study
enrollment was resumed in June 2020 but was permanently closed in July 2020, because
of COVID-19. This resulted in a total sample of 23 participants, instead of the original
aim of 30. Given that our study occurred as a pilot project, this sample size was adequate

to measure possible associations that would be worth exploring in future studies.

Of the 23 participants enrolled in the study, 18 completed the study per protocol. One
participant was withdrawn from the study for noncompliance, and one participant was
withdrawn for a loss of greater than 5% body weight within a given month (see Appendix
D for the criteria for study discontinuation). Three participants dropped out of the study

prematurely.

2.1.1 Participant Compensation
Participants were compensated $20.00 following each study session (total of 5 sessions)
for study-related parking and travel costs. Those withdrawing from the study early were

not eligible to receive further compensation.

2.2 INTERVENTION: STUDY DRUG

Study participants were administered LDX. The trial began with a 4-week titration period
followed by a 4-week maintenance period. The drug was initially administered to each
participant at 30mg/day and was increased weekly by 20mg increments until the optimal

dose was achieved (50mg/day or 70mg/day), as determined by the principal investigator.
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The final week of the titration period was designated for a drug dosage reduction (from
70mg/day to 50mg/day), if the participant was found to be intolerant of the maximum
dosage. LDX administration ended at week 9 of the study. A weekly medication
administration schedule is presented in Appendix E with accompanying study

procedures.

2.3 MEASURES AND MATERIALS

2.3.1 Contextual Bandit Reinforcement Learning Task

Participants completed 250 trials of the task (plus any additional resulting from aborted
trials), in two blocks separated by a 30 second break. The first block consisted of 84
trials, with the remainder to be completed in the second block. In the first stage,
participants selected between one of two pairs of spaceships. These pairs were essentially
equivalent at their first state. Each selection led deterministically, to one of two second-
step planets. On each planet, participants were presented with an “alien” that “mined”
from a “space mine”. Mine payoffs resulted in either the presentation of reward in the
form of “space treasure”, or the omission of reward in the form of “antimatter” and
fluctuated according to Gaussian random walk. This refers to a mathematical object that
consists of successive steps along a normal distribution. At the end of the experiment,
participants were given 1¢ for every two points they earned on the task. The original
protocol for the contextual bandit reinforcement learning task was developed by Kool et

al. (2016). The implementation of the task, written in JavaScript, was directly translated
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into the PsychoPy framework by Dr. Abraham Nunes and Alexander Rudiuk. A detailed

description of the task is presented in Appendix F.

Prior to the main task, participants received extensive task training. They were presented
with a “storyline” of the task and were familiarized with task icons/images. Participants
were instructed on the process of obtaining rewards and learned about the state-transition
structure of the task. All participants were required to undertake 25 full practice trials
before performing the task. If a trial was aborted due to computer time-out, an additional

trial was added at the end of the practice session.

The task was implemented in our study for the purpose of assessing an individual’s
relative degree of decisional, goal-directed versus habitual behavioural control, learning
rate and exploration/exploitation. Goal-directed (model-based control) was assessed by
evaluating participants’ reliance on a deliberative method of action selection that
acknowledged the causal structure of the task. Those who relied on habitual (model-free)
decision-making would not consider an explicit causal model of the task and would be

more likely to simply repeat actions that were previously rewarded.

Participant learning rate was measured by evaluating the degree to which participant
choices were updated by prediction error. Those with a higher learning rate would be
more sensitive to the most recent value of each action on the task and would be less

reliant on prior beliefs during action-selection.
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Last, we intended to measure exploration and exploitation using a parameter called
inverse softmax temperature. A higher inverse softmax temperature would reflect a
tendency toward the selection of options with highest previous payoff (exploitation).
Dissimilarly, a lower inverse softmax temperature would reflect a tendency to deviate

from this behaviour (exploration) (Addicott et al., 2017).

2.3.2 Task Quality Assurance

In October 2016, Dr. A. Nunes conducted pilot testing of the task. A group of 12
individuals who internally tested the task indicated that the task was clear and
understandable. One tester noted that the original task graphics by Kool et al. (2016),
were not distinguishable for colour-blind individuals. Given this feedback, the task was
modified to incorporate a colour-blind friendly palette. This occurred prior to

implementing the task in our study.

Pilot testing was also used to verify the reliability of the software across machines. Task
developers confirmed that the task rendered in full resolution on Windows 7, Windows
10, MacOS and Ubuntu Linux. The task was found to operate reliably, and without
disruption on the study computer located at the Nova Scotia Health Eating Disorder
Program. We also ensured that the task functioned appropriately in uncovering the
underlying psychological functions of interest by testing how accurately the

reinforcement learning parameters of the model could be estimated.

2.3.3 Clinical Response Measures
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Eating Disorder Examination 17.0D (EDE 17.0D): Participants were administered the
EDE 17.0D by trained interviewers. This was used to gather information on participant
objective binge episodes/days and subjective binge episodes/days over the previous 28
days. The EDE 17.0D was also used to determine the number of episodes/days that
participants engaged in self-induced vomiting, laxative misuse, and diuretic misuse over

the 28-day period. Test-retest reliabilities of the EDE 17.0D are presented in Appendix G.

Dietary Records: Participants were asked to keep a record of all food and beverages
consumed. They were required to self-report episodes of binge-eating, self-induced

vomiting, laxative-taking and diuretic-taking.

2.3.4 Covariate Measures

Operation Span Task (OSPAN) (computer-based): The operation span task (OSPAN) is
a paradigm for the assessment of working memory (WM) (Conway et al., 2005). The
existing implementation by Titus von der Malsburg (https://github.com/tmalsburg/py-
span-task) was translated into the context of PsychoPy behavioural task development
package by Dr. A. Nunes in September-October 2016 for use in this study. Test-retest

reliabilities of the OSPAN task are presented in Appendix G.

During the OSPAN task, participants were required to validate simple arithmetic

equations and memorize consonants that appeared after each item. At the end of each set

of equations, participants were prompted to recall the list of consonants in the correct

17



serial order. The average length of the lists that could be recalled was the participant’s

operation span.

OSPAN administration was relevant to understanding participants’ model-based and
model-free contributions to task learning under stress. Previous research suggests that
neuropsychological stress response diminishes the contribution of model-based choice in
individuals with low WM capacity, but not high WM capacity (Otto, Raio et al., 2013).
OSPAN administration would allow us to determine the potential influence of acute
stress during task performance on participant WM, and to examine if differences in WM

capacity influenced participants’ reliance on model-based and model-free responding.

As striatal DA is also critically implicated in WM functioning (Béckman et al., 2017), it
is likely that participants would experience WM improvement following LDX

administration. This would encourage model-based planning during task administration.

2.4 PROCEDURES

The single-site trial was conducted out of the Nova Scotia Health Eating Disorder
Program (Abbie J Lane Building; QEII Health Sciences Centre) in Halifax, Nova Scotia,

Canada.

The contextual bandit reinforcement learning task and OSPAN task were administered to

participants on a computer located at the study site at week 1 (baseline), week 2, week 9
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(maintenance dose), and week 10 (follow-up). The total duration of these tasks was
approximately 45 minutes. Based on the pharmacokinetics of LDX, we administered

computer tasks 4-8 hours after participants ingested the study medication.

Dietary records were collected from participants weekly throughout the course of the
study. The EDE 17.0D was administered to the participants at the Nova Scotia Health
Eating Disorder Program at baseline (week 1) and week 9. Where possible, participant
responses to EDE questions regarding the previous 28 days were verified with
information from their dietary records. A detailed patient schedule is presented in

Appendix E.

2.5 STATISTICAL ANALYSIS

Analysis of participant behavioural data was performed using theory-free and theory-
based methods. Our theory-free approach involved the use of permutation testing for
paired comparisons. This approach was used to determine if the distributions of
participant BN symptom data were different, before and during LDX treatment. The
approach was also used to compare differences in participant reward rate on the two-step
task at various dosages of LDX. Reward rate was calculated by dividing the number of
points received on the task by the total number of task trials (250 trials). No assumptions

were made about the strategy that participants used while performing the task.
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Our theory-based portion of analysis was not used to detect an effect, but rather explain
an effect. Specifically, computational learning models were fit to subjects’ trial-by-trial
behaviours to quantify (A) the likely decision-making strategy being used and (B) the
degree to which specific model parameters, such as model-based/model-free control,
exploration-exploitation balance, and learning rate were used at each time point. This was
performed by constructing reinforcement learning models that mirrored the participants’

trial-by-trial behavioral data.

2.5.1 Paired Permutation Testing

We used R (R Core Team, 2020), and the wPerm package (Weiss, 2015) to perform
permutation testing for non-independent matched pair data. This was used to compare
participant behavioural outcomes at different time points throughout the study.
Nonparametric permutation testing was used over alternative parametric approaches
because our experimental data did not satisfy the statistical assumptions underlying
traditional, parametric tests. For example, the sample data were not all normal in form,
and were not all of equal variance. As permutation tests make no distributional
assumptions, they were useful in making inferences about the location of study data at

different timepoints. We used an alpha level of .05 for all permutation tests.

2.5.2 Computational Modeling of Reinforcement Learning
Computational modeling analysis proceeded in two phases: model selection, and
parameter estimation. Analyses were performed by Dr. Abraham Nunes in the Python

programming language. Model parameters were estimated using expectation-
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maximization (Huys et al. 2011), and model comparison done using Bayesian model
selection (Rigoux et al. 2014) at each time point. We present only the parameters of the

model with the highest probability given by the Bayesian model selection procedure.

In the model selection phase, reinforcement learning models (Appendix H) were fit to
each participant’s trial-by-trial behavioural data. Fitting the models to the participants’
behavioural data yielded an ngyp ject X Mmoder Matrix of approximations to the
logarithmic model evidence, which was then submitted to the Bayesian Model Selection
procedure (Rigoux et al., 2014) in order to identify the most probable model that

explained the aggregate group’s behavioural data.

The models investigated were a model-free reinforcement learning algorithm developed
using State-Action-Reward-State-Action, SARSA (1) temporal difference learning
(Sutton, 1998, Sutton et al., 1999), a model-based reinforcement learning algorithm using
Bellman equation (Bellman, 1957), and a hybrid model with model-based and model-free
subcomponents. In the hybrid model, the relative weighting of participant model-based
and model-free strategies was parameterized by w, where 1 indicates pure model-based

learning, and 0 denotes pure model-free learning (Appendix H).

The definitions of these functions are as follows:
e o: Learning rate: a coefficient which indicates how quickly an agent updates their
state-action reward expectations. Participants with a high learning rate would be

able to acquire reward related information about their actions quickly.
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e [3: Inverse softmax temperature parameter (an index of the amount of choice
randomness). When f§ = 0, choice consistency decreases and actions become
more random.

e p: Perseveration: The tendency to repeat a previously selected action regardless of
the action’s value. Participants with high perseverance, would tend to repeat

choices made on the previous trial of the task.

2.5.3 Disentangling Medication Effects from Practice Effects

Changes in performance due to repeated exposure to test items (practice effects) were
addressed. Participants were administered computer-based tasks at week 1 (baseline)
prior to beginning LDX treatment. Task results were recorded at week 10 (follow-up), to
determine if participant performance returned to baseline levels after LDX
discontinuation (non-indicative of practice effects), or if performance was greater at
follow-up relative to baseline (indicative of practice effects). A similar method of
dissociating medication effects from practice effects was demonstrated by Boulay et al.
(2007) who assessed for practice effects on neurocognitive functioning, before and after

randomization to treatment.
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CHAPTER 3 RESULTS

3.1 DEMOGRAPHICS

Demographics of the sample are summarized in Table 1. 23 female participants with
moderate-extreme BN were enrolled in the study (M=26.83 years, SD=7.96 years). Of
these, 22 participants (95.65%) identified as Caucasian, and 1 participant (4.35%)
identified as Caucasian / First Nations. 15 participants (65.22%) had engaged in a
previous treatment for BN and 9 participants (39.13%) were taking a psychiatric

medication other than LDX throughout the duration of the study.

Table 1

Demographics of Study Sample

Baseline Characteristic n % M SD

Age 26.83 7.96
Baseline BMI 24.53 2.54
Gender

Female 23 100.0
Race:

Caucasian 22 95.65

Other: Caucasian / First Nations 1 4.35
Education:
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Baseline Characteristic n % M SD

High school diploma 1 4.35
Some college credit, no degree 2 8.70
Some university, no degree 6 26.09
Trade/technical/vocational training 2 8.70
Bachelor's degree 7 30.43
Master's degree 1 4.35
Other 4 17.39

Marital Status:

Single 18 78.26
Married 3 13.04
Other 2 8.70

Employment Status:
Employed, full-time 11 47.83
Employed, part-time or casual 2 8.70

Employed, part-time or casual & student 3 13.04

Student 5 21.74
Unemployed 2 8.70
Illness Duration (years) 9.33 7.73

Previous Tx attempt for ED
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Baseline Characteristic n % SD
No 8 34.78
Yes 15 65.22
Current Psych Medication
No 14 60.87
Yes 9 39.13

3.2 PAIRED SAMPLES PERMUTATION TESTS

Results of permutation paired location tests based on 9999 replications are presented in

Appendix 1. These results indicate that the distribution of objective binge episodes at T3

(maintenance dose) had significantly smaller values than objective binge episodes at T1

(baseline) (M13-M11=-35.11) (p < 0.001). This is similarly shown in Figure 3.1, which

shows that participant objective binge episodes were reduced after LDX administration.

25



Figure 3.1

Scatterplot of Participant Objective Binge Episodes Versus LDX Dosage
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Note: Line connects the means of grouped data at various dosages of LDX (as a fraction

of the maximum dose received).

The frequency of objective binge days was also found to be lowest when LDX was
administered at maintenance dosage. Paired permutation tests show that the frequency of
objective binge days at T3 was lower relative to objective binge days at T1 (Mr3-Mri= -

16.84) (p < 0.001).
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We conducted additional testing on the effect of LDX on participant subjective binging.
To establish whether LDX use resulted in a reduction of subjective binge episodes we
performed paired permutation testing of the distributions of participant subjective binge
episodes at T1 and T3. The tests indicate that subjective binging was significantly lower
at T3 than at T1 (prior to beginning LDX) (M13-MT11= -3.579) (p= 0.0064). Figure 3.2

provides a visual representation of this association.

Figure 3.2

Scatterplot of Participant Subjective Binge Episodes Versus LDX Dosage
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Note: Line connects the means of grouped data at various dosages of LDX (as a fraction
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of the maximum dose received).

Similar to the results from the permutation tests describing the distribution of participant
subjective binge episodes at T1 and T3, participant subjective binge days were also found

to be significantly lower at T3 (M13-MT11=-3.105, p= 0.0059).

It was also necessary to examine the distribution of values for participant compensatory
behaviours before, and during LDX treatment. It was determined that compensatory
behaviours at T3 were systematically less than at T1 (Mr3-Mti=-38.85, p< 0.001).
Figure 3.3 indicates that participants engaged in compensatory behaviours most
frequently, prior to LDX administration. Compensatory actions were reduced with

increasing LDX use.
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Figure 3.3

Scatterplot of Participant Compensatory Behaviours Versus LDX Dosage
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of the maximum dose received).

We aimed to determine whether LDX had the ability to alter participant reinforcement
learning, and if changes in participant learning were related to the observed reduction in
BN symptoms. Raw data of participant reward rate on the two-step task versus LDX
dosage (Figure 3.4) shows that participants did not experience a significant increase in

reward rate with increasing medication use. This is supported by the results of paired
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permutation testing which indicate that participant reward rate was not significantly
greater at T3 than at T1 (M13-MT1= 0.1511, p=0.0702). Similarly, participant reward rate
at T3 was not systematically greater than participant reward rate at T4 (off study

medication) (M13-Mr4= 0.0586, p=0.313).

Figure 3.4

Scatterplot of Participant Reward Rate Versus LDX Dosage
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Last, the distributions corresponding to WM were compared among time points. Two-
tailed paired permutation tests indicate that the distribution of OSPAN scores while on
the maintenance dose of LDX (T3) did not have systematically smaller or larger values

than OSPAN scores at T1 (Mr3-M11=-0.9286 p=0.887).

3.3 THEORY-BASED ANALYSIS

3.3.1 Model Selection
At time points 1, 3, and 4, reinforcement learning models were fit to each subject’s trial-
by-trial behavioural data. These results suggest that at all time steps, the aggregate

group’s data were best explained by a model-free reinforcement learning approach

(Figure 3.5).

Figure 3.5

Bayesian Model Selection Results
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Note: mblrcrp= Model-based agent with learning rate, inverse softmax temperature, and

perseveration; lIrcrp= Model-free agent with learning rate, inverse softmax temperature,
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and perseveration; Ircrwp=Hybrid agent with learning rate, inverse softmax temperature,
and perseveration; lrcrwpet=Hybrid agent with learning rate, inverse softmax

temperature, perseveration, and eligibility trace; pxp=protected exceedance probability.

3.3.2 Parameter Estimation

A table of estimated model parameters at T1, T3, and T4 are presented in Appendix J.
Participant learning rate was close to 0 across all time points, indicating no learning was
taking place. This is illustrated in Figure 3.6, in which participant learning rate estimates
using the model-free model are plotted at different timepoints. Descriptive statistics of

participant learning rate are presented in Table 2.
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Figure 3.6

Estimation of Learning Rate at Various Time Points (Model-Free Agent).
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Table 2
Descriptive Statistics: Learning Rate
Time Count M SE SD Min Max
1 17 0.0053 0.0021 0.0087 0.0007 0.0337
3 17 0.0068 0.0024 0.0098 0.0010 0.0415
4 17 0.0037 0.0013 0.0052 0.0003 0.0212
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Participant inverse softmax temperatures were also mostly high (Appendix J). Typically,
a higher inverse softmax temperature could reflect a more exploitatory choice strategy,
however, as the participants were insensitive to reward contingencies, discussion of
inverse softmax temperature is irrelevant in this instance. Figure 3.7 provides a
scatterplot of estimated inverse softmax temperature values at T1, T3, and T4.

Descriptive statistics are included in Table 3.

Figure 3.7

Estimation of Inverse Softmax Temperature at Various Time Points (Model-Free Agent).
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Table 3

Descriptive Statistics: Inverse Softmax Temperature

Time Count M SE SD Min Max
1 17 42.03 4.755 19.60 0.5628 68.50
3 17 45.28 9.158 37.76 0.0104 125.5
4 17 75.67 7.517 30.99 1.336 115.6

Finally, perseveration values were low and negative across all time points (Table 4).

Ordinarily, this would indicate that participants shifted readily between choices on the

task. However, as participants were unable to learn the task reward values, it is

unimportant to discuss their reliance on perseverative action. Estimated perseveration

values at T1, T3 and T4 are plotted in Figure 3.8.
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Figure 3.8

Estimation of Perseveration at Various Time-Points (Model-Free Agent).
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Table 4

Descriptive Statistics: Perseveration

Time Count M SE SD Min Max
1 17 -0.17094 0.0876 0.3612 -0.7055 0.9299
3 17 -0.4208 0.0496 0.2043 -0.8500 -0.0420
4 17 -0.4200 0.0588 0.2422 -0.7585 -0.0308
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CHAPTER 4 DISCUSSION

Research indicates that deficits in reward learning are implicated in development of
binge/purge behaviours (Wagner et al., 2010). Though BN pathophysiology is poorly
understood (Kekic et al., 2016), these disturbances in reward processing are thought to be
related to DA neurocircuits (Grob et al., 2012). The purpose of this study was to assess
the effect of LDX administration (and presumed increases in DA transmission) on
participant goal-directed and habitual responding, exploration/exploitation balance and
learning rate. These distinct subcomponents of reinforcement learning were measured
using a two-step reinforcement learning task in which participants made a series of
choices between two stimuli. Each choice deterministically transitioned to a second-stage
state that was associated with a fluctuating reward payoff. We wanted to determine the
effect of LDX on the reinforcement learning functions of interest, and to assess whether
changes in these elements were related to a clinically meaningful response (i.e., decreases

in binge/purge frequency).

Results from paired permutation tests are presented first and compare differences in BN
symptom data and reward rate before and during LDX treatment. A discussion of the
computational learning model that best explains the aggregate group’s behavioural data
follows. Subsequently, an explanation of model parameters including learning rate,
inverse softmax temperature, and perseveration is provided. Later, study strengths and
limitations are discussed. This is followed by a description of study implications and

recommendations for future research.
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4.1 STUDY FINDINGS

4.1.1 Paired Permutation Testing

Results indicate that study participants experienced a reduction in BN symptoms during
LDX treatment. Permutation tests for repeat measures data showed that the distributions
of participant objective binge episodes (Mr3-Mr11=-35.11, p <0.001) and objective binge
days (M13-M11=-16.84, p <0.001) were less at T3 (maintenance dose) than at T1
(baseline). The distribution of total compensatory behaviours was also found to be
significantly less at T3 relative to T1 (Mr3-Mr1=-38.85, p< 0.001). This large and
statistically significant reduction in participant objective binging and compensatory
behaviours is likely to have resulted in substantial improvement in the participants’
quality of life. This decrease in BN pathology was expected with LDX administration and
is consistent with the results of a case-report study in which LDX use resulted in a
reduction in binge/purge days per month in BN participants, one month following the
medication initiation (Keshen & Helson, 2017). In a previous study by McElory et al.
(2015), LDX administration also produced a statistically significant decrease in binge
eating days per week relative to placebo in a group of individuals with moderate to severe

BED.

While a reduction in BN symptoms occurred with LDX treatment, the goal of this sub-
project was to determine if this was related to changes in participant reinforcement
learning. Results from paired permutation testing show that the distribution of participant
reward rate at T3 was not significantly greater than at T1. This indicates that participants

were not able to learn the reinforcement task at all, regardless of increasing LDX use.
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This was an unexpected result, as we had originally hypothesized that an increase in DA
activity as a result of LDX use would increase participant reinforcement learning. It is
possible that participants’ low reward rate was related to their use of an inflexible model-
free learning strategy. For example, participants might have been rewarded less
frequently because they habitually selected previously rewarded actions instead of
acknowledging the causal model of the task. This finding is supported by previous
research by Kool et al. (2016), who found that measures of model-based planning during

the reinforcement learning task, showed a positive correlation with reward rate.

Last, two-tailed permutation tests were used to compare participant WM capacity before,
and after LDX administration. Results indicate that the distribution of participant OSPAN
scores at maintenance drug dose was neither systematically smaller or larger than
OSPAN scores at baseline. We had originally expected that LDX administration would
result in a marked improvement in participants’ WM performance, as prior research
suggests that psychostimulant treatment may have beneficial effects on WM capacity
(Wong & Stevens, 2012). However, whether differences in LDX use can result in an

improvement in WM among adults with BN remains unknown.

It is also possible that deficits in WM capacity were unrelated to the participants’ level of
BN symptoms. For example, it is feasible that participants experienced a reduction in
binge/purge behaviour without a corresponding increase in WM. Research by Barnett et
al. (2001) indicated that a group of children receiving psychostimulant treatment for

ADHD had improved WM relative to non-medicated children with ADHD, but that the
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magnitude of their ADHD symptoms was unrelated to their WM. A study by Salmi et al.
(2020) also indicated that psychiatric symptoms and self-rated cognition in a group of
Parkinson’s Disease patients were weakly linked to WM performance. As BN, ADHD
and Parkinson’s Disease share common neurobiological features including dysregulated
DA signalling, it is possible that WM has a similar, limited role in the clinical

manifestation of BN.

4.1.2 Model Selection

Model comparison was performed to determine which of the possible models best fit the
aggregate group’s behavioural data. At all time points participants used model-free
(habitual) control during the completion of the two-step task. Under this purely model-
free strategy, participants strengthened or weakened associations between stimuli and
actions, depending on whether the action was followed by a reward or not (Sutton &
Barto, 1998). Participants were more likely to select previously rewarded actions and
would switch actions if they experienced a loss of reward. This simple win-stay lose-
switch model free learning strategy (da Silva & Hare, 2019) is in contrast to a purely
model-based approach in which participants would compute action values using a model

of the task environment.

Originally, we hypothesized that an increase in goal-directed (model-based) control with
increasing doses of LDX would be associated with an improvement in BN symptoms. In
theory, individuals with greater model-based learning would have more of an awareness

of the adverse long-term effects of binging/purging (i.e., dental erosions, periodontal
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disease, electrolyte abnormalities and gastrointestinal complications resulting from
induced emesis or laxative misuse; Mehler, 2011). Therefore, they would be more likely
to reduce their risk of engagement in these behaviours by selecting alternative actions
that would help them to manage their negative emotions in a healthier manner. For
example, trying a new mindfulness skill or performing breathing exercises to reduce their
urge to binge/purge. Our finding that BN participants relied on model-free control only,
is unsupported by previous research which shows that an inverse relationship may exist
between BN symptom severity and model-based control (Nunes et al., 2018).Voon et al.
(2015) also showed that higher binge eating scores in a sample of BED participants were
positively correlated with a shift toward model-free (habitual) behaviours. These studies
indicate that greater model-based-behaviour, and not model-free behavior may be

associated with a reduction in eating disorder symptoms.

While it is unlikely that the reinforcement task lacked ecological validity, this should be
acknowledged as a possible reason why performance on the task did not relate to a
reduction in BN symptoms. It is feasible that the task does not meaningfully capture the
types of decisions that individuals with BN make when they choose to binge or purge.
Therefore, it is possible that decision-making on the task cannot be generalized to real-

world symptom or behavioural changes among BN populations.

Second, it is possible that the lack of improvement in participant model-based control
might be related to their lack of improvement in WM. Research indicates that central

executive functioning governs deliberative model-based decision-making. Specifically,
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the depletion of WM resources can inhibit model-based learning behaviour, and
engenders reliance on habitual behaviours (Otto, Gershman et al., 2013). However, it is
more probable that participants did not experience an increase in model-based control

because they were unable to learn the task's reward contingencies.

Another potential reason that participants were unable to optimize their performance on
the task with increasing LDX use is that the medication might not have increased DA
receptor density. Though few studies have investigated the role of striatal DA in BN,
neuroimaging literature suggests that the “chronically-addicted state” is associated with
low levels of striatal DA and reduced DA type 2 (D2) receptors (Volkow et al., 2009).
Broft et al. (2011) suggest that preclinical models of “BN-like” eating behaviours also
show that decreased D2 receptor density may be implicated in the initiation and
perpetuation of BN. As D2 receptors have been shown to contribute to both approach and
avoidance learning in healthy adult populations (Jocham et al., 2014) it is possible that
the BN participants had impaired reinforcement learning resulting from reduced D2-class
receptor density. While LDX can increase synaptic DA concentrations, the drug does not
increase D2 receptor site numbers. It is possible that this limited participants’ ability to

accurately select rewarding actions and reject punishing actions on the two-step task.

It remains unclear how participants experienced a reduction in BN symptoms during
treatment with LDX without an increase in reinforcement learning. It is possible that the
study medication resulted in participant appetite-suppression that was directly related to

their reduction in binge episodes, and relatedly, their decrease in compensatory
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behaviours. Research investigating the use of LDX among patient populations with
ADHD (Wigal et al., 2011) and BED (Brown et al., 2010) note appetite suppression as a
common treatment-emergent adverse event (TEAE) of LDX treatment. This TEAE of

LDX treatment is consistent with the effects of long-term stimulant use.

Last, it is feasible that participant BN symptoms were reduced as a result of LDX -
induced decreases in emotional lability (EL). EL refers to frequent and intense emotional
shifting and is posited to have a role in the maintenance of BN behaviour. Those with BN
may engage in dysregulated binge/purge behaviours as a strategy for emotion regulation
during periods of uncontrollable shifts in emotional intensity/valence (Anestis et al.,
2012). A 2009 study by Anestis et al. found that EL significantly predicted Impulsive
Behaviour Scale score in a clinical sample of females with BN, even when controlling for
general impulsivity. The results indicate that higher EL among individuals with BN, may
increase proneness to destructive behaviour including binging/purging. Prior research
suggests that LDX may be effective in reducing EL in specific psychiatric populations. In
a double-blind, placebo-controlled group trial investigating changes in EL with LDX
administration in a group of children with ADHD, it was found that LDX showed
improvement versus the placebo on Conners’ Parent Rating Scale items of anger, loss of
temper, and irritability (Childress et al., 2014). Given these findings, it is possible that
LDX administration reduced the severity of emotional reactivity in the BN patients
involved in our study. This decrease in EL would reduce the need for binge

eating/purging as emotion regulatory behaviors (Yu & Selby, 2013).
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4.1.3 Parameter Estimation

Parameter estimation involved finding the parameter values that best described the
participants’ task data under a model-free learning strategy. The parameters measured
were learning rate, inverse softmax temperature, and perseveration, and provide a
succinct summary of the participants’ behavioural data on the two-step task. They are
also useful for quantifying the effect of LDX administration on participant task-related
behaviour, and for evaluating individual differences in participant decision-making

(Frank et al., 2007).

Learning Rate

Participant learning rate was negligible across all time points. Moreover, LDX use did
not affect the participants' ability to update their understanding of the task (i.e., LDX did
not affect learning rate). To reiterate, this was an unanticipated study finding. Research
indicates that dopaminergic medications may induce changes in reward prediction error
signaling (Diederen et al., 2017). Rutledge et al. (2009) further suggests that this effect
may result in differences in the learning rate estimated by standard reinforcement
learning models. In a sample of Parkinson’s disease patients treated with levodopa,
Rutledge et al. (2009) found that learning rate was higher in patients on than off the study
medication. It would be expected that the BN participants in our study would experience

a similar increase in learning rate with LDX treatment.

Inverse Softmax Temperature
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Inverse softmax temperatures were relatively high across all time points. Typically, a
larger inverse softmax temperature would indicate that participants were deterministically
selecting the options with highest expected values (exploiting) as opposed to exploring.
However, as the participants were not learning throughout the task, it is not necessary to

comment on the participants’ relative degree of exploration or exploitation.

Perseveration

Perseveration parameter values were low and negative. Normally, this would indicate that
participants had less of a propensity toward repeating previously selected actions
independently of their reward history (Gershman, 2020). However, as the participants
were unable to learn the task reward contingencies, it is also irrelevant to report on this

aspect of decision-making.

4.2 POSSIBLE EXPLANATIONS FOR UNEXPECTED STUDY FINDINGS

It was expected that reinforcement learning, in some capacity, would have improved with
BN symptoms. This was contrary to the study results which suggest that participant
reinforcement learning did not increase with decreasing binge/purge behaviours. All
participants received adequate task training prior to beginning the main task. Therefore, it
was unlikely that participants could not optimize their performance due to an inability to

appropriately navigate the task or understand the task state-transition structure.

One potential reason that the participants did not learn the task as their symptoms

improved was because of insensitivity to reward. This idea is supported by current
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literature which suggests that pathological binge eating in BN occurs as a result of reward
hyposensitivity (Friederich et al., 2013). For example, individuals with BN may consume
a large amount of appetitive food during a binge episode to stimulate their under-
responsive reward system. BN participants with reward insensitivity would be less able to
distinguish between the predicted and actual values of rewards, and this would limit their
ability to learn the value of task actions/states (Nunes et al., 2018). Unfortunately, the
decision-making paradigm used in our study cannot be used to detect sensitivity to

reward. Therefore, no direct evidence exists to support this explanation.

It is also conceivable that participants did not effectively learn the task because they
found the task rewards to be non-incentivizing. It may be necessary to measure
participant reinforcement learning using disorder-specific reinforcers (or food
reinforcers) instead of the reinforcers found on the two-step task (the money reward). The
BN participants might have been relatively unmotivated by the money reward and
impairment in learning and goal-directed control might be reduced if food-rewards are at
stake. This topic is explored by other, recent studies, which show that generic monetary
rewards are less motivating for psychiatric populations than they are for healthy controls

(Wyckmans et al., 2019; Voon et al., 2015).

Third, it is possible that the participants did not learn with increasing LDX use, because
the task did not appropriately measure participant reinforcement learning. This is
unlikely, however, as healthy controls have been shown that they can learn on the novel

two-step task by Kool et al. (2016) and can optimize their performance. We would expect
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that the task could capture reinforcement learning in BN participants just as it has been
used to measure reinforcement learning in non-clinical populations. This is especially
true, given that our study task was identical to the novel task with the exception of our
inclusion of a colour-blind friendly palette. We also showed that different reinforcement
learning models, through simulated behaviour on the task, could be accurately identified
statistically using our model fitting procedures. This suggests that the task does

discriminate along various subcomponents of reinforcement learning.

Though it is unlikely that the task could not measure participant reinforcement learning, it
is feasible that participant learning, and BN symptoms are independent of each other, or
that BN pathology is related to some other factor not investigated by the task. Describing
the exact causes of BN is a challenging process, because the neurobiology of the
condition is poorly understood (Kaye, 2008). Due to a lack of understanding of BN
pathogenesis, it is possible that the task didn’t capture aspects of learning or cognition
that are relevant to BN. Other neurobiological mechanisms that are implicated in the
etiology and maintenance of binge eating include reduced executive control of attention
(“cognitive interference control’), increased discounting of future-rewards (“delay-
discounting”), impaired mental flexibility (“set-shifting”) (Frank & Berner, 2020) and
increased affective lability (Anestis et al., 2012). These aspects of behaviour were not
measured by the study task, and therefore, no conclusions can be made regarding their
influence on the participants’ BN symptoms. It is also possible that participants
experienced a reduction in binge episodes as a result of the appetite-suppressing effects

of the study drug. Decreased appetite has been frequently reported among adults with
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BED treated with LDX (McElroy et al., 2015). Thus, LDX may reduce pathologic over-

eating in BN through appetite regulation, as opposed to increased learning.

4.3 STUDY STRENGTHS

This is one of the first studies to examine the potential mechanisms by which LDX
decreases binge/purge behaviour. In particular, the use of computational methods for this
purpose offers a novel approach for assessing the interplay of neurobiology, symptom

severity and treatment efficacy in BN.

The reinforcement learning task administered provided a computationally precise method
of differentiating between participant model-based and model-free control (Kool et al.,
2016). This task was developed by Kool et al. (2016) and is based on a version of the
“two-step task” by Daw et al. (2011), which is reported as the dominant method of
assessing these decision-making traits (Hasz & Redish, 2018). Additionally, the task
improves the original Daw paradigm by incorporating a trade-off between decisional
accuracy and computational demand (Kool et al., 2016). For these reasons, this particular

reinforcement learning task was selected for use in our study.

An additional study strength was our implementation of quality control measures to
ensure adequate usability and reliability of the task. Pilot testing verified that the task was
able to be viewed in full resolution and was able to be run easily at the study location.
Feedback from pilot testers also revealed the need to alter the original task colour scheme

to incorporate a colour-blind friendly palette. This modified version of the task was used
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to accommodate colour-blind individuals. Last, pilot testing confirmed that the task could

be used to accurately detect the reinforcement learning parameters of interest.

4.4 STUDY LIMITATIONS

The study has potential limitations. This is a single-arm, within-subject design across
active treatment. There is no counterbalancing performance between drug and no drug
conditions, nor is there a control group. As the study is exploratory in nature, the pilot
data from the proposed research, will be used to inform larger studies with improved

study design, for example, randomized controlled trials.

Second, the study included a narrow demographic of participants. Only female
participants were recruited, and most participants identified as Caucasian. This precludes

the generalization of study results to males, and other racial groups.

Third, the study did not examine the neurobiological changes that were associated with
LDX treatment (i.e., through the use of neuroimaging techniques). Therefore, no
conclusions can be drawn regarding the mechanism of action through which LDX
produced its clinical effects. Further investigation of neural systems before and after
LDX treatment is required to better understand neural dysfunction in BN, and how LDX

acts on these systems to effectively reduce BN symptoms.
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Fourth, the study used measures of binge eating and purging behaviour obtained through
participant self-report data. There are a number of aspects of bias that accompany
participant self-reporting including biases in memory, and social-desirability bias (Hebert
et al., 1995), where participants report behaviours that they perceive to be more aligned
with the intervention’s goals. Such biases associated with self-report measures could

complicate the interpretation of the study results.

Last, confounding factors may have contributed to the observed reduction in BN
symptoms among the treated participants. For example, participants’ use of dietary
records, and their interactions with clinicians during in-person study visits, may have
been partly responsible for their decrease in BN behaviour. While it may not be accurate
to suggest that LDX treatment was wholly responsible for their reduction in BN
pathology, the results are more applicable to a real-world setting, where multiple factors

may contribute to the efficacy of a drug treatment.

4.5 IMPLICATIONS

Few studies have examined reward learning among individuals with BN. This
preliminary investigation of decision-making in BN patients contributes to our existing
understanding of the neurocognitive processes that are associated with binge/purge
behaviour and provides insight into how LDX may function to reduce BN symptoms. It is
possible that the participants’ over-reliance on habitual action was one factor that

contributed to the initial entrenchment of their maladaptive eating (Foerde et al., 2019).
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This finding is of particular interest and may inspire future research that employs
interventions to increase goal-directed behaviour among individuals with BN. Though it
remains unclear how participants experienced a reduction in BN symptoms following
LDX treatment without shifting to a primarily model-based approach, other studies would

be able to explore alternative explanations for this finding.

Reinforcement learning tasks, such as the one used in our study, have the potential to
improve clinical interventions. These tasks can be used to detect differences in learning
or decision-making that may be implicated in certain psychiatric disorders. Despite this
potential, our study identified some challenges that might prevent the task from assessing
real-world BN behaviours. For example, the participants might not have been
incentivized to learn the task because the task did not incorporate disorder-specific
rewarding stimuli. The task should be altered to incorporate reinforcers that are relevant
to BN (appetitive food rewards) to accurately capture participant decisional strategies. It
is necessary that the task be personalized for use by BN patients before it can be used as a

supportive tool in clinical decision-making.

Both the study and the research it inspires and may lead to an improved understanding of
the neurological basis of BN through a mathematically informed, computational
approach. This may improve pharmacological treatments for BN and provide a new

perspective on brain-behaviour relationships in this psychiatric disorder.

4.6 RECOMMENDATIONS FOR FUTURE RESEARCH
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Literature suggests that reduced reward sensitivity may be of relevance in the genesis of
BN behaviour (Friedrich et al., 2013). It is possible that participants were not able to
learn the task as a result of this potential reward hyposensitivity. Therefore, it is
recommended that future studies focus on testing reward sensitivity in participants with a
task that is more specific to that. For example, the spatial orientation test by Derryberry
and Reed (1994) has been used as a behavioural measure of reward sensitivity within the
context of other eating disorder populations (Matton et al., 2017). This task measures
differences in both attentional engagement and attentional disengagement associated with
reward-related cues. The Sensitivity to Punishment/Sensitivity to Reward Questionnaire
is another validated method for the assessment of reward sensitivity in eating disorder
populations (Beck et al., 2009) and could also be used to detect reward sensitivity among

individuals with BN.

It is also recommended that future studies examine participant reinforcement learning
using both monetary and food-specific contexts. This is relevant because individuals with
BN are posited to have altered responsiveness of the reward network to food stimuli
compared with monetary rewards (Simon et al., 2016). Foerde et al. (2019) describe their
protocol for comparing participant learning in anorexia nervosa patients using both food
and monetary versions of a two-step task. In the food (illness relevant) task, participants
were rewarded with food tokens that they could use to select from a variety of preferred

food items at the end of each task. This use of monetary and disorder-specific reinforcers

52



would detect changes in participant decision-making that were related to differences in

domain.

Future research investigating neurocognitive mechanisms of LDX pharmacotherapy in
BN should also include neuroimaging. Functional brain imaging studies could be
conducted to characterize the pharmacological effects of LDX on BN patient brain
structure and function. In particular, these studies should investigate brain regions that are
implicated in reward-based decision making, to deduce if pathologic binging and purging

are related to dysfunction in these regions.

Last, replication of the study is recommended. This would reduce the likelihood that the

observed experimental effects were caused merely by sampling variability.

4.7 CONCLUSIONS

Clinical psychiatry has long experienced a stagnation resulting from an overreliance on
symptom-based definitions for mental disorders, without consideration of their
neurobiological causes (Yahata et al., 2017). The recent application of computational
psychiatry offers a potential solution to this problem, by quantitatively describing
disorder-specific mechanisms. The results from our study will contribute to this emerging
field by providing a novel description of BN-specific aberrations in decision-making.
Uncovering the neurobiology of eating disorders such as BN, has the potential to re-
conceptualize our understanding of these disorders, and to improve future methods for

patient diagnosis and treatment.
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APPENDIX A Pre-Screening Questions/Measures

Items screened

Description of items

Contact Information

Demographics

Eating Disorder Diagnostic Scale
(EDDS; Stice et al., 2000)

Full Name
Email & Phone number

Sex

Year/month of birth

Current or intended pregnancy (within the next
year)

Current breastfeeding status

Current stimulant medication

Current antidepressant medication

Recent dose change of any psychiatric medication
(past 4-weeks)

Current psychotherapy for BN

Previous eating disorder treatment
Recreational use of illicit substances in the
previous 2-months

Syrup of ipecac use

History of anorexia nervosa

Allergy to amphetamines or sensitivity to
stimulants

Diagnosis of glaucoma

Diagnosis of hyperthyroidism

Personal or family history of cardiovascular
disease (specify)

EDDS is a validated screening measure for eating
disorder symptoms and preliminary eating
disorder diagnoses.

Height and current, lowest and highest weight are
included.
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Items screened

Description of items

ADHD Diagnosis & ASRS (Adult
ADHD Self-Report Scale;
Kessler et al., 2005)

Substance Use/Cut Down (Brown
et al., 2001)

Psychotic Disorder Diagnosis

Bipolar Diagnosis & Bipolar
WHO-CIDI (Kessler et al.,
2006)

Previous diagnosis of ADHD
The ASRS is a brief, validated screening measure
for ADHD.

A 2-item conjoint screen for alcohol or drug
problems

Previous diagnosis of a psychotic disorder

Previous diagnosis of bipolar disorder
Bipolar WHO-CIDI is a brief, validated screening
measure for bipolar disorder.

Note. EDDS= Eating Disorder Diagnostic Scale; ADHD= Attention deficit hyperactivity

disorder; ASRS= Adult ADHD Self-Report Scale; WHO-CIDI= World Health

Organization Composite International Diagnostic Interview.
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APPENDIX B Screening Visit

Screening Procedure Description of Screening Procedure

1. Consent Discussion Evaluation of participant competence
Participant consent discussed/ received

2. Medical Assessment Medical history

Vital signs (height, weight, blood

pressure, heart rate)

EKG

Blood draw
Blood Profile & Chemistry,
Drug Screen (At discretion of
principal investigator),
Pregnancy Screen (if applicable)

Participant eligibility reaffirmed

3. Psychological Assessment Structured Clinical Interview for DSM 5
Disorders (Research Version) (SCID-5-
RV) to screen for comorbid disorders (see
Eligibility criteria)
Columbia Suicide Severity Rating Scale
(C-SSRS)(Screening Version) to screen
for suicide risk

All participants were medically/ psychologically assessed by the principal investigator.
As reflected by the inclusion/exclusion criteria (Appendix C), the study recruited
participants who were both a) experiencing moderate to extreme degrees of pathology,

and b) at a lower risk of abusing the appetite suppressing effects of LDX.
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APPENDIX C Criteria for Participant Inclusion/Exclusion

Inclusion Criteria:

* 18-55 years of age and signed consent

* Moderate to extreme BN (SCID-5-RV)

* BMI between 21-30 kg/m?

* Ability to swallow capsule consistently as per self-report

*» Females who are not breast-feeding and who are not of childbearing potential (last
menstruation at least 24 months prior to baseline, or have undergone tubal ligation, or
have undergone hysterectomy)

* Females of childbearing potential who have a negative serum pregnancy test prior to
study enrollment and who agree to use a reliable method of birth control (oral
contraceptives, contraceptive injections, contraceptive patch, intrauterine device, partner
with vasectomy, abstinence or barrier methods such as condoms, vaginal diaphragm with
spermicide or sponge) during the study and for one month following the last dose of the

study drug

Exclusion Criteria:

Participants were excluded from the study if they met any one of the following criteria:
» Co-morbid bipolar disorder, psychotic disorder, moderate-severe depression, and/or
ADHD according to SCID-5-RV

* Previous history of anorexia nervosa (due to elevated risk of problematic weight loss

secondary to stimulant use)
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* Severely restricting eating behaviours defined as routinely (>2 days per week) eating
less than two meals a day, or at the investigator’s discretion

* Clinically meaningful abnormalities in laboratory tests or electrocardiography results as
determined by the principal investigator

* Personal or family history of cardiovascular disease that could increase vulnerability to
the sympathomimetic effects of stimulants (e.g., structural cardiac abnormalities,
cardiomyopathy, serious heart arrhythmia, advanced arteriosclerosis, or coronary artery
disease) or any current symptomatic cardiovascular disease, as determined by the
principal investigator, and/or in consultation with cardiologist (as needed)

+ Participant has moderate to severe hypertension (>140/90 mmHg)

* Participant is receiving psychotherapy deemed by the investigators to be specifically
treating BN

* Participant is taking or has taken a stimulant within the past 3 months

* Participant is on another psychotropic medication, and the dose has been changed 4
weeks prior to study drug initiation or the participant is on an antipsychotic medication

* History of substance use disorder in the preceding 6 months (or more distant at
supervisor discretion) or a lifetime history of stimulant substance use disorder

* Participant is taking or has taken a monoamine oxidase inhibitor (MAOI) within the last
14 days

» Participant is pregnant, plans to become pregnant, or is nursing

* Participant uses syrup of ipecac (to self-induce vomiting)

* Participant is considered a suicide risk, according to the C-SSRS (Screening Version),

and at the discretion of the principal investigator
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* Participant has a known allergy to amphetamines, or other non-medical ingredients in
LDX, or is sensitive to, is allergic to, or has had a reaction to other stimulant medications
* Participant has been diagnosed with glaucoma

* Participant has been diagnosed with hyperthyroidism

* Participant has insufficient knowledge of English language
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APPENDIX D Patient Safety Monitoring

Participants were instructed to report all treatment emergent adverse events (TEAEs) to
the principal investigator. Participants were instructed to visit the ER in the event of a
psychiatric or medical emergency. Non-emergent questions regarding the study were

directed toward the principal investigator or other study personnel.

All serious or unexpected adverse reactions were reported to the Nova Scotia Health
Authority Research Ethics Board and Health Canada by the principal investigator. Other
adverse effects were monitored and recorded by study investigators. Participants found
to have met any of the criteria for discontinuation were automatically withdrawn from the

study.

Study Discontinuation Criteria:

* The participant’s BMI falls below 20, or they experience a rapid weight reduction (>5%

of body weight in a given month), or they become excessively restrictive in their eating
patterns (defined as routinely [> 2 days a week] eats less than 2 meals a day), or are
otherwise suspected of abusing LDX’s appetite suppressing effects

» Participant’s non-study medications change during the study period in such a way that
could interfere with study outcomes

* Participant violates protocol, withdraws from study, or experiences a serious adverse
event

* Participant is suspected of misusing study drug or other substances (i.e. as indicated by

urine drug screen)
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* Participant experiences suicidal ideation and is considered a suicide risk, or attempts
suicide during treatment

* Participant becomes pregnant

* Development of laboratory, EKG, or vital sign abnormalities deemed by the principal
investigator to be medically concerning (i.e., potassium, chloride or sodium
abnormalities, hypoglycemia, prolonged QTc, hypertension, and tachycardia)

» New information shows that the study is not in the participant’s best interests
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APPENDIX E Patient Schedule

Titration Phase

Maintenance Phase

Follow
_Up

Pre-
Screen

Screen
-ing

W1

w2

W3

W4

W5

W6

W17

W8

W9
Post

W10

In-Person
Study Visit

LDX
Dosage
(mg/day)

30

50

70

50
or
70

50
or
70

50
or
70

50
or
70

50
or
70

Pre-Screening

Online Pre-
Screen

Telephone
Interview

Screening/ Scheduled Procedures

Consent
Discussion

Screening
Interview-
(SCID-5 +
Eligibility)

Blood
Profile

Drug Screen

Pregnancy
Screen

EKG

Blood Work

Vital Signs/
Weight

Suicidality
Screen

Adverse
Events
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Titration Phase Maintenance Phase Follow
_Up

Computer-Based Tasks
2-Step Task X X
OSPAN X X
Clinician-Administered Measures
EDE 17.0D
Self-Report Measures
Dietary X X X X X X
Records
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APPENDIX F Contextual Bandit Reinforcement Task

Block (and their code Description
names)
ID Collection Participant’s study ID and Date are input and held

“Real Trials”

as a global variable to which other data from the
task are linked.

START TRIAL ¢

p(xg) = 0.5 - p(xy) =05
N ST
[ %o | [ x1 )
/\_,_,,A\\/,--—«.\ ) P NN
{ f 7 1 \
( uf ) (ol ] [ uf) [ ul |
\___ ' N TN S/ >\-5_,-/
— ’ .-""'-\ —

( - TN ~ _
plxo) =1 (% Y & ;pl‘x=,|11|] I
NS 1/

J(x2) Reward J(xs3)

' Function

T -

END TRIAL ¢

Individuals start trial ¢ by entering either state x_0
(state with spaceships A and B) or state x_1 (state
with spaceships C and D). If participant starts in
state x_0, they may choose either action u_0"0
(spaceship A) or u_170 (spaceship B). If participant
starts in state x_1, they can choose either action

u_ 0”1 (spaceship C) oru_1"1 (spaceship D). At
each trial, spaceship pairs are placed on either the
left or right of the screen according to a probability
of 0.5. The choice of spaceship leads
deterministically to state x_2 (one of the planets) or
state x_3(the other planet) where the participant
receives a reward if he or she presses the “space
bar” key on the keyboard.

Between trials, participants are presented with a
fixation cross in order to retain attention to the
centre of the screen.
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APPENDIX G Test-Retest Reliability of Covariate Measures

Covariate Measure

Test-retest correlations

Eating Disorder Examination 17.0 D
(EDE 17.0D)

Operation Span Task (OSPAN)

In a previous study by Calugi et al. (2015)
EDE test-retest reliability (2-23 day retest
period) was good to excellent for objective
binge episodes/days (+=0.99), vomiting
episodes (+=0.94), laxative use episodes
(r=0.92), diuretic use episodes (»=1.00),
and excessive exercise days (r=0.82), but
was unsatisfactory for subjective binge
days/episodes (r=0.36).

A previous study by Klein and Fiss (1999)
indicated that test-retest correlations for
the OSPAN were sufficient at 3-week
(r=0.73) 7-week (»=0.81), and 10-week
(r=0.67) intervals between test
administrations.
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APPENDIX H Reinforcement Learning Models

Model Component Equation Parameters
Hybrid Policy Softmax B: Inverse softmax
temperature (choice
consistency)
Value Model-free (QMF): SARSA  Model free:
function Model-based (QM5): e Learning rate: 0 <
Bellman as1
‘oo Integration:
Int tion:
ntegration e Model
= wOMB + (1— MF based/model-free
Q=wQ 1 -w)Q balance: 0 < w <
1
Model-free Hybrid model with w fixed to 0
Model- Hybrid model with w fixed to 1
based
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APPENDIX I Results from Paired Permutation Testing

Population 1 ~ Population 2 Mean Difference Ho Ha p
OBE (T3) OBE (T1) -35.11 Identical  Shifted <0.001
left
OBD (T3) OBD (T1) -16.84 Identical  Shifted <0.001
left
SBE (T3) SBE (T1) -3.579 Identical ~ Shifted 0.0064
left
SBD (T3) SBD (T1) -3.105 Identical ~ Shifted 0.0059
left
CB (T3) CB (T1) -38.85 Identical ~ Shifted <0.001
left
RR (T3) RR(T1) 0.1511 Identical ~ Shifted 0.0702
right
RR (T3) RR (T4) 0.0586 Identical ~ Shifted 0.313
right
RR (T1) RR (T4) -0.0925 Identical ~ Shifted 0.535
OSPAN (T3) OSPAN (T1) -0.9286 Identical ~ Shifted 0.887
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Population 1 ~ Population 2 Mean Difference Ho Ha p

OSPAN (T3) OSPAN (T4) -8.500 Identical ~ Shifted  0.0138

OSPAN (T1) OSPAN (T4) -7.571 Identical  Shifted  0.223

Note. Results of permutation paired location test based on 9999 replications; OBE=
objective binge episodes; OBD= objective binge days; SBE= subjective binge episodes;
SBD= subjective binge days; CB= compensatory behaviours (past 28 days); RR= reward
rate; OSPAN= Operation span task score; Shifted left= The distribution of the variable on
the first population has systematically smaller values than that of the variable on the
second population; Shifted right= The distribution of the variable on the first population
has systematically larger values than that of the variable on the second population;
Shifted= The distribution of the variable on the first population has either systematically
smaller values or systematically larger values than that of the variable on the second

population.
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APPENDIX J Estimation of Model Parameters (Model-Free
Agent with Learning Rate, Inverse Softmax Temperature and

Perseveration)
Participant Time o B p
ID

A T1 0.0018 45.06 -0.70552
A T3 0.0140 0.0104 -0.1991

A T4 0.0014 88.43 -0.2239
E T1 0.0012 46.81 -0.3450
E T3 0.0028 41.42 -0.4575
E T4 0.0106 9.295 -0.3933
F T1 0.0203 1.086 0.9299

F T3 0.0010 105.0 -0.2246
F T4 0.0017 81.10 -0.6789
G T1 0.0029 50.29 -0.1660
G T3 0.0026 36.79 -0.0627
G T4 0.0016 89.94 -0.4221

H T1 0.0021 68.50 -0.4953

H T3 0.0051 11.014 -0.3683

H T4 0.0027 80.06 -0.2336
| T1 0.0049 30.68 -0.0593

| T3 0.0078 48.95 -0.5278
I T4 0.0043 56.43 -0.7028
J Tl 0.0337 0.5628 0.1008

J T3 0.0145 8.044 -0.5059
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Participant Time o B p
ID

J T4 0.0008 99.30 -0.1692
M T1 0.0013 57.02 -0.3713
M T3 0.0415 0.6696 -0.0420
M T4 0.0039 56.73 -0.3585
N T1 0.0057 34.58 -0.2432
N T3 0.0011 68.50 -0.5610
N T4 0.0007 98.75 -0.3042
0] T1 0.0010 42.41 0.0984
0] T3 0.0059 42.29 -0.4663
0] T4 0.0003 115.6 -0.0308
P T1 0.0021 45.49 -0.6029
P T3 0.0019 70.71 -0.5259
P T4 0.0016 92.27 -0.7287
Q T1 0.0014 45.26 -0.3082
Q T3 0.0035 16.28 -0.4172
Q T4 0.0026 88.98 -0.7585
S T1 0.0077 18.36 0.0014
S T3 0.0056 22.86 -0.5736
S T4 0.0019 86.56 -0.4512
T T1 0.0009 59.42 -0.2453
T T3 0.0019 83.09 -0.3211
T T4 0.0059 55.21 -0.7120
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Participant Time o B p
ID

U T1 0.0016 60.28 -0.2433
U T3 0.0041 11.61 -0.8500
U T4 0.0008 93.56 -0.6122
v T1 0.0015 57.70 -0.1091
A% T3 0.0014 77.039 -0.4418
A% T4 0.0008 92.83 -0.3187
W T1 0.0007 50.94 -0.1423
Y T3 0.0013 125.5 -0.6085
W T4 0.0212 1.336 -0.0419

Note. o = learning rate; = inverse softmax temperature; p= perseveration.
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