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ABSTRACT 

Olfactory deficits (hyposmia) are one of the most common symptoms of Parkinson’s disease 

(PD). These often appear before PD has been clinically diagnosed, making hyposmia a potential 

early, pre-clinical marker of the disease. However, as hyposmia is not specific to PD, additional 

markers are needed in order to identify PD in its early stages. This study examined whether 

specific cognitive deficits and/or abnormalities in resting-state functional connectivity (FC) 

within the default mode network (DMN) may serve as additional markers of PD for at-risk 

individuals. Patients with PD, healthy controls, and an at-risk group (AR) including hyposmic 

first-degree relatives of PD patients and unrelated hyposmic individuals were compared on FC of 

the DMN and tests of processing speed, working memory, and executive function. It was found 

that patients and the at-risk group show significant deficits in verbal working memory compared 

to controls. PD patients also exhibited processing speed deficits. AR individuals showed 

increased FC between the anterior medial prefrontal cortex and the right middle temporal gyrus 

of the DMN compared to controls and PD patients. It was also found that cognitive deficits are 

not associated with abnormal FC. This study demonstrated that impaired verbal working memory 

and increases in DMN FC in addition to hyposmia could indicate the progression towards PD. 

AR individuals may show early alterations in DMN FC that may either indicate compensatory 

processes in response to commencing neuronal loss as an attempt to maintain cognitive 

performance, or a sign of disease-related changes independent from cognitive processes. Future 

research is needed to confirm the results and to determine their clinical applicability. 

 

  



viii 
 

LIST OF ABBREVIATIONS USED 

α  Alpha Coefficient 

AD  Alzheimer’s Disease 

AFNI  Analysis of Functional Neuroimages 

amPFC Anterior Medial Prefrontal Cortex 

ANCOVA Analysis of Covariance 

ANOVA Analysis of Variance 

ANTs  Advanced Normalization Tools 

AR  At-Risk Group 

aTL-L  Left Anterior Temporal Lobe 

aTL-R  Right Anterior Temporal Lobe 

AUC  Area Under the Curve 

BOLD  Blood Oxygen Level Dependent 

CO2  Carbon Dioxide 

CSF  Cerebrospinal Fluid 

DAT  Dopamine Transporter 

DCM2NIIX DICOM to NIFTI Converter 

DICOM Digital Imaging and Communications in Medicine 

DKEFS Delis Kaplan Executive Function System 

DMN  Default Mode Network 

dmPFC Dorsal Medial Prefrontal Cortex 

DTI  Diffusion Tensor Imaging 

DVARS Derivative of the Variance 



ix 
 

DWI  Diffusion-Weighted Imaging 

EPI  Echo Planar Imaging  

F  F-value 

FAST  FMRIB's Automated Segmentation Tool 

FC  Functional Connectivity 

FD  Framewise Displacement 

FDR  False Discovery Rate 

FMRIB Oxford Centre for Functional Magnetic Resonance Imaging of the Brain 

FOV  Field of View 

FSL  FMRIB Software Library 

FSPGR-BRAVO 

Fast Spoiled Gradient-Recalled-Echo Brain Volume 

FWHM Full-Width Half-Maximum 

GM  Gray Matter 

H1  First Hypothesis 

H2  Second Hypothesis 

H3  Third Hypothesis 

HC  Healthy Control 

HF-L  Left Hippocampal Formation  

HF-R  Right Hippocampal Formation 

hFDRs  Hyposmic First-Degree Relatives 

hNoFDRs Hyposmic Non-Relatives 

Hz  Hertz 



x 
 

ICA  Independent Component Analysis 

IFG-L  Left Inferior Frontal Gyrus 

IFG-R  Right Inferior Frontal Gyrus 

IWK  Izaak Walton Killam Hospital 

LNS  Letter-Number Sequencing 

LRRK2 Leucine-Rich Repeat Kinase 2 

M  Mean 

Madj  Adjusted Mean 

MCFLIRT FMRIB’s Motion Correction Tool 

MCI  Mild Cognitive Impairment 

MDS  Movement Disorder Society 

min  Minutes 

MNI  Montreal Neurological Institute 

MNI152 MNI152 Stereotaxic Brain Template 

MRI  Magnetic Resonance Imaging 

MTG-L Left Middle Temporal Gyrus 

MTG-R Right Middle Temporal Gyrus 

rsfMRI  Resting-State Functional Magnetic Resonance Imaging 

n  Group Size 

N  Total Sample Size 

NEX  Number of Excitations 

NIFTI  Neuroimaging Informatics Technology Initiative 

NSHA  Nova Scotia Health Authority 



xi 
 

p  p-value 

PARS  Parkinson Associated Risk Syndrome Study 

pCC  Posterior Cingulate Cortex 

PCu  Precuneus 

PET  Positron Emission Tomography 

PD  Parkinson’s Disease 

PD-MCI Parkinson’s Disease with Mild Cognitive Impairment 

PDD  Parkinson’s Disease with Dementia 

pIPL-L  Left Posterior Inferior Parietal Lobule 

pIPL-R Right Posterior Inferior Parietal Lobule 

PPMI  Parkinson Progression Markers Initiative 

PSMR  Parkinson Society Maritime Region 

QEII  Queen Elizabeth II Hospital 

r  Correlation Coefficient 

RBD  Rapid Eye Movement Sleep Behaviour Disorder 

ROC  Receiver-Operating Characteristic Analysis 

ROI  Region of Interest 

SD  Standard Deviation 

SDMT  Symbol Digit Modalities Test 

SE  Standard Error 

SEM  Standard Error of the Mean 

SFG-L  Left Superior Frontal Gyrus 

SNCA  Synuclein Alpha 



xii 
 

SPECT Single-Photon Emission Computed Tomography   

t  t-value 

T  Tesla 

T1w  T1-weighted 

TE  Echo Time 

TI  Inversion Time 

TMT-4  Trail Making Test Condition 4 

TMT-5  Trail Making Test Condition 5 

TMT4-5 Trail Making Test Condition 4 Controlled for Motor Speed 

TPJ-L  Left Temporal Parietal Junction 

TPJ-R  Right Temporal Parietal Junction 

TR  Repetition Time 

UPDRS-III Unified Parkinson Disease Rating Scale Part Three 

UPSIT  University of Pennsylvania Smell Identification Test 

vmPFC Ventromedial Prefrontal Cortex 

WM  White Matter 

WMS-III Wechsler Memory Scale Third Edition 

ηp
2  Partial Eta Squared 

  



xiii 
 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my supervisor, Dr. Kimberley Good for her 

excellent guidance and support throughout the past two years. Her willingness to give her time so 

generously has been very much appreciated. I would also like to show gratitude to my committee 

members, Dr. Javeria Hashmi and Dr. Beverly Butler, who have given me invaluable advice on 

areas of cognition and functional brain imaging. Their insights were indispensable for the 

completion of this project. I am particularly grateful for the help of Carl Helmick. Without his 

work on the functional connectivity analysis script, this project would not have been feasible. His 

dedication and enthusiasm for the topic has been wonderful. I would also like to thank Denise 

Lewis for her dedicated work on recruiting, coordinating, and conducting participant data 

collection and I appreciate the valuable contributions from Dr. Harold Robertson, Dr. Ron 

Leslie, Dr. Kerrie Schoffer, Dr. Tyler Rolheiser, Dr. Roger McKelvey, Dr. John Fisk, Dr. Gail 

Eskes, Dr. Gosia Phillips, Dr. Naeem Khan, and Dr. Ben Rusak that were made to the Predict 

Parkinson’s project of which this study was a part. I also appreciate the time and efforts made by 

participants that took part in this study. Finally, I would like to thank my family for the 

continuous encouragement and support throughout my studies. This accomplishment would not 

have been possible without them. 

 



1 
 

Chapter 1: Introduction 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD) is a progressive, neurodegenerative movement disorder that 

affects one to two individuals out of 1000 within the general population (Tysnes & Storstein, 

2017). Typically, the age of onset of PD is over age 50 years and the prevalence in people over 

60 years of age is one percent, with the prevalence increasing with advancing age (de Lau & 

Breteler, 2006). After Alzheimer’s disease (AD), PD is the second most common 

neurodegenerative disease and its occurrence in the general population seems to be rising since 

the turn of the century, possibly due to the increased number of older individuals within the 

population and the increase of other risk factors of PD, such as traffic-related air pollution 

(Tysnes & Storstein, 2017). PD is characterized by the loss of dopaminergic neurons in the pars 

compacta of the substantia nigra and the nigrostriatal pathway (Khan et al., 2017). Common 

motor signs and symptoms of PD include tremors, bradykinesia (slowness of movement) and 

rigidity; however, non-motor signs and symptoms are also common and may be more 

debilitating than the motor abnormalities. Non-motor symptoms include, for example, sleep 

disturbances, autonomic dysfunction, cognitive impairments, and olfactory deficits (Jankovic, 

2008).  

The hallmark of PD’s neuropathology is the presence of abnormal alpha-synuclein 

depositions (Tysnes & Storstein, 2017). Alpha-synuclein is a misfolded presynaptic protein that 

uncharacteristically accumulates in the form of Lewy bodies within affected neurons (Braak et 

al., 2004). The progression of neuropathology has been described to occur in six stages by Braak 

et al. (2003). In the first two stages, Lewy bodies appear in the dorsal motor nucleus of the vagus 

nerve, the anterior olfactory structures and in the brain stem. As the disease progresses, the 
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pathology spreads to the midbrain (e.g., substantia nigra and dopaminergic pathways; Stage 3-4) 

and eventually to the limbic system and cortical brain regions (Stage 5-6), resulting in severe 

motor and cognitive symptoms (Braak et al., 2003, 2004). Typically, PD is clinically diagnosed 

with the appearance of motor symptoms after there has already been substantial neuronal loss 

(between Stage 3 and Stage 4). However, neurodegenerative processes and associated non-motor 

symptoms develop several years before the onset of motor symptoms (Braak et al., 2004; Liu et 

al., 2018). Given that the olfactory structures are affected in the earliest stages of the disease, the 

onset of olfactory deficits could help to identify PD in its preclinical stages (Liu et al., 2018). 

Motor and non-motor symptoms decrease patients’ quality of life (Munhoz et al., 2015), which 

makes PD a burdensome condition and highlights the importance of discovering early diagnostic 

markers in order to develop interventions to stop PD from progressing.  

1.2 Risk Factors of PD: Olfaction Deficits and Genetic Factors 

In order to find early diagnostic markers, at-risk populations and etiological factors for 

PD should be considered. A deficit in the sense of smell (hyposmia) has been classified as an 

early marker of PD as part of the Movement Disorder Society (MDS) criteria for prodromal PD. 

These criteria intend to guide future research regarding the prodromal stage of PD, a stage that is 

characterized by the presence of symptoms and signs (e.g., non-motor symptoms) that are still 

insufficient for a definite disease diagnosis (Berg et al., 2015). Hyposmia is one of the earliest 

non-motor symptoms that is reported by PD patients and it is experienced by about 96% of 

patients (Haehner et al., 2009). Olfactory deficits that are seen in PD patients are also in line with 

early structural brain changes that were mentioned by Braak et al. (2003; i.e., alpha synuclein 

deposition in the anterior olfactory nucleus). Similarly, with the use of diffusion-weighted 

imaging (DWI), Scherfler et al. (2006) described that early-stage PD patients show increased 
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measures of diffusivity and therefore abnormal white matter integrity in frontal olfactory brain 

regions. DWI abnormalities in the anterior olfactory regions correctly classified PD patients from 

control participants. Similarly, Rolheiser et al. (2011) used diffusion tensor imaging (DTI) to 

examine white matter tract connectivity in anterior olfactory structures and the substantia nigra 

in early-stage PD patients. This study also examined olfactory function, an omission that was 

notable in the Scherfler et al. (2006) study. Early PD patients demonstrated significant 

impairments in olfactory function and white matter integrity abnormalities in olfactory structures 

of the brain and in the substantia nigra (Rolheiser et al., 2011). These studies of early PD patients 

suggest that microstructural abnormalities in olfactory structures and the presence of hyposmia 

could be early markers of PD. Moreover, a systematic review of seven studies examining the 

association between hyposmia and PD indicated that unaffected hyposmic individuals have a 

2.12−6.95-fold increased risk of eventually developing PD and that olfactory deficits, therefore, 

may be an early, preclinical biomarker of PD with a relatively high sensitivity (Sui et al., 2019). 

In comparison with other early non-motor symptoms such as constipation, excessive daytime 

sleepiness, and symptomatic hypotension, the presence of olfactory deficits has a higher disease 

probability (Berg et al., 2015) and idiopathic hyposmic individuals therefore represent a 

population that is at increased risk of future PD. 

Although the etiology of PD is largely unknown, several genes, such as the parkin gene, 

the SNCA gene, and the LRRK2 gene have also been identified to play a role in the onset of PD, 

as their mutations have been related to neuronal loss in PD patients (Houlden & Singleton, 

2012). Studies on genetic risk factors also suggest that unaffected first-degree relatives of 

affected patients are one population that is at higher risk of developing PD (Rocca et al., 2004). 

In a meta-analysis by Thacker and Ascherio (2008), the risk of developing PD was three times 
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higher for first-degree relatives of PD patients compared to non-relatives. Having a first-degree 

relative with early-onset PD or being a sibling of an affected person increases the risk further, 

possibly due to a greater effect of genetic factors for early-onset compared to late-onset PD, and 

shared familial environmental exposures at similar young ages, respectively (Thacker & 

Ascherio, 2008).  

First-degree relatives who are at an elevated risk of developing PD but who do not yet 

show motor symptoms may show preclinical non-motor symptoms as early indicator for PD. Liu 

et al. (2019) reported that compared to controls, first-degree relatives show a higher frequency of 

non-motor symptoms, which included cognitive impairments, anxiety, depression, sleep 

impairments, and constipation. In addition, individuals at familial risk of developing PD have 

been shown to experience olfactory deficits that cannot be explained by other physical conditions 

and that may indicate the progression towards PD (Berendse et al., 2001). In a prospective cohort 

study, first-degree relatives of PD patients had a higher risk of developing PD within five years 

when they performed poorly on olfactory tasks, including odour detection, discrimination, and 

identification (Ponsen et al., 2009). The same group had suggested this in a previous study as 

well, demonstrating that unaffected first-degree relatives of PD patients with hyposmia have a 

10% higher risk of developing PD in the future (Ponsen et al., 2004). The degree of olfactory 

dysfunction in hyposmic relatives was also similar to those of early PD patients (Ponsen et al., 

2004). Another study assessed olfactory deficits along with possible molecular brain changes in 

first-degree relatives by using single-photon emission computed tomography (SPECT) and found 

that this two-step approach (behavioural measures and brain imaging) can be useful in 

determining that olfactory deficits are related to a higher risk for first-degree relatives to develop 

PD (Ponsen et al., 2010). These studies also add to the notion that olfactory deficits serve as 
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early markers of PD and that hyposmic first-degree relatives of PD patients may be in the 

prodromal stage of PD. 

Specifically screening for hyposmia in a first-degree relative population and studying this 

particular subgroup in addition to hyposmic non-relatives could be useful in determining whether 

the presence of hyposmia increases the risk of developing PD in the future compared to healthy 

normosmic (normal sense of smell) non-relatives. However, olfactory deficits can also be a 

marker for other neurodegenerative diseases, such as Lewy body dementia or AD (McShane et 

al., 2001, Seligman et al., 2013). McShane et al. (2001) investigated individuals with dementia 

and demonstrated that dementia due to Lewy body pathology is linked to more severe olfactory 

impairments than dementia linked to AD, although patients with AD pathology also show 

decreased olfactory function when compared to healthy individuals. Olfactory deficits are 

experienced by about 90% of patients with AD (Ruan et al., 2012) and have been linked to AD 

neuropathology (i.e., neuritic plaques, and neurofibrillary tangles) as well as to prodromal 

symptoms of AD such as mild cognitive impairment (MCI) and poor performance in episodic 

memory (Wilson et al., 2009). Moreover, a longitudinal, population-based study, the 

Epidemiology of Hearing Loss study (Schubert et al., 2011) examined risk factors for the 

development of hyposmia other than early neurodegenerative disease stages. It was found that a 

history of nasal polyps or heavy alcohol use in older adults increased the risk of developing 

hyposmia. Given that hyposmia is also a risk factor for dementia and may occur due to disorders 

that are not related to neurodegenerative processes, it is important to consider additional 

measures that can accurately predict PD. Although several studies have shown that olfactory 

testing together with brain imaging can predict progression towards PD (e.g., Ponsen et al., 

2010), fewer studies have examined whether it could be useful to assess other non-motor 
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symptoms, such as specific cognitive deficits, that could further predict the onset of PD in 

hyposmic individuals. 

1.3 Cognition as Preclinical Marker for Parkinson’s Disease 

Compared to individuals without PD, the prevalence of dementia is three-times higher in 

PD patients. Approximately 78% of PD patients develop dementia over the course of their 

illness, adding further burden to their disability (Aarsland et al., 2003). Nevertheless, cognitive 

deficits are also reported in some PD patients without dementia (Aarsland et al., 2009). A meta-

analysis has shown that executive function, verbal memory, and visuospatial function are 

cognitive domains that are affected most often in non-demented PD patients (Curtis et al., 2019). 

Compared to healthy individuals, non-demented PD patients with a disease duration of about six 

years show impaired executive functioning, including deficits in verbal fluency and in tasks 

involving attention and visual scanning (e.g., trail making). In addition, greater variability in 

performance on a spatial judgment task, but relatively preserved working memory, were also 

reported (Salazar et al., 2019). Working memory requires the ability to keep in mind and 

manipulate information (Bublak et al., 2002). In contrast, another study showed that performance 

on working memory tasks, especially on tasks that mainly require the manipulation of 

information (i.e., reordering a sequence of digits), is reduced in PD patients compared to healthy 

controls (Bublak et al., 2002). In the same study, a higher task demand on attentional working 

memory resources also affected working memory performance in PD patients as PD patients’ 

initiation times for task responses were even slower. Bublak and colleagues (2002) reported 

these findings in patients who had a relatively low disease duration, suggesting that working 

memory deficits are present in early phases of PD when measured with a task that requires a high 

working memory capacity. The notion that cognitive impairment can also occur in the earliest 
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stages of illness is supported by Aarsland et al. (2009), who demonstrated that early PD patients 

show cognitive deficits in the domains of executive function and psychomotor processing speed 

(Aarsland et al., 2009). 

Between 15-43% of early-stage PD patients meet criteria for the diagnosis of mild 

cognitive impairment (PD-MCI), a cognitive phase that represents an intermediate stage between 

normal cognition and dementia (Pedersen et al., 2017). While Braak and colleagues have stated 

that neurodegeneration in underlying brain structures that affect cognition appear later in the 

course of PD (Braak et al., 2003), others have suggested that early cognitive deficits could occur 

because of functional alterations in frontal-striatal and temporoparietal brain systems (Nombela 

et al., 2014), and/or abnormalities in other non-dopaminergic neurotransmitter pathways which 

may be present before motor symptoms appear (Chahine et al., 2016). If cognitive deficits are 

observed early in the course of illness, it is also possible that those in the pre-motor stage may 

present with abnormalities on cognitive tasks. 

1.3.1 The Link between Olfactory Deficits and Cognition in Parkinson’s Disease 

Many studies have described associations between cognitive performance and olfactory 

functioning in PD. Gjerde et al. (2018) found that the decline in cognitive function (in the 

domains of global cognition, verbal memory, and processing speed) was greater in patients who 

were hyposmic at study entry than those who had a normal sense of smell (were normosmic). In 

a further study that compared hyposmic PD patients to PD patients with better olfactory 

functioning, patients with severe hyposmia had deficits in the domains of verbal memory, 

executive function, working memory, and global cognition (Morley et al., 2011). Finally, 

olfactory deficits were specifically related to deficits in executive functions but not to verbal 
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memory in another study (Leonhardt et al., 2019), suggesting that executive dysfunction appears 

to be an important component of the cognitive deficits found in hyposmic patients. 

It is still unknown why olfactory and cognitive functions may be related to each other in 

PD. However, it was suggested that PD-related changes in the frontal cortex and in 

temporolimbic areas of the brain, such as a decrease in dopaminergic and cholinergic 

innervation, may be underlying the relationship between olfaction and cognition in PD (Bohnen 

et al., 2008; Sunwoo et al., 2015). Reduced dopamine transporter (DAT) binding in the 

hippocampus has been related to odour identification deficits in early-stage PD patients (Bohnen 

et al., 2008). The hippocampus is commonly involved in cognitive functioning, especially in 

memory (Das et al., 2019), and dopaminergic denervation may therefore affect the encoding of 

olfactory information, resulting in poor performance in olfactory identification tasks (Bohnen et 

al., 2008). Bohnen et al. (2010) further reported that abnormal acetylcholine activity in the limbic 

system, and more specifically in the hippocampus, is linked to cognitive as well as olfactory 

deficits in PD. Thus, neurotransmitter system alterations in the limbic system may be underlying 

the link between hyposmia and cognitive impairment in PD (Bohnen et al, 2010).  

1.3.2 Potential Cognitive Deficits in Hyposmic At-Risk Individuals 

The relationship between olfactory deficits and cognitive function has been examined in a 

limited number of studies of at-risk individuals. One study has employed data from the 

Parkinson Progression Markers Initiative (PPMI), a multicenter longitudinal cohort study which 

recruited newly diagnosed PD patients and three groups of individuals at higher risk of 

developing PD (Chahine et al., 2018). The first group of at-risk individuals included participants 

with a risk gene mutation, while a second group included participants diagnosed with Rapid Eye 

Movement Sleep Behaviour Disorder (RBD). Many participants in both of these groups and in 
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the PD group also exhibited olfactory deficits. A third group of at-risk participants were 

individuals with hyposmia only. Except for the gene mutation carrier group, the majority of 

participants in each group had to demonstrate DAT binding deficits to ensure that at-risk 

participants were in the prodromal PD stage. The groups were compared on a variety of 

cognitive tests, and it was found that the RBD group performed significantly worse on 

processing speed and visuospatial function measures compared to the other at-risk groups. In 

addition, the hyposmic group did not significantly differ in cognitive performance compared to 

newly diagnosed PD patients or mutation carriers (Chahine et al., 2018). Furthermore, another 

study employed the Parkinson Associated Risk Syndrome (PARS) data and compared hyposmic 

individuals who also demonstrated reduced DAT binding with normosmic and hyposmic 

individuals with normal DAT binding on a battery of cognitive tests (Chahine et al., 2016). 

Compared to all other participants, the hyposmic group with reduced DAT binding showed 

deficits in executive functioning, working memory, and global cognition (Chahine et al., 2016). 

Thus, hyposmic individuals who are at higher risk of developing PD may display early cognitive 

deficits that could be related to the progression towards PD. Nevertheless, Chahine et al. (2016) 

did not include PD participants so that potential similarities in cognitive functioning between PD 

patients and hyposmic individuals at increased risk of PD could not be assessed. The 

examination of PPMI data may complement the findings from the PARS study as no differences 

between a similar hyposmic group and early PD patients were reported (Chahine et al., 2018). 

However, a normosmic control group including individuals that are not at risk of developing PD 

was not included in the PPMI study so that it remains unknown whether both the hyposmic 

group and the PD group are cognitively impaired or not. Therefore, there is a need for studies 
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that compare idiopathic hyposmic individuals to PD patients and healthy controls on cognitive 

measures in order to examine whether cognitive deficits could represent PD progression. 

Other studies that have examined cognition in people at risk for PD have not produced 

consistent results. In one study, first-degree relatives were compared to healthy control subjects 

on a battery of neuropsychological tests. Although only one of the comparisons yielded a 

significant difference (a motor task), the authors used a discriminant function analysis and 

observed a subgroup of relatives with a global executive dysfunction syndrome similar to that 

demonstrated by PD patients. The authors suggested that this subgroup of PD relatives may be 

experiencing a dysexecutive syndrome due to nigrostriatal degeneration (Dujardin et al., 1999). 

Thaler and colleagues (2012) extended this finding by demonstrating executive functioning 

deficits in first-degree relatives who were carriers of the PD risk LRRK2 gene mutation. 

However, in a study that prospectively followed at-risk individuals (i.e., hyposmic first-degree 

relatives of PD patients who later transitioned to PD), the at-risk subjects were found to have 

normal executive function at baseline (Ponsen et al., 2009). However, this latter study only 

included two executive function tasks, one that measured perseveration of motor behaviour 

generation and another which examined sequential visuospatial memory span. Working memory 

has also been examined in genetic high-risk samples. No impairment was observed on working 

memory (using N-back and digit span tasks) in healthy relatives of PD patients who were 

LRRK2 gene mutation carriers (Thaler et al., 2016). From these studies, further research is 

clearly needed, employing more comprehensive measures of cognitive function. In particular, 

more cognitively demanding working memory tasks are necessary (Bublak et al., 2002) along 

with a greater range of executive tasks. More extensive neuropsychological testing, combined 

with olfactory assessment may be useful for predicting PD in at-risk samples. 
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Behavioural measures of olfaction and cognition could be useful in detecting prodromal 

PD. Furthermore, other studies have noted that brain imaging together with behavioural 

measures of early PD symptoms also have been valuable in assessing the risk of PD (Ponsen et 

al., 2010; Rolheiser et al., 2011). Given that cognitive deficits have been found to be associated 

with functional brain changes in different brain regions in PD patients (Nombela et al., 2014), 

examining behavioural measures of cognition together with functional brain imaging measures 

that have been associated with cognition may be helpful in assessing whether individuals at 

higher risk of developing PD may show additional preclinical markers of this disease. 

1.4 Resting-State Functional MRI and the Default Mode Network (DMN) 

An emerging technique to examine brain functioning has shown promise for examining 

abnormalities in patients with brain disorders (Hohenfeld et al., 2018). Resting-state fMRI 

(rsfMRI) measures low frequency spontaneous fluctuations of the blood oxygen level dependent 

(BOLD) signal within the brain when individuals are not engaging in any task, in order to 

examine neural activity at rest (Fox & Raichle, 2007). To identify spatial patterns of neural 

activity across brain regions, rsfMRI measures functional connectivity (FC). Functional 

connectivity analyses detect correlation patterns of neural activity time courses of different areas 

of the brain to determine to what extent they are functionally connected with one another (i.e., 

synchronized brain activity; Fox & Raichle, 2007). Additionally, FC can be detected within 

specific networks where multiple brain regions can be observed that are functionally connected 

to one another (Fox & Raichle, 2007). One of the known networks is the default mode network 

(DMN), which is involved in internally directed mental activity and which could be altered by 

neurological illnesses such as PD. 
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 The DMN consists of several brain regions which are anatomically and functionally 

connected with one another, including the medial prefrontal cortex, the posterior cingulate 

cortex, the inferior parietal lobule, the lateral temporal cortex, and the hippocampal formation 

(Buckner et al., 2008). The DMN is active during rest and during internally-directed tasks or 

events such as mind-wandering. The network’s activity decreases while doing a task or while 

attending to externally-oriented events (Buckner et al., 2008). Specifically, the DMN has 

implications for autobiographical memory tasks, social inference (Buckner & DiNicola, 2019), 

and in the allocation of attentional resources during the resting-state (Gusnard & Raichle, 2001). 

Moreover, the DMN is negatively correlated to regions of a network that has implications in 

cognition (i.e., dorsal attention network), which is active during externally-driven tasks that 

require attentional resources (Buckner & DiNicola, 2019). It has been proposed that the 

deactivation of the DMN during task performance is essential for directing attentional processes 

to a goal-directed task (van Eimeren et al., 2009). 

1.4.1 The Default Mode Network and Parkinson’s Disease 

Several studies have reported reduced functional connectivity in the DMN of PD patients 

at rest (Amboni et al., 2015; Hou et al., 2017; Lucas-Jiménez et al., 2016; Tessitore et al., 2012), 

suggesting that alterations of the DMN could identify PD patients from healthy individuals. 

Although some inconsistencies exist across previous studies, reduced FC was mainly found 

between temporal regions and the posterior cingulate cortex as well as between the posterior 

cingulate or temporal regions with the inferior parietal cortex (Amboni et al., 2015; Hou et al., 

2017; Lucas-Jiménez et al., 2016; Tessitore et al., 2012). In a study by Tessitore and colleagues 

(2012), connectivity within the DMN was reduced between the medial temporal and the inferior 

parietal regions in non-demented, cognitively unimpaired PD patients, but no significant gray 
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matter structural alterations in cortical or subcortical regions were found. This group concluded 

that functional DMN abnormalities can be independent of certain structural brain alterations; 

however, a relationship between reduced FC and cognitive function in the domains of memory, 

executive and visuospatial function suggest that FC alterations have implications in the 

development of cognitive decline and may precede associated gray matter loss (Tessitore et al., 

2012). Moreover, the DMN was shown to have reduced connectivity in a non-demented, 

cognitively unimpaired group of PD patients, showing that alterations of the DMN are related to 

PD even in the absence of cognitive impairments (i.e., attention, processing speed, working 

memory, and motor function; Disbrow et al., 2014). However, a reduced connectivity within the 

DMN was associated with decreased processing speed, acknowledging a potential role for this 

network in this cognitive domain (Disbrow et al., 2014). Furthermore, Lucas-Jiménez et al. 

(2016) found low DMN connectivity in PD patients, especially between regions of the posterior 

cingulate and the temporal lobe. Reduced connectivity was related to poor verbal and visual 

memory performances, and in visual abilities, supporting the role of the DMN in specific 

cognitive functions and suggesting that functional alterations within the DMN are linked to 

cognitive decline (Lucas-Jiménez et al., 2016). In a further study, PD patients who exhibited 

cognitive impairments in at least two cognitive domains, including executive functions, memory, 

language, and visuospatial abilities, were also more likely to show decreased DMN connectivity 

between the midline cores of the DMN (i.e., the posterior cingulate and the medial prefrontal 

cortex) and the hippocampus; however, FC values between these regions were not associated 

with cognitive test scores (Gorges et al., 2015). In the same study, PD patients with intact 

cognition demonstrated increased DMN FC compared to controls, suggesting a compensatory 

response of PD-related pathology in cognitively unimpaired patients. Gorges et al. (2015) 
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concluded that reduced DMN FC is related to cognitive decline and PD progression. Overall, 

studies that have assessed the resting-state FC of the DMN in PD patients indicate that an 

aberrant FC may identify PD patients from healthy controls. Abnormalities in resting-state DMN 

connectivity can characterize patients with PD independently of structural brain atrophy, and 

may be related to specific cognitive impairments, such as processing speed, memory, and 

visuospatial abilities.  

1.4.2 The Default Mode Network as Early PD Marker for Hyposmic Individuals? 

Whether changes in the DMN can be an early preclinical marker for people who are 

progressing towards PD is still unclear. Few studies have examined the DMN in hyposmic 

individuals who may be progressing towards PD. However, Sunwoo et al. (2015) reported that 

hyposmic PD patients showed decreased FC between the posterior cingulate cortex and right 

superior parietal area as well as right frontal areas compared to PD patients with good olfactory 

functions, suggesting that the presence of hyposmia is related to a greater degree of FC 

alterations. In the same study, hyposmic patients also showed more deficits in visuospatial 

abilities, language, and executive function, which suggests a relationship between hyposmia, the 

presence of cognitive deficits, as well as aberrant FC between regions of the DMN. Additionally, 

patients with good olfactory functioning did not differ from controls on FC (Sunwoo et al., 

2015), and although this finding may have been the result of a Type II error (i.e., may represent a 

false negative due to a low sample size and thus, reduced power to detect a significant result), 

this finding indicates that olfactory dysfunction may be an important factor that contributes to FC 

alterations. In another study, compared to healthy controls, PD patients with severe hyposmia 

were also observed to demonstrate decreased FC between the precuneus and the right inferior 

parietal lobule (Yoneyama et al., 2018), regions which have been commonly associated with the 
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DMN. Therefore, there might be a link between olfactory dysfunction and specific regions of the 

DMN in PD patients. PD-related functional connectivity alterations within the DMN seem to be 

related to hyposmia and occur in cognitively impaired patients. Although further research is 

warranted, individuals with hyposmia that progress towards PD may potentially show early 

DMN FC abnormalities and related cognitive deficits as well. 

Furthermore, there is very limited research on first-degree relatives of PD patients and 

functional connectivity within the DMN. Yet, one study has compared functional connectivity 

measures of the DMN between non-manifesting first-degree relatives that carried a PD-related 

mutation in the LRRK2 gene, and relatives that were non-carriers of that mutation (Jacob et al., 

2019). Mutation carriers, who are at greater risk of developing PD, had a decreased DMN 

connectivity, specifically between the right inferior temporal cortex and the posterior cingulate 

cortex. In addition, both groups did not significantly differ in cognitive test scores. The findings 

of this study suggest that rsfMRI of the DMN might help to identify individuals at risk of PD. It 

also suggests that cognition is unaffected between carriers and non-carriers of the risk gene 

mutation. However, Jacob et al. (2019) did not include unaffected non-relatives of PD patients or 

a group of PD patients as controls. Consequently, it cannot be concluded that cognition is 

generally unaffected in subgroups of first-degree relatives of PD patients. Moreover, whether 

first-degree relatives at a greater risk of PD show a decreased DMN connectivity that is similar 

to that of PD patients is also unanswered. It is also unclear whether first-degree relatives who are 

at greater risk of developing PD due to the presence of olfactory deficits also display a reduced 

DMN connectivity compared to healthy non-relatives, and whether specific cognitive functions 

are related to the DMN connectivity in this group. 
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As mentioned above, an association between olfactory dysfunction and cognitive deficits 

could exist due to dopaminergic and acetylcholine denervation in limbic areas (Bohnen et al., 

2008; Bohnen et al., 2010). In support for this idea, Nagano-Saito et al. (2009) have suggested 

that the DMN in human participants is linked to dopamine function. Using Positron Emission 

Tomography (PET), cerebral blood flow was examined in PD patients and healthy controls 

before and after being treated with apomorphine, a dopamine agonist. During performance of an 

executive function task, the Tower of London, deactivation in ventromedial prefrontal cortex 

(vmPFC) and posterior cingulate cortex (pCC) was observed in both the patient and the control 

group. These two brain regions are thought to be part of the DMN and should be deactivated 

during active task completion. Treatment with apomorphine also increased association between 

DMN deactivation and task complexity, showing that the neurotransmitter may enhance 

cognitive functions through anterior regions of the DMN (Nagano-Saito et al., 2009). An animal 

model demonstrated that the DMN-like network in mice is modulated by acetylcholine and 

serotonin activity, as acetylcholine and serotonin receptor antagonists decrease network FC. This 

finding could have implications for understanding deficits in the DMN in neurodegenerative 

diseases (Shah et al., 2016). Specific neurotransmitter systems seem to play a part in human 

DMN FC and activation patterns that have been related to cognition. Because abnormalities in 

the same neurotransmitter systems have been linked to olfactory deficits as well (Bohnen et al., 

2008), deficits in olfaction, cognition, and DMN FC that may coincide in PD patients could be 

due to underlying abnormalities in one or more neurotransmitter systems. Furthermore, the 

hippocampus and the vmPFC are part of the DMN and also have implications in olfactory 

function (Eiler II et al., 2012; Gottfried & Zald, 2005). Additionally, both regions play important 

roles in cognition. The hippocampus is associated with memory (Das et al., 2019) and the 
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vmPFC with decision making (Schneider & Koenigs, 2017). Therefore, altered activity in these 

regions may be related to the presence of hyposmia in PD patients and individuals at higher risk 

of PD as well as to changes in DMN FC and cognitive function. 

1.5 The Present Study 

Research on individuals who do not have a relative with PD has shown that olfactory 

dysfunction increases the risk for developing the disease (Ross et al., 2008). Being a first-degree 

relative of a PD patient in addition to having hyposmia also increases the risk. Therefore, in the 

current study, a combined ‘at-higher risk’ group included both hyposmic first-degree relatives 

and hyposmic non-relatives. These two groups were assessed with a battery of 

neuropsychological tests and rsfMRI to examine DMN connectivity to determine whether 

cognition and FC could be possible additional preclinical markers of the disease. 

Executive function, verbal and spatial working memory, and processing speed were 

assessed in the present study to extend previous research on cognitive impairments in non-

manifesting hyposmic individuals. Deficits in the mentioned cognitive domains have been 

reported in early PD patients and executive dysfunction was reported in healthy first-degree 

relatives as well. Thus, the first goal of the present study was to examine whether unaffected 

individuals who are at higher risk of developing PD show specific patterns of cognitive deficits 

compared to healthy normosmic controls, and to PD patients, and to see whether certain 

cognitive deficits could be markers for the progression towards PD. Our first hypothesis (H1) 

was that compared to controls, hyposmic at-higher risk individuals would show cognitive deficits 

within the mentioned domains and that PD patients would also show cognitive deficits which 

would be more pronounced than those of at-higher risk individuals. 
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Furthermore, because early PD patients show a reduced resting-state DMN functional 

connectivity which could be related to cognitive impairments in memory, executive function, and 

processing speed, and because there is a lack of evidence about DMN functional connectivity in 

hyposmic individuals in relation to PD, the second goal of the present study was to examine 

whether hyposmic at-higher risk individuals show alterations in DMN functional connectivity 

compared to controls, and whether those changes are approaching the level of DMN functional 

connectivity of PD patients. Moreover, it was examined whether functional connectivity of the 

DMN is related to potential cognitive deficits in those individuals. Our second hypothesis (H2) 

posited that hyposmic at-higher risk individuals would show reduced functional connectivity 

within the DMN compared to healthy controls. At-higher risk individuals’ DMN functional 

connectivity will be more similar to the DMN connectivity that is expected to be found in PD 

patients. It was also hypothesized that a reduced DMN connectivity would be related to cognitive 

deficits (H3). Furthermore, this study assessed the diagnostic accuracy of potential cognitive 

deficits and DMN FC abnormalities as an additional step to see how well these measures can 

distinguish between healthy individuals and individuals at-risk of PD. 
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Chapter 2: Methods 

2.1 Participants 

Early-stage Parkinson’s patients (PD) were recruited from the Movement Disorders 

Clinic, Division of Neurology, QEII Health Sciences Centre in Halifax, Nova Scotia. PD patients 

were diagnosed by a qualified neurologist and were required to score below 3 on the Hoehn and 

Yahr scale. The Hoehn and Yahr scale assesses the severity of illness of PD patients and ranges 

from 1 (low level of disability) to 5 (high level of disability; Hoehn & Yahr, 1967). A clinician 

also administered the Unified Parkinson Disease Rating Scale Part III (UPDRS-III), which 

examines the progression of motor impairments in PD patients and ranges from 0 (no 

impairment) to 56 (extremely impaired; Fahn et al., 1987). All PD patients included in this study 

had been medicated with antiparkinson medications (e.g., levodopa, dopamine receptor agonists, 

etc.). The second group included healthy controls who do not have relatives who have been 

diagnosed with PD (HCs). HCs included in this study were age- and sex-matched to the PD 

group from a total of 61 HC participants (for every PD patient, an HC participant was chosen 

from the dataset that most closely resembled the demographic of the index patient), and they 

were recruited via word of mouth, through online advertising on websites such as Kijiji.com and 

PredictParkinsons.com, and through advertisement board notices that are placed in local 

hospitals and universities. HCs were included in the study if they scored over 30 out of 40 in the 

University of Pennsylvania Smell Identification Test (UPSIT; see below) in order to rule out pre-

clinical neurodegenerative disorders (Driver-Dunckley et al., 2014). The third group of 

participants were individuals at higher risk of developing PD (at-risk group; AR). Subgroups of 

the at-risk group included idiopathic hyposmic first-degree relatives (hFDRs) of an individual 

with a diagnosis of PD (e.g., siblings or children) and idiopathic hyposmic individuals who do 
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not have a first-degree relative with PD (hNoFDRs). The groups were combined in order to 

increase power through a higher group sample size. Participants in the at-risk group were 

recruited though the Parkinson Society Maritime Region (PSMR) and through online 

advertisements and advertisement board notices. 

Hyposmic at-risk participants were included if they met criteria for severe olfactory 

deficits defined by scoring under the 10th percentile of the UPSIT which was based on norms that 

take the age and sex of the participant into account. Furthermore, participants in both the PD and 

the HC group had to be between the ages 45 and 75 years old and participants in the at-risk 

group had to be between the ages of 40 and 65 years old. Because preclinical stages of PD begin 

several years before being diagnosed, at-risk participants’ age range was lower. Participants were 

excluded from the study if other medical causes of olfactory impairments, for example nasal or 

facial trauma, rhinitis, or chronic allergies, were present. Additionally, all participants were 

required to have normal or corrected-to-normal vision and hearing, as well as no 

contraindications to MRI scanning, such as claustrophobia, metal fragments inside the body, or 

artificial heart valves (see Appendix A for MRI screening questionnaire). Besides a diagnosis of 

PD in the PD group, participants with other serious neurological or psychiatric disorders that 

require ongoing treatment were also excluded from the study. 

Because previous research did not investigate seed-based DMN functional connectivity 

and cognition in hyposmic individuals at higher risk of developing PD together with PD patients 

and healthy controls (three groups), an appropriate and accurate a priori sample size 

determination could not be conducted. Nevertheless, the required sample size was estimated by 

assuming an effect size of Cohen’s f = 0.4 for the differences between FC values across 

participant groups, and an alpha level of 0.05 in order to obtain a power of 0.90. This resulted in 
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a required total sample size of 84, with 28 participants included in each group, which we 

intended to recruit. Previous literature on DMN functional connectivity commonly report sample 

sizes of about 20 participants in each group as well (e.g., Amboni et al., 2015; Gorges et al., 

2015). 

2.2 Measures 

2.2.1 University of Pennsylvania Smell Identification Test (UPSIT) 

The UPSIT is a widely used test for smell identification and is highly internally 

consistent and reliable with a split-half reliability of r = .93 to r = .96 along with high internal 

validity with an estimated test-retest reliability of r = .95 (Doty et al., 1985). The UPSIT is 

commonly used as a measure for olfactory function in PD patients and correctly identifies PD 

with a sensitivity of 84% (Morley et al., 2018). The test consists of four booklets with each 

containing 10 pages. Each page includes a patch which encapsulates a specific odour. 

Participants are required to scratch the patch to release the odour and to smell it afterwards. 

Then, participants had to choose the option that best describes the odour out of four provided 

answers, even if no odour was detected. The test contains 40 odours in total. The dependent 

measure of this test is the total number correct out of 40. This score was used to identify the 

hyposmic participant group (hNoFDRs and hFDRs). 

2.2.2 DKEFS Trail Making Task Condition 4 (TMT-4) and Condition 5 (TMT-5) 

This cognitive task is part of the Delis Kaplan Executive Function System (DKEFS; 

Delis et al., 2001) and is a measure of executive functioning. Adequate performance on the 

fourth condition of the trail making test (TMT-4) requires visuospatial attention, mental 

flexibility, planning and motor speed. For this task, participants were provided with a sheet of 

paper which contains randomly distributed circles. Each circle includes a different number or a 



22 
 

letter. Participants were required to connect the numbers with the letters in order: First a number, 

starting with the number one, then a letter, starting with the letter A, and alternating with 

numbers (e.g., number two) and letters (letter B; etc.) until the participant reached the last circle 

that is marked with the word “End”. The goal of this task was to connect the circles as quickly 

and as accurately as possible. For the fifth condition of the trail making test (TMT-5), 

participants had to connect circles as quickly and accurately as possible in a given order without 

missing the circles. Circles are blank and lines between the circles indicate which ones have to 

be connected until the circle marked with “End” is reached. The TMT-5 measures psychomotor 

speed. The outcome measures of the two conditions (TMT-4 and TMT-5) were the time in 

seconds it took to complete each and the number of errors made. The pure motor task time of 

TMT-5 was subtracted from the completion time of TMT-4 in order to control for possible motor 

deficits that PD patients might exhibit while fulfilling the task on paper. The difference between 

completion times (TMT4-5) was used to compare the participant groups in executive functioning 

performance, where a higher score indicated worse performance. The TMT has been shown to be 

valid and to be a possible predictor of daily functioning and executive dysfunction (Mitchell & 

Miller, 2008). Additionally, internal consistency (split-half reliability) measures of the trail 

making tests have been found to be relatively high (.57 to .81; Shunk et al., 2006). 

2.2.3 DKEFS Verbal Fluency 

The verbal fluency task is also a part of the Delis Kaplan Executive Function System 

(Delis et al., 2001) and measures the ability to generate words as fast as possible (fluency of 

verbal responses). The test consists of two conditions, letter (phonemic) fluency and category 

(semantic) fluency. In the letter fluency condition, on each of three 60-second trials, participants 

were asked to provide as many words that are not normally capitalized as they could, beginning 
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with one specified letter (i.e., ‘F’, ‘S’, and ‘A’). In the category fluency condition, participants 

were asked to provide as many words as they could that belong to a specified semantic category 

(i.e., animals and boys’ names) within 60 seconds. The primary outcome measure of this task is 

the total number of acceptable words produced in each of the conditions. Relatively high split-

half reliability has been reported for the phonemic fluency condition (.68 to .90). as well as good 

test-retest reliabilities for both conditions (phonemic fluency: .80, semantic fluency: .79; 

Homack et al., 2005) 

2.2.4 Letter-Number Sequencing - Wechsler Memory Scale Third Edition (WMS-III) 

The letter-number sequencing (LNS; Wechsler, 1997) task is a subtest of the WMS-III 

and assesses verbal working memory with a good internal consistency reliability (r = .88; Lovato 

et al., 2013). Participants were asked to re-order strings of numbers and letters that were verbally 

provided to them in pseudo-random sequences. To re-order the sequence, participants had to 

repeat the numbers first in numerical order, followed by the letters in alphabetical order. The 

digit-letter strings increased in length until the participants could no longer accurately re-order 

them. For each length, three trials were administered, and the task continued until incorrect 

responses were given for all trials at one length. The outcome measure of this task was the total 

number of trials that are correct. 

2.2.5 Digit Span (Backwards) - WMS-III 

The digit span task is also a measure of verbal working memory and a subtest of the 

WMS-III (Wechsler, 1997). It was found to have a relatively high internal consistency reliability 

(α = .82; Gignac et al., 2019). For this task, participants were required to listen to a string of 

numbers from the administrator and then repeat the same numbers in the reverse order that they 

were presented. The number of digits increased in length for each trial until the participants can 



24 
 

no longer accurately re-order them. There were two trials at each length and the task continued 

until incorrect responses were given for all trials at one length. The outcome measure of this task 

was the total number of trials that are correct.  

2.2.6 Spatial Span (Backwards) - WMS-III 

The spatial span task is a measure of spatial working memory and it is another subtest of 

the WMS-III (Wechsler, 1997). Participants were shown a board with cubes that is placed in 

front of them on a table. The administrator then tapped on the cubes in a specific order and the 

participant was required to tap the same cubes in the reverse order. The number of cubes tapped 

increased at each trial until participants could no longer accurately reconstruct the sequence. For 

each length, two trials were administered, and the task continued until all trials at one length 

were completed incorrectly. The dependent measure of this task was the total number of trials 

that are correct. An acceptable split-half reliability has been reported for a comparable spatial 

working memory task (.73; DeDe et al., 2014). Both the digit span and spatial span tests were 

included in this study to be able to examine possible differences between the verbal and spatial 

working memory of participants.  

2.2.7 Symbol Digit Modalities Test (SDMT) 

The SDMT is sensitive to impairments in psychomotor processing speed and has been 

found to be valid and reliable in measuring cognitive deficits in neurodegenerative disorders 

(Strober et al., 2018). The task required participants to pair numbers to a sequence of given 

symbols as quickly as possible within 90 seconds. Nine different symbols are presented 

repeatedly on paper in a pseudo-randomized sequence. Each symbol corresponds to a specific 

number (1 through 9) as shown in a symbol-number key at the top of the page. Participants wrote 

the number corresponding to each symbol in the sequence in a box under the symbol. The total 
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number of correct responses within 90 seconds was the outcome measure in this task. A 

reasonable alternate form reliability has been reported for the SDMT (r = .74; Hinton-Bayre & 

Geffen, 2005).  

2.3 Resting State Functional MRI 

2.3.1 Image Acquisition 

As part of a larger study, MRI data was collected on a 1.5T GE Signa HDx scanner using 

an 8-channel head coil. During each scan session, a high-resolution anatomical and a resting-

state functional sequences were collected. The axial 3D T1-weighted (T1w) FSPGR-BRAVO 

anatomical sequence had the following parameters: TR = 11.8 ms, TE = 4.7 ms, TI = 450 ms, 

acquisition matrix = 224 x 224, FOV = 240 mm, reconstruction matrix = 512 x 512, voxel size = 

0.44 x 0.44 x 1 mm, slice thickness = 1.0 mm, slices = 186, NEX = 1, flip angle = 12°, total 

acquisition time = 6.0 min. The axial 2D Gradient Echo Planar Imaging (EPI) resting-state 

functional sequence had the following parameters: TR = 2.0 sec, TE = 25 ms, matrix = 64 x 64, 

FOV = 240 mm, voxel size = 3.75 mm, slice thickness = 3.7 mm, gap = 0 mm, slices = 34, 

volumes = 305, NEX = 1, flip angle = 90°, acceleration = ASSET2, total acquisition time = 6:10 

min. 

2.3.2 Resting-State fMRI Preprocessing and Functional Connectivity Analysis 

Anatomical and functional imaging data was converted from DICOM to NIFTI file 

format with DCM2NIIX (Li et al., 2016) to remove identifying (clinical) information from each 

participant which is associated with the DICOM format. The NIFTI file format was used for 

further analyses. MRIQC was used to calculate image quality metrics and summary images of 

each participant’s T1w and functional images (Esteban et al., 2017). Summary images for all 
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datasets were visually reviewed, and datasets with image quality metrics 2-3 standard deviations 

above or below the mean across all datasets were investigated for potential issues. 

Preprocessing was conducted with fMRIPrep version 20.2.1 (Esteban et al., 2019). 

Anatomical T1w images were corrected for intensity non-uniformity with 

N4BiasFieldCorrection (Tustison et al., 2010) distributed with ANTs 2.3.3 (Avants et al., 2008) 

and used as T1w-reference throughout the workflow. This reference was skull-stripped to 

remove non-brain tissue with a Nipype implementation of the antsBrainExtraction.sh workflow 

(from ANTs) and brain tissue was segmented using FAST (FSL 5.0.9; Zhang et al., 2001) 

distributed with FMRIB Software Library (FSL; Smith et al., 2004) to facilitate spatial 

normalization. Spatial normalization to the standard MNI152 template space was performed 

through linear and nonlinear registration with antsRegistration (ANTs 2.3.3), using the brain-

extracted version of the T1w reference (Fonov et al., 2009). Spatially normalizing each 

participant’s brain image to a standard space through linear registration (i.e., matching the 

brain’s anatomy to the template through translation, rotation, scaling, and shearing) and 

nonlinear registration (i.e., using mathematical nonlinear functions to improve normalization) 

facilitates between-subject and group comparisons of imaging data as participants’ brains 

typically differ in size. Brain tissue segmentation masks for cerebrospinal fluid (CSF), gray 

matter (GM), and white matter (WM) were generated with FAST. Tissue masks were used to 

generate confound signals (see below).  

Preprocessing of the functional data included calculating framewise head-motion 

correction with MCFLIRT (FSL 5.0.9; Jenkinson et al., 2002) and saving the rigid-body (6-

DOF) framewise motion parameter estimates into a motion parameter file. A BOLD reference 

image was generated as the temporal average across motion-corrected volumes, followed by 
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skull-stripping the BOLD reference image using a custom methodology of fMRIPrep. This 

BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) 

which implements boundary-based registration (i.e., mapping the white matter boundary of the 

structural image to the functional image; Greve & Fischl, 2009). This registration step is required 

to accurately map the regions of the DMN which were defined within structural images onto the 

functional image so that functional time-series of each region can be calculated and used for the 

FC analysis (see below). Functional runs were slice-time corrected using 3dTshift from AFNI 

20160207 (Cox & Hyde, 1997). Preprocessed functional time-series images were resampled into 

both original native space by applying the transforms to correct for head-motion (referred to as 

preprocessed BOLD), and into MNI152 space by combining head-motion correction transform, 

BOLD to T1w transform, and nonlinear warp of T1w to MNI152 template and applying a single 

resampling interpolation (output referred to as preprocessed BOLD in MNI152-space). Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS, WM signal, CSF signal, and global signal. FD was computed using 

two formulations following Power (absolute sum of relative motions; Power et al., 2014) and 

Jenkinson (relative root mean square displacement between affines; Jenkinson et al., 2002). 

Average time course signals were extracted within the masks for CSF, WM, and whole-brain 

masks. Head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardised DVARS were annotated as motion outliers. Time points with motion outliers or 

‘spikes’ were censored out of the analysis. When more than 20% of time points showed motion 

within one participant’s data set, the entire data for the participant was excluded. 
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To analyse functional connectivity between DMN regions, region of interest (ROI) masks 

of 18 DMN ROIs were created by using the MNI-coordinates from Spreng et al. (2013). The 

ROIs were the following: Anterior medial prefrontal cortex (amPFC), bilateral anterior temporal 

lobe (aTL-R and aTL-L), dorsal medial prefrontal cortex (dmPFC), bilateral hippocampal 

formation (HF-R and HF-L), bilateral inferior frontal gyrus (IFG-R and IFG-L), posterior 

cingulate cortex (PCC), bilateral posterior inferior parietal lobule (pIPL-R and pIPL-L), 

precuneus (PCu), the left superior frontal gyrus (SFG-L), bilateral middle temporal gyrus (MTG-

R and MTG-L), bilateral temporal parietal junction (TPJ-R and TPJ-L), and the ventral medial 

prefrontal cortex (vmPFC). This ROI Network template has shown FC alterations of PD patients 

in several studies (e.g., Baggio et al., 2015; Hou et al., 2017) and the included coordinates of the 

DMN have been shown to overlap with the DMN established through independent component 

analysis (ICA; Baggio et al., 2015). Additionally, this template included the hippocampal 

formation, a region that is hypothesized to be related to hyposmia and cognitive deficits. 

A custom python script using Nilearn (Abraham et al., 2014) was created to complete 

functional connectivity analysis of the DMN using the 18 ROIs described above (see Appendix 

B for the script). In addition to the preprocessing steps included in fMRIPrep, low-pass and high-

pass temporal filtering at 0.08 Hz and 0.008 Hz, respectively, spatial smoothing at 7 mm 

FWHM, and detrending were performed. A regression analysis was performed with all confound 

regressors (6 motion parameters, FD, white matter and CSF signal, and global signal regressors) 

that were created with fMRIPrep (see above). Temporal filtering, spatial smoothing, and 

confound regression were performed to remove noise and to increase the signal-to-noise ratio. 

Functional time-series for all 18 DMN ROIs were extracted by averaging across voxels 

within 6mm-radius sphere centered on the ROI coordinate. Correlations between all ROI’s were 
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calculated with Pearson’s correlational analysis. ROI pairs were excluded if the mean of the 

correlation ± the standard error of the mean was between -0.1 and 0.1 for all groups. These 

would represent non-sense correlations signifying an absence of connectivity between specific 

ROIs. The researcher conducting the preprocessing and first-level analyses was blinded to the 

group to which the participants belonged.  

2.4 Design and Procedure 

 This study was a between-group design with the dependent variables being the cognitive 

and rsfMRI outcome measures. Participants underwent a telephone screening before being 

invited to participate. The screening verified that the participants meet the inclusion criteria in 

order to be eligible to participate. Once the inclusion/exclusion criteria were met, participants 

signed the required consent materials and were able to ask questions and discuss the consent with 

the administrator of the study. Participants signed two consent forms: the first one informed 

about the MRI scan, the olfactory testing and questionnaires, while the second consent informed 

about the cognitive testing (see Appendix C). To complete the UPSIT and a demographics 

questionnaire (see Appendix D), participants could come into the laboratory at the Nova Scotia 

Health Authority (NSHA; Abbie J. Lane Building of the QEII) in Halifax, Nova Scotia, or have a 

package that included the UPSIT and the questionnaire mailed to them.  

First-degree relatives and non-relatives who fell below the 10th percentile on the UPSIT 

(AR group), PD patients, and HCs came in for an appointment at the MRI suite in the IWK 

hospital in Halifax. During the resting-state fMRI, all participants were instructed to keep their 

eyes closed and not to engage in any specific mental or motor activity to reduce noise and 

artifacts on the MRI output images. Additionally, padding was placed between the participants’ 

arms and the MRI scanner to reduce motion. Earphones were provided to reduce the effect of 
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noise from the scanner. The MRI session took approximately 45 minutes to complete. Structural, 

resting-state functional MRI, and diffusion tensor imaging measures were taken, but for the 

purpose of this paper, the analysis and the discussion focuses on rsfMRI measures. High 

resolution structural scans were necessary for the analysis of the rsfMRI data.  

 After the MRI session, participants were scheduled for cognitive testing on a separate 

day. The cognitive tests were administered by a member of the research team and included the 

digit span and spatial span tests, LNS, SDMT, and the DKEFS trail making and verbal fluency 

tasks, in that order (see Appendix G for cognitive test instructions). Other tests were also 

administered as part of a larger study which will not be discussed within this report. The 

cognitive testing took approximately two hours to complete. All participants received monetary 

compensation for taking part in the study. This study was approved by the NSHA Research 

Ethics Board (NSHA 2007-224, NSHA 2010-349, and NSHA 2010-369). 

The author of this thesis was involved in data collection (rsfMRI and cognitive test data) 

and data entry for a sub-sample of participants. She took part in the decision of how rsfMRI data 

would be preprocessed and analysed (e.g., inclusion of confound regressors, choosing the seed-

based FC approach and the DMN ROI coordinates for this study). Statistical analyses of both the 

cognitive test data and the rsfMRI data were conducted by the author. 

2.5 Statistical Analyses 

Demographic data was compared across groups using one-way analysis of variance 

(ANOVA) procedures with Tukey’s post hoc tests for continuous variables. A Pearson Chi-

Square test was used to examine sex differences in the frequency of females and males among 

the participant groups.  
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In order to compare cognitive test data across the groups, separate one-way Analysis of 

Covariance (ANCOVA) procedures with age and education as the covariates were performed 

and post hoc analyses of group comparisons were conducted with a Bonferroni correction. This 

analysis was used to assess H1. Assumptions for ANCOVAs were tested. Resulting p-values 

from each ANCOVA were corrected for multiple comparisons with Bonferroni adjustments as 

well. A follow-up independent-samples t-test was used in order to determine whether the hFDRs 

and hNoFDRs subgroups differed from one another. 

To assess whether the at-risk group show FC abnormalities within the DMN and to 

examine H2, functional connectivity values of all DMN ROI-to-ROI connections (i.e., edges) 

were first compared between the at-risk group and the HC group with an independent-samples t-

test. False discovery rate (FDR) multiple comparison correction with the Benjamini-Hochberg 

method (Benjamini & Hochberg, 1995) was applied to all resulting p-values in order to decrease 

the Type I error rate. Edges whose FC values were significantly different between the groups 

after correction were followed up with an independent-samples t-test comparing the at-risk group 

with the PD group in order to determine whether the at-risk group’s FC abnormalities are similar 

to expected alterations in PD. Furthermore, in a post hoc analysis, a t-test was used in order to 

determine whether the hFDRs and hNoFDRs subgroups differ from one another and whether one 

drove the results more than the other. An independent-samples t-test was also conducted between 

PD patients and HCs in order to confirm whether FC values in the PD group were abnormal. 

These follow-up steps and post hoc tests were also performed for significant differences in FC 

values between the at-risk and HC groups that did not survive correction for multiple 

comparisons (i.e., trends) and would be discussed as secondary results. Assumptions that are 
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required to conduct t-tests were tested and appropriate changes would be made to the statistical 

analysis if violations existed. 

Effect sizes (i.e., Cohen’s d for equal sample sizes or Hedges’ g for unequal sample sizes) 

were calculated for each significant group-to-group difference in cognitive test scores and in 

functional connectivity. To assess the relationship between potential aberrant functional 

connectivity of the DMN and potential cognitive deficits and to test H3, Pearson correlational 

methods were used, and multiple testing was accounted for. As primary analyses, correlation 

coefficients were calculated between abnormal FC values (based on the comparison of the at-risk 

and HC groups after FDR correction) and cognitive tests scores which showed significant 

deficits in the at-risk or PD groups after Bonferroni correction. Exploratory secondary 

correlational analyses included assessing the relationship between abnormal FC values and 

abnormal cognitive test scores before FDR and Bonferroni correction, respectively.  

Receiver-operating characteristics (ROC) analyses were used, and ROC curves were 

created to assess the diagnostic accuracy (sensitivity and specificity) of potential cognitive 

deficits and FC changes (that survived multiple comparison correction) for the AR group. AR 

individuals were considered as cases and the value of the area under the curve (AUC) was 

examined to determine the level of which these measures can correctly classify AR individuals 

compared to HCs. The significance level was set at p < .05 and two-tailed tests were conducted 

for each variable. All statistical analyses were performed in SPSS version 25 and R software 

version 4.0.4 was used to correct p-values from separate statistical tests for multiple 

comparisons.  
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Chapter 3: Results 

3.1 Demographic Data and Olfactory Test Scores 

A total of 82 participants were included in this study. Early-stage PD participants (n = 26, 

Mage = 62.4, SDage = 6.4, 11 females) had a mean Hoehn & Yahr score of 1.8 (SD = 0.6), a 

UPDRS-III mean score of 22.5 (SD = 11.2), and a mean disease duration from diagnosis of 3.0 

years (SD = 3.2). Four PD patients were left-handed and 22 were right-handed. The healthy 

control group (HC) included 26 participants (Mage = 61.2, SDage = 5.4, 11 females) and the at-risk 

group (AR) consisted of 30 participants (Mage = 58.9, SDage = 5.9, 15 females). One participant in 

the HC group and 4 participants in the AR group were left-handed. All other participants in those 

groups were right-handed. Participants did not significantly differ in age (F(2, 79) = 2.45, p = 

.09) or education (F(2, 79) = 0.56, p = .58). There were no significant sex differences across 

groups, χ2(2) = .46, p = .80 (see Table 1 for descriptive statistics of the demographic data). 

There was a significant difference in UPSIT scores across the groups (F(2, 79) = 59.25, p 

< .001, ηp
2 = .60). In accordance with the inclusion criteria, at-risk individuals had significantly 

lower UPSIT scores (M = 23.07, SD = 5.69) than HCs (M = 36.73, SD = 2.25, p < .001), as 

determined with Tukey’s test. This finding was expected as hFDRs and hNoFDRs were 

identified based on olfactory performance. PD patients scored lower on UPSIT scores (M = 

22.46, SD = 7.04) compared to HCs as well (p < .001); however, PD patients and the AR group 

did not significantly differ in olfactory functioning (p = .908; see Table 1 and Figure 1). 

The AR group consisted of 14 hFDRs (Mage = 58.1, SDage = 6.7, 4 females) and 16 

hNoFDRs (Mage = 59.6, SDage = 5.2, 11 females). The subgroups did not significantly differ in 

demographic variables such as age, education, and UPSIT scores (p > .05; see Table 2). 
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However, there was a significant sex difference between the AR subgroups (χ2(1) = 4.82, p = 

.028). The hFDR group included significantly more males than the hNoFDR group. 

3.2 Cognitive Assessments 

 Table 3 shows summary data of the test scores from each cognitive test across the three 

groups. One participant from the PD group had missing data for the SDMT and the LNS task and 

was therefore excluded from the analysis for these specific tasks. ANCOVAs were run to 

determine whether cognitive tasks performance differed among the PD, AR, and HC groups  

after controlling for age and education. Assumptions pertaining to ANCOVAs were met for all 

variables. There was homogeneity of regression slopes and homoscedasticity. There were no 

outliers in the data, as assessed by no cases with standardized residuals greater than ±3 standard 

deviations. Homogeneity of variances was met for all test scores (Levene's test for equality of 

variances, p > .05). Standardized residuals for scores from each cognitive test were normally 

distributed, as assessed by Shapiro-Wilk's test (p > .05) and visual inspection of histograms.  

Age as a covariate had a significant effect on scores from the LNS task (F(1, 76) = 12.84, 

p = .001), the semantic fluency task (F(1, 77) = 7.57, p = .007), the spatial span backwards task 

(F(1, 77) = 8.78, p = .004), and the TMT4-5 (F(1, 77) = 11.36, p = .001). Education as covariate 

had a significant effect on scores from the TMT4-5 (F(1, 77) = 4.56, p = .036). While controlling 

for age and education, the one-way ANCOVA revealed that the groups significantly differed, 

after Bonferroni multiple comparison correction, on LNS scores (F(2, 76) = 6.89, p = .002, ηp
2 = 

.15, corrected p = .014) and SDMT scores (F(2, 76) = 9.42, p < .001, ηp
2 = .20, corrected p = 

.002). There were significant differences in semantic fluency scores (F(2, 77) = 3.68, p = .03, ηp
2 

= .09) as well; however, the difference did not survive correction and was therefore considered a 

trend (corrected p = .21). There were no significant differences in spatial span test scores (F(2, 
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77) = 1.44, p = .242, ηp
2 = .04), digit span test scores, F(2, 77) = 2.42, p = .096, ηp

2 = .06, TMT4-

5 scores (F(2, 77) = 2.41, p = .097, ηp
2 = .06) or phonemic fluency scores (F(2, 77) = 0.78, p = 

.463, ηp
2 = .02) when age and education was controlled for. 

The post hoc analyses showed that HCs had significantly higher scores on the LNS verbal 

working memory test than PD patients (p = .039, Hedges’ g = 0.89) and AR individuals (p = 

.002, Hedges’ g = 0.84; see Figure 2A). PD patients and AR participants did not differ on LNS 

scores (p = 1.00). SDMT scores were significantly lower in PD patients compared to HCs (p < 

.001, Hedges’ g = 1.35) and AR participants (p = .002, Hedges’ g = 1.05; see Figure 2G). HCs 

and the AR group did not significantly differ from one another in SDMT scores (p = 1.00). 

Additionally, the analysis revealed a trend towards significant group differences in semantic 

fluency when age and education was controlled for. Follow-up comparisons disclosed that the 

trend towards significant differences existed between the PD group and the HC group. PD 

patients scored significantly worse compared to HCs (p = .033, Cohen’s d = 0.77). AR 

individuals did not significantly differ from the PD group (p = .142) or the HC group (p = 1.00) 

in semantic fluency scores (see Figure 2E). Independent-samples t-tests indicated that the 

subgroups of the AR group, hFDRs and hNoFDRs, did not significantly differ on any cognitive 

test that was included in this study (p > .05; see Table 2). 

3.3 Resting-State Functional Connectivity Analysis 

Due to excessive head movement (defined above), 6 participants (3 PD patients, 1 HC 

participant, and 2 AR participants from the hFDR subgroup) were excluded from analysis of the 

resting-state FC within the DMN. Out of the 150 ROI-to-ROI correlations, 13 were excluded as 

non-sense correlations (absence of correlation), leaving 137 edges for analysis. Figure E1 and 
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Figure E2 in Appendix E show correlation matrices and the strength of each ROI-to-ROI 

correlation for each participant group, respectively. 

The first step to analyse functional connectivity values was to run an independent-

samples t-test to determine if there were differences in FC between the AR group and the HC 

group. Assumptions pertaining to t-tests were examined for violations and it was established that 

there were no influential outliers in the data. For the majority of edges, FC values (correlation 

coefficients) were also normally distributed, as assessed by Shapiro-Wilk's test (p > .05), and 

there was homogeneity of variances, as assessed by Levene's test for equality of variances (p > 

.05). Edges that violated the normality assumption or the homogeneity of variances assumption 

were assessed with the nonparametric Mann-Whitney U test and the Welch t-test, respectively. 

All p-values were corrected with the Benjamini-Hochberg method to account for the FDR. 

Independent-samples t-tests revealed that the AR group significantly differed from the control 

group in FC values for six edges. Compared to HCs, the AR group had significantly higher 

values between the amPFC and MTG-L (t(51) = -3.32, p = .002, Hedges’ g = 0.91; see Figure 3), 

the amPFC and MTG-R (t(51) = -4.64, p < .001, Hedges’ g = 1.28), the pCC and vmPFC (t(51) 

= -2.58, p = .013, Hedges’ g = 0.71), the Pcu and MTG-L (t(51) = -2.16, p = .036, Hedges’ g = 

0.59), and between the MTG-L and vmPFC (t(51) = -2.36, p = .022, Hedges’ g = 0.65). 

Significantly lower values were seen in the at-risk group for FC values of the IFG-R and MTG-L 

connection (t(51) = 3.01, p = .004, Hedges’ g = 0.83; see Table 4 for descriptive statistics). 

Nevertheless, only the connection between the amPFC and the MTG-R survived the multiple 

comparison correction (FDR-corrected p = 0.004; see Table 5 for details). Table F1 in Appendix 

F describes analysis outcomes between the AR group and HC group for all edges. FC values of 
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edges that were significantly different between the AR and control groups but did not survive 

correction were considered trends (secondary findings, see Figure 4). 

The aberrant FC values of the AR group between the amPFC and the MTG-R were 

followed up with a t-test between the AR and PD groups as part of the primary FC statistical 

analysis. Significant differences in FC values were present (t(49) = -2.527, p = .015, Hedges’ g = 

0.71). The AR group had significantly higher FC between these ROIs compared to PD patients 

(see Table 4 for descriptive statistics). Moreover, post hoc t-tests of FC values from the amPFC 

and MTG-R connection revealed that hFDRs and hNoFDRs did not significantly differ from one 

another (t(26) = 0.16, p = .874, see Table 6) and there were also no significant differences 

between PD patients and HCs (t(46) = 1.56, p = .0125, see Appendix F: Table F2). 

As secondary analyses, significant differences in FC values between the AR and HC 

groups of edges that did not survive FDR correction (amPFC to MTG-L, vmPFC to pCC, Pcu to 

MTG-L, MTG-L to vmPFC, and IFG-R to MTG-L) were also followed up with a t-test 

comparing the AR group with the PD group; no significant differences were found for any FC 

values. Post hoc tests revealed that the hFDR group significantly differed from the hNoFDR 

group in FC values between the IFG-R and the MTG-R (t(26) = 2.89, p = .008, Hedges’ g = 

1.11), whereby hyposmic first-degree relatives had a higher FC compared to hyposmic non-

relatives (see Table 6). PD patients did not significantly differ from controls in this connection 

(t(46) = -0.71, p = 0.482). None of the other edges showed significant different FC values 

between hFDRs and hNoFDRs. PD patients showed significant higher FC compared to controls 

between the amPFC and MTG-L (t(46) = 2.79, p = .008), the pCC and vmPFC (t(46) = 2.72, p = 

.009), and the MTG-L and vmPFC (t(46) = 2.93, p = .005). 
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3.4 Correlational Analyses 

 Table 7 shows the results of the Pearson’s correlational analyses between abnormal FC 

values of edges that survived FDR correction and cognitive tests that showed abnormalities in 

the AR group and PD group compared to HCs. There were no significant correlations between 

the FC of the amPFC and the MTG-R and LNS scores in the AR group. There were also no 

significant correlations between FC of these ROIs and cognitive test scores that were abnormal 

in PD patients (i.e., SDMT scores and LNS scores). 

As part of a secondary analysis, the assessment of correlations between FC of edges that 

were considered trends and abnormal cognitive test scores (significant p-value before Bonferroni 

correction) showed that semantic fluency scores were significantly related to FC values between 

the IFG-R and the MTG-L in the PD group (r = .41, p = .049). However, this correlation did not 

survive Bonferroni correction. No other edges that were considered trends showed significant 

correlations to cognitive test scores (see Table 7). 

3.5 Analyses of Diagnostic Accuracy 

 A ROC analysis of the FC from the connection that was significantly different between 

AR and HC groups, and which survived multiple comparison correction (FC between the amPFC 

and the MTG-R) was conducted to assess the sensitivity and specificity of this measure to 

identify AR individuals. The results show that FC measurements between these regions have a 

good discriminatory power in differentiating AR individuals from HCs with a significant AUC 

value of .82. Figure 5 displays the ROC curve of the FC between the amPFC and the MTG-R. 

 In addition, a ROC analysis of scores from the LNS test (which were significantly lower 

in the AR group compared to the HC group) was also conducted. The results demonstrated that 

lower LNS test scores have a fair discriminatory power in differentiating AR individuals from 
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HCs with a significant AUC value of .76. The ROC curve of LNS test scores is shown in Figure 

6. 
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Chapter 4: Discussion 

Although impaired olfaction is a potential marker for the development of PD in otherwise 

not at-risk individuals (Berg et al., 2015; Ross et al., 2008), its specificity is low and may 

indicate the development of any number of neurological diseases. Olfaction may be seen as a 

screening tool, while other, more specific markers could be combined in order to better predict 

the onset of PD early in the course of illness. Cognitive deficits in the domains of processing 

speed, executive function, and working memory have been reported in relatively early phases of 

the disease (Aarsland et al., 2009; Bublak et al., 2002, Nombela et al., 2014). Furthermore, 

several studies have described that PD patients have abnormal FC between regions of the DMN 

(Amboni et al., 2015; Hou et al., 2017; Tessitore et al., 2012), and that DMN FC was associated 

with cognitive function (Disbrow et al., 2014; Lucas-Jiménez et al., 2016). Therefore, it may be 

possible that both cognitive deficits and aberrant DMN FC can be additional markers of 

prodromal-stage PD. The purpose of this study was to identify a group of individuals who were 

at higher risk of developing PD (hFDR and hNoFDR) and to examine cognitive function and 

resting state functional connectivity in the default mode network. We wished to determine 

whether the AR group performed more like PD patients than control subjects on cognitive testing 

and on functional connectivity. We also wished to determine the degree of diagnostic accuracy 

of these measures and whether there were associations between cognition and DMN FC in at-risk 

individuals. PD patients included in this study were in early stages of the disease which was 

determined by relatively short disease durations (approximately three years on average) and mild 

motor impairments based on scores of the Hoehn and Yahr scale (scores less than 3) and the 

UPDRS-III. 
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4.1 Cardinal Findings 

 The cardinal findings of this study are: 

1. AR individuals had deficits in verbal working memory when assessed with a cognitively 

demanding task (i.e., LNS), but not when a less cognitively demanding task was used 

(i.e., digit span backwards).  

2. Similar to the AR group, PD patients showed deficits in verbal working memory 

performance only when task demand was high, partially supporting our first hypothesis 

(H1) that AR individuals and early-stage PD patients would show similar cognitive 

deficits in the domains of executive function, working memory, and processing speed. 

PD patients also demonstrated deficits in the domain of psychomotor processing speed 

and a trend towards lower scores in a semantic fluency task.  

3. Compared to controls, neither PD or AR individuals had reduced scores on tests that 

measure phonemic fluency and executive function. Also, groups did not differ on verbal 

and spatial working memory tests that had a lower cognitive demand. 

4. With regard to DMN FC measures, the primary findings were that, compared to controls 

and PD patients, the AR group showed higher DMN FC between the amPFC and the 

MTG-R. These findings do not support H2 because we expected that, compared to HCs, 

the AR group would show reduced FC within the DMN similar to PD patients. 

5. Secondary FC results of this study were that, compared to controls, the AR group showed 

trends of increased FC for multiple DMN connections (between the pCC and the vmPFC, 

the amPFC and MTG-L, the PCu and MTG-L, the MTG-L and vmPFC) and a FC 

decrease for one connection (IFG-R and MTG-L). FC values were similar to FC values of 

PD patients. 
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6. H3 was not supported because no significant correlations between cognitive performance 

and FC alterations in the DMN were found. 

7. The accuracy of increased FC values to discriminate between AR individuals and HCs 

was good and the accuracy of working memory deficits as measured with the LNS test to 

discriminate between AR individuals and HCs was fair. 

4.2 Cognitive Function in PD Patients and Hyposmic Individuals At-Higher Risk of PD 

According to Braak’s staging of disease progression, cognitive impairment is likely to 

appear in later stages when neuronal loss occurs in cortical brain regions that are associated with 

cognition (Braak et al., 2003). However, there have been reports of reduced cognitive 

functioning in newly diagnosed PD patients as well, such as poor performance in processing 

speed, attention, and executive function (Aarsland et al., 2009; Nombela et al., 2014). Our study 

adds to the existing literature on the cognitive profile of early-stage PD patients because patients 

exhibited deficits compared to controls in processing speed and in a high-demand verbal working 

memory task. Performance on verbal and spatial working memory tasks that are less cognitively 

demanding seems to be intact in early PD. Our findings are consistent with Bublak et al. (2002), 

who demonstrated that PD patients show deficits in working memory capacity that are associated 

with increasingly slowed initiation time in a more difficult working memory task condition 

compared to less demanding conditions. A reduced working memory capacity has implications 

for the ability to manipulate complex cognitive processes because less attentional resources are 

available to manage the processing of given information (Bublak et al., 2002). Consistent with 

the study by Bublak et al. (2002), PD patients from the current study were in early disease stages 

with a relatively short mean disease duration (i.e., approximately three years). Early-stage PD 

was also confirmed by the mild disease severity with respect to motor impairments in the current 
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study and mild to moderate disease severity in Bublak et al. (2002). In a study by Liozidou and 

colleagues (2012), non-demented PD patients with a longer disease duration (i.e., 10 years) but 

also with mild to moderate motor impairments (Hoehn and Yahr scale score of 3 or less) were 

shown to score lower than controls on a working memory task (digit span backwards) that has a 

relatively low complexity or cognitive demand. Consequently, working memory capacity may 

decrease with longer disease duration and deficits on working memory tasks with lower 

cognitive demand may only appear as the disease progresses beyond the early stage. 

In the current study, early PD patients did not show deficits in executive function and 

verbal fluency tests compared to healthy controls, a finding which is inconsistent with previous 

reports of early PD patients' cognitive profile (Nombela et al., 2014; Parrao et al., 2012). 

However, in our study, a trend towards lower semantic fluency scores compared to controls was 

observed, which suggests that deficits may be present in some patients. A previous study has 

demonstrated that executive function scores are related to UPDRS-III motor impairment, 

implying that poorer performance in executive function is linked to motor progression (Riggeal 

et al., 2007). Thus, deficits in the domain of executive function in patients from our sample may 

appear in later disease stages and with progressive changes in neurodegeneration, which is in 

accordance with the staging system of Braak et al. (2003). The discrepancies between the current 

and past studies with regard to executive dysfunction may also be explained by participants’ 

education level. Higher years of education have been shown to influence executive function test 

scores (Miranda et al., 2020). The mean education of participants was relatively high for all 

groups in the current study and although education was controlled for in the analysis of group 

differences, it did not seem to have a significant effect on test scores of verbal fluency but it 

significantly affected mean scores of the executive function task (TMT4-5). In contrast, 
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education was not controlled for and lower mean years of education were reported for 

participants in Parrao et al. (2012), who found executive function deficits in early PD patients. 

Better performance on tests of executive function was also linked to more years of education in 

Nombela et al. (2014), supporting the idea that higher education serves as cognitive reserve, a 

factor that preserves cognitive processes in the presence of neuropathology (Barulli & Stern, 

2013). 

One of the main findings of the current study is that the AR group demonstrated the same 

pattern of working memory deficits as PD patients. The effect sizes of the working memory 

deficit on the LNS task were large and similar for the AR group (Hedges’ g = 0.84) and the PD 

group (Hedges’ g = 0.89). Our finding suggests that working memory deficits in addition to 

hyposmia may be an early marker of the progression towards PD. Furthermore, our analysis of 

diagnostic accuracy demonstrated that lower LNS scores can reliably classify AR individuals of 

PD compared to HCs and may therefore be useful in clinical and research settings where 

individuals at-risk of neurodegeneration are assessed. Past studies have reported that olfactory 

deficits are related to working memory dysfunctions in PD patients (Morley et al., 2011), and the 

present finding points out that shortcomings in working memory performance may occur in 

hyposmic individuals even before PD is clinically diagnosed. Chahine et al. (2016) reported that 

idiopathic hyposmic individuals perform worse on tasks of working memory, executive function, 

and global cognition compared to normosmic controls, but only if they exhibited DAT binding 

deficits. It is possible that having both DAT binding abnormalities and hyposmia predicts the 

development of PD. In the current study, DAT binding was not examined, but working memory 

deficits were observed in the AR group. Not knowing whether hyposmic participants have a 

reduced DAT binding lowers confidence in the conclusion that diminished working memory 
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performance of hyposmic individuals is linked to the development of PD. Instead, it may also 

represent the progression towards other neurodegenerative diseases, such as AD (Kessels et al., 

2011). Both hyposmia (Hagemeier et al., 2016) and working memory deficits have been reported 

to be present in AD patients and idiopathic MCI patients, who are thought to be in the prodromal 

stage of AD/dementia (Kessels et al., 2011). It would be beneficial for future research to assess 

DAT binding deficits in AR individuals to determine whether they are in the prodromal stage of 

PD rather than in the prodromal stage of dementia.  

Nevertheless, about half of the participants in the AR group were first-degree relatives of 

PD patients, who, due to genetic vulnerabilities, have an increased risk of developing PD rather 

than other neurodegenerative diseases (Mickel et al., 1997). Because working memory 

performance did not differ between hyposmic relatives and hyposmic non-relatives, it remains 

possible that working memory deficits in the included AR group may be linked to early PD-

related pathological processes. It has been reported that 10% of idiopathic hyposmic individuals 

that do not have a first-degree relative with PD develop PD (Haehner et al., 2019), which is 

comparable with the 10% increased risk of unaffected first-degree relatives of PD patients to 

develop PD due to the presence of olfactory deficits (Ponsen et al., 2004). In addition, hyposmic 

individuals without PD have an odds ratio of 3.1 - 5.2 for developing PD within four years 

compared to individuals with mild or no olfactory dysfunction (Ross et al., 2008). In contrast, the 

odds ratio for individuals with olfactory dysfunction to develop dementia within five years was 

lower (odds ratio = 2.13; Adams et al., 2018), suggesting that individuals with idiopathic 

hyposmia that were included in the AR group of this study may be more likely to develop PD 

than they are to develop dementia. 
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Hyposmic first-degree relatives and hyposmic non-relatives did not differ on any of the 

cognitive tests examined in our study, suggesting that being a first-degree relative of a PD patient 

does not differentially affect cognitive performance when hyposmia is present. This finding also 

supports our decision to combine both hyposmic subgroups into one at-risk group. Previous 

research has reported that first-degree relatives who do not have olfactory impairments and who 

have an increased genetic risk of developing PD do not show working memory deficits compared 

to individuals with a lower genetic risk (Thaler et al., 2016). Moreover, as the presence of 

hyposmia in first-degree relatives of PD patients increases the risk of developing PD (Ponsen et 

al., 2004), olfactory deficits seem to play an important role in the progression towards PD. The 

presence of hyposmia has also been related to working memory deficits of PD in the past 

(Morley et al., 2011). Therefore, hyposmia may be a key element that is associated with working 

memory deficits in the prodromal stage of PD.  

The link between abnormal cognitive functions and hyposmia is proposed to be related to 

neurotransmitter system alterations in PD, including the dopaminergic and cholinergic systems 

(Bohnen et al., 2008; 2010). Specifically, Bohnen et al. (2008) described that DAT binding in the 

hippocampus is linked to odour identification abilities in early-stage PD patients, indicating that 

PD-related dopaminergic denervation has an influence on olfactory function. As the 

hippocampus also plays a role in working memory processing (Leszczynski, 2011), 

dopaminergic denervation may affect cognitive functioning as well. Thus, the observed working 

memory deficits in the AR group are perhaps linked to reduced dopaminergic function in the 

hippocampus. Furthermore, Bohnen et al. (2010) report that cholinergic denervation within the 

hippocampus also plays a part in olfactory functioning of PD patients and cognitive function. 

Thus, the findings of working memory deficits in the hyposmic at-risk group support the notion 
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that AR individuals may be in prodromal stages of PD and exhibiting early PD-related 

neurotransmitter system alterations. Furthermore, it has been proposed that adequate olfactory 

identification requires the recruitment of frontal and prefrontal brain areas (Bohnen et al., 2008; 

Wang et al., 2005). PD patients who have hyposmia demonstrate alterations in connectivity 

patterns with frontal areas compared to patients with good olfactory functioning and healthy 

controls, suggesting that alterations within frontal regions may be related to olfactory deficits in 

PD (Sunwoo et al., 2015). In addition, separate meta-analyses reported that activations in both 

prefrontal and frontal brain areas are typically seen during working memory processing (Owen et 

al., 2005; Wang et al., 2019). Thus, it could be possible that alterations in frontal brain activity, 

which may be due to PD, could also be underlying the relationship between olfactory deficits and 

poor working memory performance.  

4.3 DMN Functional Connectivity as Potential Early Marker for Neurodegeneration  

In addition to working memory deficits, this study found that the AR group also 

demonstrated alterations in resting-state FC between the amPFC and the MTG-R, suggesting that 

early neurodegenerative processes have an effect on the DMN. The increased FC between the 

amPFC and the MTG-R has a good diagnostic accuracy as the AUC value was relatively high 

(i.e., .82), meaning that FC between these regions can help to correctly identify AR individuals, 

and that the chance of random classification into the AR group or the HC group is low. PD 

patients do not share the abnormal FC between the amPFC and the MTG-R with AR individuals. 

Yet, the secondary findings showed that PD patients have similar FC increases as the AR group 

between multiple ROIs, and although these findings represent trends and are more exploratory in 

nature, they are lending confidence that PD-related FC alterations exist. 
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Studies that have assessed the DMN at rest in PD show high heterogeneity of results 

(Hohenfeld et al., 2018). Specifically, there is no consensus on which DMN edges show 

abnormal FC, as different studies report that different edges are affected. Additionally, although 

most studies report reduced DMN FC between certain edges (e.g., Amboni et al., 2015; Hou et 

al., 2017; Lucas-Jiménez et al., 2016; Tessitore et al., 2012), some studies describe increased FC 

between some ROIs along with reduced FC between others (Baggio et al., 2015; Campbell et al., 

2015; Gorges et al., 2015). The majority of studies that have assessed the DMN during the 

resting state have examined patients that have similar degrees of motor impairment (i.e., Hoehn 

and Yahr or UPDSR-III scores); as such, inconsistencies in findings cannot be explained by 

varying disease severity. PD participants with mild to moderate disease are typically recruited for 

MRI studies so that MRI measurements as well as additional cognitive testing are not affected by 

motor symptoms (Disbrow et al., 2014). Compared to the current study, most of the previous 

research recruited PD patients with a longer mean disease duration (i.e., over five years; e.g., 

Amboni et al., 2015; Baggio et al., 2015; Tessitore et al., 2012). Therefore, the finding of 

reduced FC for most DMN edges may be related to increased disease duration. In contrast, 

Campbell et al. (2015) reported increases in the average connectivity of the DMN in patients 

with a relatively short disease duration (i.e., under 5 years), supporting the idea that a different 

pattern of FC alterations exists in early PD patients compared to patients who are living with the 

disease for a longer time. The current study supports findings of increased DMN FC in early PD 

patients and expands previous literature on the notion that alterations could be present in 

preclinical stages of the disease. Moreover, the current study primarily assessed FC 

abnormalities in individuals that are expected to be in the prodromal stage of PD, and thus may 

be demonstrating early FC changes that are different from subsequent disease stages. However, it 
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cannot be ruled out that some AR participants may be progressing towards another 

neurodegenerative disease. 

Inconsistencies in study outcomes may be related to methodological differences, such as 

differences in MRI acquisition parameters or analysis approaches for functional connectivity 

data as well. Several studies have used independent component analysis (ICA) to define the 

DMN (e.g., Amboni et al., 2015; Tessitore et al., 2012). ICA is a data-driven approach which 

decomposes signals into spatially independent components. Although ICA has the advantage of 

enabling the automatic removal of noise components (e.g., physiologic processes that may bias 

the functional signal), it is challenging to obtain the same functional network components for 

each participant, making group comparisons difficult (Rosazza et al., 2012). Moreover, it is 

possible that different edges show FC alterations across studies because different ICA 

components were included to define the DMN. In contrast, the current study used an ROI-to-ROI 

analysis approach which assesses correlations of temporal activity patterns between two or more 

a priori defined regions (Rosazza et al., 2012). DMN ROIs were based on the coordinates from 

Spreng et al. (2013). In a further study that employed these coordinates (Baggio et al., 2015), PD 

patients with and without MCI were compared to HCs. This group reported ordered reductions in 

FC between medial prefrontal regions (i.e., vmPFC, amPFC, and dmPFC) and bilateral aTL, the 

HF-L, and the pIPL, as well as between the pCC and the HF-L, with HCs having the highest FC 

followed by PD without MCI. PD-MCI patients had the lowest connectivity values. FC increases 

were only observed between the MTG-R and the TPJ-R, with PD-MCI patients having the 

highest FC followed by PD patients without MCI and HCs (Baggio et al., 2015). Hou et al. 

(2017) also used this ROI approach and described that cognitively unimpaired early-stage PD 

patients with a rigidity-dominant subtype displayed reduced FC between the aTL-L and the HF-
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L, the MTL-R and the pIPL-R, the aTL-R and the IFG-R, the MTG-R and the pCC, and lastly, 

the MTG-R and the precuneus. The affected edges from both studies do not overlap with the 

current study’s findings. This could be due to the inclusion of comorbid conditions of PD 

patients such as PD-MCI (Baggio et al., 2015) or the inclusion of the rigidity-dominant subtype 

of PD (Hou et al., 2017) which may affect certain connections of the DMN in different ways. In 

addition, variations in the preprocessing of the rsfMRI data such as the inclusion of additional 

confound regressors to increase the signal-to-noise ratio may have affected the results. For 

example, the present study controlled for the global signal, which is an omission from Hou et al. 

(2017). The global signal is an fMRI timeseries component that is shared among all brain voxels 

and is thought to include non-neuronal confounds of cardiac activity, respiratory cycles, or 

arterial CO2 concentration among others (Murphy & Fox, 2017). Murphy & Fox (2017) 

described that not controlling for global signal can lead to different results across studies. 

Removing the global signal has the advantage of enhancing the detection of true ROI-to-ROI 

correlations and can reduce artefacts. Nevertheless, the global signal can also introduce spurious 

anticorrelations, which are negative ROI-to-ROI correlations that are difficult to interpret 

(Murphy & Fox, 2017). 

4.3.1 Increased Functional Connectivity as a Result of Compensatory Processes 

 Our primary findings show that FC is increased between the amPFC and the right MTG 

of the DMN in the AR group compared to controls. Increased activity and FC within brain 

networks have been related to compensatory processes in neurodegenerative diseases in the past 

(De Marco et al., 2017; Poston et al., 2015; Yang et al., 2013). This enhanced 

activity/connectivity is posited to occur in response to neuronal loss and is related to the 

maintenance of behavioural or cognitive performance (Gregory et al., 2017). A model of FC 
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changes has been proposed describing that FC within brain networks is elevated during disease 

onset. As the disease progresses, FC declines and reductions will be shown at higher disease 

levels, which are associated with reductions in cognitive performance (Gregory et al., 2017). 

Increased FC in hyposmic individuals may therefore be indicative of compensatory processes in 

response to commencing neuronal loss and early neurodegenerative changes in order to maintain 

behavioural and cognitive performance. Although the amPFC and the MTG-R are part of the 

DMN and are functionally connected to other DMN ROIs, in this study, these two brain regions 

are not positively connected to one another in healthy controls. Increased resting-state FC 

between two network regions has been proposed to be linked to past simultaneous activation 

during cognitive processes, to a prediction and expectations about which regions will be used 

together in the future, or a combination of both (Fox & Raichle, 2007; Jolles et al., 2011). Thus, 

an indirect relationship is thought to be present between cognitive processes and resting-state FC. 

Therefore, the elevated FC in hyposmic individuals may also have occurred as the amPFC and 

the MTG-R have been synchronously recruited during cognitive processes in the past and are 

expected to be in the future. The amPFC has been associated with performance on a semantic 

fluency task and as part of the DMN shows a change in activation during task performance 

(Shapira-Lichter et al., 2013). Adequate functioning of this region has implications for semantic 

fluency. The increased connectivity between these ROIs in the AR group may therefore represent 

the recruitment of additional neural resources to delay oncoming deficits in semantic fluency. 

The analysis of cognitive test scores supports this notion because AR individuals’ semantic 

fluency is intact. 

AR individuals also show higher FC between the amPFC and the MTG-R compared to 

early PD patients. PD patients had a functional connectivity value close to zero, indicating that 
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these ROIs are not functionally connected to one another in PD (i.e., they show differences in 

spontaneous activation patterns over time). As it is expected that PD patients already have 

significant neuronal loss after diagnosis (Braak et al., 2003), compensation should no longer be 

sustainable. Thus, greater deficits in cognitive performance should emerge with increased 

disease progression, and this notion is supported by the trend towards reduced semantic fluency 

scores in the PD group. Similarly, the loss of compensatory processes has also been related to 

poor cognitive performance of PD patients in the past (Poston et al., 2015) and reduced FC 

within the DMN has been demonstrated in PD patients with PD-MCI compared to patients with 

less cognitive impairments for some edges, including connections with the amPFC (Baggio et al., 

2015). Gorges et al. (2015) also reported increases in DMN FC that include a network expansion 

in cognitively unimpaired patients compared to controls, indicating elevated FC and the 

recruitment of additional neuronal resources may be a compensatory response to cognitive 

impairment. Compared to healthy controls and PD patients without MCI, the presence of MCI 

decreased the DMN FC of PD patients (Gorges et al., 2015). Similarly, as patients included in 

our study show deficits in multiple domains (i.e., working memory and processing speed), FC 

may be decreased compared to hyposmic individuals who exhibit better cognitive function. Olde 

Dubbelink and colleagues (2014) conducted a longitudinal study to assess the relationship 

between cognitive decline and alterations in resting-state FC of the brain. PD patients with 

moderate motor symptoms and cognitive deficits at baseline demonstrated progressive reductions 

in whole-brain FC (including regions of the DMN) over a three-year period. These reductions 

were also associated with decline in global cognitive performance (Olde Dubbelink et al., 2014). 

Overall, these findings also demonstrate that FC decreases, while cognitive impairments increase 

with the progression of PD, but that FC changes in PD are not restricted to the DMN.  
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In addition to the primary findings, secondary findings, that are exploratory, support that 

hyposmic first-degree relatives and non-relatives show abnormal DMN FC, as there are trends of 

increased FC for multiple edges that may be explained by compensatory processes. Also, the AR 

group did not differ from PD patients on FC measures of these edges. This suggests that early-

stage PD patients may also show signs of compensatory processes, and it supports the notion that 

increased FC may be a prodromal marker of PD. Consistent with the primary findings, FC with 

medial prefrontal regions and with the middle temporal gyrus was elevated, highlighting the 

importance of these DMN regions in early disease stages. For example, the findings show a trend 

of increased FC between the vmPFC and pCC, which may be a compensatory response to PD-

related pathological changes affecting working memory. The connection between these main 

DMN ROIs has been associated with working memory during task-based fMRI scans previously 

(Sambataro et al., 2010), with higher connectivity being linked to better performance in healthy 

individuals. Alterations in DMN function of healthy individuals in the form of enhanced 

deactivations, have also been associated with an increase in working memory task demand 

(McKiernan et al., 2003). Therefore, possible PD-related pathological changes that increase FC 

in these regions may improve working memory performance. With respect to the present study, 

increased FC between the vmPFC and the pCC in both the AR and early PD groups may 

therefore be related to the maintenance of working memory performance on tasks that require a 

lower WM demand (i.e., spatial span backwards and digit span backwards). However, as task 

demand increases, compensatory processes are not sufficient to maintain performance, and 

deficits appear on a high-demand working memory task. Nevertheless, it is unclear how resting-

state FC can be compared to previous research in task-based FC because both measure different 

aspects of brain activity. Typically, task-based FC evaluates the correlation between changes in 
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two regions of brain activation in response to a cognitive task while taking into account baseline 

brain activity (i.e., resting-state spontaneous activations). In contrast, resting-state FC assesses 

the correlation of the spontaneous activation between two regions to identify intrinsic brain 

networks (Greicius et al., 2003). However, it has been proposed that resting-state networks 

represent the organization of specific regions that are recruited together during task performance 

(Buckner et al., 2013), suggesting that disease-related changes in FC at rest may appear in FC 

during task-based activation as well. 

Furthermore, the vmPFC has been shown to be implicated in olfactory processing as it is 

activated when odours are present (Eiler II et al., 2012). The presence of hyposmia in both the 

AR group and the PD group may indicate abnormalities in brain areas that are related to 

olfactory processing. With respect to the notion of compensatory processes, an elevated FC with 

the vmPFC may represent the recruitment of additional neural resources to counteract underlying 

causes of olfactory impairment. However, these compensatory processes are incomplete as 

olfactory impairments are present (Gregory et al., 2017). PD patients with hyposmia have 

demonstrated decreased FC between the pCC and areas of the limbic system, and increased FC 

between the pCC and the left inferior parietal lobule compared to patients with no olfactory 

deficits or mild hyposmia (Su et al., 2015). The vmPFC was not assessed by Su et al. (2015) but 

their findings show that PD-related olfactory impairment is linked to elevated FC changes that 

involve the pCC and can therefore support the current proposition that increased FC between 

DMN ROIs may be an early marker of increased risk of developing PD in AR individuals. 

The secondary findings are based on trends because they did not survive multiple 

comparison correction and because of this, they have to be viewed with caution. Nevertheless, 

they are supportive of the primary findings and prompt further research to investigate possible 
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increased connectivity with prefrontal, middle temporal, and posterior cingulate regions of the 

DMN in individuals who are considered to be in the prodromal stage of PD. Interestingly, the 

secondary findings also propose a trend towards lower FC between the IFG-R and the MTG-L in 

the AR group compared to controls which warrants further explorations. In contrast to edges that 

showed increased FC in AR individuals, this finding seems to be driven by hyposmic individuals 

who do not have a relative with PD, since this subgroup had significantly lower connectivity 

values compared to hyposmic relatives. The hyposmic groups did not differ on any of the 

cognitive test scores, so the difference in FC does not seem to be related to differences in 

cognition. The only difference found between these groups based on the assessments of this 

study was that the hNoFDR group included more females that the hFDR group. Yet, it was 

reported that there is no sex difference in resting-state DMN connectivity in older adults, so it is 

unlikely that the imbalance of males and females in the groups would have influenced the results 

(Bluhm et al., 2008). FC between these regions may not be PD related but may be linked to 

olfactory deficits due to other diseases that some hyposmic non-relatives may develop. As 

mentioned above, olfactory deficits were reported to be present in both MCI and AD (Hagemeier 

et al., 2016). In addition, individuals with MCI also show decreased FC within the DMN (Das et 

al., 2013). This supports the idea that some hyposmic non-relatives included in the current study 

may be progressing towards MCI, which predicts the development of AD. The sample sizes of 

the hyposmic relative and hyposmic non-relative groups were relatively small, which may have 

influenced these results. However, a large effect size between these groups for this DMN 

connection was found (Hedges’ g = 1.11), increasing the confidence of the differences between 

hyposmic relatives and non-relatives on FC measures between the IFG-R and the MTG-L and 

suggests that some hyposmic non-relatives may be progressing towards MCI and/or AD.  
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Nevertheless, we did not find a difference in FC values between hFDRs and hNoFDRs 

for any other DMN edge that showed increases in FC. Similar to the cognitive test results, this 

supports the notion that some individuals in both subsamples may be in the prodromal stages of 

PD although other participants in the AR groups may be progressing towards MCI and dementia.  

4.3.2 Increased Functional Connectivity as a Sign of Disease-Related Changes 

As mentioned above, it is possible that increased FC within the DMN is related to 

compensatory processes as an attempt to maintain cognitive performance. Nevertheless, as this 

study assessed the DMN during rest, a direct relationship between cognitive functioning and FC 

measures within this study cannot be established. Compared to task-based fMRI, cognitive 

assessments and FC values were obtained independent from each other. Therefore, it remains 

unclear whether increased FC is the result of compensatory processes leading to the maintenance 

of cognitive performance. FC within the DMN in the AR group may instead be a sign of 

alterations related to olfactory deficits or neurodegenerative disease onset separate from 

cognitive function. The nature of correlational analyses also makes it difficult to interpret the 

results. An increased FC may represent elevated spontaneous fluctuations in the BOLD signal 

over time that is consistent across two regions, which is consistent with the idea of compensation 

in prodromal PD. However, it could also mean a synchronous reduction in spontaneous BOLD 

signal across two regions, representing possible disease-related pathological processes. 

Amboni et al. (2015) examined the resting-state FC of the DMN in early PD patients that 

either had PD-MCI or that were cognitively unimpaired. Similar alterations in FC were reported 

for PD patients with MCI and without MCI, suggesting that DMN FC does not affect patients’ 

cognitive status (Amboni et al., 2015). The correlation analysis of the current study supports this 

notion because reduced cognitive scores observed in the AR group and the PD group were not 
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associated with abnormalities in DMN FC. Nevertheless, there was a trend of a significant 

correlation between semantic fluency deficits and reduced FC between the IFG-R and the MTG-

L in PD patients. As this correlation did not survive multiple comparison correction, the result is 

not robust. Abnormal DMN FC in AR individuals and PD patients seems to be independent from 

the observed cognitive deficits. As a result, it is reasonable that increased connectivity between 

DMN ROIs in AR individuals and PD patients is a sign of disease-related alterations or 

incomplete compensation as an attempt to maintain olfactory function rather than compensatory 

processes to maintain cognitive function. The absence of a relationship between DMN FC and 

reduced cognitive test scores is supported by Amboni et al. (2015) and Gorges et al. (2015), who 

described that DMN FC and cognitive test scores are not related in PD patients, despite patients 

being cognitively impaired. Moreover, the lack of an association between FC values and working 

memory deficits in both AR individuals and PD patients may suggest that working memory 

deficits are related to abnormalities within other intrinsic brain networks, such as the 

frontoparietal network, whose connectivity is abnormal in PD patients as well (Caminiti et al., 

2015). 

4.4 Limitations, Strengths, and Future Directions 

While this study offers valuable insights into additional markers of the development 

towards PD in non-manifesting hyposmic individuals at higher risk, several limitations need to 

be addressed. First, a cross-sectional design was used for this study, which is insufficient for 

determining whether individuals in the AR group will develop PD in the future. It is possible that 

some AR individuals are progressing towards other neurodegenerative diseases. As mentioned 

above, hyposmia has also been identified as a sign of dementia (McShane et al., 2001; Seligman 

et al., 2013) and is linked to MCI, which has been considered in some individuals as a preclinical 
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stage of dementia (Hagemeier et al., 2016). Working memory deficits (Kessels et al., 2011) and 

abnormal FC within the DMN exist in patients with MCI (Das et al., 2013; Yang et al., 2017), 

and as such, some individuals from the AR group may be developing MCI as a sign of future 

dementia. However, PD-MCI has been reported in 15% to 43% of newly diagnosed PD patients 

(Pedersen et al., 2017), up to 80% of PD patients will develop dementia over the course of their 

illness (Aarsland et al., 2003; Yarnall et al., 2014). Hyposmic first-degree relatives of patients 

and hyposmic non-relatives may therefore be progressing towards a subtype of PD that is at 

increased risk of developing dementia (Parkinson’s Disease with Dementia; PDD). The 

probability of idiopathic hNoFDRs and hFDRs developing other neurodegenerative diseases 

should also be investigated, particularly with respect to dementia (Kessels et al., 2011; Seligman 

et al., 2013). Future studies should use a longitudinal design to confirm whether the combination 

of hyposmia, working memory deficits, and DMN FC alterations in non-manifesting individuals 

is useful for discriminating future PD, with or without MCI, from other neurodegenerative 

disorders. However, one strength of the current study lies in the inclusion of hFDRs within the 

AR group. This subsample enhances the likelihood that the reported abnormalities found in the 

AR group are related to PD because of relatives’ genetic vulnerabilities that increase the risk of 

developing PD compared to other diseases. Our findings also represent strong evidence in favour 

of combining the two AR subgroups because no differences between hyposmic relatives and 

non-relatives were noted in any of the examined measures. One exception was the difference 

between FC values between the IFG-R and the MTG-L; however, this finding was not robust and 

may have been a false positive result.  

Another limitation of this study was the small sample size within both AR subgroups, 

which decreased the power to detect a significant effect between the groups. Therefore, it is 
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possible that there are additional differences between the hyposmic first-degree relatives and 

hyposmic non-relatives that could not be detected in this study, which affects the generalizability 

of the findings. Future studies should further investigate whether there are additional differences 

between these AR subgroups with larger sample sizes. Moreover, the generalizability of this 

study may have been affected by a self-selection bias, as the study required participation in a 

long testing session while following the instructions from the researcher, and thus, required a 

certain level of independence and overall function. Therefore, PD patients and AR individuals 

included in this study may represent a well-functioning subset of their respective populations 

which may have influenced the results. The relatively high mean level of education of participant 

groups supports this suggestion. As the analyses in this study controlled for education, however, 

the potential influence of this bias is reduced. 

The current study is limited in how observed cognitive deficits in both the AR and PD 

group translate into clinically meaningful and interpretable findings. Scaled scores, which 

standardize raw test scores based on normative data of healthy controls would be beneficial for 

quantifying the level of clinical deficits. This study examined raw test scores because scaled 

scores would result in a loss a variability within the data. Although the observed differences 

between the HC group and the AR and PD groups may not be clinically significant, large effect 

sizes that range from 0.77 to 1.35, and the measure of diagnostic accuracy (ROC analysis) which 

determined that lower working memory scores can reliably discriminate between AR and HC 

individuals indicate that the observed cognitive deficits in the AR and PD groups are meaningful 

and endorse further investigations. 

As part of a larger study, this research included the SDMT as a measure of processing 

speed. The SDMT can be administered by instructing the participant to write the answers directly 
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into the designated boxes or saying the answers out loud so that the administrator can write them 

down. For this study, the former approach was used which may have affected test outcomes for 

PD participants as motor symptoms cannot be controlled for (Jaywant et al., 2018). Nevertheless, 

patients that were included in this study were in the early stages of PD and have relatively mild 

levels of disability as assessed with the Hoehn and Yahr scale as well as with the UPDRS-III 

scale. Thus, it is less likely that lower scores on the SDMT are predominantly explained by 

motor impairments. 

Furthermore, the analysis approach to assess the FC within the DMN has its strengths and 

weaknesses. The present study applied an ROI-to-ROI approach which typically relies on the use 

of previously established atlases or coordinates (as in the current study) to identify ROIs of 

resting-state networks a priori (Rosazza et al., 2012). As ROIs of the DMN have been well-

defined in the past, this aspect represents a strength, rather than a limitation of the analysis 

approach and would facilitate the reproducibility of this study (Fox & Greicius, 2010). 

Compared to a data-driven method such as ICA, the ROI approach is advantageous because each 

ROI is the same in each participant so that they can easily be combined for group analyses. 

Moreover, the ROI approach leads to results that can be interpreted without many difficulties. 

With ICA, components that represent noise can be automatically isolated from components that 

represent the resting-state network. However, this introduces the problem of having to decide 

which components are part of the desired network and which are noise and should be excluded 

(Rosazza et al., 2012). The spontaneous BOLD fluctuations that are measured with rsfMRI 

within each ROI can also be biased by non-neuronal noise (i.e., physiological fluctuations) which 

can in part be accounted for by global signal correction (see above; Fox & Raichle, 2007). Yet, 

doing this can result in spurious anticorrelations between two ROIs and may also affect ROI-to-
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ROI correlations as global signal can also include neural signals. Therefore, it is suggested that 

the impact of global signal correction should be assessed for each study (Murphy & Fox, 2017). 

Although the inclusion of the global signal correction within the current study reduced ROI-to-

ROI correlations by a moderate amount, it was selected because the exclusion would have 

resulted in increased connections between mostly peripheral ROIs that are likely driven by 

artifacts. There is substantial variability between findings across studies that assessed the DMN 

with respect to PD, likely due to methodological differences. In order to reduce this variability, 

future studies should try to use similar methods or account for differences so that results are 

comparable more easily. For example, the inclusion of common DMN coordinates and similar 

data processing steps should be considered. 

A strength of using rsfMRI is that it is a non-invasive technique that does not require the 

execution of a task. Therefore, it is applicable for a wide range of clinical disorders including 

patients who may not have the physical or cognitive abilities needed to perform a task in the 

MRI scanner (Fox & Greicius, 2010). Moreover, rsfMRI focuses on spontaneous fluctuations in 

the BOLD signal and requires less scanner time compared to task-based fMRI, increasing the 

compliance of clinical patients or research participants for this examination. Task-based fMRI  

focuses on changes in BOLD signal based on the task used and considers spontaneous activity as 

noise that needs to be accounted for in order to detect true task-related modulations. Therefore, 

the signal-to-noise ratio is lower compared to rsfMRI and many trials of the task are required to 

acquire a signal that represents task-based activation (Fox & Greicius, 2010). However, an 

important limitation of rsfMRI and FC analyses is that it is difficult to interpret resting-state data 

with regard to cognitive function. Although the resting-state DMN has implications in passive 

cognitive processes such as mental explorations and anticipation of future events or tasks 
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(Buckner et al., 2008) it is not possible to assess a direct relationship between DMN FC and task-

based cognitive domains because both examinations are conducted at different time points 

(Gregory et al., 2017). This limitation makes the interpretation of the relationship between 

cognitive test scores and DMN FC challenging. Although the current study reported that 

cognitive deficits are likely to be independent from resting-state DMN FC alterations in both AR 

individuals and PD patients, future research should investigate this further as other studies have 

reported that an association between these variables exists (Disbrow et al., 2014; Hou et al., 

2016; Lucas-Jiménez et al., 2016). This study examined domains of working memory, 

processing speed, and executive function. However, it is possible that the resting-state DMN may 

be independent from these domains but may show associations with others such as language, or 

short- and long-term memory, which were not assessed in this study. For example, Lucas-

Jiménez et al. (2016) stated that low FC between the pCC and the temporal lobe was associated 

with verbal and visual memory in PD patients.  

Additionally, it might be more advantageous for future research to assess the DMN in AR 

individuals during task-based fMRI as it can give better insights into the relationship between FC 

and cognition. In healthy older individuals, a higher DMN deactivation during task-based 

assessments in the medial prefrontal cortex, left posterior parietal cortex, and the pCC has been 

related to better working memory performance (Sambataro et al., 2010). Better performance was 

also related to increased FC between the pCC and medial prefrontal cortex, suggesting that 

sufficient suppression within the DMN is important for cognitive performance as it helps to 

allocate required cognitive resources (Sambataro et al., 2010). Early PD patients and individuals 

at-risk for PD that have deficits in working memory may therefore demonstrate potential 

decreases in DMN activation for this task or increased deactivation in the DMN due to 



63 
 

compensatory processes, which would support the current study’s finding. However, due to the 

lack of studies investigating the association between the resting state and task-based DMN FC in 

early PD stages, this idea remains hypothetical and needs to be explored further.  

Moreover, the explanation that increased FC in the AR group represents compensatory 

processes needs to be viewed with caution. Typically, compensation occurs with the presence of 

neuronal loss or other neuropathological changes (Gregory et al., 2017); yet it is unknown 

whether individuals included in the AR group show early neuronal changes because we did not 

analyse quantitative structural brain measurements in this study. Therefore, the notion of 

compensatory processes in preclinical stages of PD remains inconclusive and warrants further 

research. Multi-method approaches that include structural MRI scans in addition to functional 

scans may help to determine whether both structural and functional changes exist. When early 

PD patients have been assessed with both gray matter volume and rsfMRI FC measures, 

compared to controls, PD patients showed reduced gray matter volumes in the pCC, the anterior 

cingulate cortex, the precuneus, the left middle temporal lobe, and the bilateral inferior parietal 

cortex (Lucas-Jiménez et al., 2016). The reduced gray matter volume of the pCC and the 

precuneus correlated with FC values between the pCC and the left middle temporal lobe, 

suggesting that structural changes (i.e., gray matter atrophy) are measurable in early PD and that 

they are linked to abnormalities in DMN FC (Lucas-Jiménez et al., 2016). Moreover, the use of 

SPECT scans to assess deficits in DAT bindings can also be a useful method to determine 

pathological neuronal processes in AR individuals (Berendse et al., 2001). Specifically, SPECT 

scans have shown that first-degree relatives with hyposmia and DAT binding deficits have an 

increased risk of 12.5% to develop PD during a 5-year period (Ponsen et al., 2010). Compared to 

first-degree relatives, the hNoFDR group is more ambiguous with respect to the risk of 
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developing PD, although idiopathic hyposmia has been identified as a prodromal marker of PD 

by the Movement Disorder Society (Berg et al., 2015). The assessment of DAT binding deficits 

may reduce this ambiguity as well. 

The inclusion of participants who are left-handed constitute a further limitation for this 

study. Left-handed individuals are often excluded from neuroimaging studies because they show 

more variable neural substrates of specific cognitive processes (e.g., spatial location and intensity 

of brain activation) which may create spatial noise within a dataset and therefore, influences the 

results of a study (Bailey et al., 2020). The differences between right- and left-handed 

individuals is mostly pronounced in the hemispheric dominance of language processes, as left-

handed individuals are more likely to show bilateral or right-sided laterality for language 

processes, compared to right-handed individuals, who predominantly demonstrate left-sided 

laterality (Pujol et al., 1999). Handedness has also been reported to influence DMN FC patterns. 

Saenger et al. (2012) reported that an increased DMN FC in the MTG, the SFG, the middle 

frontal gyrus, and the inferior parietal of the right hemisphere was more noticeable in right-

handed individuals compared to left-handed individuals, indicating that handedness may affect 

DMN FC measures. Thus, the inclusion of both left- and right-handed participants the current 

study may have influenced the FC results. Nevertheless, research studies that assessed potential 

differences in DMN FC between right-and left-handed individuals with and without 

neurodegenerative diseases are scarce. Thus, future research should further assess whether 

handedness affects the DMN in healthy individuals and in patients with a neurodegenerative 

disease such as PD. The inclusion of both right- and left-handed individuals, however, may 

increase the generalisability of the current study on a population level (Bailey et al., 2020). 

Approximately 10% of people in the general population are left-handed (de Kovel et al., 2019), 
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which is represented by a similar proportion of left-handed participants in our study sample. It 

has also been proposed that excluding participants based on handedness could restrict the 

scientific understanding of the brain and that the inclusion of left-handed individuals in 

neuroimaging research should be encouraged, unless there are strong justifications for the 

exclusion of such participants (Bailey et al., 2020). 

4.5 Conclusion 

This study is the first to assess both cognitive function and FC measures of the DMN in 

hyposmic individuals who are at increased risk of developing PD in comparison with healthy 

controls and early-stage PD patients. We found that verbal working memory deficits as well as 

increased DMN FC may be early markers of neurodegeneration in idiopathic hyposmic 

individuals, as similar cognitive deficits and FC alterations were found in PD patients. The 

diagnostic accuracy of working memory deficits and DMN FC abnormalities for individuals at 

increased risk of developing PD ranged from fair to good, respectively. In addition to working 

memory deficits, PD patients demonstrated cognitive deficits in processing speed and a trend 

towards lower semantic fluency performance. The results from our cognitive test analysis 

suggest that individuals in the prodromal stage of PD and early-stage PD patients may show 

deficits in specific cognitive domains. This pattern of cognitive deficits in early disease stages 

may differ from later disease stages because past research has indicated that PD patients with 

longer disease durations show performance deficits in a greater variety of cognitive tests 

(Liozidou et al., 2012) compared to the current study. Working memory deficits may be a marker 

of early PD but only when assessed with a task that requires a high level of cognitive resources. 

Early cognitive deficits in hyposmic first-degree relatives and hyposmic non-relatives may also 

indicate the progression towards a subtype of PD, PD-MCI, or the progression towards another 
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neurodegenerative disorder. With regard to our FC findings, increased FC in the AR group could 

suggest compensatory processes to maintain some aspects of cognitive function in response to 

early neurodegeneration. Alternatively, these alterations may be a sign of early disease onset 

independent of cognitive impairment. Further research is needed to delineate these concepts. 

Hyposmic first-degree relatives of PD patients and hyposmic non-relatives did not differ on 

cognitive test scores or DMN connectivity between edges that showed increased FC values. This 

indicates that the presence of hyposmia rather than genetic vulnerabilities may be an important 

element that is related to cognitive impairment and FC abnormalities in PD. The findings have 

implications for future research to investigate idiopathic hyposmic individuals with regard to 

neurodegenerative diseases, and to provide a foundation for future research to investigate 

whether the combination of hyposmia, working memory deficits, and increased FC measures 

between specific DMN ROIs can be used clinically to define the prodromal stage of PD.  
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Table 1 

Demographic Data for Participant Groups 

 

PD AR HCs F 

(2,78) 

p 

N 26 30 26 - - 

Sex (male/female) 15/11 15/15 15/11 - .797* 

Handedness (right/left) 22/4 26/4 22/1 - - 

Age (years) 62.4 (6.4) 58.9 (5.9) 61.2 (5.4) 2.45 .093 

Education (years) 14.8 (3.6) 15.5 (3.4) 15.8 (3.4) 0.56 .576 

UPSIT score 22.5 (7.0) 23.1 (5.7) 36.7 (2.3) 59.25 <.001 

Disease duration (from 

diagnosis) 

3.0 (3.2) - - - - 

Disease duration (from 

symptom onset) 

4.0 (2.9)** - - - - 

Hoehn &Yahr stage 1.8 (0.6) - - - - 

UPDRS-III score 22.5 (11.2)*** - - - - 

Note. Means (standard deviations) are shown for continuous variables. UPSIT = University of 

Pennsylvania Smell Identification Test. UPDRS-III = Unified Parkinson Disease Rating Scale 

Part III. *p-value from chi-squared test, χ2(2) = .46. ** n = 24. *** n = 22. 
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Table 2 

Comparison of Demographic and Cognitive Variables Between Hyposmic First-Degree 

Relatives and Hyposmic Non-Relatives 

 Group   

 hFDR hNoFDR t(28) p 

Demographic variables     

          N 14 16 - - 

          Age 58.1 (6.7) 59.6 (5.2) -0.68 .501 

          Sex (male/female) 10/4 4/11 - .028* 

          Handedness (right/left) 12/2 14/2 - - 

          Education (years) 16.8 (2.4) 14.4 (3.8) 2.01 .054 

          UPSIT scores 24.3 (5.5) 22.0 (5.8) 1.10 .280 

Cognitive variables     

          TMT4-5 60.9 (29.6) 53.2 (36.1) 0.64 .524 

          Phonemic fluency 37.9 (7.9) 44.3 (12.1) -1.70 .100 

          Semantic fluency 42.8 (7.7) 45.1 (6.2) -1.20 .241 

          LNS 9.4 (2.5) 10.4 (2.9) -1.02 .315 

          Digit span (backwards) 6.1 (2.5) 6.9 (2.5) -0.81 .423 

          Spatial span (backwards) 7.4 (2.0) 7.0 (1.9) 0.503 .619 

          SDMT 47.6 (7.7) 53.3 (10.6) -1.66 .108 

Note. Means (standard deviations) are shown for continuous variables. UPSIT = University of 

Pennsylvania Smell Identification Test. TMT4-5 = Trail Making Test Condition 4 controlled for 

motor speed. LNS = Letter-Number Sequencing task. SDMT = Symbol Digit Modalities Test. 

*p-value from chi-squared test, χ2(1) = 4.82. 
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Table 3 

Summary Data and Analysis Outcomes of Cognitive Test Scores 

  

Group 

  

Test 

 

PD AR HCs F (2,77) p 

TMT4-5 M(SD) 67.8 (37.4) 56.8 (32.9) 47.0 (21.1) 2.41 .097 

Madj (SE) 63.7 (5.8) 60.4 (5.4) 47.0 (5.71)  
 

N 26 30 26 
  

Phonemic 

fluency 

M(SD) 41.9 (12.1) 41.3 (10.7) 44.9 (12.8) 0.78 .463 

Madj (SE) 42.6 (2.4) 40.8 (2.2) 44.8 (2.3)  
 

N 26 30 26 
  

Semantic 

fluency 

M(SD) 38.2 (8.8) 43.7 (7.0) 44.2 (6.4) 3.68 .030* 

Madj (SE) 39.0 (1.4) 43.0 (1.3) 44.2 (1.4)  
 

N 26 30 26 
  

LNS M(SD) 9.8 (2.8) 10.0 (2.7) 11.9 (1.5) 6.89*** .002a 

Madj (SE)** 10.2 (0.5) 9.7 (0.4) 11.9 (0.4)  
 

N 25 30 26 
  

Digit span 

(backwards) 

M(SD) 6.9 (2.2) 6.5 (2.5) 7.8 (2.3) 2.42 .096 

Madj (SE) 7.1 (0.5) 6.4 (0.4) 7.7 (0.5)  
 

N 26 30 26 
  

Spatial span 

(backwards) 

M(SD) 7.4 (1.8) 7.2 (1.9) 7.8 (2.3) 1.44 .242 

Madj (SE) 7.6 (0.4) 7.0 (0.4) 7.8 (0.4)  
 

N 26 30 26 
  

SDMT M(SD) 41.2 (8.2) 50.6 (9.6) 51.3 (6.7) 9.42*** <.001b 

Madj (SE)** 41.8 (1.7) 50.1 (1.6) 51.2 (1.6)  
 

N 25 30 26 
  

Note. Madj = Estimated marginal means adjusted for age (M = 60.73) and years of education (M = 

15.37). TMT4-5 = Trail Making Test Condition 4 controlled for motor speed. LNS = Letter-

Number Sequencing task. SDMT = Symbol Digit Modalities Test. * Group differences did not 

survive multiple comparison correction (Bonferroni). ** Madj adjusted for age with M = 60.86 

and years of education with M = 15.38. *** F(2,76). a In a post hoc analysis, significant 



84 
 

differences were found between the AR and HC groups (p = .002), and between the PD and HC 

groups (p = .039) after Bonferroni correction. b Significant differences were found between the 

PD and HC groups (p = .001) and between the PD and AR groups (p = .002) after Bonferroni 

correction. 
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Table 4  

Descriptive Statistic from All Participant Groups of Edges Showing Significant FC Differences 

between the At-Risk and Healthy Control Group 

 Edges 

HCs                                

(n = 25) 

AR                                

(n = 28) 

PD                                 

(n = 23) 

M SD SEM M SD SEM M SD SEM 

amPFC – 

MTG-L 
0.042 0.182 0.036 0.222 0.210 0.040 0.189 0.184 0.038 

amPFC – 

MTG-R 
-0.093 0.156 0.031 0.115 0.169 0.032 -0.014 0.195 0.041 

IFG-R – 

MTG-L 
0.208 0.168 0.034 0.068 0.171 0.032 0.166 0.241 0.050 

pCC – 

vmPFC 
0.110 0.253 0.051 0.272 0.205 0.039 0.291 0.201 0.042 

PCu – 

MTG-L 
-0.024 0.191 0.038 0.083 0.172 0.032 0.016 0.271 0.057 

MTG-L – 

vmPFC 
-0.041 0.221 0.044 0.088 0.178 0.034 0.142 0.212 0.044 

Note. MTG-L = left middle temporal gyrus. MTG-R = right middle temporal gyrus. IFG-R = 

right inferior frontal gyrus. pCC = posterior cingulate gyrus. vmPFC = ventromedial prefrontal 

cortex. PCu = precuneus.  
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Table 5 

Analysis Outcomes of Edges with Abnormal FC in the At-Risk group (Compared to HCs) 

Edges t(51) p (uncorrected) 
p (FDR-

corrected) 

Effect size    

(Hedges’ g) 

amPFC – MTG-L -3.32 .002 .114 0.91 

amPFC – MTG-R -4.64 .000 .003 1.28 

IFG-R – MTG-L 3.01 .004 .184 0.83 

pCC – vmPFC -2.58 .013 .443 0.71 

PCu – MTG-L -2.16 .036 .812 0.59 

MTG-L – vmPFC -2.36 .022 .603 0.65 

Note. T-values and p-values were extracted from a t-test between at-risk and healthy control 

groups. amPFC = anterior medial prefrontal cortex. MTG-L = left middle temporal gyrus. MTG-

R = right middle temporal gyrus. IFG-R = right inferior frontal gyrus. pCC = posterior cingulate 

gyrus. vmPFC = ventromedial prefrontal cortex. PCu = precuneus. 
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Table 6 

Comparison between Hyposmic First-Degree Relatives and Hyposmic Non-Relatives on 

Functional Connectivity of the DMN 

Edge 
hFDR (n = 12) hNoFDR (n = 16) 

 

M SD SEM M SD SEM t(26) p 

amPFC – MTG-L 0.23 0.21 0.06 0.22 0.22 0.05 -0.08 .940 

amPFC – MTG-R 0.12 0.21 0.06 0.11 0.14 0.04 0.16 .874 

IFG-R – MTG-L 0.16 0.11 0.03 -0.004 0.18 0.04 2.89 .008 

pCC – vmPFC 0.21 0.23 0.07 0.32 0.17 0.04 -1.53 .138 

PCu – MTG-L 0.15 0.20 0.06 0.03 0.14 0.03 1.93 .065 

MTG-L – vmPFC 0.11 0.18 0.05 0.07 0.18 0.05 0.53 .602 

Note. Only edges that showed abnormal functional connectivity (before FDR correction) 

between the at-risk and control groups are shown. hFDR = hyposmic first-degree relatives. 

hNoFDR = hyposmic non-relatives. amPFC = anterior medial prefrontal cortex. MTG-L = left 

middle temporal gyrus. MTG-R = right middle temporal gyrus. IFG-R = right inferior frontal 

gyrus. pCC = posterior cingulate gyrus. vmPFC = ventromedial prefrontal cortex. PCu = 

precuneus. 

 

 

  



88 
 

Table 7 

Correlational Results 

Variable 
LNS score (AR 

group) 

LNS score (PD 

group) 

SDMT score 

(PD group) 

Semantic 

fluency score 

(PD group) 

amPFC – MFG-R -0.144 0.106 -0.143 0.203 

amPFC – MFG-L 0.137 0.132 -0.034 -0.123 

IFG-R – MFG-L -0.113 0.205 0.174 0.414* 

pCC – vmPFC -0.08 -0.097 -0.015 -0.098 

PCu – MFG-L 0.081 0.174 0.080 -0.133 

MFG-L - vmPFC 0.097 -0.023 0.117 -0.324 

Note. Pearson correlation coefficients are given. Bolded values are part of the primary analysis.  

*p < .05 (uncorrected). 
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Figure 1 

Group Comparison of University of Pennsylvania Smell Identification Test (UPSIT) Scores 

 

Note. Error bars represent ± 1 SEM. The UPSIT measures odour identification abilities with 

higher scores indicating better performance. 

*p < .05 
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Figure 2 

Group Comparison of Cognitive Test Scores 

 

Note. Adjusted means and error bars representing ± 1 SEM are given. (A) Scores from the 

Letter-Number Sequencing test which assesses verbal working memory and which is more 

cognitively demanding that the digit span backwards test. (B) Digit span backwards test scores. 

The digit span measures verbal working memory. (C) Scores from the spatial span backwards 

measuring spatial working memory. (D) Scores from the DKEFS trail making test condition 4 

controlled for motor speed (condition 5; TMT4-5). This test measures executive function. (E) 
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Semantic fluency test scores. Group differences for this test did not survive multiple comparison 

correction (Bonferroni). (F) Phonemic fluency test scores. (G) Scores from the Symbol Digit 

Modalities Test (SDMT) measuring psychomotor processing speed. Except for the TMT4-5, 

higher test scores indicate better performance. Higher test scores on the TMT4-5 indicate worse 

performance. 

*p < .05 
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Figure 3 

Functional Connectivity (FC) between the Anterior Medial Prefrontal Cortex (amPFC) and the 

Right Middle Temporal Gyrus (MTG-R) 

 

Note. Error bars represent ± 1 SEM. 

*p < .05 (uncorrected)  

**p < .05 (FDR-corrected) 
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Figure 4 

Significant Functional Connectivity (FC) Differences between the At-Risk Group and Healthy 

Controls and between the At-Risk Group and Parkinson’s Patients (Secondary Results) 

 

Note. Error bars represent ± 1 SEM. (A) FC between the posterior cingulate cortex (pCC) and the 

ventromedial prefrontal cortex (vmPFC). (B) FC between the anterior medial prefrontal cortex 

(amPFC) and the left middle temporal gyrus (MTG-L). (C) FC between the MTG-L and the 

vmPFC. (D) FC between the precuneus (PCu) and the MTG-L. (E) FC between the right inferior 

frontal gyrus (IFG-R) and the MTG-L.  

 *p < .05 (uncorrected)  
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Figure 5 

Receiver-Operating Characteristic Curve Analysis Determining the Accuracy of amPFC-to-

MTG-R Functional Connectivity (FC) to Discriminate between At-Risk Individuals and Healthy 

Controls 

 

Note. The receiver-operating characteristic (ROC) curve is represented in blue with an area under 

the curve (AUC) value of .82. At-risk individuals were considered as cases. The red line 

represents the reference line which indicates that the diagnostic test classifies at-risk individuals 

by chance. Because ROC curve of the FC between the amPFC and the MTG-R is above the 

reference line, the measure has good diagnostic accuracy.  
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Figure 6 

Receiver-Operating Characteristic Curve Analysis Determining the Accuracy of Letter-Number 

Sequencing Test Scores to Discriminate between At-Risk Individuals and Healthy Controls 

 

Note. The receiver-operating characteristic (ROC) curve is represented in blue with an area under 

the curve (AUC) value of .76. At-risk individuals were considered as cases. The red line 

represents the reference line which indicates that the diagnostic test classifies at-risk individuals 

by chance. Because the ROC curve of Letter-Number Sequencing test scores is above the 

reference line, the measure can correctly identify at-risk individuals. 
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Appendix A 

MRI Screening Questionnaire 
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Appendix B 

Custom Python Script for the Functional Connectivity Analysis 

#!/usr/bin/env python 

# 

# nilearn_conn_group_analysis.py 

# 

# This script computes functional-connectivity between all every specified 

ROI seed, given coordinates,labels. 

# It assumes data has been processed with FMRIprep and is located in 

../derivatives/fmriprep/ (relative path). 

# It also requires a participants.tsv or phenotypes.tsv style file to filter 

subjects into groups. 

#  

# There are many processing options that need to be selected, but here are 

the important details: 

# 

# 

# ### CONFOUNDS ########### 

#  Recommend using FD + 24-HMP + aCompCor + 4GS + Cosine_XX + SpikeReg(fd>0.5 

| dvars>1.5). 

# 

#  From: https://neurostars.org/t/fmriprep-outputs-very-high-number-of-

acompcors-up-to-1000/5451/10 

#   '''Since CompCor is run after high-pass filtering with Discrete Cosine 

Functions, when using a/tCompCor  

#   regressors you should also include the cosine_XX regressors in your 

design. 

#   Related to this, you probably should not include any of the global 

signals (global_signal, white_matter, csf).''' 

# 

#  1) aCompCor: Use either the first 5-6 aCompCor WM and 5-6 CSF components 

for each subject. Or use first N-components of each 

#     that explain a fixed amount of cumulative variance (ie, 25%).  

#     Cosines:  Use aCompCor components, should also use these DCT Cosine 

regressors instead of high-pass TF (aCompCor done w/DCT @.008 Hz).  

#   24HMP:    24 total head-motion-parameters = 

([rotX,rotY,rotZ,transX,transY,transZ]+1derivatives)+squares 

#   4GS:      Global_signal + 1deriv + squares of each. 

#     FD:       Framewise_displacement. 

#     REFERENCE = https://fmriprep.org/en/stable/outputs.html#confounds 

#                 

https://github.com/nipreps/fmriprep/blob/674124ee80b3e2a8affddf005e910e4ca1c9

7cc0/fmriprep/workflows/bold/confounds.py  

# 

#  2) SpikeReg: Debatable. Done by building a censor matrix with one column 

per SpikeTR (zeros except row @ BadTR). 

#     If doing SpikeReg, recommend using FD>0.5 OR std.DVARS>1.5, as 

described in discussion here: 

#        https://neurostars.org/t/fmriprep-20-2-0-produces-motion-outliers-

in-confounds-timeseries-file-by-default-how-are-they-derived/18550/4 

#     optionally, could censor -1 TR before Spike and +1,+2 TRs after each 

excessive motion spike, see here: 
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#     Problems with using SpikeReg is loss of DOF for individuals wwhere more 

Spikes are censored. 

#     Important to set an exclude limit to drop subjects entirely when >20% 

of TRs are censored. 

# 

#  3) SpatialSmoothing, optional, but not that fMRIprep does not do any 

smoothing. (recommend 1.5-2xVoxelSize?) 

#  

https://fmriprep.org/en/stable/outputs.html?highlight=smoothing#outputs-of-

fmriprep  

# 

#  4) Detrend: detrends signal before applying TF/confounds, generally a good 

idea. 

#      - do not use detrend or high-pass when using aCompCor and Cosines. 

#        see here: https://github.com/SIMEXP/load_confounds 

# 

#  5) TF low_pass/high_pass: recommend use Cosine_XX regressors with aCompCor 

PCs above rather than high_pass/low_pass. 

#  https://fmriprep.org/en/stable/outputs.html?highlight=FD#confound-

regressors-description 

#  

https://www.brainvoyager.com/bvqx/doc/UsersGuide/Preprocessing/TemporalHighPa

ssFiltering.html 

# 

#  6) Standardize: good idea to return z-scores, optional 'psc' Percent 

Signal Change, or None. 

# 

# References: 

#    https://nilearn.github.io/modules/generated/nilearn.signal.clean.html 

#    https://fmriprep.org/en/stable/outputs.html#confounds 

# 

# #### Testing Confounds on PDvsHCvsAR ################# 

#   Tangent Plot results - EdgeThreshold=85% 

#  1) aCompCor+Cosines+24HMP+FD+SpikeReg -GS 

#      PD=.27, AR=.31, HC=.31 

#  2) aCompCor+Cosines+24HMP+SpikeReg -GS,-FD 

#      PD=.27, AR=.31, HC=.31  (conclusion: FD makes little diff)  

#  3)  

# 

# 

# ### Connectivity Measure ######## 

#   choices = ['correlation','partial correlation','tangent','covariance'] 

#   See article Dadi etal, 2019: 

https://doi.org/10.1016/j.neuroimage.2019.02.062 

#   Examples: 

#      

https://nilearn.github.io/auto_examples/03_connectivity/plot_group_level_conn

ectivity.html#sphx-glr-auto-examples-03-connectivity-plot-group-level-

connectivity-py 

# 

# 

## MORE LEARNING: 

#  + differences in correlation models (see Note #2 above) 

#  + GraphLasso? node-centricity==connectedness, assume after thresholding? 

#  + GraphLasso? path-length? 

#  + Lag-0/Lag-1 --> Granger Causality (Learn more!) 

# 
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# Graph Topological Metrics for node-degree centrality (centricty?), average 

path-length, clustering-coefficients: 

#   see:  

#        https://sites.google.com/site/bctnet/measures/list  

#       Varoquaux and Craddock, 2013: 

#   https://arxiv.org/pdf/1304.3880.pdf  

#  Rubinov and Sporns, 2010: 

#  

 https://www.sciencedirect.com/science/article/pii/S105381190901074X?via

%3Dihub#bib45 

# 

# 

#----------------------------------------------------------------------------

------------------------------------- 

import os 

import sys 

import json 

import datetime 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from nilearn import input_data 

from nilearn.connectome import ConnectivityMeasure 

from nilearn import plotting 

##---------------------------------------------------------------------------

------------------------------------- 

## PROJECT_VARIABLES 

##---------------------------------------------------------------------------

------------------------------------- 

SCRIPT = os.path.abspath(sys.argv[0]) 

SCRIPTSDIR = os.path.dirname(SCRIPT) 

PROJECT_DIR = os.path.dirname(SCRIPTSDIR) 

FMRIPREP_DIR = os.path.join(PROJECT_DIR, 'derivatives','fmriprep') 

RESULTS_DIR = os.path.join(PROJECT_DIR, 'results') 

DOCS_DIR = os.path.join(PROJECT_DIR, 'docs') 

DATE_STR = datetime.datetime.now().strftime('%Y%m%d-%H%M') 

GROUP_STR = 'PDvsHCvsAR' 

NETWORK_STR = 'DMNSpreng18' 

CONF_STR = '6HMP1GS2PhysSpikeRegSS7' 

GRP_RESULTS_DIR = 

os.path.join(RESULTS_DIR,'%s_nilearn_%s_%s_%s'%(DATE_STR,GROUP_STR,NETWORK_ST

R,CONF_STR)) 

if not os.path.exists(GRP_RESULTS_DIR): 

 os.mkdir(GRP_RESULTS_DIR) 

GRP_RESULTS_FN_PREFIX = '%s_%s_%s'%(DATE_STR,GROUP_STR,NETWORK_STR) 

GRP_RESULTS_FN = os.path.join(GRP_RESULTS_DIR, 

'%s.csv'%(GRP_RESULTS_FN_PREFIX)) 

CORR_PLOTS_FN = os.path.join(GRP_RESULTS_DIR, '%s'%(GRP_RESULTS_FN_PREFIX)) 

PARTICIPANTS_FN = os.path.join(DOCS_DIR, 'participants.tsv') 

if os.uname().nodename == 'Aoraki.local': 

 PARTICIPANTS_FN = os.path.join(DOCS_DIR, 'participants_aoraki.tsv') 

##---------------------------------------------------------------------------

------------------------------------- 

## Global Variables 

##---------------------------------------------------------------------------

------------------------------------- 

DEBUG_VERBOSE=False  # bool, controls output printing 
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## data info ------------------------- 

FUNC_TR_TOTAL=180   # total TRs to expect in each func 

FUNC_TR_SEC=2.0    # sec, Repetition-Time of input func data 

## sphere-masking options ------------------------- 

TF_LOW_PASS=0.08    # Hz, freq cutoff for low-pass temporal 

filter, standard=0.08 (default=0.08) 

TF_HIGH_PASS=0.008   # Hz, freq cutoff for high-pass temporal 

filter, standard=0.008 (default=None) 

DETREND_OPTION=True   # bool, force-additional detrending - not 

recommended. (default=False) 

STANDARDIZE_OPTION='zscore' # bool, option to return z-score, or Percent-

Signal-Change or raw. (default=True or 'zscore') 

SMOOTH_FWHM_MM=7   # mm, full-width half maximum of spatial 

smoothing to apply (default=0) 

FUNC_SPHERE_RADIUS=6  # mm, radius for sphere around roi seed coord 

(default=0) 

## SpikeReg & censoring index pre-post high-motion ----------- 

DO_SPIKE_REG=True   # bool, do spikereg/censoring for each spike 

(default=True) 

FD_LIMIT=0.5    # mm, framewise-displacement movement 

limit (default=0.5) 

DVARS_LIMIT=1.5    # mm, std.dvars movement limit  

  (default=1.5) 

SPIKE_REG_ANDOR='OR'  # AND|OR, choice to filter TRs by above 

FD_LIMIT,DVARS_LIMIT (default='OR') 

CENSOR_TR_i_MINUS_1=False # bool, censors TR at i-1 excessive_motion TR, 

(default=True) 

CENSOR_TR_i_PLUS_1=False # bool, censors TR at i+1 excessive_motion TR, 

(default=True) 

CENSOR_TR_i_PLUS_2=False # bool, censors TR at i+2 excessive_motion TR, 

(default=False) 

## 

EXCLUDE_MOVERS_LIM_PERC=0.2 #percent limit total TRs being censored to 

exclude from group (ie, 180 total TRs, limit=0.2(20%); then 180*.2 = 36 vols   

CensoredTR_EXCLUDE_LIMIT = int(EXCLUDE_MOVERS_LIM_PERC*FUNC_TR_TOTAL) #int, 

limit of total TRs being censored to exclude subject from group 

## 

CONF_USE_N_aCompCorWM=0  # int, first N aCompCor-WM PCs to use in 

denoising. (default=5) 

CONF_USE_N_aCompCorCSF=0 # int, first N aCompCor-CSF PCs to use in 

denoising. (default=5) 

## 

NILEARN_CACHE_NAME='nilearn_cache_%s_%s_%s'%(GROUP_STR,NETWORK_STR,CONF_STR) 

# string name for cache folder in /derivatives/ (default='') 

NILEARN_CACHE_MEM_LEVEL=1 # int, cache memory level higher number caches 

more info (default=1) 

NILEARN_VERBOSITY=1   # int, verbosity level (default=0) 

## 

CONF_SUFFIX = '_regressors'  ## filename suffix to append to confounds-

filename to save selected confounds 

## 

CREATE_CARPET_PLOTS=True ##make carpet plots by group with subjects x 

ROI-to-ROI-features. 

Run_GraphicalLassoCV=False # run GraphicalLassoCV to estimate Covariance 

as a SparseInverseMatrix 

## DMN_ROIs -----------------------------------------------------------------

------------------------------------ 
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## Spreng_etal_2013 

##  

SPRENG_DMN_ROIS=dict() 

SPRENG_DMN_ROIS['long_labels'] = [ 

 'AnteriorMedialPrefrontalCortex', 

 'AnteriorTemporalLobeLeft', 'AnteriorTemporalLobeRight', 

 'DorsalMedialPrefrontalCortex', 

 'HippocampalFormationLeft', 'HippocampalFormationRight', 

 'InferiorFrontalGryusLeft', 'InferiorFrontalGryusRight', 

 'PosteriorCingulateCortex', 

 'PosteriorInferiorParietalLobuleLeft', 

'PosteriorInferiorParietalLobuleRight', 

 'Precuneus', 

 'SuperiorFrontalGyrusLeft', #'SuperiorFrontalGryusRight', 

 'MedialTemporalGyrusLeft', 'MedialTemporalGyrusRight', 

#'SuperiorTemporalSulcusLeft', 'SuperiorTemporalSulcusRight', 

 'TemoralParietalJunctionLeft', 'TemoralParietalJunctionRight', 

 'VentralMedialPreFrontalCortex'] 

SPRENG_DMN_ROIS['short_labels'] = [ 

 'amPFC', 

 'aTL_L', 'aTL_R', 

 'dmPFC', 

 'HF_L', 'HF_R', 

 'IFG_L', 'IFG_R', 

 'pCC', 

 'pIPL_L', 'pIPL_R', 

 'PCu', 

 'SFG_L', #'SFG_R', 

 'MTG_L', 'MTG_R', #'STS_L', 'STS_R', 

 'TPJ_L', 'TPJ_R', 

 'vmPFC'] 

SPRENG_DMN_ROIS['coords'] = [ 

 (-8,56,14), 

 (-52,-10,-20), (52,-4,-16), 

 (-8,50,34), 

 (-26,-8,-24), (24,-14,-22), 

 (-42,26,-14), (50,32,-6), 

 (-2,-48,28), 

 (-50,-60,28), (58,-60,28), 

 (-2,-60,50), 

 (-8,20,62), #(12,18,62), 

 (-60,-28,-4), (50,-36,4), 

 (-44,-52,22), (44,-58,18), 

 (-2,44,-12)] 

## MSDL-atlas 

## from: 

https://nilearn.github.io/auto_examples/03_connectivity/plot_group_level_conn

ectivity.html 

##>>> from nilearn import datasets 

##>>> msdl_data = datasets.fetch_atlas_msdl() 

##>>> msdl_data.keys() 

##  dict_keys(['maps', 'labels', 'region_coords', 'networks', 'description']) 

##>>> for i in range(3,7): 

##      

print('network:',msdl_data['networks'][i],'label:',msdl_data['labels'][i],'co

ords:',msdl_data['region_coords'][i]) 

##  network: b'DMN' label: Med DMN coords: (-0.2, -55.21, 29.87) 
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##  network: b'DMN' label: L DMN coords: (-45.8, -64.78, 31.84) 

##  network: b'DMN' label: R DMN coords: (51.66, -59.34, 28.88) 

##  network: b'DMN' label: Front DMN coords: (-0.15, 51.42, 7.58) 

## 

## DMN coords from nilearn example:  

## 

https://nilearn.github.io/auto_examples/03_connectivity/plot_sphere_based_con

nectome.html#sphx-glr-auto-examples-03-connectivity-plot-sphere-based-

connectome-py  

#DMN4_ROI_COORDS = [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)] 

#DMN4_ROI_LABELS_LONG = 

['PosteriorCingulateCortex','LeftTemporoparietalJunction','RightTemporopariet

alJunction','MedialPrefrontalCortex'] 

#DMN4_ROI_LABELS_SHORT = ['PCC','LTPj','RTPj','MPFC'] 

## -- choose ROI set 

FUNC_ROI_COORDS = SPRENG_DMN_ROIS['coords'] 

FUNC_ROI_LABELS_LONG = SPRENG_DMN_ROIS['long_labels'] 

FUNC_ROI_LABELS_SHORT = SPRENG_DMN_ROIS['short_labels'] 

## SPHERE-MASKER ------------------------------------------------------------

----------------------------------------- 

masker = input_data.NiftiSpheresMasker(FUNC_ROI_COORDS, 

radius=FUNC_SPHERE_RADIUS,  

                                       low_pass=TF_LOW_PASS, 

high_pass=TF_HIGH_PASS, 

                                       detrend=DETREND_OPTION, 

standardize=STANDARDIZE_OPTION,  

                                 smoothing_fwhm=SMOOTH_FWHM_MM, 

t_r=FUNC_TR_SEC, memory=NILEARN_CACHE_NAME,  

                                 

memory_level=NILEARN_CACHE_MEM_LEVEL, verbose=NILEARN_VERBOSITY).fit() 

##---------------------------------------------------------------------------

------------------------------------- 

# Source: https://neurostars.org/t/getting-started-using-fmripreps-ica-aroma-

outputs/16541 

def process_confounds(confounds_file, a_comp_cor=True, 

a_comp_cor_N_to_include=8): 

 """ 

 scrubbing for TASK 

 remove TRs where FD>.5, stdDVARS (that relates to DVARS>.5) 

 regressors to use 

 ['X','Y','Z','RotX','RotY','RotY','<-

firsttemporalderivative','stdDVARs','FD'] 

 junk regressor: errors, ommissions, maybe very fast RTs (less than 50 

ms) 

 """ 

 conf_df = pd.read_csv(confounds_file, sep = '\t', 

na_values=['n/a']).fillna(0) 

 excessive_movement = (conf_df.framewise_displacement>.5) & 

(conf_df.std_dvars>1.2) 

 excessive_movement_TRs = excessive_movement[excessive_movement].index 

 excessive_movement_regressors = np.zeros([conf_df.shape[0], 

np.sum(excessive_movement)]) 

 for i,TR in enumerate(excessive_movement_TRs): 

  excessive_movement_regressors[TR,i] = 1 

 excessive_movement_regressor_names = ['rejectTR_%d' % i for i in 

excessive_movement_TRs] 

 # get movement regressors 
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 movement_regressor_names = 

['trans_x','trans_y','trans_z','rot_x','rot_y','rot_z'] 

 movement_regressors = conf_df.loc[:,movement_regressor_names] 

 movement_regressor_names += [i+'td' for i in movement_regressor_names] 

 movement_regressors = np.hstack((movement_regressors, 

np.gradient(movement_regressors,axis=0))) 

 # add square 

 movement_regressor_names += [i+'_sq' for i in movement_regressor_names] 

 movement_regressors = np.hstack((movement_regressors, 

movement_regressors**2)) 

 # add additional relevant regressors 

 add_regressor_names = ['framewise_displacement']  

 if a_comp_cor:  

  add_regressor_names += [i for i in conf_df.columns if 

'a_comp_cor' in i][:8] 

 additional_regressors = conf_df.loc[:,add_regressor_names].values 

 regressors = 

np.hstack((movement_regressors,additional_regressors,excessive_movement_regre

ssors)) 

 # concatenate regressor names 

 regressor_names = movement_regressor_names + add_regressor_names + 

excessive_movement_regressor_names 

 return regressors, regressor_names 

##---------------------------------------------------------------------------

------------------------------------- 

## build-volume censor matrix with one column per bad-TR (1=remove,0=keep), 

as per: 

##   Parkes L, Fulcher B, Yücel M, Fornito A, An evaluation of the efficacy, 

reliability, and sensitivity of motion  

##   correction strategies for resting-state functional MRI. NeuroImage. 

2018. doi:10.1016/j.neuroimage.2017.12.073 

## 

##  NOTE1: algorithm = find bad TRs exceeding limits, include 1TR before and 

2TR after excessive-motion TR 

## 

##  NOTE2: CensorExclusionLimit > (20% of total_TRs; (500*.2) >= 100 TRs then 

exclude subject) 

## 

## NOTE3: should we use OR or AND when thresholding FD and std_DVARS? (AND is 

less aggressive) 

##  

## Good discussion on FD and DVARS limits and SpikeReg: 

## https://neurostars.org/t/fmriprep-20-2-0-produces-motion-outliers-in-

confounds-timeseries-file-by-default-how-are-they-derived/18550/4  

##  (Recommend using (FD>0.5 OR std_DVARS>1.5) 

def censor_excessive_movement_spikes(conf_df, 

fd_lim=FD_LIMIT,dvars_lim=DVARS_LIMIT): 

 ''' 

 Given confounds as DataFrame and limits for FD and STD.DVARS,  

    1. find excessive-motion-TRs 

    2. expand list of censor TRs to include 1xTR before and 2xTR after 

each (potentially) 

    3. build a censor array with one column per each censor, 

0=keep,1=ignore 

    4. return (1) list of original em_locs, (2) censor_arr, (3) 

censor_arr_col_names 

 ''' 
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 if SPIKE_REG_ANDOR.upper() == 'AND': 

  em = (conf_df.framewise_displacement > fd_lim) & 

(conf_df.std_dvars > dvars_lim) ##excessive-movements 

 elif SPIKE_REG_ANDOR.upper() == 'OR': 

  em = (conf_df.framewise_displacement > fd_lim) | 

(conf_df.std_dvars > dvars_lim) ##excessive-movements 

 else: 

  print('*** ERROR: could not determine ANDOR 

variable:',SPIKE_REG_ANDOR) 

  sys.exit(3) 

 em_vol_ind  = em[em].index 

 em_vol_locs = em_vol_ind.values 

 num_spikes  = len(em_vol_locs) 

 if num_spikes > 0: 

  print(' -- WARNING: found %d excessive movement 

spikes:'%(num_spikes)) 

 

 print(conf_df[['framewise_displacement','std_dvars']].iloc[em_vol_ind]) 

  ## include 1TR before each spike, and 2TRs after each spike 

  for i in em_vol_locs: 

   if i-1 >= 0 and CENSOR_TR_i_MINUS_1 == True: 

    em[i-1]=True 

   if i+1 < len(em) and CENSOR_TR_i_PLUS_1 == True: 

    em[i+1]=True 

   if i+2 < len(em) and CENSOR_TR_i_PLUS_2 == True: 

    em[i+2] = True 

  em_vol_ind = em[em].index 

 ## build [num_rows x nSpikeTR] matrix of regressors with one column per 

bad-TR (1=remove,0=keep) 

 em_vol_reg_arr = np.zeros([conf_df.shape[0], np.sum(em)])  

 for i,TR in enumerate(em_vol_ind): 

  em_vol_reg_arr[TR,i] = 1 

 em_reg_names = ['reject_TR_%d' % i for i in em_vol_ind] 

 return num_spikes,em_vol_reg_arr,em_reg_names 

##---------------------------------------------------------------------------

------------------------------------- 

## 

## Good discussion on aCompCor PCs, and selection for denoising.  

##  note recommendation near bottom of discussion to use CosineXX confounds 

with aCompCor.  

## https://neurostars.org/t/fmriprep-outputs-very-high-number-of-acompcors-

up-to-1000/5451/7 

## 

## Recommendation to include top5 CSF and WM A_Comp_Cor Principle Components 

(PCs). 

## 1. Parkes L, Fulcher B, Yücel M, Fornito A, An evaluation of the efficacy, 

reliability, and sensitivity of motion  

##    correction strategies for resting-state functional MRI. NeuroImage. 

2018. doi:10.1016/j.neuroimage.2017.12.073 

## 2. Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH, 

Reduction of motion-related artifacts in resting state fMRI using aCompCor. 

##    NeuroImage. 2014. doi:10.1016/j.neuroimage.2014.03.028 

## 

## NOTE: To get the top 5 of each CSF and WM aCompCor PCs, the confounds.json 

file must be filtered. 

##  
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## Using algo similar to '24P+aCompCor+4GSR' here: 

https://github.com/sjburwell/fmriprep_denoising 

##  

def select_confounds(conf_fn, suffix='_regressors'): 

 conf_df = pd.read_csv(conf_fn, sep='\t', na_values=['n/a']).fillna(0)  

 ### load subjects confounds.json and locate first 5csf+5wm a_comp_cor 

columns  

 #json_fn = conf_fn[:-4]+'.json' 

 #with open(json_fn,'r') as j: 

 # json_df = pd.DataFrame(json.load(j)).transpose() 

 ### ------ a_comp_cor_XX ------- 

 #acc_csf_names = 

json_df[(json_df['Mask']=='CSF')&(json_df['Retained']==True)].head(CONF_USE_N

_aCompCorWM).index.to_list() 

 #acc_wm_names = 

json_df[(json_df['Mask']=='WM')&(json_df['Retained']==True)].head(CONF_USE_N_

aCompCorCSF).index.to_list()   

 #acc_names = acc_csf_names+acc_wm_names 

 ### ------ Cosines_XX ---------- 

 #cos_names = 

conf_df.loc[:,conf_df.columns.str.contains('cosine')].columns.tolist() 

 ### ------ 24 HMP = 6HMP + 1stDerivs(6HMP) +12Squares(6HMP,1stDerivs)  

 #mp_names = 

['trans_x','trans_x_derivative1','trans_x_derivative1_power2','trans_x_power2

',  

 #   

'trans_y','trans_y_derivative1','trans_y_derivative1_power2','trans_y_power2'

,  

 #   

'trans_z','trans_z_derivative1','trans_z_derivative1_power2','trans_z_power2'

,  

 #   

'rot_x','rot_x_derivative1','rot_x_derivative1_power2','rot_x_power2',  

 #   

'rot_y','rot_y_derivative1','rot_y_derivative1_power2','rot_y_power2', 

 #   

'rot_z','rot_z_derivative1','rot_z_derivative1_power2','rot_z_power2'] 

 ### ----- 4GSR = Parkes,et al, 2018 ------------- 

 #gsr_names = 

['global_signal','global_signal_derivative1','global_signal_derivative1_power

2','global_signal_power2'] 

 #wm_names = 

['white_matter','white_matter_derivative1','white_matter_derivative1_power2',

'white_matter_power2'] 

 #csf_names = 

['csf','csf_derivative1','csf_derivative1_power2','csf_power2'] 

 ### concatenate all regressor names 

 #reg_names = mp_names+gsr_names+wm_names+csf_names 

 reg_names = 

['trans_x','trans_y','trans_z','rot_x','rot_y','rot_z','white_matter','csf','

global_signal']  

             #['framewise_displacement','std_dvars','dvars'] 

 ## confirm columns exist in confounds.tsv  

 for c in reg_names: 

  if not c in conf_df.columns.values: 

   print('\n*** ERROR: missing column=%s from confounds file = 

%s\n' %(c,conf_fn)) 
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   sys.exit(7) 

   ## adjust later to throw an exception 

 ## ------ Spike Regression ----------- 

 #reg_df = conf_df.loc[:,reg_names]     ## returns df 

 #reg_arr = conf_df.loc[:,reg_names].values ##returns np.array() 

 nSpikes,censor_TR_names = 0,[] 

 if DO_SPIKE_REG: 

  ## do SpikeReg here: 

  #nSpikes, censor_arr,censor_names = 

censor_excessive_movement_spikes(conf_df, FD_LIMIT, DVARS_LIMIT) 

  nSpikes,censor_TR_arr,censor_TR_names = 

censor_excessive_movement_spikes(conf_df,FD_LIMIT,DVARS_LIMIT) 

  ## merge selected conf_arr + censor_arr 

  conf_saved_arr = np.concatenate((conf_df[reg_names].values, 

censor_TR_arr),axis=1) 

  conf_saved_names = reg_names+censor_TR_names 

 else: 

  conf_saved_arr = conf_df[reg_names].values 

  conf_saved_names = reg_names 

 conf_sel_df = 

pd.DataFrame(data=conf_saved_arr,columns=conf_saved_names) 

 conf_sel_arr_fn = conf_fn[:-15]+suffix+'.csv' ## try adding headers 

here later 

 conf_sel_df.to_csv(conf_sel_arr_fn,sep=',',index=False) 

 print(' ++ selected confound values saved to file =', conf_sel_arr_fn) 

 return nSpikes,len(censor_TR_names),conf_sel_arr_fn 

##---------------------------------------------------------------------------

------------------------------------- 

##  gen_label_combinations(['A','B','C']) returns "A_to_B,A_to_C,B_to_C" 

def gen_label_combinations(v,incl_self=False): 

 if len(v) < 2: 

  return v 

 if incl_self == True: 

  return ['%s_to_%s'%(v[i],v[j]) for i in range(len(v)) for j in 

range(i,len(v))] 

 else: 

  return ['%s_to_%s'%(v[i],v[j]) for i in range(len(v)) for j in 

range(i+1,len(v))] 

##---------------------------------------------------------------------------

------------------------------------- 

## Given a numpy MxN array, return the upper-triangle as a vector. 

## Example:   

##   M=[[A, B, C], 

##      [D, E, F], 

##      [G, H, I]] 

##  flatten_matrix_triu(M) returns [B,C,F] 

##  flatten_matrix_triu(M,True) returns [A,B,C,E,F,I] 

def flatten_matrix_triu(arr,incl_diag=False): 

 if incl_diag == True: 

  return [arr[m][n] for m in range(arr.shape[0]) for n in 

range(m,arr.shape[1])] 

 else: 

  return [arr[m][n] for m in range(arr.shape[0]) for n in 

range(m+1,arr.shape[1])] 

##---------------------------------------------------------------------------

------------------------------------- 
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##---------------------------------------------------------------------------

------------------------------------- 

###--------------------------------------------------------------------------

-------------------------------------- 

##                                  BEGIN PROGRAM 

##---------------------------------------------------------------------------

------------------------------------- 

##---------------------------------------------------------------------------

------------------------------------- 

## need to create participants list by selecting all potential datasets for 

each group 

subj_df = pd.read_csv(PARTICIPANTS_FN, sep='\t') 

subj_df.head(3) 

print(' + found %d HC-

subjects:'%(subj_df[subj_df.group=='hc'].shape[0]),subj_df[subj_df.group=='hc

']) 

print(' + found %d PD-

subjects:'%(subj_df[subj_df.group=='pd'].shape[0]),subj_df[subj_df.group=='pd

']) 

print(' + found %d AR-

subjects:'%(subj_df[subj_df.group=='ar'].shape[0]),subj_df[subj_df.group=='ar

']) 

##---------------------------------------------------------------------------

------------------------------------ 

## filter subjlist to only those with useable data AND apply the masker-

transform (regression) 

subj_df[['func','conf','reg','nSpikes','nCensorTRs','excluded','ts']] = 

object() 

drop_indices = list() 

mot_exclude_list=list() 

for i in subj_df.index: 

 S=subj_df['participant_id'][i] 

 SDIR = os.path.join(FMRIPREP_DIR,S) 

 C = os.path.join(SDIR,'func',S+'_task-rest_desc-

confounds_timeseries.tsv') 

 F = os.path.join(SDIR,'func',S+'_task-rest_space-

MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') 

 if not os.path.exists(C): 

  print('*** missing confounds file = %s'%(C)) 

  drop_indices.append(i) 

  continue 

 if not os.path.exists(F): 

  print('*** missing func file = %s'%(F)) 

  drop_indices.append(i) 

  continue 

 subj_df['conf'][i] = C 

 subj_df['func'][i] = F 

 ## filter confounds 

 print(' + reading and selecting confounds from file =',C) 

 nSpikes,nCensorTRs,conf_sel_fn = select_confounds(C, CONF_SUFFIX) 

 subj_df['nSpikes'][i] = nSpikes   ## total TRs with 

excessive-motion 

 subj_df['nCensorTRs'][i] = nCensorTRs  ## total TRs being censored =  

spikes+1Pre+2Post? 

 subj_df['reg'][i] = conf_sel_fn 

 subj_df['ts'][i] = masker.fit_transform(F, confounds=[conf_sel_fn]) 
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 ## NOTE: could save each ts as pickled file in a separate path for easy 

reuse in other analyses? 

 subj_df['excluded'][i] = False 

 if subj_df['nCensorTRs'][i] > CensoredTR_EXCLUDE_LIMIT: 

  mot_exclude_list.append(i) 

  subj_df['excluded'][i] = True 

##---------------------------------------------------------------------------

------------------------------------- 

## drop rows with missing files 

if len(drop_indices) > 0: 

 print(' + dropping MissingData 

=',subj_df['participant_id'][drop_indices]) 

 subj_df.drop(drop_indices, inplace=True) 

 if DEBUG_VERBOSE: 

  print(type(subj_df)) 

  print(subj_df.dtypes) 

  print(subj_df.shape) 

  print(subj_df) 

##---------------------------------------------------------------------------

-------------------------------------     

## run subject-level ROI-to-ROI correlation and save as vector into output 

group file. 

print(' + calculating subject ROI-to-ROI correlations') 

## set subject-level connectivity measure 

CONN_MEASURES=['correlation','partial correlation','precision'] 

for C in CONN_MEASURES: 

 #conn_meas = ConnectivityMeasure(kind='correlation') 

 Cstr = C 

 if C=='partial correlation': 

  Cstr = 'partialCorr' 

 conn_meas = ConnectivityMeasure(kind=C) 

 labelStr = gen_label_combinations(FUNC_ROI_LABELS_SHORT) 

 hdrStr = 'ssid,group,nSpikes,nCensorTRs,Excluded,'+','.join(labelStr) 

 rfile = GRP_RESULTS_FN[:-4]+'_%s.csv'%(Cstr) 

 rFP = open(rfile, 'w') 

 rFP.write('%s\n'%(hdrStr)) 

 for i in subj_df.index: 

  ssid = subj_df['participant_id'][i] 

  group = subj_df['group'][i] 

  nSpikes = subj_df['nSpikes'][i] 

  nCensTRs = subj_df['nCensorTRs'][i] 

  exclBool = subj_df['excluded'][i] 

  ## calc and report correlations on individual subject 

  cm = conn_meas.fit_transform([subj_df['ts'][i]])[0] 

  if DEBUG_VERBOSE: 

   print('%s, %s, %d, %d, %s, 

corr_mat:\n'%(ssid,group,nSpikes,nCensTRs,exclBool), cm) 

  cmStr=['%.9f'%cm[m][n] for m in range(cm.shape[0]) for n in 

range(m+1,cm.shape[1])] 

 

 rFP.write('%s,%s,%d,%d,%s,%s\n'%(ssid,group,nSpikes,nCensTRs,exclBool,'

,'.join(cmStr))) 

 rFP.close() 

 print(' + completed script=%s' % (sys.argv[0])) 

 print('\n + Correlation results saved to file = %s\n'%(rfile)) 

##---------------------------------------------------------------------------

-------------------------------------- 
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## drop rows where subjects nSpikes >CensorTR_Limit files 

if len(mot_exclude_list) > 0 and EXCLUDE_MOVERS_LIM_PERC > 0: 

 print(' + dropping BigMovers 

=',subj_df['participant_id'][mot_exclude_list]) 

 subj_df.drop(mot_exclude_list, inplace=True) 

 if DEBUG_VERBOSE: 

  print(type(subj_df)) 

  print(subj_df.dtypes) 

  print(subj_df.shape) 

  print(subj_df) 

##----------- Explanation of Connectivity Measures ----------------------> 

## 

https://nilearn.github.io/auto_examples/03_connectivity/plot_group_level_conn

ectivity.html#sphx-glr-auto-examples-03-connectivity-plot-group-level-

connectivity-py 

##  

## [correlation] The simpler and most commonly used kind of connectivity is 

correlation. It models the full (marginal) connectivity between pairwise 

ROIs. 

## 

## [partial correlation] We can also study direct connections, revealed by 

partial correlation coefficients. 

## 

## [tangent] We can use both correlations and partial correlations to capture 

reproducible connectivity patterns at the group-level. 

##      tangent_matrices model individual connectivities as perturbations of 

the group connectivity matrix tangent_measure.mean_.  

##      Keep in mind that these subjects-to-group variability matrices do not 

directly reflect individual brain connections. For  

##      instance negative coefficients can not be interpreted as 

anticorrelated regions. 

##      In practice such comparisons need to be performed on much larger 

cohorts and several datasets. Dadi et al 2019 Showed  

##      that across many cohorts and clinical questions, the tangent kind 

should be preferred. 

##---------------------------------------------------------------------------

-------------------------------------     

## compute group connectivity correlations  

## experimental stuff -----> 

EDGE_THRESH="90%" 

EDGE_VMIN=-0.5 

EDGE_VMAX=0.5 

PLOT_VMIN=-0.5 ## Matrix Plot axis 

PLOT_VMAX=0.5  

CONN_MEASURES=['correlation','partial correlation','precision','tangent'] 

if Run_GraphicalLassoCV == True: 

 from sklearn.covariance import GraphicalLassoCV 

 glCV = GraphicalLassoCV(verbose=2) 

    

print(' + calculating group DMN ROI-to-ROI Correlations') 

for G in list(subj_df.group.unique()): 

 #grp_usable=subj_df[(subj_df.group==G)&(subj_df.nCensorTRs < 

CensoredTR_EXCLUDE_LIMIT)].index 

 grp_ssid_list = subj_df.loc[subj_df.group==G,'participant_id'].values 

 grp_ts_list = subj_df.loc[subj_df.group==G,'ts'].values 

 if len(grp_ssid_list) > 1: 

  for C in CONN_MEASURES: 
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   Cstr = C 

   if C=='partial correlation': 

    Cstr = 'partialCorr' 

   #grp_ts_list = [] 

   #for func, conf in 

zip(subj_df.loc[subj_df.group==G,'func'].values, 

subj_df.loc[subj_df.group==G,'reg'].values): 

   # grp_ts_list.append(masker.fit_transform(func, 

confounds=conf)) 

   conn_meas = ConnectivityMeasure(kind=C) 

   print(' + connectome_measure.fit_transform(%s) on %d 

subjects for group=%s:'%(C,len(grp_ssid_list),G.upper())) 

   print(grp_ssid_list) 

   grp_cm = conn_meas.fit_transform(grp_ts_list)[0] 

   print(' + group=%s,subject[0]-id=%s, meas-%s 

mat:\n'%(G.upper(),grp_ssid_list[0],Cstr), grp_cm[0]) 

   grp_cm_mean = conn_meas.mean_ 

   #print(' + group=%s,n=%d, mean-%s 

mat:\n'%(G.upper(),len(grp_ts_list), Cstr), grp_cm_mean) 

   ## 

   t = 'DMN Connectivity [%s], %s'%(G.upper(),Cstr) 

   #p = 

plotting.plot_connectome(grp_cm_mean,FUNC_ROI_COORDS,title=t,display_mode='ly

rz',colorbar=True) 

   #if os.uname().nodename == 'Aoraki.local' and 

DEBUG_VERBOSE: 

   # plotting.show() 

   #plot_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_plot.pdf'%(G.upper(),Cstr) 

   #p.savefig(plot_fn, dpi=1200) 

   ## -- create a plot with fixed axis 

   p = 

plotting.plot_connectome(grp_cm_mean,FUNC_ROI_COORDS,title=t,edge_vmin=EDGE_V

MIN,edge_vmax=EDGE_VMAX,display_mode='lyrz',colorbar=True) 

   if os.uname().nodename == 'Aoraki.local' and DEBUG_VERBOSE: 

    plotting.show() 

   plot_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_plot_fixed.pdf'%(G.upper(),Cstr) 

   p.savefig(plot_fn, dpi=1200) 

   ## create plot with 90% edge_thresh and max/min set on 

values 

   if isinstance(EDGE_THRESH, str): 

    t = 'DMN Connectivity [%s], %s@edge-

thresh=%s'%(G.upper(),Cstr,EDGE_THRESH) 

    plot_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_p%s_plot.pdf'%(G.upper(),Cstr,EDGE_THRESH) 

   else: 

    t = 'DMN Connectivity [%s], %s@edge-

thresh=%.2f'%(G.upper(),Cstr,EDGE_THRESH) 

    plot_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_p%.2f_plot.pdf'%(G.upper(),Cstr,EDGE_THRESH) 

   p = 

plotting.plot_connectome(grp_cm_mean,FUNC_ROI_COORDS,edge_threshold=EDGE_THRE

SH,title=t,display_mode='lyrz',colorbar=True) 

   if os.uname().nodename == 'Aoraki.local' and DEBUG_VERBOSE: 

    plotting.show() 

   p.savefig(plot_fn, dpi=1200) 
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   print(' + group=%s Mean DMN Connectivity plot saved to file 

= %s'%(G.upper(),plot_fn)) 

   ## ---- save the matrix to file 

   mat_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_matrix.tsv'%(G.upper(),Cstr) 

   np.savetxt(mat_fn,grp_cm_mean, fmt='%.6f',delimiter='\t') 

   ## ---- save group_mean-meas_matrix as vector 

(upper_triangle) 

   hdr_vals = 

['nSubj']+gen_label_combinations(FUNC_ROI_LABELS_SHORT,True) 

   mat_vals = 

[len(grp_ssid_list)]+flatten_matrix_triu(grp_cm_mean,True) 

   mat_fn   = CORR_PLOTS_FN+'_grp-

%s_mean_%s_vector.csv'%(G.upper(),Cstr) 

   np.savetxt(mat_fn, 

np.array(mat_vals).reshape(1,len(mat_vals)), 

delimiter=',',fmt='%.9f',header=','.join(hdr_vals),comments='') 

   # Mask the main diagonal for visualization: 

   #np.fill_diagonal(grp_cm_mean, 0) 

   t = 'DMN Correlation Matrix [%s] %s'%(G.upper(),Cstr) 

   mp = plotting.plot_matrix(grp_cm_mean, 

vmin=PLOT_VMIN,vmax=PLOT_VMAX, colorbar=True,title=t, 

labels=FUNC_ROI_LABELS_SHORT) 

   if os.uname().nodename == 'Aoraki.local' and DEBUG_VERBOSE: 

    plotting.show() 

   mp_fn = CORR_PLOTS_FN+'_grp-

%s_mean_%s_matrix.pdf'%(G.upper(),Cstr) 

   mp.figure.savefig(mp_fn, dpi=1200) 

   print(' + group=%s Mean DMN Connectivity Matrix saved to 

file = %s'%(G.upper(),mp_fn)) 

   ## -- build carpet plot [n_features * n_subjects] ---------

------------------------------------------------ 

   if C != 'tangent' and CREATE_CARPET_PLOTS == True:  

    print(' ++ calculating individual subject corr-meas-

vectorized for carpet plot') 

    corr_meas_vec = ConnectivityMeasure(kind=C, 

vectorize=True,discard_diagonal=True) 

    subj_x_features_list = [] 

    for i,ts in enumerate(grp_ts_list): 

    

 subj_x_features_list.append(corr_meas_vec.fit_transform([ts])[0]) 

     print(' + finished %s of 

%s'%(i+1,len(grp_ts_list))) 

    subj_x_features_arr = np.array(subj_x_features_list) 

    print(' + subj_x_features_arr.shape 

=',subj_x_features_arr.shape) 

    print(' + type(subj_x_features_arr) =', 

type(subj_x_features_arr)) 

    plt.clf() 

    plt.imshow(subj_x_features_arr,aspect='auto') 

    plt.colorbar() 

    plt.title('[%s] - %s feature 

matrix'%(G.upper(),Cstr)) 

    plt.xlabel('features') 

    plt.ylabel('subjects') 

    plot_fn = CORR_PLOTS_FN+'_grp-%s_meas-

%s_subjXfeature_plot.pdf'%(G.upper(),Cstr) 
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    plt.savefig(plot_fn, dpi=1200) 

    if os.uname().nodename == 'Aoraki.local' and 

DEBUG_VERBOSE: 

     plt.show() 

    plt.cla() 

    plt.close() 

   ##------------- Build Sparse Inverse Matrix ---------------

--------------------------------------------------- 

   if C == 'covariance' and Run_GraphicalLassoCV == True: 

    print(' + estimating group=%s SparseInverse 

Covariance with GraphicalLassoCV'%(G.upper())) 

    glCV.fit(np.concatenate(grp_ts_list)) 

    cov_matrix = glCV.covariance_ 

    print(' + group=%s, estimated covariance matrix has 

shape {0}.\n'.format(cov_matrix.shape)%(G.upper()),cov_matrix)    

    p=plotting.plot_connectome(glCV.covariance_, 

FUNC_ROI_COORDS, edge_threshold='90%', 

           

title="GraphicLassoCV Covariance", display_mode='lyrz',colorbar=True) 

    plot_fn = CORR_PLOTS_FN+'_grp-

%s_GraphicLassoCV_covariance_plot.pdf'%(G.upper()) 

    p.savefig(plot_fn, dpi=1200) 

    p=plotting.plot_connectome(-glCV.precision_, 

FUNC_ROI_COORDS, 

           

edge_threshold='90%', title="GraphicLassoCV inverse-precision", 

           

display_mode='lyrz',colorbar=True) 

    plot_fn = CORR_PLOTS_FN+'_grp-

%s_GraphicLassoCV_inverse_precision_plot.pdf'%(G.upper()) 

    p.savefig(plot_fn, dpi=1200) 

    #plot_matrices(glCV.covariance_, glCV.precision_, 

"GraphicalLasso", FUNC_ROI_LABELS_SHORT) 

     

    

print(' ++ %s: completed DMN connectivity analysis with script: %s' 

%(datetime.datetime.now().strftime('%Y%m%d-%H%M'),sys.argv[0])) 
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Appendix C 

Consent Forms 
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Appendix D 

Demographic Questionnaire 

Parkinson's Disease Cognitive Study ID#: _____________________ 

Demographics and Health Questionnaire
 
Date: ____________________(D/M/Y)  

   
 Collected by: _________   

  

Initials:__________      Date of Birth: (Month and Year only) _________           Age: ______yrs.  

  

Sex:    M       F        

  

Education  Last yr completed  Year  Age at 
completion  

Degrees/Spec.Ed./Enrichment, etc.  

Elementary          

High School          

Post Sec  
  

        

  

Sense of Smell:  Do you have any disruptions to your sense of smell?  

How would your rate your sense of smell?  great    very good    good    poor    absent   

 If reported to be poor/absent, how long has this been evident? Since:  _______year;   or 

_______age.  

Is there anything in particular that you no longer smell?____________________________________ 

____________________________________________________________________________ 

Cognition: This is your ability to plan, reason, and problem-solve.  

Y   N     Have you had cognitive or neuropsychological testing done before?  

  If yes, when?  _______year;   or _______age.    

  If yes, for what reason? __________________________________________________________   

Y   N     Do you  notice any changes in your memory, attention, conversation abilities or ability to 

understand what you hear or read?     If yes – since: _______year;   or _______age.    

  If yes, can you describe what you think has changed?  

____________________________________________________________________________________ 

____________________________________________________________________________________ 
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____________________________________________________________________________________ 

____________________________________________________________________________________  

Y   N       Do your family or friends tell you that they have seen changes in your memory, attention, 

conversation abilities or ability to understand what you hear or read?   

  If yes, what do they say has changed?   

____________________________________________________________________________________  

NSHA RS/2010-369    Version 3  
    2015/05/05  
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Appendix E 

Graphs for Default Mode Network ROI-to-ROI Correlations 

Figure E1 

Correlation Matrices between Default Mode Network ROIs for Each Group 

 

Note. (A) Correlation matrix depicting ROI-to-ROI correlations for the healthy control (HC) 

group. (B) Correlation matrix for the at-risk group (AR). (C) Correlation matrix for the 

Parkinson’s group (PD). 
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Figure E2 

Default Mode Network ROIs Correlation Plots for Each Group 
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Appendix F 

Supplementary Tables 

Table F1 

Comparison of DMN Functional Connectivity Values between the AR and HC Groups 

Edge Test Statistic df p p (FDR-corrected) 

amPFC - aTL-L -0.79 51 0.436 0.939 

 amPFC - dmPFC -0.41 51 0.685 0.939 

amPFC - HF-L 0.85 51 0.398 0.939 

 amPFC - HF-R 0.09 51 0.927 0.984 

amPFC - IFG-L -1.14 51 0.261 0.939 

amPFC - IFG-R -1.12 51 0.270 0.939 

amPFC - pCC 0.87 51 0.387 0.939 

amPFC - pIPL-L* 373.00 - 0.682 0.939 

amPFC - pIPL-R 0.47 51 0.640 0.939 

amPFC - PCu -0.09 51 0.929 0.984 

amPFC - SFG-L -0.94 51 0.349 0.939 

amPFC - MTG-L -3.32 51 0.002 0.114 

amPFC - MTG-R -4.64 51 0.000 0.003 

amPFC - TPJ-L -0.51 51 0.614 0.939 

amPFC - TPJ-R 0.45 51 0.658 0.939 

amPFC - vmPFC** 0.49 38.93 0.631 0.939 

aTL-L - aTL-R -1.93 51 0.060 0.909 

aTL-L - dmPFC 0.33 51 0.744 0.939 

aTL-L - HF-L 1.29 51 0.204 0.939 

aTL-L - HF-R** 0.38 46.04 0.706 0.939 

aTL-L - IFG-L -1.14 51 0.262 0.939 

aTL-L - IFG-R -0.55 51 0.588 0.939 

aTL-L - pCC 0.32 51 0.749 0.939 

aTL-L - pIPL-L -0.10 51 0.919 0.984 

aTL-L - pIPL-R 0.41 51 0.684 0.939 

aTL-L - PCu 0.69 51 0.491 0.939 

aTL-L - SFG-L -0.97 51 0.336 0.939 

aTL-L - MTG-L -0.98 51 0.333 0.939 

aTL-L - MTG-R 0.27 51 0.791 0.941 

aTL-L - TPJ-L 0.32 51 0.754 0.939 

aTL-L - TPJ-R 2.05 51 0.046 0.894 

aTL-L - vmPFC -0.33 51 0.745 0.939 

aTL-R - dmPFC -0.34 51 0.734 0.939 
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Edge Test Statistic df p p (FDR-corrected) 

aTL-R - HF-L 1.34 51 0.185 0.939 

aTL-R - HF-R -0.57 51 0.570 0.939 

aTL-R - IFG-L -0.17 51 0.865 0.984 

aTL-R - IFG-R** -1.04 49.32 0.303 0.939 

aTL-R - pCC 0.69 51 0.491 0.939 

aTL-R - pIPL-L 0.77 51 0.447 0.939 

aTL-R - pIPL-R 0.26 51 0.793 0.941 

aTL-R - PCu -0.29 51 0.775 0.941 

aTL-R - SFG-L* 391.00 - 0.465 0.939 

aTL-R - MTG-L -0.98 51 0.334 0.939 

aTL-R - MTG-R -0.25 51 0.802 0.941 

aTL-R - TPJ-L -0.53 51 0.598 0.939 

aTL-R - TPJ-R -1.10 51 0.275 0.939 

aTL-R - vmPFC 1.11 51 0.272 0.939 

dmPFC - HF-L -0.60 51 0.554 0.939 

dmPFC - HF-R -0.84 51 0.407 0.939 

dmPFC - IFG-L 0.13 51 0.894 0.984 

dmPFC - IFG-R -0.09 51 0.928 0.984 

dmPFC - pCC -1.38 51 0.174 0.939 

dmPFC - pIPL-L -0.65 51 0.520 0.939 

dmPFC - pIPL-R -1.66 51 0.104 0.939 

dmPFC - SFG-L* 296.00 - 0.336 0.939 

dmPFC - MTG-L -1.29 51 0.204 0.939 

dmPFC - TPJ-L 0.81 51 0.422 0.939 

dmPFC - TPJ-R 0.98 51 0.330 0.939 

dmPFC - vmPFC -1.02 51 0.313 0.939 

HF-L - HF-R* 367.00 - 0.762 0.940 

HF-L - IFG-L -0.50 51 0.621 0.939 

HF-L - IFG-R -0.81 51 0.422 0.939 

HF-L - pCC 0.61 51 0.547 0.939 

HF-L - pIPL-L 0.13 51 0.897 0.984 

HF-L - pIPL-R 0.36 51 0.722 0.939 

HF-L - SFG-L -0.79 51 0.435 0.939 

HF-L - MTG-L -0.48 51 0.633 0.939 

HF-L - MTG-R -0.07 51 0.941 0.984 

HF-L - TPJ-L 1.03 51 0.310 0.939 

HF-L - TPJ-R 1.17 51 0.250 0.939 

HF-L - vmPFC** -1.21 36.81 0.234 0.939 

HF-R - IFG-L -1.93 51 0.059 0.909 

HF-R - pCC -0.59 51 0.561 0.939 
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Edge Test Statistic df p p (FDR-corrected) 

HF-R - pIPL-R 0.10 51 0.921 0.984 

HF-R - PCu -0.39 51 0.701 0.939 

HF-R - MTG-L** -0.33 43.99 0.746 0.939  

HF-R - TPJ-R 0.48 51 0.631 0.939 

HF-R - vmPFC -0.39 51 0.697 0.939 

IFG-L - IFG-R 0.36 51 0.718 0.939 

IFG-L - pCC -0.59 51 0.555 0.939 

IFG-L - pIPL-L -0.34 51 0.736 0.939 

IFG-L - pIPL-R 0.66 51 0.510 0.939 

IFG-L - PCu -0.51 51 0.615 0.939 

IFG-L - SFG-L -1.06 51 0.293 0.939 

IFG-L - MTG-L -1.71 51 0.094 0.939 

IFG-L - MTG-R -1.38 51 0.174 0.939 

IFG-L - TPJ-L 0.08 51 0.938 0.984 

IFG-L - vmPFC -0.69 51 0.492 0.939 

IFG-R - pIPL-L** 0.71 44.12 0.483 0.939 

IFG-R - pIPL-R 0.01 51 0.994 0.997 

IFG-R - PCu 0.04 51 0.968 0.997 

IFG-R - SFG-L 0.50 51 0.620 0.939 

IFG-R - MTG-L 3.01 51 0.004 0.184 

IFG-R - MTG-R 0.37 51 0.713 0.939 

IFG-R - TPJ-L 1.53 51 0.132 0.939 

IFG-R - vmPFC -0.53 51 0.598 0.939 

pCC - pIPL-L -0.67 51 0.505 0.939 

pCC - pIPL-R* 324.00 - 0.643 0.939 

pCC - PCu -0.06 51 0.952 0.988 

pCC - SFG-L 1.00 51 0.324 0.939 

pCC - MTG-L** -0.61 46.86 0.546 0.939 

pCC - MTG-R -1.49 51 0.143 0.939 

pCC - TPJ-L 0.11 51 0.913 0.984 

pCC - TPJ-R 0.49 51 0.625 0.939 

pCC - vmPFC -2.58 51 0.013 0.443 

pIPL-L - pIPL-R* 384.00 - 0.545 0.939 

pIPL-L - PCu -0.42 51 0.680 0.939 

pIPL-L - SFG-L 1.25 51 0.217 0.939 

pIPL-L - MTG-L -0.69 51 0.496 0.939 

pIPL-L - TPJ-L* 338.00 - 0.831 0.964 

pIPL-L - TPJ-R* 324.00 - 0.643 0.939 

pIPL-L - vmPFC 0.03 51 0.979 0.997 

pIPL-R - PCu -0.55 51 0.583 0.939 
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Edge Test Statistic df p p (FDR-corrected) 

pIPL-R - SFG-L -0.004 51 0.997 0.997 

pIPL-R - MTG-L -0.25 51 0.804 0.941 

pIPL-R - MTG-R -1.50 51 0.140 0.939 

pIPL-R - TPJ-L 0.21 51 0.838 0.964 

pIPL-R - TPJ-R -0.01 51 0.995 0.997 

pIPL-R - vmPFC** -1.43 42.95 0.160 0.939 

PCu - SFG-L -0.61 51 0.548 0.939 

PCu - MTG-L -2.16 51 0.036 0.812 

PCu - MTG-R -1.43 51 0.159 0.939 

PCu - TPJ-L -1.06 51 0.294 0.939 

PCu - TPJ-R -1.16 51 0.254 0.939 

PCu - vmPFC** -1.15 39.60 0.256 0.939 

SFG-L - MTG-L -1.28 51 0.206 0.939 

SFG-L - TPJ-L 1.72 51 0.092 0.939 

SFG-L - TPJ-R 1.23 51 0.223 0.939 

SFG-L - vmPFC -0.26 51 0.796 0.941 

MTG-L - MTG-R 0.94 51 0.354 0.939 

MTG-L - TPJ-L -0.11 51 0.910 0.984 

MTG-L - vmPFC -2.36 51 0.022 0.603 

MTG-R - TPJ-L -0.57 51 0.570 0.939 

MTG-R - TPJ-R -1.17 51 0.246 0.939 

TPJ-L - TPJ-R -1.26 51 0.212 0.939 

TPJ-L - vmPFC -0.72 51 0.475 0.939 

TPJ-R - vmPFC -0.70 51 0.489 0.939 

Note. Test statistic = t-value unless otherwise indicated. Bolded edges had significant functional 

connectivity differences between the AR group (n = 28) and the HC group (n = 25) before FDR 

correction (p < .05). * Mann-Whitney U test was conducted and corresponding Mann-Whitney U 

test statistics and p-values are reported. **Welch t-test was conducted and corresponding t-

values, degrees of freedom (df) and p-values are reported. 
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Table F2  

Comparison of Functional Connectivity between PD and HC Groups 

Edges t(46) p Effect size (Hedges’ g) 

amPFC – MTG-L 2.79 .008 0.81 

amPFC – MTG-R 1.56 .125 0.45 

IFG-R – MTG-L -0.71 .482 0.20 

pCC – vmPFC 2.72 .009 0.79 

PCu – MTG-L 0.59 .557 0.17 

MTG-L – vmPFC 2.93 .005 0.84 

Note. amPFC = anterior medial prefrontal cortex. MTG-L = left middle temporal gyrus. MTG-R 

= right middle temporal gyrus. IFG-R = right inferior frontal gyrus. pCC = posterior cingulate 

gyrus. vmPFC = ventromedial prefrontal cortex. PCu = precuneus. 
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Appendix G 

Instructions for Cognitive Tests 

 

*** Instructions seen in bold font must be said verbatim, as they come 

from licensed studies **** 

Equipment Needed: 

-stopwatch – preferably one that shows minutes & seconds to at least 30 minutes 

-Spatial Span Display Board 

-the Licensed Assessment Sheets for the tasks listed below: 

 c/ WMS-III 

 d/ DKEFS – Trails: tests 1 thru 5 incl. 

 e/ DKEFS Fluency 

-Demographics questionnaire 

-pens: do not enter data in pencil 

 

Demographics  

Fill in all fields in pen, as much as Ppt will answer. RA should write in info as Ppt 

cites it to the RA. This will ensure that info is written in legibly, and in all possible 

fields. 

 

WMS-III: [Test #9] Spatial Span  -need: Spatial Span Board, Record Form 

A/ FORWARD 

 7Aa/ DISCONTINUE after scores of 0 on both trials of an item, or after you have 

 administered all items of this assessment. 

Instructions 
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 7Ab/ Place the Spatial Span Board on the table with the cube numbers facing 

you, and the board centered at the examinee’s midline, so the she can easily reach 

the cubes.  

  Say: Now I want you to do exactly what I do. Touch the blocks 

I touch, in the right order.  

 7Ac/ Use the Record Form for the tapping sequence. Tap out the sequence 

for Trial 1 at the rate of 1 block per second. Begin with Item 1, Trial 1. 

 7Ad/ Record the examinee’s responses. If the criterion for discontinuing is met, or if all Spatial 

Span  Forward items have been administered, proceed with Spatial Span Backward. 

  

7B/ WMS-III: [Test #9] Spatial Span Backward  

 7Ba/ DISCONTINUE after scores of 0 on both trials of an item, or after you have 

 administered all items of this assessment. 

Instructions 

7Bb/Say: Now I am going to touch some more blocks. This time when I 

stop, I want you to touch the blocks backward, in reverse of mine. For 

example: if I touch this one [Cube 3] & then this one [Cube 5], what 

would you do?  If the examinee responds correctly, say: That’s right. Here’s 

the next one. Remember to do them in reverse order.   Then proceed with 

Item 1. 

 7Bc/ If the examinee responds incorrectly on the 3-5- example, then you 

say: No, I touched this one then this one, so to do it in reverse.  Now, let’s 

try another one.  If I touched this one [Cube 9] then this one [Cube 1], what 

would you do? Whether the examinee succeeds or fails on the second example, 

proceed to Item 1, Trial 1.         

      

WMS-III: [Test #11] Digit Span - need: Record Form 

A/ FORWARD 
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 8Aa/ DISCONTINUE after scores of 0 on both trials of an item, or after you have 

 administered all items of this assessment. 

Instructions 

 8Ab/ Say: I am going to say some numbers. Listen carefully, and 

when I am  through, I want you to say them right after me. Just say what I 

say. Read each dropping your voice inflection slightly on the last digit in the 

sequence. 

B/ BACKWARD 

 8Ba/ Say: Now I am going to say some more numbers. But this time 

when I stop, I want you to say them backward. For example, if I say [7-1-

9], what would you say? If the examinee says [9-1-7], say: That’s right, and 

proceed to Trial 1 of Item 1. However, if the examinee responds incorrectly, provide 

the correct response, and say: No, you say [9-1-7]. I said [7-1-9], so to say it 

backward, you would say [9-1-7].  Now, try these numbers. Remember, 

you are to say them backward: [3-4-8] 

 8Bb/ Do not provide any assistance on this example or any of the items. 

Whether or not the examinee responds correctly [8-4-3], proceed to Trial 1 of Item 

1. 

 

WMS-III: [Test #8] Letter-Number Sequencing - need: Record Form 

 9A/ DISCONTINUE after scores of 0 on all 3 trials of an item, or after you have 

administered all items of this assessment. 

Instructions 

 9B/ Say: I am going to say a group of numbers and letters. After I say 

them, I want you to tell me the numbers first, in order, starting with the 

lowest number. Then tell me the letters in alphabetical order. For example, 

if I say [B-7], your answer should be [7-B]. The number goes first then the 
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letter. If I say [9-C-3], then your answer should be [3-9-C], the numbers 

in order first, then the letters in alphabetical order.  

 9C/ Let’s practice.  Administer all the practice trials. Say each combination 

at a rate of 1 number or letter per second. Allow the examinee ample time to 

respond. Correct responses are in parentheses. 

6-F      [6-F] 

  G-4     [4-G] 

  3-W-5     [3-5-W] 

  T-7-L     [7-L-T] 

  1-J-A     [1-A-J] 

 If the examinee makes an error on any practice trials, correct the examinee 

and repeat the  instructions as necessary. Even if the examinee fails all practice 

trials,  continue with the  subtest.  Proceed to Item 1. 

  

SDMT = Symbol-Digit Memory Task need: SDM Worksheet, stopwatch, pens 

 10A/ DISCONTINUE AFTER 90 SECONDS OF TASK PERFORMANCE. 

 10B/ Place the test form is placed before the examinee and then say these 

 instructions: 

  Please look at these boxes at the top of the page. You can see 

that each box in the upper row has a little mark in it.  Now look at the 

boxes in the row just underneath the marks. Each of the marks in the top 

row is different, and under each mark in the bottom row is a different 

number. 

  Now look at the next line (examiner points to the line of boxes)  

just under the top 2 rows. Notice that the boxes on top have marks, but 

the boxes underneath are empty. You are to fill each empty box with the 
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number that should go there according to the way they are paired in the 

key at the top of the page. 

  For example, if you look at the first mark, and then look up at 

the key, you will  see the number 1 goes in the first empty box; so write 1 

in the first empty box.  Now, what number would you put in the 2nd box? 

[number 5]. What number goes into the 3rd box [number 2]. That is the idea. 

You are to fill each of the empty boxes with the numbers that should in 

them according to the key.  

  Now, for practice, fill in the rest of the boxes until you come to 

the double  line; then stop. 

 10C/ The examiner checks that the examinee understands the task. Any 

errors made in the first 10 practice responses should be immediately pointed out to 

the examinee, and corrected. If the examinee has not understood the nature of the 

task, the instructions are  repeated with further examples, until the nature of the 

task is clearly understood . 

 10D/ The examiner then continues, saying: Now, when I say “Go!” write 

the numbers just like you have been doing as fast as you can until I say 

“Stop” When you come to the end of a line, go quickly to the next line 

without stopping and so on.  If you make a mistake, do not erase, just 

write the correct answer over your mistake. Do not skip any boxes and 

work as quickly as you can.  Ready?  Go ! 

 10E/ Exactly 90 seconds from starting, the examiner says: Stop. 

 

11/ DKEFS – Trails 1 thru 5  

-need DKEFS Trails Condition Response Booklets:#1 = Visual Scanning;  

#2 = Number Sequencing; #3 = Letter Sequencing; #4 = Number-Letter 

Switching;  

#5 = Motor Speed; stopwatch, pens 
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11A/ General Instructions 

Administer Condition 1 in its entirety, even if the examinee is unable to complete 

the practice task.  For Conditions 2 -5, DISCONTINUE ANY CONDITION FOR WHICH 

EXAMINEE MAKES 4 ERRORS ON THE PRACTICE TASK. 

 

11B/ Time Allowance per Condition 

-Condition 1 = Visual Scanning : 150 seconds = 2min 30sec 

-Condition 2 = Number Sequencing: 150 seconds 

-Condition 3 = Letter Sequencing : 150 seconds 

-Condition 4 = Number-Letter Switching: 240 seconds = 4 min 0 sec 

-Condition 5 = Motor Speed : 150 seconds 

 

11C/ Demonstration & Participant Instructions 

 All Conditions:  Place Response Booklet flat on a table, facing the examinee, 

and hold down top or side edges with your fingers. The examinee MAY LIFT THE PEN 

FROM THE PAPER  AT ANY POINT DURING THE PRACTICE & SCORED TASKS OF ALL 5 

CONDITIONS. 

  

11D/ Condition 1 = Visual Scanning. Give the Examinee a pen and point to the 

practice page and say: Here are some numbers and letters. I want you to find 

all of the 3’s on this page [draw a slash through the 3 in the upper-left quadrant, 

from the examinee’s perspective].  Don’t place marks on any of the other 

numbers or letters, just the  3’s.  Mark the 3’s as quickly as you can 

without missing any. Go ahead.  Correct & explain any errors.  After examinee 

has completed practice task, say: Good, now try this one. Open the response 

booklet to the 2nd & 3rd pages. Say: Here are more numbers  and letters. Like 
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before, I would like you to mark all the 3’s on these two pages.  Mark the 

3’s as quickly as you can without missing any.  Tell me when you are 

finished. Ready? Begin.  Record the total time in seconds.  If the examinee fails 

to finish the task by 150 seconds, say: Stop. That’s good. Do not allow examinee 

to make  any marks on the form after the time limit.  

  

11E/ Condition 2 = Number Sequencing. Point to the Practice Page and say: Here 

are some numbers and letters. This time I want you to connect just the 

numbers. Begin at number 1 [point to the 1] and draw a line from 1 to 2 

[draw this connection with your finger], 2 to 3 [trace this connection with your 

finger], 3 to 4 [trace this connection with your finger], and so on, in order, until 

you reach the end [point to the 5]. Draw the lines as quickly as you can 

without making any mistakes. Go  ahead. If the examinee makes an error– 

stop him / her immediately. Write an ‘X’ over the incorrect connection, explain the 

error, and point to the correct connection. Ask the examinee to proceed from the 

last correct number connection.    

 

DISCONTINUE THIS BOOKLET IF THE EXAMINER HAS TO CORRECT THE EXAMINEE 4 TIMES. 

Open Condition Booklet #2 to the second & third pages. Place it flat on the table in 

front of  the examinee’s midline and say: On this page are more numbers and 

letters.  Just connect the numbers. Begin at number 1[point to 1] and draw 

a line from the 1 to 2 [trace this connection with your finger], then 2 to 3 [trace 

this with your finger], 3 to 4 [trace this with your finger], and so on, until you 

reach the end [point to 16]. Draw the lines as quickly as you can without 

making mistakes.  Ready? Begin.  Start timing. If the examinee makes an error, 

stop him immediately. Write an ‘X’ over the error and without explaining the error, 

ask the examinee to proceed from the last correct number. When 150 seconds has 

passed say: Stop. That’s good. 
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11F/ Condition 3 = Letter Sequencing. Point to the Practice Page and say: Here 

are some numbers and letters. This time I want you to connect just the 

letters. Begin at A [point to the A] and draw a line from A to B [draw this 

connection with your finger], B  to C [trace this connection with your finger], C to 

D [trace this connection with your finger], and so on, in order, until you reach 

the end [point to the E]. Draw the lines as quickly as you can without 

making any mistakes. Go ahead. If the examinee makes an error– stop him / 

her immediately. Write an ‘X’ over the incorrect connection, explain the error, and 

point to the correct connection. Ask the examinee to proceed from the last correct 

number connection.  

 

DISCONTINUE THIS BOOKLET IF THE EXAMINER HAS TO CORRECT THE EXAMINEE 4 TIMES DURING 

EITHER THE PRACTICE SET OR THE SCORED SET. 

 

Open Condition Booklet #3 to the second & third pages. Place it flat in front of the 

examinee’s midline, and say: On this page are more numbers and letters.  

Just connect the letters. Begin at A [point to A] and draw a line from A to B 

[trace this connection with your finger], then B to C [trace this with your finger], C 

to D [trace this with your finger], and so on, until you reach the end [point to 

P]. Draw the lines as quickly as you can without making mistakes.  Ready? 

Begin.  Start timing. If the examinee makes an error, stop him immediately. The 

stopwatch keeps running. Write an ‘X’ over the error and without explaining the 

error, ask the examinee to proceed from the  last correct number. When 150 

seconds has passed say: Stop. That’s good. 

  

11G/ Condition 4 = Number-Letter Switching. Point to the Practice Page and say: 

This time I want you to do something different. I want you to switch 

between connecting the numbers and letters. Begin at number 1 [point to 

1), and draw a line from 1 to A [trace this connection with your finger], 2 to B 

[trace this connection with your finger], B to 3 [trace this connection with your 
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finger], and so on, in order, until you reach the end [point to D]. In other 

words, you will draw a line from a  number to a letter to a number, and so 

on. Do you have any questions? Draw the lines as quickly as possible 

without making mistakes. Go ahead. If the examinee  makes an error– stop him 

/ her immediately. Write an ‘X’ over the incorrect connection, explain the error, and 

point to the correct connection. Ask the examinee to proceed from the last correct 

connection.  

 

DISCONTINUE THIS CONDITION IF THE EXAMINER HAS TO CORRECT THE EXAMINEE 4 TIMES .THE 

EITHER THE PRACTICE SET OR THE SCORED SET. 

   

Open Condition Booklet #4 to the second & third pages. Place it flat in front of the 

examinee’s midline, and say: On this page are more numbers and letters. Do 

this the same way by switching  between numbers and letters. Begin at 1 

[point to 1]  and draw a line from 1  to A [trace this connection with your finger], 

then A to 2 [trace this with your finger], 2 to B [trace this with your finger], and 

so on, until you reach the end [point to P]. In other words, you will draw a 

line from a number to a letter to a number, and so on. Draw the lines as 

quickly as possible without making mistakes. Ready? Begin.  Start timing. If 

the examinee makes an error, stop him immediately. The stopwatch keeps running. 

Write an ‘X’ over the error and without explaining the error, ask the examinee to 

proceed from the last correct connection. When 240 seconds has passed say: Stop. 

That’s good. 

 

11H/ Condition 5 = Motor Speed. Point to the Practice Page and say: Here is a 

dotted line. I want you to start at “Start” [point to “Start” ], and draw a line 

over the dotted line as quickly as you can [trace the first 3 connections with 

your finger]. Keep drawing over the dotted line until you reach the end [point 

to “End”]. You don’t have to draw the line neatly on the dotted line; just 
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draw it as quickly as you can. Make sure your line touches every circle 

along the path. Do you have any questions? Go ahead. 

 If the examinee departs from the dotted line and makes an error or 

haphazard line, stop him / her immediately, explain the error and redirect the 

examinee to draw over the dotted line.  

 

IF THE EXAMINEE CANNOT COMPLETE THE PRACTICE  AFTER 4 CORRECTIONS, DO NOT ADMINISTER 

THE SCORED MOTOR SPEED CONDITION. 

 

Open Condition Booklet #5 to the second & third pages. Place it flat in front of the 

examinee’s midline, and say: Good, now let’s try this one. Again I would like 

you to draw over the dotted line as quickly as possible. Start here [point to 

“Start”] and draw a line like this [trace over the first 3 connections with your 

finger] until you reach the end [point to “End”]. Remember, it’s more 

important to draw the line quickly  than to make it neat. Make sure your 

line touches every circle along the path.  Ready ? Begin. Start timing. If the 

examinee departs from the dotted line or makes an error or haphazard line, stop 

examinee immediately, and without explaining the error,  redirect the examinee to 

draw over the dotted line. Allow 150 seconds. Allow the examinee to complete any 

connection in progress at the time limit, then say: Stop. That’s good.  Include the 

just-completed connection within the time limit.  

 

12 / DKEFS- Fluency – need DKEFS Response Booklet, stopwatch 

 12A / Conditions: 1 = Letter Fluency: F / A / S; 2 = Category Fluency: 

Animals  /  Boy’s  Names  

 

 12B / General Instructions. The time limit is 60 seconds for every fluency 

topic to be tested. None of the words can be the names of places, numbers, or verb 
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variants. Write down every word the examinee states during 60 seconds, in its 

appropriate 15-second interval box [1 to 15sec; 16 to 30 sec; 31 to 45sec; 46 to 

60sec].If the examinee repeats a word, write it down as many times as the person 

states it. Write down any words the examinee says that are not words  belonging to 

the fluency topic you are timing. 

Allowed examples = words can have the same root word, but must be semantically 

distinct.  T = toy, tooth, take, toe, toenail.  S = sail, sailboat, slip, slippery.  

Disallowed examples: T ≠ tooth, teeth [one is the singular, one is the plural of 

tooth; so you can only accept either tooth or teeth. T ≠ Texas, Toronto [these are 

place  names]. T ≠ twelve, thirteen, twenty, twenty-one [these are numbers]. 

  

 12C/ Conditions: Letter Fluency. Say to the examinee: I’m going to say a 

letter of the alphabet. When I say ‘begin’, I want you to tell me as many  

words as you can that begin with that letter. You will have 60 seconds 

before I tell you to stop. None of the words can be names of people, places 

or numbers. For example, if I gave you the letter T, you could say take, toy, 

tooth and so forth, but you should  not say Tom because that is a person’s 

name; you should not say Texas because that is the name of a place; and 

you should not say twelve because that is a number. Also, do not give me 

the same word with different endings. For example, if you say take, you 

should not say took or taking. Do you have any questions? 

  

 The first letter is F.  Ready? Begin. Start timing. On the record form, 

write the examinee’s responses verbatim under the F column. Record the responses 

the examinee gives in the first 15 seconds, in the first box labeled “1-15 seconds,” 

and so forth. After 60 seconds, say: Stop. 

 

The next letter is A. Ready? Begin.  Start timing. Record examinee’s 

responses under the A column. After 60 seconds, say: Stop. 
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 The next letter is S. Ready? Begin.  Start timing. Record examinee’s 

responses under the S column. After 60 seconds, say: Stop. 

 

 12D/ Conditions : Category Fluency. Say to the examinee: Now we are 

going to do something a little different. This time, I want you to tell me as 

many animals as  you can. It doesn’t matter what letter they start with. 

You will still have 60 seconds before I tell you to stop. Do you have any 

questions? Ready? Begin. Start timing. Record examinee’s responses under each 

15-second interval, as in Letter Fluency. After 60 seconds, say: Stop. 

 

 Now, tell me as many boys’ names as you can . You will have 60 

seconds before I tell you to stop. Ready?  Begin. Start timing. Record 

examinee’s responses under each 15-second interval, as in Letter Fluency. After 60 

seconds, say: Stop. 

 

 


