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Abstract

Valuable insight into gene function and evolution can be obtained by analysing the or-

der of genes in prokaryotic genomes, as neighboring genes often share related functions

and evolutionary histories. Obtaining precise functional predictions is particularly im-

portant in the case of antimicrobial resistance (AMR) genes, as subtle differences in

similarity patterns can reflect the potential for an organism to be treatable or re-

sistant to one or more antibiotics. Databases such as the Comprehensive Antibiotic

Resistance Database (CARD) provide high-quality predictions, but there is a signifi-

cant gray area (“Loose hits” according to CARD) where genes differ in sequence from

the reference sequence and may or may not confer AMR.

We introduce an approach to compare the genomic neighborhoods of AMR genes

in genomes with different degrees of relatedness, to provide additional insight into

their potential function. Our approach uses a technique to identify candidate AMR,

then applies novel similarity measures and application of the UPGMA, MCL and

DBSCAN graph-clustering techniques to identify patterns of similarity among gene

neighborhoods. This analysis is complemented by phylogenetic analysis to assess

the similarity of identified genes as well as their neighborhoods. We also provide a

graphical tool to visualize the gene content in sets of neighborhoods.

AMR gene neighborhoods were observed to be very similar within closely related

members of species including Salmonella Heidelberg. The proximity of some Loose

hits to other AMR genes in many neighborhoods provided additional evidence for

their function, whereas in other cases the CARD Loose hits were isolated and likely

not associated with AMR. We also considered a set of genomes that encompassed

several enteric pathogens. In this set, we found cases where seemingly poor Loose

predictions were associated with clusters of AMR genes, and instances where gene

order was surprisingly similar across distantly related genomes which may indicate re-

cent transmission of AMR genes between pathogenic organisms. Our method provides

new insights into the function of candidate AMR genes, and these refined predictions

can be used to predict resistance and identify candidate evolutionary events.
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Chapter 1

INTRODUCTION

As the population grows and even though humans use antibiotics to fight infectious

diseases, bacteria continue to be responsible for many diseases and deaths. Evident

to this fact is that about one-quarter of all deaths worldwide each year result from

infectious diseases caused by microbial pathogens and such bacterial infections are

treated using antibiotics [75]. Antibiotics that are designed to attack bacterial in-

fections have converted countless diseases from being considered as severe and lethal

into simple and quick to vanquish. However, the combination of bacteria’s ability to

evolve and adapt and the overuse of antibiotics has led to a troubling problem: many

types of bacteria are increasingly able to defeat antibiotics. The ability of bacteria

to defeat the antibiotics that are designed to kill them is known as antimicrobial

resistance (AMR) and this AMR is escalating to alarmingly high levels in all parts of

the world. The causes of this increase include natural resistance, gene mutations, and

transmission of genes between different strains and species of bacteria. The selective

pressure from the use of antibiotics may provide an advantage for the mutants by

increasing their resistance.

The US Centers for Disease Control and Prevention (CDC) reported that at least

2 million people are infected with antibiotic-resistant bacteria and more than 23,000

people die annually as a consequence of bacterial infections [1]. Global rise in AMR

poses a threat to the human community and it is vital that we understand the struc-

ture, movement, functions, and genes in the bacterial genomes to ultimately under-

stand and control the spread of AMR. The National Institute of Allergy and Infectious

Diseases (NIAID) believes that a better understanding of the fundamental biology of

microbes, their ability to block antimicrobial drugs, and host-pathogen interactions

can help scientists identify novel drug targets and develop novel diagnostics and vac-

cines [89]. These novel diagnostics and vaccines can be used to mitigate the spread

of AMR.
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Genome-based research can reveal critical insights for battling antimicrobial re-

sistance. The specific mechanisms of resistance and its origin can be determined

by isolating and analyzing the genomes of the same microbial species from different

human populations or various geographical locations [47]. For instance, one of the

dataset chosen for this work is comprised of Salmonella isolates from different parts

of Canada extracted from specific parts of food and animals.

1.1 Background on genes, genomes and gene functions

1.1.1 Genes and genomes

All living organisms have genomes (Figure 1.1) that consist of molecules called DNA.

Genes (Figure 1.1) are the segments of DNA that contain instructions for building

the molecules that are responsible for the workings of the organism (usually, but not

always, proteins). DNA is the chemical chain that contains the genes that code for

different kinds of proteins. These genes can be transmitted from one organism to

another from parent to offspring or between organisms through the process of lateral

gene transfer (LGT).

Figure 1.1: Representation of bacterial genes and genome. When a part of the large
circular genome is expanded, it consists of genes (turquoise arrows) that are segments
of DNA that encode proteins.

When compared with other life forms, bacterial genomes are typically smaller and

there exists less variation in genomic size within and between species (Figure 1.2).

Within bacteria, there is a strong correlation between the number of protein-coding

genes and size of the genome. The size and content of the bacterial genome can be

influenced by gene acquisition via LGT, gene duplication, genome reduction via loss

of genetic material, and genomic rearrangement. One common feature of bacterial

genomes is the relatively small spacing between adjacent genes. Several theories have
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been formulated to explain the pattern of genomic size evolution amongst bacteria,

including selective pressure on genome size to ensure faster replication, selection in

favor of deletion of genomic material, mutation and genetic drift [73].

Figure 1.2: Variation in genome sizes in base pairs of various life forms [73]

1.1.2 Gene functions and function prediction

Bacteria vary greatly in properties such as metabolic capabilities including fermen-

tation, environmental adaptations, and AMR. Even though a plethora of bacterial

genomes and their corresponding gene and protein sequences are available, the func-

tion of many proteins remains unknown in spite of extensive experimental research.

Computational prediction of gene function is a vital step in annotating newly se-

quenced genomes and predicting their capabilities. A common approach to predicting

protein function is to compare the protein sequences encoded by the newly sequenced

genomes to proteins of known function in reference databases; however, this process

is complicated by the existence of multiple genes with similar sequences in many

genomes. The most widely used method for characterizing newly sequenced proteins

is through sequence similarity searches. These searches detect genes that have high

levels of sequence similarity that likely reflects shared ancestry. Two genes are said

to be homologous if they share a common ancestor and these homologs can be used

to predict characterized proteins [97].

In the course of evolution, new species are formed when a group separates from

the other members of the species and develops unique features and this is referred
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to as a speciation event. Homologous genes in different genomes that diverged from

a speciation event are termed orthologs. By contrast, paralogs are genes in a single

genome whose relationships can be traced back to a gene duplication event where a

single ancestral gene was copied twice and both copies were retained (Figure 1.3).

The relationships between gene products and sequence divergence associated with

the events of gene duplication or speciation can be explained with the help of or-

thologs and paralogs [60]. Orthologs tend to evolve more slowly when compared to

paralogs and hence are favored while making function predictions from homologous

genes [117]. Paralogs evolve more quickly and are more likely to mutate and take on

other functions [17]. Due to the obvious necessity of duplication events in the process

of generating paralogs, orthologs tend to share a slightly higher functional similarity

than paralogs - the “ortholog conjecture” hypothesis [86].

Figure 1.3: Orthologs and Paralogs. Gene α is duplicated in an ancestral genome
and β is the duplicate copy of α. Copies of α and β are inherited by both descendant
species as a result of a speciation event. These copies are related and are termed as
“orthologs”. Duplication causes α and β to be related and are termed as “paralogs”
[40].

Predicting the functional annotations of gene products such as proteins is key

to understanding disease mechanisms and related functions such as AMR. Recent

advances in biotechnology have given rise to high-throughput experiments which ac-

celerate and reduce the cost of obtaining distinct functional information about gene

products [109]. Many solutions have been suggested to predict protein functions in
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the last few decades [15] [108] [127]. However, it is difficult to decide which tools are

best suited for predicting function because the process of protein function prediction

is an open research problem [58].

Many types of data can be used for predicting the function of proteins such as

protein sequence comparisons [81], protein-protein interaction networks [121], mi-

croarrays [54] , evolutionary relationships and genomic context [38]. These methods

improve the ability to characterize the proteins and guide many biological experi-

ments. The Critical Assessment of Functional Annotation (CAFA) [133] is a world-

wide initiative aimed at analyzing, evaluating and improving the protein function

prediction methods that have advanced functional prediction and novel annotations.

As a contrast to traditional prediction methods and as a part of the CAFA challenge,

a system that uses text from biomedical literature as a source of features to predict

function was developed by [130]. This study concluded that when compared to a

baseline classifier that uses sequence similarity alone, a text-based classifier performs

better, and combining these text features with other types of features can potentially

improve the performance of prediction methods.

Many bacterial genes are organized into groups of co-regulated genes called oper-

ons [92]. Operons are comprised of two or more genes that are adjacent to each

other in the genome, are co-regulated, and whose protein products perform related

tasks in the cell. Genes within operons tend to have related functions and they are

conserved by vertical (parent-to-offspring) inheritance across species [99]. Hence, the

functional relatedness of two adjacent genes and the fact that genes cluster together

in multiple organisms suggests that they may belong to the same operon, which may

provide an additional clue about their shared function. However, the task of inferring

the function of a gene especially in a newly sequenced genome is still challenging.

Strong protein-level similarities between a novel gene and a gene of previously known

function can provide the best initial evidence [128]. Many new methods and theories

are being proposed to interpret protein-based functional interactions based on the

genomic context [55] [84]. By combining the methods of gene order conservation with

gene fusion, the co-occurrence of genes in operons, and the co-occurrence of genes

across genomes also known as phylogenetic profiling, significant context information
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can be obtained for many genes. Genomic context can also be used to predict func-

tional interactions between genes which serves as complementary to homology-based

function predictions [65].

Given the tendency of genes with similar functions to cluster in the genome, gene

order is an informative property as more and more genomes are sequenced and ana-

lyzed [119]. Many factors influence gene order including the organization of prokary-

otic genomes into operons, LGT and hidden gene paralogy. The degree of gene order

conservation correlates strongly with how closely the species are related; however,

this conservation tends to be lost over time [119]. This loss can remove genes from

an operon or even completely wipe it out. Recombination occurs when any two DNA

molecules exchange a part of their genetic material with each other and events that

cause this recombination can move genes within and between genomes; bacterial genes

that are close to each other in the DNA are usually transferred together, a tendency

reflected in the concept of genetic linkage [33]. Hence, that transfer of multiple nearby

genes can lead to surprising levels of similarity in gene sequence and gene order among

distantly related genomes.

1.2 Mobile genetic elements as agents of LGT

Bacterial strains that are multidrug resistant are a major cause of healthcare-associated

infections around the world. The emergence of multiple antibiotic-resistant bacteria

is driven in part by LGT (Figure 1.4). Diverse genes in a bacterial population collec-

tively form a gene pool and bacteria can acquire pre-existing resistance determinants

from this gene pool to gain antimicrobial resistance [96]. This DNA movement in

prokaryotes is driven in part by activities of mobile genetic elements (MGEs). MGEs

are segments of DNA that encode proteins and enzymes. The genes carried by these

MGEs facilitate the movement of DNA within genomes or between two bacterial cells.

MGEs are diverse in their nature, size, gene content, structure and mechanisms of

transfer among genomes.

MGEs, in addition to genes involved in their mobility, frequently carry genes

that are beneficial to the host organism, which contributes to the success of their

transfer and maintenance in the recipient cell. MGEs also play a significant role

in the acquisition and spread of resistance genes, and play a substantial role in the

evolution of many bacterial genomes [29]. ** The vital roles of different types of MGEs
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such as plasmids, genomic islands, integrative conjugative elements and integrons in

the acquisition and transmission of AMR are briefly explained in the next sections.

Figure 1.4: Various LGT mechanisms involved in the transfer of bacterial genetic
material. The left cells represents the donor and recipient cells, respectively. The
top event represents a plasmid-mediated DNA transfer between donor and recipient
- conjugation. The second event shows the transfer of DNA between donor and
recipient with the help of phages - transduction. The last event shows the direct
uptake of DNA by a recipient once the genetic material is released by the donor -
transformation. [19].
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1.2.1 Plasmids

A plasmid is a circular, double-stranded DNA molecule that is spatially distinct from

the cell’s chromosomal DNA. Bacteria can acquire genetic advantages such as antibi-

otic resistance from the genes carried by plasmids. Plasmids can also carry other

MGEs and have the ability to transfer both resistance and virulence determinants

from one bacterium to another (sometimes to another species) via the process of con-

jugation (Figure 1.4) [124]. Unlike other MGEs, plasmids have a stretch of DNA (the

origin of replication) that allows them to be replicated by the host bacterium. This

explains the fact that plasmids can copy themselves independently of the bacterial

chromosome, which can result in numerous copies of plasmids within a single bacte-

rial cell. In spite of carrying fewer genes than the chromosome, plasmids can have

a strong impact on the fitness of their host bacterium by conferring AMR, allowing

the production of compounds that aid the host to kill other types of bacteria and

digesting unwanted substances [115].

1.2.2 Genomic Islands

In bacterial genomes, a genomic sequence region extended across a number of ortholo-

gous genes that are co-arranged within another genome is called a synteny block [74].

Many of the accessory genes acquired by lateral transfer form syntenic blocks called

genomic islands (GIs). GIs often carry important genes that can influence genome

evolution via recombination (Figure 1.4) and LGT [16], pathogenesis [49] and antibi-

otic resistance [50]. Hence, the task of identifying such islands has now become a

vital part of microbial genome analysis. Resistance islands are a class of GIs that

contain multiple AMR genes, while genomic islands that contain virulence factors are

often called pathogenicity islands. Bioinformatics studies have shown that GIs tend

to carry more ‘novel’ genes (i.e. those that do not have orthologs in other species)

than the rest of the genome [53]. The demand for those genome analysis methods

that rely on regions that encode significant adaptations is increasing [66], but more

work needs to be done to understand the mechanism of GI transfer and to make more

accurate GI predictions in genomes [12].
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1.2.3 Other classes of elements

Integrative and conjugative elements also known as conjugative transposons are

MGEs that play a key role in bacterial adaptation [59]. These elements make up a

large part of MGEs. The genes encoding key components of the ICE life cycle are often

grouped into functional modules which may be exchanged among ICEs as well as with

other mobile elements. Like plasmids, ICEs are self-transmissible by conjugation, but

unlike plasmids, they must integrate into the host chromosome and be replicated as

part of it. In addition to the core modules that mediate ICE integration, excision,

conjugation and regulation, ICEs routinely encode a range of accessory functions,

including virulence factors and resistance proteins for antibiotic and heavy metal

resistance. ICEs have an important role in the dissemination of antibiotic resistance

genes in pathogens such as Vibrio cholerae, which causes cholera in humans. The

SXTMO10 ICE was described in V. cholerae O139, and it carries the genes that encode

resistance to four antibiotics: sulfamethoxazole, trimethoprim, chloramphenicol, and

streptomycin [125]. Thus, ICEs combine features of other classes of MGEs, such as

bacteriophages which can integrate and excise from the host chromosome but do not

transmit via conjugation; transposons that integrate the same way as ICEs but are

not transferred horizontally; and plasmids which transfer between cells by conjugation

but can replicate independently of the bacterial chromosome [131].

Integrons

Bacteria tend to replace their pre-existing genetic material with highly similar

genes or fragments of genes. This process is known as homologous recombination [32].

Integrons use homologous recombination to transfer AMR and other types of genes

between defined sites and exchange specific DNA elements called gene cassettes[51].

Integrons are composed of three major elements: intI, a gene that encodes an in-

tegrase responsible for insertion, deletion and rearrangement of gene cassettes; attI,

a recombination site where the cassettes are inserted; and the means to express ac-

quired gene cassettes [22]. An integron by itself lacks the ability to independently

move and hence integrons as a whole cannot be considered as mobile. However, the

gene cassettes harbored by integrons are considered mobile. Integrons are distributed

in multiple copies in various locations of a genome, this helps integrons to facili-

tate the exchange of sequences between identical or related segments via homologous
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recombination [134].

Several integron classes have been identified based on their IntI amino acid se-

quence. Among them, class 1 integrons (CL1s) are highly prevalent in antibiotic-

resistant Gram-negative bacteria which are often embedded in plasmids and trans-

posons which facilitates lateral transfer into a wide range of pathogens [41]. CL1s

are often associated with Quaternary ammonium compound (QAC) resistance [4];

ampicillin, tetracycline and sulfamethoxazole-trimethoprim resistant genes in E.coli

[64]; and streptomycin, tetracycline and sulfisoxazole resistance in Salmonella Ty-

phimurium. [103].

1.3 Key genes in pathogens

Pathogen and pathogen function

The micro-organisms which possess the ability to cause disease to their host are

referred to as pathogens and the severity of the disease symptoms is called virulence.

The four most common types of pathogens associated with the disease are viruses,

bacteria, fungi, and parasites. All living organisms are affected by pathogens including

bacteria which are attacked by specific viruses called bacteriophages or simply phages

[100].

There are a variety of ways through which a pathogen can cause illness to its hosts

such as damaging the host cell walls during a replication event by the production of

toxins [11]. When the cell walls are damaged due to toxins, it makes it easier for the

pathogen to replicate. Colonizing the host, identifying the nutritionally compatible

spots in the host, suppressing the defensive host response, duplication by utilizing host

support system and disseminating to a new host are essential abilities of a pathogen

that determine its survival and viability [2].

Virulence Factors

One of the major interests in microbiology and infection biology is comprehending

which bacterial characteristics contribute most to a disease. Pathogenic bacteria

produce molecules known as virulence factors (VFs) that can attack the host at the

cellular level [90]. Bacterial pathogens possess a number of such VFs that determine

the ability to cause various types of damage or diseases. Such factors include:

1. Surface components encoded on plasmids that allow the bacterium to invade
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host cells [25].

2. Structural features called fimbriae and pili that help the pathogens attach to

host cells [104] [68].

3. Secreted products like endotoxins, exotoxins and enzymes that degrade host

tissue by causing inflammation and lethal shock [69].

4. Siderophores, small molecules secreted by bacteria that facilitate iron transport

across cell membranes.

Siderophores are considered a major virulence factor during infection because

they help pathogens acquire iron and damage the host [82]. As iron is necessary for

many enzymatic reactions, a fierce battle for iron acquisition arises between host and

pathogen during infection.

The virulence factor database (VFDB) provides in-depth information on major

VFs present in various bacterial pathogens. The current version of VFDB is a reper-

toire of details on 16 important bacterial pathogens, virulence-associated genes, pro-

tein structural features, functions, mechanisms and important literature [24]. To

improve the understanding of host–pathogen interactions, a web-based VF database

- Victors was created. Victors provides a comprehensive, curated database of human,

animal and zoonotic pathogen VFs [110].

AMR genes

Mutations and acquisitions of novel genes can induce resistance in a sensitive

bacterium. Bacteria sensitive to a specific antibiotic must have a target region (e.g.,

an essential protein) for the antibiotic to act on and a mechanism that transfers the

antibiotic into the cell before it is activated. Bacteria can develop resistance either

through mutations in previously acquired genes or through LGT [14]. Restricting the

overuse of drugs, modifying the target of the antibiotic attack, drug inactivation and

efflux activation are a few of the control measures developed to fight AMR. [105].

Examples of AMR genes that confer different types of resistance to specific types of

antibiotics include:

1. Fluoroquinolones are associated with multi-resistance and are frequently used

for treating salmonellosis. Resistance to fluoroquinolones can be conferred by
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mutations in the proteins that are targeted by antibiotics [123]. Drug efflux,

which pumps toxic substances out of the cell, is another important mechanism

of resistance that is conferred by proteins known as efflux pumps. Excessive ex-

pression of multidrug efflux pumps such as AcrAB-TolC and plasmid mediated

quinoline resistance genes (qnr) are recently identified resistance mechanisms to

fluoroquinolones [9].

2. Resistance in fosfomycin-susceptible bacteria is conferred by (i) mutations that

occur in the proteins involved in transporting fosfomycin across the cell mem-

brane, (ii) production of the fosfomycin inactivation enzyme FosA, and (iii)

amino acid substitution in the active sites which decreases the fosfomycin bind-

ing affinity [57].

3. Aminoglycosides are particularly active against aerobic, Gram-negative bacte-

ria such as members of the Enterobacteriaceae family, including Escherichia

coli, Klebsiella pneumoniae and others. These antibiotics target the bacterial

ribosome and terminate protein synthesis. There are three types of mechanisms

of resistance against aminoglycosides: resistance due to efflux pumps (OprM),

altering the target ribosome (16S rRNA) and enzymatic inactivation of the

antibiotic molecule by enzymes such as AAC(3) and AAC(6) [106].

4. One of the three largest and important classes of antibiotics are β-lactamases

which attack penicillins, monobactams, carbapenems and cephaloshporins.

Genes encoding β-lactamases can be located on chromosomes, plasmids, inte-

grons and transposons that inhibit the synthesis of the bacterial cell wall [106].

Plasmids can contain multiple β-lactamases of different classes, which confers

broad and high-level β-lactam resistance. These plasmids and the corresponding

resistance can spread amongst many bacterial species, making them resistant

to most of the known β-lactam antibiotics [20].

5. The genes found in gene cassettes extracted from class 1 integrons present

in plasmids or other mobile regions are extremely diverse but include many

genes that confer resistance to antibiotics, including aminoglycosides, β-lactams,
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chloramphenicol, trimethoprim, streptothricin, rifampin, lincomycin, and ery-

thromycin [30].

Several tools have been developed to predict the occurrence of AMR genes in bac-

terial genomes. The open-source, manually curated database ARDB (http://ardb.cbc

b.umd.edu/) provides information on antibiotic-resistant genes (ARGs), their gene

annotations and resistance profiles, related proteins, and external links to other pro-

tein and gene databases. NCBI AMRFinderPlus has a browser that identifies acquired

genes and mutations in both protein and nucleotide sequences (www.ncbi.nlm.nih.gov/

pathogens/antimicrobial-resistance/AMRFinder/). The Comprehensive Antibiotic

Resistance Database (CARD) allows the user to either browse or download a curated

collection of sequences and mutations underlying AMR. A key feature of CARD is

the Antibiotic Resistance Ontology (ARO) which provides a hierarchical organization

of AMR genes, antibiotics, mechanisms, and other information. The Resistance Gene

Identifier (RGI) is both an online and a standalone tool that predicts AMR genes

in bacterial genomes according to user specifications. RGI uses CARD as its central

database to predict AMR genes (https://card.mcmaster.ca/analyze/rgi), and divides

its predictions into three major categories. The Perfect hits are detected when AMR

proteins are a 100% match to the reference sequence in CARD, while ‘Strict’ hits

vary from the CARD reference sequence within the curated cut-off similarity score,

and are useful for identifying variants of AMR genes that are previously unknown or

antibiotic targets that are altered via mutation. The ‘Loose’ hits are found when the

model cut-offs are very low. The “Loose” criteria allows detection of novel, predictive

threats and more distantly related AMR gene homologs, with the risk of identifying

homologous sequences and partial hits that may not contribute to AMR . Analysis

of Loose hits supports novel AMR gene function prediction and research [3].

1.4 Literature review

1.4.1 Conservation of gene order

Analyzing the gene location and gene associations is an important area of genet-

ics. Several methods have been proposed for comparing gene order across multiple

genomes and detecting local gene order conservation. The amount of gene inser-

tion/deletion and local rearrangements allowed are the two factors on which these
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various methods depend [129].

Using the concept of orthologs is one of the well-known methods to compare gene

order. The Clusters of Orthologous Groups (COGs) protein database [120] is based

on all vs all comparisons between reference proteins from multiple genomes; a recent

application was used where functional analysis of the COGs in 86 Elizabethkingia

genomes revealed information on unique gene families associated with “information

storage and processing”. This analysis proved that Elizabethkingia has shown adap-

tive evolution to environmental change [72].

One of the most common approaches to identify orthologs is by using the reciprocal

best hit (RBHs) method. Consider two proteins a and b on two different genomes

A, B; if gene a from genome A finds has gene b on genome B as its best BLAST

match and vice versa, they are RBHs and are considered as orthologs. The most

commonly used program for finding sequence matches that uses RBHs is BLASTP

[21]. Although BLAST searches are highly effective at finding homologous matches,

they often assign the highest score to a protein that is not the closest evolutionary

neighbor (e.g., an ortholog) of the query sequence. The potential pitfall due to this

is that orthologs could be missed when using the RBH approach [63].

Operons are sets of adjacent genes that are expressed together and have related

functions. Due to their close physical and functional linkage, gene order within oper-

ons is more highly conserved than between them [126]. Bork and coworkers came

up with the concept of ‘über-operon’ which refers to a pair of genes whose functional

and regulatory contexts remain to be intact even after an operon has undergone many

rearrangements on itself and its individual genes [67]. The ‘über-operon’ concept was

extended by examining the conservation of gene pairs in at least three genomes to

minimize the probability that such pairs were conserved during evolution and not just

shared by chance [107].

The set of genes that are physically close to a given gene in a chromosome or

plasmid are termed its neighborhood. The gene neighborhood can include genes in

both the upstream (before the gene start point) and downstream (after the gene end)

directions. There is no fixed number of genes in a neighborhood, and the choice of

neighborhood size is up to the researcher. A deeper understanding of the evolutionary

relationships between genomes, gene-function prediction and detection of potentially
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interacting proteins can be obtained by analyzing the neighborhood of genes of inter-

est in a genome [129] [119]. For instance, conserved gene clusters in distantly related

species may point to the occurrence of operons or otherwise functionally related gene

groups [85] [93].

1.5 Gene order analysis and visualization tools

Several tools such as CGUG, CoreGenes, GeneOrder and Synteny Portal have been

developed to study the conservation of gene order [78] [70]. GeneOrder relies on the

BLAST sequence alignment algorithm where the scores are divided into three levels:

high, medium and low, but there exists a limitation on the size of the genomes that

can be provided as input [23]. OrthoCluster implements many variable constraints

including the maximal percentage of mismatched genes. This application is flexible

for the identifying the synteny blocks among species that have different evolutionary

distances [132]. In contrast to OrthoCluster, an automated suite of programs was

developed to explore the conservation of gene order that allows definitive identification

of orthologs which can be used to evaluate the prokaryotic gene order conservation

independent of their taxonomic distance [71].

1.6 Caveats of gene-order comparison

Although gene order can provide vital information about AMR genes and their flank-

ing genes, comparing neighborhoods between genomes is not trivial, for several reasons

in addition to the orthology problem introduced above:

1. There exist cases where the order of orthologs is not maintained even within sim-

ilar species with same prokaryotic lineage. One such instance was found shortly

after the sequencing of the genomes of E. coli and Haemophilus influenzae [85].

2. Functional annotations of bacterial genomes are not completely reliable and are

prone to numerous errors. Incorrect assignment of start and stop of translated

proteins, false prediction of genes, missed genes and frame-shifts are a few of

the errors that affect gene order [116], [31].

3. Pseudogenes are segments of the bacterial genome that are very similar to func-

tional genes but have become non-functional due to the accumulation of mu-

tations and are very difficult to identify. The genome of Mycobacterium leprae
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has over 1000 pseudogenes which results in uncertainty in the process of iden-

tification of orthologs necessary for gene-order comparison [28].

4. Gene order can be quite different because of a large number of genomic rear-

rangements [91]. The processes of insertion, deletion, and translocation result

in changes in gene copy number, orientation, and position [98]. These events in-

crease the fluidity of the bacterial genomes and make it very difficult to analyze

the gene order between distantly related species.

1.7 Introducing distance measures to compare gene neighborhoods

Early observations showed that gene order is usually disrupted when the average

protein sequence identity of orthologs shared between two genomes is <50% [56],

hence introducing parameters during sequence comparisons to identify orthologs is

necessary. Application of the BLAST criteria where the homologs have the expected

rate of false positives of a certain statistical expectation value, limiting the length

of the sequences to be compared and ensuring that both sequences are the best

hits to each other (reciprocal confirmation) are a few of the parameters that can be

introduced to identify the right orthologs [62].

In order to overcome the more serious problems of gene-order comparison of dis-

tantly related species, there is a need for distance measure that can be used to compare

and cluster groups of similar neighborhoods. To handle the gene-order distortion and

to quantify the conserved patterns observed, a measure called the neighborhood dis-

ruption frequency (NDF) was used. This NDF score between the genomes ranged

between 0 which indicated complete conservation of gene order and 1 which cor-

responded to complete rearrangement. Using this measure, the study was able to

gain insights into the rate of disruption of gene order and the genes that were re-

sponsible for genome rearrangement [118]. Another computational method - SNAP

(Similarity-Neighborhood Approach) which used similarity scores as distance mea-

sure was developed for finding functionally related gene sets from genomic context.

SNAP relies on a similarity-neighborhood graph (SN-graph) constructed from the

chains of similarity and neighborhood relationships between orthologous genes in dif-

ferent genomes and adjacent genes (neighborhood) in the same genome. However,

this approach requires computationally heavy resources and can be applied only to a
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limited number of genomes [61].

1.8 Clustering techniques

Pairwise similarity or distance scores among a set of gene neighborhoods can be aggre-

gated using a range of clustering techniques, which can reveal interesting patterns and

information on AMR genes. There are many clustering techniques that apply various

types of distance measures while grouping the genes of multiple prokaryotes. Affinity

propagation that takes preference and kernel radius as parameters [45], clusterONE

which accepts number of clusters and size of the threshold as variables [87], K-means

and modified DBSCAN-based methods [35] are some noteworthy clustering methods.

Many conventional clustering algorithms suffer from problems when analyzing gene

data. Specifying the number of clusters, providing strength against noise, and poor

handling of embedded and intersected clusters are a few of the limitations [94]. In

such conditions, many biologists prefer hierarchical clustering methods that generate

a set of divisions based on cluster hierarchy in the form of an output dendrogram.

The gene neighborhoods computed can also be considered as a biological network

or a key-value pair graph. For such types of networks, nodes are represented using

genes or proteins whereas the pre-computed similarities or functional linkages be-

tween the genes serve as edges. Self-organizing maps which are a recent addition to

clustering gene data [77] and Markov clustering [10] are the two well-known graph

based clustering techniques. These network-based clustering techniques are useful in

understanding phenomena such as protein-protein interactions. As proteins tend to

function in groups, studying these interaction networks can help in protein function

prediction [122].

1.9 Thesis objectives and organization

High performance DNA sequencing and bioinformatic tools have drastically improved

the process of investigating AMR by identifying the genes that confer resistance [18].

There is a need for new, fast and reliable methodologies that can provide more in-

sights into gene-order conservation, gene function, and AMR propagation to better

understand the risks posed by the transmission of AMR. The main objective of this

work is to find AMR genes of interest in a reference genome, efficiently retrieve the

sequence homologs from bacterial genomes, then compare the neighborhoods of AMR
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genes in the genomes of closely and distantly related species. These neighborhoods

can provide additional insights on various evolutionary events that may have con-

tributed to AMR transmission. In the first part of the thesis we examine different

approaches to compute and use gene-order information in the analysis of AMR genes.

The second part of the thesis concentrates on the use of gene order to examine the

more-uncertain Loose-hit predictions of the CARD. Phylogenetic analysis and clus-

tering of the neighborhoods are used to predict whether CARD “Loose” hits are likely

to confer antimicrobial resistance or the hits are indeed false positives.

We find that AMR gene neighborhoods are largely conserved within closely re-

lated members of species including (Salmonella), with notable exceptions that can

be highlighted using our method. Examination of the neighborhoods of Loose hits

provided more information on their probable functions. We generate a graphical rep-

resentations of the genomic neighborhood surrounding the target AMR gene and the

corresponding regions for its homologs in each comparison genome. Our approach

helps to identify gene orthologs and potential functional gene clusters, and func-

tional inference from clusters of Loose hit AMR genes. We identified specific cases

where the neighborhoods of AMR gene models were affected by the insertions, dele-

tions and lateral gene transfers amongst the members of Salmonella serovars. Our

methods provided substantial evidence on AMR properties of candidate Loose hits of

CARD which was supported by cluster dendrograms, gene order visualizations and

phylogenetic trees.

The remainder of the thesis is organized into 3 sections. Chapter 2 concentrates

on giving a detailed view of methods used for the analysis and also reporting results

and conclusions. Chapter 3 includes the details of analysis when an additional AMR

hit criterion in included in the analysis. The last chapter concludes the thesis by

providing a brief summary and also future perspectives.



Chapter 2

CLUSTERING OF AMR GENE NEIGHBORHOODS

2.1 Motivation

The major objective of this chapter is to introduce and illustrate a new approach

for the comparison of gene neighborhoods in a set of genomes. Our comparative

approach is based on the assumption that gene order tends to be highly conserved

among closely related bacteria.

Several mechanisms have been proposed to explain the extent and importance

of gene clustering in understanding bacterial genome organization. Genes organized

into clusters rather than the uniform distribution of conserved genes is a key feature

of many bacterial genomes. Assuming that functional relevance and conservation of

gene clusters are correlated, the gene-clustering property has been used to predict

the function of genes through the annotations of their neighborhoods [42]. The ’guilt

by association’ principle states that the function of a neighboring gene in a cluster,

whether from the same operon or merely adjacent, can be proposed if the function of

one gene in a conserved cluster is known [7].

The chapter is divided into two major parts: the first part concentrates on provid-

ing a step-by-step detailed explanation on the methods performed (Figure 2.1) and to

list the various datasets highlighting the outbreaks of many Salmonella strains over

the recent years to understand why their analysis is vital. The second half focuses

on applications of the methodology to test datasets. The results include detailed

visualization of gene clusters, statistics, gene order and comments about AMR gene

ortholog neighborhoods.

19
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2.2 Methods

Figure 2.1: Steps involved in the approach including bioinformatic tools used (curved
rectangles of blue, green and purple) and python scripts (.py extended names inside
black rectangles) and the results obtained (pictorial representations inside a square).
The output at every stage is shown using labelled emerging arrows. The first steps
of the approach involve the collection of raw genome assemblies (FASTA-formatted
files of genomes containing nucleotide sequences) and preprocessing those assemblies
to extract two types of input files required for further analysis. Prokka - a program
that annotates bacterial genomes and generates standard output files [112] and RGI
were used for annotation and recognition of AMR genes within the genomes. Python
scripts Neighborhood Generator.py and Clustering.py were used to identify and divide
the data based on various RGI models and construct their neighborhoods using the
input files. All-vs-All BLAST scores of the neighborhood genes were used to compare
multiple genomes and construct their corresponding neighborhood similarity matrix.
The distance measure was applied on the similarity matrix to convert and generate
the distance matrix that represented differences between each neighborhood. The
distance and similarity scores were used as input for several clustering measures whose
results were evaluated. The neighborhoods were visualized in a graphical format using
libraries to understand the gene order of the neighborhoods.
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2.2.1 Annotation and comparative analysis

Raw sequence assemblies extracted from three different datasets that we have cho-

sen for our analysis were annotated to obtain the labelled relevant features using the

command-line prokaryotic annotation tool Prokka 1.14.6 with the default specifica-

tions. Prokka was installed using bioconda from https://github.com/tseemann/prokka

[48]. Out of various output files generated by Prokka, annotations were retrieved in

GenBank and FASTA (.fna) format. The GenBank entries contain metadata and

detailed information about the organism. Various details regarding important char-

acteristics of the entry’s sequence such as the presence of coding sequences, proteins,

etc are provided by the “features” part of the GenBank entry [13]. Prokka generates

corresponding protein sequences of the input nucleotide sequences in the FASTA for-

mat. For each genome, these are the two input data files that were used for the rest

of the analysis.

Resistance genes present in each genome were identified using the CARD-RGI.

RGI 4.2.2 was installed using bioconda from https://card.mcmaster.ca/download.

The protein sequence file produced by Prokka was passed as the input to RGI with

default specifications: all Loose hits of 95% identity or more were automatically listed

as strict, regardless of alignment length. We included only high-confidence predictions

(Strict and Perfect hits) from RGI in this chapter and address Loose hits separately

in Chapter 3. Basic Local Alignment Search Tool (BLAST) 2.9.0 was used to identify

homologous sequences and the output was generated in the tabular output format

6. BLAST provides high scoring segment pairs (HSPs) for each hit. The number of

HSPs was limited by setting the threshold of max hsps parameter to 1 so that only

the matches with highest bit-score are returned. This choice was made to reduce

the redundant BLAST entries and hence increase the computation time required to

compare two neighborhoods.

2.2.2 GenBank and RGI data parsing

Data frames from the Python pandas package were used as data structures to extract,

store, and manipulate the tabular formatted RGI output data. RGI predictions, which

were obtained as outputs from the previous section includes the coordinates and ori-

entation of the gene and the score with respect to a given AMR gene model. The
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GenBank data was handled with the help of Biopython (https://biopython.org/)

which provides methods for parsing the GenBank sequences. Bio.SeqIO provides

an interface to handle input and output of sequence file formats including multi-

ple sequence alignments but it considers the sequences only as SeqRecord objects

(https://biopython.org/wiki/SeqIO). The SeqIo.parse class, which uses records and

qualifiers, was used to extract important gene information such as contig details, lo-

cus tag, gene start, stop, orientation, product, and translation of the protein. One

of the problems of gene annotation methods as discussed in the introduction is that

there can be entries where the gene details are missing. Such genes were labelled as

UID (unidentified) for the purpose of analysis and visualization to differentiate them

from genes with predicted functions.

2.2.3 Neighborhood visualization using DNA feature viewer

To plot the sequence annotations from GenBank or General Feature Format (GFF)

records, many tools are made available and DNA sequence visualization has become

a common requirement in bioinformatics. We used DNA Feature Viewer [135] which

is a tool that annotates sequences from GFF or GenBank format by converting them

into a graphical format. The command-line version of DNA Feature Viewer was in-

stalled and modified as per the requirements of the project. Graphic records visually

define the features of genes in each neighborhood annotation. One neighborhood

corresponds to one graphic record and the distance between the first upstream gene

to the last downstream gene is considered as the length of one graphic record. The

DNA Feature viewer provides an option for specifying the gene start, stop, orienta-

tion, name, colour, and gene name information for each graphic feature to obtain

the gene order visualization. The colour codes of predicted AMR genes corresponded

to the category assigned by RGI: green for Perfect hits, yellow for Strict hits, and

orange for Loose hits. DNA Feature Viewer provides an option of a translator. The

translator is a set of style tags which can be defined once but can be used to ensure

style consistency across annotation plots throughout a project. This translator was

used to maintain the gene color, font style of labels, and highlight the AMR gene.

Figure 2.2 illustrates how DNA Feature Viewer automatically generates the visual

elements of a graphic record to improve conciseness and readability.
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Figure 2.2: Gene order visualization using DNA Feature Viewer. Each gene is rep-
resented as a turquoise arrow. Feature labels which are either gene names or the
“contig ends” are displayed directly inside their corresponding feature arrow, and the
font color is automatically selected (as black or white) to fit the feature’s background
color. Labels which do not fit inside a feature arrow are displayed above it (hmrR
and ail 4 in this example). Finally, all features and label texts are organized along
different vertical levels to avoid collisions. This ensures that the resulting plot re-
mains readable irrespective of the figure’s width. The relative positions of the genes
in that contig is denoted by the indices shown below the genes based on start and
stop indices. The thick red border is used to highlight the RGI gene of interest.

2.2.4 Identification of orthologs

For every target AMR gene model identified by the RGI, a python script that iden-

tified the orthologs and their corresponding neighborhoods was used. For each of

the AMR gene models recognised by RGI, orthologs present in other genomes of the

dataset were identified. In these analyses, a given CARD AMR gene was analyzed

if it was predicted to be in more than 35% of the total genomes of the dataset. The

start and stop information of the AMR gene was used as a reference to obtain the 10

upstream and 10 downstream genes which were considered as the neighborhood. We

fixed the length of neighborhood to 10 in our analysis to avoid the exclusion of many

genomes with shorter contigs. The orientation details of the AMR gene were used to

align and orient the AMR gene within its neighborhood. One way to select ‘suitable’

homologs is to apply an E-value or percent identity cut off. In our approach, two

protein sequences are treated as homologs for comparative purposes when they share

more than 70% overall sequence identity.

The contig information played a vital role in the identification of neighborhood

genes. As the GenBank data for each genome was large and hard to process, it was

divided into separate sections based on the available contig information to ensure that

the orthologs and the neighborhood genes on the same contig genes were identified.

In some cases, the GenBank assembly lacked the entry for a specific contig on which
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an ortholog was identified; these cases were ignored. In cases where ten upstream

or downstream genes were absent due to truncated contigs, the contig ends in the

neighborhood of the target AMR gene were marked in the visualization (Figure 2.3).

Figure 2.3: A neighborhood visualization demonstrating a contig end. The neighbor-
hood of the AMR gene bacA (yellow) consists of 10 downstream genes whereas the
contig ends with no genes in the upstream denoted using the “Ends upward” tag.

2.2.5 Sequence similarity and distance matrix

The scores obtained from the alignment algorithms such as BLAST can be used

to measure sequence similarity. In our approach, all the AMR genes along with

their neighborhood genes were compared using All-vs-All BLAST, with each query

sequence from a neighborhood compared with all the subject sequences from the other

neighborhoods. The second part of the model involved reading the BLAST outputs in

the tabular format into data frames. The details of gene identifier, alignment start,

alignment end, and BLAST scores such as E-value, percent identity and bit-score

were stored in the tabular format in the form of .txt files. These parameters were

used to in the construction of neighborhood similarity matrix.

We used the BLAST bit-score to represent the similarity between pairs of genes.

In addition to the E-value, the bit-score also can be used for statistical indication in a

BLAST output . The bit-score provides measurement of sequence similarity without

depending on length of the query sequence and database size, it is also normalized

based on the pairwise alignment score. The bit score (BS ) can be determined using

the formula:

BS =
λS − lnK

ln2

where λ refers to the Gumbel distribution constant which is an extreme value
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distribution, S refers to raw alignment score, and K refers to a constant associated

with the applied scoring matrix. BS is proportional to the raw alignment score (S)

and hence, higher the bit score, the better the match according to the scoring matrix

(https://www.ncbi.nlm.nih.gov/BLAST). As the bit-score values vary over a broad

range, normalization was used to eliminate redundant data and ensure that good

quality clusters are generated and to improve the efficiency of clustering algorithms.

The notation that was used to normalize the bit-scores of a ALL-vs-ALL comparisons

is mentioned below:

NBS(g1, g2) =
BS(g1, g1)

BS(g1, g2)

where NBS refers to normalized bit-score of a comparison of gene1(g1) with gene2(g2),

BS(g1,g1) is the bit-score value obtained when the gene1 is compared with itself and

BS(g1,g2) is the bit-score value obtained when the gene1 is compared with gene2.

Using this notation helped us to normalize the bit-score values between 0 and 1.

The results of ALL-vs-ALL BLAST of the homologous pairs were used to com-

pute the similarity matrix that shows the level of conservation in each neighborhood.

Similarity scores between two neighborhoods(N1,N2) were computed based on two

main criteria:

1. If neither N1 and N2 included contig ends, the similarity score of N1 and N2 was

the aggregation of normalized bit-scores of the matched hits in the neighbor-

hood. The maximum score between N1 and N2 would be 21 which occurs when

the 10 upstream and 10 downstream along with target AMR gene of N1 have a

100% match with no bit-score differences to the 10 upstream and downstream

genes of N2.

2. If either of the neighborhoods (N1 for instance) included a contig end and the

difference in neighborhood was because of genes missing only due to the contig

end, the similarity score of N1 and N2 was modified with the presumption that

the missing genes were the matches to the genes in the neighborhood N2 and it

was not penalised.

We then transformed the neighborhood similarity matrix into a distance matrix.

Our methodology assumes that a distance matrix D, can be defined, whose element
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Di,j represents the dissimilarity point at row i and column j. This is simply a mea-

surement of how dissimilar AMR gene neighborhoods are to each other. The notation

used to convert an entry of the similarity matrix into an entry in the distance matrix

is:

Di,j = 1− SM i,j

max(SM)

where SMi,j is the similarity matrix score at point i,j and the max(SM) represents

the maximum similarity score for that complete neighborhood. The distance matrix

depicts how each neighborhood relates with respect to the other based on factors such

as bit-scores and neighborhood length. A symmetric distance matrix is obtained as

the difference between N1 and N2 is the same as the difference between N2 and N1

and the diagonal elements were zero as every neighborhood is completely identical to

itself.

2.2.6 Clustering

Once distance matrices were constructed for each pair of neighborhoods, we applied

three types of clustering: UPGMA, MCL and DBSCAN to obtain clusters of similar

neighborhoods. Many clustering algorithms rely on proximity or similarity between

data objects and hence measuring distance between data objects acts as the founda-

tion for clustering. Our approach builds a distance matrix based on neighborhood

comparisons to construct the cluster hierarchies. Genes with similar roles in the cell

often cluster together and hence we believe clustering the distance matrix generated

by comparing the neighborhoods can reveal interesting patterns and information on

AMR genes.

UPGMA

Hierarchical clustering is one of the most common methods employed for classification

in field of biology. Classifying the organisms of different populations or species based

on gene order, finding sequence similarity between genes or proteins and identification

of genes with matching profiles are a few of the common uses of hierarchical clustering

[8].

The unweighted pair group method with arithmetic mean (UPGMA) approach is

used frequently in bioinformatics and ecology. We adopted UPGMA as it uses the
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similarity across all data points and hence considered to be the most robust amongst

other single - linkage hierarchical clustering methods [76]. UPGMA follows the hier-

archical procedure of iteratively clustering similar genes from the given dissimilarity

matrix. The algorithm investigates the structure of the pair-wise distance matrix to

construct a rooted tree. The two nearest clusters are combined into a higher-level sin-

gle cluster at each step. The distance between any two clusters m and n is calculated

as the average of all distances between pairs of objects “u” in m and “v” in n, that

is the mean distance between points of each cluster. The d[m,n] entry corresponds

to the distance between cluster m and n. At each iteration, the UPGMA algorithm

updates the distance matrix to reflect the distance of the new cluster - m with the

remaining cluster. The distance is calculated using the equation:

d(u, v) =
∑︂
m,n

d(u[m], v[n])

(|m| ∗ |n|)

for all points u and v where |m| and |n| are the cardinalities of clusters m and

n, respectively (scipy.cluster.hierarchy.linkage). The output of UPGMA is always a

tree which is also known as a dendrogram. The UPGMA clustering algorithm was

applied from the python scipy package cluster.hierarchy and the dendrogram was

plotted using figure factory of plotly library. A pre-computed distance matrix for

the neighborhoods was given as input to cluster similar neighborhoods which were

represented using a dendrogram.

Graph-Based clustering

Graph and network based analysis techniques provides a way in which a biological

entity can be analysed based on its local neighborhood in the graph and also the net-

work as a whole entity. Conventional clustering techniques such as K-means generally

follow a pairwise approach where they consider only the individual relationship be-

tween two biological entities rather than incorporating the higher-order interactions

with their neighbours [44].

The Markov clustering (MCL) algorithm is designed to perform well, specifically

while clustering the simple or weighted graphs. A single parameter, inflation, controls

the extent of output clustering. We used the graph-based Markov clustering from

the Markov-clustering module (https://github.com/guyallard/markov clustering). A
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similarity matrix was provided as the input for MCL and graphical network of each

neighborhood with the distribution of the most significant clusters was generated by

MCL. Similarity scores were used for clustering as MCL interprets the matrix entries

or graph edge weights as similarities, and works well for undirected input graphs as

suggested in MCL documentation.

Density-based clustering

Density-based spatial clustering (DBSCAN) is a widely used clustering technique

where a density threshold is associated with the linked region. The size of the neigh-

borhood (epsilon) and the minimum points (min-points) within the given cluster are

the two predefined parameters which direct the DBSCAN and determine the quality

of clusters. Using these two parameters, DBSCAN divides the input data points into

core points (input data points which satisfy a minimum density requirement), border

points (points in cluster that are not core points) and outlier categories. DBSCAN

chooses a random point that has not been assigned to a cluster or been designated

as an outlier and computes its neighborhood to determine if it’s a core point. If true,

it starts to cluster around this point or label the point as an outlier otherwise. Once

a core point or cluster is identified, DBSCAN expands the cluster by adding all the

points that are reachable to the cluster. All density-reachable points are calculated

and are added to the cluster. A point’s status is updated to border point if an outlier

is added. These steps are repeated until all the points in the input are either assigned

to a cluster or marked as an outlier (medium.com/dbscan).

DBSCAN was used from a popular python machine learning library Scikit-Learn

as their implementation was found to be scalable and well-tested. The generated

distance matrix was fed as input to DBSCAN that generates the clusters visualized

in a 2 dimensional scatter plot. The denser cluster signifies the most significant

neighborhood and the genomes that fall into that neighborhood which was not that

informative for smaller datasets. The epsilon parameter was varied using hyperpa-

rameter tuning to determine the optimal number of clusters to understand whether

the similarity of the neighborhood depends on the size of the clusters.
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2.3 Genomic datasets

We focused on the genus Salmonella in the analyses described in this chapter. Salmonella

is subdivided into serotypes which have the same type and number of surface anti-

gens [5]. Studies prove that along with other properties, gene order is preserved

extensively in closely related species, owing to this, only the genomes of different

types of Salmonella serovars are used in the first part of the analysis. Salmonella is

a pathogenic bacterium whose clinical manifestations range from common gastroen-

teritis (diarrhea, abdominal cramps, and fever) to enteric fevers that fall into the

categories of life-threatening febrile systematic illness [46]. Recently, drug-resistant

Salmonella has been associated with a considerable number of outbreaks in the

U.S; given its importance and the potential for recent evolution we focused on this

group. The table below provides a few important cases of such outbreaks related to

Salmonella serovars used in this study. The details regarding the various outbreaks

are extracted from the Centers for Disease Control and Prevention (CDC).

Salmonella
serovars

Year Outbreak-mode Resistant to

S. Typhimurium 2018 Dried coconut Ampicillin, azithromycin

S. I 4,(5),12:i: 2015 Pork products
Ampicillin, treptomycin,
sulfisoxazole, tetracycline

S. Enteritidis 2015
Raw, frozen and
stuffed chicken

Ampicillin, tetracycline

S. Heidelberg 2014 Chicken
Three or more classes of an-
tibiotics

S. Hadar 2011 Turkey Burgers
Ampicillin, amoxicillin,
cephalothin, tetracycline

Table 2.1: Table of recent Salmonella serovar outbreaks

The Salmonella spp. used in this study are divided into three categories of

datasets. The first two datasets 15 S.Heidelberg and 100 S.Heidelberg were ex-

tracted as a subset of 2500 genome sequences from poultry collected along the poultry

production continuum (farm, retail) through the Canadian Integrated Program for

Antimicrobial Resistance Surveillance (CIPARS) and the Canadian Food Inspection

Agency’s 2013 National microbiological poultry baseline survey. The genomes for the

15 Diverse dataset were extracted from NCBI as a part of the project that focused on
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Antibiotic Resistance and diversity of Salmonella enterica serovars associated with

broiler chickens. These Salmonella genomes encompassing 6 serotypes were isolated

from poultry farms to study the development of machine learning method for predict-

ing AST(Antimicrobial susceptibility testing) from genomic datasets and development

of experimental AMR gene-detection methods.

Dataset Name
Number
of
genomes

Year, country of
extraction

Isolates

15 S.Heidelberg 15 2005-2017,Canada S. Heidelberg
100 S.Heidelberg 100 2005-2017,Canada S. Heidelberg

15 Diverse 15 2005-2008,Canada

S. Heidelberg(3),
S. Typhimurium(1),
S. Hadar(4),
S. 4,5,12(3),
S. Enteritidis(3),
S. Kentucky(1)

Table 2.2: Details of various datasets used in the project



31

2.4 Results

2.4.1 Dataset 2.1: 15 S.Heidelberg genomes

The model was first applied on the smaller dataset 15 S.Heidelberg to analyze the

distribution of AMR gene neighborhoods across very closely related genomes of the

same species. As this dataset consisted of very closely related genomes, we expect

to find highly conserved AMR gene neighborhoods with few variations. CARD’s

Resistance Gene Identifier (RGI) 4.2.2 with the CARD database 3.0.1 was run with

default settings for all isolates to predict resistance phenotypes. Perfect and Strict

hits predicted by RGI were included, where a Perfect hit is an exact match to the

curated reference sequences, and a Strict hit is a previously unknown variant of known

AMR genes that matches a reference sequence at or above a stringent threshold.

The initial step of the model provides a brief summary of the RGI genes present

in each genome. In this dataset, a total of 15 genomes were analyzed and 41 unique

gene models were identified. A specific AMR gene model was chosen for analysis only

if it was present in more than 20% of the genomes of this dataset. Figure 2.4 shows

the detailed statistics of the number and type of AMR gene present per genome and

these statistics support our hypothesis of expecting highly conserved neighborhoods

within genomes of closely related species.

Figure 2.5 shows the distribution of average similarity scores of neighborhoods

of 41 gene models. As per the histogram, almost 20% of the total 41 gene models

had extremely similar neighborhoods with average similarity scores between 20 and

20.5 and 31% of the gene model neighborhoods had very similar neighborhoods with

similarity scores between 19 to 20.25 and only 6% showed minor variations (2 to 3

gene mismatches) with average similarity score of 18.5. For this dataset of 15 genomes

with 41 unique gene models, the highest average similarity score observed was 20.75

and the lowest score was 18. A High degree of conservation was observed in the

neighborhoods of AMR gene models identified in this dataset as expected as there

were no neighborhoods with scores less than 18 according to the histogram.

Amongst all the gene models, the neighborhood of Haemophilus influenzae PBP3

conferring resistance to beta-lactam antibiotics (condensed to Hi PBP3 ) which ex-

hibits antibiotic target alteration resistance mechanism against cephalosporin,

cephamycin, and penam (a class of beta-lactams), was highly conserved with average
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Figure 2.4: AMR gene statistics of 15 S.Heidelberg genomes analyzed. (A) Details
of Perfect, Strict and Loose hits identified by CARD for each of 15 genomes. (B)
Illustration of AMR classification for genome ID “SA20153983”, sorted RGI results
by AMR Gene Family (obtained from CARD’s RGI web interface).

similarity score of 20.975. Figure 2.6 shows the conservation of gene order and con-

served neighborhoods of the Hi PBP3 AMR gene. Hi PBP3 gene had 15 orthologs

in all 15 genomes with no unidentified genes in the neighborhood. Only one neigh-

borhood lacks all 10 upstream and downstream genes as its corresponding AMR gene

was present on a short contig with few genes. The gene mismatches caused due to

shorter contigs were not penalized in our scoring system and therefore had maximal

similarity scores.
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Figure 2.5: Histogram showing distribution of average similarity scores across the
neighborhoods of 41 unique AMR gene models identified in 15 genomes of Dataset
2.1. The x-axis shows the number of gene models and y-axis indicates the average
similarity scores between neighborhoods.

When the neighborhoods with lower average similarity scores were further investi-

gated, the neighborhood of the AMR gene mdtK which lies on the maximum average

similarity spectrum of histogram (Figure 2.6) showed minor variations. mdtK belongs

to the AMR gene family of multidrug and toxic compound extrusion (MATE) trans-

porters and exhibits the antibiotic efflux resistance mechanism against fluoroquinolone

antibiotic. Figure 2.7 shows a heatmap of the similarity matrix of the neighborhood

of 15 genomes generated based on the normalized bit-score of the homologous pairs

of genes. The heatmap shows that most of the neighborhoods were very similar with

average scores between 19 to 21. However, some exceptions were observed, most no-

tably the genome with ID SA20160190 which had a similarity score of only 12 with

most other neighborhoods. The distance matrix derived from the similarity scores

is shown in Table 2.3. Most of the neighborhoods were very similar with maximum

difference value of 0. The neighborhoods SA20160190 and SA20160323 showed the

largest maximum differences of 0.5 between them indicating the gene mismatches

in the neighborhood. The average difference value between the neighborhoods lies
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Figure 2.6: Neighborhoods of AMR gene model HI PBP3 : 15 neighborhoods, each
originating from a different genome in the set, are shown, with the Strict hit AMR
gene in yellow highlighted with a red border. The upstream and downstream genes
of each neighborhood are represented using turquoise arrows with gene names.
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between 0.03 and 0.15. The neighborhood analysis of this gene model revealed that

insertion and deletion events can influence the neighborhood similarity.

Figure 2.7: Variation of similarity scores across the neighborhood ofmdtK gene model
across 15 genomes represented in the form of an heatmap. The similarity scores range
from 12 to 21. Query id and Sub id are the genome IDs of 15 genomes compared.
The ID also indicates the name of the AMR gene and the percent identity match with
the corresponding gene model.
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Table 2.3: Distance matrix for the neighborhood of AMR gene model mdtK. Rows
and columns represent the 15 neighborhoods compared to obtain the distance matrix.
Each value(i,j) in the symmetric matrix indicates the maximum difference obtained
when the neighborhood on row i was compared with column j. The difference values
range between 0.0-0.502.
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UPGMA:

The distance matrix was provided as the input to UPGMA clustering method.

Figure 2.8 shows the dendrogram of various clusters generated from the neighborhood

distance matrix of mdtK gene model. There are many strategies that can be followed

to cut a dendrogram at a position to obtain optimal clusters. We used the mean of

the distance matrix as the measure to cut the dendrogram to obtain optimal clusters

which can provide insights into neighborhood differences. Two clusters were obtained

when this criterion was applied. Eleven genome neighborhoods in one cluster were

identical and had a corresponding cluster height of zero; the other cluster consisted

of two neighborhoods that were also identical.

Figure 2.8: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene modelmdtK. The x-axis shows the genome IDs of neighborhoods
belonging to various clusters(red and green) as labels. The y-axis shows the distance
between the neighborhoods at the time they were clustered.
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MCL:

The similarity matrix was given as the input for the MCL algorithm as it uses

similarity scores rather than distances. Each neighborhood was considered as a node

connected by edges that are the similarity scores between the neighborhoods. 15

genomes were represented as nodes of indexes from 0 to 14 in the following order:

’SA20153980 - 0’, ’SA20153983 -1’, ’SA20160170 -2’, ’SA20160172 -3’, ’SA20160190 -

4’,’SA20160197 -5’, ’SA20160200 -6’, ’SA20160201 -7’, ’SA20160203 -8’, ’SA20160209

-9’, ’SA20160210 -10’, ’SA20160228 -11’, ’SA20160323 -12’, ’SA20160326 -13’,

’SA20171155 -14’. MCL exhibited different behaviors when the inflation parameter

which controls the granularity of the output clusters was varied for a range of values.

A good set of starting values are 1.4, 2, 4, and 6 according the MCL documentation

(https://micans.org/mcl/man/mcl). When the inflation parameter was between 1.4

and 4, MCL assigned all the nodes into one big cluster indicating that there are no

differences between neighborhoods (Figure 2.9). As the threshold was increased to 10

and above, MCL grouped the nodes 1, 4, 12, 13 and 14 together and all the remaining

nodes were assigned to singleton clusters (Figure 2.10). MCL remained static and

clusters were not changed even when the inflation parameter was varied between 1.4

and 10 (the optimal maximum value according to documentation). These findings

proved that MCL clusters did not align completely with the hierarchical clustering

as the differences between neighborhoods were not correctly accounted. Hence, MCL

might not be a suitable clustering algorithm to be used while comparing the two

neighborhoods as nodes in a graph in our case.

DBSCAN

The distance matrix was provided as the input to the DBSCAN algorithm that

clustered the genomes based on the density parameter. The values of epsilon were

varied over a range of values to evaluate the clusters in comparison with hierarchical

clustering. The clusters generated by DBSCAN aligned with the clusters obtained

from UPGMA method. DBSCAN provided 3 different clusters that showed major

differences in the neighborhoods but did not consider the smaller difference values

while clustering.

Figure 2.11 shows a detailed comparison of the clusters generated by UPGMA,

MCL and DBSCAN for the AMR gene neighborhood of mdtK. Each neighborhood is
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Figure 2.9: MCL clusters for the 15
neighborhoods of gene model mdtK
when the inflation parameter is 10 and
below. Each node (blue circles) rep-
resents a neighborhood containing the
AMR gene mdtK.

Figure 2.10: MCL clusters for the
15 neighborhoods of gene model
mdtK when the inflation param-
eter is 10 and above. Each color
indicates the cluster to which a
particular node belongs. Nodes
with same color indicated that the
neighborhoods belong to the same
cluster (blue nodes 1, 4, 12, 13 and
14)
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assigned to a cluster and represented with a unique color for each cluster. UPGMA

divides the 15 neighborhoods into 3 clusters (indicated using yellow, green and blue

colors) with different cluster heights. All two (UPGMA and DBSCAN) techniques

assign SA20153983 to a different cluster and this assignment is consistent and agrees

with the similarity matrix shown in Figure 2.7. UPGMA and DBSCAN assigns most

of the neighborhoods to same clusters (green and blue) which indicates that both

the clustering techniques perform in a similar way when the difference between the

neighborhoods is large as shown in the 2.3.

The clusters provided by MCL and DBSCAN did not completely agree with dis-

tance and similarity scores, as MCL mostly assigned many dissimilar neighborhoods

to a single, large cluster, and DBSCAN did not consider minor similarity score dif-

ferences which resulted in the formation of clusters that did not show notable key

differences. Hence, in future analyses we applied only UPGMA clustering to cluster

the neighborhoods of AMR gene models.

Although Dataset 2.1 was comprised of only 15 genomes, 41 unique models were

identified indicating the necessity for a way to understand the overall variation of dif-

ferences in the neighborhoods. These variations provide a better understanding of the

level of conservation between neighborhoods and help us identify special cases that

might show interesting differences used to gain information regarding the AMR genes.

A histogram that showed the distribution of maximum differences between neighbor-

hoods of the identified AMR gene models was generated (Figure 2.12) to provide the

overall model statistics. The histogram shows that maximum differences varied be-

tween 0 (identical neighborhood) to the max value of 0.55. Maximum neighborhoods

showed the difference between 0 and and 0.1 showing high levels of similarity. Only

a single gene model showed a difference > 0.55 which supported our hypothesis of

finding few neighborhoods with differences in this dataset of closely related genomes.
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Figure 2.11: Comparison of various clusters generated by UPGMA, MCL and DB-
SCAN for the AMR gene model mdtK. Each color indicates the cluster to which the
corresponding neighborhood with genome ID highlighted in bold belongs. Neighbor-
hoods belonging to the same cluster are indicated with the same color. The gene
orders of each corresponding neighborhood (mdtK with upstream and downstream
genes) are shown towards the right end to visualize differences based on cluster in-
formation.
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Figure 2.12: Histogram showing distribution of maximum differences across the neigh-
borhoods of 41 unique AMR gene models identified across 15 genomes of Dataset 2.1.
The x-axis shows the number of gene models and y-axis indicates the maximum dif-
ference between neighborhoods of each model.

2.4.2 Dataset 2.2: 100 S.Heidelberg genomes

As it is evident from the results obtained from Dataset 2.1, the level of conservation

was high among the 15 genomes of S.Heidelberg, with a small number of exceptions.

Hence, to evaluate and understand how the neighborhoods are conserved and the

gene differences behave when the number of genomes are increased, we applied the

methods to a larger set of 100 S.Heidelberg genomes. As we included more genomes

of the same serovar, we expected conserved AMR gene neighborhoods with slightly

greater variations compared to Dataset 2.1. A total of 100 genomes was analyzed, 31

unique gene models were obtained and UPGMA clustering technique was applied on

the matrix derived from the neighborhoods. A specific AMR gene model was chosen

for analysis only if it was present in more than 25% of the genomes of this dataset to

avoid the analysis of those AMR gene models whose orthologs are not present in at

least major part of genomes of the dataset.

Figure 2.13 shows the distribution of average similarity scores of neighborhoods

of 31 gene models. As per the histogram, around 32% of the gene models had an

average similarity score between 16 and 16.5 between neighborhoods indicating that

the extent of similarity and gene order conservation was slightly less when compared
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Figure 2.13: Histogram showing distribution of average similarity scores across the
neighborhoods of 31 unique AMR gene models identified in 100 genomes of Dataset
2.2. The x-axis shows the number of gene models and y-axis indicates the average
similarity scores between neighborhoods.

to Dataset 2.1. Around 10% of the total gene models had similarity scores from the

minimum observed value of 10.5 to 14. The highest average similarity score among

the 31 gene models was 19 out of a maximum of 21.

The neighborhoods of gene mdtK were analyzed with the intention of understand-

ing the extent of conservation for a scaled dataset of 91 of the total 100 genomes. The

neighborhoods of mdtK showed differences in the clusters with an average similarity

scores of 15.725. Figure 2.14 shows the UPGMA clusters obtained for 91 S. Heidel-

berg neighborhoods. When the dendrogram was cut at the mean of distance matrix

values, three major clusters were generated by UPGMA. A single neighborhood was

sampled randomly from each of the two smaller clusters, while three were sampled

from distinct lineages in the largest cluster.

Figure 2.15 shows each representative neighborhood from the three clusters ob-

tained when the dendrogram was cut at a height of mean of the distance matrix. The

neighborhoods 1, 2 and 3 belong to the large red cluster, 4 belongs to the blue cluster
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Figure 2.14: A dendrogram of clusters generated by UPGMA clustering denoting the
key differences in the 91 neighborhoods of mdtK AMR gene model of Dataset 2.2.
Each neighborhood from a major cluster obtained when the dendrogram was cut is
numbered to visualize separately (yellow octagons with numbers); three representa-
tive neighborhoods were selected from the diverse red cluster. The x-axis shows the
genome IDs of neighborhoods belonging to various clusters (red, blue and green) as
labels. The y-axis shows the distance between the neighborhoods at the time they
were clustered.

and the 5 was chosen from the green cluster as representative. The three neighbor-

hoods 1,2 and 3 which all belong to the red cluster have all the 10 common upstream

genes. The neighborhood 3 has only 4 upstream genes because it suffers from contig

end and that is not penalized in our system. However, there are differences when we

look at the downstream genes of these three neighborhoods in the red cluster. Neigh-

borhood 1 has a unique gene intS 3 which is absent in the other two neighborhoods

and the neighborhoods 2 and 3 have only four downstream genes in common because

there is an insertion of five unidentified genes between amn and mtfA in neighbor-

hood 3. Neighborhood 4 is the only member of the blue cluster and does not share
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major similarities with others in red and green. The downstream of neighborhood 4 is

largely comprised of unidentified genes and the upstream region has many new genes

- acr3, arsA, arsD, arsC. These two factors contribute to the low similarity scores and

resultant is a blue cluster which is also a great way to choose dissimilar neighborhoods

at first glance on dendrogram. Neighborhood 4 has ten genes in common (upstream

and downstream) with the neighborhood 5 of green cluster whereas it shares only

three genes in common with all the three neighborhoods of the red cluster.

Neighborhood 5 which belongs to the green cluster shares most of its upstream

genes with neighborhood 4. The genes amn and the unidentified gene to the left of

amn are conserved in almost all the neighborhoods except 1 (possible explanation:

contig end).

Figure 2.15: Visualization of each major cluster generated by UPGMA for the neigh-
borhoods of mdtK AMR gene model in Dataset 2.2 denoting key differences. Each
individual neighborhood is represented with the identifier of the corresponding lin-
eage in the dendrogram followed by the genome ID of the neighborhood. The ID
also indicates the name of the AMR gene and the percent identity match with the
corresponding gene model.

A histogram was constructed to understand the overall statistics of the variation in
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maximum differences between the neighborhoods of all the gene models of the Dataset

2.2 (Figure 2.16). According to the histogram, around 41% of the total 31 gene models

had a maximum neighborhood difference between 0.35 and 0.45. Interestingly, 6% of

the gene models were outliers with a maximum distance value between 0.66 to 0.7.

Figure 2.16: Histogram showing distribution of maximum differences across the neigh-
borhoods of 31 unique AMR gene models identified across 100 genomes of Dataset
2.2. The x-axis shows the number of gene models and y-axis indicates the maximum
difference between neighborhoods of each model.

When the gene models that lie on the spectrum of large maximum differences

were further investigated, the neighborhood of an AMR gene cpxA which exhibits

antibiotic efflux resistance mechanism against aminoglycosides and aminocoumarin

antibiotics showed the maximum difference of 0.72 between neighborhoods. The cpxA

model had orthologs in all 100 S. Heidelberg genomes.

Figure 2.17 shows the dendrogram generated by UPGMA for the 100 neighbor-

hoods of the cpxA gene model. The dendrogram shows two major clusters (red and

green) which are both divided into several smaller clusters. It is evident from the

dendrogram that the neighborhoods showed major differences with maximum cluster

height of 0.68. These neighborhoods in each cluster were closely analyzed for key

differences in upstream and downstream genes by visualizing the gene order.
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Figure 2.17: A dendrogram generated by UPGMA clustering denoting the key differ-
ences in the 100 neighborhoods of the cpxA AMR gene model of Dataset 2.2. One
neighborhood from the red cluster and 4 representatives from the larger green clus-
ter are chosen to visualize separately (blue circles with numbers). The x-axis shows
the genome IDs of neighborhoods belonging to various clusters (red and green) as
labels. The y-axis shows the distance between the neighborhoods at the time they
were clustered.

Figure 2.18 shows each representative neighborhood from the two clusters obtained

when the dendrogram was cut at a height of mean of the distance matrix. The

neighborhood 1 which belongs to red cluster and 2, 3, 4 and 5 of the larger green

cluster were chosen as representatives to visualize. Six genes in upstream [cpxR, cpxP,

fieF, pfkA, sbp, cdh] of neighborhoods 3, 4 and 5 and four genes in downstream [yjiM,

sodA, rhaT, rhaR] in the neighborhoods of 2, 3, 4 and 5 were conserved amongst

members of the green cluster. Due to these large number of common genes that

perform similar functions, the neighborhoods 2, 3, 4 and 5 are grouped into the

same green cluster. The upstream of neighborhood 2 is quiet different from others in

the cluster with 7 unique genes which includes many small unidentified open reading

frames. The upstream of neighborhood 4 has an insertion of 3 genes - tpiA, yfiS 1 and
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UID in between cdh and an unidentified gene at the upstream end which are absent

in the other three neighborhoods of the green cluster. The downstream regions of

neighborhoods 2 and 3 are almost identical except for a short ORF in between kdgM 2

and rhaT of neighborhood 2. The downstream of neighborhoods 4 and 5 are identical

with all the genes conserved in the neighborhood. Due to these differences, the green

cluster is further divided into several smaller clusters.

The neighborhood 1 of red cluster shares two genes upstream and four genes down-

stream in common with all the neighborhoods of the green cluster. Two unique genes

cvaA 1 and lagD 1 with many short unidentified ORFs in upstream and dapA 2 in

the downstream leads to the decrease in average similarity scores when compared with

other neighborhoods. Hence, the neighborhoods of red cluster share less similarity

with the neighborhoods of green cluster.

Figure 2.18: Visualization of each major cluster generated by UPGMA for the neigh-
borhoods of the cpxA AMR gene model in Dataset 2.2 denoting key differences. Each
individual neighborhood is represented with the identifier of the corresponding lin-
eage in the dendrogram followed by the genome ID of the neighborhood. The ID
also indicates the name of the AMR gene and the percent identity match with the
corresponding gene model.
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* The neighborhood analysis of this dataset provided a better understanding of

how our methods performed on the large dataset of 100 closely related genomes. These

interesting cases showed evidence of different evolutionary events such as insertion and

deletion that influenced the AMR gene neighborhoods. According to this analysis,

we can expect to find conserved neighborhoods in any dataset that has closely related

genomes but the number of interesting cases that show insertions and deletions may

vary depending on the properties of genomes of the dataset.
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2.4.3 Dataset 2.3: Diverse Salmonella of 6 different serovars

When the methods were applied on the genomes belonging to same serovar (Heidel-

berg), the neighborhoods of many AMR gene models were similar and conserved.

Hence, we decided to include genomes belonging to different serovars of Salmonella

enterica species. Table 2.4 provides a detailed list of various genomes of the dataset

with their respective serovars.

Genome ID Serovar
SIDI01000010
SIEV01000010
SIHZ01000010

S.4,5,12:i

SIFG01000010
SIFH01000010
SIIR01000010
SIIV01000010

S.Hadar

SIIA01000010 S.Typhimurium
SIIH01000010 S.Kentucky
SIIK01000010
SIIO01000010
SIIP01000010

S.Heidelberg

SIIX01000010
SIIY01000010
SIWY01000010

S.Enteritidis

Table 2.4: Genomes with their respective serovars

Figure 2.19 shows the distribution of average similarity scores of the neighborhoods

of 40 gene models. As per the histogram, almost 57.5% of the total 40 gene models

had extremely similar neighborhoods with average similarity scores between 20.5 and

21 and almost 15% of the gene model neighborhoods had very similar neighborhoods

with similarity scores between 20 to 20.5 and only 10% showed variations with average

similarity score between 15 and 16.5. For this dataset of 15 genomes with 40 unique

gene models, the highest average similarity score observed was 20.97, the lowest score

was 15.5 and there were no neighborhoods with scores less than 15.5 indicating higher

percentage of conserved neighborhood even though genomes from various serovars

were included in the dataset.
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Figure 2.19: Histogram showing distribution of average similarity scores across the
neighborhoods of 40 unique AMR gene models identified in 15 genomes of Dataset
2.3. The x-axis shows the number of gene models and y-axis indicates the average
similarity scores between neighborhoods.

The gene neighborhood of the AMR gene model “Escherichia coli UhpT with mu-

tation conferring resistance to fosfomycin (condensed as Ec UhpT )” that exhibits an-

tibiotic target alteration against fosfomycin antibiotics showed the average similarity

score of 16.4 amongst 15 neighborhoods. Ec UhpT showed the maximum differences

between neighborhoods for this dataset. Figure 2.20 represents the dendrogram of

clusters obtained from UPGMA clustering for the neighborhoods of Ec UhpT AMR

gene model where 15 neighborhoods were divided into three major clusters with a

maximum cluster difference of 0.35 indicating that there are differences in the neigh-

borhoods.

Figure 2.21 shows the visualization of one neighborhood from the red cluster

and two from the blue cluster that are closely analyzed to find the key differences.

All ten upstream genes are completely conserved between one neighborhood of the

red cluster and two neighborhoods of the blue cluster indicating major similarities

between the three. Neighborhood 1 of the red cluster has 5 unique downstream genes

nepl, gmuD, dgaR 2, levE and agac 2 and many unidentified short ORFs that are

absent in the other two neighborhoods. These gene differences cause the division
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Figure 2.20: A dendrogram of clusters generated by UPGMA clustering method
denoting the differences in the 15 neighborhoods of Ec UhpT AMR gene model of
Dataset 2.3. Three major neighborhoods from clusters obtained when the dendro-
gram was cut at mean value are numbered to visualize separately (pink diamonds
with numbers).The x-axis shows the serovar IDs of neighborhoods belonging to var-
ious clusters (red and blue) as labels. The y-axis shows the distance between the
neighborhoods at the time they were clustered.

between red and blue cluster at a cluster height of 0.35 in the dendrogram. The

downstream of neighborhoods 2 and 3 of blue cluster are almost identical with genes

of similar functions except an insertion of gene ptsH 2 (8 places right from Ec UhpT )

indicating that there are only minor gene differences between the neighborhoods.

This AMR gene model was an interesting case to analyze. The neighborhood 1 -

SIFG01000010 belonged to the serovar - Hadar (Table 2.4) but according to UPGMA

this neighborhood belonged to the red cluster which is otherwise comprised only

of the neighborhoods of S.Enteritidis. All the other genome neighborhoods of the
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Hadar serovar were grouped as a part of the blue cluster. This difference suggests the

possibility of lateral gene transfer among the genomes of the Hadar serovar.

Figure 2.21: Visualization of each major cluster generated by UPGMA for the neigh-
borhoods of Ec UhpT AMR gene model in Dataset 2.3 denoting key differences. One
neighborhood from each cluster is represented with pink diamond followed by the
serovar ID of the corresponding neighborhood. The ID also indicates the name of the
serovar and the percent identity match with the corresponding gene model.

As this dataset consisted 15 genomes of 6 different serovars, we further analyzed

the clusters of gene models to find interesting cases. Figure 2.22 summarizes the

overall statistics of the variation in maximum differences between the neighborhoods

of all the gene models. According to the histogram, around 50% of the total 40

gene models had a maximum neighborhood difference between 0 to 0.05 indicating

that neighborhoods are highly conserved even when different serovars were included.

Interestingly, around 5% of the gene models had a maximum value between 0.4 to 0.45

indicating the existence of dissimilar neighborhoods even though the conservation was

maintained.
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Figure 2.22: Histogram showing distribution of maximum differences across the neigh-
borhoods of 40 unique AMR gene models identified across 15 genomes of Dataset 2.3.
The x-axis shows the number of gene models and y-axis indicates the maximum dif-
ference between neighborhoods of each model.

We analyzed the very similar neighborhoods with maximum difference less than

0.05 to identify cases that showed perfect distinction between the neighborhoods based

on their serovars. The neighborhood of the AMR gene mdsB that exhibits multidrug

resistance against monobactam; carbapenem; cephalosporin; cephamycin; penam;

phenicol and penem antibiotics was observed to have a highly conserved neighborhood

of maximum difference of 0.007 and average similarity score of 20.7 which indicates

the neighborhoods were identical with very small bit-score differences. Figure 2.23

shows the dendrogram generated for the 15 neighborhoods of AMR gene model mdsB

which shows that even though all the 15 neighborhoods were extremely similar with

a maximum difference of 0.007, the clusters showed notable distinction between the

serovars except the neighborhoods of Hadar. The clusters in the dendrogram proved

that UPGMA clustering captures even small differences in bit-scores which can be

very useful in identifying variations in the dataset of genomes that has gene differences

based on their serovars. We used the cluster information from the dendrogram (2.21.

As we expect the neighborhoods of same serovars to posses similar genes, these cluster

and gene order differences provides evidence that LGT between the genomes of same

serovar has occurred.
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Figure 2.23: A dendrogram of clusters generated by UPGMA clustering denoting the
differences in the neighborhood of mdsB AMR gene model of Dataset 2.3. Each major
cluster visible (red, green and yellow) is highlighted and the corresponding serovar is
mentioned below.



Chapter 3

INCLUSION AND ANALYSIS OF LOOSE AMR HITS

3.1 Introduction

The rise in global resistance has overshadowed the success of anti-bacterial drug dis-

covery. The prevalence of AMR bacteria leads to the need for the development of

advanced methods to identify AMR genes in bacterial pathogens. Databases such

as CARD can be used to predict AMR genes in bacterial genomes. RGI which uses

CARD as its central database, categorizes its predictions into three major types of

hits. Even though Strict and Perfect hits are important, the analysis of Loose hits

holds the potential to allow detection of homologs of AMR genes that correspond to

previously uncharacterized genes and emerging threats [3]. In this section, we con-

centrate mainly on these Loose hits to understand whether a candidate Loose AMR

gene really posseses resistant properties and also to observe if related neighborhoods

can provide additional evidence for AMR functions of candidate CARD hits.

3.1.1 Uncertainty in prediction of AMR genes

Genes may be predicted to encode resistance by RGI or other methods, but there

is a risk of false-positive predictions. Most of the conventional strategies to identify

the genetically encoded AMR perform well while predicting previously known and

conserved AMR genes, but tend to produce an inadmissible number of false positives

if more-divergent sequences (sequences from distantly related taxa) are included [26].

There are at least 47 open-source bioinformatic tools developed for the purpose

of detecting AMR determinants in DNA or amino acid sequence to date, including

ResFinder, KmerResistance, MEGARes, CARD RGI, ANNOT, SRST2, Genefinder,

ARIBA, and AMRFinder [52]. When the performance of public databases CARD and

ResFinder was evaluated on 2587 isolates across five clinically relevant pathogens, the

rate of false-positive results was higher in CARD (42.68%) than ResFinder (25.06%).

The presence of AMR determinants such as efflux pumps caused erroneous predictions

56
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since they are affected by gene regulation [79]. This study concluded that there is a

requirement for further expansion of the AMR databases by improving the marker

annotations such as (i) efflux-related AMR genes and mutations; (ii) aminoglycoside-

modifying enzymes; and (iii) fluoroquinolone resistance-associated genes and muta-

tions, per antibiotic rather than per antibiotic class (aminoglycosides, penams, tetra-

cyclines, cephalosporins and other β- lactams, quinolones and aminoglycosides). Al-

though numerous AMR predictive tools have been developed, most of these tools

produce a certain number of false positive predictions. Hence, in-depth analysis

of such predictions can provide additional insights into their functions and a bet-

ter understanding to whether these false predictions contribute to AMR spread and

transmission.

Recently, many studies have also started to use various machine-learning models

for predicting AMR phenotypes. Most machine-learning based models utilize whole-

genome sequences and extensively researched sets of AMR genes to predict AMR

phenotypes. When the complete genome or the complete set of AMR genes from

a genome is not available, the performance of the model deteriorates. Models that

are built using all genes, rather than just those implicated in AMR, are more robust

to incomplete data [88]. Bacteria contain putative genes that are likely to encode

proteins but have no known function. These genes can share sequence similarities to

already identified genes and thus can be inferred to share a similar function, but still

the exact function of putative genes remains unknown [83]. Many machine-learning

algorithms have also been developed to predict such putative AMR genes. These

models use various characteristics of proteins such as regions associated with single-

nucleotide polymorphisms (SNP) that are unique to AMR genes as features instead of

using sequence similarity. These methods may fail when a feature-selection strategy

that removes irrelevant and redundant features is not employed as these redundant

features might compromise the accuracy of a machine-learning model [27] [6].

Several factors such as input data format, presence/absence of software for search

within a database of AMR determinants, and also the search approach used for align-

ment or mapping have to be carefully considered while choosing a resource. Due to

the limitations that arise while choosing a specific tool based on its sensitivity and

specificity to predict AMR genes, only few of them have been emphasized in scientific
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and research articles.

3.1.2 Phylogenetic and functional inference of orthologs

Although genome sequencing itself has become a routine task and identification of

protein-coding genes has become more reliable, the methods that automatically as-

sign functional roles to genes lack accuracy and sensitivity [101]. The performance

of the function prediction methods can be enhanced by concentrating on the factors

contributing to the existence of sequence similarity such as evolution [37]. In order

to achieve more accurate and efficient results, integrating multiple lines of informa-

tion such as phylogenetic relationships and sequence alignment is necessary. CAFA

evaluates ensemble learning methods that show such integration of information [58].

Evolutionary relationships among various groups of species can be represented using

phylogenetic trees.

The probability of a gene function changing after a duplication event is more

than the probability of gene function changing after a speciation event because the

sequence and function evolve in parallel. The study [39] states that this relation

between sequence and function evolution is the underlying idea of many phylogenetic

function annotation methods. The steps followed by most of the evolutionary based

approaches for constructing a phylogenetic tree are: i) Homology assessment and

multiple sequence alignment; ii) phylogenetic analysis using simple methods such as

neighbor joining or maximum parsimony to obtain an initial distance based tree;

iii) choosing the model based approaches best suitable for the data (a maximum

likelihood tree; and iv) tree visualization [111]. Functional similarity can be inferred

using phylogenetic trees which depict the pattern of evolution of a set of proteins

[113].

3.2 Objective

In this chapter, we conducted a specific analysis to examine Loose RGI hits more

carefully to see if related neighborhoods can provide additional evidence for AMR

functions of candidate CARD hits. In particular, we consider whether Loose hits in

one genome have homologs in other genomes that are Strict or Perfect matches to

the same model, and whether the neighborhoods are similar. Phylogenetic analysis is

used to further examine the relationship between Loose hits and their closest matches
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in other genomes. We expect to observe interesting cases of AMR neighborhoods with

varying degrees of conservation as we include datasets containing genomes of different

serovars as well as genomes of distantly related taxa.

We examined two data sets to see if Loose hits could be supported by related

neighborhoods. The 15 Salmonella-Diverse dataset (Dataset 2.3) from chapter

2 was reused. We observed from that results of chapter 2 that gene order among

neighborhoods of various AMR gene models was conserved within genomes of the

same serovar, hence we decided to include genomes of distantly related species to

analyze the similarity among the Loose hit AMR gene model neighborhoods. The

second dataset comprised genomes from 5 different species: Klebsiella pneumoniae,

Citrobacter, Salmonella Heidelberg, Enterobacter and Escherichia coli. A total of 100

genomes, 20 genomes of each species were combined together to form this dataset.

3.3 Process workflow

The methods of this chapter follow similar steps as in Chapter 2 with a few important

modifications and additions. In the step of “Annotation and comparative analysis”,

one of the modifications was that the specifications for RGI were changed to obtain

the Loose hits from the CARD database by including the option “include loose” in

the RGI command. After the Loose hits were identified and listed in the .txt files

using the tabular format, the data was pre-processed by including a bit-score ratio

filter to include only those genes that were above a specific threshold. The cut-off

criteria were varied for each of the datasets depending upon the size. The bit-score

ratio BR was calculated as follows:

BR =
BCARD ∗ 100

BPASS

where BCARD is the bit-score value of match to top hit in CARD and BPASS is

the Strict detection bit-score cut-off applied by CARD to the given gene model.

The cut-off threshold BR proved to be essential as the RGI identifies gene hits

with percent identity ranging from 20% to 100% which results in more than 4000

AMR gene predictions. By applying the threshold, the gene search for a specific gene

model was narrowed and the number of false positives was reduced by almost 95%.

To gain more information regarding the predictions of AMR hits, three strategies
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Figure 3.1: Process Workflow - 2: Various steps involved in the approach followed by
highlighting bioinformatic tools used (curved rectangles of blue, green and purple),
python scripts (.py extended names inside black rectangles) and the results obtained
(pictorial representations inside a square). The output at every stage is shown using
labelled emerging arrows.

were employed: hierarchical clustering of the similar AMR neighborhoods, phyloge-

netic analysis of the identified AMR orthologs, and predicting whether a Loose AMR

hit confers resistance based on its neighborhood resistance score (NRS) accompanied

with gene order visualization. The process of hierarchical clustering followed a similar

approach as chapter 2 with the inclusion of Loose AMR CARD hits.

The process of detecting and highlighting the other AMR genes present in the

neighborhood of a gene model was an addition to the methods in this chapter. The

NRS was calculated based on the total AMR genes present in a neighborhood in-

cluding the central AMR gene. Each AMR hit was assigned a score based on its

cut off criteria: Loose - 1, Strict - 2 and Perfect - 3, with NRS equal to the sum

of the individual scores of total AMR genes in the neighborhood. Figure 3.2 shows

the visualization of the neighborhood of the baeS gene model that has more than
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one AMR gene. The NRS of this neighborhood would be 8 as there are 3 Strict hits

and 2 Loose hits. This score was helpful in deciding whether a candidate Loose hit

conferred resistance.

Figure 3.2: AMR genes in the neighborhood of a gene with a Loose match to the baeS
AMR gene model. The central AMR gene baeS was highlighted using the red border,
with other Strict and Loose hits highlighted in yellow and orange respectively.

3.3.1 Phylogenetic Analysis

Along with clustering, the phylogenetic tree approach was also implemented to gain

more insights on the Loose hits. The initial steps followed while constructing the

trees are :

1. The Locus ID and sequence were separated from the input of FASTA file which

consists of the sequences of all the orthologs identified for a specific gene model.

2. The list of all taxa that share the same sequences was identified by comparing

the sequence similarity between orthologous sequences. The percent identity

between sequences was obtained by calculating the Levenshtein ratio.

3. Progressive sequence alignment was used to construct the multiple alignments

of the sequences from the obtained list.

4. The clean sequences were aligned with the MUSCLE alignment tool, version

v3.8.1551 [34] that uses the sum-of-pairs (SP) score - the sum over pairs of

sequences of their alignment scores.

There are two categories of methods used to calculate phylogenetic trees: i)

distance-matrix/clustering/algorithmic methods (e.g. UPGMA, neighbor-joining), ii)

discrete data/tree searching methods (e.g. maximum likelihood, parsimony, Bayesian

methods) [95]. The aligned sequences from MUSCLE were provided to IQ-TREE

which is a fast and effective algorithm to infer phylogenetic trees that uses maximum

likelihood. From multiple alignment sequences generated for each gene, maximum
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likelihood trees were created with 1000 bootstrap replicates using IQ-TREE version

1.6.12. IQ-Tree provides many substitution model choices for the user to analyse

proteins, DNA and codons. ModelFinder was used to choose the best fit model for

our data and the next steps of the analysis were performed based on the chosen

model. ModelFinder chooses the best model by comparing the log-likelihoods for

various models (http://www.iqtree.org/doc/). The Figtree [102] software was used

to visualize the tree files that were produced by IQ-Tree.

The bootstrap is a widely used procedure to assess the support for relationships

shown in a phylogenetic tree [43]. Bootstrapping is used to verify whether a given

relationship implied by the tree of the tree is robust to changes in the data. This is

achieved by resampling the columns of an alignment with replacement in the data,

building trees from each of the subsamples and calculating the frequency with which

the various parts of the tree are reproduced in each of these random subsamples [36].

The lower bootstrap values indicate that the target node failed to be found in less

than half of the bootstrap replicates.

3.4 Results and Discussion

3.4.1 Dataset 3.1: 15 Salmonella genomes with Loose hits

The methods were first applied on the smaller dataset to evaluate the results. More

than 4000 genes per genome were identified by RGI including Loose hits of the CARD.

These large number of hits were sorted and filtered based on the bit-score ratio. As

the dataset contained only 15 genomes, all the hits with bit-score ratio above 50%

were considered as the analysis of even the large number of Loose hit predictions for

15 genomes would be computationally infeasible. For this dataset, 24 unique AMR

gene models had matches in more than 5 genomes of the dataset. Variation in the

average similarity scores of the models is shown in Figure 3.3. Almost 21% of the total

models had extremely similar neighborhoods with a average similarity score between

20 to 20.5. Around 9% of the total models had differences in their neighborhood

with an average score between 16 to 16.5. For this dataset of 15 genomes and 24

unique AMR gene models, the highest average bit-score was 20.5 and the lowest was

16. There were no models with average score less than 16 indicating that most of the

neighborhoods were highly conserved.
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Figure 3.3: Histogram showing distribution of average similarity scores across the
neighborhoods of 24 unique AMR gene models identified in 15 genomes of Dataset
3.1. The x-axis shows the number of gene models and y-axis indicates the average
similarity scores between neighborhoods.

When the average scores were further analyzed in search of interesting cases and

also the models with higher and lower average similarity scores were further investi-

gated. The AMR gene model “Escherichia coli emrE” condensed as Ec emrE which

exhibits antibiotic efflux resistance mechanism against macrolide antibiotics had the

lowest average similarity score of 16. The neighborhood of Ec emrE was comprised

of 15 Loose hits with a match of 57.8% percent identity and their neighboring genes.

Figure 3.4 shows the dendrogram generated by UPGMA clustering technique for

the neighborhoods of Ec emrE gene model. The dendrogram shows that all the 15

genomes grouped into two major clusters (red and purple) with a cluster height of

0.4 that depicts maximum differences in the neighborhoods.

Figure 3.5 shows the 6 neighborhoods belonging to each different serovar included

in the dataset that are visualized to understand the differences in their neighborhood

when Loose hits of 57.8% identity were considered. The details of genomes with their

corresponding are provided in Table 2.4. The red cluster in dendrogram consists of all

the neighborhoods belonging to S.Enteritidis and one neighborhood of S.Hadar. The
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Figure 3.4: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene model Ec emrE. The x-axis shows the serovar names along with
percent identity match with the corresponding gene model belonging to two clusters
(red and purple) as labels. The y-axis shows the distance between the neighborhoods
at the time they were clustered.

neighborhood belonging to Hadar serovar in red cluster has a distinct set of genes

when compared to the other members of the same serovar. As we expect closely

related genomes to have similar neighborhoods, this cluster provides evidence of the

occurrence of lateral gene transfer among the genomes of Hadar. The neighborhoods

3, 4, 5 and 6 of the purple cluster are very similar with same upstream and downstream

genes even though each one belonged to different serovar. Neighborhood 3 has an

insertion of an unidentified gene to the left of Ec emrE which does not match with

any genes of other neighborhoods, which explains this neighborhood’s separation from

the rest of the purple cluster. Neighborhoods 2 and 4 have a completely different set

of upstream genes, many unidentified, that are responsible for the main split in the

dendrogram.

The Loose hit gene models were further analyzed to investigate if there were any

neighborhoods that were very similar across all serovars and isolates. The AMR gene

model arnA that exhibits antibiotic target alteration of peptide antibiotics showed

very similar neighborhoods with an average similarity score of 20.5. The neighborhood
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Figure 3.5: Visualization of one neighborhood from each serovar in the clusters gen-
erated by UPGMA for the neighborhoods of Ec emrE AMR gene model in Dataset
3.1 denoting key differences. Each individual cluster is represented with a number in
the color of the cluster to which it belongs followed by the genome ID of the neigh-
borhood. The ID also indicates the name of the AMR gene and the percent identity
match with the corresponding gene model.

of arnA was an interesting case for two reasons: first, it exhibits a high degree of

similarity even though being a Loose hit of 68% identity range; second, a Strict hit

arnC was found next to arnA (left) in all the neighborhoods. Figure 3.6 shows the

dendrogram generated by UPGMA for the neighborhoods of arnA. It is clear from

the dendrogram cluster heights that these neighborhoods were extremely similar with

the maximum cluster height of 0.010. The dendrogram shows two clusters (blue and

red) where the neighborhood of blue cluster belongs to S. Typhimurium whereas all

other genomes of different serovars belonged to red cluster which is further divided

into smaller cluster which shows each serovar distinction.

Figure 3.7 shows the 6 neighborhoods belonging to each different serovar included

in the dataset that are visualized to understand the differences in their neighborhood

when Loose hits of 68.62% identity range were considered. The members of both blue
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Figure 3.6: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene model arnA. The x-axis shows the serovar names along with
percent identity match with the corresponding gene model belonging to two clusters
(blue and red) as labels. The y-axis shows the distance between the neighborhoods
at the time they were clustered.

and red clusters had identical neighborhoods with only smaller bit-score differences

between serovars. The Strict hit arnC (represented in yellow) next to arnA is present

in all the neighborhoods which suggests that neighborhoods are highly conserved even

for Loose hits.

The neighborhoods of Ec emrE and arnA were two distinct cases. The neighbor-

hoods of Ec emrE showed greater differences in gene content and order, but the lack

of other RGI hits in the neighborhoods provides no evidence that suggests this Loose

hit might confer to resistance. Conversely, the neighborhood of arnA showed very

similar neighborhoods and also the consistent presence of Strict hit in the neighbor-

hood provides suggests that this Loose hit may confer resistance.

There were also cases where one or more genomes had multiple Loose hits to the

same gene model. One instance of such multiple copy hits was the AMR gene model

mdtG, which confers resistance to fosfomycin antibiotics via efflux, showed variations

in neighborhood content.

Two Loose hits of AMR gene mdtG with an average identity of 90% and 60%
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Figure 3.7: Visualization of one neighborhood from each serovar in the clusters gen-
erated by UPGMA for the neighborhoods of arnA AMR gene model in Dataset 3.1
denoting key differences. Each individual cluster is represented with a number in the
color of the cluster to which it belongs followed by the genome ID of the neighbor-
hood. The ID also indicates the name of the AMR gene and the percent identity
match with the corresponding gene model.

were identified in all 15 genomes of the Salmonella dataset. These neighborhoods

were clustered by UPGMA and the dendrogram obtained is shown in 3.8. The den-

drogram shows two major clusters (red and green) where cluster 1 consists of the 15

neighborhoods with 90% identity to the CARD model, and cluster 2 consists of all

15 neighborhoods with a 60% identity match. The neighborhood of cluster 1 showed

high similarity with almost zero maximum difference in the neighborhoods and the

neighborhoods of cluster 2 were further divided into smaller clusters with smaller

cluster heights.

Each neighborhood from one serovar belonging to CLUSTER 1 is shown in Figure

3.9. All the neighborhoods of CLUSTER 1 were identical with the same upstream

and downstream genes which is consistent with the dendrogram clusters in Figure

3.8. Similarly, each neighborhood from one serovar belonging to CLUSTER 2 are



68

Figure 3.8: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene modelmdtG. The x-axis shows the genome IDs of neighborhoods
belonging to two clusters (red and green) as labels The y-axis shows the distance
between the neighborhoods at the time they were clustered. The two major clusters
are represented as CLUSTER 1 and CLUSTER 2 to visualize each cluster separately.

visualized in the Figure 3.10. The neighborhoods of these Loose hits of lower per-

cent identity (60%) were highly conserved and showed greater similarity with same

upstream and downstream genes. The major factor was the presence of a Strict hit

ampH in the upstream (7 genes towards left of ampH ) in all the neighborhoods at

same position. This evidence of Strict hit suggests that this candidate Loose hit might

confer resistance and not a mere false positive identified by CARD. Even though the

neighborhoods of CLUSTER 1 were very similar and the percent identity of Loose

hit was large, there is no significant evidence that the Loose hit of mdtG with 90%

identity has AMR gene properties.
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Figure 3.9: Visualization of one neighborhood of Loose hit of 90% identity range
from each serovar in the CLUSTER 1 generated by UPGMA for the neighborhoods
of arnA AMR gene model in Dataset 3.1 denoting key differences. Each individual
cluster is represented by the genome ID of the neighborhood. The ID also indicates
the name of the AMR gene and the percent identity match with the corresponding
gene model.

3.4.2 Dataset 3.2 : 100 genomes of 5 species

After evaluating the results on the smaller dataset by applying methods on closely

related species, we observed that gene order and neighborhoods were greatly conserved

even when Loose hits of CARD were included. Hence, we decided to test the methods

on scaled genomes of distantly related species. This dataset consists of 100 genomes

of 5 different genera from the order Enterobacterales. Thirty unique AMR Loose hit

models above the threshold were identified. As 20 genomes of each different species

were included in this dataset, to ensure that AMR hits with orthologs in at least

more than one species were included, we choose specific models that are present in

more than 25% of the total genomes of the dataset. As this dataset had 100 genomes,

the total percentage of Loose predictions were very high and included many false

positives. Hence to narrow down our research to more interesting and probable AMR

hits we included only those hits with bit-score ratios greater than 70%.

Figure 3.11 shows the distribution of average neighborhood similarity scores of 30

identified AMR gene models. As per the histogram, almost 60% of the total 30 gene
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Figure 3.10: Visualization of one neighborhood of Loose hit of 60% identity range
from each serovar in the CLUSTER 2 generated by UPGMA for the neighborhoods
of arnA AMR gene model in Dataset 3.1 denoting key differences. Each individual
cluster is represented by the genome ID of the neighborhood. The ID also indicates
the name of the AMR gene and the percent identity match with the corresponding
gene model.

models showed average similarity scores between 12 and 13 which denotes that the

level of similarity and conservation was low among most of the gene models. Also,

there were no models with average similarity greater than 14.5 in the dataset. Almost

13% of the gene models had the lowest observed similarity scores between 10.5 to 11

which indicates that these models show greater variations in the neighborhood where

more than half of the neighborhood is dissimilar with mismatches. For this dataset

of 100 genomes with 30 unique gene models, the highest average similarity score

observed was 17.5 and the lowest score was 10.5.

Each model was closely analyzed on the basis of low average similarity scores and

high NRS with a goal of finding more substantial evidence to consider that a Loose

hit is indeed a true AMR gene. The AMR gene model baeS that exhibits antibiotic

efflux resistance mechanism against aminocoumarin antibiotics showed very dissim-

ilar neighborhoods with an average similarity score of 12.5 but the neighborhood

resistance score was very high.

The gene model baeS was found in all 100 genomes belonging to five different

species of the dataset. The percent identity of the orthologs identified varied between
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Figure 3.11: Histogram showing distribution of average similarity scores across the
neighborhoods of 30 unique AMR gene models identified in 100 genomes of Dataset
3.2. The x-axis shows the number of gene models and y-axis indicates the average
similarity scores between neighborhoods.

74.3 to 100% amongst all the genomes. The orthologs of this gene model were found to

be a combination of Loose, Strict and Perfect hits. When all the 100 neighborhoods

were clustered using UPGMA, the dendrogram obtained is shown in Figure 3.12.

The cluster heights in the dendrogram are very high with a value of 0.8 indicating

that there are major differences in the neighborhoods. UPGMA divided the 100

neighborhoods into several cluster groups, with some clusters comprising multiple

species. For instance, Cluster 9 (labelled pink in the dendrogram) contains a subset

of all neighborhoods of E.coli, Enterobacter and Citrobacter grouped together. The

similarity of these neighborhoods across subsets of genomes from multiple genera was

surprising and suggestive of LGT.
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Figure 3.12: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene model baeS. The x-axis shows the genome IDs of neighborhoods
belonging to several clusters (red, green, purple, orange, yellow, black, and pink) as
labels. The y-axis shows the distance between the neighborhoods at the time they
were clustered. The dendrogram is cut at a distance of 0.5 denoted by black dashed
line which divides the dendrogram into 9 major clusters represented by bold digits
numbered from 1 to 10. The genome ID’s start with uppercase letters that indicate the
species to which the corresponding genome neighborhood belongs to along with the
gene model and percent identity of the match [KLEB-Klebsiella pneumoniae, CITRO-
Citrobacter, SAL-Salmonella Heidelberg, ENT-Enterobacter and ECOLI-Escherichia
coli.

The UPGMA dendrogram was cut at a distance of 0.5 to examine and visualize

the sample of each cluster. One neighborhood from each of the 9 clusters obtained

is visualized in Figure 3.13. An important factor to notice at the first glance of

the figure is the presence of the AMR genes mdtA, mdtB, mdtC, and baeR in all

nine neighborhoods irrespective of their percent identity and their cut-off criterion

(Loose, Strict or Perfect). The NRS for these neighborhoods was very high with

a maximum score of 15 (5 Perfect AMR genes) which contributes to support for

the AMR property of baeS gene. The upstream and downstream regions of each

neighborhood differ from one another with many insertions, deletions and unidentified
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genes. There are many Loose baeS matches which were dissimilar from the reference

gene model with varying percent identity. The conserved gene order and the evidence

of transfer based on clustering relationships shown by UPGMA dendrogram (Figure

3.12) strongly suggests that these Loose hits are indeed real and confer to resistance.

Even though the difference between each cluster is very high (dendrogram), high NRS

provides substantial evidence that this candidate baeS AMR gene has the property of

antimicrobial resistance and that it is not merely a false positive identified by CARD.
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Figure 3.13: Visualization of each representative from labelled cluster obtained for
the baeS AMR gene model in Dataset 3.2 when the dendrogram was cut at a distance
of 0.5 denoting key differences. Each individual neighborhoods are represented with
back bold digits of corresponding clusters of the dendrogram followed by the genome
ID of the neighborhood. The ID also indicates the name of the AMR gene and the
percent identity match with the corresponding gene model.
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The phylogenetic tree constructed for the orthologous sequences of baeS matches

is shown in Figure 3.14. The relationships shown in the phylogenetic tree are largely

consistent with those seen in the dendrogram for the baeS model: for example, cluster

5 (yellow) which consists of three Enterobacter Loose matches with 79.96% identity is

consistent with the tree. The large clusters of Salmonella, Citrobacter and Escherichia

coli show similarities with the branches of the tree. The nodes of sequences belonging

to Klebsiella are divided into two separate branches which is consistent with with the

red and green clusters of the dendrogram shown in Figure 3.12. While many patterns

were conserved, there were also cases where the clusters did not align with the nodes of

the tree. For instance, cluster 9 (pink in dendrogram) which consists of neighborhoods

from three different species (15 from Enterobacter, 4 from Citrobacter, and 2 from

E.coli) was not observed in the branches of the tree, as the Enterobacter genomes

comprised a group that was distinct from the other genomes. Further analysis of

such unique instances can provide more insights into the AMR properties of the baeS

Loose hit matches in that cluster.
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Figure 3.14: The phylogenetic tree constructed from the sequences of 100 ortholo-
gous sequences of baeS Loose, Strict and Perfect matches. The genome ID of the
corresponding sequence are represented as tree labels. The bootstrap values ranging
between 1 to 100 for each branch are shown on the tree in red.
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Similar to Dataset 3.1, Dataset 3.2 also had AMR models with multiple copies

per genome. Analysis of multiple copy gene models was also very informative as it

provided better understanding of distribution of neighborhoods of different identities

and also to understand which copy might confer resistance based on NRS and up-

stream and downstream genes. When the multiple copy gene models were analyzed,

the AMR gene model of mdtN that exhibits antibiotic efflux resistance mechanism

against nucleoside antibiotic and acridine dye drug classes showed interesting varia-

tions.

The gene model mdtN was found in the three genomes of Citrobacter, 20 genomes

of E.coli, 3 genomes of Enterobacter and 13 genomes of Klebsiella. The neighborhoods

were a combination of Loose, Strict and Perfect hits with percent identities varying

between 60 to 100%. Most of the neighborhoods had the presence of two or more other

AMR hits which increased the NRS and indicating that the corresponding Loose hit

central gene will also confer resistance. Figure 3.15 shows the dendrogram generated

by UPGMA clustering technique for the total 39 neighborhoods of mdtN gene model.

UPGMA divides the neighborhoods into two major clusters (red and green) that are

further divided into several smaller smaller clusters. The large cluster height of 1.0

indicates that there is very less similarity between neighborhoods. To visualize a

sample of the clusters, the dendrogram was cut at a distance of 0.4 to obtain 10

major clusters.

Figure 3.16 shows one neighborhood from each of the 10 clusters obtained by

cutting the dendrogram. The visualization is a combination of neighborhoods from

4 different species, which exhibited varied percent identities and CARD confidence

levels (Loose, Strict and Perfect). Neighborhood 10 comprises Perfect hits to three

consecutive AMR models -mdtN, mdtO and cusC 1 and this order is conserved in

almost all the neighborhoods except neighborhood 7. When these neighborhoods

were closely analyzed, the upstream and downstream genes differ in almost all the

neighborhoods. Neighborhood 4 has a Loose hit mdtO and a Strict hit cusC 2 next

to mdtN. The gene yjcS which is found in the upstream (two places left of mdtN )

of almost all the neighborhoods that contain the three AMR matches is a part of

multidrug efflux pump “yjcRQP” [114] that is also related with antimicrobial resis-

tance providing more evidence that mdtN confers resistance. These AMR genes are
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Figure 3.15: A dendrogram representing the clusters generated by UPGMA for the
neighborhood of gene modelmdtN. The x-axis shows the genome IDs of neighborhoods
belonging to several clusters (red and green) as labels. The y-axis shows the distance
between the neighborhoods at the time they were clustered. The dendrogram is cut
at a distance of 0.4 denoted by black dashed line which divides the dendrogram into
10 major clusters represented by bold digits numbered from 1 to 10.

consistently maintained in most of the Strict and Perfect neighborhoods. As the two

hits mdtO and cusC are always present in the neighborhoods of Strict and Perfect

mdtN genes, their presence in the neighborhoods of a Loose hit of mdtN provides ev-

idence that the Loose hit also has the AMR property and exhibits resistance against

nucleoside antibiotics.



79

The phylogenetic tree constructed for the orthologous sequences of mdtN is shown

in Figure 3.14. Most of the bootstrap values for the branches are greater than 60%

which indicates moderate to strong support for the corresponding branches. The red

cluster of the dendrogram that contains the neighborhoods of Loose hit matches in

Enterobacter and Klebsiella aligns with the tree where the two nodes of Enterobacter

Loose hits are split accordingly. Cluster 6, which consists of four Strict hits of Cit-

robacter, is consistent with a branch that has a bootstrap value of 100 for the nodes

of orthologous sequences of Citrobactermatch hits for the mdtN model. The concor-

dance of unusual patterns of AMR distribution from both the UPGMA neighborhood

clustering and the gene tree lends additional support to the hypotheses that some of

the Loose hits are indeed AMR genes, and that gene transfer between species has

occurred.



80

Figure 3.16: Visualization of each representative from labelled cluster obtained for the
mdtN AMR gene model in Dataset 3.2 when the dendrogram was cut at a distance
of 0.4 denoting key differences. Each individual neighborhoods are represented with
back bold digits of corresponding clusters of the dendrogram followed by the genome
ID of the neighborhood. The ID also indicates the name of the AMR gene and the
percent identity match with the corresponding gene model.
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Figure 3.17: The phylogenetic tree constructed from the sequences of 39 orthologous
sequences of mdtN Loose, Strict and Perfect matches. The genome ID of the cor-
responding sequence are represented as tree labels. The bootstrap values for each
branch are shown on the tree in red.



Chapter 4

CONCLUSION AND FUTURE WORK

Genes that perform similar functions are frequently present close together in bacterial

genomes. Analysing gene order among prokaryotic genomes can reveal interesting

gene conservation patterns, clusters of similar neighborhoods and allow functional

prediction of uncharacterized genes. Although there are many caveats of using gene

order information, analyzing the local gene neighborhood of genes provides a deeper

understanding of the evolutionary relationships between genomes and detection of

potentially interacting proteins [129]. Hence, we designed methods that use gene

order among the neighborhoods and were successful in obtaining convincing results

that provided important insights on AMR.

In chapter 2, we analyzed more than 130 genomes which belonged to same or

different serovars of Salmonella and analyzed neighborhoods of more than 100 unique

Strict and Perfect gene models. We found that neighborhoods were highly conserved

when the neighborhoods of genomes that belonged to the same serovar were con-

sidered. This conservation was also generally maintained even when the genomes

of different serovars were included. However, there were also several interesting and

unique cases where the neighborhoods were dissimilar and very few genes in upstream

and downstream were conserved. The key differences in the neighborhoods were due

to insertions, deletions and lateral gene transfers which reduced the average simi-

larity between neighborhoods; for example, the neighborhoods of AMR gene model

Ec UhpT which showed the evidence of lateral gene transfer among the two genomes

of Hadar serovar. Amongst the three clustering techniques that we applied to clus-

ter similar neighborhoods, UPGMA proved to be the best-performing algorithm that

generated meaningful clusters which provided clear indication of identical and differ-

ent neighborhoods in the form of dendrograms. Hierarchical clustering with UPGMA

was an effective approach given that neighborhoods such as those of mdtK and cpxA

gene models showed differing degrees of similarity, rather than falling into natural

82
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discrete clusters. Visualizing the gene order between each representative neighbor-

hood allowed us to spot individual gene differences and helped us to interpret the

clustering results.

To understand the extent of conservation among neighborhoods when the CARD

Loose hits were included, we applied methods on the datasets of genomes with various

serovars of Salmonella and genomes of five different species. We observed that the

neighborhoods of Loose hit gene models were highly conserved within Salmonella,

whereas the average similarity drastically decreased when the genomes of different

species were analysed. The analysis of Loose hit neighborhoods revealed interest-

ing cases where the candidate CARD Loose hit with lower percent similarity showed

stronger evidence of association with AMR. Using a phylogenetic approach to build

trees of orthologous sequences provided additional evidence regarding the gene-order

conservation between genome neighborhoods of different species. We observed very

distinct neighborhoods with low similarity scores when we analyzed the 100 genomes

from 5 different species. However, there were interesting cases where the other con-

served AMR genes in the immediate neighborhood influenced the resistance factor and

the chances of the Loose hit conferring resistance (neighborhoods of baeS ). We also

observed cases where the dendrogram clusters were a combination of neighborhoods

from multiple species and the similarity between these neighborhoods was surprising

as it showed evidences of LGT (neighborhoods of mdtN ). The neighborhood resis-

tance score (NRS) accompanied with gene-order visualization assisted in deciding

whether a Loose AMR hit is associated with other probable resistance genes or if it

is more likely to be a false positive hit by CARD.

This analysis could be used to detect interesting cases of Loose hit neighborhoods

with the help of histograms, dendrograms generated by UPGMA and gene-order vi-

sualizations. These various results can provide additional evidence where the total

resistance factor of neighborhoods could influence the AMR properties of the candi-

date Loose hit [88]. Databases such as CARD catalogue many homologous sequences

and partial hits that may or may not contribute to AMR [3]. Our method analyzes

the neighborhoods of such Loose hits by CARD and provides additional insight into

these hits.
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4.1 Future Work

Putative AMR genes sometimes localized to very short contigs with few or no neigh-

boring genes around the target AMR gene model, and these were not considered for

analysis. These short contigs with fewer neighboring genes may lead to problems

when the target AMR gene is located on such contigs. We intend to handle this

limitation by including a threshold for contig length during the time of annotation of

genomes so that each contig contains at least a minimum number of coding sequences.

The initial steps of the analysis include running the annotation tool - Prokka and RGI

on the genomes. As the GenBank data is very large, the time taken by these tools

was very high.

In future, we would like to modify our methods to handle the above-mentioned

limitations and improve the efficiency. One of the ways would be to consider code op-

timization using generator objects and decorator caching that stores the intermediate

computation results to improve runtime while computing the similarity matrix from

the All-vs-All results to accommodate large datasets [80]. The scope of the project

can be expanded by testing our methods on larger datasets of diverse genomes and

increasing the number of upstream and downstream genes considered for neighbor-

hood analysis so that our method can be applied to perform well on various types of

data and constraints. We also intend to connect the similarity between neighborhoods

and conserved operons with mobile genetic elements such as integrons as it is evident

from parts of the introduction that MGEs play a vital role in AMR acquisition and

transmission.

The major goal of the project to analyse the neighborhoods of AMR genes of inter-

est in a reference genome was successfully achieved by the results obtained by apply-

ing our methods on various datasets. The scoring schemes we developed were easily

scaled up to 100 genomes and can be applied to larger datasets with approximate

runtime less than ten minutes if Prokka and RGI annotations are readily available.

Although it is impractical to visualize hundreds of gene neighborhoods at once, the

hierarchical clustering approach allows the selection of representative neighborhoods

of size dependant on the dataset. This is achieved by assigning neighborhoods to right

clusters based on distance matrix. AMR distribution from the gene tree lends addi-

tional support to the hypotheses that some of the Loose hits indeed confer resistance,
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and provides evidence of gene transfer between species. We observed interesting cases

where some clusters of the dendrogram aligned with tree branches while other showed

differences (neighborhoods of baeS ). Deeper analysis of such unique clusters and tree

branches provide additional insights into the AMR functions of Loose hits in that

cluster. Hence, The UPGMA clustering, gene order visualization of neighborhoods

and phylogenetic analysis provided important insights into the probable functions of

AMR genes, and future work will include integrating these methods into prediction

pipelines to improve the identification of AMR genes by analysing the neighborhoods

of various AMR genes in many diverse genomes.

The major contribution of this thesis work is the tool that can be used by fellow

researchers to analyze the various AMR gene neighborhoods within their datasets.

When compared to other tools that compare shared orthologs between two genomes

and identified conserved patterns such as [61], our approach provides greater flexibil-

ity in choosing the number of neighboring genes to be analyzed thus detecting long

range patterns. Beginning from the annotation of raw genome assemblies to providing

suggestions on various interesting results to look at, the entire process is automated.

We limited the neighborhood size to 10 and observed interesting long conserved pat-

terns in the AMR gene neighborhoods, but one could vary this size depending on

the requirement of the project and also based on the dataset. UPGMA proved to be

the best performing algorithm for our approach, but MCL and DBSCAN could be

revisited to modify the distance matrix and similarity scores. Our approach can also

be applied to genes other than AMR genes and also there is a flexibility to include

different databases other than CARD.
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