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Statement  

In response to COVID-19, many elective surgical procedures in Nova Scotia were cancelled 

resulting in an increased waitlist. A discrete event simulation approach may provide strategies 

for waitlist management. Descriptive analytics of two years (2018-2020) of surgery data 

informed the model development. The model facilitated scenario analysis of recovery 

strategies, increased bed capacity and operating room (OR) hours, as well as the COVID-19 

effects on room turnaround and demand.  

The base model, which reflected the current system parameters, indicated the waitlist grew 

continuously with orthopedics, general surgery, and urology comprising 68% of the waitlist. The 

outpatient waitlist decreased to a steady state, whereas the inpatient waitlist continuously 

increased. The number of available OR hours and the types of patients on the surgical waitlist 

had the largest impact on the patient throughput. These aspects of resource allocation would 

positively impact the waitlist created by the COVID-19 pandemic. 
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1 Introduction  

The first cases of COVID-19 were reported on March 15, 2020 in Nova Scotia (Government of 

Nova Scotia Canada, 2020). As a response to the COVID-19 pandemic, most elective surgical 

procedures in Nova Scotia were cancelled on March 18, 2020 (Nova Scotia Health, 2020a) 

resulting in increased patient waitlist volumes. During this time emergency procedures and very 

high priority patients continued but a total of 3,212 surgeries were cancelled (Nova Scotia 

Health, 2020b). As the active case count decreased elective surgeries resumed. Figure 1.1 

displays the number of active COVID-19 cases in Nova Scotia from March – September of 2020. 

The peak of the curve occurred in the middle of April and by the beginning of June there were 

little to no active cases. Due to the nature of the curve in Nova Scotia, elective surgical 

procedures began again in May. From the beginning of the pandemic until May 25th the surgical 

capacity was reduced to 25% of that of the previous year (Jerret, 2020). The surgical capacity 

slowly increased reaching 67% capacity by July 1st (Ray, 2020) and 97% capacity by August 24th 

(Grant, 2020). 

 

Figure 1.1: Active COVID-19 Cases in Nova Scotia March -September 2020 

Due to the reduced capacity elective surgical procedures were not completed and therefore 

were not removed from the surgical waitlist at the same rate as pre-COVID-19. This, combined 
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with the already well documented long wait times for some elective procedures in Nova Scotia, 

compounded the length of the waitlist and the wait time for patients. Additionally, during the 

first wave of COVID-19, surgical consultations as well as family doctor visits dramatically 

reduced. Surgeons were instructed not to conduct consultations in person, and many were not 

comfortable assessing patients using video conference. Many patients avoided in office visits to 

family doctors and were encouraged to conduct phone appointments when possible, due to the 

lack of knowledge surrounding COVID-19. Thus, the true waitlist size is comprised of three 

components: the waitlist prior to COVID-19, the surgeries cancelled due to COVID-19, and the 

not yet realized demand caused by the decrease in surgeon consultations and family doctor 

referrals. It was noted that due to the cancellation of surgical procedures some elective 

procedures that were already on the waitlist entered the system as emergency patients. This 

created an environment where patients were unable to access surgeries and caused the waitlist 

to grow.  

An effective strategy is needed to address the compounded waitlist resulting from COVID-19. 

The overall objective is to provide direction for strategy development to allocate resources in 

the healthcare system. The climate within the healthcare environment created by the COVID-19 

pandemic provides a “…once-in-a-generation opportunity to kindle a broader transformation of 

surgical services for a sustainable and ethical health system in Canada.” (Urbach & Martin, 

2020) An understanding of the impacts of resource allocation is crucial to effectively addressing 

the waitlist and developing new strategies that are not currently utilized by the healthcare 

system.  

The objective of the research is to address the COVID-19 related backlog of elective surgery in 

Nova Scotia. The research identifies the current system configuration through data analysis to 

develop a base model. The overall throughput of the hospital is evaluated using the length of 

the waitlist over time as the metric. The waitlist is analyzed based on both the total waitlist as 

well as for each surgical specialty as each surgical specialty has specific demands. Experiments 

are developed to identify the impact of various levels of resources and demand on the overall 

throughput of the patients. The experiments developed address the out-of-the-box thinking 

required to reduce the surgical waitlist effectively and aggressively.  
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The remainder of this thesis is outlined as follows. Section 2 is a review of related surgery 

scheduling and capacity planning literature. Section 3 describes the methods and results used 

for the extensive data analysis. Section 4 illustrates the model development by outlining the 

current system and associated conceptual model and the simulation model. Section 5 describes 

the verification and validation methods used for the simulation model. The experiments 

developed and the associated results for the simulation model are outlined in Sections 6 and 7, 

respectively. Finally, Sections 8 and 9 discuss results and state the overall conclusions of the 

research, respectively.   
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2 Literature Review  

There is extensive research applying engineering methods to surgery scheduling and capacity 

planning. This is not surprising as the surgical department “…constitute the largest cost center, 

and consume a large proportion of total expenses.” (Lamiri, Grimaud, & Xie, 2009) The planning 

and scheduling of surgical patients is complex as it is dependent upon many resources within 

the hospital as well as being subject to unplanned emergency scenarios. The integration of the 

downstream and upstream surgical resources requires a wide scope of research which 

increases its complexity. Further, emergency surgery introduces a large degree of uncertainty 

too but are often not included in surgical scheduling and planning reviews (Cardoen, 

Demeulemeester, & Beliën, 2010). The aim of this chapter is to identify industrial engineering 

and operations research methods used to analyze surgical scheduling and capacity planning. 

The main objectives are to identify patient throughput strategies for surgical operations, and 

categorize the studies based on: focus; measurement metric; and methodology. Furthermore, 

applications of the research on the COVID-19 healthcare environment are also investigated. 

The remainder of this section is structured as follows. The literature search methodology used 

is presented in Section 2.1. This section illustrates the database and key words used to 

complete the search and presents a PRISMA diagram associated with the search results. The 

subsequent sections categorize the identified articles based on focus (2.2), metrics (2.3), and 

methodology (2.4). The focus subsection categorizes articles based on review, surgical 

scheduling, and resource allocation. The metrics subsection reviews the most prevalent metrics 

used in the reviewed articles including patient wait time, patient throughput, resource 

allocation, and cost. The most commonly used methodologies used in the articles included 

simulation, mathematical programming, and simulation optimization, as discussed in the 

methodology subsection. The final section reviews the literature related to surgical scheduling 

and planning during the COVID-19 pandemic.  

2.1 Literature Search Methodology  

The search engine used was Google Scholar. It is important to note the search engine results 

method used by Google Scholar. “Google Scholar aims to rank documents the way researchers 
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do, weighing the full text of each document, where it was published, who it was written by, as 

well as how often and how recently it has been cited in other scholarly literature.” (Google Inc., 

2017) The search strategy is illustrated in Figure 2.1 using a PRISMA (Preferred Reporting Items 

for Systematic reviews and Meta-Analyses) diagram (Liberati et al., 2009). The key words used 

in the search included ‘wait list management’, ‘patient throughput’, ‘surgery patient 

throughput’, ‘OR throughput’, and ‘surgical wait list management’ which produced 848 articles. 

The removal of the duplicates resulted in 802 articles. The 802 articles were screened which 

excluded 746 articles leaving 66 articles to be assessed. The articles were excluded because 

they were not related to surgery. The assessment of the articles removed eight articles as the 

articles did not discuss an analysis of a surgical waitlist. The remaining articles were studied, 

resulting in the 48 articles discussed in detail in this chapter.   

 

Figure 2.1: PRISMA Flow Diagram 
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2.2 Focus 

The focus of the articles can be categorized into three main categories that include surgical 

scheduling, resource allocation, and review and meta-analyses. The articles associated with 

each category are presented in Table 2.1. There were fifteen articles identified related to 

surgical scheduling, seven articles related to resource allocation, and four articles identified as 

literature reviews. The remaining articles were not easily grouped into the specified categories. 

Table 2.1 categorized the articles based on the focus of the articles. Each of these categories 

are described below in detail.   

Table 2.1: Summary of the Focus of the Articles 

Focus 

Review (Cardoen et al., 2010; Saleh, Novicoff, Rion, MacCracken, & Siegrist, 
2009; Sobolev, Sanchez, & Vasilakis, 2011) 

Surgical Scheduling (Astaraky & Patrick, 2015; Banditori, Cappanera, & Visintin, 2013; 
Everett, 2002; Fügener, Hans, Kolisch, Kortbeek, & Vanberkel, 2014; 
Lamiri et al., 2009; Noyan Ogulata & Erol, 2003; Saadouli, Jerbi, 
Dammak, Masmoudi, & Bouaziz, 2014; Santibáñez, Begen, & Atkins, 
2007; P. T. Vanberkel et al., 2011; Vasilakis, Sobolev, Kuramoto, & Levy, 
2007; S. Wang, Roshanaei, Aleman, & Urbach, 2016; J. Zhang, Dridi, & 
Moudni, 2019; Z. Zhang & Xie, 2015) 

Resource Allocation (Dayarathna, Mismesh, Nagahisarchoghaei, & Alhumoud, 2020; Landa, 
Tànfani, & Testi, 2013; Lin, Sir, & Pasupathy, 2013; Niu, Peng, & 
ElMekkawy, 2013; Ozcan, Tànfani, & Testi, 2017; Vanberkel & Blake, 
2007; Vansteenkiste et al., 2012) 

 

2.2.1 Review 

Manuscripts pertaining to operating room planning and scheduling were reviewed by Cardoen 

et al. (2010). It was identified that many papers analyze the elective surgical patients but do not 

analyze include emergency patients despite the impact the uncertainty of emergency patients 

have on standard scheduling techniques. Further, it was observed that many articles did not 

specify the type of patient the schedule was developed for in the articles. The lack of scope 

outlined in the articles is a large shortcoming of the previous research as it does not provide 

insight into the level of uncertainty present in the model as well as the transferability of the 

research. Additionally, the scope of many research projects is limited to a single medical site 
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and not spread over multiple sites. “In 1997, Blake and Carter indicated in their literature 

review that  techniques for integrating operating room scheduling with other hospital 

operations were urgently required.” (Cardoen et al., 2010) This was not evident in the research 

that was conducted since 1997 as the majority of the articles limited the research to the 

operating room alone. It is recognized by Cardoen et al. (2010) that much of the limited 

research conducted in these areas may be due to the inherent complexity that accompanies 

these areas of research.  

Sobolev et al. (2011) conducted a review of the use of simulation in modelling patient flow in 

surgical care. Four areas of the presented research were discussed: details of the simulation 

approach, utility for analysis of surgical care, different conclusions based on approach, and 

models developed specifically for healthcare. The details of the simulation approach provided 

in each study varied widely. The percentage of studies that described the assumptions, 

requirements, and input and output data were 91%, 88%, and 91%, respectively. “[T]he 

majority of publications (31 [91%]) provided some discussion on the utility of simulation for 

analyzing changes in the delivery of surgical care…”(Sobolev et al., 2011) With respect to both 

the details of the simulation approach, and the utility of the simulation, waitlist management 

was only discussed 21% of the time. Lastly, few articles discussed the involvement of policy 

personnel in the development of the simulation to address the needs of policy makers. It is 

suggested that due to variation in the presentation of the information, guidelines should be 

developed to aid in the “…reporting of simulation base policy analyses.” (Sobolev et al., 2011) 

Saleh et al. (2009) reviewed strategies for improvement of operating room throughput for 

orthopedic surgery. The strategies for improving throughput in operating rooms were 

categorized into three areas perioperative, intraoperative, and postoperative. Perioperative 

intervention strategies were identified in six studies, common to four articles was parallel 

anesthesia induction. Intraoperative intervention strategies were identified in seven articles. 

Two of the articles included implementing clinical pathways one for total knee arthroplasty and 

one for head and neck surgical procedures. Further, one of the articles discussed the 

“application of linear programming models to reallocate operating room time amongst 

surgeons.”(Saleh et al., 2009) The postoperative intervention strategies included four articles 
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two of which used computer simulation to model patient flow. It was identified that most of 

the articles evaluated the streamlining of the traditional surgical patient flow by maximizing 

capacity and reducing labor costs. A multidisciplinary approach toward improvement is 

required as multiple individual strategies culminate to increase operating room throughput.  

2.2.2 Surgical Scheduling  

Surgical scheduling is related to allocating cases and specialties to operating room time within a 

hospital for a given planning horizon. The planning horizon is not always specified but can range 

from as small as one week (Noyan Ogulata & Erol, 2003; Saadouli et al., 2014) to as long as 26 

weeks (S. Wang et al., 2016). Everett (2002) performed a simulation to schedule patients by 

removing patients from the waitlist over a 1001 day time period. The analysis of the surgical 

schedule by J. Zhang, Dridi, & Moudni (2019) was completed whilst also considering the next 

planning horizon. This was done to ensure that the optimal scheduling of the current planning 

horizon did not negatively impact the subsequent planning horizon. The scheduling of patients 

was allocated to pre-determined time slots in three articles (Astaraky & Patrick, 2015; Lamiri et 

al., 2009; Vasilakis et al., 2007). 

It was noted by Cardoen et al. (2010) that few surgical planning studies are conducted over 

multiple sites. Two articles that are exceptions to this developed master surgical schedules for 

multiple hospitals (Roshanaei, Luong, Aleman, & Urbach, 2016; S. Wang et al., 2016). The 

patients are grouped into categories of long, medium or short for the surgery length or length 

of stay to allow for some stochasticity to be incorporated into optimization models (Banditori et 

al., 2013; Noyan Ogulata & Erol, 2003). Further, the length of stay and recovery distributions 

were simplified to a single value when analyzing a single surgical specialty by J. Zhang, Dridi, & 

Moudni (2019). Although it was emphasized by Cardoen et al. (2010) that more surgical 

scheduling research needed to incorporate other areas of the hospital when developing surgical 

schedules, only some of the articles discussed the impacts of the recovery beds on the surgical 

schedule. Astaraky & Patrick (2015) scheduled patients into a pre-determined master schedule 

incorporating the stochastic nature of both surgical and recovery times. Everett (2002) 

incorporates the simplified measure of bed days by assuming it follows a normal distribution. 

There was little to no consideration for the interaction between the surgical schedule and the 
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bed use in six of the articles (Banditori et al., 2013; Lamiri et al., 2009; Noyan Ogulata & Erol, 

2003; Roshanaei et al., 2016; Saadouli et al., 2014; Z. Zhang & Xie, 2015).  

2.2.3 Resource Allocation  

Resource allocation was mainly focused on operating rooms and beds. Beds are often used as a 

proxy for the staff and equipment needed with the beds – this proxy implies that the beds 

considered in the model are staffed beds and are adequately staffed by hospital personnel 

(Vanberkel et al., 2011). The allocation of the operating rooms was the sole focus of the 

research by Vansteenkiste et al. (2012). Niu et al. (2013) considered the optimum configuration 

of resources for the operating room whilst considering the waiting room chairs, PACU beds, 

operating rooms, inpatient and outpatient beds resources available. Similarly, Lin et al. (2013) 

determined the optimal operating room resource levels available in the surgical services 

including pre-operative beds, holding nurses, anesthetists, and circulating nurses. Landa, 

Sonnessa, Tànfani, & Testi (2018) and Vanberkel et al. (2011) focus on the redistribution of 

recovery beds for surgical services. Finally, Ozcan et al. (2017) focuses on allocating beds and 

operating room blocks to achieve better performance of competing processes.  

2.3 Metrics  

The performance metrics used for analyzing interventions can be broadly categorized into four 

categories. The metrics include patient throughput, patient wait time, resource utilization, and 

cost. Increasing the throughput of the patients often leads to increases in resource utilization 

and decrease in patient wait time and cost. Many articles use multiple metrics to evaluate the 

performance of the research. Table 2.2 categorizes the metrics used in the identified articles.  

Table 2.2: Summary of the Metrics of the Articles 

Metrics 

    Patient Throughput  (Banditori et al., 2013; Dayarathna et al., 2020; Komashie, Mousavi, 
& Gore, 2008; Niu et al., 2013; Santibáñez et al., 2007; Vanberkel & 
Blake, 2007; S. Wang et al., 2016) 

    Patient Wait time  (Astaraky & Patrick, 2015; Noyan Ogulata & Erol, 2003;  Vanberkel 
& Blake, 2007; J. Zhang, Dridi, & El Moudni, 2019) 

    Resource Utilization  (Astaraky & Patrick, 2015; Komashie et al., 2008; Moosavi & 
Ebrahimnejad, 2018; Noyan Ogulata & Erol, 2003; Ozcan et al., 
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Metrics 

2017; Roshanaei et al., 2016; Vanberkel et al., 2011; Vansteenkiste 
et al., 2012; S. Wang et al., 2016) 

    Cost (Lamiri et al., 2009; Stahl et al., 2006; S. Wang et al., 2016; J. Zhang, 
Dridi, & El Moudni, 2019; J. Zhang, Dridi, & Moudni, 2019; Z. Zhang 
& Xie, 2015) 

 

2.3.1 Patient Throughput  

Komashie et al. (2008) defines throughput as “… the amount of work that has been through the 

system in a period of time.” The use of throughput as a metric in the surgical context focuses on 

increasing the work (i.e. the patient throughput) through the surgical system. Komashie et al. 

(2008) focused on the time required for patients to move through the system by altering the 

case-mix levels. It was identified that removing outpatient cases reduced throughput by 23.3%. 

Wang et al. (2016) and Banditori et al. (2013) developed a surgical schedule to increase 

throughput in the surgical department. Banditori et al. (2013) accounted for the surgical due 

dates of the cases in the surgical schedule maximize throughput. Wang et al. (2016) compared 

the patient throughput of the status quo operating room schedule and the distributed 

operating room schedule to illustrate the impact of accounting for the stochastic nature of 

patient throughput. Dayarathna et al. (2020), Niu et al. (2013), Santibáñez et al. (2007), and 

Vanberkel & Blake (2007) analyzed the resource allocation levels to maximize patient 

throughput. Dayarathna et al. (2020) improved patient throughput at a clinic by increasing the 

number of laboratory technicians available. Niu et al. (2013) and Santibáñez et al. (2007) aimed 

to maximize the throughput of patients to reduce the waiting time by determining the best 

distribution of resources. Santibáñez et al. (2007) categorized the patient waitlists by length for 

each surgical specialty and assigned weights based on the categories. Vanberkel & Blake (2007) 

aimed to maximize the throughput with the current resources available as well as quantifying 

the impact of adding and removing resources.  

2.3.2 Patient Wait time  

The patient wait time is the time patients wait for their surgery (also sometimes referred to as 

access time). The goal is to minimize the amount of time patients spend on the waitlist. Niu et 

al. (2013) applied weights to patients of low, medium, and high priority levels to minimize the 
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patient wait times. Similarly, J. Zhang, Dridi, & El Moudni (2019) shortened the wait time of 

patient by developing a method to sort and prioritize patients based on the waiting time of 

patients. Astaraky & Patrick (2015) used the recommended wait time targets of patients in each 

priority class to minimize the wait time. The wait time is classified as the cost of booking 

patients past the medically recommended wait time targets. Vanberkel & Blake (2007) 

identified that wait times are sensitive to changes in operating room and bed resources with 

the bed resources impacting patient wait time more than the operating room in their case 

study.   

2.3.3 Resource Utilization  

Resource utilization was mainly focused on bed and operating room utilization. The definition 

of utilization is an important factor when using this metric. Vansteenkiste et al. (2012) defined 

utilization as capacity use expressed in time. An associated capacity use factor was identified as 

the percentage of time allocated for programming during the day that was used by cases. The 

equation used was the sum of the operating room usage divided by the sum of the total 

capacity available. The turnaround time was not accounted for which made achieving 100% 

utilization impossible. The goal is to optimally distribute capacity by evaluating the relative over 

capacity and under capacity use of the operating rooms. Roshanaei et al. (2016) computed the 

operating room utilization by dividing the mean number of open operating rooms by the total 

number of operating rooms available. Y. Wang et al. (2016) computed operating room 

utilization as the total time used for elective surgery excluding turnover time and waiting time 

for downstream units divided by the total operating room time assigned to elective surgery. 

Komashie et al. (2008) used the utilization of operating rooms as an indicator of how well the 

available resources were being used when altering the case-mix levels. Moosavi & 

Ebrahimnejad (2018) focused on the bed and operating room utilization. The second objective 

of the multi-objective model was to minimize the cost of extra beds acquired in the ward. The 

third objective aimed to minimize the idleness and overtime of the operating rooms. Astaraky & 

Patrick (2015) focused on the cost associated with bed utilization as it was identified that 

ignoring bed utilization during scheduling could be detrimental to the utilization of the 

resources. The ward utilization was a main focus of the development of the operating room 
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schedule for Vanberkel et al. (2011). Ozcan et al. (2017) focused on the optimal utilization of 

both operating rooms and bed utilization and Noyan Ogulata & Erol (2003) focused on 

maximizing the operating room utilization.  

2.3.4 Cost 

In a hospital the operating room “…constitute the largest cost center, and consume a large 

proportion of total expenses.” (Lamiri et al., 2009) The importance of cost to the hospital 

administrators when evaluating the efficacy of interventions is exemplified by Saadouli et al. 

(2014); ““The efficiency of the suggested solution is then validated by an illustrative example 

which shows that a substantial amount of operations and hence cost can be saved.” (Saadouli 

et al., 2014) The objective of Lamiri et al. (2009) was to minimize the projected overtime costs 

and patient related costs but did not consider the under-utilization costs. J. Zhang, Dridi, & 

Moudni (2019) and Z. Zhang & Xie (2015) aimed to reduce the total costs. J. Zhang, Dridi, & 

Moudni (2019) minimized the total incurred cost from surgeon waiting time, operating room 

overtime, and operating room idling time. Whereas, Z. Zhang & Xie (2015) reduced the total 

costs by minimizing the cost of unscheduled patients and incurred by patients waiting; the costs 

were proportionate to patient priority. Stahl et al. (2006) and S. Wang et al. (2016) performed 

cost effectiveness studies. Stahl et al. (2006) modified process costing methods to estimate 

costs as defined as the total costs of patient care from admission to the preoperative 

preparation unit through to discharge from the post anesthesia care unit. The objective of S. 

Wang et al. (2016) was to minimize the costs of opening surgical suites and operating rooms, 

waiting cost of patients scheduled for the current planning horizon, and those deferred to the 

next planning horizon. The net measure of effect for the cost-effectiveness analysis was the 

estimated maximum number of patients treatable per day.  

2.4 Methodology  

The methodology used varied amongst the articles selected. The main categories included 

simulation, mathematical programming, and simulation optimization. Within each category 

there were a variety of techniques that were applied. Table 2.3 categorized the articles based 

on methodology.  
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Table 2.3: Summary of Methodology Used in the Articles 

 

2.4.1 Simulation 

Discrete event simulation modelling can model the resource interactions of clinical pathways 

whilst incorporating the stochastic nature of the healthcare environment. This is often used in 

place of queueing theory due to the complex nature of the healthcare environment (Vanberkel 

& Blake, 2007). There are a variety of tools available for completing the simulation analysis 

including FlexSim, Arena, Extend, C++, Statecharts, and Witness. The use of simulation specific 

software such as FlexSim and Arena aids the credibility of the model as the visual aids “… 

facilitates the transmission of insights to the hospital management.” (Cardoen & 

Demeulemeester, 2008) Simulation does not provide an optimal solution but instead 

determines the best range of proposed solutions. Through this, simulation “…enable informed 

debate between the stakeholders about the optimal solution.” (Everett, 2002) Vasilakis et al. 

(2007) utilized simulation to compare two wait list management strategies to illustrate the 

advantages of each system to inform the stakeholders in their decision process. Despite the 

acknowledgement of the complexity of the healthcare system in some articles simplifications 

Methodology 

Simulation 

    Discrete Event 
Simulation 

(Cardoen & Demeulemeester, 2008; Everett, 2002; Komashie et 
al., 2008; Vanberkel & Blake, 2007; Vasilakis et al., 2007) 

Mathematical Programming 

    Mixed Integer Program (Moosavi & Ebrahimnejad, 2018; Noyan Ogulata & 
Erol, 2003; Santibáñez et al., 2007) 

   Markov Decision Process & 
   Approximate Dynamic Programming 

(Astaraky & Patrick, 2015; J. Zhang, Dridi, & Moudni, 
2019) 

    Other (Roshanaei et al., 2016; P. T. Vanberkel et al., 2011; 
Vansteenkiste et al., 2012; J. Zhang, Dridi, & El 
Moudni, 2019) 

Simulation Optimization 

    Mixed Integer Program  Discrete Event Simulation (Banditori et al., 2013; 
Neyshabouri & Berg, 2017; 
S. Wang et al., 2016) 

Monte Carlo (Lamiri et al., 2009) 

    Other Combination (Lin et al., 2013; Ozcan et al., 2017) 
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were made in the simulation design. Komashie et al. (2008) and Vasilakis et al. (2007) did not 

incorporate the recovery beds in the simulation model as the simulation model was not 

concerned with all surgical related activities. Further, Everett (2002) assumed normal 

distributions for both the length of stay and surgery duration for newly generated patients. The 

majority of the articles fitted distributions using goodness of fit tests to model the length of 

stay and surgery lengths for patients (Cardoen & Demeulemeester, 2008; Komashie et al., 2008; 

Vanberkel & Blake, 2007). The majority of the articles also evaluate the elective and non-

elective patients to ensure the impacts of cancellations and emergency surgeries are 

considered in the results (Cardoen & Demeulemeester, 2008; Komashie et al., 2008; Vanberkel 

& Blake, 2007; Vasilakis et al., 2007) However, Everett (2002) does not consider emergency 

patients only urgent patients who are elective patients with the highest priority. The priority of 

patients in the queue was modelled by Vanberkel & Blake (2007); “using a priority scheme 

which incorporated observed wait time in each category for each surgeon, the lower the weight 

the higher the priority.” (Vanberkel & Blake, 2007) Additionally, Everett (2002) calculates the 

priority index of each patient at the end of each day to allow the queue to be resorted based on 

the updated priority of the patients. The priority of the patients was not outlined by Cardoen & 

Demeulemeester (2008) or Komashie et al. (2008).   

2.4.2 Mathematical Programming 

Mathematical programming is another popular tool to analyze surgery scheduling and planning. 

The use of mixed integer programming can include multiple objectives. Moosavi & 

Ebrahimnejad (2018) used three objective functions to study the upstream and downstream 

units of a surgical department. The three objective functions aimed to minimize the number of 

deferred patients, waiting cost of scheduled patients, idleness of overtime of operating rooms, 

lateness in operating on children and earliness on operating patients far from hospital. Noyan 

Ogulata & Erol (2003) uses a hierarchical multiple criteria mathematical programming model to 

develop a weekly schedule for the operating rooms. The objective is to maximize “… utilization 

of the total operating room capacity, balanced distribution of operations among surgical groups 

in terms of operation lengths and operation days, and minimization of weighted patient waiting 

times.” (Noyan Ogulata & Erol, 2003) The model was solved in three stages. The first stage 
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removes the patients from the waiting list to schedule them, the second stage assigns the 

patients to resources, and the third stage assigns the patients to an operating room and time.  

Santibáñez et al. developed a multiple objective model to “[m]inimize the sum of maximum 

usage of post-surgical resources pre-hospital, maximize total throughput of patients, maximize 

total weighted throughput of patient, minimize the sum of under throughput, minimize the sum 

of percentage under throughput.” (2007) The objective functions are not meant to be used 

simultaneously but allow the user to select which objective function best suits the results 

required. The main decision of the model is to determine which periods and operating rooms 

should be assigned to each surgical specialty.  

There are other mathematical models that have been used to schedule and plan surgical 

settings. J. Zhang, Dridi, & El Moudni (2019) used a markov decision process to develop a 

surgical schedule which accounted for the stochastic environment for a single elective surgery 

specialty with limited resources including operating rooms and surgical intensive care units. The 

model is designed as a two level optimzation model. The first level is related to wait list 

management to “…minimize the discounted estimated cost over the infinite planning horizon” 

(J. Zhang, Dridi, & El Moudni, 2019) and the second level is the patient assignment to a specific 

surgical block. Roshanaei et al. (2016) developed a large scale location allocation integer 

program using logic based Benders decomposition. The program was applied to the distributed 

operating room scheduling problem. The distributed operating room schedule “…is a 

centralized multi-hospital priority-based approach to elective surgery scheduling…”(Roshanaei 

et al., 2016) The objective is to minimize the costs of the operating rooms, the cost of patients 

on the waitlist who remain on the waitlist after each schedule is developed, and the cost of 

scheduling patients during the planning horizon. Vanberkel et al. (2011) developed a probability 

function to determine the probability for each surgical specialty. The probabilties are specific 

for each surgical specialty and each day after the surgery is completed to determine the 

allocation of patients to surgical blocks to ensure the inpatient wards can accommodate the 

patients. Lastly, Vansteenkiste et al. (2012) developed a due time model. The model focused on 

the capacity use of the operating rooms. The performance of the utilization was considered 

with three additional measures: wait time of the surgeons, ratio of the surgeons estimated time 
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to the actual time spent for the case, and capacity usage factor. The measures were weighted, 

and each discipline was scored.  

Astaraky & Patrick (2015), Lamiri et al. (2009), and J. Zhang, Dridi, & Moudni (2019) used 

simulation to find a solution to an optimization model. Astaraky & Patrick (2015) used a markov 

decision process model to schedule patients into a schedule to minimize the combination of 

patient lead time, operating room overtime, and over occupancy in the recovery beds. The 

markov decision process was too complex to solve using standard methods. A simulation 

approximate dynamic programming model was developed to solve the markov decision process 

model. Lamiri et al. (2009) developed a mixed integer program using monte carlo simulation to 

solve the model. The objective was to assign elective patients to different periods to minimize 

the cost of the assignment and the expected overtime. J. Zhang, Dridi, & Moudni (2019) 

developed a markov decision process and used an approximate dynamic programming which 

incorporated monte carlo simulation to solve the model. The model minimized the total cost by 

selecting patients to be treated on a weekly basis. The solution incorporates the uncertainty of 

the surgery durations and the length of stay. 

2.4.3 Simulation Optimization 

Simulation optimization facilitates finding the optimal solution whilst incorporating the 

stochastic nature of the healthcare system in the simulation. There are multiple methods to use 

simulation optimization that includes testing the robustness of an optimal solution, solve the 

optimization problem, find the optimal solution using an iterative approach, and optimize a 

simulation solution. Banditori et al. (2013) developed an optimal solution and identified the 

robustness of the solution using metrics of a cancellation and overtime threshold in a 

simulation model. The optimization model maximized the operating room utilization through 

assigning specialties to each operating room in a specific time slot within the specified planning 

horizon. The penalties resulting from missing due dates and bed mismatches were minimized. 

The solutions that were produced from the optimization model were processed through the 

simulation model. Neyshabouri & Berg (2017) used a similar method of simulation optimization 

as Banditori et al. (2013). A two stage optimization model was developed and the results were 

tested using a simulation model. The model aimed to plan for surgery and downstream capacity 
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under uncertainty. The objective of the optimization model was to minimize the total costs; 

cost of assigning patients to surgery blocks, overtime cost for performing surgeries, and cost of 

lack of surgical intensive care unit (SICU) capacity. The first stage assigns patients to surgery 

blocks and the second stage minimizes the overtime and denied SICU admission costs. The 

simulation tests the optimization solution using length of stays that were uniformly distributed. 

S. Wang et al. (2016) compared the performance of a distributed operating room scheduling 

optimization model to a discrete event simulation model of the status quo surgical schedules to 

quantify the improvement gained through the distributed operating room schedule.  

Lin et al. (2013) uses simulation optimization iteratively to identify the optimal resource level 

for the simulation model. The genetic algorithm generates feasible design points to specify the 

design of the simulation experiment. The performance measures of the simulation experiments 

and the relative efficiencies of the design points generated by the genetic algorithm are 

analyzed by the data envelopment analysis to determine the next sample point. Ozcan et al. 

(2017) uses simulation optimization to optimize a simulation in Witness using the built-in 

optimization software. “The aim is to explore and improve the results based on selected values 

of defined performance measures. One cannot assure that optimality is reached; however, 

based on various trials (scenarios), it can be determined whether the obtained solution is 

preferable to previous solutions.” (Ozcan et al., 2017) The goal is to find resource configurations 

that improve the performance of the operating department. A discrete event simulation model 

uses priority scores of the patient. The priority scores increase each day based on a percentage 

of the maximum time before treatment that has elapsed. The operating time is modelled using 

lognormal distributions and the length of stay was modelled as normal distributions.  

2.5 COVID-19 Surgery 

Additional articles were investigated using the key words “COVID-19 Surgery” to determine the 

surgical scheduling and capacity planning work conducted on the surgery backlog created by 

COVID-19. Although the key words returned many results, most articles were not applicable to 

the research topic presented. The articles mainly focused on providing guidelines and 

recommendations for performing surgeries during the COVID-19 pandemic. Diaz, Sarac, 

Schoenbrunner, Janis, & Pawlik (2020) reviewed the recommendations from various sources to 
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provide consolidated guidelines for performing elective surgeries during the COVID-19 

pandemic. Another area of focus was identifying the surgical backlog and providing 

recommendations on strategies to inform the stakeholders of the factors that will need to be 

considered when COVID-19 is at a manageable level. American College of Surgeons, American 

Society of Anesthesiologists, Association of periOperative Registered Nurses, & American 

Hospital Association (2020) released a joint statement detailing a roadmap to resuming elective 

surgical procedures following the COVID-19 pandemic. Lastly, some articles focused on 

estimating the backlog created by COVID-19 and the length of time to eliminate the patients 

postponed on the waitlist. J. Wang et al.  evaluated historical data relating to surgical 

operations in Ontario, Canada to develop “time series forecasting, queuing models, and 

probabilistic sensitivity analysis to estimate the size of the backlog.” (2020) The length of time 

and the resources required to clear the backlog created by COVID-19 were estimated. The 

estimated time to clear the backlog created was 84 weeks with a confidence interval of 46 - 145 

weeks. Jain, Jain, & Aggarwal (2020) developed a Monte Carlo stochastic simulation to forecast 

the patient volume created by the cancellations of elective procedures. It is recognized there 

was “…no validated historical data to help predict how quickly and to what degree the health 

care system capacity will recover.” (Jain et al., 2020) It was predicted that, optimistically, it will 

take seven months for the healthcare system to perform 90% of the delayed surgeries. 

Pessimistically it will take 16 months to achieve the same result.  

Anderson, Edward G., Freeman, Richard, Joglekar (2020) developed a computer simulation to 

analyze the potential ramp-up scenarios at a mid-size hospital. The model was developed using 

Vensim to analyze the flow dynamics of the system. The analysis was performed on a hospital 

that cancelled most elective surgery procedures during COVID-19. The conclusions related to 

ramp up suggest a huge increase in short term surgical capacity is required given there are no 

bed constraints. However, with the presence of bed constraints the addition of surgical services 

will not increase the throughput of patients. The recommendations made include allowing 20 

hours of overtime per week, hire a temporary workforce to avoid overtime/burnout issues, and 

divert to ambulatory surgery centers to reduce impact on bed constraints. It is recognized a mix 
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of the recommendations will facilitate an effective strategy to address the backlog of surgical 

patients. 

2.6 Summary  

The literature review provided an overview of previous research conducted regarding both 

patient throughput and elective surgeries during COVID-19. Cardoen et al. (2010) identified a 

lack of downstream consideration when developing planning and scheduling strategies. The 

integration of the downstream units was prevalent in the reviewed articles; however, it was not 

always incorporated. The reviewed articles identified most of the research focused on 

developing surgical schedules. There was a lack of articles which focused on the allocation of 

surgical resources to aid in surgical scheduling and capacity planning. The utilization of the 

resources was a prevalent metric of assessing the performance of the developed models. 

However, patient throughput was not as prevalent a metric. Additionally, although the patient 

throughput and the wait list length are correlated, the length of the wait list was not used as a 

metric in the reviewed articles. There was generally an even distribution of articles that used 

the simulation, mathematical programming, and simulation optimization approaches. Within 

simulation the most prevalent model was discrete event simulation. Table 2.4 displays a 

summary count of the articles with respect to the methods and corresponding metrics used. 

Discrete event simulation utilized throughput, wait time, and resource utilization as a metric. 

The patient throughput was used by two of the articles and the wait time and utilization was 

used by one article each. Mathematical programming models often used multiple objectives 

with multiple metrics to evaluate the solutions. The most prevalent one was resource utilization 

with seven articles, wait time and cost were each used by three articles, and patient throughput 

was used by one article. Simulation-optimization used throughput and resource utilization as 

metrics. Since simulation-optimization is a combination of the simulation and mathematical 

programming categories this is unsurprising as patient throughput was the most prevalent 

metric for simulation models and resource utilization was the most prevalent metric from 

mathematical programming models. Further, the initial methodology used to evaluate the 

surgical ramp up following COVID-19 was a computer simulation. The research presented in this 



20 
 

thesis uses simulation to address the surgical waitlist through using patient throughput and 

wait list length as a metric whilst incorporating the bed and operating room resources.  

Table 2.4: Metric and Method Summary Table 

  Metric 

  Throughput Wait Time Utilization Cost 

M
et

h
o

d
 Discrete Event Simulation 2 1 1  

Mathematical Programming 1 3 7 3 

Simulation Optimization 2  1  
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3 Descriptive Analytics 

The data analysis informed the model development and provided the model inputs. The 

collection method and the types of data provided are described in this section. The types of 

data analyzed include the operating room usage, patient throughput, patient waitlists, and new 

case attributes. The methods used to analyze each component of the data is described below.  

The data for this research was collected by Nova Scotia Health (NSH) throughout the province 

of Nova Scotia for each quarter from January 2018 until June 2020. The datasets were created 

by joining multiple datasets on the unique identifier for each surgery case. The data comes 

from three databases including the Patient Access Registry Nova Scotia (PAR-NS), Discharge 

Abstract Database (DAD), and the National Ambulatory Care Reporting System (NACRS). PAR-NS 

provided information for the New Cases, Waitlist, and Completed Cases datasets. DAD and 

NACRS provided information for the Complete Cases dataset. Each row in the datasets 

represents a different surgery instance. The cases can be connected across each database by a 

unique identifier for each surgical request. Each patient is identified by an encrypted health 

card number. Each column in the datasets provides information specific to the surgery instance. 

The data fields used in the data analysis included: scheduled, status, day, week, month, year, 

provincial procedure code, zone, facility, fiscal quarter, specialty, priority, and completion date. 

The New Cases described the cases that entered the system during a quarter. If they do not 

receive surgery in that quarter they become Waitlisted patients in the subsequent quarter. 

After surgery they become Completed Cases. The Waitlist dataset includes all cases waiting for 

surgery during that quarter. The Completed Cases included the cases that were completed 

during the quarter. These three data sets were combined to define the state of the system in 

any quarter.  

3.1 Surgical Resources in the Central Zone 

The data provided was for all surgical procedures in Nova Scotia serviced by NSH. The analyzed 

data focused on the Central Zone. The Central Zone services the capital city in Nova Scotia 

which is home to approximately 50% of the population of Nova Scotia (Statistics Canada, 2019). 

Within the Central Zone there are five locations at which surgeries occur; four of the locations 



22 
 

are hospitals and one is a private clinic. The private clinic, Scotia Surgery Inc. (SSI), is contracted 

by NSH to perform specific outpatient surgeries. The four hospitals are Victoria General 

Hospital (VG), Halifax Infirmary (HI), Dartmouth General Hospital (DGH), and Hants County 

Hospital (HCH). The operating rooms associated with each hospital is presented in Table 3.1.  

Table 3.1: Operating Rooms for Hospitals in the Central Zone 

 Hospital 

 

Victoria General 
Hospital 

Halifax 
Infirmary 

Dartmouth 
General Hospital 

Hants County 
Hospital 

Scotia 
Surgery Inc. 

O
p

er
at

in
g 

R
o

o
m

s 

OPDS-17 HIOR01 DOR-RM1 HOR01 SSI01 
OPDS-18 HIOR02 DOR-RM2 HOR02 SSI02 
OPDS-19 HIOR03 DOR-RM3 RHACRMS  
OPDS-20 HIOR04 DOR-RM4   

VG10-09 HIOR05 DOR-RM5   

VG10-10 HIOR06 DOR-RM6   

VG10-11 HIOR07 DOR-RM8   

VG10-12 HIOR08    

VG10-13 HIOR09    

VG10-15 HIOR10    

VG10-16 HIOR11    

VG11-01 HIOR12    

VG11-03 HIOR13    

VG11-04 HIOR14    

VG11-05 HIOR15    

VG11-06 HIOR16    

VG11-07 HIOR17    

VG11-08 HIOR18    

 HIOR19    

 

There are twelve surgical specialties within the department of surgery: cardiology/cardiac 

(CARD), general (GEN), neurology (NEURO), gynecology (OBGYN), oral maxilla facial dental 

(OMFD), ophthalmology (OPHTH), orthopedic (ORTHO), otolaryngology (OTOL), plastic (PLAS), 

thoracic (THOS), urology (URO), and vascular (VAS). Each surgical specialty has procedure codes 

for each procedure. The procedure codes follow a similar labelling system for all specialties; the 

abbreviated surgical specialty name is followed by four numbers. The number of surgical 

procedures for each surgical specialty are listed in Table 3.2. There are 398 surgical procedure 

codes in total. 
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Table 3.2: Number of Procedure Codes for Each Surgery Type 

Surgery Type 
Number of 

Procedure Codes 

Cardiology/Cardiac (CARD) 17 

General (GEN) 82 
Neurology (NEURO) 36 
Gynecology (OBGYN) 21 

Oral Maxilla Facial (OMFD) 9 
Ophthalmology (OPHTH) 20 

Orthopedic (ORTHO) 67 
Otolaryngology (OTOL) 42 

Plastic (PLAS) 22 

Thoracic (THOS) 15 
Urology (URO) 52 

Vascular (VAS) 14 

Total Procedure Codes 398 

 

Table 3.3 provides a summary of the Central Zone surgical facilities. The DGH has seven 

operating rooms and 33 surgical beds. At the DGH six surgical specialties operate including 

general surgery, gynecology, oral maxilla facial, orthopedic, otolaryngology, and urology. The HI 

has 19 operating rooms and 203 surgical beds. There are six surgical specialties including 

cardiology/cardiac, general, neurology, orthopedic, plastic, and vascular. The VG has 19 

operating rooms and 121 surgical beds. General, gynecology, oral maxilla facial, otolaryngology, 

thoracic, urology, and ophthalmology are all performed at the VG. HCH and SSI perform only 

outpatient procedures and do not have any inpatient beds available for surgical procedures. 

HCH has three operating rooms to perform general, oral maxilla facial, orthopedic, 

otolaryngology, and vascular surgical procedures. SSI has two operating rooms and performs 

surgery for general, orthopedic, and plastic specialties.  

Table 3.3: Central Zone Hospital Summary Table 

Central Zone Surgical 
Facilities 

Operating 
Rooms 

Surgical 
Beds 

Surgical 
Specialties 

Dartmouth General Hospital 7 33 6 

Halifax Infirmary 19 203 6 

Victoria General Hospital 19 121 7 

Hants County Hospital 3 - 7 
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Central Zone Surgical 
Facilities 

Operating 
Rooms 

Surgical 
Beds 

Surgical 
Specialties 

Scotia Surgery Inc 2 - 3 

Total 50 357  
 

3.2 Operating Room Schedule and Use 

The operating room schedule for each operating room was not attainable from each hospital as 

realized schedules are not retained electronically and the Master Schedule is followed 

inconsistently. The schedules for the operating rooms were therefore derived from the 

historical surgical use data. The average of the number of hours the operating room was used 

on each day of the week provides an estimate for the number of hours the operating room was 

available for scheduled surgeries. The times were rounded up to the nearest hour as there is a 

maximum of a hour buffer incorporated into the operating room schedule.  

Operating rooms are used for unscheduled surgeries on the weekends and evenings or early 

mornings. The number of operating rooms open on the weekends was identified by counting 

the number of unique operating rooms used on each weekend of each month. The aid of the 

subject matter experts facilitated further analysis of the data. It was evident that not all 

operating rooms were available on the weekends with 30-40% of the operating rooms open on 

the weekends at each surgical facility.  

Each surgical specialty has specific operating rooms in which to perform operations. Multiple 

surgical specialties use the same operating room. The data does specify on which days of the 

week the operating room is used for each surgical specialty but does not specify the time of 

day. An analysis of the distribution of the number of hours used by each surgical specialty on 

each day of the week was performed. The procedure code and surgical specialty were 

documented for each completed operation and the corresponding operating room that was 

used for the surgery. The number of hours available per specialty was captured using the 

percentage of the total number of hours the surgical specialty used each operating room and 

the total number of hours the operating room was available for use during the week. The 

number of hours each surgical specialty used in each operating room per week was added 
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together to determine the total number of hours available for each surgical specialty each day 

of the week.  

3.2.1 Operating Room use at Dartmouth General Hospital  

Each of the hospitals in the Central Zone were analyzed to determine the operating room 

schedule, surgical specialty operating use, and emergency operating rooms. This section 

presents a detailed analysis of the results for DGH. The results of the other three facilitates is 

presented in Appendix A.  

The operating room schedule at DGH is displayed in Table 3.4. Table 3.4 illustrates the number 

of hours each operating room is in operation during each day of the week beginning at 8:00AM. 

The darker the shade of read the more hours the operating room is being used during that day 

of the week. The operating rooms are used between 3 and 12 hours per day. Operating room 

DOR-RM5 is used the most, 61 hours per week, and DOR-RM6 is used the least, 7 hours, during 

the week on average. Further, the aggregate of the data shows the operating rooms are all 

used between 3 and 5 hours on the weekends for emergency surgical procedures. Table 3.5 

illustrates the number of times each operating room was open on each weekend for the two 

year period.  

Table 3.4: Dartmouth General Hospital Operating Room Schedule Data 

Day DOR-RM1 DOR-RM2 DOR-RM3 DOR-RM4 DOR-RM5 DOR-RM6 DOR-RM8 

Sunday 4 4 4 3 5 0 2 
Monday 10 9 11 9 9 6 7 
Tuesday 9 8 9 6 12 0 3 
Wednesday 9 8 7 7 11 0 6 
Thursday 7 8 10 6 10 1 6 
Friday 8 10 12 7 9 0 7 
Saturday 4 4 5 3 5 0 3 

Total 51 51 58 41 61 7 34 

 

Table 3.5: Dartmouth General Hospital Operating Room Weekend Use 

OR 

2018 2019 

Saturday Sunday Weekend Saturday Sunday Weekend 

DOR-RM4 12 11 12 12 12 12 

DOR-RM3 12 11 12 12 12 12 
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OR 

2018 2019 

Saturday Sunday Weekend Saturday Sunday Weekend 

DOR-RM5 12 12 12 11 10 11 

DOR-RM2 11 9 10 10 7 9 

DOR-RM1 4 3 4 7 3 5 

DOR-RM8 0 0 0 1 1 1 

 

The amount of time used by each surgical specialty at DGH is illustrated in Table 3.6. The 

operating rooms are not always exclusive to each specialty but rather are shared amongst 

specialties. The specialty with the largest number of operating room hours at DGH is orthopedic 

surgery with around 95 hours per week. Orthopedic surgery is the only surgery specialty that 

uses DOR-RM2 and shares DOR-RM3 with oral and maxillofacial surgery. General surgery mainly 

uses the operating rooms DOR-RM1 and DOR-RM5 with a total number of 81 hours per week. 

DOR-RM6 is used by general and plastic surgery evenly.   

Table 3.6: Dartmouth General Hospital Operating Room Time Distribution for Surgical Specialty 

Room GEN OBGYN OMFD ORTHO OTOL PLAS 

DOR-RM1 30.9 0.0 0.0 0.0 20.0 0.0 
DOR-RM2 0.0 0.0 0.0 51.0 0.0 0.0 
DOR-RM3 0.0 0.0 13.7 44.3 0.0 0.0 
DOR-RM4 12.8 0.0 0.0 0.0 0.0 0.0 
DOR-RM5 34.0 26.9 0.0 0.0 0.0 0.0 
DOR-RM6 3.5 0.0 0.0 0.0 0.0 3.5 
DOR-RM8 0.0 0.0 0.0 0.0 0.0 0.0 
Total 81.3 26.9 13.7 95.3 20.0 3.5 

 

The total number of hours allotted to each specialty for the entire Central Zone is displayed in 

Table 3.7. Orthopedic surgery has the largest number of operating room hours in a week at 

524.7 hours. General surgery and urology have a similar number of operating room hours with 

330 hours. The surgical specialty with the lowest number of hours is oral maxilla facial and 

dental surgery with 16.4 hours per week.  

Table 3.7: Central Zone Operating Room Time Distribution per Surgical Specialty per Week 

Specialty CARD GEN NEURO OBGYN OMFD OPHTH ORTHO OTOL PLAS THOS URO VAS 

OR Time (hr) 178 339 158.2 49.6 16.4 202.4 547 60.2 53 48 328.2 173.5 
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The resulting operating room schedule used for DGH is displayed in Table 3.8. 

Table 3.8: Dartmouth General Hospital Operating Room Schedule 

 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

0:00 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

1:00 

2:00 

3:00 

4:00 

5:00 

6:00 

7:00 

8:00 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM6 
DOR-RM8 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM8 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM8 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM6 
DOR-RM8 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM8 

9:00 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM8 

10:00 

11:00 DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 

12:00 

13:00 

14:00 DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 
DOR-RM8 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM5 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM5 

15:00 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM4 
DOR-RM5 

DOR-RM1 
DOR-RM2 
DOR-RM5 

DOR-RM2 
DOR-RM3 
DOR-RM5 

DOR-RM1 
DOR-RM2 
DOR-RM3 
DOR-RM5 

16:00 DOR-RM1 
DOR-RM3 
DOR-RM5 

DOR-RM1 
DOR-RM5 

 
DOR-RM3 
DOR-RM5 

DOR-RM2 
DOR-RM3 
DOR-RM5 
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 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

17:00 DOR-RM1 
DOR-RM3 

DOR-RM5 DOR-RM5 
DOR-RM2 
DOR-RM3 

18:00 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

DOR-RM4 
DOR-RM3 
DOR-RM5 

19:00 

20:00 

21:00 

22:00 

23:00 

 

3.3 Distribution Fitting  

The length of stay and the surgery length of each patient was determined using the historical 

data of the completed surgical cases. An empirical distribution was developed for each 

procedure code for both the acute length of stay in the hospital and the length of the surgery.  

3.3.1 Length of Stay 

A distribution for the length of stay was fit to the data for the completed surgeries stratified by 

procedure code. The length of stay of the patients was categorized by both the acute days and 

the alternate level of care days. The acute days are the days under which the patient is being 

cared for by a surgeon. These are the days that impact the number of surgery beds being used 

by surgery patients.  Alternate level of care days are days during which the patients are no 

longer under the care of the surgery department and are considered medicine patients. 

Stratifying length of stay by procedure code allows different procedure codes to be modelled by 

different distributions. 
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Figure 3.1: Cardiac Surgery Procedure Code Length of Stay (Hours) Histograms 

The histograms and summary statistics for each procedure code were obtained to understand 

the characteristics of the data for each procedure code. Figure 3.1 displays the length of stay 

distributions for the cardiac surgery procedure codes. The number of bins in each histogram in 

Figure 3.1 is dependent on the number of data points. The summary statistics and histograms 

illustrated that the data distributions for the procedure codes are skewed to the left as the 

mean and median values are not similar. The skewed nature of the data warranted further 

investigation. The skewed data indicated that the centrality was best represented by the 
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median. The data contained outliers that represented lengths of stays or surgery lengths that 

were much longer than the median. Through discussions with subject matter experts regarding 

the variability present in the data it was evident that outliers represent emergency patients. 

Emergency patients are often viewed as an administrative problem with respect to the length 

of stay as the patients are often being treated for multiple comorbidities. For these two reasons 

the 95th to 100th percentile of the data were removed before fitting distributions and 

computing summary statistics. The data remained skewed to the left after the removal of the 

top 5% but allowed for the removal of the outliers and data entry errors.  

The new data set was used to determine if procedure codes should be grouped together. 

Procedure codes with was less than twenty data points were considered for grouping. Twenty 

sample data points were not enough to allow an empirical distribution to be developed. The 

minimum, maximum, and interquartile range of the procedure code with less than 20 data 

points were compared. The maximum value was used as an indicator of the length of the tail of 

the data. The interquartile range and the median were used to compare the range and central 

tendency of the data set. The smaller data set was combined with the larger data set when the 

interquartile range of the two data sets overlapped to include the medians of both data sets. 

This is evident in the grouping presented in Table 3.10. The median of both procedure codes 

are present in the interquartile range. Table 3.9 summarizes the procedure code groupings for 

all surgical specialties by categorizing the number of procedure codes that have less than two 

data points as well as the procedure codes with less than 20 data points and the number of 

groupings for the procedure codes with less than 20 data points. 

Table 3.9: Length of Stay Grouping Summary 

 >2 & <20  <2 Groupings 

CARD 7 2 5 

GEN 11 15 8 

NEURO 9 6 8 

OBGYN 3 5 3 

OMFD 1 2 1 

OPHTH 2 4 3 

ORTHO 14 13 9 

OTOL 4 16 3 

PLAS 6 4 5 
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 >2 & <20  <2 Groupings 

THOS 2 3 2 

URO 13 9 8 

VAS 2 3 2 

 

The remaining procedure codes were not grouped together. It was identified by the subject 

matter experts that to ensure the integrity and credibility of the model procedure codes which 

possessed more than 20 data points could not be grouped together as the corresponding 

procedures would not, from a medical perspective, be grouped together despite the similarity 

of the data. Further, there were some procedure codes that only appeared once for the 

duration of the two years. Due to the inability to group these procedures with other procedures 

because the characteristics of the procedures were unknown all patients that entered the 

system with those procedure codes were given a surgery length or length of stay equivalent to 

the single data point.  

The distributions were developed using a method which returned a distribution with the least 

residual sum of squares (RSS) between the hypothesized distribution and the sample data. The 

code developed to fit the data to distributions was modified from a code (tmthydvnprt, 

2016).The RSS is calculated using equation (1). The sample data, yi, is compared to the 

hypothesized data, f(xi), where i is the ith value in the dataset. The squared difference between 

the values is the error present between the sample data and the hypothesized data.  The 

sample data was compared against a list of distributions to determine which distribution in the 

list best fit the data. The distributions were beta, erlang, exponential, exponentially modified 

normal and Weibull, exponential power, gamma, generalized gamma, inverse gamma, inverse 

gauss, inverse Weibull, Johnson SB, Johnson SU, Sech-squared, log gamma, log Laplace, log 

normal, normal, Pearson type three, triangular, truncated exponential, uniform, Weibull, and 

Weibull maximum and were evaluated using scipy.stats in Python (The SciPy community, 2021). 

The distribution with the best fit was returned as well as the necessary parameters of the 

distribution. This was accomplished using a Python code developed to test distributions. The 

program developed the distribution for each data set as well as the RSS. The program retained 

the RSS of the first distribution calculated and compared the next distribution RSS value to the 
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current best value. The best value was replaced by the distribution being checked if the RSS 

value was less than best RSS value. The distribution associated with the new RSS value would 

be maintained as the best distribution until proven otherwise or until all distributions were 

analyzed.   

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

 (1) 

Table 3.10: Length of Stay CARD0002 & CARD0007 Procedure Code Summary Statistics 

Procedure 
Code 

Count 
(days) 

Mean 
(days) 

Std 
(days) 

Min 
(days) 

25% 
(days) 

50% 
(days) 

75% 
(days) 

95% 
(days) 

CARD0002 64 11.02 7.71 4 7 9 12.25 25.74 

CARD0007 15 12.93 16.30 3 4.5 10 12 56.24 

 

The analysis performed on the length of acute stay data allowed distributions to be fit for most 

of the surgical procedures. Table 3.10 illustrates two procedures in the cardiac surgery specialty 

that were grouped together. The resulting distribution for the procedure types was an inverse 

gaussian distribution which has one shape argument parameter as well as the location and 

scale parameters, 0.167, -39.784, 2011.965, respectively. The distributions used for the length 

of stay for each procedure codes is presented in Table 3.11. The distribution used the most was 

the gamma distribution and the distribution used the least was the log-normal distribution.  

Table 3.11: Length of Stay Distribution Type Counts per Surgical Specialty 

Distribution C
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Gamma 0 19 8 2 2 2 22 6 4 0 10 4 79 

Log Laplace 0 7 6 2 0 0 2 1 0 6 5 1 30 

Pearson Type 3 0 1 4 1 1 5 4 2 3 1 3 0 25 

Beta 0 12 1 0 0 0 5 1 1 0 1 1 22 

Generalized Gamma 0 7 0 2 0 1 7 0 2 0 2 1 22 

Johnson SU 3 3 2 0 0 0 0 3 0 2 4 0 17 

Exponential Weibull 0 2 0 2 0 1 3 1 0 1 6 0 16 

Inverse Gauss 3 1 1 4 0 0 2 1 0 0 2 0 14 

Weibull Min 0 5 0 0 2 1 0 5 0 0 1 0 14 

Exponentially Modified Normal 7 4 0 0 0 0 1 0 0 0 0 1 13 
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Distribution C
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Exponential Power 2 3 4 0 0 0 0 0 0 1 0 0 10 

Inverse Gauss 0 0 2 0 0 0 2 0 0 0 2 0 6 

Inverse Weibull 0 1 3 0 0 0 1 0 0 0 0 0 5 

Johnson SB 0 1 0 0 0 0 3 0 0 0 0 1 5 

Triangular 0 3 0 0 0 0 0 0 0 1 0 0 4 

Weibull Max 0 1 0 0 0 0 0 0 1 0 0 0 2 

Log Normal 0 0 0 0 0 0 0 0 0 0 0 2 2 

 

3.3.2 Surgery Length 

A surgery length distribution was fit to the data for each procedure code. The operating room 

time data was recorded in segments based on different stages of the surgery. The timestamps 

include: setup start, patient enters, surgeon start incision, surgeon end, patient exit, finish clean 

up. The time between finish cleanup and setup start is used as the total time the operating 

room is occupied per surgery. The surgery length analysis was similar to that of the length of 

stay discussed previously in this section. The summary statistics for each procedure code were 

analyzed and it was identified that the data distributions for the procedure codes were skewed 

to the left as the mean and median values were not similar. The data contained outliers which 

represented surgery lengths that were sometimes longer than 24 hours. Subject matter experts 

identified that those outliers were a results of data entry error. Additionally, for some of the 

procedure codes the longer surgery lengths were a result of complex traumas from emergency 

patients which are not representative of the elective surgery patients. These 95th to 100th 

percentile of the data was removed to facilitate an analysis of the elective surgical patients 

within the system. 

The grouping procedure for the data set was similar to that used for the length of stay as well. 

The procedure code data with the removed 95th percentile was only grouped together when 

the sample data for the procedure code was less than 20 data points. The interquartile range as 

well as the maximum value was used to determine if the data similarly described another data 

set. It was identified by the subject matter experts that to ensure the integrity and credibility of 

the model procedure codes which possessed more than 20 data points could not be grouped 
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together as the corresponding procedures would not, from a medical perspective, be grouped 

together despite the similarity of the data. Further, there were some procedure codes that only 

appeared once for the duration of the two years. Due to the inability to group these procedures 

with other procedures because the characteristics of the procedures were unknown all patients 

that entered the system with those procedure codes were given a surgery length equivalent to 

the single data point. The smaller data set was combined with the larger data set when the 

interquartile range of the two data sets overlapped to include the medians of both data sets. 

This is evident in the grouping presented in Table 3.13. The median of both procedure codes 

are present in the interquartile range. Table 3.12 summarizes the procedure code groupings for 

all surgical specialties by categorizing the number of procedure codes that have less than two 

data points as well as the procedure codes with less than 20 data points and the number of 

groupings for the procedure codes with less than 20 data points. 

Table 3.12: Surgery Length Grouping Summary  

 <2 >2 & <20  Groupings 

CARD 0 6 5 

GEN 6 18 10 

NEURO 9 8 6 

OBGYN 3 7 7 

OMFD 0 4 2 

OPHTH 4 1 1 

ORTHO 3 17 12 

OTOL 10 9 9 

PLAS 2 9 5 

THOS 1 3 3 

URO 3 13 11 

VAS 0 3 3 

 

Table 3.13: Surgery Length CARD0025 & CARD0012 Procedure Codes Summary Statistics 

  Count 
(hours) 

Mean 
(hours) 

Std 
(hours) 

Min 
(hours) 

25% 
(hours) 

50% 
(hours) 

75% 
(hours) 

Max 
(hours) 

CARD0025 4 92 24.39 64 79 91 104 118.4 

CARD0012 43 100.5 48.09 41 63 88 124 181.9 
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The development of the surgery length distributions used the same program that was 

developed for the length of stay distributions, as previously discussed in Subsection 3.3.1. Table 

3.13 illustrates two procedures in the cardiac surgery specialty that were grouped together. The 

resulting distribution for the procedure types was a truncated exponential distribution which 

has one shape argument parameter as well as the location and scale parameters, 1.000, 0.683, 

2.033, respectively.  The count for the procedure codes for each surgical specialty for each of 

each type of distribution is displayed in Table 3.14. The distribution used the most was a 

Johnson SB distribution and the distribution used the least was log-gamma distribution.  

Table 3.14: Surgery Length Distribution Counts per Surgical Specialties 

Distribution C
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Johnson SB 2 10 2 3 4 3 9 8 3 1 9 0 54 

Exponentially Modified Normal 0 11 9 1 0 2 7 7 1 2 5 3 48 

Triangular 0 8 2 0 0 5 7 4 3 4 6 4 43 

Log Laplace 4 12 3 2 0 1 6 0 3 2 7 1 41 

Johnson SU 1 8 3 1 3 2 9 3 1 0 5 0 36 

Inverse Weibull 1 9 3 2 1 0 5 1 2 0 1 0 25 

Inverse Gauss 2 4 0 2 1 2 4 0 0 0 4 4 23 

Beta 0 4 1 2 0 0 9 4 0 0 0 0 20 

Gamma 0 0 0 0 0 1 4 4 8 1 1 0 19 

Generalized Gamma 0 3 0 2 0 0 4 2 5 0 1 0 17 

Exponential Power 0 3 1 1 0 2 0 0 1 0 3 2 13 

Logistic 0 2 3 0 0 0 2 0 0 2 3 0 12 

Inverse Gamma 2 1 0 0 0 2 0 0 3 0 0 0 8 

Truncated Exponential 2 0 0 3 0 0 1 1 0 0 0 0 7 

Pearson Type Three 1 0 1 0 0 0 2 2 0 1 0 0 7 

Weibull Minimum 2 3 1 0 0 0 0 0 0 0 1 0 7 

Exponentially Modified Weibull 0 0 0 0 0 0 0 2 0 0 3 0 5 

Weibull Maximum 0 0 2 0 0 0 0 0 1 0 1 0 4 

Uniform 0 0 0 0 0 0 1 0 0 1 0 0 2 

Log Gamma 0 0 0 0 0 0 0 2 0 0 0 0 2 

 

3.4 Demand and Throughput  

The demand and throughput of the system are described by three components: arrival rate, 

service rate, and renege rate. The results from the demand and throughput data analysis are 
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presented below which include the new, completed, and removed cases. The overall 

characteristics of the queue which is a result of the arrival, service and removals are illustrated 

in Figure 3.2. The waitlist decreases when the completed and removed cases are greater than 

the new cases added to the waitlist. There is an upward trend illustrated in the graph except for 

the first quarter of 2020 where COVID-19 halted the elective surgical procedures from being 

added to the waitlist as well as being completed. The first quarter of 2020 was not included in 

the data analysis to ensure the outlier events did not impact the trends.  

 

Figure 3.2: Central Zone Throughput and Demand of the Surgical Services 

3.4.1 Arrival Rate 

The arrival rate describes the number of arrivals to the system per unit of time. The number of 

arrivals to the system indicate the rate at which patients are entered onto the waitlist and 

emergency patients are added to the operating room queue. The arrival rate was analyzed on a 

yearly, quarterly, and monthly basis. The arrival rate was calculated using equation (2). The 

arrival rate was calculated using the new scheduled cases that arrived each year, quarter and 

month from January 2018 – December 2019. The data provided for 2020 was not included in 

the analysis to ensure the implications of COVID-19 on the demand of the system did not affect 

the arrival rate. The quarterly and monthly arrival rate were analyzed to determine which 

arrival rate most accurately described the system. It was important to investigate the 
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seasonality of the arrival rate as it was known by subject matter experts that the arrival rate 

changes based on the time of year. The arrival rate on a daily and hourly basis was not 

evaluated as this level of detail was not necessary for the model analysis. The arrival rate 

facilitates the calculation of the interarrival rate of each of the patients in the model.  

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒𝑠

𝑡𝑖𝑚𝑒
(2) 

The number of new cases added to the waitlist per month from January 2018 until June 2020 is 

displayed in Figure 3.3. The average arrival rate per month based on two years of historical 

data, January 2018 – December 2019, is presented in Table 3.15. The arrival rate is around 3000 

new cases per month. There is a seasonal trend present in the data. The arrival rate decreases 

during holiday seasons which include December, March, July, and August with the lowest arrival 

rate in August. The arrival rates increase following the holidays with the highest arrival rate in 

January. It is evident during the first wave of the COVID-19 pandemic there was a large 

decrease in the number of cases added to the waitlist as compared to the same time in other 

years.  

 

Figure 3.3: Number of New Cases Added Per Month January 2018 - June 2020 Central Zone 

Table 3.15: Average Arrival Rate per Month from January 2018 – December 2019 Central Zone 

Month Arrivals Per Month 
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Month Arrivals Per Month 

February 3,176 

March 2,688 

April  2,954 

May 3,094 

June 2,928 

July 2,767 

August 2,654 

September 3,184 

October 3,081 

November 3,202 

December 2,580 

 

3.4.2 Service Rate 

The service rate is the rate at which patients are served by the system in a unit of time. The 

service rate is not used as an input to the simulation but is an important to characterize the 

waitlist. The service rate was further used in the model validation to ensure the service rate of 

the model accurately represented the system. The service rate was calculated using the 

Completed Cases data set. The data set indicated the number of completed cases during the 

two year period, January 2018 – December 2019. The service rate was calculated for a yearly, 

quarterly, and monthly basis. The service rate equation is:  

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐶𝑎𝑠𝑒𝑠

𝑡𝑖𝑚𝑒
(3) 

The number of cases removed from the waitlist per month from January 2018 until June 2020 is 

displayed in Figure 3.4. The service rate per month for two years of historical data, January 

2018 – December 2019, is presented in Table 3.16. The trends in the number of removed cases 

per month matches the trends present in the number of arrivals per month. 
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Figure 3.4: Number of Cases Removed per Month January 2018 – June 2020 Central Zone 

Table 3.16: Average Service Rate Per Month January 2018 – December 2019 Central Zone 

Month Service Per Month 

January 2,845 

February 2,755 

March 2,419 

April  2,663 

May 2,890 

June 2,744 

July 2,285 

August 2,086 

September 2,946 

October 2,850 

November 2,822 

December 2,310 

 

3.4.3 Renege Percentage 

The renege percentage is the number of cases that are removed from the waitlist without 

receiving surgery. The renege percentage was used as a patient attribute in the simulation 

model. Through discussions with subject matter experts, it was identified that the renege rate 

within NSH is 14% across the province for the entire surgical waitlist. The renege percentage 

was calculated for each surgical specialty using the number of patients on the waitlist at the 
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start of the quarter, the waitlist at the end of the quarter, the number of completed cases, and 

the number of new cases. The removed cases were calculated using equation (3). The renege 

percentage was then calculated using equation (4). The quarters were evaluated to determine 

the percentage of patients that are initially on the waitlist who become emergency patients. 

The number of scheduled cases that transitioned to unscheduled cases did not impact the 

renege percentage by more than 1%. 

𝑅𝑒𝑚𝑜𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 = 𝑤𝑎𝑖𝑡𝑖𝑙𝑖𝑡𝑠 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 + 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠 −

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 − 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 (3)
 

𝑅𝑒𝑛𝑒𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 

𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 + 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠
 (4) 

The renege rate of each case is illustrated in Table 3.17. Cardiac surgery has the highest renege 

rate at 35% and plastic surgery has the lowest renege rate at 2%. The majority of the surgical 

specialties have renege rates below at or below 10% with corresponding non-renege rates 

greater than 90%.  

Table 3.17: Average Renege Rate per Surgical Specialty January 2018 – December 2019 Central Zone 

 
CARD GEN NEURO OBGYN OMFD OPHTH ORTHO OTOL PLAS THOS URO VAS 

Renege 36% 10% 4% 9% 6% 8% 5% 9% 2% 7% 7% 7% 

Stay 65% 90% 96% 91% 94% 92% 95% 91% 98% 93% 93% 93% 

 

3.5 Current Waitlist Overview  

The current waitlist at the end of June 30, 2020 was entered into the model and used as the 

starting point for analysis. To determine the number of patients on the waitlist at the end of 

June, the New Cases, Completed Cases, and Waitlist datasets were analyzed using equation 5. 

The surgery cases on the waitlist were determined by identifying the unique surgery identifying 

number on each of the Waitlist and New Case data set, which were compared to the Completed 

Cases data set. The information about the patients on the waitlist included the priority level at 

the time of the surgical consultation, the procedure code, and the surgical specialty of the 

patients.  
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𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝐽𝑢𝑛𝑒 30, 2020 (𝐸𝑛𝑑 𝑜𝑓 𝑄𝑢𝑎𝑟𝑡𝑒𝑟) = 𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝑎𝑡 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 +

𝑁𝑒𝑤 𝐶𝑎𝑠𝑒𝑠 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐶𝑎𝑠𝑒𝑠 (5)
 

The current waitlist is comprised of patients of all surgical types and priority levels for 

scheduled surgeries. Priority levels are numbered one through six with level one being the 

highest priority and level six being the lowest priority. Unscheduled surgeries are not included 

in the current waitlist overview as unscheduled patients do not get added to the waitlist. 70% 

of the current waitlist consists of orthopedic, ophthalmology, and general surgery patients. This 

is illustrated in Figure 3.5. 95% of the patients on the waitlist have priority levels four to six. The 

priority level distribution of the patients on the waitlist is presented in Figure 3.6.  

 

Figure 3.5: Patients Waiting by Surgical Specialty in Central Zone as of June 30, 2020  

 

Figure 3.6: Patients Waiting by Priority Level in Central Zone as of June 20, 2020  
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3.6 New Case Attributes  

To further understand the surgical patient mix, and further inform the simulation model, this 

section explores the types and volumes of patients. Specifically, the new patient arrivals, 

patient priority level, and inpatient/outpatient classification are stratified by surgical specialty. 

The high volume procedure codes are also reported.  

The proportion of new cases associated with each surgical specialty between January 2018 and 

December 2019 is presented in Table 3.18. The orthopedic and ophthalmology specialties make 

up 22.2% and 22.7% of the new cases, respectively. General surgery comprises 17% of the new 

case attributes. The specialty that contributes the least to the new cases is thoracic surgery at 

1.9%.  

Table 3.18: New Case Specialty Distribution January 2018 – December 2019 Central Zone 

Specialty Percent 

CARD 4.8% 

GEN 17.0% 

NEURO 3.7% 

OBGYN 2.4% 

OMFD 2.9% 

OPHTH 22.7% 

ORTHO 22.2% 

OTOL 4.6% 

PLAS 2.1% 

THOS 1.9% 

URO 12.9% 

VAS 2.8% 

 

The proportion of cases associated with the seven priority levels for each surgical specialty is 

displayed in Table 3.19. All of the surgeries for otolaryngology are considered emergency 

surgeries. Cardiology does not have any new cases of priority level 5 or 6 and is mainly 

comprised of emergency surgeries and priority 2 cases. General, neurology, orthopedic, plastic, 

and urology specialties are mostly comprised of emergency surgeries as well as priority levels 4, 

5, and 6. Gynecology and thoracic specialty cases enter the system with a majority of priority 

level 3 cases and ophthalmology surgery has a majority of priority level 4 cases. Oral 
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maxillofacial surgery is the only surgery that enters the system with the majority of cases at a 

priority level 6. Plastic surgery is mainly emergency surgeries as well as an even distribution of 

priority levels 3, 4, 5, and 6. Vascular surgery is mainly emergency surgeries, with an even 

distribution of priority levels 2, 3, 4 and only a few cases of priority 1, 5, and 6.  

Table 3.19: Priority Level Distribution per Surgical Specialty 

Priority Level CARD GEN NEURO OBGYN OPHTH OMFD ORTHO OTOL PLAS THOS URO VAS 

Emergency 33% 41% 37% 7% 5% 9% 27% 100% 32% 27% 33% 46% 

1 17% 0% 1% 0% 3% 0% 1% 0% 1% 3% 2% 5% 

2 21% 4% 5% 20% 4% 1% 2% 0% 5% 22% 13% 14% 

3 12% 8% 8% 38% 6% 1% 6% 0% 17% 36% 14% 12% 

4 18% 15% 20% 24% 52% 12% 25% 0% 19% 9% 22% 19% 

5 0% 16% 16% 11% 19% 8% 31% 0% 14% 3% 12% 1% 

6 0% 15% 13% 0% 11% 70% 8% 0% 13% 2% 5% 3% 

 

Each surgical specialty had a different percentage assigned to each procedure code under that 

surgical specialty. Due to the large number of specialties and associated procedure codes not all 

results are presented. The procedure codes for vascular surgeries are presented in Table 3.20. 

The vascular surgery procedure that is added to the waitlist with the highest frequency is 

VAS0033 at 17%. The procedure codes with the lowest frequencies are VAS0010, VAS0016, 

VAS0020 at 0.3%.  

Table 3.20: Procedure Code Distribution for Vascular Surgical Specialty 

Procedure Percentage 

VAS0001 11.7% 

VAS0007 5.6% 

VAS0010 0.3% 

VAS0012 5.9% 

VAS0013 9.0% 

VAS0015 7.6% 

VAS0016 0.3% 

VAS0020 0.3% 

VAS0024 11.9% 

VAS0027 5.4% 

VAS0028 5.7% 

VAS0031 13.2% 

VAS0033 17.0% 
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Procedure Percentage 

VAS0035 6.1% 

 

Table 3.21 displays the procedure codes with the highest frequency for each specialty.  

Table 3.21: Procedure Codes per Specialty with Largest Percentage 

Specialty Procedure Code Percentage 

CARD CARD0017 27% 

GEN GEN0032 18% 

NEURO NEURO0119 20% 

OBGYN OBGYN0001 48% 

OMFD OMFD0009 47% 

OPHTH OPHTH0001 65% 

ORTHO ORTHO0053 15% 

OTOL OTOL0038 12% 

PLAS PLAS0006 29% 

THOS THOS0019 65% 

URO URO0021 24% 

VAS VAS0033 17% 

 

The proportion of inpatient and outpatient vascular surgery patients are presented in Table 

3.22. The procedure codes illustrate that most procedures are mainly inpatient procedures.  

Table 3.22: Patient Status Distribution for Vascular Surgery Procedure Codes 

Procedure Code Inpatient Outpatient  

VAS0001 42% 58% 

VAS0007 14% 86% 

VAS0010 100% 0% 

VAS0012 100% 0% 

VAS0013 100% 0% 

VAS0015 99% 1% 

VAS0016 86% 14% 

VAS0020 71% 29% 

VAS0024 98% 2% 

VAS0027 0% 100% 

VAS0028 99% 1% 

VAS0031 100% 0% 

VAS0033 100% 0% 

VAS0035 96% 4% 
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Table 3.23 displays, the proportion of inpatient and outpatient, for 90% of the surgical 

specialty. Generally, there are few procedures that contribute to the majority of the cases for 

each surgical specialty. The table is organized on the specialty percentage. The operating room 

time per week is displayed to illustrate the distribution of surgical time with respect to how 

many cases are present on the new case attribute list. The majority of cases are inpatient cases.  

Table 3.23: 90% of Surgical Special Distribution of Patient Status by Specialty Percent 

Specialty 
Specialty 
Percent 

Inpatient Outpatient 
OR Time 

(hours/week) 

OPHTH 23% 2% 98% 63.4 

ORTHO 22% 46% 54% 524.7 

GEN 17% 71% 29% 357.6 

URO 13% 55% 45% 328.2 

CARD 5% 73% 27% 178 

OTOL 5% 53% 47% 60.2 

NEURO 4% 76% 24% 158.2 

OMFD 3% 52% 48% 16.4 

VAS 3% 85% 15% 173.5 

OBGYN 2% 36% 64% 49.6 

PLAS 2% 60% 40% 53 

THOS 2% 99% 1% 48 
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4 Model Methods 

This section describes the methods used to develop the model. This includes the conceptual 

and simulation model. The conceptual model details how patients flow through the system and 

how the patients interact with the system resources described in Subsection 4.1.1. From this 

the simulation model is programmed and described in detail in Subsection 4.1.2. The 

parameters and inputs for the simulation follow from the descriptive analytics as described in 

Subsection 4.1.2.5. 

4.1 Model 

The model is a discrete event simulation programmed in Python using the SimPy package. 

SimPy operates with the entities moving through the system as the events which pause for 

triggered events such as seizing and releasing resources and delaying for a defined. The 

conceptual model is based on a process flow diagram that was developed in discussions with 

subject matter experts and based on results from data analysis.  

4.1.1 Conceptual Model  

The conceptual model was developed in consultation with surgeons as well as support staff 

NSH. A patient enters the surgical waitlist for elective surgical procedures after a surgical 

consult is completed. The scope of the conceptual model includes the elective patient process 

from when the time the surgeon has determined that the patient requires surgery until their 

length of surgery is complete. Emergency patients are also included from when the decision to 

have surgery is made until their length of stay is complete. The conceptual model includes 

emergency patients since they impact the operating room time and hospital beds available for 

elective surgical procedures.  

4.1.1.1 Current System  

The process flow for patients on the surgical waitlist is illustrated by the process flow diagram 

in Figure 4.1.  
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Figure 4.1: Conceptual Model Process Diagram and Legend 

Figure 4.1 has two starting points, Patient Generated and Emergency Patient. The elective 

surgery patients enter through the Patient Generated point at which point the patient is added 

to the current waitlist which already exists within the system. The waitlist is based on the 

priority of the patient and when the patient was added to the waitlist. Once a patient enters 

the patient waitlist the patient either remains on the waitlist until the patient receives surgery 

or the patient reneges from the system. The patient may renege from the system for a variety 

for reasons including the patient is no longer eligible for surgery, the patient passed away, or 

the patient decided they no longer want surgery. The patients that renege from the system are 

removed from the waitlist and leave the system. Patients renege from the system between 

when patients are added to the waitlist and prior to being scheduled for surgery.   

Emergency patients enter the system but are not added to the waitlist as they are completed as 

soon as possible. Emergency patients most often present through the emergency department 

but sometimes are already patients within the hospital. We treat both entry points as one in 

the model. 

All patients are categorized by patient status. Patient status is divided into two categories, 

inpatient and outpatient. Inpatient procedures require a hospital bed for recovery following the 

completion of their surgery. An outpatient, on the other hand, leaves the hospital after 

completing their surgery. Inpatients are removed from the waitlist when they seize the bed in 



48 
 

conjunction with an operating room to ensure there is a bed available for the patient to use for 

recovery following their surgery. The outpatients do not need to obtain a bed and instead move 

immediately to the operating room when it is available and are removed from the waitlist. 

Patients retain the operating room for operating room set up, surgical length, and cleaning 

time. Outpatients simply leave the model after surgery whereas inpatients remain in the 

hospital to recover from surgery, length of stay. In the true system patients are scheduled in 

advance and the implications of the relationship between patient status and bed availability is 

not formally considered by the scheduler. This model aims to evaluate the throughput potential 

of the system and not the scheduling of patients. The post anesthesia care unit (PACU) is not 

included as this is considered part of the operating room resources that are required to allow a 

surgery to occur.  

4.1.2 Simulation Overview  

The simulation was developed in Python using object-oriented programming. The model runs 

multiple functions simultaneously to create and communicate the appropriate information to 

each object type and each object instance. The main components of the model are the Patient 

Generator, Patient, and Patient Flow classes as well as the Operating Rooms and Hospital Bed 

resources. The Patient Generator inputs the patients on the current waitlist and generates new 

patients using the Patient class to assign attributes to the patients. The Patient Flow class 

contains the functions which describe the journey of the patient through the hospital including 

the Hospital Stay and Surgery functions. The resources, Hospital Beds and Operating Rooms, 

are initiated at the beginning of the simulation and are accessible to all classes and functions 

within the simulation. The data collection throughout the simulation is completed by the Audit 

function. The data collected includes the waitlist categorized by procedure code, surgery type, 

and priority level as well as operating room and bed utilization at each hospital. The following 

subsection details the various functions and classes programmed to reflect the conceptual 

model. There are 12 classes and 17 functions organized into three categories. The classes, 

functions, and their associated category are summarized in Table 4.1. 
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Table 4.1: Code Class and Function Overview 

Category  Class Function Description 

Patient 
Process 

Patient Generator  New Admission Add patients from current waitlist 
Generate new patients at a specified 
interarrival rate 

Patient Class 
 

Assign patient attributes  

Patient Flow  Surgery Seize, delay, release operating room 

Hospital Stay Seize, delay, release hospital bed 

Resources Hospital Resource Check if Bed Available Start  Check queue until a patient is able to 
seize available resource Surgery at Start of Day 

Can Patient Seize Bed Check if patient attributes match 
system criteria 

Place Patient in Bed Put patient in resource user list 

Operating Room 
Resource 

Operating Room Time 
Available 

Change the operating room time 
available based on the day of the 
week 

Set Capacity of Operating 
Rooms  

Check queue until a patient is able to 
seize available resource 

Check If Operating Room 
Available 

Can Patient Start Operation Check if patient attributes match 
system criteria 

Put Patient in Operating 
Room 

Put patient in resource user list 

Miscellaneous Audit Perform Audit Record model stats every simulated 
hour 

Arrival Rate Set Interarrival Rate Change interarrival rate every month 

Emergency Hours Set Emergency Schedule Change emergency hour variable 
during business hours 

Surgery Initiation Initiate Surgery at 8:00AM Start surgeries at 8:00AM everyday 

Operating Room 
Capacity 

Set Operating Rom Capacity  Change operating room capacity 
when operating room closes/opens 

Hospital Set Operating Room Daily 
Hours Available  

Change hours available for surgical 
specialty at each hospital each day  
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4.1.2.1 Patient Process  

The entities within the simulation model are the patients. The basic code for the patient 

process was developed using the framework by Isken (2017) and Allen (2018) for modelling 

basic clinical pathways.  

4.1.2.1.1 Patient Generator Class 

The simulation begins at the Patient Generator Class. First the Patient Generator function 

imports all the patients currently on the waitlist into the simulation. The simulation remains at 

time zero until all patients from the waitlist are created. The Patient Generator Class initiates 

the New Admission function to generate new instances of the Patient Class at intervals 

determined by the interarrival time. The interarrival rate is exponentially distributed; patients 

arrive according to a Poisson process. Once the patients are created the Patient Generator 

sends the patients to the Patient Flow class specific to the surgery group of the patient. Figure 

4.2 overviews the simulation initialization code.  

 

Figure 4.2: Algorithm 1a - Patient Waitlist 

4.1.2.1.2 Patient Class  

The Patient Generator class calls on the Patient class to create a patient instance with specific 

attributes. The specific attributes of the patient include the patient identification number, 

operating room, surgical specialty, priority level, renege rate, procedure code, patient status, 

length of stay, and surgery length. The values for each of these attributes are imported into the 

system based on historic data and the analyses described in Section 3. The surgical specialty is 

the first attribute assigned as all other attributes are based on the surgical specialty. All 

attributes are assigned proportionally based on their frequency in the historical data.   
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4.1.2.1.3 Patient Flow Class 

The patients enter the Patient Flow class from the Patient Generator class. The Patient Flow 

class models when the patient enters the hospital and then proceeds to surgery. This is 

modelled using two functions, Surgery and Hospital Stay. The pseudo code for the inpatients 

and outpatients within the Patient Flow class are in Figure 4.3 and Figure 4.4, respectively.  

 

Figure 4.3: Algorithm 1b - Inpatient Flow 

 

Figure 4.4: Algorithm 1c - Outpatient Flow 

4.1.2.1.3.1 Surgery Function 

The Surgery function allows inpatients and outpatients to seize an operating room for the 

length of the patient’s surgery length attribute. Outpatients join the queue for the operating 

rooms that are available for their specified surgical specialty. Inpatients join the queue for the 
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operating rooms located in the same hospital as their seized bed and specified surgical specialty 

(seized in the Hospital Stay function). Once the patient has seized an operating room the 

patient leaves the operating room queue. At this point the outpatients are removed from the 

waiting list as they were not previously removed. The inpatients wait until the surgery has been 

completed, release the operating room, and return to the Hospital Stay function.  

4.1.2.1.3.2 Hospital Stay Function 

The Hospital Stay function within the Patient Flow class encompasses the patients journey 

through the system that does not include the surgery portion. The reneging patients enter the 

Hospital Stay function and immediately leave the system prior to surgery. Patients who are not 

reneging from the system are added to the waitlist.  

The inpatients join a queue, or multiple queues, for a hospital bed based on their surgical 

specialty. The inpatient seizes the bed from the first available resource and leaves the queues 

of all the other resources. The inpatient is then removed from the waitlist and sent to the 

Surgery function. Following the inpatient’s surgery, the inpatient returns to the Hospital 

function to complete the length of stay in the hospital bed that was previously seized. The 

inpatient releases the bed after their length of stay has passed in the simulation and they leave 

the Hospital Stay function. Outpatients enter the Hospital Stay function and are added to the 

waitlist. Outpatients then move directly to the Surgery function and return to the Hospital Stay 

function following the completion of the surgery and immediately leave the Hospital Stay 

function.  

4.1.2.2 Resources 

There are two types of resources used in the model, Hospital Bed Resource and Operating 

Room Resource. The two resources were modified from the priority resource class available in 

SimPy. 

4.1.2.2.1 Patient Request Class 

The Priority Request class in SimPy sorts patients in a queue based on the priority of the patient 

and the time at which the patient enters the queue.(Team SimPy, 2020) A new request class 

was created called Patient Request which inherits the properties of the Priority Request class 
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but allows an additional input to be used for sorting the Priority Request queue. The additional 

patient attribute used for sorting is the patient status. The queues are sorted in the following 

order: patient status, priority level, time the patient entered the queue. Inpatients are given 

priority as the inpatients have a hospital bed that should not be blocked for longer than the 

patient requires the bed. The Patient Request class is utilized by both the hospital resource and 

the operating room resource in the model. 

4.1.2.2.2 Hospital Resource Class 

The Hospital Resource class is initiated during the simulation set up for each hospital. The 

Hospital Resource class succeeds events from the queue ensuring patients can only seize 

resources for which they qualify. Figure 4.5 presents the pseudocode for the two functions 

Check If Bed Available and Start Surgery at Start of Day. The Check if Bed Available function is 

activated under two circumstances. The first is when a new Patient Request is added to the 

queue of the Hospital Bed resource. The second is when a Hospital Bed resource is released by 

a patient object. The Start Surgery at Start of Day function is called in the Surgery Initiation 

class. This function is called at the start of every weekday to allow the model to search for 

elective surgery patients to place in the Hospital Beds to allow surgeries to begin at the start of 

the day.  

 

Figure 4.5: Algorithm 2 - Hospital Resource Class 
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The Can Patient Seize Bed Function checks the Patient Request that was removed from the 

queue to determine if the Patient Request matches the system criteria. There are two 

components of the system state that are evaluated, the emergency hour and the operating 

hours remaining for the surgery type at the hospital of the Hospital Bed resource.

 

Figure 4.6 contains the pseudo code for the function Can Patient Seize Bed outlines the process 

through which the patients’ attributes are compared to the system criteria.  

 

Figure 4.6: Algorithm 3 - Can Patient Seize Bed 

The function, Place Patient in Bed, is used to finalize the seizing of the resource by the Patient 

Request. The function places the event into the users list of the Hospital Bed resource.  



55 
 

4.1.2.2.3 Operating Room Resource  

The Operating Room Resource is initiated for each operating room within the system. The 

resource changes capacity, does not allow operating room overtime, and excludes non-

emergency patients from receiving surgeries during the evenings and weekends.  

Figure 4.7 outlines the removal of Patient Requests from the Hospital Resource queue. Two 

functions use the code: Check if Operating Room Available and Set Capacity of Operating 

Rooms. These two functions are used to remove Patient Requests from the Operating Room 

resource queues until all operating room resources are utilized or there are no Patient Requests 

in the queue. The Set Capacity of Operating Rooms function is called when the operating room 

changes capacity. The Check if Operating Room Available function is called when a new Patient 

Request is added to the queue of the resource or the number of users of the Operating Room 

resource decreases when it is released by a patient object.   

 

Figure 4.7: Algorithm 4 - Operating Room Request 

The Can Patient Start Operation function compares the attributes of the Patient Request to the 

state of the system, Figure 4.8. There are two components of the system state that are 

evaluated, the emergency hour and the operating hours remaining for the operating room. 

During an emergency hour, evenings and weekends, the Patient Request must be an emergency 
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patient for the Patient Request to succeed. The Operating Room Time Available function is used 

to change time remaining time available for surgeries each day. 

 

Figure 4.8: Algorithm 5 - Can Patient Seize Operating Room 

The function, Place Patient in Bed, is used to seize the resource by the Patient Request. The 

Patient Request is added to the user list of the resource.  

4.1.2.3 Miscellaneous 

The remaining classes operate concurrently with the previously discussed functions and classes 

to provide data to the Patient Flow class and the Resource classes. The Audit class is used to 

record model stats throughout the simulation run. The Perform Audit function, initiated by the 

Audit class, records the data on an hourly basis. The Arrival Rate class changes the interarrival 

rate of the patients every month. The Patient Generator class uses the interarrival rate 

provided by the Arrival Rate class to create a random variate that follows an exponential 

distribution with a parameter equal to the mean arrival rate. The Emergency Hours class is used 

to change the emergency hour variable which signals to the system if the current simulation 

hour is considered an emergency hour or a non-emergency hour. The simulation allows 

patients of all types to obtain a surgery from 8:00AM to 5:00PM Monday to Friday. The 

evenings/early mornings as well as the weekends are designated as emergency hours where 

only emergency patients can seize hospitals beds and operating rooms. The Surgery Initiation 

Class is used to allow patients to begin seizing Hospital Bed resources at the start of each 

weekday, 8:00AM. The class is instantiated for each hospital bed resource. The Hospital 
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Operating Room Time Available class changes variable values associated with each operating 

room to be equal to the number of hours the operating room is open each day. The Operating 

Room Capacity class is used to change the capacity of the operating room resources. The class 

changes the availability of the operating rooms when the operating room changes from opened 

to closed by changing the capacity from zero, closed, to one, open. Each operating room has a 

different number of hours that it is open during the day with most not being open more than 

ten hours a day.   

4.1.2.4 Model Assumptions 

Assumptions were made during the development of the conceptual model to ensure the level 

of detail matched the desired analysis. The assumptions encompass the complexity of the 

movement of patients in the system as well as the variability present in the system. 

The priority level of the patients does not change over time in the model. The patients enter 

the system with a priority level designated to them by the surgeon at their initial consultation. 

The priority level does not change while the patient is on the waitlist. This is a simplification of 

the system as the priority level of the patient can change over time. However, there is not a 

uniform process for which priority levels change over time. Some of the factors that affect the 

priority level of the patients include the length of time the patient has been waiting as well as 

new or worsening symptoms. The model would need to include a variation of accumulating 

priority queues. (Stanford, Taylor, & Ziedins, 2014) This increased complexity was deemed not 

necessary for the desired analysis and output. The goal of the model is to evaluate the overall 

throughput of the system and to measure the impact on the waitlist. The addition of an 

accumulating priority queue was not necessary for studying the overall throughput of patients.  

The goal of the model did not include optimizing the elective surgery schedule instead this 

historical realized schedule is used. In the current system patients are scheduled approximately 

two to four weeks in advance. The model does not schedule surgeries in advance, the model 

evaluates the available time remaining in the operating room for that day and allocates 

surgeries that can be completed before the end of day. The model searches the entire queue to 

determine if any patient in the queue can fill in the unused operating room time to facilitate an 
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evaluation of the potential patient throughput in the system. This is perhaps more efficient 

than the actual system which works with a two to four week delay between scheduling and 

surgery. This delay could cause surgeries to be cancelled which would not occur in our model. 

Discussions with subject matter experts and observations of the system illustrated surgery 

cancellations are avoided at all costs. Our model also always assumes the patient is available for 

surgery. In practice this might not be true but the next available patients will simply be 

scheduled as a result.  

In the real world, operating rooms are scheduled leaving approximately an hour of unscheduled 

operating room time. This time is allocated as a buffer to allow for unexpected delays in the 

operating room or prior to entering the operating room. Hospital policy allows operations to 

proceed if the expected overtime does not exceed approximately 30 minutes. The base model 

does not incorporate the buffer or exceedance allowance but instead searches the queue to 

find highest priority patient that fits in the remaining operating room time.  As shown in the 

validation section, this simplification results in the same patient throughput as observed in the 

historical data.  

The resources modelled in the system are the operating rooms and the inpatient beds. This is a 

simplification of the real system as there are many other resources such as nurses, equipment, 

and surgeons that are also considered during the scheduling of a procedure. This assumption 

implies that there is sufficient staff and equipment available for all opened beds.  This is 

consistent with typical operations. 

The arrival rate of patients to the system was based on when patients are added into the 

electronic database. The addition of patients to the database is dependent on the 

administrative staff. The method used to input patients to the system varies and can be 

completed in batches or immediately when the consultation is completed. The model smooths 

the arrival of the patients over time to allow patients to enter the waitlist at regular intervals. 

The intervals change based on the month of the system but not based on the hour or day of the 

week. This removes the variability of patients being entered in bulk or the variability of patients 
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only arriving during business hours. This better reflects the actual time the patient began 

waiting instead of the time they were entered into the database. 

The surgical procedure times in the system encompass the entire time the operating room is 

occupied by the scheduled surgery. This includes the time from when the operating room is 

ready to when the operating room has finished being cleaned after a procedure. It is important 

to consider all aspects not just the times at which the surgeons or the patients are in the room 

as the operating room can not be used by another patient during the preparation and cleaning 

times.   

4.1.2.5 Model Parameters 

The parameters of model reflect the real world by generating random variate from distributions 

fit to historical data as discussed in Chapter 3, Descriptive Analytics. The simulation was run for 

a year and six months, 15,171 hours, and ten replications. The number of replications was 

determined based on Equation 6. A simulation run of ten replications was used to determine 

the standard deviation, s, of the waitlist length at the end of the simulation run time. The 

accepted half width, E, was 175 patients, and the confidence level, α, was 0.05.  Ten 

replications resulted in the desired level of confidence in the model output. The audited data 

was averaged for each hour of the ten replications to ensure the stochastic nature of the model 

was captured in the model output. The warm up period was based on the length at which it 

takes the simulation to utilize the all hospital bed resources. An analysis of the model output 

determined this time was 7 weeks. The run time of the simulation was a year and a half.  

𝑛 ≥ (
𝑡𝑛−1,𝛼 2⁄ 𝑆

𝐸
)

2

(6)  
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5 Model Validation and Verification  

The model development incorporated numerous validation and verification methods outlined 

by Law (2013) in Simulation Modelling and Analysis. This included slow build, trace, simplified 

characteristics, and data tracking. The verification and validation techniques listed were used 

simultaneously throughout the model development to facilitate a thorough and detailed 

analysis of the model at each stage of the development.  

5.1.1 Slow Build  

Law (2013) described developing a simulation model using a slow building technique which is 

defined as “…write and debug the computer program in modules or subprograms.”(Law, 2013) 

The simulation model was developed slowly to allow for the detail to be gradually added while 

ensuring issues were identified immediately. For example, the hospital stay component was 

initially added to the model with only one bed resource and one operating room to simplify the 

development of the hospital stay components. Detail was added to the hospital stay function 

by incorporating more resources and designating which resources were available to which 

surgery specialties after the simplified program was verified. This slow build approach helped 

debug a logic error that appeared when additional bed and operating room resources were 

added.  

5.1.2 Trace 

The trace technique as described by Law as “…the state of the simulated system… are displayed 

just after each event occurs and are compared with hand calculations to see if the program is 

operating as intended.” (2013) The trace method facilitated the identification of many bugs 

within the code. For example, the model outputted a variety of time stamps from which it was 

identified that some patients were leaving the hospital prior to the end of the length of stay. 

This was caused by the length of stay delay happening in parallel with the surgery delay instead 

of subsequent to the surgery delay. The trace facilitated the correction of the bug allowing the 

patients to wait until the surgery was completed before moving through the remaining portion 

of the system. This process was carried through as the code became more complex to ensure 
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the correct patients were accessing the correct hospitals and operating rooms and releasing the 

resources at the appropriate times.  

5.1.3 Simplified Characteristics 

The third method that was utilized throughout the development of the model that was used in 

conjunction with the two methods described in Subsections 5.1.1 and 5.1.2 was running the 

model with simplified characteristics. “The model should run, when possible, under simplifying 

assumptions for which its true characteristics are known or can easily be computed.” (Law, 

2013) Simplifying the characteristics facilitates better use of the other verification and 

validation methods as it allows for hand calculations to be computed easily. The simplified 

characteristics was mainly used in controlling the attributes of the patients and the number of 

resources available. Controlling the attributes of the patients included giving all patients the 

same length of stay, only allowing outpatients or inpatients, removing all surgical specialties 

except one or two surgical specialties, as well as giving all patients the same priority level. 

Simplifying these attributes of the patients controlled what aspects of the model were used by 

the patients and facilitated targeted analysis of the model functions.  

5.2 Model Data   

To further verify and validate the model. The utilization of the resources, operating rooms and 

beds within the simulation model was computed.  

5.2.1 Data Input Values 

The distribution data used in the model was analyzed using a Kolmogorov-Smirnov (K-S) test to 

determine if the empirical distribution data produced from the model was statistically different 

than the historical sample data. The K-S test was selected as it compares the data produced 

from the model with real life data to determine if the data came from the same distribution. 

The K-S test was performed on all surgery length and length of stay distributions that were 

developed. The null hypothesis could not be rejected for 65% of the length of stay distributions 

developed at a 5% significance level. The null hypothesis, the model output data matched the 

data from NSH, could not be rejected for 37% of the surgery length distributions developed at a 
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5% significance level. Table 5.1 displays the percent of the K-S tests for the procedure code for 

each surgical specialty which produced a p-value which could not reject the null hypothesis.  

Table 5.1: Surgery Length and Length of Stay Distribution Comparison 

 Surgery Length Length of Stay 

Surgical Specialty Count P-Value Count P-Value 

CARD 11 55% 8 63% 

GEN 76 62% 51 37% 

NEURO 33 76% 22 59% 

OBGYN 14 71% 6 17% 

OMFD 7 57% 4 25% 

OPHTH 14 86% 7 14% 

ORTHO 51 63% 29 28% 

OTOL 24 42% 16 13% 

PLAS 17 88% 8 38% 

THOS 14 79% 10 50% 

URO 42 67% 23 35% 

VAS 12 50% 9 56% 

Total 315 65% 193 37% 

 

Table 5.2 illustrates the distribution of cases for each specialty in the model data and the real 

data that was provided by NSH. A chi-square test can be used for discrete distributions to 

determine if the observed number of observations is different from the expected number of 

observations. A chi-square test produced a p-value of 0.904 which fails to reject the null 

hypothesis that the two distributions are equal. Thus, the proportion of surgical specialties 

produced by the model is not statistically different from the inputted discrete distribution.  

Table 5.2: New Case Specialty Verification 

Specialty  Model Data Count Real Data Proportion 

CARD 3,733 4.8% 

GEN 13,190 17.0% 

NEURO 2,911 3.7% 

OBGYN 1,818 2.4% 

OMFD 2,173 2.9% 

OPHTH 17,600 22.7% 

ORTHO 17,341 22.2% 

OTOL 186 4.6% 
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Specialty  Model Data Count Real Data Proportion 

PLAS 3,607 2.1% 

THOS 1,592 1.9% 

URO 1,424 12.9% 

VAS 9,910 2.8% 

 

The number of patients which acquired each priority level for each surgical specialty was 

compared to the proportion of cases with each priority level from the data using a chi-squared 

test. All surgical specialties failed to reject the null hypothesis except for thoracic surgery which 

had a p-value of 0.033, as shown in Table 5.3.  

Table 5.3: Priority Level Discrete Distribution Verification Per Surgical Specialty 

Specialty Data Type 

Priority 

P-Value 1 2 3 4 5 6 7 

CARD 
Data Proportion 33% 17% 21% 12% 18% 0% 0% 

0.500 
Model Data 1,211 664 745 422 690 1 0 

GEN 
Data Proportion 41% 0% 4% 8% 15% 16% 15% 

0.376 
Model Data 5,362 34 483 1,129 2,039 2,149 1,994 

NEURO 
Data Proportion 37% 1% 5% 8% 20% 16% 13% 

0.544 
Model Data 1,051 39 153 227 594 441 406 

OBGYN 
Data Proportion 7% 0% 20% 38% 24% 11% 0% 

0.710 
Model Data 125 6 384 664 435 204 0 

OPHTH 
Data Proportion 5% 3% 4% 6% 52% 19% 11% 

0.844 
Model Data 914 484 758 1,056 9,085 3,328 1,975 

OMFD 
Data Proportion 9% 0% 1% 1% 12% 8% 70% 

0.926 
Model Data 206 7 12 19 255 167 1507 

ORTHO 
Data Proportion 27% 0% 2% 5% 25% 31% 8% 

0.135 
Model Data 4,694 106 400 924 4,419 5,372 1,426 

OTOL 
Data Proportion 100% 0% 0% 0% 0% 0% 0% 

N/A 
Model Data 3,607 0 0 0 0 0 0 

PLAS 
Data Proportion 31% 1% 5% 17% 19% 13% 13% 

0.930 
Model Data 483 18 89 270 305 227 200 

THOS 
Data Proportion 27% 3% 22% 36% 8% 3% 1% 

0.714 
Model Data 381 37 320 516 103 45 22 

URO 
Data Proportion 33% 2% 13% 14% 22% 12% 5% 

0.827 
Model Data 3,253 222 1,261 1,314 2,190 1,128 542 

VAS 
Data Proportion 46% 5% 14% 12% 19% 1% 3% 

0.033 
Model Data 959 122 312 286 379 8 78 
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The proportion of cases in the data set which reneged from the system was compared to the 

number of patients that reneged from the model for each surgical specialty using a chi-squared 

test. Table 5.4 displays the p-values and all surgical specialties failed to reject the null 

hypothesis.  

Table 5.4: Renege Rate Model Data Verification 

  Renege Stay   

Specialty Model Data Data Proportion Model Data Data Proportion P-Value 

CARD 1,384 36% 2,349 65% 0.171 

GEN 1,276 10% 11,914 90% 0.212 

NEURO 116 4% 2,795 96% 0.967 

OBGYN 158 9% 1,660 91% 0.645 

OMFD 132 6% 2,041 94% 0.884 

OPHTH 1,447 8% 16,153 92% 0.279 

ORTHO 813 5% 16,528 95% 0.481 

OTOL 319 9% 3,288 91% 0.743 

PLAS 45 2% 1,547 98% 0.132 

THOS 94 7% 1,330 93% 0.555 

URO 737 7% 9,173 93% 0.674 

VAS 166 7% 1,978 93% 0.471 

 

The proportion of cases in the data set which were assigned to each procedure code in each 

surgical specialty was compared to model procedure code data for each surgical specialty using 

a chi-squared test. All but two, vascular and thoracic surgery, surgical specialties rejected the 

null hypothesis as displayed in Table 5.5. 

Table 5.5: Procedure Code Distribution Verification 

Specialty CARD GEN NEURO OBGYN OMFD OPHTH ORTHO OTOL PLAS THOS URO VAS 

P-Value 0.894 0.912 0.056 0.431 0.036 0.793 0.627 0.538 0.367 0.01 0.685 0.037 

 

The arrival rate of the new patients to the system was accurately represented in the model. The 

interarrival rate followed an exponential arrival rate for most months except for February. The 

arrival rate represented the arrival rate seen in the data. The data is summarized in Table 5.6. 
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Table 5.6: Arrival Rate Model Input vs. Model Output 

 Arrival Rate Exponential Distribution 

Month Input Output P-Value 

January 4.98 5.09 0.132 

February 4.73 4.76 0.016 

March 4.00 3.92 0.528 

April  4.40 4.50 0.659 

May 4.60 4.67 0.095 

June 4.36 4.37 0.524 

July 4.12 4.14 0.855 

August 3.95 3.99 0.116 

September 4.74 4.71 0.830 

October 4.59 4.61 0.589 

November 4.77 4.78 0.560 

December 3.84 3.98 0.595 

 

5.3 Sensitivity Analysis  

The sensitivity analysis aims to understand the impact of chosen model parameters on the 

model output. The sensitivity analysis is completed using a 2k factorial experiment design. The 

analysis of the effects of the experiments aims to identify the impact of the interactions of the 

model parameters and the impact of the individual parameters on the chosen metric. The 

chosen metric is the length of the waitlist at the end of simulation. There were four factors that 

were changed resulting in 16 experiments. The parameters chosen for the experiment designs 

were arrival rate, patient status distribution, length of stay, and bed capacity. Each of the 

parameters were assigned a high and a low parameter. The arrival rate was reduced by two per 

hour for the low parameter and increased by two per hour for the high parameter from the 

original arrival rates. The low parameter experiment for the patient status changed all 

procedures that could be both outpatient and inpatient procedures to only inpatient 

procedures, resulting in a low number of outpatient procedures. The high parameter 

experiment for the patient status did the reverse of the low experiment, all procedures that 

could be both outpatient and inpatient procedures were only outpatient procedures. The 

length of stay of the patients were decreased to 25% of the original length of stay for the low 

experiment and doubled for the high experiment. The number of beds available was reduced to 
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50% for the low value and doubled for the high value. Table 5.7 outlines the experiment model 

runs, high and low are represented by “+” and “-“, respectively.  

Table 5.7: 2k Factorial Experiment Design 

Experiment Arrival Rate Patient Status Length of Stay Bed Capacity 

1 + - - - 

2 + + - - 

3 + + + - 

4 + - + - 

5 - - - - 

6 - + - - 

7 - - + - 

8 - + + - 

9 + - - + 

10 + + - + 

11 + + + + 

12 + - + + 

13 - - - + 

14 - + - + 

15 - - + + 

16 - + + + 

 

The sensitivity analysis was performed using Minitab. The R2 value of the model is 99.83% 

which indicates the model fits the data well. The analysis of variance produced is displayed in 

Table 5.8. The analysis indicates the arrival rate, patient status, and bed capacity have effects 

that are statistically significant. However, the length of stay does not have a statistically 

significant impact. The two way interactions demonstrate that the arrival rate and the patient 

status as well as the patient status and bed capacity should not be considered without 

considering the interaction effect. The Pareto chart in Figure 5.1 indicates patient status has the 

largest effect on the patient waitlist whereas bed capacity has the smallest effect whilst still 

having an effect.  
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Table 5.8: Sensitivity Analysis Factorial Design 

Source DF Adj SS Adj MS F-Value P-Value 

Model 10 14895112202 1489511220 289.99 0.000 

  Linear 4 13984233559 3496058390 680.63 0.000 

    Arrival Rate 1 5914582825 5914582825 1151.48 0.000 

    Patient Status 1 8007847105 8007847105 1559.01 0.000 

    Length of Stay 1 9951028 9951028 1.94 0.223 

    Bed Capacity 1 51852601 51852601 10.09 0.025 

  2-Way Interactions 6 910878643 151813107 29.56 0.001 

    Arrival Rate*Patient Status 1 824156441 824156441 160.45 0.000 

    Arrival Rate*Length of Stay 1 1565564 1565564 0.30 0.605 

    Arrival Rate*Bed Capacity 1 18549172 18549172 3.61 0.116 

    Patient Status*Length of Stay 1 10943691 10943691 2.13 0.204 

    Patient Status*Bed Capacity 1 55420208 55420208 10.79 0.022 

    Length of Stay*Bed Capacity 1 243567 243567 0.05 0.836 

Error 5 25682549 5136510     

Total 15 14920794751       

 

 

Figure 5.1: Pareto Chart of the Standardize Effects of the Factorial Design 
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5.4 Summary 

The verification and validation performed on the model began in the development of the 

model. The techniques that are were used, slow build, trace, and simplified characteristics, 

allowed the development of the model to be robust. The model facilitated the analysis of the 

model output as compared to the desired results. The new case distribution for surgical 

specialty and renege rate matched the expected output. The procedure code matched the 

expected output for all surgical specialties except thoracic and vascular surgery. Priority level 

distributions matched the expected output for all but thoracic surgery. The length of stay 

distributions that were developed only matched 65% of the procedure codes. This is acceptable 

because the sensitivity analysis indicated the length of stay does not have an impact on the 

model results. The sensitivity analysis also indicated the arrival rate and patient status have a 

large impact on the model. The arrival rate of the patients matched the system input and was 

sensitive to the specific month. The patient status was identified for each procedure code, not 

for the overall surgical specialty, which achieved the highest level of sensitivity possible with 

the data provided. Thus, the method of development facilitated a robust and sensitive model 

which simulated the environment as expected.  
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6 Experiments  

The experiments performed using the discrete event simulation model were categorized into 

three categories. Each of the experiments were developed using the model described in Section 

4 as the base model. The base model was used to develop the experiments by applying the 

changes described below.  

The first category is COVID-19 Recovery scenarios where the system is operating at 100% of the 

pre-COVID-19 capacity. This represents the hospital system in between large waves of COVID-

19 as well as after the pandemic has concluded. The waitlist that accumulated during the 

shutdowns caused by waves of COVID-19 are the focus of the COVID-19 recovery experiments. 

The resource allocation levels and forced changes in demand are the general categories of 

scenarios that were explored.  

The second category involves modelling waves of COVID-19, titled COVID-19 Effects. The first 

wave affected the hospital systems drastically as the implications and effects of COVID-19 were 

not known. Thus, understanding the implications of subsequent waves on the healthcare 

system can facilitate the appropriate preparation necessary.  

The final category is a section which combines previously discussed experiments to understand 

the impacts. The most effective COVID-19 Recovery efforts are combined to determine at which 

point a steady state or a continuously decreasing waitlist exists. Further, the COVID-19 

Recovery scenarios are combined with the COVID-19 Effects to determine the effects of varying 

resource allocation levels in different post COVID-19 environments. 

A summary of the designed experiments is provided in Table 6.1.  
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Table 6.1: Experiment Summary 

Category Experiment Description 

COVID-19 Recovery Two Hours of Overtime Each operating room is available an 
extra two hours each day of the week 

Scheduled Surgeries on Weekends Scheduling surgeries on weekends 
during the day time 

Hospital Bed Capacity Increasing the hospital bed capacity by 
10% and 25% 

Increased Number of Outpatients Increase the percentage of operations 
that already allow outpatients by 10% 

Decreased Length of Stay Decrease the length of stay of all 
patients by 25%  

COVID-19 Effects Increased Cleaning Time Double the cleaning time for all 
procedures and add one hour of cleaning 
time for vascular, cardiology, and 
thoracic surgery. 

Increased Demand Increasing the demand that was not 
seen in the system during the first wave 
in the following months 

Increased Cleaning Time & Demand Combine Increased Cleaning Time and 
Increased Demand scenarios.  

Combination COVID-19 Recovery Combine the most effective COVID-19 
Recovery scenarios  

COVID-19 Effects and Recovery Combine Increased Cleaning Time and 
Demand experiment with the COVID-19 
Recovery scenarios 

 

6.1 COVID-19 Recovery 

The end of the first wave of the pandemic in Nova Scotia in August of 2020, allowed elective 

surgical procedures to operate at 97% capacity (Grant, 2020). The following experiments were 

designed to understand how altering the resource and demand impacts the waitlist as 

compared to the base system. 

6.1.1 Resource  

The resource experiments pertain to altering the operating room hours and the number of beds 

available at the hospitals. Three experiments were performed: adding operating room 

overtime, weekend elective procedures, and increasing the bed capacity. 
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6.1.1.1 Two Hours of Overtime 

The experiment allowed the operating rooms to operate with two hours of overtime each day. 

Operating room overtime is not allowed within the base model. Ontario Health (2020) and 

British Columbia Ministry of Health (2020) listed extending operating room hours as one of the 

strategies to address the surgical backlog. In the base model, when a patient object requests an 

operating room resource the model checks to ensure there is enough time remaining in the day 

for the patient to complete their surgery. If there is no patient on the waitlist that can complete 

the surgery within the remaining time available, the operating room goes unused. To allow the 

operating rooms to be used more, this experiment permits operations to proceed if the 

operations can finish within two hours after the operating room closes for the day. In this 

scenario the model checks to see if the surgery length of the patient is less than the time 

remaining plus two hours. When a patient object matches this criteria the patient seizes the 

operating room.  

6.1.1.2 Scheduled Surgeries on Weekends 

The experiment allowed the operating rooms to operate on the weekends. The idea of working 

weekends was suggested by British Columbia Ministry of Health (2020) as this is currently a 

standard strategy for waitlist management. The experiment alters the base model as the base 

model allows only unscheduled surgeries to occur in designated emergency operating rooms on 

the weekends. The operating rooms designated for emergency use are available all hours on 

the weekend with scheduled surgeries allowed between 8AM and 5PM. The experiment also 

opens all operating rooms on Saturday and Sunday according to their Friday schedule.   

6.1.1.3 Hospital Bed Resource Levels 

The experiment focused on the bed resources at the hospitals. It is often discussed that bed 

capacity is the most limiting factor on admitting patients to hospitals (Office of the Auditor 

General, 2016) as well as the number of surgeries that can be performed. Further, increasing 

the hospital capacity is often considered a post COVID-19 surgery resource allocation strategy. 

It is identified by BC Health that hospitals needed to create 15% more capacity to allow the 

hospitals to perform more surgeries (British Columbia Ministry of Health, 2020). At each site, 

the experiment increased the beds available to the surgery department by 10% and 25%. The 
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range was chosen because an increase more than a 10% is likely not feasible given physical 

restrictions of hospitals. That said, an increase of 25% will help more thoroughly explain the 

impact of the bed constraints.   

6.1.2 Demand  

There were two demand related experiments performed on the model. Altering the demand to 

the system is difficult to implement in practice as the demand is stimulated by the population 

and not the system. The surgical demand and the number of surgeries required can not be 

altered but how that demand is fulfilled can be. For example, the overall demand can be 

impacted by completing some inpatient procedures as outpatient procedures and by reducing 

the length of stay of the inpatient procedures.  

6.1.2.1 Increased Number of Outpatients 

The experiment increased the proportion of patients completed as outpatients. The procedure 

codes that had both inpatients and outpatients were altered to decrease the number of 

inpatients by 10% and increase the number of outpatients by 10%. The alteration of procedure 

codes which currently are only inpatient procedures would require the input from subject 

matter experts to determine the feasibility of the change and were therefore not altered.  

6.1.2.2 Decreased Length of Stay 

The experiment was decreasing the length of stay of patients in the system. It is difficult to 

reduce the length of stay of patients within the hospital system. However, allocating the 

patients to other areas of the hospitals to allow other surgical patients to recover in the surgical 

beds is a possibility. This is a possibility as outlined by the British Columbia Ministry of Health 

required hospitals to create an added 15% bed capacity (British Columbia Ministry of Health, 

2020). Further, it was important to understand interaction between the length of stay of the 

patients and the overall bed usage to understand the impact length of stay has on the overall 

throughput of inpatients. The overall length of stay of the patients was reduced by 25% to be 

75% of the original length of stay.  
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6.2 COVID-19 Effects 

Elective surgical procedures were cancelled due to the implications of COVID-19 on the hospital 

system as well as the risk to the patients during the first wave of COVID-19 in Nova Scotia 

(Cooke, 2020). The experiments performed on the resource allocation levels incorporated 

increased surgical cleaning and preparation time due to COVID-19 safety procedures. The 

demand was also altered to understand the impact to the system of an increase in surgical 

demand due to the healthcare systems initial lock down as well as the result of very little 

demand during a second wave.  

6.2.1 Increased Cleaning Time  

An additional experiment that was evaluated was increasing the operating room sanitation time 

due to COVID-19 protocols. Guidelines surrounding the cleaning procedures for operating 

rooms during COVID-19 have resulted in increased cleaning time following a surgical procedure. 

The impact of the cleaning on the overall patient throughput of the system was important to 

identify. The cleaning time for all surgical procedures was doubled to account for the new 

protocols. Secondly, the cleaning time for surgeries for thoracic, cardiology, and otolaryngology 

was increased by one hour as these surgeries have been identified as requiring increased 

COVID-19 procedures due to the surgical characteristics.  

6.2.2 Increased Demand  

The experiment incorporates the demand that was lost during the initial wave of the pandemic 

the arrival rate decreased in the months following the end of the first wave. This was due to 

patients not consulting with surgeons which resulted in patients not being added to the waitlist 

during the first wave. However, the need for surgery did not actually get “lost” during the 

pandemic and these patients who did not receive consults during this time should eventually 

enter the system. This was articulated  by Dr. Gregory Hirsch, senior medical director of surgical 

services at NSH, "We're anticipating … a flood of patients coming through, but they haven't 

quite arrived yet."(Grant, 2020) In the experiment, the unseen demand was added to the 

normal demand seen, during June 2020-December 2020. The arrival rate of the patients 

increased during those six months to account for the lost demand of the system.  
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6.3 Combination of Experiments 

A combination of the experiments presented in the previous subsections of this section, 6.1 and 

6.2, are described.  

6.3.1 Effective COVID-19 Recovery Experiments 

The results of the COVID-19 Recovery experiments provide insight into a combination of 

recovery scenarios that would most effect the COVID-19 waitlist. The most effective COVID-19 

Recovery scenarios are combined with the goal of obtaining a steady state or continuously 

decreasing patient waitlist.  

6.3.2 COVID-19 Effects with COVID-19 Recovery Methods 

The COVID-19 Recovery experiments were applied to the COVID-19 Wave experiments to 

understand the interactions between the recovery approaches and the potential further effects 

of COVID-19. Further, the COVID-19 Wave experiments were combined to model the effects of 

COVID-19 that were already present in the system. The COVID-19 Wave experiments that were 

combined were the increased demand and the increased cleaning time. The increased cleaning 

time is currently being seen in the system and the increased demand is expected to enter the 

system. This experiment was added to the list of COVID-19 Wave experiments that were 

analyzed using the COVID-19 Recovery methods. 
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7 Results  

The results from this study appear in this chapter. Section 7.1, overviews the existing data and 

the simulation model output for the base model. The base model is the scenario where no 

interventions are used and the system parameters match those prior to the arrival of COVID-19 

in Nova Scotia. Section 7.2 presents results for each of the experiment discussed in Chapter 6.  

7.1 Base Model  

The base model of the system provided results on the waitlist length. The following figures 

illustrate the waitlist length for different patient attributes over a year and a half period. The 

waitlist length for each surgical specialty over time, as well as the total patient waitlist, is 

displayed in Figure 7.1. The July 1st data (displayed on the origin Figure 7.1) is the actual waitlist 

computer from the historical data. The remaining data presented in Figure 7.1 is produced by 

the discrete event simulation model.  

 

Figure 7.1: Base Model Patient Waiting Timeseries 
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As seen in Figure 7.1, the total patients waiting waitlist was comprised mainly of orthopedic, 

general, and urology surgery. The orthopedic surgery displays identical shape characteristics to 

the total patients waiting waitlist. Further, from Figure 7.1, we see that for the first eight 

months following July 1 the overall waitlist length, and most specialties, see a decline in their 

waitlist length. The following months display a steady increase in the waitlist length. To explore 

the feature, the waitlist length segregated by inpatient and outpatient is plotted as displayed in 

Figure 7.2.  

The waitlist length of the patient status, inpatient and outpatient, is displayed in Figure 7.2 

along with the total number of patients waiting.    

 

Figure 7.2: Inpatients vs. Outpatients Patients Waiting Timeseries 
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specialties are presented in Appendix B. The utilization of the operating rooms significantly 

decrease when the number of outpatients reaches a steady state.  

 

Figure 7.3: General Surgery Patients Waiting Timeseries & Operating Room Utilization 

7.2 Experiments 

The results of the experiments discussed in Chapter 6 are presented below. The model initiates 

at the state of the actual state of the system on July 1, 2020. The data presented following that 
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experiments performed favorably to the base model. Allowing two hours of overtime in the 

system has the greatest overall impact on the waiting list whereas decreasing the length of stay 

to 75% produced the smallest impact.  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

0.2

0.4

0.6

0.8

1

1.2

1
-J

u
l-

2
0

1
-A

u
g-

2
0

1
-S

e
p

-2
0

1
-O

ct
-2

0

1
-N

o
v-

2
0

1
-D

ec
-2

0

1
-J

an
-2

1

1
-F

e
b

-2
1

1
-M

ar
-2

1

1
-A

p
r-

2
1

1
-M

ay
-2

1

1
-J

u
n

-2
1

1
-J

u
l-

2
1

1
-A

u
g-

2
1

1
-S

e
p

-2
1

1
-O

ct
-2

1

1
-N

o
v-

2
1

1
-D

ec
-2

1

1
-J

an
-2

2

1
-F

e
b

-2
2

1
-M

ar
-2

2

1
-A

p
r-

2
2

1
-M

ay
-2

2

1
-J

u
n

-2
2

P
atien

ts W
aitin

g

O
p

er
at

in
g 

R
o

o
m

 U
ti

liz
at

io
n

Month

General Surgery
Patients Waiting Timeseries & Operating Room Utilization 

DOR-RM1 DOR-RM2 VG11-03 VG11-06

VG11-07 Patients Waiting Inpatient Outpatient



78 
 

 

Figure 7.4: COVID-19 Recovery Scenarios Patient Waiting Timeseries 

The number of patients waiting at the end of the model run time for each experiment is 

displayed in Table 7.1 as well as the percent decrease from the base model. Two hours of 

overtime decreased the patient waitlist by 33%, the largest decrease, and the 75% length of 

stay scenario decreased the patient waitlist by 2%.  

Table 7.1: COVID-19 Recovery Scenarios Results 

Experiment 
Final Waitlist Length on 

December 30, 2021 
Percent Decrease of Base 

Model on December 30, 2021 

125% Bed Capacity  12,255.5 13% 

110% Bed Capacity 13,398.7 4% 

2 Hours of Overtime 9,345.9 33% 

75% Length of Stay 13,724.1 2% 

Scheduled Weekend Surgeries 10,798.8 23% 

110% Increase of Outpatients 11,701.7 17% 

Base Model 14,025.5  
 

The slope of November 2021 – December 2021 for each scenario is presented in Table 7.2. The 

slopes for each scenario represent improvements relative to the base model. The ranked order 
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of the scenarios is identical to the ranked order of the scenarios when analyzing the percent 

improvement over the base model. This implies that running the model for a longer period 

would likely not change the rank order of these scenarios. The slope of two hours of overtime is 

the lowest slope and the 110% bed capacity scenario has the steepest slope. Scheduling 

weekend surgeries and increasing outpatients by 10% have very similar slopes and follow the 

two hours of overtime in the ranking. 

Table 7.2: Slope For Each Scenario November 2021-December 2021 

Scenario 
Slope 

(Patients Waiting/Week) 

2 Hours of Overtime 16.4 

10% Increase of Outpatients 18.3 

Scheduled Weekend Surgeries 18.9 

125% Bed Capacity 21.0 

75% Length of Stay 21.6 

110% Bed Capacity 21.7 

Base Model 21.7 

 

The impacts of the scenarios on the individual surgical specialties were not identical. Two 

examples of the discrepancy in the results are evident in cardiac and general surgery as 

illustrated in Figure 7.5 and Figure 7.6, respectively. The scenarios have varied impacts on the 

cardiac waitlist. The scenarios which had similar impacts on the cardiac patient waitlist as the 

overall patient waitlist were the decreased length of stay, scheduled weekend surgeries, 10% 

increase of outpatients, and two hours of surgical overtime. However, the increase in the bed 

capacity curve had different characteristics in the cardiac waitlist than the overall patient 

waitlist. Overall, like the total patient waitlist, allowing two hours of overtime had the largest 

impact on the overall cardiac surgical waitlist. This is because cardiac is comprised of longer 

surgical procedures. Thus, the addition of the two hours of surgery time allows longer surgeries 

to be scheduled during the day. The impacts of the scenarios on general surgery differ from 

that of cardiac surgery. At the end of the simulation run time the scenarios fall in same order as 

the overall patient waitlist. However, the differences in the scenarios are not as extreme as the 

difference seen in cardiac, as evident in Table 7.3.  
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Figure 7.5: Cardiac Patient Waiting Timeseries Impacts of the Scenarios 

 

Figure 7.6: General Surgery Patient Waiting Timeseries Impact of Scenarios 
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Table 7.3: Scenario Percent Difference from Base Model for Cardiology and General Surgery on January 1, 2022 

Scenario Cardiac General 

2 Hours of Overtime 86% 25% 

Scheduled Weekend Surgeries 69% 24% 

10% Increase of Outpatient 43% 15% 

125% Bed Capacity 45% 11% 

75% Length of Stay 12% 3% 

 

7.2.2 COVID-19 Effects 

The results of the COVID-19 Effects scenarios are illustrated in Figure 7.7. The base model is 

included as a comparison with the scenarios. The biggest impact is the combination of both the 

increased cleaning time and demand. The increased cleaning time has an overall effect on the 

patient waitlist from the beginning and follows the same trend as the base model. 

 

Figure 7.7: Scenarios on the Effects of COVID-19 

The number of patients waiting at the end of the model run time for each experiment is 

displayed in Table 7.2 as well as the percent increase from the base model. Cleaning time 
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increased demand, and, when the two scenarios were combined, there was a 32% increase in 

the number of patients on the waitlist.  

Table 7.4: COVID-19 Effects Results Comparison 

Experiment 

Final Waitlist Length on 
December 30, 2021 

Percent Increase of Base 
Model on December 31, 2021 

Cleaning Time 16,073.2 13% 

Missed Demand 17,167.8 18% 

Missed Demand & Cleaning Time 20,710.9 32% 

Base Model 14,025.5  
 

7.3 Combination of Experiments 

There were two experiments that were designed which incorporated two or more previous 

scenarios. The two experiments were combining the most effective COVID-19 recovery 

methods and combining the COVID-19 recovery methods with the effects of COVID-19.  

7.3.1 Effective COVID-19 Recovery Methods 

The two most effective COVID-19 Recovery Methods were 10% increase of outpatients and two 

hours of operating room overtime. The two methods were combined to determine the impacts 

of the scenarios on the overall patient waitlist. Figure 7.8 illustrates combining the two 

scenarios decreases the overall number of patients waiting initially but results in the waitlist 

beginning to climb at the end of the simulation run. 
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Figure 7.8: Combined COVID-19 Recovery Methods Patient Waiting Timeseries Results 

The number of inpatients continues to increase over time in Figure 7.8. Thus, to eliminate the 

increase of the inpatients over time the 10% increase of outpatients was changed to 50%. The 

percentage of outpatients and inpatients was increased and decreased by 50%, respectively, for 

the surgical procedure codes that had both inpatient and outpatients. The second recovery 

scenario, two hours of operating room over time, was not altered in this experiment. The 

results are presented in Figure 7.9. The number of inpatients remains at a steady rate with a 

slight overall decrease that levels off at the end of the simulation run. The number of 

outpatients on the waitlist continues to decrease over time until the number of inpatients and 

outpatients meet to continue at a steady rate at the end of the simulation run. The total 

number of patients on the waitlist continues to decrease over time until the waitlist begins to 

level out in the final months of the simulation run time.  

0

2000

4000

6000

8000

10000

12000

14000

16000
P

at
ie

n
ts

 W
ai

ti
n

g

Month

Patients Waiting Timeseries

Base Model Patients Waiting Inpatient Outpatient



84 
 

 

Figure 7.9: Combined COVID-19 Recovery Efforts Patient Waiting Timeseries Results Increased Outpatient 

7.3.2 COVID-19 Effects with COVID-19 Recovery Methods 

The impacts of the recovery scenarios in the presence of COVID-19 effects are displayed in 

Table 7.5. Overall, the impact of the recovery methods when COVID-19 effects are added to the 

model was not as impactful as the effects on the base model.  

Table 7.5: Scenario Result Comparison for Demand & Cleaning Time 

Scenario 
Final Patient 
Waitlist Length  

Base Percent 
Decrease 

Slope 

75% Length of Stay 20,097 1% 14.3 

2 Hours of Overtime 17,406 14% 9.3 

110% Bed Capacity  19,847 2% 14.0 

125% Bed Capacity  19,440 4% 13.8 

10% Increase of Outpatients 18,715 7% 11.7 

Scheduled Weekend Surgeries 15,993 21% 19.7 

Demand & Cleaning Time 20,201   

 

The weekend scheduled surgeries scenario had overall the largest impact during the simulation 

run time, as displayed in Figure 7.10. However, the slope of the number of patients on the 

waitlist at the end of the simulation indicates the two hours of over-time is growing at the 
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slowest pace. The scenario that has the second least steep slope is the 10% increase of 

outpatients. 

 

Figure 7.10: COVID-19 Recovery Scenarios Applied to Demand and Cleaning COVID Scenarios 
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8 Discussion 

The base model results indicate the waitlist has an initial decrease and then increases 

significantly to return (and exceed) the initial waitlist length. The surgical specialties which 

comprise the majority of the waitlist at the end of the simulation run are general surgery, 

orthopedic surgery, and urology. This is different from the initial waitlist which is comprised 

mostly of general surgery, orthopedic surgery, and ophthalmology. The remaining surgical 

specialties combined comprise 40% of the total waitlist.  

The initial decline followed by an increase for the total patient waitlist is due to the proportion 

of inpatients and outpatients on the waitlist. The inpatient waitlist continues to grow for the 

entirety of the simulation model run while outpatients decline throughout. Inpatients are 

routinely blocked from achieving a surgical procedure due to the limited number of beds 

available. The outpatients are therefore able to fill in the operating room even when there are 

no recovery beds. This results in the outpatients eventually achieving a steady state in the 

model. This steady state allows outpatients to enter the system and receive their surgery at the 

time they enter the waitlist. 90% of procedures within each surgical specialty are majority 

inpatient procedures, as identified in Table 3.23. Thus, the majority of cases that enter the 

patient waitlist result in a patient needing a recovery bed. Currently, NSH does not consider the 

patient status (inpatient vs. outpatient) when scheduling surgical patients. The model 

presented does not aim to schedule patients in the system; however, it is evident that the 

scheduling and handling of patients based on the patient status has a large impact on the types 

of patients receiving surgery. The incorporation of the patient status in the decision process for 

scheduling surgical patients could improve the use of hospital resources as well as decrease the 

number of outpatients on the surgical waitlists.  

The utilization of the operating rooms is affected by the number of outpatients and inpatients 

on the waiting list, as shown in Figure 7.3. The utilization of the operating rooms decreases 

dramatically when the number of outpatients on the waiting list reaches a steady state. The 

inpatients are not able to utilize the operating rooms due to the limited number of beds, as 

aforementioned. The downstream resource requirements and the mix of inpatients and 
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outpatients on the waitlist affects the utilization of the operating rooms. An increase to the 

number of outpatients on the surgical waitlist and scheduling patients based on the 

downstream resource requirements could increase the operating room utilization. The 

consideration of the recovery needs of the patients when scheduling would allow patients of 

both inpatient and outpatient status to move through the system as there is surgical capacity 

available.  

In the recovery strategies outlined by both Ontario Health (2020) and British Columbia Ministry 

of Health (2020) it was suggested to increase the recovery capacity for surgical services by 15%. 

It was expected the impact of increasing the bed capacity on the overall throughput of the 

patients would have a significant effect on the overall patient waitlist. However, a 10% and 25% 

bed capacity increase did not have a significant effect on the overall patient waitlist length. This 

is due to the proportion of beds available to the number of inpatients on the waitlist. At the 

end of the simulation there are approximately 14000 inpatients on the surgical waitlist and 357 

recovery beds. The larger impacts were produced from allowing two hours of operating room 

overtime and decreasing the number of inpatients on the waiting list. Increasing the number of 

hours the operating room is open each day allows for more surgeries, and longer surgeries, to 

be scheduled during the day. This allowed the surgical waitlist to decrease at a quicker rate 

initially and reduced the speed at which the waitlist grew once the number of outpatients 

reached a steady state.  

The sensitivity analysis indicated that bed capacity and patient status have an interaction effect. 

The interaction effect is evident by the relationship between the beds required and the number 

of inpatients/outpatients on the surgical waitlist. The increased number of outpatients 

decreases the number of beds required. The bed constraint remains when the number of 

outpatients increases as the other constraint on the system is the operating room time. The 

constraint on the operating room time results in shorter surgical procedures being favored as 

shorter surgeries can fit within the surgical schedule more easily at any time during the day. 

The longer procedures are difficult to fit within the schedule unless scheduled at the beginning 

of the day. Inpatients often have the highest needs and require longer operating room time due 

to the complexity of the surgery. Thus, inpatients with long surgery times do not move through 
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the system very quickly. The operating room time becomes the constraint in the system when 

the outpatients reach a steady state as less of the longer inpatient procedures can seize an 

operating room and move through the system. The bed utilization does not decrease because 

there are inpatients with short surgical procedures that can continue to obtain surgeries but 

not enough to fully utilize the operating rooms. The addition of operating room time provides 

the ability for more of the longer surgical procedures to obtain an operating room. This is 

evident in the impact of adding operating room time to cardiology, Figure 7.5. Cardiology is 

comprised mainly of long surgical procedures and the addition of more surgical time had a large 

impact on the length of the cardiology waitlist. The prioritization of the inpatients with long 

surgical procedures whilst not allowing outpatients to utilize the majority of the operating room 

time can improve the utilization of the operating rooms and increase the equality of the rate at 

which inpatients and outpatients move through the system.  

The degree of impact of each of the scenarios on the waitlist for each surgical specialty varied. 

However, scenarios where collated in the same order for each surgical specialty. It is important 

to understand the impacts of each scenario on each of the surgical specialties when considering 

the scenarios for implementation. Although some surgical specialties, such as cardiac surgery, 

benefit greatly from allowing two hours of overtime another surgical specialty may benefit from 

the same technique a negligible amount. The implementation of the strategies has impacts on 

the costs as well as employee satisfaction/burnout which may be greater than the benefit 

produced by the strategy from the perspective of the health organization.  

The scenarios which analyzed the effects of the COVID-19 pandemic through additional 

cleaning measures as well as increased demand demonstrated the large negative impact of 

COVID-19 on the surgical waitlist. All of the scenarios increased the patient waitlist. The 

application of the recovery strategies indicated that recovery efforts will be difficult to create a 

large impact in an environment with the increased cleaning time and demand. The interaction 

between the arrival rate and the patient status explains the increase in the patient waitlist with 

the increased demand. It further explains the reduced benefit of the recovery scenarios 

because of the increased number of inpatients. However, the scenarios can still produce 

beneficial results despite the increase. The introduction of weekend surgeries whilst the 
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demand and cleaning time have increased will allow outpatients to continue to flow through 

the system as well as ensure the inpatient beds are utilized as soon as the beds are available. 

Long term, however, the weekend surgeries does not decrease the rate at which the surgical 

waitlist increases. The largest impact on the rate of increase of the surgical waitlist at the end of 

the simulation is allowing two hours of operating room overtime. 

The validity of the model does not discount the presence of limitations. The model results differ 

from the expected real world implementation. The patients are added and removed from the 

waitlist in many ways which are not all captured by the model. The model simplifies the 

addition of patients to the waitlist by smoothing the patients who are added to the waitlist. 

Further, patients are removed from the waitlist without consideration for the number of beds 

available. The patients are scheduled for surgery and the hospital works at all costs to ensure 

the surgery is not cancelled which is not replicated within the model. The basis for the model 

development was the Nova Scotia healthcare system but can be used for other health 

authorities and was not tested on other health authorities within Canada or elsewhere. Lastly, 

the number of distributions fit to the data do not provide an understanding of the overall 

behavior of the length of stay and the surgery length for each procedure code. The fit of the 

distributions developed may be too fitted to the data and allowing for less distributions would 

provide more variability to be incorporated whilst still accurately representing the data.  

There are future research opportunities available in reference to the research conducted. An 

opportunity exists to quantify the impact of the outlined strategies in conjunction with surgical 

scheduling strategies. This includes scheduling patients using a method that considers the 

utilization of downstream resources and the case mix of the patient waitlist. An analysis of the 

constraints within the system, how the constraints change as the case mix changes, and the 

impacts of the scheduling on the constraints would ameliorate the scheduling analysis. The 

work can be expanded to incorporate the entire province of Nova Scotia. This would allow an 

understanding of the intricacies of the region to be incorporated and identify areas where 

resource allocation can have a different impact. Further, the incorporation of patient outcomes 

in relation to completing surgical procedures as a method to sort the queue in conjunction with 

the priority of the patients on the waitlist would facilitate an understanding of how to address 
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the more elective procedures on the waitlist. Lastly, the incorporation of more aspects of the 

hospital environment to account for the intricate nature of a healthcare environment would 

provide a more holistic overview of the impacts of the selected scenarios. 
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9 Conclusions  

The focus of the research was to analyze the impacts of resource allocation and demand on the 

patient waitlist over time. The interpretation of the results aims to support the development of 

strategies to address the surgical backlog created by the COVID-19 pandemic.  

The research contributed the descriptive analytics of the surgical data provided by NSH. The 

analysis of the data facilitated the development of the model and identified the components of 

the surgical system. The data also provided an understanding of the current use of the system 

with respect to the operating room utilization, waitlist case mix, and renege rate of the surgical 

specialties. The results of the data analysis illustrated the true operations of the surgical 

departments as well as the characteristics of the current waitlist case mix. This provides 

valuable information to the surgical department to aid in the development of operational 

strategies.  

The second, and main, contribution of the thesis is the simulation model developed using 

model parameters and inputs obtained from the descriptive analytics as well as discussions 

with subject matter experts. The analysis of the simulation model developed provided a novel 

approach to the surgical backlog created by COVID-19. The model aligned with previous 

research in the methodology; however, the patient waiting metric was uncommon in previous 

research. The results of the simulation model identified the interaction between the number of 

outpatients and inpatients on the surgical waitlist and the utilization of the operating rooms. 

The case mix of the surgical waitlist is an important component of the time it takes to reduce 

the patient waitlist. However, currently the patient status is not accounted for when scheduling 

surgical patients. The addition of operating room time allowed the surgical waitlist to 

significantly decrease at the beginning of the simulation run. The addition of surgical time 

allows the outpatients to move through the system at a faster rate and allows for longer 

inpatient procedures to occur. This allows the movement of the inpatients and outpatients to 

be more equitable on the patient waitlist. The impacts of COVID-19 on the surgical 

environment, increased cleaning time and demand, resulted in a large increase in the overall 

length of the patient waitlist. The recovery methods were less effective in the COVID-19 
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environment. However, increasing the number of operating room hours available provides the 

largest impact on the patient waitlist.  

The structure of the model facilitates the transferability of the model to other hospitals or 

health authorities. The pandemic experience in Nova Scotia has been unique compared to other 

provinces and countries. This was considered during the model development to facilitate 

variation in the scope of studied facilities as well as the scenarios. Additionally, the model can 

be used to address the surgical waitlist outside of COVID-19 during, what was previously known 

as, normal times. The model can provide effective identification of resource allocation 

strategies to address the surgical backlog created by COVID-19 as well as the already well 

documented long waitlists in the surgery department.  
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Appendix A 

The operating room schedule at the Victoria General Hospital is displayed in Table A.0.1. 

Table A.0.1: Victoria General Hospital Operating Room Schedule Data 

Day OPDS-17 OPDS-18 OPDS-19 OPDS-20 VG10-09 VG10-10 VG10-11 VG10-12 VG10-13 

Sunday 2.0 0.0 2.0 0.0 0.0 2.0 0.0 3.0 2.0 

Monday 7.0 7.0 7.0 7.0 0.0 8.0 8.0 9.0 9.0 

Tuesday 7.0 7.0 7.0 7.0 0.0 8.0 9.0 7.0 9.0 

Wednesday 7.0 7.0 7.0 7.0 0.0 7.0 7.0 8.0 7.0 

Thursday 7.0 7.0 7.0 7.0 1.0 8.0 8.0 9.0 9.0 

Friday 7.0 7.0 7.0 7.0 0.0 8.0 8.0 8.0 9.0 

Saturday 0.0 3.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 

Total 6.0 18.0 4.0 1.0 1.0 41.0 43.0 47.0 48.0 

Day VG10-15 VG10-16 VG11-01 VG11-03 VG11-04 VG11-05 VG11-06 VG11-07 VG11-08 

Sunday 5.0 3.0 4.0 4.0 0.0 3.0 4.0 4.0 4.0 

Monday 8.0 6.0 7.0 7.0 2.0 4.0 5.0 8.0 8.0 

Tuesday 9.0 5.0 7.0 7.0 3.0 4.0 5.0 9.0 8.0 

Wednesday 9.0 5.0 6.0 5.0 3.0 4.0 6.0 10.0 8.0 

Thursday 8.0 6.0 7.0 6.0 3.0 4.0 6.0 9.0 8.0 

Friday 8.0 5.0 6.0 6.0 3.0 4.0 9.0 9.0 8.0 

Saturday 5.0 3.0 4.0 5.0 0.0 3.0 5.0 4.0 4.0 

Total 52.0 33.0 41.0 40.0 14.0 26.0 40.0 53.0 48.0 

 

Table A.2 illustrates the number of times each operating room was open on each weekend for 

the two year period. 

Table A.2: Victoria General Hospital Operating Room Weekend Use 

 2018 2019 

 Saturday Sunday Weekend Saturday Sunday Weekend 

VG11- 08 10 10 10 12 11 12 

VG10-16 12 12 12 12 12 12 

VG10-15 12 11 12 12 11 12 

VG11- 01 11 11 11 11 11 11 

OPDS- 19 11 9 10 12 9 11 

 

The amount of time provided to each surgical specialty at Victoria General Hospital is illustrated 

in Table A.0.3.   
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Table A.0.3: Victoria General Hospital Operating Room Time Distribution for Surgical Specialty 

Room GEN OBGYN OMFD OPHTH OTOL THOS URO 

OPDS- 17 0.0 0.0 0.0 6.0 0.0 0.0 0.0 

OPDS- 18 0.0 0.0 0.0 18.0 0.0 0.0 0.0 

OPDS- 19 0.0 0.0 0.0 4.0 0.0 0.0 0.0 

OPDS- 20 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

VG10-09 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

VG10-10 0.0 0.0 0.0 0.0 0.0 0.0 41.0 

VG10-11 0.0 0.0 0.0 0.0 0.0 0.0 43.0 

VG10-12 0.0 0.0 0.0 0.0 0.0 0.0 47.0 

VG10-13 0.0 0.0 0.0 0.0 0.0 0.0 48.0 

VG10-15 0.0 0.0 0.0 0.0 0.0 0.0 52.0 

VG10-16 0.0 0.0 0.0 0.0 0.0 0.0 33.0 

VG11- 01 41.0 0.0 0.0 0.0 0.0 0.0 0.0 

VG11- 03 17.4 22.6 0.0 0.0 0.0 0.0 0.0 

VG11- 04 0.0 0.0 0.0 0.0 13.9 0.0 0.0 

VG11- 05 0.0 0.0 0.0 0.0 26.0 0.0 0.0 

VG11- 06 40.0 0.0 0.0 0.0 0.0 0.0 0.0 

VG11- 07 53.0 0.0 0.0 0.0 0.0 0.0 0.0 

VG11- 08 0.0 0.0 0.0 0.0 0.0 48.0 0.0 

Total 151.4 22.6 1.0 29.0 39.9 48.0 266.0 

 

The operating room schedule at the Halifax Infirmary is displayed in Table A.0.4.  

Table A.0.4: Halifax Infirmary Operating Room Schedule Data 

Day HIOR01 HIOR02 HIOR03 HIOR04 HIOR05 HIOR06 HIOR07 HIOR08 HIOR09 HIOR10 

Sunday  5.00 4.00 4.00 7.00 4.00 9.00 4.00 3.00 6.00 5.00 

Monday 9.00 10.00 9.00 9.00 8.00 11.00 9.00 8.00 11.00 4.00 

Tuesday 9.00 10.00 9.00 9.00 9.00 12.00 9.00 9.00 10.00 4.00 

Wednesday 8.00 10.00 8.00 9.00 8.00 11.00 9.00 7.00 8.00 5.00 

Thursday 11.00 10.00 9.00 10.00 9.00 12.00 9.00 8.00 11.00 4.00 

Friday 9.00 9.00 8.00 9.00 9.00 12.00 10.00 6.00 10.00 4.00 

Saturday 5.00 4.00 3.00 8.00 4.00 9.00 4.00 4.00 7.00 5.00 

Total 56.00 57.00 50.00 61.00 51.00 76.00 54.00 45.00 63.00 31.00 

Day HIOR11 HIOR12 HIOR13 HIOR14 HIOR15 HIOR16 HIOR17 HIOR18 HIOR19 

Sunday  3.00 0.00 7.00 7.00 4.00 5.00 7.00 6.00 0.00 

Monday 0.00 0.00 12.00 11.00 8.00 11.00 9.00 12.00 9.00 

Tuesday 3.00 0.00 10.00 11.00 7.00 10.00 9.00 10.00 6.00 

Wednesday 5.00 0.00 11.00 11.00 8.00 10.00 8.00 10.00 8.00 

Thursday 3.00 7.00 12.00 11.00 8.00 10.00 9.00 13.00 7.00 

Friday 3.00 0.00 12.00 11.00 8.00 10.00 8.00 11.00 7.00 

Saturday 0.00 0.00 7.00 8.00 4.00 5.00 6.00 6.00 7.00 

Total 17.00 7.00 71.00 70.00 47.00 61.00 56.00 68.00 44.00 
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Table A.5 illustrates the number of times each operating room was open on each weekend for 

the two year period. 

Table A.5: Halifax Infirmary Operating Room Weekend Use 

 2018 2019 

 Saturday Sunday Weekend Saturday Sunday Weekend 

HIOR- 04 12 12 12 12 12 12 

HIOR- 05 12 11 12 11 12 12 

HIOR- 06 12 12 12 12 12 12 

HIOR- 07 12 11 12 12 11 12 

HIOR- 18 12 12 12 12 12 12 

HIOR- 13 11 12 12 11 10 11 

HIOR- 14 12 11 12 10 12 11 

 

The amount of time provided to each surgical specialty at Halifax Infirmary is illustrated in Table 

A.6.   

Table A.6: Halifax Infirmary Operating Room Time Distribution for Surgical Specialty 

Room CARD GEN NEURO ORTHO PLAS VAS 

HIOR- 01 0 0 23 33 0 0 

HIOR- 02 0 0 0 57 0 0 

HIOR- 03 0 0 1 49 0 0 

HIOR- 04 0 0 0 61 0 0 

HIOR- 05 0 0 0 51 0 0 

HIOR- 06 0 76 0 0 0 0 

HIOR- 07 0 0 0 24 30 0 

HIOR- 08 0 0 0 22 23 0 

HIOR- 09 0 0 63 0 0 0 

HIOR- 10 0 0 0 0 0 31 

HIOR- 11 0 0 0 0 0 17 

HIOR- 12 0 0 0 0 0 0 

HIOR- 13 0 0 71 0 0 0 

HIOR- 14 70 0 0 0 0 0 

HIOR- 15 47 0 0 0 0 0 

HIOR- 16 61 0 0 0 0 0 

HIOR- 17 0 0 0 37 0 19 

HIOR- 18 0 0 0 0 0 68 

HIOR- 19 0 0 0 44 0 0 

Total 178 76 158 379 52 135 
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The operating room schedule at the Scotia Surgery is displayed in Table A.7.  

Table A.7: Scotia Surgery Operating Room Schedule Data 

Day SSI-01 SSI-02 

Monday 9.0 8.0 

Tuesday 8.0 9.0 

Wednesday 8.0 7.0 

Thursday 9.0 9.0 

Friday 8.0 0.0 

Total 42.0 33.0 

 

The amount of time provided to each surgical specialty at Scotia Surgery is illustrated in Table 

A.8.   

Table A.8: Scotia Surgery Operating Room Time Distribution for Surgical Specialty 

Room GEN ORTHO PLAS 

SSI-01 1.5 39.9 0.6 

SSI-02 9.0 24.0 0.0 

Total 10.5 63.9 0.6 

 

The operating room schedule at the Hants County Hospital is displayed in Table A.9.  

Table A.9: Hants County Operating Room Schedule Data 

Day HOR -01 HOR -02 R-HACRMS 

Sunday 0 0 0 

Monday 7 7 0 

Tuesday 7 8 0 

Wednesday 8 7 0 

Thursday 6 7 3 

Friday 7 8 0 

Saturday 0 0 0 

Total 35.0 37.0 3.0 

 

The amount of time provided to each surgical specialty at Scotia Surgery is illustrated in Table 

A.10.   
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Table A.10: Hants County Hospital Operating Room Time Distribution for Surgical Specialty 

Room GEN OMFD OPHTH ORTHO OTOL PLAS VAS 

HOR- 01 19.7 1.7 0.1 5.8 5.7 0.3 1.7 

HOR- 02 0.0 0.0 34.3 0.3 0.6 0.0 37.0 

R-HACRMS 0.0 0.0 0.0 3.0 0.0 0.0 0.0 

Total 19.7 1.7 34.4 9.1 6.3 0.3 38.7 
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Appendix B 

The utilization of the operating room per week was calculated for the duration of the 

simulation model. The following Figures present the remaining surgical specialties. The primary 

y-axis (left) is the operating room utilization per week and the secondary y-axis (right) is the 

number of patients waiting per week. 

 

Figure B.0.1: Cardiac Surgery Patients Waiting Timeseries & Operating Room Utilization 

0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

1.2

1
-J

u
l-

2
0

1
-A

u
g-

2
0

1
-S

e
p

-2
0

1
-O

ct
-2

0

1
-N

o
v-

2
0

1
-D

ec
-2

0

1
-J

an
-2

1

1
-F

e
b

-2
1

1
-M

ar
-2

1

1
-A

p
r-

2
1

1
-M

ay
-2

1

1
-J

u
n

-2
1

1
-J

u
l-

2
1

1
-A

u
g-

2
1

1
-S

e
p

-2
1

1
-O

ct
-2

1

1
-N

o
v-

2
1

1
-D

ec
-2

1

1
-J

an
-2

2

1
-F

e
b

-2
2

1
-M

ar
-2

2

1
-A

p
r-

2
2

1
-M

ay
-2

2

1
-J

u
n

-2
2

P
at

ie
n

ts
 W

ai
ti

n
g

O
p

er
at

in
g 

R
o

o
m

 U
ti

liz
at

io
n

Month

Cardiac Surgery
Patients Waiting Timeseries & Operating Room Utilization

HIOR14 HIOR15 HIOR16 CARD Outpatient Inpatient



105 
 

 

Figure B.0.2: Neuro Surgery Patients Waiting Timeseries & Operating Room Utilization 

 

Figure B.0.3:Gynecology Surgery Patients Waiting Timeseries & Operating Room Utilization 
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Figure B.0.4: Oral Maxilla and Facial Surgery Patients Waiting Timeseries & Operating Room Utilization 

 

Figure B.0.5: Ophthalmology Surgery Patients Waiting Timeseries & Operating Room Utilization 
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Figure B.0.6: Orthopedic Surgery Patients Waiting Timeseries & Operating Room Utilization 

 

Figure B.0.7: Otolaryngology Surgery Patients Waiting Timeseries & Operating Room Utilization 
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Figure B.0.8: Plastic Surgery Patients Waiting Timeseries & Operating Room Utilization 

 

FigureB.0.9: Thoracic Surgery Patients Waiting Timeseries & Operating Room Utilization 
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Figure B.0.10: Urology Surgery Patients Waiting Timeseries & Operating Room Utilization 

 

Figure B.0.11: Vascular Surgery Patients Waiting Timeseries & Operating Room Utilization 
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