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Abstract 

The research presented in this thesis focuses on proposing effective 

methodologies, formulations, and heuristics for scheduling and rescheduling resource-

constrained project scheduling problems that are specific to naval surface ship work 

periods or similar maintenance projects. The network topology for these work period 

projects is divided into precedence-independent work orders that have precedence-

dependent operations within themselves. Mixed-integer linear programming (MILP) 

models are developed for the initial scheduling and for the rescheduling problem. In initial 

scheduling, the objective is to front-load work based on priority and duration, to account 

for the high degree of uncertainty and scope growth that is common in these work 

periods. In rescheduling, the goal shifts to minimizing schedule deviation-days while 

incorporating urgent scope growth. Experimentation results, discussions, and insights are 

provided for initial and rescheduling MILP models, and for combining appropriate 

heuristic methods to quickly produce good feasible solutions when optimal solution times 

are not acceptable. 
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Chapter 1: Introduction 

The Naval Surface Ship Work Period Problem (NSWPP) is a highly complex variant 

of the resource-constrained project scheduling problem (RCPSP) with many work orders 

(WOs) that are in themselves smaller projects. Planning, scheduling, and executing 

NSWPPs are very challenging, and a large volume of planned and scheduled work is 

typically never achieved for a variety of reasons. 

Maintenance facilities and organizations managing these challenging projects are 

usually left with scheduling tools that are part of a larger enterprise resource planning 

(ERP) system and have disabled automated scheduling systems to prevent financial and 

contractual mishaps. This thesis investigates and develops new exact and heuristic 

solution methods for the NSWPP with the aim of contributing to the development of 

effective add-on software to complement naval surface ship maintenance facility ERP 

systems. 

1.1 Background 

Thales Canada, as part of multi-billion dollar in-service-support contract (ISSC) for 

six Harry-De-Wolfe (HDW) Class and two Protecteur Class Ships, is sponsoring Canadian 

Research to contribute in building NSWPP optimization software. This software is being 

developed over several years, in collaboration with three research teams from Dalhousie 

University, École Polytechnique de Montréal, and Université Laval. The software is 

intended to work as a sandbox standalone program, where inputs arrive from the ERP 

system, the schedule is optimized, then results are re-entered into the ERP system. Five 

major Canadian maintenance organizations are playing roles in this project as potential 

customers including: Thales Canada that will operate on both coasts, the Royal Canadian 

Navy’s (RCN) Fleet Maintenance Facilities (FMF Cape Scott (FMFCS) in Halifax NS and FMF 

Cape Breton (FMFCB), in Esquimalt BC), Irving Ship Building Incorporated in Halifax (ISI), 

and Seaspan in Victoria BC. All five organizations use ERP systems where scheduling add-

on systems may be used to enhance scheduling, and all five organizations currently more-

or-less manually schedule work for their work periods.  
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This thesis is written by Lieutenant-Commander Eric Bertrand, who is sponsored 

by FMFCS to complete his MASc Program in Industrial Engineering at Dalhousie 

University. The author has been involved in the planning, scheduling, and execution of 

maintenance work periods in HAL Class Frigates and worked in the FMFCS Operations 

Department following his Head of Marine Systems Engineering Department posting in 

HMCS Ville de Québec from 2015 to 2017. 

This thesis is the culmination of exploratory research and experimentation at 

several phases throughout early 2019 to mid-2020. Work for this thesis was completed 

jointly with another fellow graduate student, Sanjay Prabhu. Results from complementary 

experimentations and research were compared, and analysis of these results along with 

Industry clients’ and sponsors’ feedback guided successive experimentation and research. 

1.2 Purpose 

The purpose of this thesis is to propose effective formulations, methodologies, 

and heuristics for scheduling and re-scheduling RCPSPs that are particularized for NSWPPs 

or similar maintenance projects. We propose the use of two mixed-integer linear 

programming (MILP) formulations that better capture the practical resource-constrained 

project scheduling problem (RCPSP) operational objectives. These objectives are derived 

from several interviews and meetings with real-world scheduling users for scenarios that 

Thales and its potential clients may face while executing ISS contracts with the Royal 

Canadian Navy (RCN). For decision support, baseline comparison, and quick response 

times to very large problems, we propose using common and adapted heuristic 

techniques including priority-based serial schedule generation schemes (serial SGS) and 

priority-based adaptations of the shifting bottleneck procedure (SBP) with effective data-

processing techniques. These are compared with experimentation using scenario-based 

objectives to determine which ones are more effective in each situation, and to elaborate 

on the pros and cons of each. These heuristics may be used to give a solver a “good” initial 

solution so that the user has the option of getting a solution in a reasonable timeframe 

for the common scenarios where short solve times are especially important. The RCPSP 
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scenarios used for experimentation are inspired by real-world data with many 

characteristics not commonly found in literature. 
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Chapter 2:  Problem Definition 

The Naval Surface Ship Work Period Problem (NSWPP) Scheduling Problem is a 

highly complex problem. The term “project” in this thesis refers to all work that is planned 

and scheduled during a period of time when a ship is available for maintenance. The 

length of the project from start to finish is defined as “makespan” and the end of the 

makespan is a point in time called the “time horizon”. 

Routine maintenance activity projects, such as those in a land-based power plant, 

may be limited in duration and scope where a particular equipment unit is safely 

disconnected/de-energized, disassembled, maintained, reassembled, tested, and 

returned to service. This also occurs in Naval Surface Ships (NSSs). However, the ship itself 

is often away on deployment so a repair facility has limited access to the ship, and all of 

these “small projects” must occur during limited time windows in a coordinated manner. 

The maintenance actions desired in the ship normally surpass what can feasibly be 

accomplished during the periods that the ship is available, and work must thus be 

prioritized. As long as the ship can safely sail and accomplish its next mission, it will sail 

and the work period will be over, even though not all desired maintenance was 

accomplished. 

The plans for these smaller projects, such as in the power plant equipment repair 

example, in this thesis are referred to as “WOs” or “work packages”, as these terms are 

used interchangeably in the NSS industry. A WO or work package consists of a number of 

“operations/tasks/jobs” that represent the individual tasks required to complete the 

work package. Note that these terms are used interchangeably in academia and industry. 

In this thesis, the term “activity” will be used to define these individual tasks. These 

activities may be sequential, meaning that they need to occur one after the other, and 

this is often called a “precedence” constraint where an activity cannot start until the 

predecessor is completed. Some activities may also occur concurrently, so that two or 

more of these may share the same precedence constraint. These elements represent the 
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main aspects of traditional project scheduling problems (PSPs) [1] and are present in 

NSWPPs. 

The NSWPP project is therefore defined as the sum of all WOs and their associated 

activities, for a single ship, that are all scheduled to occur within a defined time period, 

called work window, where the ship will be in repair alongside a jetty near a repair facility 

or in a drydock within a repair facility. 

When a ship is alongside a jetty, the 

work period may last between two weeks to 

several months, but since the ship is partially 

submerged in water, work on the submerged 

exterior of the ship, such as on the hull, sonar 

dome(s), the propellers, and the rudder is 

limited to cleaning and inspections. Figure 1 

is an image of a ship in an alongside work 

period, while figure 2 is a picture of the front 

base of a ship in a docking work period. The 

docked ship is supported by numerous blocks 

all along the base and keel of the ship, while 

supporting brace pieces are placed on the 

sides of the ship to prevent transverse 

movements. 

NSWPPs differ from the RCPSP in a number of ways. Firstly, not all activities need 

to be completed. The majority of PSP studies assume that all activities need to be 

completed and dummy start and end nodes are added to the project. The goal is generally 

to complete all activities within the makespan. As will be discussed in the following 

sections, the goals of the NSWPP are different. The goal is better described as: to 

Figure 1: A ship in an “alongside” work 
period (source: The U.S. National 
Archives https://catalog.archives.gov/) 

https://catalog.archives.gov/
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complete all important and 

critical activities within the 

makespan, where uncompleted 

important activities will not 

compromise the mission or can 

be reasonably mitigated. 

A submarine or an 

aircraft, in comparison, must 

have all outstanding 

maintenance activities 

completed, as failures can have 

major and catastrophic consequences. In a surface ship, uncompleted work usually results 

in a lack of redundancy as most systems are highly redundant, and in a worst-case 

scenario, the ship floats, so people are in no immediate danger of dying except in combat 

scenarios. In aircraft or submarines, every system is laid on top of each other as they must 

be as compact as possible. This means that whenever a system needs maintenance, layers 

of other systems must be removed to complete repairs. Due to efficiency reasons, as 

systems are replaced and exposed, maintenance actions such as inspections must be 

performed at the right times, leading to a highly precedence-dominated project network 

structure as illustrated in figure 3. All activities are represented by a numbered node and 

the arrows represent precedence relationships between activities. 

 

 

Figure 2: HMCS Ville de Québec in a “docking” work 
period 

Figure 3: A standard precedence-dominated project network structure in RCPSP 
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In NSWPPs, although this network structure does exist between activities within 

the same WOs, most WOs are relatively independent of each other. Because the ship is 

very long and wide, and has multiple decks, equipment is separated such that one piece 

of equipment can be maintained while other equipment even in the same compartment 

may be untouched or simply shutdown. This relaxed space environment removes the 

need for many precedence constraints between WOs but causes the scheduling problem 

to have a much larger solution space as WOs may fit almost anywhere within the work 

window. Calculating the early start and late starts of activities is relatively trivial when 

considering only the precedence constraints. The harder challenges are managing the 

resource, same space, and exclusivity constraints (to be defined later), as well as 

producing robust schedules that can handle the high variability of task durations and 

scope growth that are inherent in NSWPPs.  

Surface ships also differ from aircraft or smaller vehicles because of their sheer 

size. Ships hold and consume so much fuel that the unit of measure is cubic meters instead 

of liters. They must hold food for weeks and make potable water from seawater. Although 

the equipment units do not need to be on top of each other, they are only normally 

accessible through a limited number of passageways and ladders. For example, work in a 

passageway will often block access to a number of compartments. Surface ships are so 

big, that there are no hangars, at least in the RCN, where ships can be worked on within 

the hangar and therefore be sheltered from the elements (i.e. rain and snow). For 

example, the HAL Class Frigate has 353 spaces, four main engine rooms, a hangar for a 

helicopter, several small boats, and dozens of different high-technology armaments. 

Naval surface ships cost billions of dollars and can accommodate hundreds of people for 

long durations; thus, they are more comparable to small floating cities. 

NSWPP projects do not only involve maintenance. Since ships must last several 

decades, they must remain relevant as technologies evolve in the geopolitical 

environment. Eventually, equipment needs to be replaced with different newer models 

and systems need to be able to function in an integrated way, often requiring several 

engineering changes (ECs) for these new equipment replacements. Weapon, 
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communication, and detection systems must remain state-of-the-art and are in constant 

need of ECs. The steel surrounding everything in a ship seems to be constantly corroding. 

The decks, bulkheads, and structural members need renewal. Multiple corrosion-

inhibiting technologies including paints, passive and active cathodic protection systems, 

and sacrificial anodes are used to prevent the hull from corroding; however, the hull 

structure still corrodes in and around equipment, under various obstacles where people 

live, and is often undetected until inspections are performed. This is expected as ships are 

submerged in saltwater or surrounded by high salt-fog humidity for the majority of their 

lives. The inside of the ship is temperature and humidity controlled, but moisture does 

enter all spaces and colder areas are subject to frequent condensation buildup. Sailors 

need to work around this maintenance work, and a vast array of testing and trials needs 

to occur within the same projects. These projects therefore comprise of equipment 

maintenance, steel renewal, ECs, testing and trials, all while maintaining reasonable living 

arrangements within the ship. Thus, the need for an effective comprehensive 

maintenance, hull renewal, and EC strategy is necessary. 

NSWPP problems are notoriously difficult because of the very numerous actions 

needed in these given work periods. There are so many things to fix and maintain that 

trying to fix everything in these short time frames is generally unfeasible; therefore, a 

common goal is to fit as much higher priority maintenance and ECs as is practical in the 

work window. The work periods vary in length and complexity, and they fit into a ship’s 

lifecycle that will be described in the next section. 

2.1 The lifecycle of a ship 

Although figure 4 depicts a typical 5-year lifecycle of the HAL Class Frigate, it is 

similar to the lifecycle of the HDW Class AOPS or other Canadian NSSs. For an example of 

how this can differ, the Victoria Class Submarines have a 7-year life cycle, mostly because 

of the need to strike a balance between its long maintenance periods and deployments. 

During a 2015 Mess Dinner, Vice Admiral Mark Norman described a global rule of thumb 

when he stated: “...to have a fully-capable naval ship out at sea 365 days a year, a nation 
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must have three to four of these ships available at various parts of the lifecycle at all 

times”.  

As previously mentioned, there are two major work period types: docking refit 

work periods (DWP) and alongside work periods (EWP and SWP). Figure 4 shows the DWP 

at the center. This docking refit period is designed to perform heavy maintenance when 

the ship is out of the water. It may last 20-30 weeks when the ships are relatively new but 

will gradually extend to over 50 weeks as the ship ages (after 25-30 years) and more 

corrosion-related corrective actions are needed. Before and after a docking work period, 

a ship enters an extended work period (EWP). The EWPs, labelled EWP1 and EWP2 for 

before and after the DWP respectively, last several months and comprise docking 

preparation, preventive maintenance (PM), and corrective maintenance (CM) work. A 

ship must have all cryptographic and IT systems, special systems, and ammunition 

removed, and have almost no liquids remaining in its tanks before docking. After docking, 

systems need to be reactivated, special systems need to be reinstalled, the ship needs to 

have its ammunition and liquids (fuels, lubricants, etc.) replenished, and the construction 

Figure 4: Illustrating a RCN ship’s five-year lifecycle 
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zone that is the inside of a ship in a DWP must be rendered into a clean and livable ship 

interior, which is why these EWPs take so long. 

 Outside of the EWP1-DWP-EWP2 time window, as seen in figure 4, the ship 

will have several SWPs. These will sum up to approximately 12-20 weeks per year for 

ongoing maintenance and ECs, all that can be achieved alongside with the ship in water. 

Most SWPs will last 3 to 10 weeks and will fit in as much maintenance as is practical within 

the SWP time window as doing everything desired is infeasible. Except for when the ship 

is in the DWP, the ship is manned 24/7 by RCN staff, whose engineering departments will 

continuously raise notifications for more work to be planned, scheduled, and completed 

as defects are found. 

2.2 NSWPP Planning Process 

When anything breaks or needs repair in a ship, the technical ship staff (SS), 

composed of two engineering departments making up almost half the ship’s company, 

will generally try to fix the problem themselves. When the problem cannot be properly 

repaired, SS will raise a “notification” in the DND’s Defence Resource Information 

Management System (DRMIS), which is an ERP system used by all four branches of the 

military: the Royal Canadian Navy (RCN), the Royal Canadian Army (RCA), the Royal 

Canadian Air Force (RCAF), and the Special Forces Branch. These notifications contain 

enough information for the shore repair facilities to start planning WOs for upcoming 

work periods. Work that can be fixed by SS is called 1st line work, referring to the first level 

of complexity. The 2nd line work is generally completed by shore repair facility 

organizations such as FMF, SNC Lavalin, or Thales, where specialized workers and tools 

are needed, and 3rd line work is usually associated with equipment overhauls that are 

completed by the original equipment manufacturers (OEMs). 

It should be noted that for an ISS organization like Thales, DRMIS may not 

necessarily be used by SS to report problems. As is the case with SNC Lavalin and the ISS 

of the RCN’s maritime coastal defence vessels (MCDVs), a separate defect notification 

system is used to notify the RCN and the responsible ISS organization. Even with a 
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separate notification system, the process remains relatively unchanged, where the ISS 

organization will take defect reports from SS, plan corrective action WOs, and schedule 

NSWPPs. Regardless of the ship type and the maintenance organization managing the 

work, PM, CM, and ECs will need to be planned, scheduled, and executed. 

2.3 Automatic Scheduling in an ERP 

During project execution, disruptions in a project’s schedule can be repaired via 

manual adjustment, but the remainder of the schedule will not be automatically re-

scheduled; thus, this leads to unintended future work conflicts in terms of space and 

personnel resources. Software suites such as Primavera P6 and MS Project are capable of 

auto-rescheduling, but most industries including the one being analyzed still rely on 

manual scheduling [1]. Once a software is used for accounting and tracking of contractual 

agreements, it becomes very dangerous to allow the scheduler or project leaders (PLs) to 

mass-modify information in the centralized system [2]. It can be so detrimental, that in 

all organizations reviewed in this research, mass modification of the centralized system 

was prohibited by schedulers or PLs. This in turn forces schedulers or PLs to modify WO 

and activity dates one by one, leading to a tedious process. The tediousness of this 

process has a secondary effect of limiting the number of WOs that are analyzed for 

scheduling, resulting in missed opportunities and lower than ideal worker utilization [3]. 

It has been observed at FMFCS that re-scheduling an entire project during project 

execution without considering other projects is not practical because the shop resources 

shared with other projects are already tied up, leading to a solution space that is very 

limited in how it can accept change. 

2.3.1 Solution Time 

Since NSS projects compete for personnel and equipment resources from a larger 

centralized pool, it is important for any automatic scheduling system to be able to solve 

relatively quickly. If the solution takes too long, the underlying data used in a calculation 

may change during the problem processing, as a different PL and scheduler will typically 

schedule at least a few WOs (with several activities in each) every day during a project. 

With continuously having 4-7 surface ship projects ongoing (such as at FMFCS), plus 
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projects that are being planned in anticipation of upcoming projects, plus additional 

submarine, tanker, and miscellaneous support projects being scheduled for things other 

than surface ships, that all use the same resource pool, the underlying resource capacity 

data is constantly changing and is generally shrinking. For example, a solver that takes 

hours to solve would be unacceptable because this would first require a download of shop 

availabilities, which would change during processing, usually for the worse, while the 

program tries to find an optimal solution. Schedulers at FMFCS were very concerned with 

a scheduling solution that was offline from their SAP system because of the frequent 

changes to the underlying shop capacity data [3]. In addition to this, and because of the 

stochastic nature of NSWPPs, the interviewed PLs desired a tool that was fast. The need 

to re-schedule is very frequent because of scope growth as defects are found, and 

because of the need for analyzing various options where WOs were added or removed 

from a project. If verifying shop capacities and dates for adding or removing WOs could 

be done faster with manual scheduling than with an automatic scheduling tool, then the 

interviewed PLs described that this tool would be a failed product and guaranteed that 

this would be quickly abandoned [3]. For an automatic scheduling tool to be useful in the 

NSWPP environments that have been surveyed for this thesis, the tool must solve within 

no more than a few minutes during project execution, although it may be acceptable to 

take a little longer during initial project planning [4] [3]. Furthermore, it is recommended, 

from prototype usage at FMFCS in real-world projects, that any tool should be useful for 

a secondary purpose: finding flaws in the underlying data. For instance, if the wrong shop 

was selected as part of the planning data, then a very favorable or unfavorable solution 

start date might result. The user can easily find the mistake by looking at the solution. 

Another commonly found mistake when using a prototype scheduler at FMFCS as part of 

this research (see section 6.5 for more detail), was incorrect shop capacity information. If 

certain activities become scheduled too far in the future, then the user can see this 

outcome and realize that the underlying data requires further investigation. A user might 

have a default compartment capacity that prevents two important WOs from being 

scheduled at the same time, while the PLs knows that these can realistically occur in 
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parallel; he/she will then adjust the capacity and re-schedule, etc. This is so common that 

it should be expected every time a new NSWPP data-set is downloaded, as well as 

frequently throughout a project’s execution [3]. For these reasons, an automatic 

scheduling process can require multiple iterations every time it is used to schedule, and 

the user does not have time to wait for long periods at every iteration. 

The interviewed project managers, PLs, and schedulers in Halifax indicated that 

set-up speed, ease-of-use, and computation speed are even more important than getting 

optimal schedules; where most users had a hard time saying the word “optimal” without 

rolling their eyes [3], since the underlying data is considered far from accurate.  

2.4 Special Important Constraints 

NSWPPs have unique combinations of constraints that may be modelled in an 

RCPSP. Investigations have revealed that current scheduling practices with commercial 

software do not model all unique NSWPP constraints, leading to avoidable conflicts and 

work delays [3] [4] [5]. These uncommon constraints are described in further detail in the 

following sub-sections. 
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2.4.1 Same Compartment 

Due to space limitation in a 

navy ship, most tasks are mutually 

exclusive to each other (i.e. from 

separate WOs) and do not fit in the 

same compartment. For example, in 

figure 5, work must be performed 

overhead in an electrical 

switchboard compartment; 

therefore, one of the WO activities 

include building staging (a term 

used interchangeably with 

scaffolding but refers generally to lower platforms). The staging itself takes up the 

majority of the compartment’s horizontal surface area and the workers will have their 

tools placed throughout the compartment such that they can readily access them without 

losing them. This “consumption” of available working area in the compartment makes it 

very impractical to have a second 

WO executed at the same time in 

the same compartment. In this 

example, several equipment 

units mounted on the bulkheads 

and access to the switchboard 

itself is severely limited. So, by 

default, a major constraint should 

be to have limits on parallel work 

in each space at the same time. 

This is not only related to a WO’s 

footprint but also by the nature of 

the work. As previously mentioned, decks are often corroded, meaning that tiles will need 

Figure 5: Staging often excludes other work in 
the same compartment. 

Figure 6: Deck work generally makes all nearby 
equipment inaccessible. 
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to be removed, underlying steel will need to be stripped and renewed, then new tiles and 

under-coatings will need to be replaced. Figure 6 is a picture of all the equipment in a 

passageway being wrapped in plastic for deck work. It gives a good illustration of why no 

other unrelated concurrent work can occur in this passageway. To add to even further 

space and compartment issues, as a secondary effect, work in any compartment that is 

only easily accessible by this passageway should also be avoided. There are escape 

hatches that can be used if necessary, but the clearance in these are so small that many 

equipment pieces do not fit through the escape hatches, and interviewed PMs with 

decades of experience suggest that these should be avoided unless absolutely necessary 

[4].  

There are however 

exceptions where some 

compartments may 

accommodate more than one 

WO. Figure 7 shows the inside of 

an auxiliary engine room where 

maintenance is being conducted 

on a diesel generator. In one of 

these larger spaces, several WOs 

may occur at the same time up to 

a limit, determined mostly by the nature of the work, the size of equipment pieces being 

moved, staging, chemicals used, whether equipment requires it being operated etc. For 

example, when a diesel generator is in operation, it is so loud and hot in the engine space, 

and generates vibrations so that other WOs are not concurrently compatible.  

To illustrate work capacity settings, when discussing the subject with PLs working 

on HAL Class Frigates, the initial default values for maximum concurrent activities (from 

different WOs) per space were set at 1 per space for 348 spaces, five activities per space 

for both main engine rooms, three activities per space for both auxiliary engine rooms, 

and three activities for the helicopter hangar. Depending on the work being scheduled, 

Figure 7: Larger compartments may 
accommodate more than one concurrent WO at 
a time. 
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the user desired the ability to change these limits as the practical limits for this depended 

on the nature of the work. A large WO may consume an entire compartment, but in some 

cases many smaller activities can occur simultaneously [3]. 

2.4.2 Hot Work 

Hot work is work 

relating to activities that 

involve stripping coatings and 

rust from steel for renewal, 

including the cutting out of 

deteriorated steel sections and 

the re-installation of new steel 

sections with welding. This 

work produces toxic gases, is 

very loud, may cause damage 

to eyes, and can burn any 

flammable materials or 

persons. Often when hot work is being conducted, the space on the other side of the deck 

or bulkhead should be out of bounds. Without considering this important source of 

potential work conflicts, two separate WOs may be scheduled such that they are not 

compatible with each other. Figure 8 shows a steel section that was recently renewed in 

a HAL Class Frigate. The compartment on the other side and below this renewal section 

would need to be empty of people (other than a fire sentry) for the duration of the hot 

work activities. Portable ventilation units and temporary trunking will also be installed to 

remove toxic gases throughout the hot work activities in the main compartment and the 

affected adjacent compartments. These hot work activities can last a long time (weeks) 

as welding practices are such that only staggered small sections of an insert can be welded 

at a time. Welding too quickly may result in bending and warping of the surrounding steel 

from excess heat; therefore, hot work has long durations associated with letting the steel 

cool down between successive welding sessions on the same steel pieces. This in turn 

Figure 8: Hot work on this corner affects three 
adjacent spaces, placing them out-of-bounds. 
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means that the adjacent space is out-of-bounds for a significant duration. A practical 

method of determining these conflicts beforehand is proposed in this thesis to ensure 

that schedules consider these potential conflict sources. 

2.4.3 Emissions and Radiation 

In this thesis, emissions refer to the exhaust gases that exit from funnels into the 

atmosphere as a result of gas/diesel-powered rotating equipment being operated. 

Radiation refers to non-ionizing radiation that is emitted as a result of active radars and 

antennas. Both emissions 

and radiation pose significant 

risks to human health. Every 

radar has a maximum 

exposure limit (MEL) that is 

dependent on the intensity 

and direction of the radiation 

being emitted. This MEL is 

essentially a safe distance to 

the emitter that a human can 

stand such that long-term exposure to this radiation would not pose a statistically 

significant increased risk of burning or cancer. Emitters on HAL Class Ships have a MEL 

ranging between 1 meter and 345 meters. Figure 9 is a picture of HMCS Ville de Québec 

alongside Québec City with all emitters highlighted in yellow. Naval ships require multiple 

emitters for detecting ships, boats, aircraft, missiles, and projectiles, guiding weapon 

systems and defense mechanisms, sending out jamming signals, communication, and 

receiving satellite television entertainment while at sea. Emission and radiation 

equipment is locked out using standard lock-out and tag-out procedures to ensure that 

any work on the upper decks, which is any work completed above the weatherdeck such 

as the bridge top, funnel tops, hangar top, and on the mast, poses no risk from injury as 

a results of active emitters.  

Figure 9: Naval ships and boats have many 
radiation emitting units (highlighted in yellow). 



 

18 

Above and beyond upper deck work, 

crane activities may also be affected by 

emitters. Jetty cranes, where the operator is 

above the ship, may become unusable when 

gas-powered equipment is in use and vice 

versa, as the crane operator may be 

exposed to significant exhaust gases. Mobile 

cranes may be used during emissions because 

the operator is near ground level (see figure 10), so exhaust gases should not affect 

him/her. Active radiation emitters however are incompatible with all types of cranes due 

to a public health concern of re-radiation from unintended emitters. It has been found 

that wires under tension from cranes may in some circumstances become unintentional 

receiving antennas, leading to electrical shock or burning injury in workers coming into 

contact with these wires [6]. For this reason, whenever cranes are in use near a ship in 

Canada, workers will lock-out all radiation-emitting equipment before using the crane.  

If the schedule building methodology being used does not consider radiation and 

emission aspects, two WOs may be inadvertently planned at the same time where they 

will in fact cause a conflict because they are mutually exclusive. Examined datasets and 

interviews with schedulers indicated that this is currently done by PM and scheduler 

knowledge, and work packages are manually planned so that they do not occur at the 

same time. Of course, mistakes are occasionally made and this adds to the tediousness of 

the scheduling process [3]. 

2.4.4 Miscellaneous Delays and Conflicts 

Miscellaneous delays are quite common in NSWPPs. These include special 

circumstances such as a media event on a ship’s flight deck, receptions, photo shoots, 

training exercises using the ship’s general alarm system, diving activities, and work 

cancellations due to high winds, rain, or snow, that may all happen during a ship’s work 

period. 

Figure 10: With mobile cranes, the 
operator is near ground level and safe 
from emissions. 
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Most of these are self-explanatory, but some may require elaboration: for 

instance, diving near a ship to perform inspections as part of PM WOs can be a dangerous 

activity. The side of the ship where the divers are in the water must remain out-of-bounds 

so that objects do not fall on divers. The rudder, propeller, and sonar dome must be 

locked out. Any equipment with water intakes and outputs must not change in their 

operating conditions so that divers going near an intake can first test for suction or thrust, 

determine a safe distance, and be confident that the suction or thrust intensity of water 

near the location will not change. Diving precautions will even go further by attempting 

to move active suction bays to parts of the ship that are far away from divers [7]. Two 

Canadian Navy divers died from drowning from a suction bay inlet miscommunication 

with the USS Pharris in 1991 [8]. 

As for weather, much of the repair and renewal work occurs on the outside of the 

ship, being on the superstructure, the upper decks, on the weather deck, and on the sides 

of the ships. These areas are persistently exposed to near 100% humidity with a significant 

salinity level in the air known as “salt fog” [9]. Due to this exposure and other 

environmental factors, components contacting the outside of the ship degrade faster and 

require more maintenance in general. Thus, a proportionately larger than normal amount 

of work is performed outside where it is at the mercy of the weather. This work often 

requires scaffolding and cranes, and is frequently unsafe to perform when it is raining, 

snowing, or when winds produce gusts above 42 km/hr [10]. Halifax and Esquimalt, where 

Canadian NSWPP occur, receive significant weather events causing delays. Halifax has on 

average 136 rain days and 24 snow days per year, while Vancouver (near Esquimalt) has 

162 rain days and 11 snow days per year on average [11] [12]. This does not add a hard 

constraint, but certainly increases the variability in task duration and expected 

unscheduled delays that may be present in a NSWPP. During project execution, a 

scheduler or PL may be able to use short-term weather forecasts to re-schedule certain 

activities or determine the impact of upcoming weather events. 
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Despite these delays and their effect on variability, schedules are still needed to 

complete as much work as is possible; however, even if everything goes right, some WOs 

take much longer to complete than others and will not be possible in SWPs.  

2.4.5 Duration 

Looking back at figure 4 and its associated ship lifecycle descriptions, one may 

notice that some work periods have relatively short makespans and some have much 

longer makespans, so the simple goal of completing as many WOs as possible is 

insufficient. For example, an automatically optimized scheduled plan to complete as many 

WOs as possible would, by the nature of this objective function, schedule as many short 

and relatively “easy” WOs as possible and would completely ignore the longer duration 

WOs. 

For instance, 60M WOs, meaning WOs that are calendar-based and occur every 

five years or 60 months, can usually only fit in longer DWPs or EWPs. Some ECs and larger 

hull repairs can take several weeks but can still fit in some SWPs with more than a three 

to four-week duration. It should be noted however on a practical level, that a PL who is 

responsible for scheduling a ship’s activities in alongside work periods, should have 

knowledge of WO duration estimates after they are planned and may manually decide 

which WOs to consider for upcoming work periods. At FMFCS, the Prometheus Scheduler 

add-on automatic scheduling feature does not consider duration, so a practical proposed 

work around is the following: first manually schedule the important long-duration work 

packages that can really only begin near the start of work periods (because the sequence 

of activities takes so long), then use automatic scheduling to fit-in all the shorter WOs in 

a prioritized fashion until nothing else “fits” [13].  

For these reasons, it is proposed that WO durations be part of the solution when 

considering heuristics or formulations, with an ability to “tune” the importance of 

duration in both methodologies. 
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2.4.6 Priority 

As previously mentioned, a major difference between submarine/aircraft work 

and naval surface ship work is the concept that every activity needs to be completed. In 

surface ships, work is triaged into priority levels indicating how important it is to complete 

the work. Whenever conflicts arise, and varying priority levels are present, the higher 

priority WOs will be completed first as per RCN policy [14], unless rare exceptions make 

this impractical. Priority is generally categorized into three major groups: essential work 

(ESS), high opportunity work (HOPP), and normal opportunity work (NOPP), and are also 

called priority levels 1, 2, and 3. ESS WOs are critical and a failure to complete these mean 

that the ship cannot complete the entirety of its next mission as intended. For example, 

a radar suite capable of communicating with allied ships on a designated SECRET network 

requires an upgrade to be able to participate in the next mission; if this is not fitted and 

made to work, then the ship cannot complete the next mission, making this an ESS WO.  

HOPP and NOPP work will only be considered as long as they do not impede on 

priority ESS work from being completed. RCN and occasionally the Assistant Deputy 

Minister of Materiel Group (ADM(Mat)) senior officials collectively agree on priority levels 

assigned to WOs, but not to individual activities. Every activity in a WO inherits the priority 

of the WO [15]. If a WO must be completed for another WO to be performed, then this 

WO will also inherit its successor’s priority. A successor WO however, need not necessarily 

have the same priority level as its predecessor if the successor’s priority is lower. In other 

words, if a HOPP WO needs a ESS WO to first be performed, then it does not inherit the 

ESS status, but if an ESS WO needs a HOPP WO to be first performed, then the HOPP WO 

will inherit the ESS status, thus becoming an ESS WO. 

The three priority levels are also associated with operational deficiency reporting 

(OPDEF) levels that become active during all phases of a ship’s lifecycle, except during 

DWPs and pre-DWP EWP1s. A category-1 OPDEF requires reporting within 4 hours, and 

the fleet Commander (Atlantic or Pacific, depending on the ship’s home base) is informed 

immediately once shore authorities are informed, regardless if this happens at odd hours 

such as 03h00 when this person would normally be sleeping. A category-1 OPDEF is 
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something that renders the following upcoming mission(s) unfeasible [16]. For example, 

if all replenishment-at-sea (RAS) stations are not repaired and certified for re-fuelling with 

a tanker, where performing a RAS is part of an upcoming NATO exercise, then the lack of 

RAS capability is considered a CAT-1 OPDEF. Equivalently, WOs associated with repairs 

and certification of a preferred RAS station become a priority-1 WO. In this example, once 

a single RAS station is repaired (out of four), then the OPDEF will be downgraded to a CAT-

2 OPDEF. Any WOs associated with repairing the other RAS stations will be priority-2 to 

match. A CAT-3 OPDEF will remain active, usually after a second RAS station is certified, 

until all four RAS stations are certified for use. The equivalent WOs for repairs of RAS 

stations 3 and 4 will adopt priority-3 status or (equivalently NOPP) until they are 

completed. Except during DWPs and EWP1s, WO priority levels generally match OPDEF 

levels, except where there are oversights in updating the DRMIS data linked to the 

associated OPDEF status. 

It should be noted that precedence between WOs in SWPs is rare. Precedence 

between WOs is more common in EWPs but still not normal; however, in DWPs, WO 

precedence relationships are more common. An example of this may be deck renewals: 

all decks in a level may be tripped, have hot work to repair all deteriorated sections, then 

have the decks renewed. Since heavy equipment must be moved over these decks using 

rigging equipment, all heavy equipment travels that cross these decks should be done 

beforehand to prevent deck-rework, as these movements often damage decks [3]. 

2.5 High Variability 

As previously eluded to, work in NSWPPs is subject to high variability in terms of 

activity durations and scope growth. For a relative example, the HAL Class Frigate marine 

system has a main control system that continuously monitors and controls equipment 

systems in the ship, comprising over 5000 sensors and 8000 data points [17]. Despite all 

these sensors, a vast proportion of equipment health cannot be determined by sensors: 

partial disassembly and visual inspection or testing are required. Many calendar-based 

preventive maintenance (PM) routines have inspection components at various stages that 

will incur additional maintenance if conditions are discovered that require it. To illustrate, 
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a five-day PM routine is scheduled, and everything fits nicely in a SWP before it begins. 

During project execution however, after the first day of this PM routine, a problem is 

found needing additional repairs. This problem may simply slightly extend the duration of 

the PM routine if the repair is small and required materials are present; however, if the 

problem needs a more invasive solution, then the PM WO may be halted while a new 

repair WO is planned, scheduled, and executed. This delay may mean that the PM routine 

itself needs to be delayed to a later work period if possible. If it cannot be delayed, then 

other work occurring in that space or using the same resources may need to shift, be 

cancelled, and/or re-scheduled. On the other hand, if the repair can wait until the next 

work period, then the current PM WO will be cancelled as it cannot be completed with 

the defect present, and a new CM WO and a new PM WO will be generated for the 

following work period. This would have the effect of significantly shortening the duration 

of the planned PM WO for the current work period. 

This type of scope growth example is one of many things that can happen during 

a work period to break a schedule. Above and beyond scope growth found during PM 

routines, workers may become ill, materials needed for an activity may be incorrect once 

the packaging is opened, it might rain, something else very important may break as some 

equipment is used by SS throughout a work period, and the PM action itself may induce 

failures. Main engines and radars are stationary and not used during a work period until 

close to the departure date for the next mission: usually a ship’s primary equipment is 

tested for free movement on a Friday when departure is scheduled for the following 

Monday morning. Rotating mechanical equipment may fail while in standby due to 

seizures that occur during these stationary periods, so new and especially important 

failures may (and often do) occur only a few days before the end of a project. The 

interviewed project management staff stated the same thing: “the moment work begins, 

a printed schedule is no longer accurate” [3]. 



 

24 

2.6 Examination of Project Networks 

In the majority of the literature reviewed for this project, such as those found in 

the PSLIB [18], it was found that the studied RCPSPs used classic precedence network 

topologies that are normally found in construction project or maintenance projects for 

aircraft, smaller vehicles, or submarines, where tasks have a high degree of precedence 

and every activity is expected to be finished. Priority is not considered because all 

activities are necessary. Postponing a project often represents a failure, but the project 

will be postponed if needed, although perhaps sped up with overtime, until all activities 

are completed. Figure 11 is an illustration of this type of network topology for aircraft 

maintenance work periods as studied by Croteau (2015) [19]: 

 

Figure 11: A precedence-dominated network structure typical for construction, 
aircraft, and submarine work period projects (source: Croteau (2015) [19]) 
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The network topology of NSWPP maintenance projects are however closer to the 

illustration shown in figure 12, where there is little precedence between WOs, but the 

WOs do interact with each other by competing for the same labour, compartment, and 

radiation/emission space resources.  The use of a “dummy” finish node is not necessary 

because not all activities need to be completed or are even expected to be completed, 

but these may be placed to show WOs that are ESS or mandatory. 

To accommodate for this unique network structure, the experimentation of 

scheduling methodologies in this thesis are performed using similar network topologies 

between WOs, as well as with varying priority levels that respect the priority conditions 

described earlier. 

2.7 Contractor Assessment Criteria 

Another aspect considered in this thesis is the primary contractor’s performance 

assessment criteria. For example, as part of Thales’ AJISS (AJISS: Arctic Offshore Patrol 

Ship (AOPS) Joint-Support Ship (JSS) In-Service Support) contract with Canada, it is 

recognized that Thales or other ISS contractors will be assessed across a number of factors 

[20]. Contractor assessment criteria are often not fully defined until a contractor has been 

performing work for a performance-measurable duration, as new ISS contracts are more 

commonly embracing “relational contracting”, where the details of work to be performed 

are not fully defined by the Government of Canada until the contract is underway. Canada 

Figure 12: A resource-dominated network topology common to NSWPPs. 
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requests performance objectives and higher-level outcomes, and the contractor manages 

the tasks needed to meet the desired performance. 

The contract is guaranteed over a five-year rolling wave period, where the 

contractor’s performance is assessed on an annual basis, and the contract is renewed for 

the next five years (the guaranteed next four years plus an additional year) if the 

performance is deemed acceptable [20]; thus, giving Industry an opportunity to plan an 

exit or have a guaranteed long term contract where it can safely hire personnel and invest 

without the threat of having the contract terminated in a very short term. 

One criterion that is related to scheduling is that of meeting the agreed work 

completion targets for upcoming work periods. This scoring scheme will directly reflect 

WOs accepted for upcoming work periods, WOs completed from these accepted WOs, 

and the priority level of these WOs [20]. The exact scoring weights for each priority level 

are not included in this thesis, but an example of such weights can be: If the contractor 

accepts 100 priority-1 WOs, 50 priority-2 WOs, and 50 priority-3 WOs, then this becomes 

the basis of performance assessment for this work period. Each priority-1 WO may be 

worth 1 point, while priority-2 WOs may be worth 0.3 points and priority-3 WOs may be 

worth 0.1 points. In this scheme and example, the total project is worth 120 total points. 

At the end of the project, if all work is completed, the contractor will be given a 120/120 

or 100% performance assessment. If only 10 priority-1 jobs are not completed, then the 

assessment rating will be 110/120 or 91.7%, while if only 10 priority-3 jobs are not 

completed, then the assessment rating will be 119/120 or 99.2%. It is therefore natural 

that these types of contract should consider priority. 

2.8 The Scheduler’s Perspective 

For DWPs however, the contractor performing work for Thales such as ISI or 

Seaspan may not be subject to this scoring criteria and may be contracted to perform a 

set number of WOs, in the form of particularized maintenance repair specifications 

(PMRS). As scope grows throughout the project, additional work may be negotiated on a 

case-by-case basis. There will also likely be situations where performance assessment will 
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ignore certain WOs that are not completed when this is outside of the contractor’s 

control. For example, if a serious problem is found during a maintenance routine, Thales 

may negotiate with Canada and propose the options of: 

• fixing the new problem found but not completing the original PM routine at no 

fault to the contractor 

• fixing the problem and completing the PM routine at a higher additional cost, or  

• fixing both at normal additional costs where the project makespan is extended. 

How much this makespan needs to be extended and how much additional work 

is needed, if any, are all questions that could be answered by an automatic 

scheduling tool, giving quick answers to support decision-making.  

A refit contractor may be consulted to negotiate project makespan, what work 

periods to complete and when, as well as the content of these work period projects. 

Ideally, a scheduling tool will need to be flexible enough to quickly schedule many 

variations of planning data and produce robust schedules that give reasonable makespan. 

A reasonable makespan is one that is long enough to comfortably complete important 

high priority work and as much lower priority work as possible, with the understanding 

that the scope will grow throughout the project and delays are inevitable. The scheduling 

tool needs to be fast so that back-and-forth negotiations and analysis can be performed. 

It is proposed that long-duration work cannot be overlooked, and priority should be 

considered. There should be several options for the user to manipulate data to prevent 

work conflicts, to find answers for negotiations, and for options analysis. 

2.9 Research objectives and thesis outline 

A research objective for this thesis is to study RCPSP development, current 

models, and RCPSP variants that could be applicable to the problem context. To 

encompass the problem completely, the research includes heuristic methodologies to 

accommodate solutions that used quick solve times to big problems, popular project 

management and scheduling methodologies that used buffers, and research into 
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overtime formulations. The literature review is not exhaustive but includes much of the 

most popular research in these fields.  

This thesis is structured such that after the literature review, real-world inspired 

data is analyzed, and preliminary experimentation is performed to narrow the solutions 

to practical and useful formulations and heuristics. This is followed by a description of the 

proposed new formulations and heuristics for the NSWPPs. Finally, experimentation is 

conducted with these formulations on randomly generated real-world inspired problems 

to compare results and limitations. An automatic scheduling prototype was developed for 

project scheduling at FMFCS and user-feedback was collected for incorporation into 

solution development, and this was included as an additional qualitative experiment set. 

Prior to concluding the thesis, a description of future research extensions is presented. 

This work is intended to be complementary with similar research from other research 

groups sponsored by Thales Canada, for NSWPP optimization development. 
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Chapter 3: Literature Review 

Academic research on resource-constrained project scheduling problems 

(RCPSPs) is very common. A 1995 survey of RCPSP research by Ozdamar and Ulusoy [21] 

included over 83 references. 16 years later in 2011, a survey of RCPSP research by Weglarz 

et. al [22] included 218 related references. Since then, the field has become so populated 

that surveys focused on more precise aspects of the RCPSP. A survey by Pellerin et al. [23], 

in 2019 listed 144 references on only the hybrid-metaheuristics for the RCPSP.  

The classic RCPSP formulations first developed on the coattails of operations 

research that saw a huge escalation in its usage during World War II [24], and several 

extensions and variants have been made over the years. The literature review conducted 

in this thesis is one that follows these variants and extensions to the current state and 

includes a review of popular heuristic scheduling techniques that have been developed 

alongside exact methodologies. This review includes a critical look at closely related 

theorems, backed by preliminary experimentation. These problems are interesting due to 

their complexity as they are considered NP-hard, where the difficulty grows exponentially 

with more activities and resource demand [25] [26]. The purpose of this review is to find 

the RCPSP formulations and methodologies that would be most applicable to NSWPPs, 

and to adapt them through innovation to the particularities of this RCPSP variant, with its 

multiple scenario-based objectives. Due to operational requirements of a NSWPP 

scheduling tool, it was deemed important to review reactive scheduling research, as the 

re-scheduling scenario includes different objectives and associated methodologies. 

Papers on robust RCPSP research are also researched in depth to understand the 

evolution and current academic standing on methods of improving schedule robustness, 

meaning improving a schedule’s ability to accommodate variations without needing 

widespread re-scheduling or not meeting a project’s objectives. Finally, research of RCPSP 

overtime usage in formulation development is analyzed and compared to current 

Canadian NSWPP Industry practice at allocating overtime. 
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3.1 Prelude to the Classic RCPSP 

The classic RCPSP derives from the Critical Path Method (CPM) that is still taught 

to project managers around the world and forms the foundation of project management 

[27]. CPM was first introduced by Kelley Jr & Walker in 1959 [24] where it competed with 

the program evaluation and review technique (PERT), introduced by Malcolm et al. (1959) 

[28], that used three-point estimates to determine activity durations. The CPM uses 

precedence relationships to calculate float or slack, early and late start times, early and 

late finish times, and the critical path which is where management must place its focus 

and effort (core aspects of project management). CPM alone however does not result in 

NP-hard problems but is insufficient to schedule projects where resources are scarce. 

CPM is relatively trivial to compute with modern computers [27].  

In the classic RCPSP, when resource scarceness is accounted for, the CPM alone is 

insufficient. In a naval surface ship work period (NSWPP) like a short-work-period (SWP) 

for instance, almost all WOs have no predecessors; however, it would be completely 

impossible to start all WOs on the first day: people, equipment, and materials would have 

to duplicate themselves and work on top of each other occupying the same physical 

space. These types of situations produced impractical schedules and thus research in the 

resource-constrained field shortly followed the CPM. The RCPSP problem as a linear 

programming model was introduced by Wiest (1963) [29]. Shortly afterward in 1967 and 

by a need to expand the formulation to practical applications, heuristic approaches were 

later proposed again by Wiest (1967) [30]. The formulation was then further refined by 

Pritsker, Waiters, and Wolfe (1969) [31] to produce a relatively efficient discrete-time 

0 - 1 linear programming model that generates optimal solutions to reasonably-sized 

RCPSP problems with enough time.  

This author and Mr. Prabhu formulated and tested multiple replications of two 

formulation variants on randomly generated problems with 100 activities each to 

compare basic RCPSP formulations for solve times using Gurobi Solver versions 8.1 and 

9.0. The disaggregate discrete time precedence-constraint modification proposed by 

Christofides, Alvarez-Valdez, and Tamarit (1987) [32] did not yield statistically-significant 
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improvement on solve times on 30 of these problems. Therefore, the discrete-time RCPSP 

formulation concept is used as the basis of formulation in this thesis. This formulation is 

presented below. It is a translation of the approach by Prisker et al. (1969) and presented 

in the format used in Couch (2016) [1]. 

3.1.1 RCPSP Model: Makespan Minimization 

Indices: 

1… A + 1 for activities 

1…K for resources types 

0…H for the time horizon 

Sets: 

P activity immediate predecessor pairs (i,j) 

K resources 

J activities 

Parameters: 

H integer, the planning horizon from the project start (0) 

A integer, number of activities 

𝑑𝑖 and 𝑑𝑗 integer, duration of activities i and j 

𝑟𝑗𝑘 integer, activity j demand for resource type k 

𝑅𝑘 integer, resource k capacity 

𝐸𝑆𝑗 integer, earliest start time of activity j 

𝐿𝑆𝑗 integer, latest start time of activity j 

 

Decision Variables: 
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𝑥𝑗𝑡 = {
1 if activity 𝑗 starts at time 𝑡

0 otherwise                               
 

 

Objective function: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡 × 𝑥𝐴+1,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

(1) 

- Minimizing the dummy end node’s finish time t (makespan) 

 

Subject to: 

∑ 𝑥𝑗𝑡 = 1

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱 (2) 

- All activities must be completed once between the activity ES and LS times. 

 

∑ 𝑡 × 𝑥𝑗𝑡 ≥ ∑(𝑡 + 𝑑𝑖) × 𝑥𝑖𝑡

𝐿𝑆𝑖

𝐸𝑆𝑖

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱, (𝑖, 𝑗)  ∈  𝑷 (3) 

- A successor’s start time must be greater or equal to a predecessor’s start time plus 

its duration. 

 

∑ ∑ 𝑟𝑗𝑘 × 𝑥𝑗𝑏 ≤ 𝑅𝑘

min{𝐿𝑆𝑗,𝑡}

𝑏=max{𝑡−𝑑𝑗+1,𝐸𝑆𝑗}

𝐽

𝑗=1

          ∀ 𝑘 ∈ 𝑲, 𝑡 ∈  𝐸𝑆𝑗 … 𝐿𝑆𝑗 (4) 

- The sum of resource usage for the period of activity start times to activity end 

times must not exceed the resource capacity for of each resource type k. 
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𝑥𝑗𝑡 ∈ {0,1}         ∀ 𝑗 ∈ 𝑱, 𝑡 ∈ 𝐸𝑆𝑗 … 𝐿𝑆𝑗 (5) 

- Start times are binary, so a variable exists for every time unit between each 

activity’s ES and LS. 

The early start and late start (ES and LS) portions of the above formulation are not 

needed to formulate these problems. Instead of ES and LS, one may use 0…H. In the real-

data inspired random problem generated instances used in our preliminary 

experimentation, the benefit in solve time by using ES and LS was almost negligible for 

solution time, since the NSWPP problem has lower overall precedence constraints than 

most RCPSPs reviewed in academic literature. This confirms observations made by Kolish 

et al. (1995) [33]. The benefits of calculating ES and LS are that there are fewer binary 

variables in the problem, but since modern solvers very quickly eliminate unfeasible 

binary variables from the solution space, it is theorized that the benefit of this pre-

calculation was found to be negligible when problems have not many precedence 

relationships, such as those found in NSWPPs. Preliminary experimentation completed on 

a problem set provided by Pellerin (2019) [34], where all actual activities had 

predecessors and successors with tight ES and LS, was found to significantly decrease 

solve times. This benefit however was only seen when the time horizon H was relatively 

close to the optimal makespan. If the LS, calculated using a standard backwards pass [27], 

started from a relatively large time horizon H, then solution times remained relatively 

similar to that using 0…H, until this time horizon H began to approach the optimal 

solution. Figure 13 shows these preliminary results using a commercial off-the-shelf 

laptop (Intel Core i7 vPro, 1 TB SSD, 16 GB RAM).  



 

34 

Despite this observation, all other preliminary and early main experiments (see 

methodology in results section) were completed with formulations that calculated ES and 

LS from a generously large time horizon, as leaving the solution space at 0…H never 

shortened the solve time, and most references reviewed in literature commonly use ES 

and LS, recognizing the potential benefits of pre-calculating these values, such as in Couch 

(2016) [1], Croteau (2015) [19], and Tenera (2008) [35]. It was also later found during 

experimentation with larger problem sets, that although solve time does not increase, 

the time required for formulation software to generate linear program model files (.lp 

files) decreased significantly with tighter ES-LS windows.  

Many papers in RCPSP literature describe methods for determining a suitable time 

horizon such as using schedule generation schemes (SGSs) [36]. For a practical reference, 

Appendix A provides programming code in MS Excel VBA that was used for calculating ES 

and LS. In the code, a serial SGS sorts activities by ES, solves an initial schedule to achieve 

Figure 13: Gurobi software solve times improved as ES and LS calculations were 
assigned to task start times, but only when LS was calculated from a reasonably tight 
origin H. 
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a time horizon H, then uses H to perform a backward pass and achieve a reasonably tight 

ES-LS window for the scheduling activities. It was later found from Gurobi documentation 

that this heuristically-derived schedule can also be sent to a solver to give it an initial 

feasible solution, so that if the solver is interrupted due to limited time, then at least a 

solution can be given [37], as a perfectly optimal solution is rarely needed or desired in 

practice [3]. 

The makespan minimization formulation is however unsuitable on its own for 

NSWPPs. As described earlier, the huge amount of variability and expected scope growth 

requires all activities, not just those on the critical path, to be completed as soon as 

possible (front-loading [3]). Preliminary experimentation using minimize makespan 

formulations with Gurobi optimization solver 9.0 resulted in slack activities to be 

scheduled close to as late as possible (ALAP). In many industries like the new-construction 

industry where there is not much scope growth expected, ALAP is preferred because of 

people’s tendency to work less efficiently when they know that they have time to spare 

[38]. In flexible manufacturing industries, the tendency shifts to what is more common to 

NSWPPs, a desire to front-load all known work to make room for expected scope growth 

and new work [39]. 

Nudstasomboon and Randhawa (1997) [40] recognized this effect in RCPSP 

literature and suggested the following methodology to reduce slack activity durations: 

1. Solve the minimize makespan problem using the classic RCPSP and determine 

the optimal shortest makespan. 

2. Introduce a constraint to ensure this makespan is maintained: 

∑ 𝑡 × 𝑥𝐽+1,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≤ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (6) 

3. Modify the objective function to reduce the start times for all slack activities: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡 × 𝑥𝑗𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

(7) 

4. Solve the problem again and maintain all activity start times. 

There is also the bi-objective solution, mentioned by Nudstasomboon and 

Randhawa [40], that has one term to minimize makespan and one term to minimize the 

start times of every activity.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡 × 𝑥𝐽+1,𝑡 + 𝛼 ∑ ∑ 𝑡 × 𝑥𝑖𝑡

𝐿𝑆𝑖

𝐸𝑆𝑖

𝐽

𝑗=2

𝐿𝑆𝑗

𝐸𝑆𝑗

(8) 

 

Preliminary experimentation of this objective revealed a remarkable 10-fold 

increase in computation time for the same NSWPP-inspired 100-activity problems, when 

compared to a single-term minimize start-time formulation (i.e. a function that simply 

seeks to minimize the start time of each activity), such as using equation 7 as a starting 

point. From experimentation in the methodology and review sections of this thesis, it was 

found that using variants of equation (7) as a starting point are preferable in many ways 

to the classic minimizing makespan for several reasons. Firstly, in NSWPPs, minimizing the 

start time of all activities undertaken is generally more important than minimizing the 

overall makespan. The dummy end node is technically a fictitious activity and solver 

results that do not use a makespan constraint are very practical. These results are 

practical because, with trivial data processing, one can see which activities are scheduled 

beyond the desired project end date, indicating that there are problems with either too 

much scope (too many WOs) or an overly-tight makespan. The results of scheduling using 

equation 7 as the objective function show underlying problems relating to the assumed 

project makespan or work that is undertaken without needing an end-node. For example, 

if a project leader (PL) realizes that after scheduling, a few resource-competing activities 

fall outside of a project window, then the PL will gain insight in the infeasibility of his/her 

project and use this information to; suggest alternative execution modes, exclude certain 
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work from the project, complete partial components of a WO and saving the rest to be 

completed later, find problems with the underlying data, and may use the results to justify 

the use of overtime on critical activities. It should be noted, although intuitive, that a 

project makespan is highly correlated with any function that seeks to schedule all 

activities as soon as possible. 

Anderson (2014) [41] suggests an RCPSP model for submarine maintenance where 

it modifies the objective function by adding a penalty to the start times for each activity. 

This thesis is related to naval work with disaggregated WOs, and Anderson recognizes 

that minimizing the overall makespan directly in a formulation is not required. The 

objective function is simplified to show the term that reduces slack of all activities by 

adding a 0.01 weighting penalty for starting activities later: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (1 − 0.01𝑡) × 𝑥𝑗𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

(9) 

Note also that to convert this to a minimization problem, the start time penalty 

only needs to be reversed, making this identical to equation (7) if the weighting penalty 

value (0.01) is removed: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 0.01𝑡 × 𝑥𝑗𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

(10) 

Although this may be suitable in a submarine work period whereas previously 

described WOs have significant precedence relationships between them, this will still 

cause the problem of activity duration not being considered. 

There is a considerable flaw in the solutions that are found using the above 

formulations in NSWPPs. In NSWPPs, where precedence relationships have much less of 

an effect on outcomes than resource constraints do, there will be many slack activities. 

The majority of activities will not be on the critical path and most activities will not even 

have any effect on the critical path except where they compete for resources. Through 
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preliminary experimentation, it was found that using the objective function from 

equation 7 produces solutions whereas many short-duration activities as possible become 

scheduled as early as possible and all the long-duration activities become scheduled later 

in the project. This is not good in a real NSWPP scenario [3] as longer WOs are generally 

the most important and complicated WOs. To illustrate this flaw, picture a scenario where 

completing all activities is infeasible and selecting as many activities as possible is desired 

by modifying the completion constraint (equation 2) to the equation below: 

∑ 𝑥𝑗𝑡 ≤ 1

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱 (11) 

The objective function being considered may not even allow a solver to select 

longer duration activities at all because completing more short activities earlier has a 

better impact on the objective function. Figure 14 is an illustration of the solutions 

provided by this objective function if three WOs with different durations are scheduled in 

sequence where the WOs have no precedence relationships between them, but must be 

completed at different times due to limiting resource constraints. This effect is realized 

because only activity start times are considered and a sum of these constitute the 

objective function. Placing the longer activity at the project start will prolong the start 

times of all later slack activities that compete for resources, and thus produce larger 

objective functions, even though having the longer duration act``vities finished earlier is 

what is desired in the reality. This objective function therefore insufficiently models the 

true scheduling goals.  

Figure 14: Scenario 1 is preferable because the longer activities are performed earlier, 
but the objective function that simply minimizes start times produces a better 
objective function for scenario 2. 
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It is therefore proposed that weighted activity durations should be considered in 

the objective function for NSWPPs. To the author’s knowledge, there are no RCPSP 

references that use weighted activity durations in the objective function.  

3.2 Formulation Modifications and Suitability with NSWPPs 

Improvements to the classic RCPSP come in several forms. Christofides et al. 

(1987) [32] suggested to convert the discrete time precedence constraint (equation 3) to 

the disaggregate discrete time (DDT) form. The DDT precedence constraint is shown 

below: 

∑ 𝑡 × 𝑥𝑗𝑡 + ∑ 𝑥𝑖𝑏 ≤ 1

min {𝐿𝑆𝑖,𝑡+𝑑𝑗−1}

𝑏=𝐸𝑆𝑖

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝐽, (𝑖, 𝑗)  ∈  𝑷 (12) 

Preliminary experimentation conducted by Prabhu (2020) [42] showed no 

improvement in using the DDT constraint on NSWPP-inspired randomly generated 

problems, where a 30-set experiment of 100-activity problems solved faster with DT by 

71% ± 24% at a 90% confidence interval (C.I.), assuming that the difference between solve 

times are normally distributed for the same problems. 

Continuous-time based formulations exist for the RCPSP, as described by 

Applegate (1991) [43], then examined and expanded by Alvarez-Valdez (1993) [44], and 

Artigues et al. (2003) [45]. These require three types of additional decision variables: 

starting time variables, sequential binary variables determining the sequence of activities, 

and continuous-flow variables denoting the resource that is transferred between 

activities. 

Other RCPSP variants include the event-based MILP formulations first proposed 

by Zapata et al. in 2006 [46], the on/off based formulation proposed by Koné et al. (2011) 

[47], and the ON-only formulations proposed by Croteau (2015) [19]. 

Preliminary experimentation on the makespan minimization problem were 

conducted using the state-of-the-art forms of these formulations on NSWPP-inspired 

fictitious problems and the solution times were unacceptably large. Over 10 problems 
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were analyzed with 100 activities, and no continuous-time or event-based formulation 

could finish solving in less than 8 hours, where the DT formulation solved in less than a 

few minutes. As stated in these continuous-time formulation papers, these formulations 

were considered better than their DT counterparts only when the work periods are not 

adequately modelled by discrete time intervals. Perhaps in industries where scheduling 

to the precise minute or second is practical, such as for computer programs to process 

routines or in manufacturing plants where increasing machine utilization is of primary 

importance, these continuous-time methods may be superior to DT formulations 

(although these can only solve problems with a small number of activities), but NSWPPs 

are more realistically scheduled with discrete times [3] [4].  

The reason for the appropriateness of DT-modelling in NSWPP practice is that 

workers need time to start any activity: they need to collect tools and go to the work 

location, they need to inform ship staff (SS) that work is about to start, conditions need 

to be made safe (lock-out and tag-out), a reasonable amount of time is needed to 

complete the actual work, then time is needed to collect tools and return to the repair 

facility (RF) for meals or a shift change. Work completion is not even normally reported 

until the shop workers have returned to the repair facility (off the ship) and they are able 

to log-on and close-out their activities. Ideally this would happen immediately upon 

arrival from the ship, but it can take days at times. What has been gathered from 

interviews in FMFCS NSWPPs and as requested by PLs and PMs [3], is that a scheduling 

tool should suggest activity start times either at the start of each day or as precisely as at 

the start of each shift (i.e. morning, after lunch, and after supper for evening shifts (if an 

evening shift exists)). Whether there is a one, two, three, or four-hour activity, this will 

usually take a morning or an afternoon to complete; by the time the right parties are 

informed that the activity is completed and the next activity is prepared, the morning or 

afternoon is already expended, as workers do not have access to the ERP system in the 

ship (an important cyber-security measure). With such discretized time units, the DT or 

DDT formulations reach an optimal solution for the same problems much faster than with 

continuous time models. In cases examined in preliminary research, problems with 60 
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activities could be solved in seconds with DT and DDT models, while the continuous time 

models would not solve to optimality after hours of computation. To illustrate the value 

of having relatively larger time steps in DT and DDT models, if this work were planned 

such that the binary DT start-time variable 𝑥𝑗𝑡 existed for every single second in a 20-day 

work period with eight-hour shifts, then there would be up to 576,000 𝑥𝑗𝑡   variables per 

activity. In the same illustration, by scheduling to the half-day, there are only 40 variables 

per activity; thus, reducing the number of binary variables by several orders of magnitude. 

This DT practicality was observed at FMFCS/CB, ISI, and at SNC Lavalin in dockyard work 

periods (SWPs and EWPs). It should be noted that Seaspan in Victoria produced a 

schedule from Primavera P6 showing work for a 24/7 short work period where a merchant 

ship required a large volume of work in only eight days. In this case, work was scheduled 

down to the half-hour level-of-precision, but interviewed staff indicated that the schedule 

was ever only loosely followed, and decisions by floor managers made throughout the 

work period dictated what work would progress at what time, as conflicts, duration 

variations, and scope growth emerged. Additionally, this project used strict precedence 

CPM relationships and did not consider a constrained resource pool [48]. This application 

of the scheduling ERP system was only used in practice to create a visual display (i.e. Gantt 

Chart) as no resource information, including capacities, costs, etc. were used. 

Despite the simplifying nature of using DT units with a significant difference 

between each time step (hours to days), some real-world problems analyzed for this 

thesis were still too large and complex to solve to optimality in a reasonable amount of 

time with exact formulations and MILP solvers. Experimentation described later in this 

thesis shows that even the best DT formulation with exact solving methodologies are 

unsuitable for solving entire longer-duration NSWPP projects directly, as these projects 

often involve well over a few thousand activities and many data-mistakes are present, 

requiring the schedule to be re-solved quickly and frequently to find and correct these 

data mistakes iteratively. Thus, to effectively research the NSWPP problem, heuristic 

techniques will also be considered. 
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3.3 Variants and Extensions 

Many papers have been written that propose RCPSP formulations with different 

objectives. Möhring (1984) [49] first suggested the resource availability cost problem 

(RACP), where the objective is to minimize the maximum per-period resource and 

consumption cost for each individual resource. Several other references evaluate, 

elaborate, and expand this problem. Coelho and Vanhoucke (2011) [50] proposed multi-

mode formulations with various execution modes. Schutt et al. (2013) [51] proposed lazy-

precedence clause formulations that seek to level resource usage. Schwindt and 

Zimmermann (2015) [52] built a 59-item table of all the RCPSP variants and objective 

functions. These were found to be either single or multi-objective, seeking to improve 

makespan, cost, resource usage, and quality. Many references seek objectives such as 

time-cost tradeoffs [53], resource leveling [54], net-present value objectives [55], 

capacity planning [56], and minimizing project risk [57]. 

Schedule quality and minimizing project risk, and its practical application, is closest 

to this thesis’ objective of proposing effective methodologies, heuristics, and 

formulations for NSWPP scheduling and re-scheduling problems. Of note with respect to 

NSWPPs is the RCPSP-t, where studies are focused on the particularities of resource 

availabilities that change over time, first described in Hartmann (2012) [58]. This is 

interesting because the real-world NSWPP projects reviewed do in-fact often have worker 

availability tables that show shop capacities changing over time. For instance, at FMFCS a 

weekly report is derived from the ERP system DRMIS, showing how many hours of 

availability remain for each of the facility’s 70 shops for the next 14 weeks. When data is 

entered as designed in their standard operating processes, worker leave intentions and 

holidays are entered into the ERP, and a good approximation of resource availability can 

be derived. PLs can then schedule their work, although manually, by first reviewing shop 

capacity information for each activity in a WO, before requesting dates to the schedulers. 

Shops availabilities are then updated in the ERP as work is scheduled. Access and use of 

this varying resource availability information would be essential in developing effective 
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automatic scheduling for organizations that track and use worker availability in their 

planning and scheduling.  

An interviewed Thales project manager confirmed that project risk was her top 

objective when devising scheduling methodologies for company projects [2]. Robust 

RCPSP methodologies and formulations were therefore reviewed for this thesis. These 

include references such as Couch (2016) [1] where ideally placed project buffers were 

used and Van de Vonder (2006) [59] where strategies are suggested for flexible 

manufacturing plants. However, none were found to be ideally suitable in whole for the 

NSWPP RCPSP in the current Canadian Industry state due to specific problems (e.g., 

human factors, Student Syndrome) that will be further discussed in the next chapter. 

3.4 Heuristic Scheduling Techniques 

As previously mentioned, since RCPSPs are NP-hard and exact formulations are 

often unsuitable to handle real-world NSWPP problems [26], a literary review of heuristic 

techniques was conducted. These heuristics have been necessary in developing RCPSP 

solutions to real-world problems since the early 1960s [52]. In the late 1960s, famous 

Microsoft/IBM CEO and philanthropist Bill Gates and his friend John Allen were successful 

in selling heuristic RCPSP computer codes for his high school and several companies state-

wide [60], showing the value and practical relevance of heuristic scheduling methods 

when the relatively weak computers of the era would have been unable to find optimal 

solutions to these problems. The backbone of heuristic techniques are the serial schedule 

generation schemes (serial SGS) and the parallel schedule generation schemes (parallel 

SGS), and they are generalizations of “list scheduling” from machine scheduling [61].  

It is common for the serial SGS to be used to find heuristic solutions to RCPSPs 

[62]. These are set according to priority rules that are common to most commercial 

scheduling systems [63]. A closer examination of the serial SGS reveals that it 

accomplishes almost exactly what human schedulers accomplish when scheduling all 

WOs for a NSWPP project when working from a prioritized top-to-bottom list. A PL may 

assign all WOs in a prioritized list and schedule them one at a time, working down the list, 
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scheduling them as early as possible where the work is precedence and resource feasible. 

This requires a series of verifications at each time step until resources are available for 

the entire length of the activity. The serial SGS result may contain the optimal solution to 

any RCPSP if the order is correct and this has been demonstrated by Sprecher (1995) [64]. 

However, the parallel SGS may never contain the optimal solution, which may be 

considered a severe drawback [65]. 

For the serial SGS to function, early start (ES) calculations that consider only 

precedence relationships and activity durations are computed using the classic forward 

pass calculations described by Demeulemeester and Herroelen (2002) [66]. With this and 

relatively simple data processing, tasks may be ordered such that predecessors are always 

scheduled before successors. After each activity is scheduled, the precedence-related 

early start of the next unscheduled activity is calculated, and this becomes the first 

timestep to examine feasibility for this next activity. If the next activity cannot be 

scheduled at the ES time due to resource unfeasibility, the start time is right shifted by 

one time unit and it is then verified again for feasibility. The pseudo-code to schedule 𝑛 

activities for each activity 𝑖 with scheduled start time 𝑎𝑖, respecting the early start 

constraints of each activity (𝐸𝑆𝑖), as well as the resource demand for each type 𝑚 and 

activity 𝑘𝑚𝑖  may be summarized as follows (Visual Basic-inspired format): 

1. Do While: each activity 𝑖 , from 0… 𝑛. First_activity.Offset(𝑖,0) <> “”     ‘Keep 

looping through all activities 

a. Initialize: 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖 =  𝐸𝑆𝑖  

b. Do While 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑘𝑚 − 𝑘𝑚𝑖 ≤ 0 ∈ {𝑘𝑚 ∪ 𝑖}, {𝑡𝑖 … 𝑡𝑖 + 𝑑𝑖}      ‘check if 

activity is resource unfeasible for all resource types between the start time 

and the start time plus its duration 

i. 𝑡𝑖 = 𝑡𝑖 + 1     ‘increment start time if unfeasible 

c. Loop     ‘loop ends when activity is feasible 

d. 𝑎𝑖 = 𝑡𝑖      ‘update activity start time 

e. 𝑛𝑒𝑤 𝑘𝑚 = 𝑜𝑙𝑑 𝑘𝑚𝑖 ∈ {𝑘𝑚 ∪ 𝑖}, {𝑎𝑖 … 𝑎𝑖 + 𝑑𝑖}      − 𝑘𝑚𝑖 ∈ {𝑘𝑚 ∪

𝑖}, {𝑎𝑖 … 𝑎𝑖 + 𝑑𝑖}      
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‘calculate and update resources, may use a resource table or matrix for 

each resource type for entire duration of activity 

f. Recalculate: 𝐸𝑆𝑖+1     ‘Update the ES for the next activity 

g. 𝑖 = 𝑖 + 1     ‘increment the activity number 

2. Loop 

This is pseudo-code is implemented in VBA (see Appendix A) following the format 

described by Kolisch and Hartmann (1999) [65], and by Rostami et al. (2017) [36]. Some 

improvements to the serial SGS can be made to improve computation time. For instance, 

it was found with experimentation that a GoTo line of code, used to abandon a check in 

1.b when infeasibility has been found, reduces computation time by approximately 50%. 

Kolisch and Hartmann (1999) [65] also recommended checking only the last time unit of 

a scheduling time solution for available resource capacity instead of at every time unit for 

an initial pass, and thus this improved the serial SGS solution time used for 

experimentation in this thesis by an additional 10%. 

The computation time for a serial SGS is also generally faster than that of using 

exact solvers except where the problem is very small, as will be seen later, and the 

increase in computation time grows more-or-less linearly with additional activities, rather 

than exponentially as seen for the NP-hard problem of finding and confirming optimality 

in RCPSPs [26]. 

The other main SGS is the parallel schedule generation scheme (parallel SGS). This 

SGS is very popular in job-shop and machine scheduling, and variants of it such as the 

shifting bottleneck procedure are found to produce schedules that are very practical [67]. 

One downside of parallel SGSs are that they generally require more computation than the 

serial SGS and the typical scheduler does not readily understand how the scheme achieves 

results [3]. The parallel SGS is similar to the serial SGS in that it goes top to bottom through 

a list of activities, but it considers only a single timestep at each pass through the list. It 

attempts to schedule as many activities as possible at each time step, until all activities 
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are finished. The pseudo-code for the parallel SGS adapted from [65] and [36], is as 

follows: 

1.  Initialize: t=0, all activities unmarked as “scheduled” 

2. Do While: any activity remains unmarked as “scheduled” 

a. For: each activity 𝑖, from 0… n. First_activity.Offset(i,0) <> “”     ‘Loop 

through entire list of activities 𝑖 

i. If: 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝐸𝑆𝑖 ≥ 𝑡 Then 

1. If: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑘𝑚 − 𝑘𝑚𝑖 ≥ 0 ∈ {𝑘𝑚 ∪ 𝑖}, {𝑡 … 𝑡 + 𝑑𝑖}  Then    

‘check if activity is resource feasible for all resource types 

between the start time and the start time plus its duration 

a. Schedule 𝑎𝑖 = 𝑡 

b. 𝑛𝑒𝑤 𝑘𝑚 = 𝑜𝑙𝑑 𝑘𝑚𝑖 ∈ {𝑘𝑚 ∪ 𝑖}, {𝑎𝑖 … 𝑎𝑖 + 𝑑𝑖}      −

𝑘𝑚𝑖 ∈ {𝑘𝑚 ∪ 𝑖}, {𝑎𝑖 … 𝑎𝑖 + 𝑑𝑖}     ‘calculate and 

update resources, may use a resource table or 

matrix for each resource type for entire duration of 

activity 

c. Mark activity as “scheduled” 

d. Recalculate 𝐸𝑆𝑖 for next unscheduled activity (only) 

2. End If 

ii. End If 

b. Next i 

c. 𝑡 = 𝑡 + 1     ‘increment time 

3.  Loop 

Both the serial SGS and parallel SGS were used for experimentation in this thesis 

to compare with exact methodologies and to act as a basis of design for heuristic 

modifications, making these applicable to larger NSWPP RCPSPs where exact 

methodologies may not solve the problem in a reasonable time.  
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Many improvements to these SGSs have been found in literature such as by 

Stork (2001) [68], adding a priority constraint; thus, preventing an activity in the serial 

SGS to be scheduled if higher priority activities are not yet scheduled.  Stork (2001) [68] 

does not explain why these activities cannot be first sorted by priority to improve 

computation time. Several priority rules are summarized by Alvarez-Valdez and Tamarit 

(1989) [69], such as the latest start time (LST), latest finish time (LFT), earliest finish time 

(EFT), longest processing time (LPT), activity number (AN), and select jobs randomly (RAN) 

rules, but the only priority rule considered to be adequate for NSWPPs is the earliest 

baseline activity starting time (EBST) rule, where activities are started as soon as possible, 

for the reasons described in the problem definition section of this thesis, relating to 

expected scope growth and uncertainty. Van de Vonder, Ballestin, and 

Demeulemeester (2007) [70] propose additional more complex priority rules that 

outperform these heuristic procedures, but these are stated as being more applicable to 

job-shop scheduling problems in the reactive scheduling scenarios. 

Numerous other papers have been published that use genetic and evolutionary 

algorithms to sample intelligently through a large number of feasible scenarios that can 

be computed by serial or parallel SGSs: Mendes (2003) [71], Gonçalves (2014) [72], and 

Rostami (2017) [36]. More complex methodologies may combine these algorithms with 

additional search rules, often called metaheuristics, to deeply explore promising solution 

space areas, with a greater likelihood of finding high quality solutions at the cost of 

computation time [23]. Metaheuristic techniques for RCPSPs include: scatter search 

methods Berthaut et al. (2018) [73], adaptive large neighborhood search algorithms 

Muller (2009) [74], artificial immune system based approaches Agarwal, Colak, and 

Erenguc (2011) [75], tabu search methods and simulated annealing Bukata (2015) [76], 

particle swarm techniques Chen (2011) [77], filter-and-fan approaches as proposed by He 

and Chen (2016) [78], artificial bee colony algorithm approaches Nouri et al. (2013) [79], 

self-learning strategies Jędrzejowicz and Ratajczak-Ropel (2014) [80], and many others. 

A fundamental similarity with these metaheuristics is that they are very frequently 

compared against each other using the famous PSPLIP library developed by Kolisch and 
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Sprecher in 1996 [18]. These problems include only a few resources, most activities have 

one or more precedence constraints, and are heavily precedence-dominated as 

previously discussed. None of them have the network characteristics associated with 

NSWPPs and these problems only go up to 120 activities. With preliminary 

experimentations, it was found that NSWPP-inspired problems may take well over 50 

times longer to solve than PSPLIB problems with the same number of activities, even with 

serial SGS methods, as the solution space is much larger. The hybrid metaheuristic 

methods search solutions and compare results to find the best solutions among a large 

list of feasible schedules (several thousands), but the time required to compute even one 

single iteration of a real-world schedule currently is often too long for a large number of 

iterations to be practical, as discussed in the problem definition of this thesis. The focus 

in this thesis has therefore not been on these metaheuristics, because the long overall 

solution times needed are impractical.  

3.5 Using Buffers to Produce Robust Projects 

As described in Schwindt’s 2015 Handbook on Project Management and 

Scheduling: “robust project scheduling is concerned with the problem of finding a 

predictive baseline schedule that still performs well in case of disruptions or adverse 

scenarios” [52]. This is indeed what is needed for NSWPP scheduling.  

Using buffers to produce solution robust RCPSP schedules have been studied 

significantly in literature. It has been anecdotally indicated that in normal practice, 

planning staff introduce buffers at the activity level, and additional buffers would 

negatively reflect on management staff [3]. The use of buffers has been more formally 

introduced in literature with Goldratt’s 1997 book “Critical Chain” [81], where using 

buffers at the end of the critical path or “feeding paths” is part of his CCPM system. This 

CCPM system includes using a large project buffer that becomes consumed throughout 

the project. If the consumption rate is too quick, then management must intervene. It 

suggests absolutely no multitasking and an as-late-as-possible (ALAP) scheduling 

methodology. It requires tasks to be estimated using median time estimates rather than 

the safer 80-90% time estimates that are supposedly traditionally used. From analysis of 
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his work, including follow-up papers by Leach (2000) [38], we do not recommend that the 

CCPM method be fully used in NSWPPs. The ALAP methodology does not perform well 

when significant scope growth is expected, but some concepts such as the consideration 

that Student Syndrome is always present and that buffers are important were considered. 

CCPM proposes that the concept of leaving float (slack) in individual activities is bad 

because of Parkinson’s Law or Students’ Syndrome, where activities that could have 

finished sooner tend to take as long as the time that is given, due to procrastination and 

a slower naturally-induced pace intended to keep employees busy [82]. Analysis of real-

world data seen in later sections of this thesis indicates that Student’s Syndrome affects 

NSWPPs as well.  

CCPM also requires activities to be estimated using median time estimates. This 

means that for half of the activities, it will take longer than estimated to finish without 

including scope growth. This is not a normal way of estimating activity durations for most 

traditional project planners. According to CCPM theory, people tend to give an estimate 

where work will be completed within the estimated time between 80 and 90% of the 

time. In the case of a sub-contractor that estimates duration and is paid on an hourly rate, 

a median time estimate would severely hurt his/her business and would often result in 

working at a possible loss. Several others, such as Raz (2003) [83] and Trietsch (2005) [84] 

Figure 15: Common triangular distribution with three-point estimates. 
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have criticized CCPM concepts as being unrealistic in many environments. An illustration 

of these time estimates is provided in the following section in figure 15. 

3.5.1 Illustrating CCPM vs CPM time estimates 

In the CCPM technique, the scheduler must assign durations relating to the 

median completion time, or when in 50% of cases, a job would be completed. For 

example, if the only information available for a job was a 3-point estimate (best-case, a 

most likely, and a worst-case), then the probability distribution for this job could be 

modeled with a triangular distribution: 

The CPM time estimate will be: 

𝑥 = 𝑏 − √(0.90)(𝑏 − 𝑎)(𝑏 − 𝑐) (13) 

While the CCPM time estimate will be: 

𝑥 = 𝑏 − √(0.50)(𝑏 − 𝑎)(𝑏 − 𝑐) (14) 

One major issue with either approach is that a 3-point estimate must be provided 

by a planner or scheduler. Significant bias is often introduced in this estimate as the 

scheduler will not often be the one estimating the job duration [3]. Most subcontractors 

will not typically provide a quality 3-point estimate but will tend towards providing a 

conservative time estimate that more closely matches the CPM 80%-90% confidence time 

estimate. Getting realistic minimum and maximum values is very difficult, and many 

workers will tend to exaggerate these numbers once they realize the implications. People 

do not like to be stressed or have to work in an environment where a small mistake like 

forgetting a tool will result in lateness [4] [83] [84]. This CCPM process may face even 

more difficult opposition in a unionized environment as complaints may arise from these 

more stressful time estimates or may cause worker dissatisfaction in a non-unionized 

environment where the best workers may seek employment elsewhere. 
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3.5.2 Buffer Sizing and Placement 

Many papers have been written on predicting the best buffer sizes for use in 

CCPM. Although from interviews with project management staff personnel at Thales and 

FMFCS [3] [4], it is not believed that CCPM in whole can be directly applied to NSWPPs, 

because a project buffer gives the impression of poor management since activities cannot 

happen as planned. Moreover, the RCN is constantly seeking more time windows and 

opportunities to perform missions, and a project buffer would be quickly removed from 

a previously allocated makespan to perform additional missions. The RCN expects work 

to be scheduled for the entire duration of a project time window and a transformational 

change outside the scope of this research would be needed. It is however theorized in 

this thesis that buffering of the critical path where the activities are of high priority is 

beneficial, as will be seen from a simple experimentation with simulation. Goldratt (1997) 

[81] first suggested to use a “cut-and-paste” buffer strategy, where the size of the buffer 

should be 50% of a project’s duration. This has however been criticized in later papers as 

being too simplistic and not relevant in all cases. For example, if a project lasted one year 

using deterministic median time estimates, then the buffer needed after this year would 

be an additional six months making the buffer 50% of the deterministic project duration, 

and this would be unrealistic in most projects or considered excessive. 

The Root-Square Error Method (RSEM) described by Leach (2005) [85] equates the 

project buffer as the square-root of the sum of standard deviations in activity duration 

for each activity 𝜎𝑖: 

𝐵𝑢𝑓𝑓𝑒𝑟 = √∑ 𝜎𝑖
2

𝑖

(15) 

Leach (2005) [85] also suggested an addition to the buffering equation to account 

for scheduler bias, where it was found that some schedulers induce a bias throughout all 

their estimates, updating this equation to add the bias term α: 
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𝐵𝑢𝑓𝑓𝑒𝑟 = 𝛼 + √∑ 𝜎𝑖
2

𝑖

(16) 

Tukel (2006) [86] proposed the Adaptive Procedure with Density (ADP) where the 

buffer size is calculated in a similar manner, where ∑ 𝑥𝑖𝑗 represents the total number of 

precedence relationships and ∑ 𝑥𝑗 represents the total number of tasks: 

𝛼 +  (1 + 𝑚𝑎𝑥 {
∑ 𝑥𝑖𝑗

∑ 𝑥𝑗
})√∑ 𝜎𝑖

2

𝑖

(17) 

Tukel (2006) [86] also proposed the Adaptive Procedure with Resource Tightness 

(APRT), where ∑ 𝑥𝑖𝑗 represents the total usage of each resource and ∑ 𝑥𝑗  represents the 

total availability of this resource. 

These methods however all require either 3-point estimates (at a minimum) or 

the duration distribution of tasks that may give a known deviation 𝜎𝑖  for each activity. 

Unfortunately, in the naval maintenance industry, information on these distributions is 

very difficult to come by, and no case studies reviewed or interviews indicated the use of 

stochastic duration estimates [2] [3] [4] [87] [88] [89]. 

Interviewees indicated that deliberately placing a large buffer in a Canadian 

NSWPP project would be viewed as a sign of poor management, poor planning practices, 

and inexperience [3] [4]. The potential clients for this research indicated that the option 

to use buffers at the end of sequences made sense and the option to use it could be 

beneficial in some circumstances, but this would be of the cut and paste method, and 

would probably never be used for all work as project plans must be submitted to RCN 

managers and SS, who would naturally push for more work into project makespans or 

push for shorter project makespans. Despite this, the use of buffers associated with 

priority levels were reviewed in this research to accommodate clients and provide better 

solution robustness for higher priority level work, at the cost of poor solution robustness 

at the lower priority levels. Even without purposely adding buffers, scheduling methods 
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that consider priority may naturally induce buffers at different priority levels, as will be 

seen later in this thesis. 

Some research suggested strategically placing buffers at various points along the 

critical path or after important activities; however, these require the assumption that the 

buffer itself will not affect the work duration distribution. Simulations of projects with 

duration distributions for each task demonstrate that placing buffers throughout a project 

gives good results in terms of minimizing deviations (Grey, 2007 [90] and Saihjpal and 

Singh, 2012 [91]). In this thesis, an analysis of real-world data and confirmation by 

industry schedulers, as well as points discussed by Leach and Goldratt [82] [38] [92], 

reveal that individual activity buffers themselves causes workers to work slower and take 

up the time that is given when it is feasible to do so, thus modifying the underlying 

duration distribution. Placing buffers after activities are actually already done in CPM time 

estimating and increasing these is expected to lead to more Student Syndrome slow 

downs [92]. Analysis of manually scheduled FMFCS data will show in this thesis that some 

work is occasionally scheduled to take as long as 10 times the estimated work hours, with 

a hope that the over-tasked shop workers can complete the work within the extra-

buffered time window. This thesis adopts the view of interviewed staff and Goldratt, that 

a single buffer at the end of a project is easier to manage and the final important tasks 

can be more closely followed by management, thus reducing the potential for slowdowns 

caused by the buffers themselves [3] [81]. 

The research on buffers is closely tied however to the reactive scheduling 

scenario. It would be impossible to properly model NSWPPs without considering reactive 

scheduling for the reasons described in the problem statement. The purpose of buffers, 

whether purposely placed or naturally induced by a scheduling methodology, is to handle 

variability in task durations and changes in scope that occur throughout the execution of 

a project. 
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3.6 Reactive Scheduling 

The re-scheduling scenario differs from the normal scheduling scenario for several 

reasons. Firstly, the user’s objectives may not be the same as the ones in the initial 

scheduling scenario. During project execution, the tasks have already been coordinated 

by the project managers, resources have been assigned to tasks, and dates have been 

communicated to workers. In a sub-contracting framework, such as the one with a 

general contractor managing a work period, where the general contractor does not have 

complete control over the resources, adhering to previously agreed start dates or time 

windows for work is highly desirable. For example, a previously agreed upon start time 

for a certain sub-contractor may not easily be moved to another date due to prior 

commitments. These changes occur very frequently in NSWPPs [3]; however, reducing 

these changes as much as possible produces a less hectic work period with more 

predictable outcomes. In the framework where the manager controls the resources in 

large maintenance plants such as FMFCS, if the workers are constantly given different 

activity start dates, they tend to lose faith in the management system and will often 

simply pick whatever jobs are available to work on, or whatever they want to work on [3]; 

thus, leading to lower schedule adherence. 

In this case, and as suggested by Van De Vonder (2006, 2007) [59] [70], the 

objective may be to reduce changes to the previous schedule as much as possible. That 

is, the objective is to minimize absolute new start time changes when compared to the 

previous schedule start times. Mathematically, this is expressed as the following 

deviation-days objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑|𝑥𝑗𝑡𝑡 − 𝑠𝑗
0|

𝑡∈𝐻𝑗∈𝐽

(18) 

Where 𝑥𝑗𝑡 represents the binary start times of each job j, t is the start time, and 

𝑠𝑗
0 is the last scheduled start time for each job j. 

The first dedicated studies on reactive scheduling with similar objectives are those 

of Szelke and Kerr (1994) [93]and Smith (1995) [94], although these were deemed 
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applicable to flexible manufacturing plants rather than RCPSPs, but the application in 

RCPSPs are mentioned. Since then, a large number of papers have been written on 

reactive scheduling such as reactive-proactive scheduling methods based on cloud 

computing by Norroddin and Faramarz (2018) [95] with an emphasis on computer task 

scheduling, where the processing times for same jobs are captured and used to build 

distributions over time, leading to schedules that can adapt and gradually improve. 

Deblaere, Demeulemeester, and Herroelen (2011) [96], proposed reactive scheduling 

policies to deal with stochastic activity durations in RCPSPs using the aforementioned 

deviation-days scoring criteria with a cost function assigning penalties and bonuses to 

early or late finishes.  

Chaari et al. (2014) [97] described in their survey many reactive scheduling 

approaches in “highly perturbed environments, where the uncertainties are both 

frequent and large… and decisions must be made in near real-time”. This relates to 

NSWPPs but the research in this environment is often focused on flexible manufacturing 

plant applications. Several reactive approaches include the distributed approach, where 

scheduling of parts of a system may be made by an autonomous agent to locally repair a 

schedule (see Renna, 2010 [98]): this decomposes the problem into smaller localized 

problems, leading to achieving quick good solutions, although not optimal overall. This is 

analogous to the NSWPP scheduling systems where resources on multiple projects come 

from a centralized pool, but each ship project is managed by a dedicated PL, such as is the 

case with Canadian Industry partners and the FMFs. Another approach is the centralized 

approach that uses meta-rules built from expert system knowledge, such as those found 

by Sun et al. (1994) [99]. The priority rules approach, like the ones surveyed by Rajendran 

and Holthaus (1999) [100], use various implementations of SGSs and schedule activities 

one-by-one using special sorting techniques and rules. Finally, there are dynamic choice 

of priority rules approaches, in Mouelhi and Pierreval (2010) [101] for example, that use 

combinations of simulation and artificial intelligence to come up with reactive scheduling 

solutions. 
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It is proposed in this thesis that NSWPP RCPSPs fall in between traditional RCPSP 

research and flexible manufacturing plant research where reactive scheduling systems 

research is dominant. In both initial scheduling and in re-scheduling however, there is a 

growing body of research dedicated to determining the optimal amounts and types of 

overtime. 

3.7 Overtime Research in Initial Scheduling 

As will be discussed in further detail later, despite the best formulations to re-

schedule while minimizing delays, situations may arise where the reactive schedule places 

important work outside of a project’s makespan or there are too many affected activities 

that now need to be re-scheduled. When this occurs, overtime may be used to recover a 

schedule or to ensure important work is completed. Overtime research has been 

therefore studied in this thesis as it is a common theme in recent RCPSP literature. 

To the NSWPP RCPSP, the most direct application of overtime research is in the 

form of multiple activity processing modes. These processing modes may result in activity 

duration modes that include overtime or different execution modes. An example of 

overtime would be one where work normally occurs Monday to Friday between 8h00 and 

16h00. An overtime shift may be applied between 16h00 and 24h00 to decrease an 

activity duration from three days to two days. In this case, mode one has the activity as 

three days duration while mode two has the activity at two days duration. There is a time-

cost trade-off as mode two involves a higher hourly wage for workers performing the 

overtime. This type of RCPSP is called the discrete time-cost tradeoff problem (DTCTP) 

and has been studied by many researchers, such as Herroelen (2005) [102], Guldemond, 

Hubrink, and Paulus (2006) [103], Weglarz et al. (2011) [22], and Schnabel, Kellenbrink, 

and Helber (2018) [104]. These formulations use multiple modes for each activity as 

previously described and can be summarized in the discrete-time format used in this 

paper as presented below. 
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3.7.1 RCPSP Model with Overtime or DTCTP 

Indices: 

1… A + 1 for activities 

1…K for resources types 

0…H for the time horizon 

1…M for varying execution modes 

Sets: 

P activity immediate predecessor pairs (i,j) 

K resources 

A activities 

M overtime modes 

Parameters: 

H integer, the planning horizon from the project start (0) 

A integer, number of activities 

𝑑𝑖𝑚 and 𝑑𝑗𝑚 integer, duration of activities i and j for each mode m 

𝑟𝑗𝑘integer, activity j demand for resource type k 

𝑅𝑘integer, resource k capacity 

𝐸𝑆𝑗 integer, earliest start time of activity j 

𝐿𝑆𝑗 integer, latest start time of activity j 

𝑂𝑗 positive real number, overtime cost for one discrete time unit for activity j 

𝑂𝑘 positive real number, overtime cost for one discrete time resource availability 

increase for resource k 
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Variables: 

𝑥𝑗𝑡𝑚 = {
1 if activity 𝑗 starts at time 𝑡 in mode 𝑚

0 otherwise                                                    
 

𝑧𝑘𝑡 integer, additional resource capacity for a resource type k at time t. This may 

represent overtime or temporary hires. 

Objective function: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑥𝑗𝑡2𝑂𝑗 +

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗𝑗∈𝐽

2𝑥𝑗𝑡3𝑂𝑗) + ∑ ∑ 𝑧𝑘𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗𝑘∈𝐾

𝑂𝑘 (19) 

- Minimizing the activities executed in modes 2 and 3. More modes may be used of 

course.  

Subject to: 

∑ ∑ 𝑥𝑗𝑡𝑚 = 1

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱

𝑚∈𝑀

(20) 

- All activities must be completed once between the activity ES and LS times, but in 

only one unique mode. 

 

∑ ∑ 𝑡 × 𝑥𝑗𝑡𝑚 ≥ ∑ ∑(𝑡 + 𝑑𝑖𝑚) × 𝑥𝑖𝑡𝑚

𝐿𝑆𝑖

𝐸𝑆𝑖𝑚∈𝑀

𝐿𝑆𝑗

𝐸𝑆𝑗𝑚∈𝑀

          ∀ 𝑗 ∈ 𝐽, (𝑖, 𝑗)  ∈  𝑷 (21) 

- A successor’s start time must be greater or equal to a predecessor’s start time plus 

its duration. 

 

∑ ∑ ∑ 𝑟𝑗𝑘 × 𝑥𝑗𝑏𝑚 ≤ 𝑅𝑘 + 𝑧𝑘𝑡

min{𝐿𝑆𝑗,𝑡}

𝑏=max{𝑡−𝑑𝑗+1,𝐸𝑆𝑗}𝑗∈𝐽

          ∀ 𝑘 ∈ 𝑲, 𝑡 ∈  𝐸𝑆𝑗 … 𝐿𝑆𝑗

𝑚∈𝑀

(22) 
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- The sum of resource usage for the period of activity start times to activity end 

times must not exceed the resource capacity for of each resource type k, where 

𝑧𝑘𝑡 represents additional resource availability in period t, brought-on by overtime. 

∑ 𝑡 × 𝑥𝐴+1,𝑡

𝐿𝑆𝑗

𝑡=𝐸𝑆𝑗

≤ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (23) 

- Enforce the project makespan by ensuring that the last dummy activity finishes 

before the makespan. 

 

𝑥𝑗𝑡𝑚 ∈ {0,1} (24) 

𝑧𝑘𝑡 ≥ 0 (25) 

It should be noted that this formulation includes two main additions to the classic 

RCPSP, one where overtime is used to reduce activity duration (left side of equation 19 

and equation 21) and one where overtime is used to increase resource availability (right 

side of equation 19 and equation 22). Depending on the practical application, this can be 

interpreted differently. In a case where work occurs 24-hours a day, then the reduce-

duration parts of this formulation are not applicable, as there are no real-world windows 

to use more time outside of the set discrete time units to reduce an activity; however, 

additional capacity at specific times may be modeled by 𝑧𝑘𝑡 representing temporary hires 

or extra workers from a different shift using overtime. Where work occurs in once-a-day 

discrete time units such as at the FMFs (one standard 8-hour shift per day), then both the 

duration reduction from overtime and the increased capacity may be used to simulate 

overtime. Solutions for activity start time decision variable (𝑥𝑖𝑡𝑚) in modes m≥2 

represent activity execution modes that use overtime, where overtime represents an 

evening or night shift, and 𝑧𝑘𝑡 represents overtime as well, but as increased resource 

capacity. 
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The reason that both may be needed in an 8-hour shift once-a-day regime such as 

is the case at the FMFs, is that sometimes a makespan can be achieved by reducing certain 

activity durations. On the other hand, sometimes a makespan can be respected by 

scheduling a job earlier, where it would not otherwise be scheduled to start, thus having 

a certain resource work overtime during a period, effectively increasing that resource’s 

capacity. Both methods are found in literature and may include new hires, investments in 

training, and temporary hires; see and Schnabel, Kellenbrink, and Helber (2018) [104] for 

more information. A recent paper by Beljadid et al. (2019) [105] proposes a multi-

objective overtime formulation that combines duration reduction to meet a makespan 

while introducing resource-leveling weighting factors. 

3.7.2 Notes on overtime and pricing in real-world NSWPPs 

It should be noted however that the reviewed overtime formulations research 

suffers from a real-world problem when applying this to the NSWPP: it requires a lot of 

information that is not normally gathered or provided, and the real-world is not 

accurately modeled by simplifying assumptions for these. For example, activity durations 

may not always be reduced by overtime, such as paint drying or work that can only be 

accomplished during the day. Any aloft work (working at heights where the danger of 

falling is significant) cannot be performed in the dark, so an evening or nighttime shift is 

not applicable. True worker overtime availability is often not uniform or easy to estimate. 

At the FMFs or in the reviewed cases with industry partners, workers are often not forced 

to work overtime. Overtime may be requested, but they need to agree on dates on a case-

by-case basis. Due to numerous reasons, workers may request time off instead of extra 

money in exchange for overtime. Time off would be in the form of extra days off 

illustrated by the following example that is common at the FMFs: workers may not need 

extra money, but would be willing to work an evening shift Wednesday, in lieu of working 

normal shifts Thursday and Friday, thus giving them an extra long weekend. Since 

overtime is often paid at 200% value compared to regular time, time off is also given at a 

rate of 2:1, which may negatively affect other parts of the project, or other projects for 

other ships [3]. 
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The data that is inputted, such as calendar duration of WOs and resources needed, 

have a very large margin of error (often as much as 100%), leading to an indication that 

simple metrics to calculate overtime in advance is impractical. When overtime is needed, 

it is usually done with no more than a few days notice in anticipation of an important 

post-project milestone such as sailing or flooding a dry-dock. Much more than the normal 

work resources may be involved. For example, on a manned ship, the ship staff (SS) are 

required to isolate/de-isolate systems, operate equipment, etc., for the repair facility 

workers; this in turn requires short-term negotiations with the ship’s company for 

additional SS overtime. Security and commissionaires, as well as shared resources like fire 

sentries or crane operators may be needed. It is also not realistic to think that one could 

pre-plan one extra day of overtime to make a 6-day activity finish in 5 days, due to high 

variability in calendar completion times. Commonly, the knowledge that one extra day of 

overtime is all that is needed to finish a 6-day activity in 5 days is only available by day 3 

or 4 of that activity. Often scope growth requiring much more work, or temporary 

modified execution modes may be a better solution [3]. Again, these cannot normally be 

determined in advance of work being conducted, especially for all activities as is the case 

in the reviewed literature. 

It was found from interviews with PLs, that to see the effect of applying overtime 

or reducing the duration of an activity by one day; the most efficient way to do so is to 

reduce the duration of the activity by one day and re-schedule (in a sandbox program, not 

directly in the ERP system) [3]. A note should be made that not all activities can be 

shortened with extra shifts due to complexity. Large disassembly and re-assembly 

activities for example, are best done by the same workers, because they will know where 

items have been placed, and where all the many small components are supposed to go 

for re-assembly. On the other hand, relatively simple activities such as scaffolding 

installation or equipment removals, with a small turnover between shifts, can be reduced 

by a different set of workers. The more complex is a work sequence, the less desirable 

and the more impractical it is to have different people exchanging information and 

working on the same tasks.  
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It would be prohibitively time-consuming to ask and confirm overtime availability 

of all workers and support agencies for every time unit throughout a work period, or to 

do the same for all sub-contractors. Interviewed real-world schedulers, PMs, and PLs 

indicated that a schedule should never include overtime to meet objectives. Overtime is 

used as a last resort to recover a schedule or complete activities within a makespan, and 

how much overtime is needed, by whom, their availabilities, etc., is determined on a case-

by-case basis for work that is already in-progress where this information is better 

understood. In some cases where work is known to create unfeasible conflicts such as 

during a work period where there is significant aloft work, and diesel generators also need 

to be run for many hours, work may be manually scheduled to occur after hours (diesel 

engine run-ins), where a group of workers will perform activities during a sequence of 

several night shifts [3] [4]. Placing the constraints for such an exception would be more 

tedious than manually overriding the start times and discussing a plan with supervisors, 

especially since the latter must occur regardless.  

In addition, several overtime formulations and methodologies exist in literature, 

usually with the goal of minimizing costs [40] [49] [105]. While these provide for 

interesting problems, the contribution of this thesis is multi-mode formulations (that can 

be used for overtime) that do not require cost information. Based on interviews with 

FMFCS, workers are not customarily asked if they can work overtime unless it becomes a 

necessary activity, since if workers become aware that overtime is being considered, 

some may slow down how quickly they work so that the expected amount of excess work 

needed is approximately enough to “fill” most of an overtime shift [3] [4].  

Above and beyond this, in every schedule provided by DND, ISI, Seaspan, and 

FMFCS for this thesis, costing information is not available to the scheduler for scheduling. 

Using a cost minimizing function may not be practical without using some tricks to give 

default costing values. Moreover, the ISI and Seaspan shipyards are paid by the 

Department of National Defence (DND) using “cost-plus” contracts, where every work 

hour used is paid directly with a profit percentage. To illustrate, the profit percentage may 

be approximately 10% plus an administrative markup, that is added to every completed 
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work hour by the contractor (see PSPC cost and pricing guide for more information [106]). 

It should be noted that work performed at non-standard rates will not be compensated 

differently, so using standard rates for hours is always preferable for the contractor 

except where very important work may not be completed on time and previous planning 

for this (for evening and nighttime shifts) was not done; this will of course reduce the 

shipyard’s overall profit. The more work that these shipyards can “fit” into a work period 

at a standard rate, the better it is for the shipyards (financially) and for the RCN 

(qualitatively), as these ships will be further along in their readiness once the RCN retakes 

primary care responsibilities from the shipyards after the DWPs.  

Worker availability in term of hours is standard industry practice, since sharing 

financial information is taboo to public servants and their affiliated industries, to avoid 

sharing commercially confidential and sensitive information such as salaries. For these 

reasons, the proposed overtime formulations of this thesis allow the user to find the most 

impactful activity, or activities from a small set, that will recover a schedule, or achieve a 

desired makespan or quantity of work, to guide the user’s overtime investigation, simply 

by placing constraints on the allowable activity reductions. 
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Chapter 4: FMFCS Data Analysis 

Data analysis, related assumptions and discussion, preliminary experimentation 

for formulation and heuristic development, for both the NSWPP scheduling and 

rescheduling scenarios are presented in this section. 

4.1 Research and Work at the Fleet Maintenance Facility Cape Scott (FMFCS) 

Several meetings were held at FMFCS’ Operations Department to discuss and 

implement the use of a trial automatic scheduling tool. In the first phase, information 

from historical work periods was gathered and analyzed for statistics, to confirm 

researched scheduling theories, to model typical NSWPP network architectures, to 

confirm assumptions relating to these types of work periods, to match the program with 

the input format, and to better understand the problem. In the second phase, project 

leaders (PLs), project managers (PMs), and schedulers were interviewed in progressive 

phases as prototype software was developed by the author of this thesis to assist in 

specific NSWPPs that were in the initial planning phases.  

The scheduling program was developed in MS Excel and Visual Basic for 

Applications (VBA). Using a different program such as R or Python would require special 

permission by relatively high levels of the RCN and it was the author’s opinion from 

previous attempts at software approval that the approval process would most likely 

extend well beyond the duration of a typical MASc Program. It was important to develop 

a program that could readily be used in the Defence Wide Area Network (DWAN), which 

has many software restrictions. DWAN is an unclassified network with need-to-know 

information of a sensitive nature and security software is constantly being updated to 

detect foreign intrusion attempts and malware. The security software is tailored to every 

computer’s software installation, software versions, and combinations of those. Licences 

are managed centrally, and software acceptance is tightly controlled [107]. 

FMFCS Operations Department is usually understaffed and deals with a multi-

project environment encompassing the largest military industrial complex in Canada. It 

employs over 1200 unionized civilian workers and over 140 military members [108]. 
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FMFCS is responsible for all 2nd line maintenance projects and some 3rd line maintenance 

work for all HAL Class Frigates in the Atlantic (seven ships at 4500-ton displacement), 2nd-

line work for SECRET-designated systems for six Maritime Coastal Defence Vessels 

(MCDVs), some 2nd line maintenance projects for the interim tanker MV Asterix since 

traversing to Lévis, Quebec is often inefficient, refits and 2nd line maintenance projects 

for a varying number of the four Windsor Class Submarines, as well as many smaller 

projects for Atlantic-based Royal Canadian Army (RCA), Royal Canadian Air Force (RCAF), 

Atlantic Task Force Security and Special Forces, and, occasional short-notice maintenance 

projects for foreign ships. Due to its responsibilities and a decade long reduction in 

manpower as a result of a Federal push to reduce the government footprint and increase 

the use of In-Service-Support (ISS) Contractors [88], the Operations Department is often 

too busy to answer external questions unless it has implications for them. Our approach 

was to offer a software program that could truly benefit the current scheduling regime, 

thus giving incentive to answer questions and provide valuable time for this research 

project in exchange. 

The developed program uses a simple list scheduling heuristic or serial SGS, as this 

is easily understood and was specifically requested by users after the different options 

were presented and discussed. The primary driver was to speed-up the manual process 

currently employed by schedulers and PLs, so that more work could be scheduled, and 

better shop utilization would follow. The idea that a schedule could be re-scheduled with 

different sets of underlying data and space capacity limits was of great interest. It became 

evident that a move to automatic scheduling would be difficult as current practices were 

quite cemented. The serial SGS scheduler is attractive because it is easy to understand, 

and the schedulers still feel like they have complete control over the resulting schedule. 

It is theorized that for optimization to become accepted and attempted, a scheduling staff 

should first become more familiar with basic forms of automatic scheduling, such as the 

serial SGS, where this is basically a replica of human list scheduling and is easy to follow. 

If the milestone of trusting and using simple automatic scheduling tools cannot be 
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achieved, with all the resulting implications such as a need for more precise and accurate 

data, then how could an organization successfully adopt optimization? 

4.2 Analysis of Historical FMFCS Data Background 

Historical scheduling metadata of an entire naval surface ship’s extended work 

period (EWP) was used for detailed analysis, as a large data file with 636 WOs. The level 

of detail provided by DND stopped at the WO level and did not include individual 

activities. Work in NSWPPs is characterized as work with high variability in terms or task 

durations, scope growth, and fluctuating resource availability [1]. FMFCS uses traditional 

critical path method (CPM) for scheduling activities and users individually verify if shop 

capacities can support work. It should be re-iterated that in NSWPPs, it is not imperative 

to complete all tasks such as those during an aircraft work period, a submarine work 

period, or a construction project. There are typically higher priority tasks that are mostly 

completed due to higher managerial attention, while lower priority tasks are completed 

if the personnel and material are available, on an opportunity basis. These lower priority 

tasks are not only completed when the needed shops are available, but they are only 

completed when the planning, scheduling, and project management staff in the 

operations department make time to plan and schedule these.  

It should also be noted that only one shop is assigned to any one activity. In the 

Defence Resource Management Information System (DRMIS) scheduling planning tool, 

task estimates are used for billing and accounting, and two shops will very rarely spend 

the same number of total hours on a single activity. Each shop will be responsible for their 

own time keeping, so even if three shops are needed to complete essentially the same 

activity, this will be scheduled as three separate parallel activities.  

A growth in scope for an activity generally requires a new activity to be scheduled. 

The implication of this is that data on hours estimated and hours billed are not direct 

historical indicators of true calendar task completion times or calendar time distributions. 

When a WO was underestimated in term of duration or shops required, it is normal to 

either cancel work (very few hours will be charged to this underestimated WO) and start 
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work on a new WO with more hours assigned, or “use-up” all the hours on the incorrect 

WO and raise another sub-WO to charge additional hours. The effect of this is that a 

comparison of hours estimated vs hours billed will not follow any standard completion 

time distribution with a long trail, because work that took much longer than estimated 

work will not be present in the data. For context of the analysis in the next paragraphs, 

note that in literature, maintenance task completion times are often appropriately 

modeled to be lognormally, Weibull, or beta distributed [109]. 

One focus of analysis in this section was to compare theoretical scheduler 

estimations such as those provided by Goldratt (1999) [92] and later criticized by Raz et 

al. (2003) [83] and Trietsch (2005) [84]. Goldratt and Critical Chain Project Management 

(CCPM) advocates claim that estimators typically estimate work such that there is an 80-

90% probability that the work will be completed within the estimated time. A traditional 

CPM strategy places float/slack/buffers within each activity to protect the schedule from 

disruption. This does however allocate the float to individual tasks instead of the whole 

project and does not promote early completion of activities. This time is often wasted due 

to Student Syndrome and other human factors. Even if a job could be completed early, it 

is often lengthened to use-up the time provided. 

To re-iterate CCPM concepts, the time estimates are tighter as they are supposed 

to be equal to the median time duration of activities, and this encourages work to be done 

with expedience [92]. It is expected in CCPM that 50% of work tasks take longer than 

estimated in a schedule, and this must become embedded in the organizational culture 

for CCPM to succeed, which has been adopted by some US, Australian, and Japanese 

dockyards [110]. In CCPM, project float is calculated and placed deliberately at the end of 

task sequences, where the float is shared throughout the entire project. Throughout the 

project, this float gets consumed or not, and more jobs can be added if things go well, or 

corrective action can be taken as the buffer becomes overly consumed.  

CCPM criticism of the 80-90% assumption that is standard with the CPM [83] is 

that there is not enough academic evidence to support this claim, so a study on real-world 
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naval maintenance data was conducted to compare results. Raz states that of the case 

studies analyzed, work estimates were only exaggerated by 60% on average, although 

these were not conducted on NSWPPs [83]. Since this current analysis looks at NSWPP 

RCPSPs, where no real-world studies about overestimation have been published in 

researched academia as far as this author is aware, it is unknown where the trend lies. 

4.3 Analysis of Naval Ship Data for a 2018-2019 EWP2 Project 

The first dataset provided by FMFCS, approved for limited use in this thesis by 

DND, was analyzed in detail to determine important characteristics for NSWPP projects. 

This dataset was that of a ship in an extended work period (EWP) where 636 WOs (work 

packages) were assigned revision codes relating to this project. The data was extracted 

from DRMIS. 

Of the 636 WOs that were scheduled for the work period along three official 

priority levels, only 399 WOs had any actual hours charged during the work period, 

representing an instance where 37.3% of the originally planned work did not occur. These 

WOs were not completed for a variety of reasons from missing materials, space and 

resource conflicts, workers being re-assigned to another higher priority ship, etc. In some 

cases, the original work estimate was incorrect, so the standard procedure is to cancel 

the WO and re-open another one that is correctly planned [14], but this realization 

typically only happens once the work has begun. Insufficient information was available to 

reliably determine statistics on the reasons for work not being completed, but Couch 

(2016) [1] described some interesting results from a different dataset examined for his 

thesis, where some information was analyzed for causation [1]; see figure 16, where only 

31% of cancelled activities could be traced back to a specific causal category (16% 

scheduling conflict, 11% unavailable materials, 4% no longer required). In the same 

analysis, where discretionary work was provided, Couch (2016) [1] concluded that 71 new 

WOs were added to the SWP being analyzed, and the original number of WOs was 132, 

representing a 53.4% increase in scope growth throughout the project. 93% percent of 

this additional work was completed, a high percentage similar to expectations, as policy 
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dictates that significant new work is only accepted in the same work period that it is found 

if it is urgent [14]. 

It should be noted that the DRMIS instances provided to us did not include data 

fields that could be used to decipher the volume of work (out of the 636 WOs), that were 

added throughout the EWP; although from discussions and experience, it is anecdotally 

accepted that a large volume of work (about a third of the work) normally arises during 

the project execution phase [3]. 

As described in the previous problem definition section, it is accepted that the 

scheduling software being used, Prometheus Scheduler as a DRMIS add-on, has restricted 

mass-change capabilities via administrative rights and scheduling is performed manually. 

It does also allow work to be scheduled such that shop resources are scheduled well 

beyond a shop’s work capacity, leading to partially unfeasible schedules. These are 

needed for urgent work scheduling for higher priority activity scheduling. For example, if 

a submarine needs shop resources (highest priority vessel in a dockyard), then the 

submarine PL will normally schedule away without considering shop resource 

overallocation; it will then become the lower-priority ships’ PLs responsibility to cancel or 

modify work plans.  

There is an automatic feature in Prometheus Scheduler that allows scheduling 

WOs at the earliest feasible time, but users did not like using the feature because it would 

Figure 16: Reasons for uncompleted work (source: Couch, (2016) [1]). 
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separate activities within a WO if shop resources could only support some activities. 

Unless this was impossible, users normally preferred to have all activities within a WO 

occur as planned following CPM early start sequencing, without significant delays 

between activities in the same WOs. The practical reasons for this are: that the work is 

complicated so workers taking long breaks between activities are more likely to make 

mistakes, tools and scaffolding are left around a work site causing obstructions, steel is 

often stripped and exposed making it more susceptible to corrosion, ventilation is often 

set-up using temporary trunking throughout passageways and access doors, and leaving 

a WO half-done is often worse than not even starting it. Note also that when the planning 

department plans the work using CPM precedence relationships, the activities within a 

work package can always occur sequentially or in parallel as planned, as no sum of parallel 

activities exceed FMFCS’ shop capacities for any single work package [3]. When resource 

demands from many WOs for different projects are combined however, then resource 

constraints play a primary role. Moreover, it was found during the field study visits at 

FMFCS that several shops have capacity reporting problems, where for instance, one shop 

may have three workers, but the available hours are only set to reflect one or two 

workers. Since the underlying capacity data was incorrect, the scheduler and PL had the 

choice of going through the work center supervisor and requesting a capacity information 

adjustment, wait for the supervisor to update the system, then use the feature to 

schedule one WO; or, they could more efficiently (for the short term) simply accept that 

the data was incorrect and manually override the WO to schedule it when they “knew” 

(not from the DRMIS capacity information) that the work could proceed. Virtually all work 

was scheduled manually as keeping the underlying data perfectly accurate was a 

significantly difficult task; the data was used mostly as a guide.  

Figure 17 shows a distribution of actual work hours recorded vs estimated work 

hours for the 636-WO EWP described earlier, where a value of 1.00 indicates that the 

accounted-for actual hours were equal to the estimated hours. This same data was then 
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automatically distributed with Arena Input Analyzer for a best fit standard distribution 

exercise. 

Arena Input Analyzer Software and MS Excel were used to analyze actual work 

charged vs work estimates. The best-fitting distribution shows that the data is closest to 

normally distributed (Normal(0.779,0.369)), although this poorly fits as can be seen in 

figure 18. The average actual hours are 78% of the average estimated hours. One standard 

deviation is 37.0% of estimated time or 47.4% of the actual hours average. 

The distribution analysis indicates that along the cumulative distribution function 

(CDF), estimates only exaggerate average task duration by 28.2%, and given the high 

variability of data using the best-fit normal distribution, this represents 0.59 standard 

deviations, and 72.2% probability of completion, which is in between Goldratt (1997) [92] 

and Raz’s claims, where Raz (2003)  [83] suggests that estimators were found to only 

exaggerate work estimates such that 60% of work could be completed on time. 

Figure 17: Actual hours vs estimated hours looks different than measurable work 
duration estimates in literature. Perhaps the estimate itself affects the actual work 
hours. 
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It should be noted however that 44 of 399 WOs, 11% of total WOs, finished exactly 

on time (the mode), indicating that perhaps with no motivation to finish early, some WOs 

are indeed extended longer than needed instead of being reported to having finished 

early, in accordance with Goldratt (1997) [92]. When using the data directly instead of the 

fitted distribution, 16.3% of WOs have more actual work hours billed than the work 

estimates. This shows that estimators do use a significantly higher than 60% confidence 

of completion estimate using traditional CPM (83.7%).  

If experimentation is however completed with the assumption that WOs 

completed before the task estimates took longer than required as proposed by CCPM 

theory, and it is assumed that tasks that took longer than the estimate were not 

prolonged due to managerial pressure, then the data could be modified to better reflect 

task durations if they were unaffected by the estimates. 

A proposed solution under the same previous assumptions is that for every task 

that took equal to or less than the estimated time, the task duration was extended by 

anywhere between 0 and 100% of its true duration, thus artificially accounting for Student 

Syndrome. This represents some workers working a little slower than required when 

there is more time left than is needed, some working as slow as half-speed at the extreme, 

and some working at a normal pace regardless of having more time to finish. 

Figure 18: The best fitting distribution using Arena Input Analyzer poorly fits. 
Actual hours charged to WOs drastically drop after the estimate is achieved. 
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A uniformly distributed randomized instance of this provides the distribution 

generated by Arena Input Analyzer in figure 19. It can be seen from the resulting 

distribution image that this theoretical Weibull distribution fits better than the previously 

displayed normal distribution in figure 18. This distribution matches previous research 

that true task completion times are modelled well with Weibull distributions, as proposed 

by Rummel (2017) [111].  The Weibull distribution has a closed form CDF as seen below: 

𝐹(𝑡, 𝛽, 𝜃) = 1 − 𝑒−(
𝑡
𝜃

)
𝛽

(26) 

It can be computed with t=1 (the estimated time), β=1.72, and θ=0.723 

(determined from Arena Analyzer), that the estimated hours for activities represent 

82.6% of the probability distribution. This analysis with new sets of pseudo-random 

numbers, was repeated 20 times and the best fitting curves were Beta (35%), Weibull 

(55%), and normal (10%), with Weibull being among the top two curves at every instance. 

The randomized formula for modifying each task taking less than or equal to the estimate 

is provided below, where x equals the reported actual hours, and y represents the 

artificially reduced hours, removing a predicted duration extension caused by Student 

Syndrome, when the reported hours were equal to or less than the work estimate: 

𝑦 = {
𝑥                                        𝑖𝑓 𝑥 > 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑥 − 𝑥 × 𝑈𝑁𝐼𝐹(0,0.5)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27) 

Figure 19: Accounting for Students’ Syndrome with simulation, actual work hours vs 
estimated work hours produces a theoretical Weibull or Beta distribution with a good 
fit. 
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The analysis of overestimation times from these 20 instances indicated that 

estimators give completion probability duration estimates of 82.9%±0.716% with a 90% 

confidence interval, when the assumption of Student Syndrome is considered as 

previously described. 

For these reasons, this author does not reject Goldratt’s (1997) [92] estimates of 

Student Syndrome and estimator habits of scheduling, such that work can be completed 

80-90% of the time, applicable to NSWPPs at FMFCS; furthermore, there is evidence that 

the estimate has a very large impact on work completed. In the case of FMFCS/CB, SNC 

Lavalin, Thales, Seaspan, ISI, and other Canadian NSWPP companies that schedule sub-

contractor work or have a long history of scheduling this way, it is proposed that using 

median time estimates would be impractical because the estimates themselves come 

from the sub-contractors or workers (who do not want to be late 50% of the time) and 

this would require a transformational change that is beyond the scope of this research. It 

is also proposed that using many buffers, or additional buffers, at different places 

throughout the project is very likely to increase overall project duration without 

completing more work, as workers will be even more prone to Student Syndrome as 

indicated by the data. In a sense, the individual activities are already buffered most of the 

time, so additional direct and purposeful buffers throughout a project are not 

recommended. 

4.4 Why the data does not reflect calendar durations 

One might think that smoothing out actual hours vs estimated hours distributions 

such as the one in figure 17 could be used to estimate duration stochasticity; however, 

Table 1: Actual calendar start-to-finish windows are much larger than the planned 
PM hours. There is no found metric that can reliably be used to estimate calendar 
durations vs planned hours. 
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this will not show delays resulting from inclement weather, conflicts, worker 

absenteeism, insufficient materials, scope growth etc. 

The snapshot of maintenance data in table 1, for four WOs, shows that the 

scheduled start and finish dates are not related to planned PM hours. The calendar dates 

are generally exaggerated so that if workers are needed for another activity, they can 

finish that activity and return later, but still complete the activity within the time window 

allocated [4]. When work is delayed, for example by inclement weather or a conflict, then 

no hours are billed to “PM actual” hours on that WO, so the delay is not captured. The 

comparison of PM planned vs PM actual is useful to determine how effective the 

estimates for WOs are when compared to the billed hours associated with those 

estimated, but not for calendar durations. As well, from detailed analysis and interviews 

with PLs, PMs, and schedulers, there is no way to find true completion times for work 

from historical data [3]. It is not reflected in the DRMIS data and timekeeping for finishing 

activities is not maintained accurately. Modelling true variability using available data is 

not possible; however, one can intuitively predict that it would be much more variable 

than the planned PM hours vs actual hours distribution of figure 17. 

Figure 20: A triangular distribution (0,1,2) may be useful in predicting calendar 
durations without any better data. 
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Figure 20 is an example of how actual calendar completion data could be 

predicted if work was planned and scheduled based on estimated time durations. The left 

side is from the actual vs planned data, while the right is simply a mirror image, used to 

approximate calendar delays resulting from worker absenteeism, scope growth, weather 

delays, and material delays. Although probably not accurate, this stochastic distribution 

can be used to indicate the benefit of buffers placed at the end of critical sequences for 

work with high variability, and it coincidentally fits a relatively simple triangular (0,1,2) 

distribution. Although simulation experimentation was conducted with this variability 

distribution, the results were obvious and show the benefit of buffer as already described 

by Couch (2016) [1] in a reactive scheduling scenario with imperfect data. 

4.5 Additional NSWPP Data Features 

While spending time at FMFCS, an additional unscheduled dataset of 433 activities 

comprising of 82 WOs for work that was not yet scheduled was provided. These activities 

were all in the “ready to schedule” status, and an interesting trend was found that will be 

used in random problem generation of this thesis. Since all activities are planned by the 

planning department and activities precedence and parallel relationships are given 

without first considering resources, it is found that an earliest start date is given to all 

activities. For every WO, the first activity is given an earliest start date on the first day of 

a work period, while successor activities have earliest start dates that begin immediately 

after earlier activities. Some WO exceptions existed for when the work was originally 

planned for an earlier work period, but the work never occurred, so the start dates 

displayed in DRMIS were for this past work period instead of for the one being currently 

planned. Barring these exceptions, by only looking at these calendar dates, it appears that 

92% of the work can be completed in the first eight days of the 20-day project, 

representing 40% of the project’s makespan, since these have only been scheduled based 

on precedence relationships and not such that resources were considered. Using a classic 

serial SGS scheduling program, it was later found that only 65% of this work can even be 

scheduled in the 20-day work period once resource constraints are considered. Random 

problem generation used in later sections of this thesis will be completed using this 
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feature, where some activities have precedence relationships, but activities are built in 

small sets that all may start on day zero when considering only precedence relationships. 

The resource constraints of the project should be such that the makespan will be 

increased by 200% to 300% when these resources are introduced, to properly mimic this 

data set. 

FMFCS did input the ship’s compartment location in alphanumeric formats where 

work was being conducted, but this was not used in any automated way to enhance 

scheduling. This data could however in theory be used to model same 

compartment/space constraints described in Chapter 2. 

To conform with the nature and variability associated with the analyzed datasets, 

and the qualitative goals of NSWPPs described in this thesis, formulations that more 

properly model the problems and their constraints are developed and described in the 

following chapter. 
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Chapter 5: New Formulations and Heuristics for the NSWPP 

Based on analysis of literature, preliminary experimentation with existing 

discrete-time formulations and heuristics, and several iterative improvements, this 

chapter presents new formulations and accompanying heuristics for the initial scheduling 

and re-scheduling scenarios. To briefly recollect, the goal of initial scheduling is to 

produce a feasible and conflict-free front-loaded schedule that considers priority and 

duration, while the goal of re-scheduling is to produce a new schedule that deviates as 

little as possible from the previous schedule. 

5.1 Proposed Formulations for the Initial Scheduling Problem 

Based on the problem definition and the literature review, it is proposed that all 

common constraints including same compartment conflicts, hot work, emissions, aloft 

work, and radiation, as well as miscellaneous delays, can be modelled as resource 

constraints. For example, if the compartments in a ship are modelled as resources, then 

every planned activity intended for scheduling must consume this space resource, or part 

of a space-resource’s capacity. The capacity of the compartment resources could be 

defaulted to one activity per space, unless there are parallel activities for the same WO. 

For example, the HAL Class frigate has 353 spaces, but only a dozen of these can generally 

“fit” more than one set of parallel activities at a time. Since these spaces are bigger 

however, they tend to have relatively more work scheduled into them. There is no simple 

metric to reliably determine how many different activities (from separate WOs) can fit in 

a space for many of the reasons described in the problem definition section relating to 

the nature of the work, so it would be practical to leave this up to the user to select a limit 

and a space resource consumption per activity, based on the nature of the work and 

his/her experience. In a real-world scheduling exercise as seen from the work at FMFCS, 

the user would have to iteratively re-schedule until the person is satisfied with the 

number and nature of concurrent activities being scheduled in the same space at the 

same time. The data itself does not currently include the necessary metrics to 

automatically detect this, but an experienced user can tell from the task description, 

perhaps requiring conversation with shop workers, to estimate how intrusive certain 
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tasks are relative to each other. Based on user feedback with FMFCS, a default value of 

one set of parallel activities from the same WO per space means that the scheduler only 

needs to modify the capacity of a space for a small number of spaces, instead of having 

to manually modify the compartment consumption of each activity [3]. Some spaces like 

the engine rooms, the hangar, the flightdeck, the boat/missile decks, or the forecastle 

may be defaulted to perhaps four WOs, but these capacity limits should be able to be 

modified easily by the user. Users desired the ability to see the resulting schedule, 

consider the concurrent resulting same compartment WOs, and then decide based on 

their experience if this mix of work is acceptable, considering makespan and the likelihood 

of conflicts. If the mix is not acceptable, the space capacity would be modified, and the 

schedule would be re-calculated. 

Hot work conflicts can be accounted for by selecting the appropriate adjacent 

space being affected by hot work activities. A prompt could guide the user to identify a 

compartment that should also be “consumed” by the hot work activity during its 

execution. FMFCS uses an optional customized user field called “work type” in DRMIS, 

which alerts the PL or scheduler of special work types such as hot work, aloft, emissions, 

etc. There is a standard set of work types known to cause conflicts that are selectable to 

planners. 

Emissions and radiations can also be modelled by resource constraints, by 

allowing the user to select an “aloft” resource. For example, if every aloft activity 

consumed 0.2 of the aloft resource, but an important radiation activity consumed 1.0 of 

the aloft resource, with a capacity of 1.0, then up to five aloft activities could be feasibly 

scheduled concurrently, while none could be feasibly scheduled at the same time as the 

radiate activity. The user would need to play around with these values depending on the 

number and priority of aloft, radiate, and emissions activities that are present. 

Miscellaneous delays may also be modelled as resources. For example, if the flight 

deck and hangar are out-of-bounds for the duration of a promotion ceremony, then the 

user may add a dummy activity with a half-day duration that consumes all the hangar and 
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flight deck resources; thus, preventing work in those areas from occurring. If the entire 

ship is out-of-bounds during something like a “fast-cruise”, which is a ship-wide training 

exercise that makes use of fake smoke and the general alarms, then this calendar day can 

be added as a holiday in the project default information.  

For duration and priority however, these aspects cannot be easily converted to 

any parts of the studied classic and modified RCPSP formulations in literature, so a 

discrete-time Priority-Duration RCPSP formulation was developed. It should be noted that 

this formulation is only proposed for the pre-execution (initial scheduling) phase of a 

NSWPP project, where the goal is to build a robust schedule that naturally causes a 

priority-1 buffer, by front-loading higher priority activities earlier using a weighted 

objective function. The duration term in this objective function is in place to prevent 

shorter same-priority tasks from being scheduled earlier, as described in section 2.4. This 

duration value can be tuned to force tie-breaking such that longer activities are scheduled 

earlier among the same priority level, at the cost of a potentially longer makespan. Note 

that duration, instead of relative resource capacity usage, was selected because this 

information (a time estimate) is always available. When working with sub-contractors, 

the number of workers and capacity of those workers is not normally provided [3]. 

5.1.1 Multi-Mode Discrete-Time Priority-Duration RCPSP Model 

Indices: 

1… A for activities 

1…K for resources types 

0…H for the time horizon 

1…M for multiple duration modes 

Sets: 

P activity immediate predecessor pairs (i,j) 

K resources 
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J activities 

M Execution modes with various durations 𝑑𝑗𝑚 

Parameters: 

H integer, the planning horizon from the project start (0) 

A integer, number of activities 

𝑑𝑖𝑚 and 𝑑𝑗𝑚 integer, duration of activities i and j, for every mode m 

𝑟𝑗𝑘integer, activity j demand for resource type k 

𝑅𝑘integer, resource k capacity 

𝐸𝑆𝑗 integer, earliest start time of activity j 

𝐿𝑆𝑗 integer, latest start time of activity j 

𝑝𝑗 integer, priority of activities (1=ESS, 2=HOPP, 3=NOPP) 

𝜃 (≥ 0), used to assign weights to activities proportionately to their priority 

𝜀1 (≥ 0), very small value to account for milestones that have no actual duration 

𝜀2 (≥ 0), very small value to penalize late scheduling of activities 

𝛼 (> 0), use to give tie-breaking benefits to longer duration work (α=1.1) or 

making each work duration unit equal (α=1.0) 

𝛽𝑀1 total alternative shift limit 

𝛽𝑀2 alternative mode reduction limit 

 

Variables: 

𝑥𝑗𝑡𝑚 = {
1 if activity 𝑗 starts at time 𝑡 in mode 𝑚

0 otherwise                                                    
 



 

82 

 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑
𝑥𝑗𝑡𝑚

𝑝𝑗
𝜃

(𝜀1 + 𝑑𝑗1)𝛼(1 − 𝜀2𝑡)

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱𝑚∈𝑴

(28) 

- Maximize the weighted summation of activity start times, that is proportional to 

the activity durations, inversely proportional to an exponentially grown priority 

number for each activity (to outperform the duration weight), with a start time 

penalty that grows as the start time of every activity is increased. 

Subject to: 

∑ ∑ 𝑥𝑗𝑡𝑚 ≤ 1

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱

𝑚∈𝑴

(29) 

- All activities must be completed between the activity ES and LS times, no more 

than once. 

∑ ∑ 𝑥𝑗𝑡𝑚𝑡

𝐿𝑆𝑗

𝐸𝑆𝑗

≥ ∑ ∑ 𝑥𝑖𝑡𝑚(𝑡

𝐿𝑆𝑖

𝐸𝑆𝑖

+ 𝑑𝑖𝑚)     ∀𝑗 ∈ 𝑱, ∀(𝑖, 𝑗)  ∈  𝑷

𝑚∈𝑴𝑚∈𝑴

(30) 

- A successor’s start time must be greater or equal to a predecessor’s start time plus 

its duration. 

∑ ∑ ∑ 𝑥𝑗𝑏𝑚𝑟𝑗𝑘

min{𝐿𝑆𝑗,𝑡}

𝑏=max{𝑡−𝑑𝑗𝑚+1,𝐸𝑆𝑗} 

≤ 𝑅𝑘

𝑗∈𝑱

     ∀𝑘 ∈ 𝑲, ∀𝑡 ∈ 0 … 𝐻

𝑚∈𝑴

(31) 

- The sum of resource usage for the period of activity start times to activity end 

times must not exceed the resource capacity for of each resource type k. 

∑ ∑(𝑥𝑗𝑡2 + 2𝑥𝑗𝑡3 + ⋯ + (𝑀 − 1)𝑥𝑗𝑡𝑀) ≤ 𝛽𝑀1

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱

(32) 
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- A total maximum number of additional evening and nighttime shifts, or simply 

reductions, can be set using the value of 𝛽𝑀1. Start times in mode three represent 

two additional shifts, so the start time is multiplied by two, mode four is for three 

additional shifts (therefore multiply by three), etc. 

∑ ∑(𝑥𝑗𝑡2 + 𝑥𝑗𝑡3 + ⋯ + 𝑥𝑗𝑡𝑀) ≤ 𝛽𝑀2

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱

(33) 

- This constraint allows a limit on the number of total alternative execution modes 

for all WOs. It is the most practical alternative execution mode constraint when 

limiting the number of overtime investigations is desired. 

𝑥𝑗𝑡𝑚 ∈ {0,1}         ∀ 𝑗 ∈ 𝑱, 𝑡 ∈ 𝐸𝑆𝑗 … 𝐿𝑆𝑗 (34) 

- Start times are binary, thus a variable exists for every time unit between each 

activity’s ES and LS. 

This formulation should be used in scenarios where the scheduler or PL wishes to 

schedule all work from a list and “see” where the scheduled dates fall, as well as analyze 

the resulting schedule for any problems (a practical necessity with automatic scheduling). 

This is the most typical initial scheduling scenario. If activities have finish times that fall 

outside of the project makespan, then the scheduler will not schedule this work, or look 

at other tradeoffs that use the same shop resources. Since the formulation gives a major 

weight bonus to higher priority activities, it is unlikely that higher priority activities will 

not be scheduled within the makespan unless there are resource capacity problems, or 

there is too much high priority work to be scheduled. This formulation does not enforce 

a finish time, so a feasible solution will always be given with enough time.  

In the experimentation phases of this thesis, 𝜃 was set to 5, and α was equal to 

1.0 or 1.1. The reason for 𝜃 being equal to 5 has to do with solver objective function 

precision limitations that will be discussed in the next section of this thesis, while the 

reason for α values of 1.0 and 1.1 are due to adding a tie-breaking duration bias or not. 
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If no duration bias is added, so that α=1.0 in equation 28, then there can be several 

scenarios where arranging varying-duration work in different orders will produce the 

same objective function values, as long as the priority and overall activity time units are 

equal, such as in figure 21. If ignoring 𝜀1, alternative modes, and priority, as the duration 

segment of the objective function is used for tie-breaking among same priority levels, and 

𝜀2 is set to 0.01 as the time-delay penalty, then the representations in figures 21 and 22 

show the effects of making α values equal to 1.0 and 1.1 respectively. 

This bias thereby gives a small objective function benefit to scenario 1 from figure 

22, making longer duration work scheduled earlier as a default tie-breaking rule, which 

does not outweigh priority. This duration bias is also suitable to handle the problem 

definition aspect that selecting longer duration activities should be scheduled whenever 

possible, rather than an equivalent work duration sum comprising of many smaller-

duration activities. There may on occasion be a trade-off as will be seen in chapter 6, 

where applying the duration bias (α =1.1) may produce a slightly longer makespan as a 

result. 

It was found from experimentation that it is unnecessary to enforce a finish time 

constraint if the late start (LS) value for each activity is determined using a backwards pass 

from the project makespan H. If the LS has not however been calculated, or has been 

Figure 22: With a >1.0 duration bias, the same volume of duration-weighted work is 
arranged so that longer WOs are scheduled sooner among the same priority level. 

Figure 21: With no duration bias, the same volume of duration-weighted work is 
worth the same work with either arrangement. 
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calculated from a large makespan H, then the makespan may be alternatively enforced 

by adding the following constraint: 

∑ ∑ 𝑥𝑗𝑡𝑚(𝑡 + 𝑑𝑗𝑚) ≤ 𝐻

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱

𝑚∈𝑴

(35) 

This will only select the optimal combination of highest value activities in a 

makespan for scheduling. Appendix C shows this formulation in GLPK/Gusek, where 

Appendix D is the data table format used for the program. Only one mode constraint is 

used in the example of Appendix C. 

The multi-modal aspect of this formulation was developed in response to sample 

work period information provided by Seaspan [112]. In the Primavera P6 file provided, it 

was found that users scheduled work in a variety of daily schedules. Some work was 

planned on a 24-hr per day schedule, some on an 8-hr per day schedule, and some in 10-

hr shifts. Unlike the FMFs, evening and nighttime 

shifts are quite common for the larger commercial 

shipyards of ISI and Seaspan, and planning work 

in those shifts is much preferable to overtime if 

possible. To incorporate the need to schedule in 

non-standard times and to have durations that 

may be shortened by adding evening and 

nighttime shifts, the formulation was modified 

such that every mode after mode one represents 

an incremental addition of extra shifts, and a 

reduction of duration by one day or time unit. In 

theory, with standard 8-hr shifts, a reducible 

activity can be reduced to one third of its normal 

time by maximizing evening and nighttime shifts. 

In practice however, it is found that there is a limit 

Table 2: A duration table is used to 
determine durations associated 
with each mode. It differentiates 
between reducible and irreducible 
activities. 
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to how much of a workforce can work nighttime and evening shifts, so work in these non-

standard shifts should be limited. 

Another benefit of this formulation is that it uses only data that is currently being 

used for scheduling at Canadian shipyards, being hourly resource demands for different 

tasks, predecessor relationships, and activity durations.  

Data preprocessing is required to set the 𝑑𝑗𝑚 parameters for certain activities that 

cannot be shortened, such as complex work that must be completed by the same people, 

or work that can only be shortened by a certain amount. In table 2, an example data table 

shows the underlying durations used for the multiple execution modes of activities j; in 

this case however, only evening shifts are considered, so durations cannot be reduced to 

more than one half of the standard activity duration. With data processing, activities’ 

duration tables can be suited to the shift types or calendar types that the resources of 

those activities use. The duration units used in all experimentation in this thesis used days 

as a minimum duration. Inputs from hourly planning data, such as the information 

exported from Primavera P6, are rounded up to the nearest day; thus, providing a robust 

schedule that errs on the side of caution. This would of course be only suitable for 

planning strategies where the scheduling data is generalized into sets of parallel activities 

spanning at least a half-day, as seen at the FMFs and ISI, rather than long sequences of 

small (hourly/minute) duration activities. 

5.1.2 Solver Limitations and Implications in the Priority-Duration Formulation 

It was found during experimentation that a serious issue can occur with a wide-

ranging synthetic objective function like the priority-duration formulation: low priority 

activities can be given a zero objective function weight as solvers can round relatively very 

small values down to zero. Many original experimentation results had to be recomputed 

after a mixed integer linear programming (MILP) gap limitation was found. For example, 

in the objective function of equation 28, the original 𝜃 value used was 10 and α was 2. 

Although this produces a very large difference in value between priority levels, as desired, 

it actually caused instability in the results and it was noticed that in some rare 
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circumstances, priority-3 work would not even be scheduled or would be scheduled in a 

poorly optimized time unit. Further research into Gurobi online documentation [113] 

revealed that this could occur, and that Gurobi Optimization recommends that objective 

function precision limits should be approximately between 10-3 and 106. After completing 

testing with various values, it was determined that the following scaling modifications to 

the priority-duration formulation were favorable, and no other problems with poor 

results from experimentation were observed. Therefore, equation 28 can be populated 

with 𝜃, α, ε1, and ε2 constants equal to 5, 1.1, 0.001, and 0.001 respectively, along with a 

term multiplier of 100, producing the following equation: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑
100𝑥𝑗𝑡𝑚

𝑝𝑗
5 (0.001 + 𝑑𝑗1)

1.1
(1 − 0.001𝑡)

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱𝑚∈𝑴

(36) 

This objective function produces a value of approximately 4x10-4 for one single 

priority-3 activity of one single day duration, scheduled at day 999, representing an 

extreme and unrealistic objective function lower limit; furthermore, the objective 

function produces a value of 2.7x106 for a project of 1000 activities, all with 20-day 

durations, all at priority-1, and all scheduled at day zero, representing a very large 

extreme maximum limit. Both objective function extreme limits fall within the same order 

of magnitudes suggested by Gurobi Optimization. Due to the solver precision limitations, 

this formulation is applicable to three priority levels. As more priority levels are 

introduced, a trade-off should occur in value differentiation between priority levels. For 

example, with 4 priority levels, 𝜃 may need to be reduced from 5 to 4. This may cause an 

unintended effect where a long-duration lower priority activity may have a larger value 

than a very short-duration higher priority activity. In a practical sense however, very short 

activities (one to two days) are easy to complete because they “fit” quite well in-between 

longer activities in the solution space, as they only require resources to be free for a short 

duration. They can even be completed “off-the-books” to take advantage of delays in 

other work, that frees-up workers, caused by weather or other random events, where the 

completion data is tallied after the fact. This relative lowering in objective function value 
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for these rare short high-priority activities should therefore not be a significant real-world 

problem.  

It should be noted that with a very large amount of priority levels, the optimal 

solution will be closer and closer to what a prioritized list in a serial SGS would output, as 

the serial SGS is the ultimate front-loading priority-based scheduler, since it schedules 

activities in a prioritized list one-by-one as early as is feasible. Furthermore, as will be seen 

later, this MILP model can only be solved in a reasonable amount of time for a limited 

project size and complexity, meaning that if many priority levels are needed, which would 

be viable for only very large projects, then an exact solving methodology will be 

unsuitable by itself anyway.  

For the experiments conducted in this thesis however, only three priority levels 

were used, as they accurately represent the priority-levels associated with RCN reporting 

and planning: ESS=priority-1, HOPP=priority-2, and NOPP=priority-3 [16].  

5.1.3 Discrete-Time Priority-Duration RCPSP Model for WO Scheduling with Activity 

Adjacency 

After completing experiment set 3 and continuing research into larger and more 

complex problems provided by Thales Canada, it was found that the initial scheduling 

formulation in section 5.1.1 would not find solutions in a reasonable amount of time. For 

instance, an initial 500-activity problem required 6 minutes to pre-process data even 

before being sent to a solver, including early start forward pass, running a serial SGS for a 

time horizon H, completing a backward pass from H, then formatting the data for Gusek 

consumption, then having Gusek build the lp file. The lp file creation itself took 65 seconds 

to complete. The Gurobi 9.0 solver could not solve such a large problem within 8 hours 

and based on discussions with schedulers mentioned throughout this thesis, improving 

the solution time is of great importance: even often more important than having an 

optimal schedule. Also mentioned in chapters three and five, is that schedulers were 

discouraged with automatic scheduling software features because it would often split a 

WO’s activities, so they were no longer adjacent. The used scheduling software either did 
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not allow an option for adjacency or it was never used. Unless there was no other option, 

a WO’s activities were best left adjacent to each other without breaks. Parallel tasks were 

normally meant to start simultaneously in a schedule, but the automatic scheduling 

features were not designed to facilitate this, so manual scheduling retained its 

dominance. The combination of these factors led to the creation of the following 

formulation that requires pre-calculation of activity early start times relative to WO start 

times, without considering resources.  

This can be done because as seen in practice, a single WO will never in itself 

present an infeasible schedule considering resources (i.e. parallel activities are planned 

using resources such that they can feasibly occur in parallel). Moreover, this method was 

only tested on problem sets where activities were scheduled with sequential sets of single 

or parallel activities, without many precedence relationships between activities of 

different WOs, as is industry practice at the FMFs [3]. No reviewed work period data from 

the FMFs received for this thesis included a precedence constraint between activities of 

different WOs in the scheduling data of NSWPPs. If such a relationship existed, then this 

rare exception was accommodated with managerial intervention (i.e. schedule this work 

period at time x because that is when we expect activity y from this other WO to be 

completed). By simplifying the precedence data structure to what is seen in practice, then 

this method can find good solutions to larger NSWPP RCPSPs in less time, satisfying the 

real-world problem where time is very important and activities adjacency is respected, 

yet benefitting from optimization software. Precedence between WOs can still however 

be accommodated, but since there are much less of these relationships present, the 

problem is simplified. WO start times are added as additional variables. Activity start 

times are fixed relative to the WO start times, and parallel activities with varying durations 

are set to begin once the latest predecessor is completed. Since this was developed late 

in the research phase of this thesis, analysis and formulation development was only 

completed for the most common initial scheduling scenario: without multiple execution 

modes and no overtime. Below is the modified formulation: 

Indices: 
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1… A for activities 

1…W for WOs 

1…K for resources types 

0…H for the time horizon 

Sets: 

P activity immediate predecessor pairs (i,j) 

K resources 

J activities 

W for WOs 

AW (A cross W) Work package assignment for each activity 

Parameters: 

H integer, the planning horizon from the project start (0) 

A integer, number of activities 

W integer, number of WOs 

𝑑𝑗 integer, duration of activities j 

𝑟𝑗𝑘integer, activity j demand for resource type k 

𝑅𝑘integer, resource k capacity 

𝐸𝑆𝑗 integer, earliest start time of activity j 

𝐿𝑆𝑗 integer, latest start time of activity j 

𝐸𝑆𝑤 integer, earliest start time of WO w 

𝐿𝑆𝑤 integer, latest start time of WO w 
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𝑝𝑗 integer, priority of activities (1=ESS, 2=HOPP, 3=NOPP) 

𝜃 (≥ 0), used to assign weights to activities proportionately to their priority 

𝜀1 (≥ 0), very small value to account for milestones that have no actual duration 

𝜀2 (≥ 0), very small value to penalize late scheduling of activities 

𝛼 (> 0), use to give tie-breaking benefits to longer duration work (α=1.1) or 

making each work duration unit equal (α=1.0) 

𝑓𝑗 relative start time distance of activity j with its WO start time 

 

Variables: 

𝑥𝑗𝑡 binary, 1 if activity j starts at time t, 0 otherwise 

𝑦𝑤𝑡 binary, 1 if WO w starts at time t, 0 otherwise 

 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑
𝑥𝑗𝑡

𝑝𝑗
𝜃

(𝜀1 + 𝑑𝑗)𝛼(1 − 𝜀2𝑡)

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱

(37) 

Subject to: 

∑ 𝑥𝑗𝑡 ≤ 1

𝐿𝑆𝑗

𝐸𝑆𝑗

          ∀ 𝑗 ∈ 𝑱 (38) 

∑ 𝑦𝑤𝑡 ≤ 1

𝐿𝑆𝑤

𝐸𝑆𝑤

          ∀ 𝑤 ∈ 𝑾 (39) 
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- All activities and WOs must be completed no more than once between the 

respective ES and LS times. 

 

∑ 𝑥𝑗𝑡𝑡

𝐿𝑆𝑗

𝐸𝑆𝑗

≥ ∑ 𝑥𝑖𝑡(𝑡

𝐿𝑆𝑖

𝐸𝑆𝑖

+ 𝑑𝑖)     ∀𝑗 ∈ 𝑱, ∀(𝑖, 𝑗)  ∈  𝑷 (40) 

- A successor’s start time must be greater or equal to a predecessor’s start time plus 

its duration. For this to be a real benefit, this must only consider predecessors 

whose successor exists in another WO, determined via data pre-processing. In 

many projects, this constraint may not be used at all. 

∑ ∑ 𝑥𝑗𝑏𝑟𝑗𝑘

min{𝐿𝑆𝑗,𝑡}

𝑏=max{𝑡−𝑑𝑗+1,𝐸𝑆𝑗} 

≤ 𝑅𝑘

𝑗∈𝑱

     ∀𝑘 ∈ 𝑲, ∀𝑡 ∈ 0 … 𝐻 (41) 

- The sum of resource usage for the period of activity start times to activity end 

times must not exceed the resource capacity for of each resource type k. This 

considers activities instead of WOs. 

∑ 𝑡 × 𝑦𝑤𝑡 = t × 𝑥𝑗𝑡 −

𝐿𝑆𝑤

𝐸𝑆𝑤

 𝑓𝑗          ∀ 𝑤 ∈ 𝑾, ∀ 𝑗 ∪ 𝑤 ∈ 𝑨𝑾 (42) 

- Activity start times maintain a pre-calculated CPM start time based on respective 

WO start times; thus, enforcing adjacency and AEAP scheduling. Once a WO starts, 

it is supported until conclusion without resource-related delays. 

𝑥𝑗𝑡 ∈ {0,1}         ∀ 𝑗 ∈ 𝑱, 𝑡 ∈ 𝐸𝑆𝑗 … 𝐿𝑆𝑗 (43) 

𝑦𝑤𝑡 ∈ {0,1}         ∀ 𝑤 ∈ 𝑾, 𝑡 ∈ 𝐸𝑆𝑤 … 𝐿𝑆𝑤 (44) 

- Start times are binary, thus a variable exists for every time unit between each 

activity’s ES and LS. 

Results from experimentation with this formulation are found in experiment set 

4; furthermore, the formulation in Gusek and a data format example is found in 

Appendices E and F respectively. 
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5.2 Proposed Formulations for the Re-Scheduling Problem 

From discussions with schedulers, PLs, and PMs [3] [4], it was confirmed that 

higher priority work packages are more important to keep on a firm schedule than lower 

priority ones, and minimizing these changes with an emphasis on priority is desirable. To 

incorporate this into a discrete time RCPSP formulation format, it is proposed in this thesis 

to add a priority term to the objective function described by Van De Vonder (2006) [59] 

as a common re-scheduling goal, as indicated in the following equation, where 𝑠𝑗
0 

represents the start time of activity j in the initial schedule 0: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑
𝑥𝑗𝑡

𝒑𝒋
𝜽

|𝑥𝑗𝑡𝑡 − 𝑠𝑗
0|

𝑡∈𝑯𝑗∈𝑱

(45) 

This formulation objective function is however not linear and must thereby be 

modified with constraints to ensure that it is linear. As suggested by Granger, Yu and Zu 

(2017) [114], this can be done by adding additional constraints to handle positive and 

negative deviations of the absolute term. This technique is applied to this model for the 

following key formulae: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑
𝑢𝑗

𝑝𝑗
𝜃

𝑡∈𝑯𝑗∈𝑱

(46) 

 

Subject to: 

𝑢𝑗 ≥  𝑥𝑗𝑡(𝑡 − 𝑆𝑗)     ∀𝑗 ∈ 𝑱, ∀𝑡 ∈ {𝐸𝑆𝑗 … 𝐿𝑆𝑗} (47) 

𝑢𝑗 ≥  𝑥𝑗𝑡(𝑆𝑗 − 𝑡)     ∀𝑗 ∈ 𝑱, ∀𝑡 ∈ {𝐸𝑆𝑗 … 𝐿𝑆𝑗} (48) 

Where t is the time at which activities 𝑥𝑗𝑡  may begin and 𝑆𝑗 is the original starting 

time of activity j. 𝑢𝑗  becomes the new variable that is a maximum positive value 

representing the absolute change (deviation-days) between 𝑆𝑗  and t.  

5.2.1 Multi-Mode Re-scheduling DT Priority RCPSP Model, Version A: Deviations days 

1… A for activities 
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1…K for resources types 

0…H for the time horizon 

Sets: 

P activity immediate predecessor pairs (i,j) 

K resources 

J activities 

M activity execution modes m 

Parameters: 

H integer, the planning horizon from the project start (0) 

A integer, number of activities 

𝑑𝑖𝑚 and 𝑑𝑗𝑚 integer, duration of activities i and j, depending on mode m 

𝑟𝑗𝑘integer, activity j demand for resource type k 

𝑅𝑘integer, resource k capacity 

𝐸𝑆𝑗 integer, earliest start time of activity j 

𝐿𝑆𝑗 integer, latest start time of activity j 

𝑝𝑗 integer, priority of activities (1=ESS, 2=HOPP, 3=NOPP) 

𝜃 (≥ 0), used to assign weights to activities proportionately to their priority 

𝜀1 (≥ 0), very small value to account for milestones that have no actual duration 

𝜀2 (≥ 0), very small value to penalize late scheduling of activities 

𝛼 (> 0), use to give tie-breaking benefits to longer duration work (α=1.1) or 

making each work duration unit equal (α=1.0) 

𝑆𝑗 Initially scheduled activity start-dates for each activity j 
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𝛽𝑀1 total alternative shift limit 

𝛽𝑀2 alternative mode reduction limit 

Variables: 

𝑥𝑗𝑡𝑚 = {
1 if activity 𝑗 starts at time 𝑡 in mode 𝑚

0 otherwise                                                    
 

𝑢𝑗  represents positive deviation-days for activity j 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑ ∑
𝑢𝑗

𝑝𝑗
𝜃

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱𝑚∈𝑴

(49) 

Subject to: 

∑ ∑ 𝑥𝑗𝑡𝑚 ≤ 1     ∀𝑗 ∈ 𝑱

𝐿𝑆𝑗

𝐸𝑆𝑗𝑚∈𝑴

(50) 

∑ ∑ ∑ 𝑥𝑗𝑏𝑚𝑟𝑗𝑘

min{𝐿𝑆𝑗,𝑡}

𝑏=max{𝑡−𝑑𝑗𝑚+1,𝐸𝑆𝑗} 

≤ 𝑅𝑘

𝑗∈𝑱

     ∀𝑘 ∈ 𝑲, ∀𝑡 ∈ 0 … 𝐻

𝑚∈𝑴

(51) 

∑ ∑ 𝑥𝑗𝑡𝑚𝑡

𝐿𝑆𝑗

𝐸𝑆𝑗

≥ ∑ ∑ 𝑥𝑖𝑡𝑚(𝑡

𝐿𝑆𝑖

𝐸𝑆𝑖

+ 𝑑𝑖𝑚)     ∀𝑗 ∈ 𝑱, ∀(𝑖, 𝑗)  ∈  𝑷

𝑚∈𝑴𝑚∈𝑴

(52) 

𝑢𝑗 ≥  ∑ 𝑥𝑗𝑡𝑚(𝑡 − 𝑆𝑗)     ∀𝑗 ∈ 𝑱, ∀𝑡 ∈ {𝐸𝑆𝑗 … 𝐿𝑆𝑗}

𝑚∈𝑴

 (53) 

𝑢𝑗 ≥  ∑ 𝑥𝑗𝑡𝑚(𝑆𝑗 − 𝑡)     ∀𝑗 ∈ 𝑱, ∀𝑡 ∈ {𝐸𝑆𝑗 … 𝐿𝑆𝑗}

𝑚∈𝑴

(54) 

∑ ∑(𝑥𝑗𝑡2 + 2𝑥𝑗𝑡3 + ⋯ + (𝑀 − 1)𝑥𝑗𝑡𝑀) ≤ 𝛽𝑀1

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱

(55) 

∑ ∑(𝑥𝑗𝑡2 + 𝑥𝑗𝑡3 + ⋯ + 𝑥𝑗𝑡𝑀) ≤ 𝛽𝑀2

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱

(56) 
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𝑥𝑗𝑡𝑚      ∈ {0,1} (57) 

This formulation will minimize deviation days from an initial schedule after a 

disruption and can be very useful, but it does not directly reduce number of deviations 

(vs total deviation-days). Another formulation was developed and used in experiment set 

2 to determine whether the deviation-days objective or the deviations objective were 

more suitable.  

5.2.2 Multi-Mode Re-scheduling DT Priority RCPSP Model, Version B: Deviations 

When speaking with scheduling staff, the question was asked: “would you prefer 

having one WO shifted by 20 days? Or, would you prefer having 10 WOs shifted by two 

days each?” Both scenarios would produce the same number of deviation days, but the 

interviewees indicated that it is a lot more work to re-plan, re-schedule, coordinate with 

shop supervisors etc. for 10 WOs than it is for one WO. If the single activity being shifted 

20 days therefore maintained a feasible schedule, then this scenario would be preferred. 

Thus, for this case, the objective function may be modified to the following, with 

complimentary constraints to linearize it: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑ ∑
𝑦𝑗

𝑝𝑗
𝜃

𝐿𝑆𝑗

𝐸𝑆𝑗

+ 𝜀 ∑ ∑ ∑ 𝑥𝑗𝑡𝑚𝑡

𝐿𝑆𝑗

𝐸𝑆𝑗𝑗∈𝑱𝑚∈𝑴𝑗∈𝑱𝑚∈𝑴

(58) 

The first term will add one unit divided by the priority-term for every deviation, 

regardless of the deviation’s magnitude. Note that the second term is necessary to ensure 

that any deviated activities are completed as early as possible. The second term in the 

objective function is the same slack reduction term used in section 3.2.1. From 

experimentation, it was found that without this term, the linear solvers removed 

problematic activities or sets of activities and re-scheduled them very far in the future. 𝜀 

must be a small value to prevent the slack reduction term from outweighing the primary 

objective of preventing schedule changes. 𝜀 = 0.001 was used in experiment set 2, thus 

ensuring that this second term does not outweigh the first term. Along with the objective 
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function, the constraints from the complete formulation in section 5.2.1 are also modified 

to include the following two equations: 

Subject to: 

𝑦𝑗 ≥
𝑢𝑗

𝑁
     ∀𝑗 ∈ 𝑱 (59) 

𝑥𝑗𝑡𝑚,   𝑦𝑗      ∈ {0,1} (60) 

Using the Big M technique described by Hillier and Lieberman (2015) [25], a large 

constant N is used that will direct 𝑦𝑗 to be equal to its binary form for each activity j, where 

a value of one represents any magnitude of activity change from the original schedule 

and a value of zero represents no changes to the original schedule. For experimentations 

using this formulation, N was given a value of 500 as no single deviation could come close 

to 500 since the time horizon for experimentations was limited to 240 time-units (days). 

Although the formulations proposed for the re-scheduling scenarios produce the 

least (optimal) number of either start-time deviation-days or start-time deviations after 

changes have occurred to the project, by setting 𝛽𝑀1 to zero, it was discovered in 

experiment set 2 that even optimal solutions without using alternative shifts are often 

poor in terms of producing too many scheduling changes. This became worse the earlier 

that the disruption occurred in a project. Experiment set 3 was conducted using the multi-

mode formulations with 𝛽𝑀1 set to one, to determine which activity will have the most 

impact when reduced in duration; thus, guiding a user’s overtime investigation to the 

most worthwhile activities. 

5.3 Random Problem Generation with NSWPP-Inspired Topologies 

Due to the lack of NSWPP-inspired project network topologies in the literature, a 

fictitious ship was created, inspired by the HAL Class Frigate, where work using two types 

of resources were featured. The first type of resource, which is very common in literature, 

is that of fixed-capacity shop resources, while the second resource introduced is that of 

compartment resources. The fictitious ship, illustrated in figure 23, includes 40 
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compartments, representing a scaled-down version of the HAL Class Frigate that has 353 

compartments. 

SS and repair facility (RF) workers typically call compartments by their functional 

names, such as the “operations room” or “machinery control room”, but all spaces are 

also given an alphanumeric naming system that represents first the deck (numbers), then 

secondly the watertight bulkhead frame (letters). Not shown in figure 23, are the names 

of individual compartments within watertight bulkhead sections. For example, watertight 

compartment 4D might have multiple compartments within this watertight section, with 

space numbering labelled 4D01, 4D02, 4D03A, 4D03B, etc. Moreover, the fictitious ship 

is only drawn and used in two dimensions, but NSSs are built in three dimensions and 

have non-watertight compartments on either port or starboard sides that may be 

affected by conflict-causing activities like hot work or passageway deck repairs. Although 

the model is simplified, the insights from experimentation are transferable to a larger 

project in three dimensions. 

Ficticious Surface Ship

Hangar Top Bridge top

CO's Cabin Bridge

1D 1C

Flight gear Gym 2G Admin Office 1 Admin Office 2 2D Comms Room 2B 2A

Quarters 1 Quarters 2 Quarters 3 3F 3E Cafeteria Operations 3B

Fuel tanks Steering 4G Control Room 4E Galley 4C

Fuel tanks Sonar

Ficticious Surface Ship - locations in alpha-numeric format

02G 02C

01D 01C

1D 1C

2J 2H 2G 2F 2E 2D 2C 2B 2A

3J 3H 3G 3F 3E 3D 3C 3B

4J 4H 4G 4F 4E 4D 4C

5H 5D

5G 5F 5E

Mast

ForecastleHangar

1G

flightdeck boat/crane/missile deck

02D

1H 1E

Engine 1 Engine 2 Engine 3

1A

Figure 23: This fictitious ship is used to simulate compartment resources in randomly 
generated NSWPP-inspired RCPSPs. It is inspired by the RCN’s Halifax Class Frigate. 
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FMFCS has 70 shops that may provide worker 

resources, so a scaled-down version of this was used to 

mimic a simplified version where an ISS contractor is the 

primary agent that manages eleven additional internal 

and external resources, up to a certain daily capacity 

level, representing hours. Table 3 shows the resource 

table used for experiment sets 1, 2, and 3.  

Activities used for this random problem 

generator are in the form of multiple activities estimated 

to occur in parallel, called a WO or work package. 

To gauge problem complexity, perform 

experiments, and gather statistically significant trends, a 

problem generator was created to build numerous 

problems, which were then used in experiment sets 1, 2, 

and 3. The problems shared the following random 

characteristics: 

- All scheduling problems were defaulted to 100 

activities (as WOs) for experiment sets 1 and 2, 

although experiment set 3 varied the number of 

activities. 

- Sets of WOs are created with one to four WOs, 

each in sequential precedence order. For each 

random set: 40% have one WO, 30% have two 

WOs in sequence, 20% have three WOs in 

sequence, and 10% have four WOs in sequence. 

- All sets have one common main compartment 

for each WO within the set, as precedence 

constraints for work involving different primary spaces are rare in NSWPPs. 

Table 3: Resource table used 
for random problem 
generation. 
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- 30% of WOs have one random adjacent space; 30% of those with one adjacent 

space have an additional different adjacent space. 

- Each set of one to four WOs have priorities assigned, and are generated as 50% 

priority-1, 30% priority-2, and 20% priority-3. 

- Additional non-space resources were assigned randomly: 80% use one random 

resource of a random quantity between 0% and 50% of that resource capacity per 

time unit; of those, an additional resource is assigned to 50% of WOs with the 

same resource consumption probabilities. 

5.4 Early Start and Late Start Calculation Adjustment for Multi-Mode Formulations 

An important point to consider is that, as discovered via experimentation, the ES 

times for activities when using multiple modes that reduce duration should be adjusted. 

The reason for this is that if a predecessor activity finishes earlier because it is active in a 

duration-reduced mode, then the successor activity should be able to start earlier than in 

the initial ES assignment, as long as resources can support it. For experimentation in 

experiment set 3, the ES calculated when using multiple duration modes was set to 0 or 

the present day. The present day is the early start time given for all activities that have 

not yet started in the re-scheduling scenario. For example, if re-scheduling occurs at day-

22 of a project, then it is impossible to start any activities that have not yet started any 

earlier than day-22, so the default ES will be 22. In the re-scheduling scenario with 

multiple modes, activities that are in-progress have ES and LS equal to their original start 

times from the initial scheduling solution, while activities that have not yet started have 

ES times equal to the present day. This increase in 𝑥𝑗𝑡𝑚 values due to a more relaxed ES 

time did not significantly increase solve times, likely due to the low-precedence network 

topology of NSWPPs.  

A late start (LS) based on a very conservative date in the far future will however 

increase the time required to generate the .lp files due to the larger number of variables 

created. For larger problems, there is benefit in using a serial SGS to first build a feasible 

schedule that creates a reasonably tight time horizon H, a forward and backward pass will 
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quickly determine a LS for each activity. Details on how the forward and backwards pass 

were calculated with Excel-VBA may be found in Appendix A, where a serial SGS is also 

used to calculate a reasonable time horizon H, for the backward pass to calculate a tight 

LS. 

5.5 Experiment Assessment Criteria 

Additional thought is needed to determine how to best assess the quality of 

schedules being produced in experimentation. In NSWPPs, due to the variability and 

scope growth that occurs, it is generally not good to optimally schedule all work with the 

simple goal of minimizing makespan. For example, a solution that produces a very small 

makespan might schedule long-duration and high-priority activities to finish on the last 

day of a project; however, makespan is still important and will be considered when 

evaluating projects, as a shorter makespan is a simple and classic way of evaluating 

solutions. It is not however the only or most important criterion. Other criteria to be used 

are: Priority-1 buffer, average priority-1 duration-weighted centroid (DWC), solution 

time, total deviations, and total deviation days. 

Priority-1 buffer: 

The naturally induced priority-1 buffer is defined as the percentage of the 

makespan where only priority-2 and priority-3 activities are scheduled, and is described 

mathematically in this thesis as: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑒𝑛𝑑 𝑑𝑎𝑡𝑒 − (𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦_1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
(61) 

This buffer is an indication of project risk: a large score means that the last 

priority- 1 activity ends far from the end of the project meaning that there is little risk for 

the non-completion of a priority 1 activity.  However, it might not be sufficient at 

describing the relative volume of high-priority activities earlier in a project. For example, 

as seen in figure 24, there is a fictitious project where a single priority-1 activity trails 

almost the full length of a project’s makespan, but the bulk of priority-1 activities occur 

very early-on. The priority-1 buffer metric will show that the project is relatively risky, but 
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an experienced project manager would be very comfortable with this project when 

reviewing the Gantt Chart, because there is only one activity requiring significant 

managerial attention for the last 50% of the project. Thus, the next criterion is introduced. 

Average priority-1 duration-weighted centroid (DWC): 

To assess how well a project places the highest priority activities earlier in a 

project, it is proposed in this thesis to use the average priority-1 duration-weighted 

centroid (DWC) evaluation criterion. This criterion can be mathematically represented by 

equation 62, where 𝑛𝑝𝑟𝑖_1 represents the number of priority-1 activities, 𝑥𝑠𝑡𝑎𝑟𝑡  represents 

the priority-1 start times, 𝑥𝑓𝑖𝑛𝑖𝑠ℎ represents the priority-1 finish times, 𝑑𝑗 represents the 

duration of each activity: 

𝐴𝑣𝑔 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 1 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = ∑
𝑥𝑠𝑡𝑎𝑟𝑡 + 𝑥𝑓𝑖𝑛𝑖𝑠ℎ

2 × 𝑛𝑝𝑟𝑖_1
𝑗∈𝑱

𝑑𝑗 (62) 

Figure 24: A priority-1 buffer is not always a suitable indication of a project’s risk. 
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This criterion will give a result that can be anecdotally described as the central 

positioning of the average activity in a project in terms of time units and weighted by the 

duration of activities. For example, an average priority-1 centroid of 300 days represents 

that the average priority-1 activity may be approximately 10 days in duration and 

positioned about day-30 of a project. Figure 25 is an illustration of a sample fictitious 

project where the darker blue rectangle represents the average positioning and size of a 

priority-1 activity, along with its distance from the project start time. The distance 

between the project start and the centre of this average activity is the centroid. When the 

centroid is multiplied by this average activity’s duration, this is the average pri-1 DWC. 

The reason that duration should be considered in this assessment criterion is that 

without a duration-weight, there could be a schedule solution that appears good where 

several short-duration but high-priority activities are scheduled earlier, but a smaller 

number of longer-duration high-priority activities are scheduled later. These activities, 

without a duration-weight, would all be worth the same, and the resultant centroid value 

would be better (smaller). This could however represent a poor schedule in practice 

because these long-duration activities, that are typically much more complicated and 

difficult to manage than smaller-duration activities, would be given an equivalent weight 

and might be scheduled later. 

Figure 25: Illustrating the average position and size of a priority-1 activity over a project 
makespan. 
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The ratio between the average priority-1 DWC criterion and a project’s makespan 

can be further used to provide a good indication of the risk that a project will not complete 

a priority-1 activity. In the same example above, where the priority-1 DWC is 300 days2, if 

the project makespan is 100 days and recall that the average activity duration is 10 days, 

then it can be said that the average priority-1 activity is 10 days duration and positioned 

about day-30 of the project. As this value approaches day-50, the positioning of priority-

1 activities is even across the project’s makespan, representing a poor front-load of 

priority-1 activities. The lower this value, the better. 

Total deviation days 

For the re-scheduling scenarios however, the DCW criterion is unsuitable when 

the goal is to reduce disruptions. The assessment criterion primarily used in experiment 

sets 2 and 3 is the one proposed by Van de Vonder (2007) [70]: total deviation days 

between the original schedule and the new schedule after changes in a project’s activities 

have occurred (see section 3.6). To properly assess the total number of work deviations 

(instead of deviation days) in experiment set 2, the assessment criterion described 

mathematically in the following equation is used: 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 = ∑ {
1          𝑖𝑓 ∑|𝑥𝑗𝑡𝑡 − 𝑠𝑗

0|

𝑡∈𝐻

> 0

0                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑗∈𝐽

(63) 

Experimentation and result analyses used to set-up subsequent experiments, 

using the aforementioned formulations, heuristics, and assessment criteria, are found in 

the next chapter. 
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Chapter 6:  Experiments and Results Analysis 

The experimentation described in this thesis was completed by iteratively 

performing experiments, analysing, and discussing results, then using these results and 

insights to set up subsequent experiments. For this reason, the results analysis, 

discussion, and motivation for the subsequent experiments are presented in this chapter 

as subsequent sections to facilitate reader comprehension.  

A small preliminary experiment set was first conducted to gauge the difficulty of 

RCPSPs with topologies that are similar to real-world NSWPP RCPSPs. This preliminary 

experiment set was conducted on a large problem set with an increasing number of work 

packages and therefore difficulty. The same activities were present in each successive 

trial, such that adding more activities guarantees that the problem difficulty increases; 

however, no statistically significant results could be obtained because the experiment 

samples are correlated. This preliminary trial compared nine serial and parallel SGS 

sorting methods, and some obvious anecdotal results were observed. These include that 

the problem is indeed NP-hard and therefore solve time increases exponentially, while 

heuristic serial and parallel SGS methods solve much faster. Only priority-based 

formulations, such as the initial scheduling formulation presented in this thesis, and 

priority-list ordered SGS sorting methods resulted in competitive average priority-1 

DWCs; thus, only these methods will be used for the main experiment sets. The makespan 

minimization formulation with and without slack reduction is unsuitable for the goal of 

minimizing pri-1 DWCs and performs poorly. This is intuitively expected since it only aims 

to minimize makespan and/or reduce slack but gives no importance to activity priorities. 

Figure 26 shows that as constrainedness in resource demand and availability 

increase, by increasing the number or activities in increments of 20, exact formulations 

can reach long solution times while the SGS methods tested solved much faster at the 

cost of pri-1 DWC optimality. The serial SGS methodology appeared to perform as well as 

parallel SGSs, and since it more closely mimicked human manual scheduling and solved in 
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half the time of parallel SGSs, it was chosen for comparative purposes in future 

experiments. 

Although not part of the preliminary experiment, the shifting bottleneck 

procedure will be considered in experiment set 1, as well as two versions of the priority 

duration formulation that include a duration bias (α=1.1 in equation 28) or not (α=1.0). 

To recall the effects of the duration bias, please refer to section 5.1.1. 

6.1 Numerical Experiment Set 1: Priority-Duration for Initial Scheduling with 100-

Activity Sets 

As described in section 5.3, random problems were created with a fictitious ship 

and resource capacities. 30 randomly generated problems were used to determine 

statistically significant advantages of formulations and heuristics when compared to each 

other, for those formulations and heuristics that showed potential from the results 

analysis of the preliminary experiments. In order to compare with the SGS heuristics that 

used priority sorting schemes, the formulation mode settings used for the priority-

duration formulation were only the base mode (i.e. 𝛽𝑀1 and 𝛽𝑀2 set to zero).  

In this experiment set, the shifting bottleneck procedure is added to the mix of 

comparable heuristics with a priority respecting parallel SGS that will only schedule lower 

Figure 26: Solution times, in seconds, for various exact and heuristic techniques. 
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priority activities after higher priority activities are all scheduled. This heuristic method is 

titled the “PSGS(SBP)” in the experiment set. 

A priority-ES-then shifting bottleneck sort method was also used with a serial SGS 

to see if promising results could be found. This was labelled “SSGS(ES-SBP)”. In this 

method, the shifting bottleneck procedure is performed successively to groups of 

activities with the same priority and ES. 

To test for statistical significance between solution methods, a standardized 

paired t-test was performed, where the relative differences between solutions is assumed 

to be normally distributed. For more information on testing for statistical significance, 

please refer to Sirkin (2005) [115]. 

The naming convention for all 8 methods analyzed is as follows: 

- The multi-mode DT priority-duration formulation (section 5.1.1) with a duration 

bias (α=1.1): PD(α=1.1) 

- The multi-mode DT priority-duration formulation (section 5.1.1) without a 

duration bias (α=1.0): PD(α=1.0) 

- The serial SGS, sorted 1st by priority, then 2nd by the average of both the ES and 

LS: SSGS(aESLS) 

- The serial SGS, sorted 1st by priority, then 2nd by ES: SSGS(ES) 

- The serial SGS, sorted 1st by priority, then 2nd by the average of both the ES and 

LS, then 3rd by duration: SSGS(aESLS-D) 

- The serial SGS, sorted 1st by priority, then 2nd by ES, then 3rd by duration: SSGS(ES-

D) 

- The serial SGS, sorted 1st by priority, then 2nd by ES, then 3rd by the shifting 

bottleneck procedure: SSGS(ES-SBP) 

- The parallel SGS, sorted 1st by priority, then 2nd by the shifting bottleneck 

procedure: PSGS(SBP) 
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The results in terms of makespan depicted in table 4 show no statistically 

significant difference between adding a duration bias or not (α=1.0 or 1.1) for the priority-

duration formulation, with an average makespan difference of 0.026% in favor of 

removing the duration bias. The exact formulations in the first two columns produced on 

average a makespan that was 2.2%±1.7% smaller than the Parallel SGS: shifting bottleneck 

heuristic, with a 90% confidence interval. 

 

Makespan
PD(α=1.0) PD(α=1.1) SSGS(aESLS) SSGS(ES) SSGS(aESLS-D) SSGS(ES-D) SSGS(ES-SBP) PSGS(SBP)

Trial 1 121 120 123 128 123 123 117 120

Trial 2 133 134 147 135 148 147 148 136

Trial 3 104 103 103 109 109 103 109 103

Trial 4 115 115 115 115 115 115 115 121

Trial 5 112 116 130 128 128 130 130 116

Trial 6 119 119 120 119 119 120 119 119

Trial 7 120 120 120 124 120 120 120 120

Trial 8 130 135 143 145 152 143 152 141

Trial 9 101 97 116 116 116 116 116 102

Trial 10 97 90 98 92 97 98 100 100

Trial 11 122 122 122 122 122 122 122 122

Trial 12 155 155 155 158 158 155 156 155

Trial 13 147 147 147 149 148 150 149 163

Trial 14 128 128 128 130 128 128 142 129

Trial 15 146 146 146 146 146 146 161 155

Trial 16 108 108 130 120 130 130 120 120

Trial 17 115 115 117 115 115 117 115 116

Trial 18 152 149 163 163 163 163 163 161

Trial 19 102 102 114 113 113 114 117 113

Trial 20 138 138 145 141 149 145 157 144

Trial 21 133 133 139 133 133 139 133 133

Trial 22 152 152 152 152 152 152 152 152

Trial 23 113 119 127 130 127 127 127 130

Trial 24 130 130 149 145 144 149 145 110

Trial 25 115 116 127 122 123 127 125 118

Trial 26 169 169 168 168 168 168 168 168

Trial 27 119 119 121 118 119 119 120 118

Trial 28 159 159 159 159 159 159 159 159

Trial 29 165 165 165 165 165 165 165 165

Trial 30 172 172 172 172 172 172 172 172

average 129.73 129.77 135.37 134.40 135.37 135.40 136.47 132.70

Table 4: Makespan (in days) for both new formulations and priority based SGSs. The 
green gradient shade shows the best performance (shortest) across the same problems. 
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The PSGS(SBP) was found to produce a solution makespan that was 2.3% shorter 

than the average Serial SGS, but due to the large variability of the results, this was found 

to not be statistically significant. Finally, the various serial SGSs tested showed very little 

difference between them on average (<1%) with no statistical significance between any 

two heuristic methods for makespan differences.  In the very worst-case scenario (trial 

#23), the PSGS(SBP) produced a makespan that was 17 days longer or 15% longer than 

that of the Priority-Duration formulation. A summary of these results may be found in 

table 5. 

These results show that if the only criterion is makespan, then the ES priority-rules 

based serial and parallel SGSs that first schedule by priority are competitive with the exact 

formulation priority-duration model.  

Table 6 presents the results obtained and used to compare the naturally induced 

priority-1 buffers. Standard t-tests were performed between instances and no one 

scheduling methods was found to produce a statistically significant different buffer when 

compared to each other over the sample size, considering the large variablility inherent 

in these randomly generated problems and resulting solutions. 

 

Makespan

PD (α=1.0) ≈ PD (α=1.1) < PSGS(SBP) <= Avg SSGS

not significant 2.2 ± 1.7% 2.3%, but not significant

Worst Case for any SGS vs Best Exact PD (α=1.0) < PSGS(SBP)

17 days or 15.0%

Table 5: Makespan differences between formulations and priority-based SGSs (in days) 
summarized.  
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As described earlier, the more priority-1 buffer, the better. These results show 

that the exact formulations do not produce statistically significant better priority-1 

buffers. However, figure 27 shows that there is a correlation between average makespan 

and average buffer size. This is also intuitive, as with two projects having the same 

priority-1 activity distribution, if only the makespan changes due to having less efficiently 

scheduled lower priority activities, then the priority-1 buffer should grow with a larger 

Average Naturally Induced Priority-1 Buffer (%)
PD(α=1.0) PD(α=1.1) SSGS(aESLS) SSGS(ES) SSGS(aESLS-D) SSGS(ES-D) SSGS(ES-SBP) PSGS(SBP)

Trial 1 31.4 31.4 32.5 35.2 37.6 32.5 29.1 30.0

Trial 2 13.5 26.3 21.8 14.8 22.3 21.8 22.3 15.4

Trial 3 1.0 16.3 0.0 0.0 0.0 0.0 0.0 2.8

Trial 4 8.7 8.7 8.7 8.7 8.7 8.7 8.7 13.2

Trial 5 33.0 35.3 32.3 37.5 35.9 32.3 36.9 31.9

Trial 6 49.6 49.6 46.7 42.9 42.9 46.7 44.5 49.6

Trial 7 55.8 55.0 50.8 52.4 50.0 52.5 55.0 55.8

Trial 8 35.6 35.6 39.2 39.3 42.8 39.2 42.8 38.3

Trial 9 17.8 17.0 28.4 28.4 28.4 28.4 28.4 18.6

Trial 10 25.8 32.7 26.5 10.9 25.8 26.5 28.0 28.0

Trial 11 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8

Trial 12 25.8 27.7 25.8 26.6 26.6 25.8 26.3 24.5

Trial 13 38.8 38.8 39.5 34.9 39.8 39.3 34.9 34.6

Trial 14 14.8 14.8 14.8 12.3 14.8 14.8 23.2 14.7

Trial 15 33.6 33.6 33.6 33.6 33.6 33.6 39.8 37.4

Trial 16 17.6 17.6 31.5 25.8 31.5 31.5 25.8 25.8

Trial 17 42.6 42.6 43.6 39.1 42.6 43.6 42.6 43.1

Trial 18 49.3 48.3 52.8 52.8 52.8 52.8 52.8 52.2

Trial 19 39.2 43.1 40.4 39.8 45.1 40.4 47.0 45.1

Trial 20 29.7 29.7 28.3 29.1 32.9 28.3 38.2 32.6

Trial 21 27.8 27.8 26.6 27.8 27.8 26.6 27.8 27.8

Trial 22 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1

Trial 23 61.1 63.0 62.2 56.9 55.9 62.2 55.9 66.2

Trial 24 34.6 34.6 43.0 41.4 41.0 43.0 41.4 22.7

Trial 25 16.5 17.2 24.4 21.3 22.0 24.4 23.2 18.6

Trial 26 53.3 53.3 53.6 53.6 53.6 53.6 53.6 53.6

Trial 27 42.9 42.9 43.8 42.4 42.9 42.9 43.3 42.4

Trial 28 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5

Trial 29 57.6 57.6 57.6 57.6 57.6 57.6 57.6 57.6

Trial 30 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4

average 33.44 34.88 35.14 33.70 35.36 35.16 35.83 34.28

Table 6: A summary of naturally induced priority-1 buffers for the experiment set. No 
method produces statistically significantly more buffer. 
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makespan. Another observation made from these results is that even though these 

projects have approximately 50% of activities being non-priority-1, there are still 

problems where the solutions produce only very small priority-1 buffers, see trials 3 and 

4 in table 6. For this reason, if a user is interested in guaranteeing that a high-priority 

buffer is obtained, then care must be taken to ensure that sufficient lower priority 

activities are included in the project that use the same resources (spaces and shops) as 

for the priority-1 work. Getting a desired priority buffer is likely an iterative process 

requiring re-scheduling the initial schedule with different sets of available WOs and this 

may never produce the desired buffer if the makespan is too tight for the mix of ESS work 

in a project. Recall however that the best assessment criterion to determine solution 

robustness is the priority-1 DWC.  

When assessing for priority-1 DCW, the exact priority-duration formulations 

produce the best priority-1 duration-weighted centroids for this problem set, as seen in 

table 7. 

 

Figure 27: Makespan is correlated with priority-1 buffer size. 
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 This is expected since the formulation is designed to almost directly find an 

optimal solution for this. Analysis of the results indicate that the priority-duration exact 

formulation without a duration bias (α=1.0) produces a smaller priority-1 DWC by 

0.4%±0.2% than that of the same formulation with a duration bias (α=1.1). This is 

intuitively expected because without the bias, small benefits can be achieved by being 

able to arrange activities in various orders to achieve a better centroid, instead of having 

an exponential bonus for the higher durations being scheduled earlier. The PSGS(SBP) 

Priority 1-Duration-Weighted Centroid

PD(α=1.0) PD(α=1.1) SSGS(aESLS) SSGS(ES) SSGS(aESLS-D) SSGS(ES-D) SSGS(ES-SBP) PSGS(SBP)

Trial 1 231.4 236.9 240.5 250.7 246.1 240.5 238.4 239.2

Trial 2 292.4 292.4 302.9 318.8 309.0 302.9 314.5 294.1

Trial 3 323.8 325.5 328.3 335.6 335.5 328.3 337.5 328.4

Trial 4 283.2 283.9 294.9 288.2 295.4 286.9 288.2 291.2

Trial 5 302.5 303.3 327.2 336.9 360.7 327.2 347.5 325.6

Trial 6 186.0 186.2 214.7 224.8 227.0 214.7 234.1 201.5

Trial 7 171.9 173.0 179.7 189.8 194.5 179.0 183.1 177.0

Trial 8 268.7 270.9 283.6 287.8 288.2 283.6 286.2 288.0

Trial 9 260.7 262.0 298.2 291.0 318.3 307.8 289.0 281.0

Trial 10 229.1 229.1 252.7 262.7 256.7 252.7 268.3 255.2

Trial 11 219.0 219.9 230.3 228.9 232.7 226.3 224.4 223.7

Trial 12 311.8 311.8 357.4 337.3 331.8 357.4 333.4 324.8

Trial 13 336.5 336.5 342.1 352.2 349.8 346.3 352.2 348.2

Trial 14 342.9 343.7 357.0 387.7 349.1 357.0 359.6 362.4

Trial 15 284.3 284.3 346.8 316.5 316.6 346.8 304.9 290.9

Trial 16 208.2 208.3 222.1 220.8 221.7 222.1 228.6 210.1

Trial 17 163.3 164.7 176.5 179.6 175.6 176.5 186.6 172.5

Trial 18 177.9 178.0 187.2 182.9 188.2 187.2 187.8 187.8

Trial 19 200.2 200.5 230.4 227.0 220.2 230.4 227.8 208.4

Trial 20 283.3 288.7 315.2 322.4 331.3 315.2 330.3 301.7

Trial 21 263.7 265.5 291.2 311.6 291.0 291.2 311.6 273.3

Trial 22 332.5 332.5 335.8 336.6 335.8 335.8 336.6 336.6

Trial 23 135.4 135.4 143.4 147.4 147.4 143.4 147.4 135.4

Trial 24 213.1 214.5 220.5 227.6 231.2 220.5 227.6 220.0

Trial 25 327.5 329.6 346.0 362.6 352.6 346.0 351.4 342.9

Trial 26 194.7 194.7 208.4 210.6 212.3 208.4 210.6 208.9

Trial 27 229.5 229.9 241.6 263.3 231.6 259.5 255.1 248.5

Trial 28 416.9 418.5 437.8 448.8 445.2 437.8 448.8 437.0

Trial 29 222.8 222.8 224.0 226.4 222.8 224.0 222.9 222.9

Trial 30 283.1 284.8 288.1 301.8 301.3 288.1 300.0 287.0

Average 256.54 257.59 274.15 279.27 277.31 274.78 277.82 267.47

Table 7: Average Priority-1 DWC in days2 for the experiment set. The green color coding 
shows how well the new formulations perform against priority based SGS heuristics. 
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produces a priority-1 DWC that is 3.6%±0.8% greater (worse) than the priority-duration 

exact formulation with duration bias, while the average serial SGS (with no statistically 

significant benefit among either sorting method) performs 3.5%±1.1% worse than that of 

the PSGS(SBP), as summarized in table 8.  

It is further noted that the priority-duration exact formulation without a duration 

bias (α=1.0), produces the best priority-1 DCW centroid in all instances, followed closely 

by the same formulation with a duration bias (α=1.1). For the heuristic methods analyzed, 

in no case does one heuristic solving method perform consistently better than the others 

with this assessment criterion. 

The exact solution methods of the multi-mode DT priority-duration RCPSP model 

produce the most solution-robust projects when considering priority and duration. It 

should however be noted that many other factors are involved in project scheduling. For 

instance, the underlying data may be highly stochastic in terms of activity durations as 

well as in terms of even having the correct activities planned. It should be noted that in 

the reviewed FMFCS NSWPP data, an approximate 30% growth in scope was observed. 

The interviewed industry members commonly said things like: “the moment a schedule 

is printed, it becomes obsolete” [3]. This then puts into question whether a single-digit 

percentile differences in makespan and pri-1 DCW are enough to warrant exact 

optimization solutions, especially if these take longer to complete the multiple scheduling 

iterations needed.  

Pri-1 DWC Comparison

PD (α=1.0) < PD (α=1.1) < PSGS(SBP) < Avg SSGS

0.4 ± 0.2% 3.6 ± 0.8% 3.5 ± 1.1%

Worst Case for PSGS(SBP) PD (α=1) < SBP-P

26.1 duration-days (11%)

Table 8: Statistical ranking of priority-1 DWC for the experiment set #1. 
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6.2 Numerical Experiment Set 2: Deviations and Deviation-Days DT Priority RCPSP 

formulations 

Experiments were conducted to determine how effective the formulations from 

section 5.2.1 and 5.2.2 may be in re-scheduling activities in the 40-space fictitious ship 

(inspired by the HAL Class Frigate) used in previous experiments. The re-scheduling exact 

formulation used was the multi-mode re-scheduling DT priority RCPSP deviation days 

model (DT-R-DD), detailed in subsection 5.2.1, and the multi-mode re-scheduling DT 

priority RCPSP deviations model (DT-R-D), detailed in subsection 5.2.2, and this was 

compared to select serial and parallel SGS scheduling methods from the previous 

experiment. 

It was found that a more effective way to use the serial SGS for re-scheduling was 

to re-order activities by the initial schedule start times, then to re-schedule using the 

serial SGS in that order. The re-scheduling serial SGS procedure functions along the 

following sequence: 

1. Sort activities by previous schedule start times. 

2. Remove completed activities and their precedence relationships. 

3. “Lock-in” in-progress activities and remove their resource consumptions from the 

resource field at their current start dates. 

4. Perform serial SGS scheduling for remaining unscheduled activities. 

Experiments were conducted with the exact formulation and compared to the 

serial SGS methodology described above, to determine how effective this may be in re-

scheduling a project during mid-execution. The experiment re-uses the first 10 of 30 

previously used 100-activity initial scheduling problems from experiment set 1. 

The naming convention for 3 re-scheduling methods used and analyzed is as 

follows: 

- The re-scheduling serial SGS procedure described above: SSGS-R 
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- The multi-mode re-scheduling DT priority RCPSP formulation with deviation days 

(section 5.2.1): DT-R-DD 

- The multi-mode re-scheduling DT priority RCPSP formulation with deviations 

(section 5.2.2): DT-R-D 

The naming convention for 4 initial scheduling methods used and analyzed in this 

experiment is as follows: 

- The best heuristic from experiment set 1, the parallel SGS, sorted 1st by priority, 

then 2nd by the shifting bottleneck procedure: PSGS(SBP) 

- The heuristic most understood and liked by FMFCS schedulers from experiment 

set 1, the serial SGS, sorted 1st by priority, then 2nd by ES, then 3rd by duration: 

SSGS(ES-D) 

- The multi-mode DT priority-duration formulation (section 5.1.1) with a duration 

bias (α=1.1), from experiment set 1: PD(α=1.1) 

- The multi-mode DT priority-duration formulation (section 5.1.1) without a 

duration bias (α=1.0), also from experiment set 1: PD(α=1.0) 

In the first part of the experiment, all 4 initial scheduling methods described above 

are used, followed by a re-scheduling step at day 22, using only the SSGS-R, the same 

scheduling method used in the initial schedule, and DT-R-DD for re-scheduling. DT-R-D 

was not used for re-scheduling in this part because the analysis is strictly focused on 

measuring the number of deviation days, and the DT-R-DD will give the optimal smallest 

number of deviation days. This optimal re-scheduling method is then compared with the 

SSGS-R, as well as with the same initial scheduling methods, to show the pitfalls of re-

scheduling during a project with the same method used for initial scheduling. Prior to re-

scheduling at day 22, the activities from the initial schedule are re-ordered by start date, 

and the first 5 in-progress activities on the list (i.e. started on or before day 22 but have 

not yet finished) are disrupted by having their durations extended by 3 days. All activities 

completed before day 22 are no longer part of the re-scheduling problem, and activities 

that have already started (in-progress) are pre-processed to ensure that they continue 
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until completion as they will not be re-scheduled. Only the activities that have not yet 

started, because their start day from the initial schedule was after day 22, are considered 

free for re-scheduling. 

Table 9 shows the results of this experiment for all its 120 trials. It should be noted 

that although the re-scheduling problems are the same problem for the same trial and 

initial scheduling method, they are not the same problem when comparing between 

different initial schedules and the same trial (experiment) number. For illustration, the 

PD(α=1.0) and PD(α=1.1) are better at scheduling more activities earlier than the SSGS, as 

seen from experiment set 1, so the re-scheduling problem at day-22 is a simpler one. This 

explains why the deviation days are generally higher after re-scheduling when heuristic 

initial schedules are used, and it is a testament to how well the PD(α=1.0) and PD(α=1.1) 

“front-load” the activities. 

Statistics obtained from this experiment set using standard t-tests at 90% C.I. show 

that formulations or heuristics that do not consider the original schedule (PD(α=1.1), 

PD(α=1.0), and PSGS(SBP)) perform poorly. Depending on the problem complexity at day-

22, these scheduling formulations produce between 94% and 773% more deviation-days 

(or deviation time-units) than the SSGS-R. The DT-R-DD results in minimal deviations as 

Initial:

Re-schedule: PSGS(SBP) SSGS-R DT-R-DD PD (α=1.1) SSGS-R DT-R-DD PD (α=1.1) SSGS-R DT-R-DD PD (α=1.0) SSGS-R DT-R-DD

Trial 1 186 88 54 632 53 53 46 46 46 136 50 41

Trial 2 291 90 90 800 133 91 41 37 28 155 99 85

Trial 3 107 59 48 856 139 69 56 56 42 52 24 24

Trial 4 476 86 75 437 82 51 15 15 15 167 32 32

Trial 5 45 18 18 434 24 24 42 30 30 120 68 52

Trial 6 294 118 98 286 179 55 107 73 72 136 73 64

Trial 7 115 45 42 292 63 34 193 79 70 208 79 70

Trial 8 166 72 53 347 157 73 145 74 74 109 75 75

Trial 9 305 142 101 436 96 80 137 74 74 95 59 59

Trial 10 131 96 49 285 81 81 21 10 10 46 46 32

Average: 211.6 81.4 62.8 480.5 100.7 61.1 80.3 49.4 46.1 122.4 60.5 53.4

PSGS(SBP) SSGS(ES-D) PD (α=1.1) PD (α=1.0)

Deviation Days

Table 9: Deviation days after first scheduling and then re-scheduling following disruptions 
at day 22. Color coding draws attention towards lowest deviation days (green) and 
towards highest deviation days (red) along the same initial scheduling trial number. 
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and this acts as base optimal values for 

statistical comparisons shown in table 

10. The heuristic re-scheduler (SSGS-R) 

performs very close to optimal with the 

simpler problems (5%±17%) but 

performs worse as the problem 

complexity and size increases (up to 

65%±46%).  

An interesting observation is that 

the PD(α=1.1) performs significantly 

better than the PD(α=1.0), when using its 

developed initial schedule, then re-using 

the same method to re-schedule, with 

29.4%±15.0% fewer deviation days (90% C.I.). This becomes intuitive after some thought 

because the duration bias (α=1.1) would more predictably order activities than with not 

placing the bias (α=1.0) (see subsection 5.1.1 for more detail). Although, outcomes on 

either side of this parameter change produce similarly ranked initial schedules in terms 

of priority-1 DWC (see table 7 in subsection 6.1), the duration bias (α=1.1) is more likely 

to re-position activities closer to the initial schedule following disruptions., when used for 

re-scheduling. 

For the second part of this experiment set, the same randomly generated 

scheduling scenarios were used to determine how effective the priority-weighted 

deviations-only re-scheduling formulation (DT-R-D) might be in re-scheduling at different 

times throughout a project.  

In the second part of the experiment, only 3 initial scheduling methods described 

above are used (PSGS(SBP), SSGS(ES-D), and PD(α=1.1)), followed by a re-scheduling step 

at day 22, using the SSGS-R, the same scheduling method used in the initial schedule, the  

PD(α=1.1), and the DT-R-D for re-scheduling. DT-R-DD was not used for re-scheduling in 

Table 10: Relative deviation days for the re-
scheduling methods and initial scheduling 
methods. 
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this part because the analysis is strictly focused on measuring the number of deviations, 

and the DT-R-D will give the optimal smallest number. This optimal re-scheduling method 

is then compared with the SSGS-R, as well as with the same initial scheduling methods, to 

again show the pitfalls of re-scheduling during a project with the same method used for 

initial scheduling. Prior to re-scheduling at day 22, the activities from the initial schedule 

are again re-ordered by start date, and the first 5 in-progress activities on the list (i.e. 

started on or before day 22 but have not yet finished) are disrupted by having their 

durations extended by 3 days. All activities completed before day 22 are no longer part of 

the re-scheduling problem, and activities that have already started (in-progress) are pre-

processed to ensure that they continue until completion as they will not be re-scheduled. 

Only the activities that have not yet started, because their start day from the initial 

schedule was after day 22, are considered available for re-scheduling. 

Statistics obtained from this experiment set (results in table 11) using standard t-

tests at 90% C.I. show again that formulations or heuristics that do not consider the 

original schedule (PD(α=1.1) and PSGS(SBP)) perform the worst among tested methods. 

Depending on the problem complexity at day-22, these scheduling formulations produce 

between 4% and 70% more deviations than the SSGS-R. The DT-R-DD results in minimal 

Initial:

Re-schedule: PSGS(SBP) SSGS-R DT-R-D PD (α=1.1) SSGS-R DT-R-D PD (α=1.1) SSGS-R DT-R-D

Trial 1 24 18 18 49 25 25 16 16 16

Trial 2 36 30 30 46 40 29 18 16 4

Trial 3 23 20 18 46 24 19 17 17 11

Trial 4 38 26 25 30 19 17 5 5 5

Trial 5 6 6 6 34 8 8 12 10 10

Trial 6 32 35 31 30 23 23 26 25 24

Trial 7 15 19 14 30 24 11 26 27 17

Trial 8 20 21 9 40 32 16 36 35 35

Trial 9 43 39 29 46 42 36 29 29 29

Trial 10 19 22 15 34 27 27 4 4 3

Average: 25.6 23.6 19.5 38.5 26.4 21.1 18.9 18.4 15.4

PSGS(SBP) SSGS(ES-D) PD (α=1.1)

Deviations

Table 11: Deviations after first scheduling and then re-scheduling following a disruption 
at day 22. Color coding draws attention towards lowest deviation days (green) and 
towards highest deviation days (red) along the same initial scheduling trial number. 
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deviations as and this acts as base optimal values for statistical comparisons shown in 

table 12. The heuristic re-scheduler 

(SSGS-R) performs worse than the 

optimal DT-R-D with between 28%(±24%) 

and 45%(±54%) more deviations on 

average, although this is not always 

significant due to the high variability in 

results. As expected, in no case does a 

heuristic method perform better than the 

DT-R-D. 

A third part to this experiment, 

inspired by the previous two parts, is then 

conducted to show the general effect of using the re-scheduling methods at different 

points in a project. Figure 28 shows the total number of deviations resulting from re-

scheduling five scenarios each where the initial project was scheduled using the SSGS, 

then re-scheduled at days 30, 22, 15, and 7 where the number and complexity of the 

remaining project activities grows larger as the project is closer to its infancy. This can be 

seen graphically in the figure, as the sooner a disruption occurs in a project, the more 

impact it will have to the rest of the project, requiring more overall deviations and 

deviation-days without considering alternative execution modes that reduce the duration 

of either the current in-progress activities or the duration of future activities.  

It is seen that the DT-R-D formulation performs better at reducing the overall 

number of deviations. In a practical sense, this translates into a scheduler or PL doing less 

leg work to re-schedule activities. 

There is however a frequent drawback from using this formulation. The largest 

problem, when considering the real-world implications, is that it does not matter how 

much later an activity is scheduled from its original date, and although a project manager 

might not mind if an activity is re-scheduled two days later or four days later, a project 

Table 9: Relative deviations for the re-

scheduling methods and initial scheduling 

methods. 

Table 12: Relative deviations for the re-
scheduling methods and initial scheduling 
methods. 
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manager will most likely mind if it is very much later, such as 40 days later or outside the 

agreed project timeframe.  

When reviewing the solution schedules from the experiment set, it was observed 

that many of the changes are priority-1 activities being moved to the end of the other 

project’s activities as soon as resources were free. This has the effect of completely 

removing the previously mentioned priority-1 buffers that naturally occur from using the 

SSGS(ES-D) heuristic or the PD(α=1.0) and PD(α=1.1) initial scheduling formulations. 

A secondary negative effect is that this may also increase the project makespan, 

as seen in table 13. Analysis of the results show that the SSGS-R method and the DT-R-DD 

method only slightly increased the project’s makespan by an average of 0.6 days, 1.6 days, 

Figure 28: Absolute deviations using re-scheduling methodologies. 
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1.8 days, and 2.4 days when rescheduling at 

day-30, day-22, day-15, and day-7 

respectively; however, the DT-R-D 

formulation produced makespans that 

were increased by and average of 5.0, 4.0, 

5.0, and 4.8 days for the scenarios where 

the project was re-scheduled at day-30, 

day-22, day-15, and day-7 respectively. It 

should be noted that in real-world 

occasions, this new schedule may or may 

not be acceptable because of this makespan increase. 

The re-scheduling situation is difficult in NSWPPs because it is not trivial to re-

work plans, and important key stakeholders may want to know that the PL selected the 

best option. The cost-time-scope trade-off decision is often not the decision of the person 

using the scheduling tool, so different options should be presented to decision makers. In 

some cases, having only a few priority-1 activities left at the end of a project might not be 

so bad because they will have closer managerial attention, especially if the technical risk 

of those activities is lower and if the makespan is acceptable. As was seen in numerical 

experiment set 2, even the optimal re-scheduling formulations may still produce too 

many deviation-days and deviations, and therefore using the multi-mode features of the 

re-scheduling formulations may be useful in guiding management’s investigations. 

Numerical experiment set 3 explores the multi-mode feature of the DT-R-DD formulation. 

6.3 Numerical Experiment Set 3: Re-scheduling with the multi-mode feature - 

limited job targeting 

The purpose of the experiment set is to show how many iterations are needed to 

reduce deviation-days to a reasonable value when this formulation is used iteratively. This 

is conceptually how this formulation is expected to be used, where alternative execution 

modes and overtime is carefully determined on a case-by-case basis. Secondarily, its 

Disruption

Point DT-R-DD SSGS-R DT-R-D

Day-30 125.2 125.2 129.6

Day-22 126.2 126.2 128.2

Day-15 126.4 126.4 129.6

Day-7 127 127 129.4

Initial Average Makespan 124.6 days

Re-schedule

Average Re-Scheduled Makespan (days)

Table 13: Re-scheduling after delays 
(disruptions) using any method potentially 
increases a project’s makespan, but more-
so using the DT-R-D. 
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purpose is to gauge how much benefit is seen at each iteration, and to gauge solve-time 

with problem size, and to set expected limits on the number of activities to include in the 

model.  

In this experiment set, the fictitious 40-space ship encountered a 3-day delay to 

the first five in-progress activities at day-22. Note that a delay will normally represent new 

urgent tasks found during an inspection that must be completed before other work can 

finish in that space. It is normal practice to leave non-urgent arising work until the next 

NSWPP [3]. In every case, the schedule was first solved using the SSGS(ES-D). The multi-

mode re-scheduling DT priority RCPSP deviation-days (DT-R-DD) formulation described in 

subsection 5.2.1 was then used in a 1st round to re-calculate a new schedule after the 

disruption, without using any duration reductions. In the second round of the same 

experiment set, the parameter 𝛽𝑀2 is set to one, since this models an iterative process 

where the user wishes to find the single most impactful activity to reduce, thus leading to 

less re-scheduling, but adhering to the reality that overtime or alternate execution modes 

are normally determined for one WO at a time. Setting 𝛽𝑀2 equal to one will normally 

show a single activity reduced by three days because the disruptions are three days in 

duration. For the subsequent iterations in the same trial, the selected activity in the 

previous trial is duration reduced as prescribed by the previous experiment round’s 

solution. The reduced activity’s alternative modes are fixed at that reduced duration so 

that further reductions for the same activity in duration are prevented from being a viable 

solution. 

It is practical to set  𝛽𝑀2 to a small number because it simulates more closely how 

a scheduler may be expected to use this formulation in a real-world context where 

overtime or additional shifts are difficult to plan and approve. In this context, only a small 

amount of overtime should be analyzed, being the most beneficial overtime/additional 

shifts. The idea is that the scheduler and PL do not know if overtime is feasible for any 

work and determining if overtime is feasible for all work at all times is impractical. By 

setting 𝛽𝑀2 to a small number and solving a schedule that produces the smallest number 

of deviation-days, the user can find the most impactful activities to investigate for 
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overtime feasibility. This process might be iterative. A decision algorithm is shown in 

figure 29 to illustrate how using this formulation as part of an optimizer tool can be used 

for this iterative process. For example, after the DT-R-DD formulation is first used, the 

analyzed activity, determined by activity j in the solution where 𝑥𝑗𝑡𝑚 is equal to 1 and m 

is not mode 1 (i.e. 2, 3, or 4), might not be able to be shortened after conducting his/her 

overtime investigation. The user can then adjust the duration table to indicate that 

alternative modes m for this activity do not produce a reduced duration and re-use the 

formulation. This will find the next most beneficial activity for reduction that will cause 

the smallest number of deviation-days. 

As expected, solution time increases exponentially with the number of activities 

in the initial scheduling problem. The solution time also has a high variability, and figure 

30 displays the results using a box and whisker chart to show the spread and distribution 

of solution times. 

Figure 29: A decision algorithm shows where the DT-R-DD formulation is used with a 
single duration-reduced activity. 
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To review the source experiment data, please refer to Appendix B. A less intuitive 

observation is that the solution time increases from the initial re-scheduling scenario, 

where 𝛽𝑀2 is equal to zero, to the first iteration with reduced duration modes where 𝛽𝑀2 

equals one. As reduced duration modes are accepted and fixed, the problem complexity 

diminishes in subsequent rounds and solution times improve. For the second iteration 

(the first round with 𝛽𝑀2=1), an average relative increase in computation time of 71.9% ± 

17.1% (90% C.I.) is seen. In the next iteration after the first activity is duration-reduced, 

the solution time then decreases relatively by 35.1% ± 16.5% (90% C.I.). When a second 

activity is duration reduced, the next iteration experiences an average decreased solution 

time of another relative 46.2% ± 13.3% (90% C.I.). Finally, with three activities duration-

reduced, another relative average decrease in computation time of 52.0% ± 14.7% (90% 

C.I.) (not shown in figure 39) is observed. Analysis was not performed for 5 total activities 

as it is intuitively obvious that by reducing the five initially disrupted activities, the exact 

Figure 30: Solution time of the the DT-R-DD formulation as the number of activities 
increases. 
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same schedule can be achieved with no deviations and optimization is meaningless in a 

case where all five of these activities could be returned to their original durations.  

When a single reduced duration can completely correct the schedule (at any 

round), then the solution time is drastically smaller as the solver reaches a lower bound 

and need not investigate further. The average solution time for the final round that 

completely corrects a schedule was 4.9, 8.8, 14.0, 19.0, 25.0, and 35.6 seconds for the 

experimentation sets with 100, 120, 140, 160, 180, and 200 initial schedule activities, 

respectively. 

Of the 60 randomly generated schedules used in this experiment set, only one 

schedule (1.7%) could be completely corrected with a single reduced activity, six 

schedules (10.0%) could be completely corrected with two reduced activities, 14 

schedules (23.3%) were completely corrected with three reduced activities, 26 schedules 

(43.3%) were completely corrected with four reduced activities, and 10 schedules (16.7%) 

were completely corrected with five reduced activities. In three schedules used (5%), a 

complete correction could not be achieved with five reduced-activities as a later activity 

(uncommonly, not one of the original five disrupted activities) was duration-reduced in 

an earlier round. Note that this iterative approach (with one reduced activity at a time) 

cannot be guaranteed to give as optimal of a solution as if multiple activities are allowed 

to be reduced, but the practical approach of this formulation is not to completely correct 

a schedule as this is practically impossible in reality (i.e. the probability that all five 

activities will actually be reduced by as much as desired is impractically low and not worth 

investigating as a whole).  

As expected, in terms of improving the re-scheduled schedule quality with 

reducing activity-durations, the largest improvements are observed in the first round, 

followed by the second round, then the third rounds etc. The relative reduction of 

deviation days does increase at each round however, by a relative average of 56.5% ± 

9.3%, 57.3% ± 11.5%, 67.1% ± 13.2%, and 86.7% ± 8.0% (90% C.I. for all), for rounds two, 
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three, four, and five respectively. Figures 31 and 32 illustrate the number of deviation 

Figure 31: Deviation-days reduction using the re-scheduling formulation. The 
most absolute benefit is seen after the first round, then it decreases with 
successive rounds. 

Figure 32: Deviation-days reduction using the re-scheduling formulation. The 
relative benefit in reduction (% of remaining deviation days) tends to increase 
with successive rounds. 
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days and relative deviation days reduced in the first 

three iterative rounds that considered a single 

reduced activity.  

The relative reduction of deviations (not 

deviation days) is also shown to increase at each 

round and summarized is in table 14. Figures 33 

and 34 show the relative reduction at the first three 

iterative rounds that reduce an activity.  

Note that the formulation weights deviation-days by priority levels and the 

experimentation analysis does not consider the underlying priority of an activity; 

therefore, in one case of 284, there was actually a one deviation-day increase in an 

iteration, while total deviations increased three times in the 284 experiment rounds. 

Figure 50: Deviations reduction using the re-scheduling formulation. The relative 

benefit in reduction (% of remaining deviations) tends to increase with successive rounds 

Figure 33: Deviations reduction using the re-scheduling formulation. The most absolute 
benefit is seen after the first round with reductions, then it decreases with successive 
rounds. 

Table 14: Relative reduction in 
deviations by reducing the single-
most troublesome activity to regain 
a schedule at each round. 

Round 1 Initial deviations baseline

Round 2 49.6% ± 25.2%

Round 3 56.9% ± 22.3% 

Round 4 64.2% ± 19.8% 

Round 5 83.3% ± 13.1% 

Average relative deviation 

reduction 90% C.I.
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Also note that in this specific experiment, a single iteration representing a single 

WO reduced with overtime/alternative execution/night shift, may decrease total 

deviation-days and deviations by approximately 50%; however, the magnitude of a 

schedule improvement will be reliant on the number and nature of schedule disruptions 

that occurred before re-scheduling, but this formulation can at least be trusted to find 

the most impactful activity. 

To truly gauge the value and practical benefits of this formulation, it is proposed 

that this be enabled as a user-friendly option (as much as possible) in a refit optimizer and 

user-feedback is collected to expand on default settings, options, how to capture an initial 

schedule for minimizing deviation-days, and to find practical limits on how many activities 

should be used in the formulation. For example, a practical default setting might be that 

only the nearest 150 activities are optimized for reduced deviation-days, even though the 

increased project stability will have positive impacts beyond those 150 activities.  

Figure 34: Relative deviations reduction using the re-scheduling formulation. The 
relative benefit increases with successive rounds. 
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6.4 Numerical Experiment Set 4: Discrete-Time Priority-Duration RCPSP Model for 

WO Scheduling with Activity Adjacency 

The primary purposes of this formulation were to enforce adjacency among 

activities/activities in the same WO/work packages, and to improve solution time from 

the DT priority-duration formulation. In this experiment set, small sets of problems were 

solved with the DT priority-duration formulation and then again with the DT priority-

duration-adjacency formulation. These were compared for solution time, makespan, and 

priority-1 DWC. The random problem generator used in this experiment phase was 

developed to have WOs with 10 to 50 activities each, in sequential sets of one to five 

parallel activities as a data structure. Figure 35 is a depiction of this data structure for one 

single work package. 

These new problem sets where generated in the Primavera P6 output format 

provided by the research partner Thales Canada, with many of the nuances that come 

with the data. For instance, a single compartment resource demand was generated for 

each WO’s activities, but it is not possible to assigned multiple values for this resource 

(i.e. capacity). These were assigned as “resources”. One can however populated a field 

called “max workers” in “resources”. For shop resources, these are added as “roles” 

assigned to each activity, and the capacity of each role can be user-modified, so can the 

number of “roles” used by an activity. Data pre-processing is then needed to sum the 

“roles number” for each role used in an activity, then use this sum as the numerical 

resource demand of “max workers” from the compartment resource for the same activity. 

Figure 35: WOs were built with subsequent sets of parallel activities, to mimic real-world 
NSWPP scheduling structure. 
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Since the random problem generator generated entire work packages, the problem sets 

were parsed into bins with a range of activity numbers, rather than a fixed number of 

activities. For example, problem set 1 has between 100 to 110 activities, problem set 2 

has between 140 to 150 activities, etc. 

The naming convention for the methods analyzed in this experiment set is as 

follows: 

- The multi-mode DT priority-duration formulation (section 5.1.1) with a duration 

bias (α=1.1): PD(α=1.1) 

- The multi-mode DT priority-duration formulation (section 5.1.3) with the 

adjacency constraint. Note that α=1.1 in this experiment as well: PD(adj) 

It was observed that the serial SGS solution that does not consider same-WO-

adjacency constraints will occasionally produce a better makespan than the optimal 

solution with adjacency, leading to an unfeasible problem for the solver if the LS is 

calculated from the time horizon H produced by the serial SGS. To work around this 

problem, the serial SGS was modified to check that all activities within a work package 

can “fit”; if not, the work package and start times of its activities were shifted by one day, 

then the check repeated etc. Once the work package fits in the resource table, the work 

package and all its activities are scheduled, the resource table is updated, new ES values 

for the next work package are updated, and then the next work package is checked for fit 

starting at the ES etc. This modification produced a time horizon H to be used for LS 

calculations, that always presented feasible solutions. The results of the experiment are 

tabulated in table 15. 

Using a standard t-test, the .lp file creation time is reduced by 65.8%±0.85% (90% 

C.I.) by introducing the adjacency constraints. The same analysis cannot however be done 

for solver solution times as the differences change dynamically with increased number of 

activities. Figure 36 is a depiction of average solution times amongst the four bins, 

showing that with simpler problems, adjacency constraints lead to longer (yet 
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operationally acceptable) solution times; however, once the activity size reaches 180-190 

activities and larger, the solution time with adjacency does not grow as quickly. 

When considering the combination of lp file creation and solution times, the 

overall solve time for adjacency constraints was lower in 18 out of 20 cases. 

This suggests that scheduling with same-order adjacency constraints may be an 

acceptable way to perform aggregate planning for larger problems since this reduces 

overall solution time. With adjacency constraints however, note that this represents a 

different problem, and the optimal solutions in terms of makespan and DW centroid is 

often poorer. In the experiment set, adding same-work package adjacency constraints 

increased the makespan on average by 7.4%±4.1% with a 90% C.I., while the average pri-

1 DWC was increased on average by 22.4%±3.9% with a 90% C.I. 

PD(α=1.1) PD(adj) PD(α=1.1) PD(adj) PD(α=1.1) PD(adj) PD(α=1.1) PD(adj)

Bins Set

Trial 

Number

Number 

of WOs

Number 

of

Activities

100-110 1 5 103 10.9 3.8 1.2 3.4 75 73 104.16 113.05

100-110 2 7 107 10.7 3.7 2.3 0.4 63 78 80.71 109.15

100-110 3 6 104 9.7 3.4 0.5 2.8 61 65 73.66 100.60

100-110 4 6 106 10.0 3.6 0.4 2.8 74 74 82.64 90.80

100-110 5 6 110 10.5 3.8 0.8 5.4 51 61 71.03 95.50

140-150 6 8 145 15.2 5.1 2.8 5.5 72 82 152.60 187.06

140-150 7 10 145 16.1 4.9 3.2 0.5 69 63 141.38 167.86

140-150 8 9 147 14.2 5.0 0.6 9.6 62 63 133.69 155.93

140-150 9 11 150 15.3 5.5 10.2 16.9 58 69 116.49 146.47

140-150 10 9 144 17.4 5.2 2.3 9.5 87 88 141.25 151.71

180-190 11 13 189 24.2 9.6 49.9 74.0 84 85 145.14 191.33

180-190 12 14 184 21.7 7.8 154.7 74.1 71 77 118.95 165.99

180-190 13 11 182 20.0 6.8 143.9 24.3 74 89 134.26 157.77

180-190 14 14 185 20.4 7.5 109.7 110.3 59 70 129.98 178.74

180-190 15 11 186 22.5 7.5 61.9 27.4 72 101 159.36 233.40

220-230 16 12 225 24.6 9.1 1340.0 143.4 70 99 154.46 216.78

220-230 17 19 221 28.4 10.5 30000.0 737.0 88 92 176.25 185.42

220-230 18 15 222 25.8 9.1 4466.0 316.1 63 92 138.73 194.19

220-230 19 16 228 29.4 8.8 30000.0 99.2 79 90 127.00 179.95

220-230 20 15 227 27.4 11.2 611.9 909.8 65 80 142.49 213.39

Solution Time (s)

lp file creation

Solution Time (s)

Solver (Gurobi) Makespan (days) Avg DWC (days2)

Table 15: Solution times (seconds) per number-of-activity bin with and without adjacency 
constraint. 
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Note also that the number of activities may not translate directly to problem 

difficulty. As was found with experimentation, if the resource capacities were larger, this 

solver could easily schedule many more activities. The problem difficulty arises from 

having an increasing number of bottleneck resources. As was found from working at 

FMFCS, a few critical shops with low worker capacity can completely cripple a PL’s ability 

to schedule large work packages that required dozens of healthily capacitated shops, 

resulting in poor overall utilization for those shops in the work period analyzed. This is 

indirectly an insight into the importance of having sufficient resource capacity (i.e. shop 

workers); however, compartment space capacity is not so easily grown, and it is theorized 

that this represents the most important bottleneck when sufficient worker resources are 

made available. As a single trial using the same random problem generator that produces 

Primavera P6 files, the worker capacity was increased from 5 units per shop to 20 units 

per shop, and no changes to space capacities were made. The generator produced a 506-

activity problem with 36 work packages. With the adjacency formulation, Gusek produced 

an lp file in 15.6 seconds, and Gurobi 9.0 solved the problem in 4.31 seconds, which is 

Figure 36: Solver solution times do not increase as quickly with adjacency constraints. 
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much faster than the previous average 220-230 activity instances used in the experiment 

set, where the average time was 2079 seconds. 

The results of these experiments, showing improvements in optimized scheduling 

methodologies vs priority-rule SGS methods, motivated a qualitative experiment set in 

this thesis: a series of interviews alongside prototype development at FMFCS using only a 

serial SGS methodology, for a real NSWPP project. It is proposed that for an organization 

to embrace optimization, the obstacles to automatic scheduling themselves should first 

be understood, so that they may be overcome. 

6.5 Qualitative Experiment Set 5: Development and Testing of a Heuristic-based 

Scheduler at FMFCS 

Although user-feedback information is more qualitative than quantitative, it is 

proposed that this be used when considering NSWPP scheduling software development, 

as the users are the ones who will ultimately decide if a such a program is useful. With 

information provided by FMFCS as a result of interviews and meetings [3], a prototype 

scheduler was built in Excel and VBA using a serial SGS. Features were added to import 

and translate weekly shop capacity information into half-day capacities. This program 

considered holidays and special occasions that would prevent work, it allowed the user 

to manually adjust concurrence assumptions with previous activities, and to override 

activity start times. Note that in this section, to conform with SAP nomenclature present 

in real-data figures, the term “activity” is replaced with “operation”, as an “activity” in 

SAP represents a group of parallel “operations”, and a “suboperation” number represents 

the unique identifier of an operation within the same activity group. For example, every 

line in figure 46 represents an “activity” in the rest of this thesis, but every line in figure 

46 represents an “operation” in this section. 

The program took up to 6 parallel operations (the most observed in practice), and 

combined them into a single activity for scheduling, which used the duration of the 

longest parallel operation. This was done to accommodate the reality of planning 

precision. Although in most plans, several operations were scheduled to occur in parallel, 
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it was rare to see these parallel operations have the same number of hours assigned. For 

example, an installation activity might consist of contributions from four shops: electrical, 

mechanical, rigging, and engineering. Rather than going through the tedium of scheduling 

each operation as multiple activities occurring at 0.5 to 1 hour intervals in a complicated 

sequence, prior knowledge was used to simply set all activities to occur in parallel, with 

varying hourly contributions from each shop that are derived from shop discussions or 

historical information on similar tasks. The precision of when shops can arrive for work in 

a ship is approximately a half-day to a day, so each shop will arrive at approximately the 

same time (i.e. the start of a work day), then work together throughout the morning; as 

shops have completed their contribution, they will return to FMFCS, then move on to the 

next operation. If the operation takes several days and a shop’s contribution is actually 

several small steps over a period, then shops will work on concurrent operations from 

other projects until they receive indication that their next contribution is ready for action. 

This causes unintended delays, and all may occur within the span of a single operation’s 

start and end date. Because of this, a practical adjustment to the prototype was to 

distribute a shop’s hourly contributions to a parallel set of operations to persist for the 

duration of the longest parallel operation in the set. The prototype scheduler also 

assumes that shop availability after the shop capacity report forecast, up to 200 workdays 

in the future, was equal to the completely unloaded capacities for each shop. 

It was found with the operations list that several inconsistencies were present in 

the data. From the text descriptions, it was found that the sequencing of operations was 

not always correct, as for example, some work that was clearly intended to occur after 

the previous work was often listed as a parallel operation. No precedence information 

existed between WOs from SAP data extracts, but it was clear that some precedence was 

desired and programmed in Prometheus Scheduler for activities within a same WO. Due 

to this, a default setting was implemented that assumed any numerically increasing 

number in the “activity” field of an operation within a WO were sequential, but a feature 

was added to make an operation concurrent with the previous one by the click of a 

button, so that a user could modify the planning data. The DRMIS data structure is 
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formatted with unique characteristics. Figure 37 is a sample of this operation structure, 

showing sequential and parallel relationships.  

For data related to compartment information, an adjacent compartment field was 

added for the user to select an adjacent space affect by hot work. No hard coding for this 

is in the data except for the “Work Type” field that may list “Hot Work”. The adjacent 

compartment field could also be used to make operations exclusive by having two 

operations “consume” a compartment resource that is surely not part of a work period, 

such as the rudder, the tip of the bow, a void space near a steering compartment etc. This 

is how exclusivity between radiate, emissions, and aloft work types could be considered 

in the prototype. “Radiate” and “emissions” were also added as resources for this 

purpose. 

If no additional input for space information was provided, then the default value 

would be that any scheduled operation, including combined operations described earlier 

as a concurrent activity, consumes an entire space, making no two sets of combined 

operations from separate WOs able to be scheduled at the same time in the same 

compartment. For certain, spaces such as the engine rooms or the hangar, multiple 

operations from separate WOs may occur in parallel. If this is the case, the user could set 

the WO capacity per compartment. For instance, the PL using the prototype desired that 

the engine rooms had a default capacity of four WOs. In a few cases, a WO that was very 

invasive, required scaffolding and many interference removals, could be set to consume 

Figure 37: The SAP-DRMIS operation data structure used for scheduling 
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three or four of the engine space resource capacity units. These options were developed 

after a few options were used with different options being less successful. The user 

preferred any option that required less set-up, less work, and was more efficient. After a 

few iterations with user feedback, default values were set for the normal tendencies and 

only exceptions required manual intervention. 

Since the prototype scheduler used a serial SGS heuristic methodology, the solve 

time was very fast. It was found that problems with the planning data were usually only 

evident once scheduled start and end dates were given and reviewed. These problems 

may have been incorrect sequential information between operations, concurrence 

between operations, or having the wrong compartment selected for the operations, etc. 

The user could more easily work with this imperfect data by changing a parameter, then 

re-scheduling, one issue at a time and checking the new schedule, until no issues were 

evident in the planning data. For this to be practical, the solve time between schedules 

after partially “cleaning” the data must be reasonably fast. For the 400 operations, the 

serial SGS solved the problem in 1.3 seconds on average between data “cleaning” 

iterations. 

The PL insisted that he wanted the ability to sort all WOs (and underlying 

operations) in a top-to-bottom priority list, above and beyond the three official priority 

levels. Even within a priority level, some WOs were more pressing and important to start 

early than others. 

After describing optimization, parallel SGS, and serial SGS scheduling schemes, the 

interviewed users preferred the serial SGS methodology because it more closely 

mimicked their scheduling tendencies, where the user schedules from a priority-ordered 

list placing WOs as soon as are feasible in a makespan, until the entire list was scheduled. 

They were more interested in automatic scheduling to save time rather than to have a 

more efficient schedule. 

Upon a post-work period interview, the PL using the prototype indicated that 

although the tool was useful to plan an initial large list of WOs, he did not use it when 
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requirements emerged to re-schedule only a few WOs. He stated that whatever was 

quicker was better, and that he could manually navigate DRMIS to check shop capacities 

at various weeks and manually schedule these WOs, faster than he could use the serial 

SGS prototype scheduler. The biggest “pain” was felt when downloading the shop 

capacity report, which took a few minutes to download and translate into a resource 

table. In this case, even a delay of a few minutes was enough for him to abandon 

automatic scheduling during project execution. 

Another important observation was that although the planners had not indicated 

such in the planning data, schedulers, PLs, and PMs by default always wanted all parallel 

operation sets to occur within a WO, one after the other until they were all completed, 

unless this was practically impossible. There is a real-world reason for this in NSSs, where 

space is limited, and is also being occupied by ship staff (SS). If tools and scaffolding are 

left in a compartment, or steel is left exposed (contributing to rapid corrosion), then there 

is a risk of tools being lost or misplaced, it prevents other work from beginning, and it 

causes managers at the FMF repair facility to be constantly asked when the work is going 

to be finished by SS. Unless it was infeasible to do so, management always preferred to 

leave no significant time gaps between sequential operations. These were only 

considered when there was no choice but to split a WO because the sum of sequential 

operation sets could not fit in a single SWP. For example, in one SWP, FMFCS might 

remove multiple interference items and expose a structural joint to make it ready for a 

hot work welding operation. In this first SWP, additional work is added to prime the 

exposed steel with a small protection coat, cleanup, and remove the scaffolding. In the 

next SWP, the scaffolding is replaced, the primer coat is removed, and the WO can 

continue. This is undesired since the additional set-up and cleanup is repeated, but it is 

done in rare occasions if needed. This was the motivation for the adjacency constraint 

formulation in subsection 5.1.3 and numerical experiment set 4. 

The major takeaways from this experiment were many instances of user feedback 

and documented interviews with planning and scheduling staff used throughout this 

thesis. It is evident that software solve time was more important than an “optimal” 
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solution because the underlying planning data was constantly changing and because the 

SGS solver could be frequently used to correct inaccurate planning data. Having good 

planning data is the most important characteristic of a scheduling exercise. Users 

preferred the serial SGS methodology because it scheduled each activity in the user-

preferred order, giving them more control over the resultant schedule, and it was more 

readily understood by the scheduler. A note should be made that this perspective came 

from users that were accustomed to manual scheduling. It is hypothesized that if users 

become comfortable with automatic scheduling, then perhaps optimization to compare 

with easily understood scheduling schemes like the serial SGS may be attractive to users. 

The re-scheduling scenario was found to be more complicated and re-scheduling 

with FMFCS DRMIS data was impractical without a major change in how business is 

performed. This is because the original WOs have already been scheduled and their 

associated resources have already been used. Due to this, attempting to re-schedule all 

jobs again (with a few new ones) without un-scheduling the already-scheduled activities 

will produce a poor result because the original resources are already “consumed”. To re-

schedule during project execution, a macro would have to be used to “un-consume” the 

resources used in the original schedule prior to re-scheduling, but in the near term, since 

all projects compete from the same resource pool and critical resources are already fully 

consumed, this will cause an available resource profile that matches only the activities 

that were “un-consumed”, meaning that this work will not be able to be scheduled 

elsewhere than where it is already scheduled. Moreover, since PLs from different ships 

compete for the same centralized resources, actually un-scheduling operations in DRMIS 

would pose a significant risk where another ship’s PL could schedule operations from a 

separate project and consume the recently released shop resources, before the re-

scheduling PL could re-schedule his/her WOs. 

Due to the discovered increased challenges in re-scheduling, additional 

consideration was placed to research the NSWPP re-scheduling scenario as done in 

sections 5.2, 6.2 and 6.3. It is proposed that to successfully make use of optimization 

software for NSWPPs, a centralized approach to using resources and re-scheduling should 
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be adopted, such as re-scheduling all active and upcoming projects at the same time on a 

weekly basis. 
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Chapter 7: Future Research Extensions 

Throughout this research, many ideas and potential avenues for research arose. 

However, there was only a limited amount of time to focus efforts. Below are many of the 

ideas and research potentials that were found but not significantly explored. 

The average of early start (ES) and late start (LS) as a serial SGS sorting method for 

precedence dominated projects, such as in the PSPLIB, could be analyzed for potential 

benefits as a serial and/or parallel SGS pre-sorting method. This analysis should really be 

completed for larger projects. Small PSLIB problems with 120 activities highly precedence-

dominated are relatively trivial to complete. Combining many small problems, modeled 

as work packages, with a shared resource pool, for a total of thousands of activities, is 

desirable. Metaheuristics that calculate small problems thousands of times with SGSs will 

no longer work well when each iteration takes several seconds instead of microseconds. 

Different methods that intelligently suggest sorting methods and select the best one, with 

only 20-30 schedules calculated by SGS, may be operationally effective with these larger 

problems. 

Analysis of real-world post-work period data could be completed to determine if 

the average priority-1 duration weighted centroid (DWC), in relation to project makespan, 

is a worthwhile assessment criterion of overall risk. Although, this was suggested in this 

thesis, this was not analyzed in depth and no experiments were performed (perhaps with 

simulation) to confirm project completion probabilities. It is however possible that due to 

the high variability of scope growth, two random projects with the same ratio could be 

very different in terms of complexity and difficulty, where this ratio is insufficient or a 

good indicator of overall risk. 

The re-scheduling overtime formulation that increases appropriate resources up 

to a maximum value may be re-formulated and examined further with experimentation 

or simulation, not to shorten activity durations, but to schedule work earlier in time 

periods where work could not otherwise begin. 
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Meta-heuristics, where a very large number of serial SGS solutions are examined 

by alternating the activity list order, may be examined to solve problems with the NSWPP 

architecture, where many WOs, having no precedence relationships between each other, 

have in themselves many activities with precedence relationships and resources come 

from a centralized pool. These could be compared to other solving methods used in this 

research. These metaheuristics could have a special feature where only entire WOs are 

moved around and the activities within the WOs have adjacency constraints to prevent 

them from being separated; this is how our interviewed schedulers, PLs, and PMs wanted 

their work arranged after-all. 

All the formulations and heuristics may be extended to include varying resource 

capacities, as the real-world projects from FMFCS showed a need to schedule in a varying 

resource capacity environment. Anecdotally, the varying resource capacity environment 

may lend itself well to re-scheduling overtime formulations where additional resources 

(or overtime of same resources) may allow activities to be scheduled in discrete time 

intervals where they otherwise would not be able to fit. 

Further research may be done in the multi-project scheduling and re-scheduling 

environment where resources come from a shared pool. The centralized multi-project 

approach could be just what a repair facility like FMFCS needs to increase worker 

utilisation. Even a serial SGS-based scheduling program, used in a multi-project 

centralized approach, particularized for a shipyard/dockyard and its ships/boats, could 

improve the current state significantly. 

Since the NSWPP environment is one with many space/compartment resources 

(300+) and many capacity-limited specialty shops and/or sub-contracting resources (70+), 

analysis of this data may show that WOs have no resource connections with each other 

may be made. Furthering this potential finding, there may be a way to divide a problem 

into resource-unrelated subsets, or subsets that barely compete for resources (perhaps 

only for resources that are far from being bottleneck resources), and having these subsets 
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solved to optimality, leading to very good NSWPP RCPSP solutions within a reasonable 

solution time. 

Prabhu (2020) deals with the same type of NSWPP RCPSP problems by studying 

the benefits of decomposition math-heuristics, where only a subset of a project’s 

activities may be scheduled to optimality in a multi-step approach, leading to projects 

that are almost optimal, but require much less computation time than solving an entire 

NSWPP RCPSP in one single pass. This research may open the door to comparison with 

meta-heuristic approaches or other promising approaches that place a high importance 

on having good schedules solved in a reasonable amount of time. 

Combining the math-heuristic work from Prabhu (2020) with the serial SGS 

findings of this thesis may be a way to perform the NSWPP RCPSP re-scheduling scenario 

in a heuristic method that leads to solution optimality. During project execution, if a 

schedule is disrupted and needs to be repaired, either by adding new activities and/or by 

increasing the duration of activities, then by locally solving the solution space to 

optimality (perhaps for 100 related near-present term activities) with overtime or extra 

evening/nighttime shifts, this may produce absolutely no schedule disruptions outside of 

the solution space, leading to no longer-term schedule changes. Since the solver is used 

to solve only a subset of the entire problem size, then it can quickly produce a solution 

that is optimal. 

From experimentation and study of NSWPP RCPSP scenarios, there is anecdotal 

evidence to suggest that, perhaps even more importantly than optimal scheduling, is the 

need to have the best resource capacity across resource types. Certain bottleneck 

resources can cripple a project and it is in management’s best interest to ensure that 

critical resources are grown or limited to match the needed capacity of a fleet, and that 

this capacity information is kept accurate. For example, this author has already discussed 

with naval officers a potential future program to use automatic scheduling to compare 

scheduling scenarios with varying resources, such as an additional resource per shop in 
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each scenario. This comparison can be used to quantitatively assess the benefit or hiring 

more of each type of resource, and target management’s hiring efforts. 

Experiment set 4 showed interesting results in terms of reducing solution times 

while incorporating mandatory adjacency constraints into the formulation. It would be 

interesting to develop an aggregate planning scheduling scheme where resources from 

all activities in a WO were spread out and fractionalized over the entire duration of the 

WO. This would cause a WO to be scheduled as a single activity with multiple resources 

assigned for the entire duration; thus, significantly reducing problem complexity. For 

example, the upcoming or most important (priority or prioritized list) 300 activities-worth 

of WOs may be scheduled using the multi-mode priority-duration formulation or the 

adjacency variant, while the next 2000 activities beyond the 300 may be scheduled with 

a spreading-and-fractionalizing scheme. Comparisons with a serial SGS that mimicked 

human scheduling could be appropriate.  

Additionally, it would be interesting to investigate a combined formulation with 

adjacency constraints into this problem type, but not necessarily with all activities in each 

work packages. Perhaps slack activities may have a user-defined field that allows them to 

be scheduled more freely, thus combining adjacency and non-adjacency constraints. This 

can be further complicated with multi-modes for duration reduction, a multi-project 

environment, and with varying resource capacities over time to align more appropriately 

with the real-world problem that repair facilities may face. 

A combination of these exact formulations with heuristics to improve scheduling 

time, even at the cost of solution quality, would likely be most beneficial since a short 

solution time is very important. 

When analyzing Primavera P6 activity relationship constraints, it became obvious 

that to build add-on software that accommodated any output file, all constraints types 

would have to be formulated, if these were to be used in a discrete time optimization 

format compatible with the priority-duration formulations presented in this thesis. All 

activity dates constraints can be handled with pre-processing to manipulate the ES and LS 
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of activities, with the exception of “As-Late-As-Possible”, this would require a variant 

objective function that inverses the time penalty: (1 − 𝜀2𝑡). The classic predecessor 

constraint is called a “finish to start” constraint in primavera P6; however, three more 

activity relationship constraints exist: “finish to finish” (the successor activity cannot finish 

until its predecessor finishes), “start to start” (the successor activity cannot start until its 

predecessor starts), and “start to finish” (the successor activity cannot finish until its 

predecessor starts). Modelling these into an enhanced version of the priority-duration 

formulation would allow it to be more compatible with available scheduling software. It 

is proposed that these might be modeled with three additional sets, and with each their 

own additional constraint equation, similar to the standard predecessor constraint. These 

can have relationships i and j for predecessors and successors, with constraints relating 

to their durations and start times 𝑥𝑗𝑡𝑚. 

Near the end of the research phase, an important observation for users of NSWPP 

optimization was made in terms of how WOs may be spread-out over the length of an 

entire project by using various optimization methods. As part of this research, Thales 

Canada provided a 500-activity problem with significant precedence complexity, such that 

heuristic methods were necessary to solve the problem in a reasonable amount of time. 

Figure 38 shows the network diagram of this larger problem built directly into Primavera 

P6. Following from left to right, nodes 1, 2, 3, 4, and 9 at the start of the project are zero-

duration milestones, as well as nodes 5, 7, 10, 8, and 11 at the end of the project. These 

zero-duration milestones consume no resources and adding these precedence 

constraints to zero duration milestones are rarely seen in NSWPPs as a planner would 

have to add these relationships. At the FMFs, the planners build the WOs and precedence 

relationships are set within WOs. The scheduler and PL do not have administrative rights 

to set precedence relationships, so this extra tedium is not even permissible by either 

party. It also further allows for incorrect priority rules application as discussed in 

subsection 2.4.6: A predecessor cannot have a lower priority than a successor. If this is 

done, such as is the case below for the WO with activities 216-233 (priority 2) and the WO 
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with activities 199-215 (priority 1), then the priority rules are broken and activities cannot 

be sorted first by priority. 

This has negative effects: in the program submitted to Thales Canada by Dalhousie 

for the refit optimizer, a check had to be included that verified if priority rules were 

followed, and if not, then the SSGS that gave the solver an initial solution, was forced to 

first sort activities by ES instead of priority. Otherwise, a precedence relationship could 

be broken, causing the solver to receive an infeasible initial solution that would therefore 

be ignored. Since the problem is very complicated, the solver only slightly improves upon 

this SSGS solution within 10 minutes and the SSGS solution is very close to the final 

schedule produced (SSGS-PD(α=1.1) combination). Because of ES 1st sorting, the first and 

last bulk set of activities to be scheduled in the SSGS are from almost all WOs, causing the 

WOs to stretch over the entire project length. Figure 39 is a simplified depiction of what 

the Gantt Chart could look like and this would be PL’s nightmare, because he/she would 

Figure 38: A large practice problem with priority-rule errors and many precedence 
relationships. 
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have to manage and verify progress on almost all WO work sites at almost all times 

throughout the entire length of the project.  

The decomposition method produced by Prabhu (2020) [42] also suffered from 

this same feature: the priority-rule violation causes the decomposition method to default 

to ES sorting (rather than priority sorting), to ensure precedence-feasible schedules are 

produced; thus, although the final solution had a very short makespan, almost every WO 

was stretched over the bulk of the project makespan, which would lead to PL frustration 

(or returning to manual scheduling). To work around this problem, the PD(adj) 

formulation might be necessary, although the makespan and pri-1 DWC could suffer from 

inflexibility in finding better solutions, as slight WO stretching may improve bottleneck 

resource utilisation. If the priority-rules are corrected however, then the resulting project 

Gantt Chart for the SSGS-PD(α=1.1) combination method will be more palatable to PLs, 

because it will only bunch the scheduling of activities by priority level, resulting in much 

fewer WOs to track during project execution. Figure 40 illustrates what this project output 

Figure 39: Optimization methods that focus solely on makespan or priority-based 
methods that resort to ES-ordered SSGS or ES-ordered decomposition produce stretched-
out WOs, resulting in schedules that are impractical to manage. 
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could look like. In contrast to figure 39, this project is easier to manage because the PL 

only needs to manage a reasonable number of work sites in the ship at any given time. 

It is recommended that in order to take full advantage of priority-based 

formulations (and the heuristics that accompany them for large problems), special care 

by users should be made to respect the priority precedence rule (see section 2.4.6), which 

is made much simpler by setting priority at the WO level and not placing precedence 

relationships between WOs. The ability to modify the priority level of WOs in a refit 

optimizer interface would add program robustness, and methods to automatically detect 

and correct priority-rules violations are proposed for future research. 

  

Figure 40: With priority-rules respected (or automatically corrected as proposed), the 
resulting schedule Gantt Charts are more appealing to PLs, because there will be fewer 
work sites to manage at any given time. 
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Chapter 8: Conclusions 

The research presented in this thesis is that of the Naval Surface Ship Work Period 

(NSWPP) RCPSP and experiments conducted in this thesis are on RCPSP-topologies that 

more closely mimic NSWPP problems. These projects consist of many WOs that are 

mostly un-related by precedence, but each is normally comprised of several activities that 

are precedence-related within WOs. The WOs conflict with each other by using a shared 

multi-project centralized worker pool, while using a single project shared compartment 

resource pool. It is proposed that the majority of the various conflicts can be modeled by 

resource constraints, ensuring that solution-robust schedules are created.  

The multi-mode discrete-time priority-duration RCPSP model presented in this 

paper finds the optimal solution, in terms of priority-duration weighted front-loading, to 

initial NSWPP RCPSPs, by scheduling as many activities as possible as early as possible in 

a project, while considering the important aspects of priority and duration. From 

experimentation, it was demonstrated that this NP-hard problem will not solve to 

optimality within a reasonable period of time for large projects, especially when 

considering the size of real-world problems. For larger problems were adjacency between 

activities in the same WOs makes sense, the adjacency version of this formulation will 

produce results for even larger problems in less time. Despite this and based on several 

interviews with current NSWPP schedulers, project leaders, and project managers, it is 

proposed that any optimization software has a fast-built-in heuristic scheduler (such as a 

serial SGS) that allows users to sort all activities by their preferred priorities, and schedule 

them very quickly and conveniently, while being easy to model all resource constraints. 

This introduces users to automatic-scheduling and makes the leap to optimization a 

smaller one, where optimal results can be compared to conventional ones. Afterall, the 

user of this add-on software may very likely not have access to automatic scheduling in 

their ERP system, and a standalone add-on program that works in a sandbox could be a 

great place to experiment, even if it cannot perfectly optimize a schedule. 
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As found from introducing automatic scheduling at FMFCS, users are busy and 

they require analysis of a large number of scenarios to effectively weigh options against 

each other, where the underlying data may be modified at each iteration. For this to be 

possible, NSWPP scheduling software must be able to produce feasible solutions very 

quickly, even if these are not optimal, and must be able to conveniently model the 

conflicts and preferences that should be considered in project scheduling. 

For the re-scheduling scenario, where the schedule was disrupted, the goal may 

be to reduce total deviations or deviation-days. In the real-world situations observed, 

costs are not included in scheduling information, and the overtime and alternative 

execution modes are not known; moreover, acquiring this data is often impractical for all 

activities and at all time periods throughout a project. To aid the scheduler in investigating 

alternative execution modes or overtime, or to find the most undisturbed schedule that 

is possible without reduced-duration modes, the multi-mode re-scheduling discrete-time 

deviation-days priority RCPSP model is proposed. This model determines the activities 

that will give the most benefit to the project in terms of minimizing deviation days. 
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Appendices 

8.1 Appendix A – Excel VBA Code for Early-Start, Serial SGS, and Late Start 

Calculations used for Refit Optimizer Trial 

This code reads sheets that have data converted from Primavera P6 into sheets 

“1” through “12”. The code converts data from these 12 sheets into the “SGS” sheet. 

Data processing then begins on sheet “SGS” and uses sheet “RES” for updating the 

resource plan in the serial SGS. This is a suitable method with Excel VBA to calculate a 

forward ES pass, a serial SGS, and a backward LS pass. Many Excel VBA efficiency and 

error handling improvements are included, that may assist future researchers using 

Excel VBA. 

ES Calculation (Visual Depiction of SGS Sheet): 

 

VBA Code for ES Forward Pass: 

'Calculate ES Loop************************************* 

Line1: 

    j = 0 
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    i4 = 0 

Do While Sheets("SGS").Range("A2").Offset(j, 0) <> "" 'cycle through all activities j 

    If Sheets("SGS").Range("F2").Offset(j, 0) = "" Then 

        Sheets("SGS").Range("D2").Offset(j, 0) = 0 'no predecessor means ES is 0 

        GoTo Line2 'Skip predecessor checks without predecessors, go to next activity listed 
by j 

    End If 

    k = 0 

    Do While Sheets("SGS").Range("F2").Offset(j, k) <> "" 'cycle through all predecessor 
columns 

        i = 0 'will go through every row to find matching activity 

        Do While Sheets("SGS").Range("F2").Offset(j, k) <> 
Sheets("SGS").Range("A2").Offset(i, 0) 'Find     position of matching activity (F2,j,k) 

            i = i + 1 

        Loop 

        'Activity number now matches predecessor number 

        If Sheets("SGS").Range("D2").Offset(i, 0) = "" Then 'Check if predecessor ES exists 

            i4 = 1 'indicator that we need to reloop 

            GoTo Line2 'Predecessor's ES has not yet been determined, so skip to next activity 

        End If 

        If Sheets("SGS").Range("D2").Offset(i, 0) = 0 And 
Sheets("SGS").Range("D2").Offset(j, 0) = "" Then 

            Sheets("SGS").Range("D2").Offset(j, 0) = Sheets("SGS").Range("D2").Offset(i, 0) + 
Sheets("SGS").Range("B2").Offset(i, 0) ‘Set ES as ES of predecessor plus duration of 
predecessor 

            GoTo Line1f 

        End If 

        If Sheets("SGS").Range("D2").Offset(i, 0) + Sheets("SGS").Range("B2").Offset(i, 0) >  
Sheets("SGS").Range("D2").Offset(j, 0) Then 'only overwrite if predecessor’s ES + 
duration is larger than current ES 
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            i4 = 1 'indicator that we need to reloop, needed if even only one activity gets an 
updated ES 

            Sheets("SGS").Range("D2").Offset(j, 0) = Sheets("SGS").Range("D2").Offset(i, 0) + 
Sheets("SGS").Range("B2").Offset(i, 0) 'ES + Duration of predecessor 

        End If 

Line1f: 

        k = k + 1 'increment the predecessor column 

    Loop 

Line2: 

    j = j + 1 

Loop 

 

    'Check if all activities are completed for ES looping***** 

If i4 = 1 Then 

    GoTo Line1 

End If 

'End ES Loop**************************************** 

 

Serial SGS Calculation (Visual Depiction of SGS Sheet): 
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Serial SGS Calculation (Visual Depiction of RES Sheet (a.k.a. resource field)): 
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VBA Code for Serial SGS: 

'Perform serial SGS, now that activities are sorted by ES and then priority. If check was 
successful (no lower priority predecessors), this was sorted by priority and then ES 

         

Do While Sheets("SGS").Range("A2").Offset(i, 0) <> "" 

    Sheets("RES").Range("A2:ZZ2").Value = Sheets("SGS").Range("A2:ZZ2").Offset(i, 
0).Value 'copy next activity above resource table 

    f = Sheets("RES").Range("D2") 'maximum start time before considering resources 

    n = f 'Current minimum feasible start time f 

Line7a: 

    k = p - 1 

    For d = m To k 'Cycle through all roles 

        If Sheets("RES").Range("F2").Offset(0, d) = "" Then 'Stop if role is blank 

            GoTo Line7 

        End If 

         

        j = 0 

        Do While Sheets("RES").Range("A4").Offset(j, 0) <> 
Sheets("RES").Range("F2").Offset(0, d) 'Find position j for resource row 

            j = j + 1 

        Loop 

         

        e = m2 + (d - m) 'role number positioning 

        n = f 'set start time unit to maximum minimum-feasible time unit found so far 

        If Sheets("RES").Range("B4").Offset(j, n) < Sheets("RES").Range("F2").Offset(0, e) 
Then 'If it does not fit, cycle through duration increments 

            Do While Sheets("RES").Range("B4").Offset(j, n) < 
Sheets("RES").Range("F2").Offset(0, e) 'Keep going until resource can support 

                n = n + Sheets("RES").Range("B2") 'job can't start until ES + duration, so 
increment by another duration (this is more complicated but proven to be more 
efficient) 
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            Loop 

         

            n = n - Sheets("RES").Range("B2") + 1 'We found INTERVAL where activity may 
start, so start checking incrementally from last infeasible time unit + 1 

        End If 

Line8: 

        ii = 0 

        Do While ii = 0 'Incrementally check all time units from n 

            w = n + Sheets("RES").Range("B2") - 1 'start time plus duration minus 1 

            For v = n To w 'must check every time unit of the activity 

                If Sheets("RES").Range("B4").Offset(j, v) < Sheets("RES").Range("F2").Offset(0, 
e) Then 'If is does not fit, increment n and try again 

                    ii = 0 

                    n = n + 1 

                    GoTo Line8 'If unfeasibility exists, increment n and try again 

                End If 

            Next v 

            ii = 1 

        Loop 'Now n is equal to first feasible time unit 

         

        If f < n Then 

            f = n 'set f to maximum n 

            GoTo Line7a 

        End If 

        j = 0 

    Next d 

 

Line7: 
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    'Activity fits at f, so update the resource table 

    k = p - 1 

    w = f + Sheets("RES").Range("B2") - 1 

    For d = m To k 'Update resource table for every role 

        e = m2 + (d - m) 'role number positioning 

        j = 0 

        Do While Sheets("RES").Range("A4").Offset(j, 0) <> 
Sheets("RES").Range("F2").Offset(0, d) 'Find position j for resource row 

            j = j + 1 

        Loop 

        For v = f To w 'update resource table for every time unit 

            Sheets("RES").Range("B4").Offset(j, v) = Sheets("RES").Range("B4").Offset(j, v) - 
Sheets("RES").Range("F2").Offset(0, e) 'Update correct value in table 

        Next v 

    Next d 

     

    'Copy new ES time to SGS page, a.k.a. start time of serial ES; note that this start time 
will not be the ES used in formulation 

    'This SGS only finds a reasonable first pass at a schedule, and finds a reasonably tight 
time horizon 

    Sheets("SGS").Range("D2").Offset(i, 0) = f 

 

    'Recalculate ES for next activity in list (i) 

        j = i + 1 'temporarily set this to next activity row in SGS page 

 

        If Sheets("SGS").Range("F2").Offset(j, 0) = "" And 
Sheets("SGS").Range("A2").Offset(j, 0) <> "" Then 

            Sheets("SGS").Range("D2").Offset(j, 0) = 0 'no predecessor means ES is still 0 

            GoTo Line4i 'Skip predecessor checks without predecessors, go to next activity 

        End If 
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        k = 0 

        Do While k < m 'cycle through all predecessor columns, m is still first column for 
roles 

            i2 = 0 'will go through every row to find matching activity 

            Do While Sheets("SGS").Range("F2").Offset(j, k) <> 
Sheets("SGS").Range("A2").Offset(i2, 0) 'Find position of matching activity (F2,j,k) 

                i2 = i2 + 1 

            Loop 

            'Activity number now matches predecessor number 

            If Sheets("SGS").Range("D2").Offset(i2, 0) + Sheets("SGS").Range("B2").Offset(i2, 
0) > Sheets("SGS").Range("D2").Offset(j, 0) Then 'only overwrite if this is the max 
function 

                Sheets("SGS").Range("D2").Offset(j, 0) = Sheets("SGS").Range("D2").Offset(i2, 
0) + Sheets("SGS").Range("B2").Offset(i2, 0) 'ES + Duration of predecessor 

            End If 

            k = k + 1 'increment the predecessor column 

        Loop 

        j = 0 

Line4i: 

    i = i + 1 

Loop 'End of Serial SGS loop********Next, we lock-in the time horizon H 

 

 

 

 

 

 

 

 

 



 

168 

LS Calculation (Visual Depiction of SGS Sheet): 

 

VBA Code for LS Backward Pass: 

'Calculate LS************* 

Do While ii = 0 'ii only becomes 1 when all LS are determined 

    Do While Sheets("SGS").Range("A2").Offset(i, 0) <> "" 

        i2 = Sheets("Parameters").Range("L3") - Sheets("SGS").Range("B2").Offset(i, 0) 
'reset i2, which is H minus activity duration 

        If Sheets("SGS").Range("E2").Offset(i, 0) <> "" Then 'Abort search if LS is already 
determined 

            GoTo Line9 

        End If 

        j = 0 

        v = m - 1 'set to end of predecessor columns 

        Do While Sheets("SGS").Range("A2").Offset(j, 0) <> "" 

            If Sheets("SGS").Range("F2").Offset(j, 0) = "" Then 

                GoTo Line9a 
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            End If 

            For w = 0 To v 'go through predecessor columns 

                If Sheets("SGS").Range("F2").Offset(j, w) = "" Then 

                    GoTo Line9a 

                End If 

                If Sheets("SGS").Range("F2").Offset(j, w) = Sheets("SGS").Range("A2").Offset(i, 
0) Then 

                    If Sheets("SGS").Range("E2").Offset(j, 0) = "" Then 'Abort if LS is not yet 
determined for successor 

                        GoTo Line9 

                    End If 

                    If Sheets("SGS").Range("E2").Offset(j, 0) - 
Sheets("SGS").Range("B2").Offset(i, 0) < i2 Then 'Since LS exists for successor, update i2 

                        i2 = Sheets("SGS").Range("E2").Offset(j, 0) - 
Sheets("SGS").Range("B2").Offset(i, 0) 'set new lower LS 

                    End If 

                End If 

            Next w 

Line9a: 

            j = j + 1 

        Loop 

        Sheets("SGS").Range("E2").Offset(i, 0) = i2 'Set LS because either no successors 
exist or all successors have been determined and i2 is min LS value 

Line9: 

        i = i + 1 

    Loop 'Performed a full pass 

     

    f = 0 'Check if all LS are completed after cycling through all activities*** 

    i = 0 

    Do While Sheets("SGS").Range("A2").Offset(i, 0) <> "" 'loop through activities list 
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        If Sheets("SGS").Range("E2").Offset(i, 0) = "" Then 

            f = 1 

        End If 

        i = i + 1 

    Loop 

    If f = 0 Then 

        ii = 1 

    End If 'Finish Checking completeness*** 

    i = 0 

Loop 
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8.2 Appendix B – Experiment 3 Summary Data 

 

 

 

 

Note: In all experiments, 5 in-progress activities are delayed by 3 days, at numerical day 22 of the project

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 10 19 12 17 14 11 Trial 1 68 38 12 13 6 3 14 13 4 1 1 1 yes 3 0

Trial 2 12 29 16 9 5 Trial 2 85 30 6 3 0 29 10 2 1 0 no 3 3 0

Trial 3 8 14 12 1 Trial 3 34 20 11 0 19 11 7 0 no 3 0

Trial 4 27 33 30 22 1 Trial 4 47 29 18 12 0 15 9 8 4 0 no 3 0

Trial 5 14 24 6 Trial 5 60 30 0 24 10 0 no 3 3 0

Trial 6 12 23 12 8 6 Trial 6 65 38 14 5 0 22 18 5 2 0 no 3 0

Trial 7 7 3 6 Trial 7 15 3 0 5 1 0 no 0

Trial 8 12 20 23 18 6 Trial 8 45 12 6 4 0 17 4 2 2 0 yes 0

Trial 9 18 24 19 6 Trial 9 42 9 6 0 5 3 2 0 no 0

Trial 10 31 37 57 27 5 Trial 10 117 73 44 36 0 39 35 19 13 0 no 3 3 0

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 20 20 10 Trial 1 30 3 0 14 1 0 no 0

Trial 2 36 107 54 8 Trial 2 83 57 18 0 23 31 6 0 no 0

Trial 3 13 12 Trial 3 35 0 12 0 no 0

Trial 4 43 111 98 47 35 9 Trial 4 97 57 30 9 3 0 26 19 10 3 1 0 yes 3 3 0

Trial 5 30 38 17 9 Trial 5 45 19 3 0 20 12 1 0 no 0

Trial 6 8 21 18 9 6 Trial 6 18 10 8 3 0 7 4 3 1 0 no 0

Trial 7 36 86 71 45 8 Trial 7 89 59 38 23 0 32 22 15 11 0 no 0

Trial 8 10 17 12 9 8 Trial 8 20 14 8 3 0 13 11 3 1 0 no 0

Trial 9 14 30 20 12 9 Trial 9 42 24 12 6 0 16 10 4 2 0 no 0

Trial 10 23 51 30 9 Trial 10 51 18 6 0 17 6 2 0 no 0

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 50 120 62 38 14 Trial 1 45 12 6 3 0 20 4 2 1 0 no 0

Trial 2 42 92 61 15 Trial 2 45 19 4 0 10 7 2 0 no 0

Trial 3 53 131 100 82 61 14 Trial 3 117 76 50 32 16 0 41 28 32 24 16 0 no 3 0

Trial 4 34 58 43 33 14 13 Trial 4 57 24 12 9 3 0 33 8 4 3 1 0 no 0

Trial 5 56 157 60 43 12 Trial 5 124 66 33 3 0 42 22 11 1 0 no 3 3 3 0

Trial 6 28 55 30 20 10 Trial 6 60 41 28 6 0 24 17 14 2 0 no 0

Trial 7 48 101 26 13 Trial 7 32 22 9 0 10 9 3 0 yes 0

Trial 8 34 105 49 36 47 15 Trial 8 42 17 9 3 2 2 18 9 3 1 1 1 yes 0

Trial 9 52 99 71 57 13 Trial 9 46 27 12 3 0 20 15 4 1 0 no 0

Trial 10 121 149 17 Trial 10 58 21 0 22 7 0 no 0

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 92 86 27 23 22 Trial 1 30 7 4 1 0 4 3 2 1 0 no 0

Trial 2 63 166 20 14 Trial 2 117 26 4 0 48 13 2 0 no 0

Trial 3 90 195 113 47 16 Trial 3 85 38 21 6 0 24 11 6 2 0 no 0

Trial 4 194 46 16 Trial 4 70 6 0 22 2 0 no 0

Trial 5 135 194 154 89 16 Trial 5 115 38 10 7 0 50 22 6 5 0 no 3 0

Trial 6 214 447 136 112 23 Trial 6 85 43 6 1 0 49 20 6 1 0 no 1 0

Trial 7 211 320 139 34 17 Trial 7 131 50 31 13 0 59 18 11 5 0 no 0

Trial 8 126 162 175 69 15 Trial 8 148 79 50 23 0 57 34 24 15 0 no 1 1 1 1 0

Trial 9 71 146 119 23 Trial 9 27 12 3 0 9 4 1 0 no 0

Trial 10 61 152 69 23 Trial 10 15 6 3 0 5 2 1 0 no 0

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 525 188 181 110 21 Trial 1 62 13 6 4 0 20 6 4 2 0 no 0

Trial 2 298 434 350 115 28 Trial 2 113 45 21 3 0 48 19 11 1 0 no 0

Trial 3 246 437 142 38 Trial 3 65 23 6 0 36 8 2 0 no 0

Trial 4 341 717 556 257 142 120 Trial 4 130 73 28 9 8 3 42 24 10 3 3 1 yes 0

Trial 5 429 388 31 Trial 5 48 23 0 12 19 0 no 0

Trial 6 96 203 164 151 108 22 Trial 6 45 25 14 6 3 0 20 10 5 2 1 0 no 0

Trial 7 159 133 87 21 Trial 7 90 24 9 0 35 10 3 0 no 0

Trial 8 248 206 177 115 20 Trial 8 94 39 27 6 0 29 8 4 2 0 no 0

Trial 9 87 229 182 162 129 21 Trial 9 35 23 11 6 3 0 15 11 7 2 1 0 no 0

Trial 10 352 618 415 209 105 24 Trial 10 125 100 58 36 12 0 40 29 19 12 4 0 no 0

total deviations makespan delay

Iteration= 0 1 2 3 4 5 Iteration= 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Trial 1 156 249 49 37 Trial 1 18 6 3 0 6 2 1 0 no 0

Trial 2 1493 1720 1575 283 36 Trial 2 230 89 31 6 0 78 21 11 2 0 no 3 0

Trial 3 1855 766 512 413 39 Trial 3 81 38 20 8 0 25 13 7 3 0 no 0

Trial 4 455 428 370 219 125 28 Trial 4 109 62 36 15 3 0 18 10 7 5 1 0 no 0

Trial 5 437 310 327 49 Trial 5 28 8 3 0 11 3 1 0 no 0

Trial 6 585 839 422 240 230 31 Trial 6 58 36 23 13 3 0 31 22 9 5 1 0 no 0

Trial 7 1300 1391 705 376 47 Trial 7 98 34 12 6 0 27 11 4 2 0 no 0

Trial 8 526 997 527 301 248 36 Trial 8 78 52 29 15 6 0 43 19 8 3 2 0 no 0

Trial 9 408 876 693 430 113 22 Trial 9 153 59 37 21 3 0 56 18 12 7 1 0 yes 0

Trial 10 367 1072 625 369 31 Trial 10 108 61 38 14 0 28 26 15 4 0 no 0

Pri-R-DD Solution Time, for 160 activities Pri-R-DD Deviation Days, for 160 activities

Pri-R-DD Solution Time, for 180 activities Pri-R-DD Deviation Days, for 180 activities

Pri-R-DD Solution Time, for 200 activities Pri-R-DD Deviation Days, for 200 activities

Late activity 

solutionPri-R-DD Solution Time, for 100 activities Pri-R-DD Deviation Days, for 100 activities

Pri-R-DD Solution Time, for 120 activities Pri-R-DD Deviation Days, for 120 activities

Pri-R-DD Solution Time, for 140 activities Pri-R-DD Deviation Days, for 140 activities
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Below are some calculation results from the source data above, in a format more 

suitable for graphical analysis: 

 

  

Activities Solution Time Deviation-Days Reduction Deviation-Days Reduction % Deviations Reduction Deviations Reduction %

Rnd 1 Rnd 2 Rnd 3 Rnd 1 Rnd 2 Rnd 3 Rnd 1 Rnd 2 Rnd 3 Rnd 1 Rnd 2 Rnd 3 Rnd 1 Rnd 2 Rnd 3

100 10 19 12 30 26 -1 0.44 0.68 -0.08 1 9 3 0.07 0.69 0.75

100 12 29 16 55 24 3 0.65 0.80 0.50 19 8 1 0.66 0.80 0.50

100 8 14 12 14 9 11 0.41 0.45 1.00 8 4 7 0.42 0.36 1.00

100 27 33 30 18 11 6 0.38 0.38 0.33 6 1 4 0.40 0.11 0.50

100 14 24 6 30 30 0 0.50 1.00 14 10 0.58 1.00

100 12 23 12 27 24 9 0.42 0.63 0.64 4 13 3 0.18 0.72 0.60

100 7 3 6 12 3 0 0.80 1.00 4 1 0.80 1.00

100 12 20 23 33 6 2 0.73 0.50 0.33 13 2 0 0.76 0.50 0.00

100 18 24 19 33 3 6 0.79 0.33 1.00 2 1 2 0.40 0.33 1.00

100 31 37 57 44 29 8 0.38 0.40 0.18 4 16 6 0.10 0.46 0.32

120 20 20 10 27 3 0 0.90 1.00 13 1 0.93 1.00

120 36 107 54 26 39 18 0.31 0.68 1.00 -8 25 6 -0.35 0.81 1.00

120 13 12 35 0 0 1.00 12 1.00

120 43 111 98 40 27 21 0.41 0.47 0.70 7 9 7 0.27 0.47 0.70

120 30 38 17 26 16 3 0.58 0.84 1.00 8 11 1 0.40 0.92 1.00

120 8 21 18 8 2 5 0.44 0.20 0.63 3 1 2 0.43 0.25 0.67

120 36 86 71 30 21 15 0.34 0.36 0.39 10 7 4 0.31 0.32 0.27

120 10 17 12 6 6 5 0.30 0.43 0.63 2 8 2 0.15 0.73 0.67

120 14 30 20 18 12 6 0.43 0.50 0.50 6 6 2 0.38 0.60 0.50

120 23 51 30 33 12 6 0.65 0.67 1.00 11 4 2 0.65 0.67 1.00

140 50 120 62 33 6 3 0.73 0.50 0.50 16 2 1 0.80 0.50 0.50

140 42 92 61 26 15 4 0.58 0.79 1.00 3 5 2 0.30 0.71 1.00

140 53 131 100 41 26 18 0.35 0.34 0.36 13 -4 8 0.32 -0.14 0.25

140 34 58 43 33 12 3 0.58 0.50 0.25 25 4 1 0.76 0.50 0.25

140 56 157 60 58 33 30 0.47 0.50 0.91 20 11 10 0.48 0.50 0.91

140 28 55 30 19 13 22 0.32 0.32 0.79 7 3 12 0.29 0.18 0.86

140 48 101 26 10 13 9 0.31 0.59 1.00 1 6 3 0.10 0.67 1.00

140 34 105 49 25 8 6 0.60 0.47 0.67 9 6 2 0.50 0.67 0.67

140 52 99 71 19 15 9 0.41 0.56 0.75 5 11 3 0.25 0.73 0.75

140 121 149 17 37 21 0 0.64 1.00 15 7 0.68 1.00

160 92 86 27 23 3 3 0.77 0.43 0.75 1 1 1 0.25 0.33 0.50

160 63 166 20 91 22 4 0.78 0.85 1.00 35 11 2 0.73 0.85 1.00

160 90 195 113 47 17 15 0.55 0.45 0.71 13 5 4 0.54 0.45 0.67

160 194 46 16 64 6 0 0.91 1.00 20 2 0.91 1.00

160 135 194 154 77 28 3 0.67 0.74 0.30 28 16 1 0.56 0.73 0.17

160 214 447 136 42 37 5 0.49 0.86 0.83 29 14 5 0.59 0.70 0.83

160 211 320 139 81 19 18 0.62 0.38 0.58 41 7 6 0.69 0.39 0.55

160 126 162 175 69 29 27 0.47 0.37 0.54 23 10 9 0.40 0.29 0.38

160 71 146 119 15 9 3 0.56 0.75 1.00 5 3 1 0.56 0.75 1.00

160 61 152 69 9 3 3 0.60 0.50 1.00 3 1 1 0.60 0.50 1.00

180 525 188 181 49 7 2 0.79 0.54 0.33 14 2 2 0.70 0.33 0.50

180 298 434 350 68 24 18 0.60 0.53 0.86 29 8 10 0.60 0.42 0.91

180 246 437 142 42 17 6 0.65 0.74 1.00 28 6 2 0.78 0.75 1.00

180 341 717 556 57 45 19 0.44 0.62 0.68 18 14 7 0.43 0.58 0.70

180 429 388 31 25 23 0 0.52 1.00 -7 19 -0.58 1.00

180 96 203 164 20 11 8 0.44 0.44 0.57 10 5 3 0.50 0.50 0.60

180 159 133 87 66 15 9 0.73 0.63 1.00 25 7 3 0.71 0.70 1.00

180 248 206 177 55 12 21 0.59 0.31 0.78 21 4 2 0.72 0.50 0.50

180 87 229 182 12 12 5 0.34 0.52 0.45 4 4 5 0.27 0.36 0.71

180 352 618 415 25 42 22 0.20 0.42 0.38 11 10 7 0.28 0.34 0.37

200 156 249 49 12 3 3 0.67 0.50 1.00 4 1 1 0.67 0.50 1.00

200 1493 1720 1575 141 58 25 0.61 0.65 0.81 57 10 9 0.73 0.48 0.82

200 1855 766 512 43 18 12 0.53 0.47 0.60 12 6 4 0.48 0.46 0.57

200 455 428 370 47 26 21 0.43 0.42 0.58 8 3 2 0.44 0.30 0.29

200 437 310 327 20 5 3 0.71 0.63 1.00 8 2 1 0.73 0.67 1.00

200 585 839 422 22 13 10 0.38 0.36 0.43 9 13 4 0.29 0.59 0.44

200 1300 1391 705 64 22 6 0.65 0.65 0.50 16 7 2 0.59 0.64 0.50

200 526 997 527 26 23 14 0.33 0.44 0.48 24 11 5 0.56 0.58 0.63

200 408 876 693 94 22 16 0.61 0.37 0.43 38 6 5 0.68 0.33 0.42

200 367 1072 625 47 23 24 0.44 0.38 0.63 2 11 11 0.07 0.42 0.73



 

173 

8.3 Appendix C – Gusek Code for Priority-Duration Formulation 

param H; #Planning Horizon 

param R; #Resource Type 

param n; #No. of activities 

param q; #number of duration modes, related to overtime 

param u; #Number of reductions 

set A,default{1..n}; # set of activities 

set P within A cross A; #predecessors 

set RR,default {1..R}; #No. of resources 

set M,default {1..q}; #Overtime modes 

param D{i in A, m in M}; #Durations 

param RD{i in A, k in RR}; #Resources demand for activity i 

param AV{k in RR}; #Resource Availability 

param ES{i in A}; #0; #Early Start time 

param LS{i in A};#H-D[i]; #Late Start time 

param PR{i in A}; #priority 

param S{i in A}; #last schedule start times 

var x{i in A, t in ES[i]..LS[i],m in M}, binary; 

maximize objective: sum{m in 1..q, i in 1..n, t in ES[i]..LS[i]} x[i,t,m]*(1-
(0.001*t))*(100/(PR[i]^5))*((0.001+D[i,1])^1.1); 

s.t. one{i in A} : sum{t in ES[i]..LS[i],m in M} x[i,t,m] = 1; 

s.t. two{(i,j) in P} : sum{t in ES[j]..LS[j],m in M} t*x[j,t,m] >= sum{t in ES[i]..LS[i],m in M} 
x[i,t,m]*(t + D[i,m]); 

s.t. three{k in RR,t in 0..H} : sum{i in A,m in M,s in max(t-D[i,m]+1, ES[i])..min(LS[i],t)} 
RD[i,k]* x[i,s,m] <= AV[k]; 

s.t. four: sum{i in A,t in ES[i]..LS[i]}(x[i,t,2]+(2*x[i,t,3])+(3*x[i,t,4]))<=u; #No more than u 
reductions 

solve; 

display objective,x,PR; 
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#this file requires a .dat file with all the right data, in the right format. See next 
Appendix. 

end; 
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8.4 Appendix D – Data File Output Format for Gusek for a 110-Activity Example 

This can be copy-pasted from MS Excel into a text file with the same name as the Gusek 
.mod file: 

data; 

param H:= 241 ; 

param R:= 20 ; 

param n:= 110 ; 

param q:= 4 ; 

param u:= 1 ; 

set P:=  

( 1 , 2 ), 

( 1 , 3 ), 

… 

( 109 , 110 ) ; 

 

param: ES LS PR:=  

1 0 241 1  

2 0 241 1  

… 

110 0 241 1 ; 

 

param D: 1 2 3 4:= 

1 1 1 1 1 

2 6 5 4 3 

… 

110 10 9 8 7 ; 

 

param AV:= 

1 5 
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2 5 

… 

20 5 ; 

 

param RD: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 := 

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

… 

110 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 

 

end; 
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8.5 Appendix E – Gusek Code for Discrete-Time Priority-Duration RCPSP Model 

for WO Scheduling with Activity Adjacency 

param H; #Planning Horizon  

param K; #Resource Type  

param n; #Number of activities  

param w; #Number of WOs  

set A,default{1..n}; # set of activities  

set W,default{1..w}; #set of WOs  

set P within A cross A; #predecessors among activities from different WOs  

set RR,default {1..K}; #No. of resources  

set AW within A cross W; #work package assignment for activities  

param D{i in A}; #Activity durations  

param RD{i in A, k in RR}; #Resources demand for activity i  

param AV{k in RR}; #Resource Availability  

param ES{i in A}; #Early Start time, for operations/activities  

param LS{i in A}; #Late Start time, for operations/activities  

param ESw{z in W}; #Early Start time, for WOs  

param LSw{z in W}; #Late Start time, for WOs  

param PR{i in A}; #priority  

param f{i in A}; #relative operation/activity time distance from WO start time  

var x{i in A, t in ES[i]..LS[i]}, binary; #Activity/operation start times 

var y{z in W, t in ESw[z]..LSw[z]}, binary; #WO/parent unit start times 

maximize objective: sum{i in 1..n,t in ES[i]..LS[i]} x[i,t]*(1-
(0.001*t))*(100/(PR[i]^5))*((0.001+D[i])^1.1); #objective function only cares about 
activity start times 

 

s.t. one{i in A} : sum{t in ES[i]..LS[i]} x[i,t] = 1; 

s.t. two{z in W} : sum{t in ESw[z]..LSw[z]} y[z,t] = 1; 

s.t. three{(i,j) in P} : sum{t in ES[j]..LS[j]} t*x[j,t] >= sum{t in ES[i]..LS[i]} x[i,t]*(t + D[i]); 
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s.t. four{k in RR,t in 0..H} : sum{i in A,s in max(t-D[i]+1, ES[i])..min(LS[i],t)} RD[i,k]* x[i,s] 
<= AV[k]; 

s.t. five{(i,z) in AW} : sum{t in ESw[z]..LSw[z]} y[z,t]*t = sum{t in ES[i]..LS[i]} x[i,t]*(t - f[i]); 

solve; 

display objective,x,y,PR; 

#this file requires a .dat file with all the right data, in the right format. 

end;  
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8.6 Appendix F – Data File Output Format for Gusek for a 110-Activity Example 

This can be copy-pasted from MS Excel into a text file with the same name as the Gusek 
.mod file: 

data; 

param H:= 374 ; 

param K:= 53 ; 

param n:= 225 ;   

param w:= 12 ; 

set P:=  

( 5 , 18 ), 

( 19 , 35 ), 

… 

( 188 , 225 ) ; 

 

set AW:=   

( 1 , 1 ),  

( 2 , 1 ), 

… 

( 225 , 12 ); 

 

param: ES LS D PR f:=         
   

1 0 32 6 1 0      
  

2 0 32 8 1 0  

… 

225 21 93 2 1 21 ; 

 

param: ESw LSw:=      
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1 0 32 

2 0 62 

… 

12 0 72 ; 

param AV:= 

1 20 

2 20 

… 

53 5 ; 

 

param RD: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 := 

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

… 

225 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 

 

end; 

 


