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Graphic Abstract text 29 

 30 
Steady-state temperature-depth (T-z) profile methods to quantify vertical surface water-31 

groundwater exchange fluxes are influenced by diurnal temperature variations. We provide 32 

guidance to best apply these methods to obtain reliable flux estimates. We show that flux 33 

estimates are most accurate when the shallowest temperature profile measurement 34 

approximates its daily mean temperature. In some cases, flux estimates are improved by 35 

omitting the most transient (shallow) part of a T-z profile (see profile 2), or by using the daily 36 

mean of time series-based T-z profiles. 37 

 38 

Abstract 39 

Upward discharge to surface water bodies can be quantified using analytical models based on 40 

temperature-depth (T-z) profiles. The use of sediment T-z profiles is attractive as discharge 41 

estimates can be obtained using point-in-time data that are collected inexpensively and rapidly. 42 

Previous studies have identified that T-z methods can only be applied at times of the year when 43 

there is significant difference between the streambed-water interface and deeper sediment 44 

temperatures (e.g., winter and summer). However, surface water temperatures also vary 45 

diurnally, and the influence of these variations on discharge estimates from T-z methods is 46 

poorly understood. For this study, synthetic T-z profiles were generated numerically using 47 

measured streambed interface temperature data to assess the influence of diurnal temperature 48 

variations on discharge estimation and provide insight into the suitable application of T-z 49 

methods. Results show that the time of day of data collection can have a substantial influence 50 

on vertical flux estimates using T-z methods. For low groundwater discharge fluxes (e.g. 0.1 m 51 

d-1), daily transience in streambed temperatures led to relatively large errors in estimated flow 52 



magnitude and direction. For higher discharge fluxes (1.5 m d-1), the influence of transient 53 

streambed temperatures on discharge estimates was strongly reduced. Discharge estimates 54 

from point-in-time T-z profiles were most accurate when the uppermost point in the T-z profile 55 

was near the bed interface daily mean (two time periods daily). Where temperature time series 56 

data are available, daily averaged T-z profiles can produce accurate discharge estimates across 57 

a wide range of discharge rates. Seasonality in shallow groundwater temperature generally had 58 

a negligible influence on vertical flow estimates. These findings can be used to plan field 59 

campaigns and provide guidance on the optimal application of T-z methods to quantify vertical 60 

groundwater discharge to surface water bodies. 61 

 62 

1. Introduction 63 

Groundwater discharge influences stream biogeochemistry (Boulton, Findlay, Marmonier, 64 

Stanley & Valett, 1998; Schmidt, Bayer-Raich & Schirmer, 2007; Caissie, Kurylyk, St-Hilaire, 65 

El-Jabi & MacQuarrie, 2014) and maintains steady and spatially diverse stream temperatures, 66 

providing thermal refugia for aquatic species (Brunke & Gonser 1997; Boulton et al., 1998; 67 

Anibas et al., 2009; Wondzell, 2011; McCobb, Briggs, LeBlanc, Day-Lewis & Johnson, 2018; 68 

Kurylyk, MacQuarrie, Linnansaari, Cunjak & Curry, 2015). Characterizing the vertical 69 

exchange of water between surface water bodies and groundwater (or vertical hyporheic return 70 

flow) can also be vital to determine the fate and transport of groundwater contaminants 71 

(Conant, 2004; Schornberg, Schmidt, Kalbus & Fleckenstein, 2010). However, most point-72 

scale quantitative groundwater discharge measurement techniques are time and labor intensive 73 

(e.g. González-Pinzón et al., 2015). Time constraints often limit the scope of evaluations of 74 

groundwater-influenced habitat and reactive exchange. As the capabilities of large-scale 75 

numerical models of groundwater-surface water exchange continue to expand (e.g. Sulis et al., 76 

2010), there is a critical need to implement efficient field measurement techniques across space 77 

and time to generate more appropriate validation and calibration data for such models. 78 

 79 

Vertical water flow across the sediment-water interface can be measured directly using seepage 80 

meters (e.g. Lee, 1977; Murdoch & Kelly, 2003; Rosenberry, 2008), be inferred from Darcy’s 81 

law using measured hydraulic gradients and estimates of hydraulic conductivity (Conant, 82 

2004), or using geochemical techniques (e.g. Cranswick, Cook & Lamontagne, 2014). 83 

However, flowing water in streams and rivers can complicate the use of seepage meters even 84 

with design modification (Rosenberry, 2008), and the instruments are difficult to properly seal 85 

to armored streambeds. Estimates of upwelling based on Darcy’s law are uncertain given the 86 



large range and spatially variable nature of sediment hydraulic conductivity (Calver, 2001; 87 

Cardenas & Zlotnik, 2003). Natural groundwater tracers offer an alternative approach to 88 

measure vertical flow rate. In particular, the use of heat as a tracer of groundwater discharge 89 

has increased in recent years, following reviews by Anderson (2005), Constantz (2008) and 90 

Rau, Andersen, McCallum, Roshan, and Acworth (2014). Heat tracer methods offer several 91 

advantages over chemical or hydraulic methods, primarily because temperature data can be 92 

measured inexpensively and easily, without laboratory analyses (Anderson, 2005; Anibas et 93 

al., 2009; Irvine et al. 2017a; Kurylyk, Irvine & Bense, 2019). Groundwater temperature data 94 

can often be collected using hydrogeology instruments (e.g. pressure transducers or 95 

conductivity loggers) already deployed on site for other purposes (Kurylyk & Irvine, 2019). 96 

Logging thermistors do not typically experience drift problems that plague other types of 97 

groundwater parameter data collection. Several open-source software packages are also 98 

available to automate thermal data analysis to estimate rates of groundwater-surface water 99 

exchange from temperature data using analytical or numerical methods (e.g. Gordon, Lautz, 100 

Briggs & McKenzie, 2012; Irvine, Lautz, Briggs, Gordon & McKenzie, 2015a; Koch et al. 101 

2016; Kurylyk et al., 2017; Munz & Schmidt, 2017).  102 

 103 

Temperature-based analytical solutions to quantify fluid exchange between surface water and 104 

groundwater fall into two categories: those based on the analysis of diurnal temperature signals 105 

(e.g. Hatch, Fisher, Revenaugh, Constantz & Ruehl, 2006, Keery, Binley, Crook & Smith, 106 

2007; McCallum, Andersen, Rau & Acworth, 2012; Luce, Tonina, Gariglio & Applebee, 107 

2013), and those that use ‘steady-state’ temperature depth (T-z) profiles (e.g. Bredehoeft & 108 

Papadopulos, 1965; Shan & Bodvarsson, 2004; Turcotte & Schubert, 2014). These methods 109 

differ in that the diurnal temperature signal-based methods use temperature time series at two 110 

or more depths, whereas T-z profile-based methods utilize point-in-time data at multiple depths. 111 

 112 

The attributes of the diurnal temperature signal-based analytical solutions have been 113 

investigated broadly, including the influence of heterogeneity (Irvine, Cranswick, Simmons, 114 

Shannafield & Lautz, 2015b; Birkel et al. 2016), non-sinusoidal temperature signals (Luce, 115 

Tonina, Applebee & DeWeese, 2017), non-constant fluid fluxes (Irvine et al., 2015a, Rau, 116 

Cuthbert, McCallum, Halloran & Andersen, 2015), multi-dimensional flow (Lautz, 2010; 117 

Cuthbert & Mackay, 2013; Reeves & Hatch, 2016), and the uncertainty in flux estimates that 118 

results from uncertainties in thermal properties (Shanafield, Hatch & Pohll, 2011; Irvine et al., 119 

2017a).  120 



 121 

Steady-state, T-z methods have been utilized in a wide range of applications, including aquifer-122 

scale estimates of vertical groundwater flow (Cartwright, 1970; Ferguson & Woodbury, 2003; 123 

Bense & Kooi, 2004; Irvine et al., 2017b; Kurylyk et al., 2017) and submarine groundwater 124 

discharge (Kurylyk et al., 2018; Tirado-Conde, Engesgaard, Karan, Muller & Duque, 2019). 125 

However, T-z methods are most widely used to estimate groundwater discharge to inland 126 

surface water bodies (e.g. Schmidt, Conant, Bayer-Raich & Schirmer, 2007; Anibas et al., 127 

2009; Anibas, Buis, Verhoeven, Meire & Batelaan, 2011; Caissie et al., 2014; Kurylyk et al., 128 

2017). For a detailed review on the use of T-z methods across a range of environments, the 129 

reader is directed to Kurylyk, Irvine and Bense (2019).  130 

 131 

The use of T-z methods offers major advantages over diurnal temperature signal methods in 132 

that estimates of vertical water fluxes can be obtained using point-in-time or short-term (less 133 

than a full signal period) data. This allows rapid quantification of the spatial distribution of 134 

groundwater discharge to surface water bodies that is not possible with time-intensive diurnal 135 

temperature signal methods for which it is advised that data be collected for several consecutive 136 

days (Hatch, Fisher, Revenaugh, Constantz & Ruehl, 2006; Gordon, Lautz, McKenzie & 137 

Briggs, 2012). 138 

 139 

There have also been several investigations into the implications of field conditions not meeting 140 

assumptions of the T-z methods. For example, large 2D spatial variations in hydraulic 141 

conductivities caused by streambed heterogeneity can lead to large errors in discharge 142 

estimates due to lateral conduction of heat (Schornberg, Schmidt, Kalbus & Fleckenstein, 2010; 143 

Ferguson & Bense, 2011). The role of annual temperature variations at the sediment-water 144 

interface is also important because steady state T-z methods rely on the curvature of a thermal 145 

profile to quantify flux; these methods perform poorly when there is little thermal difference 146 

between surface water and groundwater (i.e. a uniform T-z profile) (e.g. Schmidt et al., 2007; 147 

Schornberg et al., 2010; Anibas et al., 2011).  148 

 149 

While the influence of annual temperature variation on the upper boundary condition has been 150 

investigated (e.g. Anibas et al., 2009), it is important to note that stream temperatures also 151 

typically vary diurnally. The influence of diurnal surface water temperature variations and 152 

superimposed annual temperature variation at the upper boundary on discharge estimates from 153 

T-z methods is currently poorly understood, limiting the uptake of this relatively efficient 154 



method for flux estimation. We postulate that certain characteristic times of day can be chosen 155 

for T-z data collection to enhance the likelihood of accurate vertical flux estimates, negating 156 

the need for data collection over time and thereby increasing practical spatial coverage. Thus, 157 

the aims of this study are to explore the optimal application of T-z methods to quantify vertical 158 

flow to surface water bodies. In particular, we 1) investigate the influence of diurnal 159 

temperature variations with and without superimposed annual temperature variations on 160 

discharge estimates from T-z methods, 2) explore the validity of utilizing daily mean T-z 161 

profiles where time series data are available, 3) investigate the implications of omitting the 162 

shallow portion of a T-z profile from analyses, and 4) utilize the above points to provide 163 

practical field deployment and data analysis guidance on the use of T-z methods to infer 164 

groundwater discharge to streams.  165 

 166 

2. Methods 167 

Details regarding the T-z methods theory, synthetic data creation, and data analysis are 168 

described in this section. 169 

 170 

2.1 Heat transport theory 171 

Following Bredehoeft and Papadopulos (1965), the equation for steady-state, one-dimensional 172 

(1D) subsurface heat transport with fluid flow can be written as: 173 

 174 
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 176 

where λ0 is the bulk thermal conductivity of the saturated sediment (W m-1 °C-1), T is 177 

temperature (°C), z is sediment depth (m), q is the vertical fluid flux (positive downwards, m 178 

s-1), and Cw is the volumetric heat capacity of the water (J m-3 °C-1). 179 

 180 

Bredehoeft and Papadopulos (1965) presented an analytical solution to Equation (1) as a 181 

method to determine q from T-z profiles: 182 
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where T(z) is the temperature at depth, z, β is the dimensionless Peclet number calculated as (β 186 

=CwqL/λ0), T0 and TL are the temperatures at the top (i.e. z0) and bottom (i.e. zL) of the profile 187 

respectively (°C), and L is the length of the profile (m). If Cw and λ0 are known and conditions 188 

are at steady-state, q can be determined by optimizing β to fit Eqn. 2 to an observed T-z profile. 189 

Here we define the inferred flux from this method as qBP. The Bredehoeft and Papadopulos 190 

(1965) method (herein referred to as the BP method) was extended to allow for variations in 191 

thermal conductivity with depth for applications in the vadose zone (Shan & Bodvarsson, 2004) 192 

or saturated, layered sediments (Kurylyk et al., 2017); however, layered systems are not 193 

considered here. 194 

 195 

Fundamentally, the BP method is based on the predicted departure of the T-z profile from a 196 

linear diffusive (conductive) thermal gradient to a thermal gradient with curvature produced by 197 

vertical fluid flow. The magnitude and directionality of the curvature (concave up or down) is 198 

directly related to λ0 and q. A key benefit of the BP method is that only point-in-time data are 199 

required, thereby substantially reducing the effort required in data collection. Additional 200 

benefits include that the BP method only requires that two thermal properties, i.e. Cw which is 201 

essentially known (although variations due to temperature and/ or salinity occur), and λ0. In 202 

contrast, methods that use diurnal temperature time series require data spanning several days. 203 

Also, the thermal properties required to determine discharge from diurnal time series include 204 

Cw, the volumetric heat capacity of the solids, Cs (J m-3 °C-1), porosity (n), and λ0 (e.g. Hatch, 205 

Fisher, Revenaugh, Constantz & Ruehl, 2006, Keery, Binley, Crook & Smith, 2007), or Cw, Cs 206 

and n (e.g. McCallum, Andersen, Rau & Acworth, 2012; Luce, Tonina, Gariglio & Applebee, 207 

2013). 208 

 209 

2.2 Synthetic data generation 210 

Synthetic time-varying temperature fields were produced using the finite element groundwater 211 

flow and transport model FEFLOW (Diersch, 2014). The 1D numerical model domain used 212 

for most experiments was a saturated sediment column that was 4 m in the vertical direction, 213 

with a vertical discretization of 0.0125 m (Fig. 1). Later experiments investigate the influence 214 

of annual temperature signals. These simulations either used the 4 m model domain, or a 10 m 215 

high model, with a vertical discretization of 0.0125 m for the upper 2 m, ~0.02 m between 2 216 

and 4 m, and ~0.03 m between 4 and 10 m.  217 

 218 



Water flux through the models was varied using a specified flux boundary (constant in time). 219 

The upward fluxes tested in the model (denoted qF) ranged from relatively low (-0.1 m d-1) to 220 

high (-1.5 m d-1). This range spans the fluxes either measured in field studies or used in other 221 

synthetic studies (e.g. Schmidt et al., 2007; Anibas et al., 2009; Anibas et al., 2011; Schornberg, 222 

Schmidt, Kalbus & Fleckenstein, 2010; Ferguson & Bense, 2011). The domain properties were 223 

λ0 = 2.5 W m-1 °C-1, Cw = 4.18×106 J m-3 °C-1, and C (bulk heat capacity of matrix) = 2.53×106 224 

J m-3 °C-1, which represent properties for saturated sand. 225 

 226 

  227 
Figure 1: Numerical model set up (left) and temperature boundary conditions (right). T-z 228 

profiles were extracted from the upper 1 m of the model (black bar). Red data (right) are 229 

modified (detrended) from Zimmer and Lautz (2014) so that the temperatures at the first and 230 

last time steps were equal.  231 

 232 

For all simulations, temperature time series were extracted at all nodes in the upper 1 m of the 233 

model domain as this represents a typical length of a sediment temperature probe. To more 234 

closely replicate the temperature resolution of commonly applied temperature loggers, the 235 

resolution of the modeled temperatures was set to 0.05 °C. This resolution falls between 0.02 236 

°C of a HOBO Water Temp Pro v2 and 0.0625 °C of a Thermochron iButton.  237 

 238 

2.2.1 Model set up for diurnal temperature signals 239 

Temperature time series data from the field work of Zimmer and Lautz (2014) were used to 240 

specify the temperatures at the upper boundary (i.e. T0, Fig. 1). These temperature time series 241 

were measured in the bed materials of Chittenango Creek, New York. The original dataset was 242 

detrended, so that the first and last temperature values were identical. A constant temperature 243 



of 12 °C was applied at the lower boundary (i.e. TL) to represent local shallow groundwater 244 

temperature. The use of a constant temperature at 4 m depth was appropriate, given the short 245 

duration of the model simulations (27 days). The simulations were run twice, with the final 246 

temperature field from the first run used as the initial condition for the second. This approach 247 

removed the influence of the initial temperature conditions on the simulation. 248 

 249 

2.2.2 Model set up for superimposed diurnal and annual signals 250 

Simulations were also performed to investigate the role of annual temperature signals on the 251 

use of T-z methods. To generate annual temperature signals for the lower streambed boundary 252 

condition, the approach of Goto, Yamano and Kinoshita (2005) was used: 253 

 254 
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 256 

where A is the annual amplitude (°C), vth (i.e. th wv q C C= ) is the thermal front velocity (m s-257 
1), κe is thermal diffusivity (m2 s-1), P is the period (1 year), and α is defined as: 258 

 259 

( )
22 8th ev P = + .  (4) 260 

 261 

The lower boundary conditions were generated assuming a regional recharge rate of 100 mm 262 

y-1 (although the solution is relatively insensitive to this value). To produce the upper model 263 

boundary, an annual amplitude (A in Eq. 3) of the surface water (and hence the upper boundary, 264 

z0) 8 °C was used (Fig. 2). The diurnal data from Zimmer and Lautz (2014) was superimposed 265 

on top of this annual signal to produce the upper boundary condition for the model. 266 

 267 



 268 
Figure 2: Temperatures for the upper boundary (grey), as well as TL at 4 m (black) and 10 m 269 

(red). Grey zone denotes model spin up period. 270 

 271 

Two simulations were considered to investigate the role of annual temperature signals at the 272 

lower boundary. The first of these used the regular 4 m high model domain (Fig. 1, left). The 273 

temperatures at the lower boundary (z = 4 m) were generated using Eqn. 3, with a z = 4 m, 274 

representing the maximum depth that nearby recharged water infiltrated to before discharging 275 

to the stream. We herein refer to this maximum depth as zmax. The second simulation used zmax 276 

= 10 m in Eqn. 3. This simulation used a larger model domain, applying this temperature time 277 

series at the model bottom (z = 10 m). Diurnal signals decay in the ~ 1m or so (Constantz, 278 

2008), and thus diurnal signals were not included in the lower (4 m or 10 m depth) boundary. 279 

Initial conditions for the simulations to investigate the influence of annual temperature signals 280 

were produced using a steady state simulation with the first value from the generated time 281 

series as the boundary conditions. The transient simulations were run with 40 days of spin up 282 

time to remove the influence of the initial model conditions on the simulated temperatures. 283 

 284 

2.3 Data analysis 285 

The fitting of Eqn. 2 to field data can be readily automated by minimizing the difference 286 

between an observed and simulated T-z profile. While there are spreadsheet tools available for 287 

this (e.g. Arriaga & Leap, 2006; Kurylyk et al., 2017), the large number of T-z profiles requiring 288 

analysis here was better suited to a scripting environment. As such, qBP values were estimated 289 

by minimizing the Root Mean Square Error (RMSE, °C) between the Bredehoeft and 290 

Papadopulos (1965) solution and the FEFLOW output using the Nelder and Mead (1965) 291 

minimization method in Python. Only β was adjusted in this optimization routine, as the 292 

thermal properties were known. The top and bottom boundaries were generally assigned from 293 



the temperatures at 0 and 1 m in the simulated profile, although the depth selection of the upper 294 

boundary was also explored (see Section 3.2). 295 

 296 

Estimates of qBP were produced using either point-in-time or daily averaged T-z profiles 297 

extracted from the modeled data set. The qBP values were then compared to the known 298 

groundwater flux, qF, from the FEFLOW simulations. 299 

 300 

3. Results and Discussion 301 

Sections 3.1 to 3.3 below use the temperature boundary conditions outlined in Fig. 1, whereas 302 

Section 3.4 uses the boundary conditions outlined in Fig. 2. 303 

 304 

3.1 Use of point-in-time T-z profiles 305 

The influence of a diurnally varying upper boundary condition on T-z profiles under discharge 306 

conditions is shown in Fig. 3. As the discharge rate increases (i.e. from Fig. 3a-c to Fig. 3g-i), 307 

the depth that the surface temperature signal propagates reduces. The expected penetration 308 

depth of a diurnal (sinusoidal) temperature signal could be determined using properties of the 309 

temperature signal, flux and sediment (Briggs et al., 2014). This approach could be used to 310 

estimate the thermal envelope depth.  311 

 312 



  313 
Figure 3: T-z profiles for qF = -0.1 m d-1 (a, b, c), -0.5 m day-1 (d, e, f), and -1.5 m d-1 (g, h, 314 

i). Fitted BP solution (red) to simulated T-z profiles at different times of the day (black). Grey 315 

lines show two hourly T-z profiles throughout model day on the second day of the simulation. 316 

In each case, the root mean square error (RMSE, °C) between the synthetic and fitted T-z 317 

profiles is presented. Columns show fitted data where the surface temperature was cool (left, 318 

i.e. (a, d, g)), near the daily mean surface temperature (middle, i.e. (b, e, h)), and where the 319 

surface temperature was warm (right, i.e. (c, f, i)). 320 

 321 

Fig. 3 shows T-z profiles that were extracted from the simulated temperature data in two-hour 322 

intervals, on the (arbitrarily selected) second day of the simulations. Using these T-z profiles, 323 

discharge was estimated at three times throughout the day: when T0 was at its coolest (Figs 3a, 324 

d, g), when T0 was near its daily mean (Figs. 3b, e, h), and at its daily maximum (Figs. 3c, f, i). 325 

In particular, the errors in estimated discharge are more pronounced for the qF = -0.1 m d-1 case 326 

(top row), with flux magnitude under-estimates of 0.06 m d-1 (Fig. 3a) and over-estimates of 327 

0.09 m d-1 (i.e., approaching 100% error, whereby negative errors denote stronger upwards 328 

flow, Fig. 1c), compared to the smaller errors for the qF = -0.5 m d-1 case (Figs. 3d-f) and the 329 

qF = -1.5 m d-1 case (Figs. 2g-i). Fig. 3 also suggests that the errors in the inferred flux are 330 



lowest when T0 is at its mean; however, as the discharge rate increases, the importance of the 331 

timing of the T-z measurement decreases. 332 

 333 

The presentation of the T-z profiles and fitted BP method in Fig. 3 only shows discharge 334 

estimates at three times across a 24-hour period (left, middle, right columns). However, when 335 

temperature time series data are available (as is the case here), it is possible to process T-z 336 

profiles at higher temporal resolution to further explore the role of transient boundary 337 

conditions on discharge estimates. Fig. 4 shows estimates of qBP in 1-hour intervals for the low 338 

discharge case of qF = -0.1 m d-1. For a reference, the T0 (from Fig. 1) is presented (Fig. 4a, 339 

black), as is the daily averaged mean temperature (Fig. 4a, red). 340 

  341 

 342 
Figure 4: (a) T0 (black) and the daily mean T0 (red). (b) The calculated qBP (grey) and the 343 

actual qF = -0.1 m d-1 in FEFLOW (black dot). Any qBP estimate in the shaded gray region 344 

has an incorrect flow direction.  345 

 346 

The discharge estimates in Fig. 4b exhibit a diurnal pattern, generally oscillating around the 347 

known qF value. As the true discharge flux was constant, the peaks and troughs of the periodic 348 

inferred flux time series represent the maximum errors in the inferred flux. These errors arise 349 

because the BP method attributes T-z profile curvature entirely to heat advection from 350 

groundwater flow, but profile curvature in these cases arises in large part from the diurnal 351 

transience. Errors in discharge estimates were relatively low (compared to other time periods) 352 

between model days six and 10 (errors on the order of ±0.05 m d-1, Figure 4b). These errors 353 

are lower than the errors in other periods in the simulation because the T0 diurnal amplitudes 354 

are also low during this time period, and thus the conditions more closely satisfy the steady-355 



state assumptions of the BP method. Time periods with low amplitudes of the diurnal 356 

temperature signals pose challenges when applying diurnal temperature signal methods. The 357 

use of the BP method may be able to supplement time periods where diurnal signal-based flux 358 

estimates are deemed to be unreliable.  359 

 360 

The temperature change (Fig. 4a) at this low discharge flux can cause even the direction of the 361 

inferred flux to be in error (Fig. 4b). For example, the qBP estimate of 0.30 m d-1 (near day 15, 362 

Fig. 4b) represents an error on the order of 400%. In general, positive (downwards) estimates 363 

of qBP should be perceived with caution as T-z methods are generally not used to estimate 364 

downwards flow (e.g. Schmidt et al., 2007) unless the upper boundary temperatures are 365 

relatively constant. For example, downwards flow (i.e. groundwater recharge) has been 366 

determined using the BP method in streams that experience seasonal ice cover (e.g. Caissie et 367 

al., 2014), or in deep-ocean seafloor sediments (Kurylyk et al., 2018).  368 

 369 

The data analysis procedure shown in Fig. 4 is repeated in Fig. 5, where the results of the 370 

analyses of the qF = -1.0 m d-1 case are shown. While the qF estimates in Fig. 5b have the same 371 

oscillatory behavior as was the case where qF = -0.1 m d-1 (Fig. 4b), it is important to note that 372 

the qBP estimates are generally more accurate (i.e. the signal amplitude/mean ratio is much 373 

lower). For example, the qBP estimates generally fall within ±0.1 m d-1, representing errors on 374 

the order of ±10%, far below, for example, the uncertainty of fluxes estimated from head data 375 

via Darcy’s Law.  376 

 377 

 378 
Figure 5: (a) T0 (black) and the daily mean T0 (red). (b) The calculated qBP (grey) and the 379 

actual qF = -1.0 m d-1 in FEFLOW (black dot).  380 



 381 

In both Figs 4b and 5b, the qBP estimates are most accurate as the T0 signals approach the daily 382 

mean temperature ( 0T ). This finding could be particularly useful if a dense network of 383 

discharge estimates is to be collected within a short period of time. For example, Schmidt et al. 384 

(2007) used a dense network of T-z profiles to produce spatial maps of discharge for the Pine 385 

River in Ontario, Canada. The fact that the first occurrence of the mean daily surface water 386 

temperature typically occurs mid-late morning is particularly useful given that daily field 387 

campaigns are often launched around this time. 388 

 389 

To further explore the impact of the intra-daily timing of the collection of field T-z profiles, 390 

errors in discharge estimates are presented against the difference between a point-in-time T0, 391 

and the 0T for a range of discharge rates (Fig. 6). 392 

 393 



 394 
Figure 6: Errors in flux estimates (in %, left axis, and m d-1, right axis) against the 395 

temperature difference between T0 and 0T (i.e. difference between black and red lines in Fig 396 

4a, 5a) for qF = -0.1 m d-1 (a), -0.5 m d-1 (b), -1.0 m d-1 (c) and -1.5 m d-1 (d). Red lines 397 

denote linear regression, with R2 listed in red text. Note the changes in the left vertical scales 398 

from (a) to (d). Positive errors denote discharge estimates which are closer to zero, i.e. lower 399 

discharge rates. Negative errors denote stronger discharge.  400 

 401 

In particular, the qF = -0.1 m d-1 case (Fig. 6a) demonstrates for low discharge conditions, 402 

collection time of T-z profiles can significantly influence errors in qBP. When T0 was cooler 403 

than 0T , discharge estimates yielded lower magnitudes, or suggested recharge conditions. For 404 

higher discharge rates (i.e. as shown in Figs. 6b-d), the regression slope decreases, as does the 405 



R2; highlighting that the importance of T-z profile collection time decreases with increasing 406 

flux. Also, the relative errors in qBP estimates reduce substantially for higher discharge rates. 407 

For example, errors are generally within ±10% for qBP = -1.5 m d-1 (Fig. 6d).  408 

 409 

Discharge estimates (Figs. 3-6) are partly based on the highly transient shallow portion of the 410 

T-z profile. Previous work proposed transient thermal effects are minimized by omitting the 411 

shallow profile and/or reducing time series data down to a daily mean profile (Kurylyk et al., 412 

2017); however, this approach has not been validated. Section 3.2 explores implication of 413 

omitting the shallow, transient portion of T-z profiles on vertical flux estimates. Section 3.3 414 

considers the impact of analyzing daily mean T-z profiles and uncertainty in thermal properties. 415 

 416 

3.2. Omitting the shallow, transient portion of the T-z profile 417 

To consider the potential advantages of focusing on less transient portions of a T-z profile, we 418 

consider profiles with the top boundary imposed at different depths below the stream-sediment 419 

interface. The results in Fig. 7 show the estimated qBP values for qF = -0.1 m d-1 (Fig. 7a, b), 420 

and qF = -0.5 m d-1 (Fig. 7c, d). In both cases, three lengths of the T-z profiles were used to 421 

determine qBP. Profiles sections were selected in which the entire profile was used (upper depth, 422 

z0, = 0 m), and in which the upper 0.1 and 0.2 m of the profile were excluded from the analyses 423 

(i.e. z0 occurs at depths of 0.1 and 0.2 m). 424 

 425 

 426 
Figure 7: Discharge estimates using point-in-time data. Estimates produced using T-z profiles 427 

between the upper depth of the profile, z0 (m), and 1 m in depth (see legend). Results shown 428 

for (a) qF = -0.1 m d-1, with subset shown in (b), and (c) qF = -0.5 m d-1 with subset shown in 429 



(d). Grey shading in (a-b) denotes where the flow direction of qBP is incorrect. The known qF 430 

is shown in dotted black. 431 

 432 

For the qF = -0.1 m d-1 case (Fig. 7a, b), the discharge estimates became increasingly accurate 433 

(amplitudes in inferred qF time series decrease) as the upper, most thermally transient portion 434 

of the T-z profile was omitted from the analyses. The diurnal nature of the qBP estimates has a 435 

phase lag as the z0 increases (Figure 7a, b). This effect is related to the timing of the propagation 436 

of the surface signal to the uppermost temperature measurement used in the T-z profile. Thus, 437 

errors in estimation of vertical fluxes from the BP method will typically be lower when the 438 

temperature used for the upper boundary condition (T0 at depth z0) is near its daily mean. 439 

  440 

The reduction in error with the use of an increasingly deeper z0 as shown in Figs. 7a-b is not 441 

universally replicated for the qF = -0.5 m d-1 case (Fig. 7c, d). Figs. 7c-d visually shows that 442 

errors reduce when z0 = 0.1 m, but that discharge rates are then generally over-estimated (i.e. 443 

qBP are more highly negative) where z0 = 0.2 m. Tabulated statistics of errors (max-over and 444 

max-under estimates, means and standard deviations) for several discharge scenarios are 445 

presented in Table 1 below. The data presented in Table 1 range from qF = -0.1 to -1.0 m d-1. 446 

Higher discharge results (i.e. -1.5 m d-1) are not presented, as the shallow part of a T-z profile 447 

contains the useful information for flux estimation using the BP method under strong discharge 448 

conditions as discussed below. 449 

 450 

Table 1: Errors in discharge estimates from point-in-time T-z profiles from z0 to 1.0 m over 451 

the 27-day period of the model simulations. A negative error denotes stronger discharge than 452 

reality, positive errors denote weaker discharge.  453 

  Error (m d-1) 

qF       

 (m d-1) 
z0 

(m) 

Max 
Over-

estimate  

Max 
Under-
estimate  Mean  

Standard 
deviation 

(σ) 
-0.1 0.0 -0.144 0.401 † 0.015 0.082 
-0.1 0.1 -0.090 0.197 † 0.007 0.053 
-0.1 0.2 -0.067 0.136 † 0.005 0.039 
-0.2 0.0 -0.144 0.181 0.007 0.059 
-0.2 0.1 -0.084 0.120 0.005 0.042 
-0.2 0.2 -0.062 0.100 0.004 0.031 
-0.3 0.0 -0.169 0.158 0.004 0.060 
-0.3 0.1 -0.114 0.108 0.001 0.044 
-0.3 0.2 -0.090 0.082 -0.003 0.033 



-0.4 0.0 -0.181 0.148 0.001 0.062 
-0.4 0.1 -0.138 0.106 -0.008 0.047 
-0.4 0.2 -0.135 0.065 -0.024 0.038 
-0.5 0.0 -0.186 0.136 -0.001 0.063 
-0.5 0.1 -0.178 0.091 -0.016 0.050 
-0.5 0.2 -0.226 0.064 -0.051 0.043 
-1.0 0.0 -0.182 0.119 -0.008 0.052 
-1.0 0.1 -0.611 0.401 -0.078 0.124 
-1.0 0.2 -153.075 ‡ 1.196 † -10.646 37.979 

† denotes incorrect flux direction., ‡ denotes unrealistically large error due to very small difference between temperatures at 454 
z0 and zL 455 

 456 

To explain why errors do not always decrease as the uppermost transient part of a T-z profile 457 

is omitted from the analysis, we explore the behavior of T-z profiles under idealized conditions 458 

using Eqn. 2. (i.e. with 1D flow and steady T0). As discharge increases, the deeper portion of 459 

the T-z profile becomes vertical (uniform, e.g. see Figs. 3d-i). Thus, the shallow portion of a T-460 

z profile contains the most useful information to determine discharge in the case of high fluxes. 461 

Fig. 8a shows the depth at which the vertical portion of a T-z profile will be reached, for various 462 

values of thermal conductivity and discharge rate. Fig. 8b shows four example T-z profiles to 463 

highlight the importance of the shallow data.  464 

 465 

 466 

 467 
Figure 8: (a) The shallowest depth at which uniform temperatures are realized using Eq. 2. As 468 

the upwelling rate increases, or as thermal conductivity decreases, uniform temperatures are 469 

reached at shallower depths. Results shown for a temperature resolution of 0.05°C. Calculated 470 

depth of >1.0 m are shown in white. T-z profiles in (b) correspond to the markers in (a). 471 

 472 



For conditions where qF = -1.0 m d-1 and λ0 =2.5 W m-1 °C-1 (Fig. 8, orange lines, triangle 473 

markers), the non-vertical portion of the T-z profile is restricted to the upper ~0.2 m of the 474 

profile. This explains why errors do not reduce as the shallow data are omitted from analyses 475 

in Figs. 6c-d but also highlights the importance of capturing data in the upper ~0.2 m of the 476 

bed materials. That is, removing this upper portion of the T-z profile removes the portion of the 477 

profile that may contain useful information to determine the vertical flux. Fig. 8 can provide 478 

insights into field data collection approaches if approximate thermal properties and an expected 479 

range of discharge rates are known.  480 

 481 

The analyses presented in Figs. 7, 8 and Table 1 suggest that omitting the most transient portion 482 

of the T-z profile can reduce errors at low flux. However, the benefits of this approach are 483 

reduced as the discharge rate increases because the zone of useful temperature information for 484 

flux estimation collapses upward toward the water-bed interface. The portion of a T-z profile 485 

that contains useful information could be identified using the ‘extinction depth’ equation from 486 

Briggs et al. (2014). This approach is used to identify the maximum sediment depth for 487 

sinusoidal (i.e. diurnal) temperature signal-based analyses under varied flux conditions (e.g. 488 

Irvine et al. 2017a) but could also be applied to estimate the shallow portion of a T-z profile 489 

with greatest curvature for steady-state analyses. Fig. 8 highlights the fact that the thermal 490 

properties of the system should also be taken into consideration. In general, we recommend 491 

collecting the profile from the sediment surface downwards and then evaluating if the upper 492 

portion should be removed during data analysis based on whether the profile becomes vertical 493 

at shallow depths or not.  494 

 495 

3.3 Use of daily averaged T-z profiles and uncertainties in thermal conductivity 496 

When temperature time series data are available, the use of daily averaged T-z profiles can be 497 

another approach to reduce the influence of diurnal temperature variations at the upper 498 

boundary. This approach may be useful when a temperature profiler was installed for 499 

insufficient duration of time to apply diurnal temperature signal methods (e.g. Hatch, Fisher, 500 

Revenaugh, Constantz & Ruehl, 2006; McCallum, Andersen, Rau & Acworth, 2012), which 501 

typically benefit from omission of the first and last few days of the data set due to issues 502 

introduced by signal processing (Hatch, Fisher, Revenaugh, Constantz & Ruehl, 2006; Irvine 503 

et al., 2017a). A comparison of discharge fluxes inferred via the BP method for hourly T-z 504 

profiles (light shades) and daily averaged T-z profiles (darker shades, with markers) is shown 505 

in Fig. 9.  506 



  507 

  508 
Figure 9: (a) qBP estimates for qF = -0.1, -0.5, -1.0 and -1.5 m d-1. Darker shading denotes the 509 

qBP estimates from hourly T-z. Lighter shade shows the qBP estimates using daily mean T-z 510 

profiles. qF for the cases shown here are denoted by the dotted line. (b) repeats the analyses in 511 

(a) but includes ±10% uncertainty in λ0. 512 

 513 

In particular, the reduction in error for the qF = -0.1 m d-1 is significant when using daily 514 

averaged instead of point in time T-z profiles (Fig. 9a), with a maximum over-estimate of 0.048 515 

m d-1 (48%), and maximum under-estimate of 0.030 m d-1 (30%) with the daily averaged 516 

approach. This error range does not exceed the uncertainty associated with fluxes estimated 517 

from head data. In contrast, the hourly T-z data produced discharge estimates with errors 518 

ranging from maximum under-estimates of 0.401 m d-1 (~400%) and maximum over-estimates 519 

of -0.144 m d-1 (~140%). While the benefits of the use of daily average T-z profiles diminishes 520 

as the discharge rate increases, in all cases considered, the use of daily average T-z profiles 521 

leads to more accurate discharge estimates.  522 

 523 



The analyses considered thus far have assumed that thermal conductivity was known. With the 524 

form of Eqn. 2, the errors introduced to discharge estimates from unknown or poorly 525 

constrained thermal conductivities will be linear. For example, Fig. 9b repeats the analyses 526 

presented in Fig. 9a if λ0 was known to ±10%. Even in cases where λ0 has been measured, 527 

uncertainties will remain. For example, a Tempos Thermal Property Analyzer can measure λ0 528 

with an accuracy of ±10%. It is important to note that, if the material type is known, thermal 529 

conductivity can generally be reasonably well constrained from tabulated values of thermal 530 

conductivities (e.g. Stonestrom & Blasch, 2003; Anderson, 2005; Irvine et al., 2017a). 531 

 532 

As a way of comparison between vertical fluxes estimated from point-in-time and daily 533 

averaged T-z profiles, maximum over- and under-estimates, as well as mean and standard 534 

deviations of qBP estimates, are provided in Table 2. 535 

 536 

Table 2: Errors in discharge estimates using point-in-time (PIT) or daily averaged (avg) T-z 537 

profiles. Negative error (in m d-1 or %) denotes estimates of stronger discharge that actual. 538 

 
Max over-
estimate 

Max under-
estimate Mean error 

Standard 
deviation (σ) 

qF 
(m d-1) Approach m d-1 % m d-1 % m d-1 % m d-1 % 
-0.10 PIT -0.144 -144 0.401 401 0.015 15 0.082 82 
-0.10 avg -0.030 -30 0.048 48 0.002 2 0.023 23 
-0.20 PIT -0.144 -72 0.181 91 0.007 4 0.059 30 
-0.20 avg -0.021 -11 0.036 18 0.002 1 0.015 8 
-0.30 PIT -0.169 -56 0.158 53 0.004 1 0.060 20 
-0.30 avg -0.023 -8 0.037 12 0.000 0 0.014 5 
-0.40 PIT -0.181 -45 0.147 37 0.001 0 0.062 16 
-0.40 avg -0.023 -6 0.033 8 -0.004 -1 0.013 3 
-0.50 PIT -0.186 -37 0.136 27 -0.001 0 0.063 13 
-0.50 avg -0.023 -5 0.029 6 -0.006 -1 0.012 2 
-0.75 PIT -0.190 -25 0.140 19 -0.005 -1 0.059 8 
-0.75 avg -0.027 -4 0.017 2 -0.008 -1 0.011 1 
-1.00 PIT -0.182 -18 0.119 12 -0.008 -1 0.052 5 
-1.00 avg -0.032 -3 0.021 2 -0.010 -1 0.013 1 
-1.25 PIT -0.110 -9 0.135 11 0.021 2 0.045 4 
-1.25 avg -0.022 -2 0.030 2 0.018 1 0.010 1 
-1.50 PIT -0.174 -12 0.109 7 -0.022 -1 0.046 3 
-1.50 avg -0.050 -3 0.018 1 -0.022 -1 0.017 1 

 539 

3.4 Investigating the influence of annual temperature signals 540 



The results in Fig. 10 show that the addition of annual temperature signals, both at the upper 541 

and lower boundaries does not significantly alter the qBP estimates for most of the year where 542 

there is a large difference between z0 and zL. The smaller oscillating errors (Fig. 10 d-f) are 543 

caused by the diurnal signals included in the boundary condition, while the large error spikes 544 

are introduced by the annual signals.  545 

 546 

 547 
Figure 10: (a-c) Showing temperature time series used for the upper boundary (i.e. z0, grey, 548 

superimposed diurnal and annual signals) and at z = 1 m for the zmax = 4 m simulation (black) 549 

and the zmax = 10 m simulation (red). (d-e) Errors in qBP estimates using daily averaged T-z 550 

profiles. Note that the qBP was removed for day 275 from the zmax = 10 m model results given 551 

that the T-z profile was near vertical and produced an unrealistically high error. 552 

 553 

The errors for the zmax = 4 m models (Fig. 10d-f, black) were generally larger than the zmax = 554 

10 m model (Fig. 10d-f, red). For example, the over- and under-estimates for the qF = -0.5 m 555 

d-1 case (Fig. 10e) for the zmax = 4 m model ranged between -0.827 m d-1 and 0.419 m d-1 (mean 556 

-0.010 m d-1). In comparison, the zmax = 10 m model errors ranged between -0.146 m d-1 and 557 

0.240 m d-1 (mean ~0.0002 m d-1). The largest over- and under-estimates occur during time 558 

periods where T0 approaches TL. These findings are generally consistent with the results of 559 

Anibas et al. (2009) and suggest that (1) annual and diurnal temperature signals are convoluted 560 

in shallow streambeds, but diurnal signals tend to overwhelm effects from annual signals and 561 

(2) when using T-z profile-based methods, it is typically more important to consider potential 562 

transient effects from diurnal signals than those from annual signals, except for periods in the 563 

year when there is no streambed thermal gradient. This finding is also applicable to the use of 564 

T-z profile-based methods for the quantification of shallow groundwater discharge rates, as 565 



groundwater with effective source flow path depth within approximately 6 m of land surface 566 

will commonly show a pronounced annual temperature signal (Constantz, 2008; Briggs et al. 567 

2018) 568 

 569 

4. Conclusions and implications for field studies 570 

The cases considered here were for steady, uniform 1D flow under upwelling conditions. 571 

Groundwater discharge is typically most vertical toward the center of the stream channel, but 572 

becomes highly oblique toward the banks (Modica, 1999). Irvine, Cartwright, Post, Simmons 573 

and Banks (2016) highlighted that in multi-dimensional flow fields, T-z profile analyses 574 

provide an estimate of the average vertical flux over the length of the T-z profile. Thus, with 575 

multi-dimensional flows, varying the length of the T-z profile used may lead to discharge 576 

estimates over different lengths. In low discharge conditions, provided that sufficient density 577 

of data points are available along a profile, it may be possible to produce depth-dependent 578 

estimates of vertical fluxes. 579 

 580 

The use of T-z profiles to provide point estimates of groundwater discharge is a promising 581 

technique, given that high-resolution temperature probes are relatively inexpensive, and that 582 

data can be collected rapidly, allowing spatial mapping of vertical fluxes that is otherwise 583 

difficult to achieve. Herein, we provide the first study and guidelines for considering and 584 

correcting for the impacts of diurnal temperature variability when assuming steady-state T-z 585 

profiles (i.e. Eqn. 2). We also consider the convolution of annual and diurnal temperature 586 

signals and their combined transient impacts on flux estimates derived from steady-state 587 

approaches. While data analyses are relatively straightforward, several steps in data collection 588 

and analysis can be taken to increase the likelihood of accurate discharge estimates:  589 

 590 

(1) In cases where only point-in-time data are available, more accurate discharge estimates can 591 

be obtained when the upper T-z profile boundary is near its daily mean temperature. The 592 

importance of the timing of data collection decreases as the vertical flux increases.  593 

 594 

(2) For lower-flux systems with strong surface diurnal temperature signals, it may be desirable 595 

to remove the shallowest section of T-z data from vertical flux analysis. The thickness of the 596 

removed section can be estimated using the predicted extinction depth of a diurnal signal 597 

amplitude. The omission of highly transient shallow temperature data is helpful in improving 598 

accuracy of vertical flux estimates for lower fluxes, but omitting the shallow data can be 599 



problematic at high rates of upwelling (e.g. q < -0.5 m d-1) as thermally uniform profiles 600 

develop at depth. It is beneficial to ensure that a thermal probe is used with many measurements 601 

of temperature (i.e. thermal sensors) available with depth to allow maximum flexibility for data 602 

analyses.  603 

 604 

(3) If temperature time series data are available, accurate discharge estimates can be obtained 605 

by averaging (mean) the temperature data over a daily time period at each depth. This approach 606 

may be useful in cases where time series data are available but do not extend over a sufficient 607 

duration to apply diurnal temperature signal methods, or when diurnal signals are not ideally-608 

formed such that the phase and amplitude cannot be accurately extracted.  609 

 610 

(4) The propagation of annual temperature signals into shallow streambeds can create thermally 611 

uniform conditions with depth, making it challenging to apply thermal tracing approaches 612 

based on a T-z profile curvature (Anibas et al., 2009). These conditions can be checked at the 613 

beginning of a field campaign to prevent later data analysis issues. 614 

 615 

In summary, spatially dense streambed upwelling mapping is possible using point-in-time 616 

profiles that can be efficiently recorded and analyzed using steady-state analytical approaches. 617 

Hydrologists have understood that these techniques have inherent limitations because 618 

streambeds exhibit diurnal thermal transience. Accordingly, they have employed more 619 

intensive methods based on diurnal thermal signal transfer. These methods require probes in 620 

place for multiple days of thermal data and thus limit the number of locations studied. Here we 621 

demonstrate that diurnal transience errors are minimal for strong upwelling, and can be 622 

minimized using the approaches above in the case of weak upwelling. In particular, judiciously 623 

selecting the time of day for data collection and the appropriate probe thermal sensor depths 624 

can reduce errors to values less than or comparable to those associated with most alternative 625 

techniques for quantifying upwelling. 626 

 627 

Acknowledgements 628 

Funding for this methods development was provided in part by U.S. Department of Energy 629 

grant DE-SC0016412 and the U.S. Geological Survey Toxic Substances Hydrology Program. 630 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 631 

endorsement by the U.S. Government. We declare no conflicts of interest. We would like to 632 

thank Mark Harvey and the two anonymous reviewers for their helpful reviews. 633 



 634 

Data availability statement 635 

The data that support the findings of this study are available from the corresponding author 636 

upon reasonable request. 637 

 638 

References 639 

Anderson MP. 2005. Heat as a ground water tracer. Groundwater, 43: pp. 951-968. DOI: 640 

10.1111/j.1745-6584.2005.00052.x. 641 

Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, & Batelaan O. 2009. 642 

Transient or steady-state? Using vertical temperature profiles to quantify groundwater-643 

surface water exchange. Hydrological Processes, 23: pp. 2165-2177. DOI: 644 

10.1002/hyp.7289. 645 

Anibas C, Buis K, Verhoeven R, Meire P, & Batelaan O. 2011. A simple thermal mapping 646 

method for seasonal spatial patterns of groundwater-surface water interaction. Journal of 647 

Hydrology, 397: pp. 93-104. DOI: 10.1016/j.jhydrol.2010.11.036. 648 

Arriaga MA, & Leap DI. 2006. Using solver to determine vertical groundwater velocities by 649 

temperature variations. Hydrogeology Journal, 14: pp. 253-263. DOI: 10.1007/s10040-650 

004-0381-x. 651 

Bense VF, Kooi H. 2004. Temporal and spatial variations of shallow subsurface temperature 652 

as a record of lateral variations in groundwater flow. J. Geophys. Res., 109: B04103. 653 

DOI: 10.1029/2003JB002782. 654 

Birkel C, Soulsby C, Irvine DJ, Malcolm I, Lautz LK, & Tetzlaff D. 2016. Heat-based 655 

hyporheic flux calculations in heterogeneous salmon spawning gravels. Aquatic 656 

Sciences, 78: pp. 203-213. DOI: 10.1007/s00027-015-0417-4. 657 

Boulton AJ, Findlay S, Marmonier P, Stanley EH, & Valett HM. 1998. The functional 658 

significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and 659 

Systematics, 29: pp. 59-81. DOI: 10.1146/annurev.ecolsys.29.1.59. 660 

Bredehoeft JD, & Papadopulos IJ. 1965. Rates of vertical groundwater movement estimated 661 

from the Earth's thermal profile. Water Resources Research, 1: pp. 325-328. 662 

Briggs MA, Lautz LK, Buckley SF, & Lane JW. 2014. Practical limitations on the use of 663 

diurnal temperature signals to quantify groundwater upwelling. Journal of Hydrology, 664 

519: pp. 1739-1751. DOI: 10.1016/j.jhydrol.2014.09.030. 665 

Briggs MA, Johnson ZC, Snyder CD, Hitt NP, Kurylyk BL, Lautz L, Irvine DJ, Hurley ST, 666 

Lane JW. 2018. Inferring watershed hydraulics and cold-water habitat persistence using 667 



multi-year air and stream temperature signals. Science of the Total Environment, 636: 668 

1117-1127. DOI: 10.1016/j.scitotenv.2018.04.344. 669 

Brunke M, & Gonser T. 1997. The ecological significance of exchange processes between 670 

rivers and groundwater. Freshwater Biology, 37: pp. 1-33. DOI: 10.1046/j.1365-671 

2427.1997.00143.x. 672 

Caissie D, Kurylyk BL, St-Hilaire A, El-Jabi N, & MacQuarrie KTB. 2014. Streambed 673 

temperature dynamics and corresponding heat fluxes in small streams experiencing 674 

seasonal ice cover. Journal of Hydrology, 519: pp. 1441-1452. DOI: 675 

10.1016/j.jhydrol.2014.09.034. 676 

Calver A. 2001. Riverbed permeabilities: Information from pooled data. Groundwater, 39: pp. 677 

546-553. DOI: 10.1111/j.1745-6584.2001.tb02343.x. 678 

Cardenas MB, & Zlotnik VA. 2003. Three-dimensional model of modern channel bend 679 

deposits. Water Resources Research, 39. DOI: 10.1029/2002wr001383. 680 

Cartwright K. 1970. Groundwater discharge in the Illinois Basin as suggested by temperature 681 

anomalies. Water Resources Research, 6: pp. 912-918. 682 

Conant B. 2004. Delineating and quantifying ground water discharge zones using streambed 683 

temperatures. Groundwater, 42: pp. 243-257. DOI: 10.1111/j.1745-684 

6584.2004.tb02671.x. 685 

Constantz J. 2008. Heat as a tracer to determine streambed water exchanges. Water Resources 686 

Research, 44. DOI: 10.1029/2008wr006996. 687 

Cranswick RH, Cook PG, & Lamontagne S. 2014. Hyporheic zone exchange fluxes and 688 

residence times inferred from riverbed temperature and radon data. Journal of 689 

Hydrology, 519: pp. 1870-1881. DOI: 10.1016/j.jhydrol.2014.09.059. 690 

Cuthbert MO, & MacKay R. 2013. Impacts of nonuniform flow on estimates of vertical 691 

streambed flux. Water Resources Research, 49: pp. 19-28. DOI: 10.1029/2011wr011587. 692 

Diersch H-JG. 2014. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport 693 

in Porous and Fractured Media. Springer. 694 

Ferguson G, & Bense V. 2011. Uncertainty in 1D Heat-Flow Analysis to Estimate 695 

Groundwater Discharge to a Stream. Groundwater, 49: pp. 336-347. DOI: 696 

10.1111/j.1745-6584.2010.00735.x. 697 

Ferguson G, Woodbury AD, & Matile GLD. 2003. Estimating deep recharge rates beneath an 698 

interlobate moraine using temperature logs. Groundwater, 41: pp. 640-646. 699 



Gonzalez-Pinzon R, Ward AS, Hatch CE, Wlostowski AN, Singha K, Gooseff MN, … & 700 

Brock JT. 2015. A field comparison of multiple techniques to quantify groundwater-701 

surface-water interactions. Freshwater Science, 34: pp. 139-160. DOI: 10.1086/679738. 702 

Gordon RP, Lautz LK, Briggs MA, & McKenzie JM. 2012. Automated calculation of vertical 703 

pore-water flux from field temperature time series using the VFLUX method and 704 

computer program. Journal of Hydrology, 420: pp. 142-158. DOI: 705 

10.1016/j.jhydrol.2011.11.053. 706 

Goto S, Yamano M, & Kinoshita M. 2005. Thermal response of sediment with vertical fluid 707 

flow to periodic temperature variation at the surface. Journal of Geophysical Research-708 

Solid Earth, 110. DOI: B01106 10.1029/2004jb003419. 709 

Hatch CE, Fisher AT, Revenaugh JS, Constantz J, & Ruehl C. 2006. Quantifying surface water-710 

groundwater interactions using time series analysis of streambed thermal records: 711 

Method development. Water Resources Research, 42: pp. DOI: 712 

W10410/10.1029/2005wr004787. 713 

Irvine DJ, Briggs MA, Lautz LK, Gordon RP, McKenzie JM, & Cartwright I. 2017a. Using 714 

Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange. 715 

Groundwater, 55: pp. 10-26. DOI: 10.1111/gwat.12459. 716 

Irvine DJ, Cartwright I, Post VEA, Simmons CT, & Banks EW. 2016. Uncertainties in vertical 717 

groundwater fluxes from 1-D steady state heat transport analyses caused by 718 

heterogeneity, multidimensional flow and climate change. Water Resources Research, 719 

52. DOI: 10.1002/2015WR017702. 720 

Irvine DJ, Cranswick RH, Simmons CT, Shanafield MA, & Lautz LK. 2015b. The effect of 721 

streambed heterogeneity on groundwater-surface water exchange fluxes inferred from 722 

temperature time series. Water Resources Research, 51: 198-212. DOI: 723 

10.1002/2014wr015769. 724 

Irvine DJ, Kurylyk BL, Cartwright I, Bonham M, Post VE, Banks EW, & Simmons CT. 2017b. 725 

Groundwater flow estimation using temperature-depth profiles in a complex environment 726 

and a changing climate. Science of The Total Environment, 574: pp. 272-281. 727 

Irvine DJ, Lautz LK, Briggs MA, Gordon RP, & McKenzie JM. 2015a. Experimental 728 

evaluation of the applicability of phase, amplitude, and combined methods to determine 729 

water flux and thermal diffusivity from temperature time series using VFLUX 2. Journal 730 

of Hydrology, 531: 728-737. DOI: 10.1016/j.jhydrol.2015.10.054. 731 

Keery J, Binley A, Crook N, & Smith JWN. 2007. Temporal and spatial variability of 732 

groundwater-surface water fluxes: Development and application of an analytical method 733 



using temperature time series. Journal of Hydrology, 336: pp. 1-16. DOI: 734 

10.1016/j.jhydrol.2006.12.003. 735 

Koch FW, Voytek EB, Day-Lewis FD, Healy R, Briggs MA, Lane JW, Jr., & Werkema D. 736 

2016. 1DTempPro V2: New Features for Inferring Groundwater/Surface-Water 737 

Exchange. Groundwater, 54: pp. 434-439. 738 

Kurylyk BL, Irvine DJ. 2019. Heat: An Overlooked Tool in the Practicing Hydrogeologist's 739 

Toolbox. Groundwater, 57: 517-524. DOI: 10.1111/gwat.12910. 740 

Kurylyk BL, Irvine DJ, & Bense VF. 2019. Theory, tools, and multidisciplinary applications 741 

for tracing groundwater fluxes from temperature profiles. Wiley Interdisciplinary 742 

Reviews-Water, 6. DOI: 10.1002/wat2.1329. 743 

Kurylyk BL, Irvine DJ, Carey SK, Briggs MA, Werkema DD, & Bonham M. 2017. Heat as a 744 

groundwater tracer in shallow and deep heterogeneous media: Analytical solution, 745 

spreadsheet tool, and field applications. Hydrological Processes, 31: pp. 2648-2661. 746 

DOI: 10.1002/hyp.11216. 747 

Kurylyk BL, Irvine DJ, Mohammed AA, Bense VF, Briggs MA, Loder JW, & Geshelin Y. 748 

2018. Rethinking the Use of Seabed Sediment Temperature Profiles to Trace Submarine 749 

Groundwater Flow. Water Resources Research, 54: pp. 4595-4614. DOI: 750 

10.1029/2017wr022353. 751 

Kurylyk BL, MacQuarrie KTB, Linnansaari T, Cunjak RA, & Curry RA. 2015. Preserving, 752 

augmenting, and creating cold‐water thermal refugia in rivers: concepts derived from 753 

research on the Miramichi River, New Brunswick (Canada). Ecohydrology, 8: pp. 1095– 754 

1108. DOI: 10.1002/eco.1566. 755 

Lautz LK. 2010. Impacts of nonideal field conditions on vertical water velocity estimates from 756 

streambed temperature time series. Water Resources Research, 46. DOI: 757 

W01509/10.1029/2009wr007917. 758 

Lee DR. 1977. A device for measuring seepage flux in lakes and estuaries. Limnology 759 

Oceanography, 22: pp. 140-147. DOI: 10.4319/lo.1977.22.1.0140. 760 

Luce CH, Tonina D, Applebee R, & DeWeese T. 2017. Was That Assumption Necessary? 761 

Reconsidering Boundary Conditions for Analytical Solutions to Estimate Streambed 762 

Fluxes. Water Resources Research, 53: pp. 9771-9790. DOI: 10.1002/2017WR020618. 763 

Luce CH, Tonina D, Gariglio F, & Applebee R. 2013. Solutions for the diurnally forced 764 

advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds 765 

from temperature time series. Water Resources Research, 49: pp. 488-506. DOI: 766 

10.1029/2012wr012380. 767 

https://doi.org/10.4319/lo.1977.22.1.0140


McCallum AM, Andersen MS, Rau GC, & Acworth RI. 2012. A 1-D analytical method for 768 

estimating surface water-groundwater interactions and effective thermal diffusivity using 769 

temperature time series. Water Resources Research, 48. DOI: W11532 770 

10.1029/2012wr012007. 771 

McCobb TD, Briggs MA, LeBlanc DR, Day-Lewis FD, & Johnson CD. 2018. Evaluating long-772 

term patterns of decreasing groundwater discharge through a lake-bottom permeable 773 

reactive barrier. Journal of Environmental Management, 220: pp. 233-245. DOI: 774 

10.1016/j.jenvman.2018.02.083.  775 

Modica, E. 1999. Source and age of ground-water seepage to streams. U.S. Geological Survey 776 

Fact Sheet, 063-99. 777 

Munz M, & Schmidt C. 2017. Estimation of vertical water fluxes from temperature time series 778 

by the inverse numerical computer program FLUX-BOT. Hydrological Processes, 31: 779 

pp. 2713-2724. DOI: 10.1002/hyp.11198. 780 

Murdoch LC, & Kelly SE. 2003. Factors affecting the performance of conventional seepage 781 

meters. Water Resources Research, 39. DOI: 10.1029/2002wr001347. 782 

Nelder JA, & Mead R. 1965. A simplex-method for function minimization. The Computer 783 

Journal, 7: pp. 308-313. 784 

Rau GC, Andersen MS, McCallum AM, Roshan H, & Acworth RI. 2014. Heat as a tracer to 785 

quantify water flow in near-surface sediments. Earth-Science Reviews, 129: pp. 40-58. 786 

DOI: 10.1016/j.earscirev.2013.10.015. 787 

Rau GC, Cuthbert MO, McCallum AM, Halloran LJS, & Andersen MS. 2015. Assessing the 788 

accuracy of 1-D analytical heat tracing for estimating near-surface sediment thermal 789 

diffusivity and water flux under transient conditions. Journal of Geophysical Research 790 

(Earth Surface). DOI: doi: 10.1002/2015JF003466. 791 

Reeves J, & Hatch CE. 2016. Impacts of three-dimensional nonuniform flow on quantification 792 

of groundwater-surface water interactions using heat as a tracer. Water Resources 793 

Research, 52: pp. 6851-6866. DOI: 10.1002/2016WR018841. 794 

Rosenberry DO. 2008. A seepage meter designed for use in flowing water. Journal of 795 

Hydrology, 359: pp. 118-130. DOI: 10.1016/j.jhydrol.2008.06.029. 796 

Schmidt C, Conant B, Jr., Bayer-Raich M, & Schirmer M. 2007. Evaluation and field-scale 797 

application of an analytical method to quantify groundwater discharge using mapped 798 

streambed temperatures. Journal of Hydrology, 347: pp. 292-307. DOI: 799 

10.1016/j.jhydrol.2007.08.022. 800 



Schornberg C, Schmidt C, Kalbus E, & Fleckenstein JH. 2010. Simulating the effects of 801 

geologic heterogeneity and transient boundary conditions on streambed temperatures - 802 

Implications for temperature-based water flux calculations. Advances in Water 803 

Resources, 33: pp. 1309-1319. DOI: 10.1016/j.advwatres.2010.04.007. 804 

Shan C, & Bodvarsson G. 2004. An analytical solution for estimating percolation rate by fitting 805 

temperature profiles in the vadose zone. Journal of Contaminant Hydrology, 68: pp. 83-806 

95. DOI: 10.1016/s0169-7722(03)00126-8. 807 

Shanafield M, Hatch C, & Pohll G. 2011. Uncertainty in thermal time series analysis estimates 808 

of streambed water flux. Water Resources Research, 47. DOI: 809 

W03504/10.1029/2010wr009574. 810 

Stonestrom DA, & Blasch KW. 2003. Determining temperature and thermal properties for 811 

heat-based studies of surface-water ground-water interactions In: Heat as a Tool for 812 

Studying the Movement of Ground Water Near Streams, Stonestrom DA, & Constantz J 813 

(Eds.) USGS, pp: 73-80. 814 

Sulis M, Meyerhoff SB, Paniconi C, Maxwell RM, Putti M, & Kollet SJ. 2010. A comparison 815 

of two physics-based numerical models for simulating surface water-groundwater 816 

interactions. Advances in Water Resources, 33: pp. 456-467. DOI: 817 

10.1016/j.advwatres.2010.01.010. 818 

Tirado-Conde J, Engesgaard P, Karan S, Muller S, & Duque C. 2019. Evaluation of 819 

Temperature Profiling and Seepage Meter Methods for Quantifying Submarine 820 

Groundwater Discharge to Coastal Lagoons: Impacts of Saltwater Intrusion and the 821 

Associated Thermal Regime. Water, 11(8). DOI https://doi.org/10.3390/w11081648. 822 

Turcotte DL, & Schubert G. 2014. Geodynamics: Applications of Continuum Physics to 823 

Geological Problems. John Wiley and Sons. 824 

Wondzell SM. 2011. The role of the hyporheic zone across stream networks. Hydrological 825 

Processes, 25: pp. 3525-3532. DOI: 10.1002/hyp.8119. 826 

Zimmer MA, & Lautz LK. 2014. Temporal and spatial response of hyporheic zone 827 

geochemistry to a storm event. Hydrological Processes, 28: pp. 2324-2337. DOI: 828 

10.1002/hyp.9778. 829 


	DalSpacePDF-Coversheet
	Irvine_et_al_HP 2020



