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Abstract 

Image processing methods can be used to classify land cover and phenomena from 

satellite imagery according to their spectral characteristics and identify target 

features. These methods can provide a relatively efficient approach to processing 

many images and to measuring change of features over time. Selecting an 

appropriate data source and classification method, however, requires considerations 

such as the scale of the process under investigation, spectral differences between 

target areas and their surroundings, and technical limitations for the analyst. The 

Salmon River estuary within Cobequid Bay, Nova Scotia was chosen to evaluate the 

impact of spatial resolution on the use of satellite imagery to identify tidal bars. 

Images were acquired from four satellite systems (PlanetScope, RapidEye, Sentinel-2, 

Landsat-5) representing a range of spatial resolutions (3m to 30m). Both traditional 

pixel-based methods (i.e., supervised, unsupervised classification), and object-based 

image classification methods were used to identify sediment bars within the estuary, 

and then assessed for classification accuracy. All image types could be classified to at 

least 80% overall accuracy with a Cohen’s Kappa coefficient of 0.9 using at least one 

method. The research identified trends related to classification result and increasing 

spatial resolution including: 1) decreasing reliability of unsupervised classification; 2) 

increased single-pixel errors in supervised classifications, despite overall product 

reliability; and 3)  formation of increasingly meaningful pixel groupings for object-

based analysis. Differences in appropriate classification method are considered to be 

a result of the relationship between scale of phenomenon being mapped and the 

spatial resolution at which it is represented; when increasing spatial resolution, there 

is a shift away from presence of mixed-pixels towards the dominance of multi-pixel 

objects, the classification of which is better suited to object-based as opposed to 

pixel-based methods. The results suggest a Modifiable Areal Unit Problem-based 

framework to consider large pixels and object created from small pixels each as 

viable areal units of analysis for processes at this scale.  

Keywords: Remote sensing, scale issue, estuary, geomorphology, Bay of Fundy  
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Chapter 1. Introduction 

1.1 Introduction 

Remote sensing provides a method of mapping features and characteristics of 

the Earth’s surface without the full cost or time associated with repeated ground 

surveys. Satellite imagery can provide measurements with temporal frequency on the 

order of weeks or days, depending on the collection system and environmental 

conditions.  

Traditional methods of automated image classification are primarily based on 

statistical grouping of pixel values. These methods were developed for what could be 

described as medium to coarse resolution imagery, where a pixel represents an area 

on the order of tens (101) to thousands (103) of metres. More readily available high-

resolution remote sensing (5m to sub-metre), however, has led to development of 

methods to handle more detailed, noisy, data-heavy images. The greater availability 

of images at a wider range of resolutions, coupled with a growing suite of methods to 

classify the imagery, leads to user uncertainty and may promote ad-hoc strategies to 

image and classification method selection.  

The goal of this project is to investigate the direct influence of spatial 

resolution in generating an accurate image classification by traditional and more 

recent methods. The example of estuarine morphology in Cobequid Bay, Nova 

Scotia, is used here to demonstrate differences related to spatial resolution and 

methods of classifying remote sensor data. Specifically, satellite imagery collected at 

a range of spatial resolutions (3m to 30m) were selected from systems measuring 

energy from similar parts of the electromagnetic spectrum to classify features in the 

target study area (targeting differences between the channel waters and sediment 

bars). Ultimately, I seek to answer the following questions: 1) is there a critical 

threshold at which the ratio between scales of process and data become too great to 

reliably identify estuarine features; and 2) is this relationship method-dependent? 
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1.2 Rationale: Choice of setting  

The Bay of Fundy, and more specifically Cobequid Bay, provides an interesting 

setting for this line of investigation for several environmental reasons that pose 

challenges to remote sensing methods. As described by Rainey and colleagues 

(2000), macrotidal conditions and low-visibility weather conditions common to 

maritime settings frequently limit the visibility of intertidal features to a few fortuitous 

instances when clear skies, low tide, and orbital path of the collection system 

coincide. When visible, the extent of the intertidal sand bars in Cobequid Bay is quite 

dramatic—the exposed surface area can be on the order of 1 to 10 km2 at low tide, 

while being completely submerged at high tide. However, Amos and Long (1980) 

also note that the suspended sediment concentration is highest at low water 

(coincidently, also the ideal time to see sediment bars, and contributing to interest in 

this problem). 

1.3 Scale issues, part 1: Moving from process to data 

The word scale is used in a range of contexts, and a number of conceptual 

models have been proposed to define the term. Cao and Lam (1997) suggest four 

separate definitions, for cartographic, geographic, operational, and measurement 

scales. Alternatively, scale could be defined in terms of the absolute and relative 

representations of space (Meentemeyer 1989; Marceau 1999). Scale can also be 

thought of as the frequency of observation or “window of perception” (Marceau and 

Hay 1999) by which the world is described. In the context of remote sensing, the 

frequency of observation and thus scale of the data is defined by the system (on 

geospatial, temporal, radiometric, and spectral levels—further discussed in section 

2.3.2).  

As described by Marceau (1999), the scale issue refers to challenges posed to 

spatial analysis relating to the scale of the analytical components. There are two main 

questions that comprise the scale issue: 1) what is the appropriate scale of study for a 

given phenomenon; and 2) how can information be adequately transferred between 

scales?  
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The perceived scale of the target phenomenon (the scope of an analysis) 

should inform the resolution of the image data that is used to describe it. Recording a 

dataset inherently subsets the real-world phenomenon to the level of detail recorded, 

and from the point of observation onwards our analysis is limited in its detail to the 

scale of the data (McCarty et al. 1956). Because observations are essentially sub-

samples of the “population” (or the real-life phenomenon in its entirety), there is a 

simplification or generalization associated with recording data (Figure 1). The degree 

of generalization that is tolerable (or in some cases, most desirable) to the researcher 

depends on the scale to which they want to describe a phenomenon.  

 

Figure 1. Conceptual model of loss of information at each step of description; generalization occurs at every step 

where information moves from one dimensionality to the next. 

In this example, the estuarine morphology of Cobequid Bay comprises a 

network of phenomena at a range of perceptible scales. Potential targets and 

phenomena for study include: 

• Overall changes to the basin—the basin is the entity of investigation, and sub-

basin level features are ignored  
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• Changes to sand bar (and inferred scour channel) positions—the components 

of the system are bars and water, and the bars are treated as whole, 

homogenous entities  

 

• Finer-scale sedimentary features, such as the ripples on the bar surfaces  

Any or all of these levels of investigation could be useful to describe processes of 

erosion and sedimentation in Cobequid Bay, however each would necessitate a 

different scale of image data to properly execute automated classification methods to 

meet minimum accuracy standards. The choice of how we resolve these data, and 

subsequently how we process them to adequately describe a phenomenon, is the 

overarching question for this project.  

We can inarguably have data that is too coarse for a target process or 

phenomenon. If the sampling is too infrequent to detect a target phenomenon, then 

the analytical results cannot be used to create a meaningful description of changes 

through time and space. While there is certainly a lower limit of spatial resolution 

where we cannot confidently make a good product, the question I seek to address is 

converse to this idea: can the spatial resolution of the data be too fine? How does the 

relationship between scale of process and scale of data affect accuracy? This study 

addresses this by holding the scale of process constant—looking at tidal bars in an 

estuarine setting—and varying the spatial resolution of the satellite imagery used to 

identify them.    
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Chapter 2. Background 

2.1 Study area 

This investigation focuses on Cobequid Bay, the eastern inlet of the Minas 

Basin, Nova Scotia (see Figure 2). I focused on the Salmon River estuary, from 

45.36ON, 63.38OW and encompassing the basin area as far as 25 km to the west, 

where availability of satellite imagery permitted.  

 

Figure 2. Geographic location of the study area in Cobequid Bay, Nova Scotia, Canada. 

Cobequid Bay meets the broad definition of a macrotidal environment; in 

2019, the maximum tidal range logged in the area was 16.1m (Burntcoat Head, 

September 30th 2019; CHS 2019). Tidal scour channels towards the north and south 

of the bay have gravel and cobbles at their thalwegs. The channels are separated by 

intertidal flats comprised primarily of sand (Amos and Long 1980). 
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The net sediment transport direction within Cobequid Bay is east-northeast  

with sediment derived from four main sources: the cliffs bounding the basin; 

discharge from the rivers into the estuary; tidal volume of the Bay of Fundy; and 

seabed reworking (Amos and Long 1980). The erosive cliffs are chiefly Wisconsinan 

till—primarily local and distally-derived silt, with few areas of gravel and sand meltout 

till and glaciomarine deposits (Stea et al. 1992). The Salmon River itself discharges an 

average of 21.6 tonnes of sediment over a complete tidal cycle, from a catchment 

area of 363 km2 (Amos and Long 1980). The flood tide also acts as the dominant 

mechanism of sediment transport, and the intertidal bars tend to migrate eastward 

(Crewe et al. 2005). When compared to other regions of the Bay of Fundy at the same 

point in the tidal cycle, Cobequid Bay has recorded notably high suspended 

sediment content with surface concentrations 10 to 50 times greater than measured 

in the central Minas Basin (Amos and Long 1980).  

2.2 Image classification 

2.2.1 In general terms … 

Image analysis was developed first for aerial photographs, and later applied to 

digital images, as a means of supplementing and automating visual interpretation 

(Blaschke et al. 2014). The traditional approach is pixel-based, meaning that pixel 

values are considered as individual data points. While enhancements can be applied 

to integrate spatial patterns and neighbourhood relationships to the classification 

input, this technique still relies on a cell-by-cell analysis of a raster dataset. Object-

based image analysis (or OBIA), which uses descriptive spectral and geometric 

statistics for pixel clusters instead of their individual values, was developed more 

recently in response to challenges related to processing high spatial resolution 

imagery (Blaschke et al. 2000; Benz 2007).   

Image classification is the umbrella term for a suite of predictive techniques 

that use characteristics of a digital image to distinguish features types, or classes 

(Jensen 2005c; Hastie et al. 2009a). These techniques are tools to supplement visual 

interpretation of an image using a classifying algorithm which, through some series of 
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statistical decisions and parametrization by the user, assigns areas within the image to 

a class. The computer system that produces a classified output (referred to as the 

“classifier”) and the person operating the system (referred to as the “user”) can work 

together through three major pathways which are discussed in detail in the following 

sections. 

Before continuing, an important distinction must be made between the terms 

spectral class and informational class, as they are not only critical parts of the 

classification process, but are also managed differently depending on the type of 

classification being performed. As discussed by Jensen (2005c), a spectral class is a 

grouping of pixels in multispectral space as interpreted by the classifier (often a 

software package) as a distribution of numbers, definable by descriptive statistics. In 

contrast, an informational class relates to how this group of spectrally similar pixels is 

interpreted by the user, and is usually defined by the colour and shape, land cover 

and land use, in a way that is meaningful to a person. For this study, two non-

hierarchical, mutually exclusive informational classes were identified as bar and water, 

as described in Table 1.  

Table 1. Informational class descriptions applied in the classifications of the Cobequid Bay study area 

Informational class Description 

Bar Deposited sediment; can be saturated, but not suspended. 

Water 
Includes clear water (rare) and water with suspended sediment, in 

channels and pools within the basin area. 

 

2.2.2 Unsupervised pixel-based classification 

The first—and arguably the simplest—method of image classification is an 

unsupervised pixel-based classification (or simply an unsupervised classification). In 

the broadest terms, this method allows the classifier (i.e., the software) to identify 

natural clusters of pixel values in multispectral space, which are used to define 

discrete spectral classes (Liu and Mason 2016). Once the classifier assigns each pixel 

within the image to a spectral class, the user evaluates the results as a post-
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classification analysis and assigns an informational class to each spectral class based 

on their interpretation of the land cover that is represented. Multiple spectral classes 

can be included (“aggregated”) in the same informational class. This method is “pixel-

based” in the sense that the numerical value(s) of each pixel is considered 

independently of the rest of the image. That is, each individual cell of the input raster 

is tested for membership to a class based only on its own value and does not 

explicitly consider the values of any neighbouring pixels.  

 

Figure 3. Simplified workflow of a traditional unsupervised classification of multispectral remote sensor data. 

2.2.3 Supervised pixel-based classification 

A supervised pixel-based classification (or simply a supervised classification) 

differs from the unsupervised classification method in the order of operations of 

assigning spectral and informational classes to pixels (Liu and Mason 2016). Rather 

than allowing the classifier to identify spectral clusters, the user instead selects 

training areas within the image which are representative of the specific informational 

classes to be classified and extracted from the image. The values of the pixels within 

these areas are subsequently used to create the statistical definitions of the spectral 

classes, which are then used to classify the rest of the image on a cell-by-cell basis.  

This method is often iterative, where the user may inspect the results of the 

classification and modify the training areas (in turn modifying the spectral definition 

of the classes, or spectral signatures) in the hope of producing an improved 

classification result. Potential modifications of training areas may include: 



9 
 

1. Ensuring that pixels have not been incorrectly assigned to training data for a 

class to which they do not belong;  

 

2. Increasing the number of training areas so that the statistical distribution is 

more representative of the informational class; 

 

3. Splitting an informational class into two, where the signal appears to be 

bimodal or otherwise mixed; and 

 

4. Combining two informational classes into one, in the situation where they are 

spectrally similar enough to be confused by the classifier. 

Similar to the unsupervised approach, supervised classification is also a pixel-

based method, and only the values of individual pixels of the input raster datasets are 

considered in the definition of, and assignment to, spectral classes. 

 

Figure 4. Simplified workflow of a traditional supervised classification of multispectral remote sensor data. 

2.2.4 Object-based image analysis 

Object-based image analysis is a combination method of unsupervised pixel 

clustering (segmentation) followed by subsequent supervised classification of those 

clusters (or objects). Image segmentation is not a novel technique, but only in the last 

two decades has it been streamlined into image classification for geospatial 

applications (Blaschke et al. 2004). Object-based image analyses originated with the 

software known as “eCognition” (later “Definiens”; see Benz et al. 2004; Lang and 
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Tiede 2007), and has since become a popular approach to image classification for 

remote sensor data (Blaschke 2010). One goal of this object-based approach was to 

eliminate what Blaschke and colleagues (2000) refer to as the “salt and pepper 

effect,” or sparse single-pixel classification errors.  

Instead of considering each individual pixel as a separate entity, object-based 

methods use summary statistics of pixel groupings to produce a classified result 

(Aplin and Smith 2008). “Objects” are created by delineating the most internally 

homogenous groups of contiguous pixels that the classifier can identify. Idealized 

homogeneity of objects is based on compactness, shape, and colour (or spectral data 

in remote sensing applications), each with varying weights of importance as assigned 

by the user. Summary attributes are then calculated for each image object. These 

attributes can include statistical summaries of the pixel values which comprise the 

object (minimum, maximum, mean, standard deviation) or geometric attributes 

referring to the actual shape of the object (compactness, elongation, circularity, 

rectangularity).  

The balance of the classification proceeds in a similar fashion to a traditional 

pixel-based supervised classification, where the user defines training sites whose 

underlying numerical values are used to define the spectral classes. Rather than 

include the values of each individual pixel, however, it is the summary statistic for the 

entire object that is used for the classification. This process is also an iterative 

method, and the user may modify the training sites after viewing the classified image 

to produce a more satisfactory result.   
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Figure 5. Simplified workflow of an object-based classification of multispectral remote sensor data. 

2.3 Remote sensing background 

2.3.1 What is a satellite image? Sensing the electromagnetic spectrum. 

As described by Jensen (2005b), both the wave model and particle model of 

light are accepted conceptualizations of electromagnetic radiation (EMR) and are 

considered in remote sensing applications. According to the wave model, energy is 

comprised of electric and magnetic fluctuating fields at right angles to one another 

(Jensen 2005b). Types of EMR are described by their wavelength, which is the mean 

distance between peaks of these fluctuating signals, and typically the term EM 

Spectrum refers to wavelengths of energy between 0.001 nm (Gamma rays) to 

100,000 km (extremely low frequency radio waves). The wavelengths of EMR that 

human eyes can detect, the visual spectrum, range from about 380 to 740 nm (Jensen 

2005b).  

Many optical multispectral sensors equipped to satellites are designed to 

detect several discrete ranges of wavelengths in the EM Spectrum, including 

wavelengths beyond the visual range of humans. The sensor systems used to collect 

imagery for this study all detect energy in the visual spectrum, via separate blue 

(~400–500 nm), green (~500–600 nm), and red (~600–700 nm) detectors, as well as 

energy in the near-infrared (NIR; ~700–1300 nm) and shortwave infrared (SWIR; 

~1300–3000 nm) ranges. Each detector is designed to measure the amount of 
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radiation in a specific range of wavelengths, however the individual detectors are 

unable to discriminate between wavelengths inside of their designated range. As an 

example, a detector designed to collect a spectral range of 450–515 nm (or visible 

blue-green) can detect the total radiant flux over this entire range, but cannot 

differentiate between incoming energy at 450 nm from energy at 515 nm. It is also 

important to note, there can be some marginal detection just beyond the listed limits 

of the spectral range of the detector (out-of-band response; Mobley et al. 2016).  

The sensors used to generate imagery for this study can also be classified as 

passive optical systems. Passive systems do not emit any source of energy 

themselves, but instead capture reflected EMR from some external source (i.e., 

illumination from the sun; Shippert 2004). There are a number of opportunities for 

interaction and degradation of the energy between the sun and the sensor—when it 

first encounters the top of the atmosphere, as it travels through the atmosphere, 

when it hits the ground, as it travels back through the atmosphere and back to space 

to finally interact with the sensor system (Figure 6).  

 

Figure 6. Simplified schematic of EMR interactions between the source and the sensor, and paths for EMR between 
the source and sensor. (Adapted from Jensen (2005b): Figure 6-24) 
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Of particular importance are the interactions of EMR at the Earth’s surface; 

when EMR interacts with ground-level features there are three possible interactions 

that could occur: reflection, absorption, or transmission of energy (Gilvear and Bryant 

2016). How the surface of the feature interacts with different wavelengths of EMR 

depends on the characteristics of the interacting material. It is this surface interaction 

(in conjunction with atmospheric conditions) that determines the spectral response 

recorded by the sensors. Therefore, knowledge of how EMR interacts with different 

materials is the basis of geomorphological interpretation of remote sensing data. 

Classification of land cover based on spectral response can be explained 

technically in terms of numbers, but it is essentially analogous to the interpretation we 

make of the world in front of us via our eyes; characteristic interactions of light with 

materials are interpreted by the brain as colours and visual textures that we use to 

distinguish features. Remote sensing can take this interpretation further by allowing 

us to “see” beyond the visual spectrum, to measure areas which are quite expansive 

or difficult to access, and to mathematically derive further information from a scene. 

Let us return to the idea that any single sensor measures any detectable 

incoming energy over a defined range of wavelengths, and that a satellite often 

carries multiple detectors per sensor. The range of wavelengths measured by a single 

detector is referred to as a band, and the measurements received for an area on one 

band are represented by a single raster image that therefore shows only values 

measured in that range of wavelengths. A pixel value for a composite image can be 

conceptualized as a set of coordinates in multispectral space. In an image made up 

by three bands, any pixel can be thought of as having an x, y, z coordinate set, and 

the individual x, y, z values or any of their combinations can be used to describe the 

pixel and to assign it class membership. The values represented by pixels in satellite 

images are measures of remote sensing reflectance, as a scaled brightness value 

(BV). The possible range of BVs vary by the data storage component of the system 

(radiometric resolution, section 2.3.2).  
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Composite images allow the values of multiple arrays to be expressed 

simultaneously via the additive red, green, blue (RGB) colour model. The BV of each 

of three raster layers is used to inform the red, green, and blue component (or, colour 

gun) of the displayed colour for each. A common form of this type of symbology is 

the natural colour composite, where values from the red, green, and blue bands are 

assigned to the red, green, and blue colour guns, respectively (Figure 7).  

 

Figure 7. Natural (RGB) colour composite images are created by applying red, green, and blue colour scales to the 
red, green, and blue bands respectively, then combining them via additive colour theory. 

 In ideal circumstances, numerically defined spectral responses could be used 

to automatically pick out particular materials on the ground. However, the 

characteristics of the EMR is modified at a number of points in the path between the 

sun and the sensor—some interactions are more or less temporally stationary (certain 

land cover types, such as bedrock exposures) but many are variable through time and 

space (Gilvear and Bryant 2016). The endmember response (that is, the spectral 

response from an area of a single land cover type) in one image can be quite 

different for the same land cover in a different area, or recorded on a different day, 

due to differences in surface conditions (e.g., moisture content from recent 
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precipitation) or atmospheric conditions (Fraser et al. 1977). As such, a true 

“characteristic” spectral response is often difficult to define in terms of pure numbers. 

Inconsistent spectral response means that the spectral signature of a particular 

feature type, if we wish to use it to identify where this feature exists, often has to be 

re-defined for the conditions at the time of measurement. The repetitive analysis 

required to address many remote sensing and geomorphology questions informs 

this study and an important issue: if the analyst has to perform some series of tasks for 

every image, but has their choice of the actual method used, what is the least cost 

method that yields results exceeding the minimum acceptable standard? 

2.3.2 Resolution 

 In a practical sense, resolution can be conceptualized as the frequency of 

sampling (Marceau 1999). Finer resolution gives increasing ability to differentiate 

smaller amounts of change, and the type of resolution is essentially the dimension in 

which this is captured. Satellite imagery can be described by four main types of 

resolution (see Table 2). While spatial resolution is the main focus of this project, it 

does not exist in isolation—all forms are qualities of the data which impact the result 

and should be noted.  
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Table 2. Characteristic resolution types of remote sensing data (Adapted from Jensen, 2005a). 

Resolution type Definition Refers to 

Spatial 
Sampling frequency in terms of 
space; the lateral measurement 

interval 

Pixel size; an image with 30m 
resolution have pixels that represent 
a space on the Earth that is 30m by 

30m 

Spectral 
Division of the EMR spectrum for 

measurement; the range(s) of 
wavelength that are measured 

Bands; a system can have multiple 
sensors that each measures a 

different range of wavelengths 

Temporal 
Sampling frequency in terms of time; 

the length of time between 
measurements 

Revisit time; satellites in sun-
synchronous orbit re-capture a 

scene at regular intervals at the same 
time of day 

Radiometric Increment of data storage 

Bit depth; an image with 8-bit 
radiometric resolution stores BVs 

between 0 and 255, and an image 
with 12-bit resolution stores BVs 

between 0 and 4095 

 

2.3.3 Details of satellite systems 

A brief overview of the sensors from which imagery was retrieved is presented 

in Table 3. Each system measures visual and NIR wavelengths, with some having 

additional sensors to capture other parts of the EMR spectrum. 

  



17 
 

Table 3. Overview of system specifications of imagery sources. 
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2.4 Scale issues, part 2: Conceptualizing the relationship between scale of 

process and data 

The value of a pixel at any location in remote sensing imagery is essentially an 

aggregated representation of the underlying land cover, and the pixel area is a 

homogenized unit. However, depending on the complexity of the area, this value 

may be more or less indicative of the actual land cover at any given spot. The 

relationship between scale and spatial complexity of the target phenomenon and the 

spatial resolution of the data manifests as a dominance by spectral endmembers, 

multi-feature pixels (mixels) or by multi-pixel objects (MPOs).   

Spectral endmembers represent the spectral response of an area that contains 

a single land cover class (Jensen 2005d). Hypothetically, every BV in an image can be 

represented as a function of the proportion of endmember land cover classes 

contributing to the overall response. Therefore, a mixel is a single pixel which 

represents an area containing multiple feature types, with a value that reflects their 

proportional extent. Visually, mixels are often thought of as the fuzzy boundaries of 

ground features, making it difficult to find precise edges. The proportional 

occurrence of mixels depends considerably on spatial resolution; increasing 

sampling frequency decreases the space taken by mixels in an image (Hoyano and 

Komatsu 1988). It should be noted, however, that any pixel can be a mixel, 

depending on the scale of conceptualizing informational classes. This concept is 

illustrated in Figure 8; if we only wish to differentiate red from blue features, only 

pixel 1 is a mixel, while pixel 2 only contains one feature type. However, if we define 

three classes and wish to differentiate light from dark blue, pixel 2 is now also 

a mixel. In all cases, pixel 3 represents a spectral endmember, because the value is 

impacted by a single feature type (red).  
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Figure 8. Simplified illustration of how scale of investigation and subsequent definition of informational classes 
influences the frequency of mixels. 

 In contrast to mixels, MPOs are homogenous features represented 

by multiple pixels (which thus have very similar values). It follows that at finer spatial 

resolutions, more pixels will be part of MPOs, and that more features will be 

represented by multiple pixels. Furthermore, the idea of an “object,” and thus 

definition of an MPO in a scene, depends similarly on class definitions. This is 

illustrated in Figure 9; certain pixels may or may not be included in the central object 

depending on whether purple pixels are included or not. When creating objects for 

an object-based classification, the definition of boundaries is left to the classifying 

system and is based on parameters of idealized “likeness”—objects are created to be 

as internally homogenous and as different from their neighbours as possible 

(Blaschke et al. 2000).  

 

 

Figure 9. Simplified illustration of variation of object boundary definitions depending on decisions by the classifier 
relating to homogeneity. 

The shift from mixel to MPO dominance in an image relates to the relative size 

of target features to the spatial resolution of the data. If the features are much smaller 
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than the area represented by the pixel, then it is likely that a single pixel contains 

multiple land cover types (i.e., the features would be contained within mixels). An 

“issue” with coarse spatial resolution, noted by Blaschke and colleagues (2014), is that 

the spectral response of potentially heterogeneous areas are aggregated to single 

values. Pixels representing larger areas can dilute or alter the spectral signature of the 

feature, possibly masking them, making their associated boundaries difficult to 

define, or exaggerating the area that they represent. Features which are much larger 

than the pixel size, however, would produce single-feature objects containing 

multiple pixels. In an ideal world, this result would mean an internally homogeneous 

cluster of pixels with a negligible boundary of mixels. Increasing the ratio of feature to 

pixel size leads to an overall decrease in mixels that partially contain the target 

features.  

The visual relationship between resolvable detail and the image resolution is 

illustrated in Figure 10. Three images collected in the summer of 2010 were 

obtained; measured by the Terra MODIS (250m pixels), Landsat-5 (30m pixels), and 

RapidEye (5m pixels) sensors. Images on the same horizontal line are shown at scales 

where their pixels are the same size on the page (and therefore, are shown at 

different scales relative to the features in situ). Images on the same vertical line show 

the same area, but their different spatial resolutions mean that different levels of 

detail are visible. The images shown at the same scale are strong examples of the 

impact of mixels on visualizing detail; the pairs of images are derived from 

measurements of the same area, but the consequence of the variable sampling 

frequencies is that less detail of the same features can be visualized in the coarser 

resolution images compared to their finer counterparts (compare Figure 10 B with D, 

and C with E).  
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Figure 10. Selection of satellite images demonstrating the impact of variable image scale on the resolvable detail of 
features in Cobequid Bay (Terra MODIS imagery retrieved from NASA, 2010; Landsat-5 imagery from U.S. 

Geological Survey, 2010; RapidEye imagery from Planet Labs Inc., 2010). 

2.5 Select related work 

Bay of Fundy Tidal Barriers GIS Database Development (van Proosdij and Dobek 

2005) and the Minas Basin Estuary Profile (COINAtlantic 2017) 

Tidal barriers modify the flow regime and have an impact on sedimentation. 

While the impacts of large barriers are well known, the cumulative effects of the 

hundreds of smaller structures that are present around the Bay of Fundy are less well 

understood. This database includes detailed information of land-use surrounding the 

bay, and information on marshland development, but does not appear to include the 

intertidal bars. 

The primary goal of the database, to assess the impacts of tidal barriers in the 

Upper Bay of Fundy to inform marshland restoration, aligns with this project’s interest 

in assessing intertidal land cover classifications in the area. The apparently variable 

nature of the intertidal bars would suggest their importance to understanding 

sedimentation processes within the bay. Remote sensing provides a window into past 
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sedimentation regimes, which can aid in understanding current conditions and 

predicting future change to sensitive habitats.  

 

A preliminary investigation into the spectral characteristics of inter-tidal estuarine 

sediments (Bryant et al. 1996) and The influence of surface and interstitial moisture on 

the spectral characteristics of intertidal sediments: Implications for airborne image 

acquisition and processing (Rainey et al. 2000)  

 These two papers focus on the Ribble Estuary, a macrotidal setting in the 

United Kingdom. Bryant and colleagues (1996) measured the spectral response of 

different clast sizes in the field and lab. It is stated that the spectral response of 

sediments is controlled by their organic matter and bulk mineral content. Sand 

samples exhibited high reflectance in the visual, NIR, and SWIR wavelengths in the 

field and lab. There was a negative relationship between increasing clay content and 

reflectance in these bands in the lab, which was not as easily seen in the field. This is 

attributed to the enhanced water retention after tide recession (which were therefore 

still wet when measured, compared to the dried lab samples) and more biological 

activity. The uncertainty in defining spectral response of sediments contributes to the 

challenges of remote sensing in estuarine settings; slow or variable drainage of bar 

sediments following tide recession, combined with the high suspended sediment 

content of the channel waters, create difficulty in teasing apart the two informational 

classes. In Cobequid Bay, the most confusion is expected to occur where there is 

poor drainage, which will likely record lower BVs than is characteristic for the overall 

feature, and where there is some local relief (such as ripple crests) which are more 

likely to record higher BVs.  

 Rainey and colleagues (2000) note further challenges of remote sensing for a 

phenomenon of this scale; the difficulty of mapping estuaries using satellite imagery, 

due to poor resolution on all counts, and of getting imagery that coincides both with 

good weather and good tides. They navigate this by using airborne imagery, but with 

new sources of imagery available since the publication of their paper, the question 
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can be raised again as to how limiting spatial resolution is to investigation of 

geomorphological problems at this scale.   

 

Remote sensing and the measurement of geographical entities in a forested 

environment, part 1: The scale and spatial aggregation problem (Marceau et al. 1994) 

Marceau and colleagues (1994) provide a framework for thinking about scale 

issues and remote sensing, especially related to the Modifiable Areal Unit Problem 

(MAUP; the sensitivity of analysis to the unit of data aggregation). In their study, a 

remotely sensed forest scene was systematically up-scaled to investigate 

relationships between MAUP and the ability to classify feature types. They conclude 

that the analysis of an image is inseparable from the sampling scheme (the systematic 

but arbitrary grid of the digital image). Indeed, any spatial phenomenon cannot be 

separated from its sampling scheme, because modifying the unit of analysis affects 

the framework of the investigation as well as any derived interpretation. Their results 

suggest that the sensitivity to MAUP can be tested by starting with a high spatial 

resolution image of a scene, and aggregating to coarser units of analysis to assess the 

impact on ability to detect spatial patterns. This work parallels their assertion through 

the use of progressively coarser spatial resolution from various sources, rather than 

resampling the original image.  
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Chapter 3. Methods 

3.1 Image selection and preparation 

3.1.1 Image acquisition 

There are several variables to consider when acquiring satellite imagery. For 

this research, satellite images of the study area were selected on the basis of the 

following criteria: 

1. Have less than 10% cloud cover within the study area. Clouds act as reflectors, 

and can block the spectral response from the ground surface (Astafurov et al. 

2012). For the purpose of this investigation, clouds are nuisances because they 

reduce the area for analysis and can confuse the classifying algorithm.  

 

2. Have been recorded between April and October, to avoid potential ice or 

snow cover. 

 

3. Have been recorded when water level was less than approximately half the 

tidal range (i.e., within 3 hours of low tide) to maximize visibility of the bar 

surfaces and capture an image that is most representative of the actual bar–

scour channel pattern that would be obscured by the flood tide.  

The first two criteria took precedence and were met by all imagery included in the 

analysis. The third criterion could not always be confirmed (due to gaps in tidal 

record; see Appendix A.1) or met (due to lack of otherwise clear imagery; see 

Appendix A.5). The types of satellite imagery acquired are summarized in Table 4.  

Table 4. Sources of imagery used for each classification of features in Cobequid Bay (2008-2019). 

Satellite Source Spatial resolution Repetitions Bands used 

Landsat 5 USGS 30 m 2 Visible, NIR, SWIR 

Sentinel-2 USGS 10 m 3 Visible, NIR 

RapidEye Planet Labs Inc. 5 m 3 Visible, NIR 

PlanetScope Planet Labs Inc. 3 m 1 Visible, NIR 

 



25 
 

3.1.2 Pre-classification processing (“Cluster busting”) 

An early issue encountered was difficulty in differentiating water from 

sedimentary features when the whole image was considered for classification. The 

source of this issue was interpreted as a low spectral contrast of the water and bar 

classes, both compared to the other basin feature and to features on land. That is to 

say that the spectral difference between bar and water was less than the difference 

between, for example, water and open vegetation (one basin class compared to one 

onshore class), or between open vegetation and impervious surfaces (two onshore 

classes). As a result, classifications run on the image as a whole classified the entire 

basin as a single feature type and spent the other classes (in the example of 

unsupervised, where the system looks for a predetermined number of clusters) by 

splitting out details on the land. Because onshore land cover was not the target of this 

investigation, and to maximize the relative difference between feature types within 

the basin, the basin area was extracted and classified independently of the 

surroundings. This technique is known as cluster busting, used to break an assigned 

class down when it is known to contain multiple land cover types (Aksoy et al. 2013).  

3.2 Classification 

3.2.1 Unsupervised pixel-based classification 

As discussed previously (see section 2.3.2), an unsupervised pixel-based 

classification assigns a categorical class to each pixel in the image, grouping based 

on some measure of spectral similarity. For each classification session, input channels 

(the bands, or single-sensor raster layers) are selected to be used for creating and 

assigning pixels to spectral groups.  

Unsupervised classification was performed using the K-Means algorithm, with 

Null classes not allowed (that is, all areas must be assigned to some class). This 

algorithm iteratively computes centre of density of points in multispectral space until 

it identifies a predetermined number of point cluster centers (Hastie et al. 2009b). For 

each unsupervised classification, a maximum of 16 centers were identified after 64 

iterations. The classifier then assigned pixels to classes as a function of the minimum 
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distance to a cluster center. The resulting spectral classes were aggregated by the 

user to two informational classes, sediment bar or water (Table 1). 

It is noted that in most cases fewer than 16 clusters were identified by the initial 

classification, and that the number of target classes is actually 2 (+1 for areas outside 

the basin). However, minimizing the maximum number of centers resulted in poorer 

results than using too many. To avoid missing some of the more subtle spectral 

differences between informational classes, it seems to be a reasonable practice to 

overestimate the number of clusters in the initial run; the system will only return as 

many as it can find, and it is easier to aggregate several components of the same 

informational class than to bust clusters. 

3.2.2 Supervised pixel-based classification 

As described in section 2.3.3, the supervised classification operates with a 

reversed procedure to the unsupervised classification, where the user identifies 

training sites for each informational class, and the classifier uses those data to assign 

the remaining areas. For the supervised classifications, the classifier was trained on 

two informational classes, sediment bar and water (Table 1). Training sites were 

selected throughout the image to generate an approximately representative sample 

of the within-class spectral variability. Locations that would be used for the accuracy 

assessment (coinciding with an assessment point) were excluded from training.  

Supervised classification was performed using the Maximum Likelihood 

algorithm, with Null classes not allowed. This algorithm uses the principles of 

probability related to Gaussian distribution to determine class membership, based on 

the z-score of a pixel in the context of the distribution of the training data for each of 

the classes (Hastie et al. 2009c). 

After inspecting the results of the classification, there was the option to edit 

training sites. Where deemed necessary, training sites were modified and the 

classification was executed a second time. This process was repeated with modified 
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training sites until obvious areas of confusion were corrected, or until there was little 

return in quality of the classification result.  

3.2.3 Object-based identification  

Object-based classification uses computed summary values of classifier-

delineated MPOs to produce the classification, instead of using the individual pixel 

values (as discussed in section 2.3.4). To perform the object-based analyses, the 

segmentation step was first applied to create the pixel clusters used for classification. 

Equal weight was applied to the compactness, shape, and colour parameters with 

regards to internal homogeneity of the objects.  The size parameter (sometimes 

called the scale parameter) was varied depending on the spatial resolution of the 

source imagery, to maintain a reasonably constant “degree” of segmentation. 

Following segmentation, summary statistics (mean and standard deviation) for each 

object were computed to be used as the basis of the classification. 

Objects were selected to produce the training data for the two informational 

classes (Table 1), avoiding locations coinciding with assessment points, and the 

classifier then assigned the rest of the objects to classes. Training sites could be 

modified after inspecting the result, reiterating until a satisfactory classification was 

produced.  

3.3 Accuracy assessment 

To assess the algorithm’s classification, 200 random points were generated 

within the study area and visually classified by the user. Seeing that the entire 

classified study area was not being compared for each image, but just the 

classification at these discrete points, the same locations were used for every image 

to maintain comparability between assessments. Two statistics were reported for 

each classification: the proportion of overall agreement, and Cohen’s Kappa.  

Proportion of agreement was defined as number of points where the user and 

classifier identified the same informational class, divided by the total number of 

points. The Cohen’s Kappa statistic is an indicator of improvement from a random 
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(Eq. 1) 

(Eq. 2) 

assignment, asking the question: knowing how many points the raters (the user or 

classifier) each assigned points to one class or the other, how much better is the 

agreement than if points were randomly assigned to classes in the same proportions 

(Cohen 1960)? As a proportion of agreement, a κ value of 0 indicates that the 

agreement of classification that is no better than random, and a κ value of 1 is a 

perfect agreement between the user and classifier. This is computed using equation 

1 (variables described in Table 5). The assumptions of Cohen’s Kappa are described 

in Table 7. 

𝜅 =
𝑝𝑜−𝑝𝑐

1−𝑝𝑐
 

 

Table 5. Variables used in equation 1 to calculate Cohen’s Kappa for each classification. 

Variable Meaning 

Po Observed agreement 

Pc Chance agreement, calculated using equation 2 (variables described in Table 6) 

 

𝑝𝑐 =
𝑈𝑏×𝐶𝑏

𝑛2
+

𝑈𝑤×𝐶𝑤

𝑛2
 

 

Table 6. Variables used in equation 2 to calculate the proportional chance of agreement. 

Variable Meaning 

Ub Count of points identified by the user as bar 

Cb Count of points identified by the classifier as bar 

Uw Count of points identified by the user as water 

Cw Count of points identified by the classifier as water 

n Total number of points 
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Table 7. Assumptions of Cohen's Kappa coefficient (modified from Lund Research Ltd. 2018) 

Assumption Context 

1 
The categories are nominal and mutually 

exclusive. 

“Water” and “Bar” classifications have no hierarchy, 
and any point must be assigned to one or the 

other (not both). 

2 The observations are paired. 
The same set of points were assessed by the user 
and the classifier, and the comparison was made 

between the two assignments at each point. 

3 
The same number of categories are used 

by both raters. 

All classifications were aggregated to two classes 
(Water and Bar) and user assignments were made 

using the same definitions. 

4 The raters are independent. 

To not influence one or the other, training sites for 
supervised classifications were not assigned to the 
same locations used for accuracy assessment. The 

user identification of accuracy points was 
performed without looking at the classified result. 

5 The same two raters judged all points. 
A single user (the author) classified the assessment 

points. 
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Chapter 4. Results 

4.1 Quantitative results 

Two examples of classification results are shown in Figures 9 and 10. Full-size 

versions of classification results for all images are provided in Appendix A. 

 

Figure 11. Classification results of Landsat 5 imagery (30m resolution; true colour composite; retrieved from USGS). 

 

Figure 12. Classification results of RapidEye imagery (5m resolution, true colour composite, retrieved from Planet 
Labs Inc.) 
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The results of the accuracy assessments at each spatial resolution are reported 

in Table 8. The mean proportion of agreement and Cohen’s Kappa are given for each 

data source, except for the PlanetScope imagery where only one image was used and 

therefore it is a raw value reported. It is important to note that the n of the reported 

mean values is very small (≤ 3). Given the small sample size, the mean values are 

potentially impacted by one-off outliers from the typical results of the data source. Of 

the reported mean values that could be considered “high” (a > 0.8, κ > 0.8) the range 

of raw values was within a ± 0.15 and κ ± 0.10 at most (results of pixel-based 

classifications of Landsat-5 imagery) and typically within a ± 0.04 and κ ± 0.07.  

The unsupervised method shows an overall decreasing reliability with 

increasing spatial resolution. The proportion of agreement of the supervised method 

is consistent, although the Kappa statistic reveals decreasing reliability. The accuracy 

of the object-based methods remains consistent at all spatial resolutions.  

Table 8. Results of accuracy assessments, reported as the mean or raw (*) proportion of agreement, a, and Cohen's 
Kappa, κ, for each data source. 

Source 
Spatial 

Resolution 
n 

Unsupervised 

(a, κ) 

Supervised 

(a, κ) 

Object-based 

(a, κ) 

Landsat-5 30 m 2 0.81, 0.92 0.93, 0.85 0.97, 0.92 

Sentinel-2 10 m 3 0.67, 0.37 0.93, 84 0.92, 0.82 

RapidEye 5 m 3 0.76, 0.53 0.76, 0.53 0.96, 0.90 

PlanetScope 3 m 1* 0.70, 0.32 0.98, 0.96 0.95, 0.90 

 

4.2 Qualitative results: Unsupervised classification 

There was an overall loss of quality of the unsupervised classification with 

increasing spatial resolution. At 30m, edges were maintained and the fine details of 

the delta channelization were captured, with some confusion on areas of the bar that 

have low overall BVs, perhaps appearing more wet than the surroundings due to finer 

sediments and poor drainage. At 10m, this method produced inconsistent results and 

was ineffective for two of the three images. At 5m, boundaries were identified but the 

result was otherwise poor. Confusion occurred on the water in areas of high 
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suspended sediment, on the bars in areas of poor drainage, and on highly reflective 

surfaces, At this resolution there were areas of dispersed single-pixel errors. At 3m, 

the result was very poor—the majority of the image was assigned to a single class, 

with only high-reflectance surfaces being classified separately.  

4.3 Qualitative results: Supervised classification 

 Upon visual inspection, the supervised classification produced a similar quality 

of result at all spatial resolutions, notably with regard to edge preservation, but there 

were some differences. At 30m, smaller channels were not all captured, and there is 

some sensitivity to suspended sediment. At 10m, there was some single-pixel 

confusion around boundaries and wave crests. At 5m, the ability to capture the 

connectivity of the small channels varied by image. There were areas of dispersed 

single-pixel confusion, as well as confusion of highly reflective areas. At 3m, there 

were few areas of dispersed single-pixel errors around wave crests and on bars in 

areas of poor drainage.  

4.4 Qualitative results: Object-based classification 

 While the quality of product was fairly consistent, the object formation and 

areas of confusion varied with spatial resolution. At 30m, the objects were blocky and, 

while conforming to boundaries, were otherwise independent of the underlying 

imagery. The bars were broadly captured, but some of the connectivity of the smaller 

channels was lost and there was some confusion in highly reflective areas. At 10m, 

objects were still somewhat blocky but more natural-looking than the coarser 

imagery. The size of the bars was slightly over-estimated; shape was generally 

preserved but the area encroached into the water. There was some loss of 

connectivity of the small channels and few instances of confusion on wave crests. At 

5m, the objects were variable in shape and followed natural morphology seen in the 

imagery. There was still loss of channel connectivity, and confusion of highly reflective 

surfaces and areas of poor drainage on the bars. At 3m, the objects had natural-

looking shapes, and the connectivity of smaller channels was well-preserved. There 

was some confusion around wave crests.   
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Chapter 5. Discussion 

5.1 Discussion of results 

To understand how spatial resolution of imagery impacts the reliability of 

image classification methods to identify estuarine sediment bars from satellite 

imagery, a simple comparison can be made between the Cohen’s kappa statistics 

depending on pixel size and method of classification. The accuracy assessment 

results reveal three clusters of data: 1) low spatial resolution, high accuracy; 2) high 

spatial resolution, high accuracy; and 3) high spatial resolution, low accuracy (Figure 

13).  

 

Figure 13. Mean Cohen's kappa statistics of classifications of the same spatial resolution and classification method 
plotted against spatial resolution of the source imagery. 

If the proportion of overall agreement is plotted against spatial resolution 

(Figure 14), the cluster pattern is similar to that of the κ values, with the primary 

difference being that supervised classification of the 5m RapidEye imagery is 

included in the third group (higher spatial resolution imagery with low classification 

accuracy). Recall that the proportion of agreement is the probability that a given point 

was identified as the same informational class by the user and the classifier, while the 

Kappa statistic is the probability that the agreement was not obtained by random 

chance. Even moderate overall agreement with high confidence suggests a more 
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meaningful classification result than low values in both variables. As such, the 

dissonant point (supervised classification of RapidEye imagery) will be included in the 

second group for the sake of this discussion. 

 

Figure 14. Mean proportion of agreement of classifications of the same spatial resolution and classification method 
plotted against spatial resolution of the source imagery. 

First, the coarser spatial resolution (but higher spectral resolution) Landsat-5 

imagery performed well (and consistently) under all three methods. It is intuitive to 

say that the "pre-smoothing" by larger sampling areas means that there is little 

advantage to additional aggregation by object segmentation. Note, however, that 

the points of disagreement fell primarily within the smaller bar channelization. While 

this smoothing is advantageous to the overall classification, mixels (especially around 

feature boundaries) make edges more difficult to identify, and classifications can 

suffer from information loss related to these fine-scale features.    

The classification accuracy of high spatial resolution imagery was less 

consistent between methods compared to the coarser imagery. The finer imagery 

performed very well under OBIA-type classifications. Images with many MPOs seem 

to be best classified by grouping the objects and treating them as single entities. 

Again, this follows the logic of the rationale which led to the development of object-

based classifications.  Overall, the results of classifying the coarser imagery (by any 
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method) and the finer imagery (by object analysis) produce similar quantitative 

results. Indeed, the main difference is that the edges of features are smoother in the 

high spatial resolution imagery, by virtue of (1) smaller pixel size preserving more 

geometric fidelity and (2) a smaller mixel presence, as was expected a priori. The 

results of supervised classification of the finer spatial resolution imagery are also 

included in this group, due to the high accuracy scores achieved. However, the 

qualitative difference between classifications produced by pixel-based or object-

based methods (discussed below) suggest that the pixel-based results are not quite 

as valid as their quantitative assessment suggests.  

Finally, the lowest accuracy scores were obtained from the classifications of 

high spatial resolution by the unsupervised method. The classifier appears to be 

unable to find suitable spectral classes in the comparatively detailed high resolution 

imagery, which was expected—one of the issues that object-based classification 

methods were designed to address is the increased within-class heterogeneity of BVs 

that results from smaller sampling areas (Blaschke 2000). The excess of variability for 

the defined informational classes, and presence of “outliers” in many areas regardless 

of class, would cause difficulty for the classifier. I posit that the supervised pixel-based 

method did well because training sites can be selected to include that variability in 

the spectral definition of the classes, while on its own the classifier was unable to 

identify the appropriate clusters to match with the informational class definitions. 

Altering the unsupervised classifying algorithm threshold to consider data points that 

were nearer or further in multispectral space when identifying clusters did not 

improve the result.   

From a qualitative perspective, there were changes in the quality and 

information value that resulted from each classification method related to changing 

spatial resolution. As was reflected in the accuracy assessments, the unsupervised 

method degraded in quality with decreasing pixel size. The supervised method, while 
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producing similar quantitative results at all levels, also became less satisfactory upon 

visual inspection. 

Broadly speaking, most of the confusion occurred in areas that can be 

described as “water with high sediment content” or “sediment with high water 

content.” While these are visually differentiable and should have distinct spectral 

response, increasing spatial resolution appears to increase the confusion of these 

areas, especially in the pixel-based methods. Finer spatial resolution (and finer 

radiometric resolution) has a greater ability to capture within-class variability. 

Including pixels with a greater range of BVs in a spectral class effectively broadens 

the definition for class assignment, and might be contributing to this confusion.  

Increasing spatial resolution was also accompanied by increased single-pixel 

errors—Blaschke and colleagues’ (2000) so-called “salt and pepper effect.” This 

difficulty to identify single pixels may be attributed to the increasing ability to 

discriminate small, anomalously bright or dark areas that would have been washed 

out at coarser spatial resolutions. The glint phenomenon is a documented nuisance in 

imagery of bodies of water, caused by the reflection of light from the water surface at 

an angle equal to the sensor’s viewing angle (Overstreet and Legleiter 2017). 

Corrections to remove glint contamination continue to be developed to address the 

issue, typically by modeling the sea-surface roughness (e.g., Ottaviani et al. 2008) or 

by using NIR reflectance as a proxy for amount of sun glint (e.g., Hedley et al. 2005). 

However, these methods are most well-established for open or optically-deep water 

settings, and less so for fluvial and estuarine settings (Overstreet and Legleiter 2017). 

Overall, glint is a more common problem in high spatial resolution imagery, and in 

lieu of mathematical corrections the effect can be minimized by the use of coarser-

resolution imagery or by aggregating pixels to objects.   

A final change with increasing spatial resolution which should be noted was 

the shape of objects created during the segmentation step of the object-based 

method. At coarser resolutions, the objects were blocky and fairly uniform across the 
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image, and decreasing pixel size produced more natural object shapes. While the 

uniformity of shapes did not appear to have a huge impact on the final classification 

results, it does imply that the shapes were created simply because the system had 

been instructed to do so, and that they did not represent particularly meaningful pixel 

groupings.  

5.2 Scale issues, part 3: The Modifiable Areal Unit Problem and domains of scale 

This was a long walk for the short statement that is: this study is an exemplar 

Modifiable Areal Unit Problem (MAUP). Both pixels and objects are areal units to 

which data about the area is aggregated, and changing the area represented affects 

the value of the pixel or object and thus the result of analysis. This concept is well 

established for geospatial studies, but perhaps less discussed from a remote sensing 

perspective. 

The MAUP was described in depth by Openshaw and Taylor (1979; 1981), and 

relates to the sensitivity of spatial analysis to changing units of data aggregation. 

Study areas (and space) can be conceptualized either as open space where events 

occur, or an area over which there is continuous, albeit variable, occurrence of a 

phenomenon. There are a great number of ways a study area can be divided into 

non-overlapping units for analysis, and the choice of sampling scheme is often made 

by the researcher to meet some constraint of the study or the available data. These 

units of analysis are effectively arbitrary, and thus, modifiable. The characteristics of 

an areal unit are determined by aggregation of the underlying area. Therefore, 

changing the size or shape of the unit, in capturing different underlying data, will 

produce a different result.  

Especially in complex areas (or with high spatial resolution imagery that 

captures a higher degree of complexity), pixels are isolated data points that in reality 

make up a larger spatial pattern, or contribute to the overall representation of a 

feature (Castilla and Hay 2008). Segmentation replaces pixels as the unit of spatial 

analysis with larger objects. Aggregation of data within a feature can be useful for the 
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treatment of high spatial resolution imagery where the individual pixel components 

of MPOs are not particularly connected to the spectral definition of an object, but as a 

whole produce a recognizable feature—what Blaschke (1995) refers to as “within-

patch heterogeneity.”  

The concept of domain of scale, as described by Wheatley (2010), implies that 

the scale at which a phenomenon is investigated directly influences the outcome of 

analysis, and that certain relationships or interpretations are artifacts of the scale of 

observation. Sampling schemes and spatial units of analysis, whether they are pixels 

or objects, provide a constraining framework for viewing the study area. 

Interpretations of spatial patterns are dependent on the framework through which 

they are studied (Wiens 1989).  In this context, larger pixels provide a similar 

functionality to objects created from small pixels. Their similar utility appears to be 

demonstrated by the ad-hoc segmentation of the coarser imagery, which does not 

have as great an impact on the quality of classification result as for the finer imagery. 

While at this scale of investigation the larger pixels did not lend themselves well to 

the creation of meaningful objects, the object-based method may well be applied to 

the same imagery to greater effect to identify phenomena with greater spatial extent.   

5.3 Additional considerations for data selection 

The role of the classifier is to supplement visual interpretation in a systematic, 

efficient, and cost-effective manner. The value of the tool is diminished if the cost of 

analysis outweighs the convenience of these methods. There can be cost associated 

with data acquisition—some imagery is freely available through public organizations 

(e.g., Landsat and Sentinel imagery acquired through the U.S. Geological Survey and 

the European Space Agency / Copernicus Program), while there are typically fees 

associated with the use of imagery acquired by private operations (e.g., Worldview 

imagery through Maxxar technologies).  

The time required to process the imagery is also a necessary consideration. 

Supervised and object-based methods require the user to select training areas, often 
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a tedious and time-consuming task. Larger areas, high-resolution imagery, and large 

numbers of images take longer to process, independently of method. While this time 

investment may not be a concern when dealing with relatively few images, any 

additional steps or processing time can quickly add up for larger, more complex 

projects.  

Depending on the period of study and rates of change of the target 

phenomenon, different satellite series may be more appropriate than others simply 

for reasons of comparability. For example, Landsat 4–8 (1982–present; NASA and 

USGS 2013) has maintained consistent spatial and spectral parameters for data 

continuity. Long term time series at the scale of this study would be very well suited to 

this series.  

5.4 Limitations 

5.4.1 User-introduced error (errors of commission) 

The alternative to the system classifying land cover is the user manually picking 

out features, delineating each bar and channel. This would be comparatively time 

consuming, and subject to some arbitrary decision-making by the user in areas that 

are not easily distinguishable as one class or the other. The classifier, while also 

having to make certain decisions, at least has a known set of rules on which these 

decisions are based.  

In using a classifying software, we are not asking the system to make the 

interpretation entirely on things that cannot be seen—unexpected patterns or 

phenomena may be revealed, but the unexpected versus the unknown is an 

important distinction to make. Informational classes can only be assigned in ways that 

are meaningful to the user, and thus not beyond the user’s knowledge. The basis of 

the classification is still the user deciding which features they want to discriminate. 

The benefits of a classifying system are that it requires less user time, and that it is 

systematic. In the interest of rigorous science, the ideal tie-breaking decisions are 

structured, and not based on the best guess of the user. However, the user is a 



40 
 

meaningful baseline because their interpretation is the alternative to, and their 

opinion the deciding factor in, using a system-classified result. A classification of 

“reality” is only as good as our ability to interpret it, and if the classifier does not at 

least perform to human standards, then it is not worth using.  

A possible source of error, therefore, lies in the examples (the training data) 

provided to the classifier by the user. False assignment by the user (errors of 

commission) can affect the definitions of spectral classes that are used by the 

classifier, and thus affect the result. I tried to minimize this type of error by selecting 

training sites that were within identifiable features, and staying away from boundaries 

where mixing of classes is most likely to occur. However, there are certain 

circumstances where errors of commission are unavoidable. One situation is in the 

selection of training sites for the object-based classification; the boundaries of the 

objects often, but do not always, line up with feature boundaries as would be drawn 

by the user. However, enough training sites to effectively create a statistical definition 

of a class must be selected and the user may have to include areas that do not 

entirely meet the definition of their assigned informational class.  

5.4.2 Disagreement of other types of resolution 

There was some disagreement between images related to the other forms of 

resolution, as described in Table 3. Because increasing resolution allows for finer 

details to be resolved and teased apart, they must be acknowledged as potential 

limitations of the comparability of classifications included in this study.  

The coarsest imagery in terms of spatial resolution, from Landsat-5, had a finer 

spectral resolution due to the included SWIR band. The added dimension could have 

helped differentiate classes based on their values in multispectral space. Reflectance 

of SWIR can provide information about moisture content of the ground material (Yuan 

et al. 2019). However, the confusion of areas on the bar that appeared to have higher 

moisture content than their surroundings was observed in classifications at all spatial 

(and spectral) resolutions.  
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Increasing spatial resolution was accompanied by increasing radiometric 

resolution; Sentinel-2, RapidEye, and PlanetScope imagery are collected as 12-bit 

values, while Landsat-5 is 8-bit (Kramer 2002; 2017b; Planet Labs Inc. 2019). Greater 

bit depth allows the same scene to be represented by a wider range of possible 

BVs—the implication being that smaller differences in amount of reflected energy can 

be detected, potentially resulting in easier differentiation of classes. The impact of 

this difference could be reduced by converting the pixel values from scaled BVs to 

surface reflectance, using system conversion factors unique to each system; pixel 

values would then be expressed in common units and be more comparable to one 

another. 

The inconsistencies between data sources outlined above raise a question 

about the methodology of this project—why not exclusively obtain high spatial 

resolution imagery and resample it to increasingly coarse spatial resolution, per the 

methodology of Marceau and colleagues (1994)? Resampling the same imagery 

would remove some of the limitations of this study, but may not be entirely 

representative of the results that can be obtained from the satellite imagery that is 

commonly used. In this study, imagery is acquired from different sources, in spite of 

their dissonance in other types of resolution, to assess the data that would most 

typically be applied to these types of geomorphology problems. While the approach 

taken here may be less neat a study of the pure relationship between pixel size and 

classification accuracy, it is an appropriate investigation of the tools (both methods 

and data) that are actually and readily available.   
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Chapter 6. Conclusion 

To answer the question of how spatial resolution affects the results of image 

classification to identify intertidal bars in Cobequid Bay, satellite imagery spatial 

resolutions between 3m and 30m were each classified three ways (unsupervised and 

supervised traditional pixel-based methods, and an object-based method). The 

conclusions based on the results of these classifications can be summarized by two 

statements: 

1. Pixel-based methods are reliable at coarser spatial resolutions, but have difficulty 

addressing the large amount and variability of data in images with fine 

resolution—unsupervised classifications specifically fall apart with decreasing 

pixel size, although unfortunately are the least time-consuming for the user. 

 

2. The object-based method performs well over a range of spatial resolutions, but 

lends itself best to addressing the dominance of multi-pixel objects in the finer 

spatial resolution imagery. 

These conclusions hold implications for change detection of surface features. 

Ideally, inputs to change detection analyses should have satisfactory boundary 

fidelity, and limited classification errors. Manual correction may be required, although 

to limit this, it appears that unsupervised classification of coarse imagery or object-

based classification of fine imagery produce adequate results with limited “salt and 

pepper effect.”  A rate of change can only be estimated within a margin of uncertainty 

that is at minimum equal to the spatial resolution of the image, and there is therefore 

a compromise between ease of analysis and the spatial threshold of change 

detection. There is also a tradeoff between the wider margin of uncertainty that 

accompanies coarser imagery, and the apparent overestimation of sediment bar size 

by the finer imagery. 

The problems related to scale are not unique to this setting—remote sensing 

of estuarine morphology in a microtidal or mesotidal environment would be subject 
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to similar considerations to scale of process and data. The framework of considering 

large pixels as aggregated objects in their own right, while understanding the 

limitations of pixel-based methods at fine spatial resolutions, can be applied to other 

uses of image classification methods on remote sensing data.  

To return to the initial question of whether some critical threshold exists at 

which the ratio between scales of process and data become too great to reliably 

identify estuarine features, we see that any scale of data that is fine enough to capture 

spatial variability of the phenomenon will suffice with appropriate treatment. There is 

some amount of generalization required (to minimize the internal heterogeneity of 

features), which can be accomplished either at the data collection phase or during 

analyses.  
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Appendix A: Satellite imagery and classification results 
This appendix contains the satellite images and results of their classifications. 
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A.1 Landsat-5, April 22, 2008 

Product Identifier: LT05_L1TP_008028_20080422_20161101_01_T1 

Collection start time: 2008:113:14:50:05.5314400 

Approximate tidal phase: exact phase unknown 

 

Confusion matrices: 

  Reference class 

  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

c
la

ss
 Bar 84 7 91 86 5 91 84 1 85 

Water 2 107 109 0 109 109 2 113 115 
Total 86 114 200 86 114 200 86 114 200 

 a; κ 0.96; 0.91 0.98; 0.95 0.99; 0.97 

 

 

Classification results  
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A.2 Landsat-5, July 1, 2010 

Product Identifier: LT05_L1TP_008028_20100701_20161014_01_T1 

Collection start time: 2010:182:14:51:31.1128800 

Approximate tidal phase: 2 hours following low tide 

 

Confusion matrix 

 

 

Classification results  

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 129 15 144 134 4 138 128 3 131 

Water 7 49 56 2 60 62 8 61 69 
Total 136 64 200 136 64 200 136 64 200 

 a; κ 0.67; 0.93 0.89; 0.75 0.94; 0.88 
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A.3 Sentinel-2, May 9, 2016 

Entity ID: S2A_OPER_MSI_L1C_TL_SGS__20160509T152240_20160509T203456_A004598 
_T20TMR_N02_02_01 

Collection start time: 2016-05-09T15:16:43.461Z 

Approximate tidal phase: 3.5 hours following low tide (2.5 hours prior to high tide) 

Confusion matrix 

 

 

Classification results

  Reference class 

  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

c
la

ss
 Bar 65 13 78 80 8 88 81 13 94 

Water 20 102 122 5 107 112 4 102 106 
Total 85 115 200 85 115 200 85 115 200 

 a; κ 0.84; 0.66 0.94; 0.87 0.92; 0.83 
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A.4 Sentinel-2, May 4, 2017 

Entity ID: L1C_T20TMR_A009746_20170504T151653 

Collection start time: 2017-05-04T15:16:53.456Z 

Approximate tidal phase: 1.5 hours prior to low tide  

 

Confusion matrix 

 

 

Classification results

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 41 67 108 58 14 72 59 14 73 

Water 23 69 92 6 122 128 5 122 127 
Total 64 136 200 64 136 200 64 136 200 

 a; κ 0.55; 0.14 0.90; 0.78 0.91; 0.80 
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A.5 Sentinel-2, August 2, 2019 

Entity ID: L1C_T20TMR_A021472_20190802T151908 

Collection start time: 2019-08-02T15:19:08.948Z 

Approximate tidal phase: 4.5 hours following low tide (1.5 hours prior to high tide) 

 

Confusion matrix 

 

Classification results  

  Reference class 

  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 44 73 117 41 4 45 38 3 41 

Water 1 82 83 4 151 155 7 152 159 
Total 45 155 200 45 155 200 45 155 200 

 a; κ 0.63; 0.31 0.96; 0.87 0.95; 0.84 
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A.6 RapidEye, September 1, 2010 

Product Identifier: 20100901_160410_2060013_RapidEye-1 

Collection time: 2010-09-01T16:04:10Z 

Approximate tidal phase: 1.5 hours following low tide 

 

Confusion matrix 

 

 

Classification results 

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 96 8 104 58 35 93 97 5 102 

Water 1 49 50 39 22 61 0 52 52 
Total 97 57 154 97 57 154 97 57 154 

 a; κ 0.52; -0.02 0.15; 0.84 0.97; 0.93 
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A.7 RapidEye, July 15, 2013 

Product ID: 20130715_RapidEye 

Collection time: exact time unknown; assumed to be approximately 16:00 due to sun-
synchronous orbit of satellite 

Approximate tidal phase: exact phase unknown; assumed 1.5 hours following low tide  
 

 Confusion matrix 

 

 

Classification results  

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 105 2 107 131 8 139 134 12 146 

Water 31 62 93 5 56 61 2 52 54 
Total 136 64 200 136 64 200 136 64 200 

 a; κ 0.84; 0.76 0.94; 0.85 0.93; 0.83 
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A.8 RapidEye, September 19, 2019 

Product ID: 20190919_145601_2060013_RapidEye-2 

Collection time: exact time unknown; assumed to be approximately 16:00 due to sun-
synchronous orbit of satellite 

Approximate tidal phase: exact phase unknown; assumed 3 hours following low tide  

 

Confusion matrix 

 

Classification results  

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 106 0 106 110 1 111 112 1 113 

Water 10 38 48 6 37 43 4 37 41 
Total 116 38 154 116 38 154 116 38 154 

 a; κ 0.94; 0.84 0.95; 0.88 0.97; 0.95 
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A.9 PlanetScope, July 10, 2017 

Product ID: Planet_20170710 

Collection time: unknown 

Approximate tidal phase: exact phase unknown 

 

Confusion matrix 

 

Classification results 

  Reference class 
  Unsupervised Supervised Object-based 
 Classes Bar Water Total Bar Water Total Bar Water Total 

M
a

p
 

cl
a

ss
 Bar 32 3 35 82 2 84 89 3 92 

Water 58 107 165 8 108 116 1 107 108 
Total 90 110 200 90 110 200 90 110 200 

 a; κ 0.70; 0.32 0.98; 0.96 0.95; 0.90 


