
UNIFORM EMBEDDING OF ROBINSON SIMILARITY
MATRICES

by

Zhiyuan Zhang

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

April 2021

c© Copyright by Zhiyuan Zhang, 2021

Under the impact of COVID-19

2019–present

ii

Table of Contents

List of Figures . v

Abstract . vi

List of Abbreviations and Symbols Used vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Definitions and Notations . 1

1.2 Robinson matrix . 3

1.3 The Problem . 4

1.4 Motivations . 6

1.5 Main Results . 7

Chapter 2 Related Work . 10

2.1 Robinson matrix and Unit Interval Graph 10
2.1.1 Graph Theory and Robinson Matrix 11
2.1.2 Proper = Unit . 12

2.2 The Seriation Problem . 14
2.2.1 Seriation Problem . 14
2.2.2 Recognizing Robinson Matrix 15
2.2.3 Time Complexity . 17

2.3 Uniform Linear Embeddings of Graphons 18

Chapter 3 Uniform Embedding . 20

3.1 Strict Monotonicity of Uniform Embedding 21

3.2 Bounds, Walks, and Their Concatenation 26

3.3 A Sufficient and Necessary Condition 35
3.3.1 Cycles and Paths . 37

3.4 Finding a Uniform Embedding . 39

Chapter 4 Testing the Conditions . 43

4.1 Bound Generation: A Variation of the Floyd-Warshall Algorithm . . 43

iii

4.1.1 Bound-Generation Algorithm 44
4.1.2 The Correctness of Bound-Generation Algorithm 46

4.2 A Partial Order on Bounds . 48
4.2.1 Modifying the Bound-Generation Algorithm 57

4.3 Finding a Threshold Vector . 62

4.4 Time Complexity of Computing a Uniform Embedding 63

4.5 The Uniform Embedding Algorithm of Case of k = 2 64
4.5.1 The Size of Bounds when k = 2 65
4.5.2 The Combinatorial Procedure and its Complexity 66

Chapter 5 Conclusion and Future Works 68

Bibliography . 69

iv

List of Figures

3.1 A sketch of proof of Theorem 3.1 24

3.2 The graph of B in Example 1.3 27

3.3 The graph of matrix A in Example 1.3 30

3.4 The graph of matrix A with induced bounds of bound-walks . 34

v

Abstract

A Robinson similarity matrix is a symmetric matrix where the entry values on all rows

and columns increase toward the diagonal. Decompose the Robinson matrix into the

sum of k {0, 1}-matrices, then these k {0, 1}-matrices are the adjacency matrices of

a set of nested unit interval graphs. Previous studies show that unit interval graphs

coincide with indifference graphs. An indifference graph has an embedding that maps

each vertex to a real number, where two vertices are adjacent if their embedding is

within a fixed threshold distance. In this thesis, we consider k different threshold dis-

tances and study the problem of finding an embedding that, simultaneously and with

respect to each threshold distance, embeds the k indifference graphs corresponding to

the k adjacency matrices. This is called a uniform embedding of a Robinson matrix

with respect to the k threshold distances. We give a sufficient and necessary condition

on Robinson matrices that have a uniform embedding, which is derived from paths

in an associated graph. We also give an efficient combinatorial algorithm to find a

uniform embedding or give proof that it does not exist, for the case where k = 2.

vi

List of Abbreviations and Symbols Used

G . graph

V = V (G) . the vertex set of graph G

E = E(G) . the edge set of graph G

n = |V (G)| the order of graph G and the dimension of square matrix

[n] . the set of natural number from 1 to n

k . dimension of threshold vectors

A = (ai,j)i,j∈[n] .n× n matrix with real entry ai,j

Sn[k] . the set of n× n Robinson matrices

d = (di)i∈[k] . k-dimensional real column vector with entry di

Dk . set of all monotone decreasing vector of dimension k

χt . one-hot k-dimensional vector with 1 on index t

0 .k-dimensional zero vector

1 . k-dimensional all-one vector

a, b, c,x,y, . vectors

u, v, u−, v− . vertices

vii

Acknowledgements

First, I would like to thank Dr. Jeannette Janssen for being my supervisor and coming

up with this interesting project. Her encouragement and kindness are great supports;

I could not build up this thesis without her guidance. I would also thank the readers

of this thesis, Dr. Jason Brown and Dr. Nauzer Kalyaniwalla, for reading this thesis

and providing suggestions. I had opportunities to take their courses in different stages

over my study in math. It is an honour to be examined by the professors who opened

up my horizon in mathematics.

It is also worth mentioning that this thesis is done during the COVID-19 pandemic

spreads around the globe. I want to thank everyone who coordinates things over

this particular period and keep things running so that we, students, could finish our

degree without serious impact. I want to thank my friends: it is always nice to talk to

someone, online though, when the city has a lockdown. Finally, I would like to thank

my family for understanding and supporting me in pursuing my graduate studies.

Halifax, 2021

viii

Chapter 1

Introduction

1.1 Definitions and Notations

We lay down definitions and notations to help the narration. Let [n] = {1, 2, . . . , n}

denote the set of natural numbers from 1 to n. Extend this notation on 0 and define

[0] = {}. A permutation τ is a bijection on [n]. Denote the set of all permutations

on [n] as Pn. We will write the permutation function in the form of a sequence,

τ = (τ1, . . . , τn), for τi ∈ [n] where τi = τ(i). The reversal of a permutation τ is a

permutation τ ′ such that τ ′(i) = τ(n− i). In other word, the reversal of permutation

τ = (τ1, . . . , τn) is a permutation defined as τ ′ = (τn, . . . , τ1). We use [a, b] and (a, b)

to denote closed and open real intervals, respectively.

A function f defined on an ordered set S, for i, j ∈ S, f ismonotonically increasing

if i � j ⇐⇒ f(i) � f(j) and the set is monotonically decreasing if i � j ⇐⇒

f(i) � f(j). The function f is monotone if it is either monotonically increasing or

monotonically decreasing. The function f is strictly increasing if i < j ⇐⇒ f(i) <

f(j) and is strictly decreasing if i < j ⇐⇒ f(i) > f(j). We extend the increasing or

decreasing property to any sequence, ordered set, and vectors. For example, vector

x = (xi) is strictly decreasing if xi > xi+1.

A graph G = (V,E) consists of a vertex set and an edge set, where V = {vi : i ∈

[n]} and any edge e ∈ E is of the form e = {vi, vj}.

Write an m× n real-valued matrix A in the form of (ai,j)i∈[m],j∈[n] where ai,j ∈ R.

We will omit the subscript if the dimension is clear and write A = (ai,j). Matrix A

is symmetric if A is a square matrix, say n × n, and ai,j = aj,i for all i, j ∈ [n]. The

transpose of an n×m matrix A is an m× n matrix, denoted as A� = (a′j,i)j∈[m],i∈[n],

has ai,j = a′j,i for i ∈ [m], j ∈ [n]. We denote In as the n× n identity matrix, and Jn

as the n×n all-one matrix. A matrix is a diagonal matrix if the only non-zero entries

are on the diagonal, i.e., ai,j �= 0 implies i = j. Let τ ∈ Pn, the permutation matrix

of τ , T = (pi,j)i,j∈[n], is a binary matrix with pi,τ(i) = 1 and 0 otherwise. Applying T

and its transpose to both sides of a matrix, TAT� = (aτ(i),τ(j)), we obtain a matrix

reordered by τ , denoted as Aτ = TAT�.

1

2

Matrices are binary if the entries are taken from either 0 or 1. Given graph

G = ([n], E), an n × n symmetric binary matrix A with A = (ai,j) is the adjacency

matrix of G if ai,j = 1 ⇐⇒ {i, j} ∈ E, otherwise ai,j = 0. Conversely, let A

be an n × n binary matrix, then G is the graph of matrix A if G = ([n], E) with

ai,j = 1 ⇐⇒ {i, j} ∈ E. More generally, we say matrix A = (ai,j) is a generalized

adjacency matrix of graph G if ai,j �= 0 ⇐⇒ {i, j} ∈ E.

Vertex u is a neighbour of vertex v if {u, v} ∈ E. The neighbour set of v, N(v), is

the set of all neighbours of v. Define the closed neighbour set of v asN [v] = {v}∪N(v).

A clique C is a subset of vertex V where all vertices in C are pair-wise adjacent to

each other. A maximal clique is a clique which is not contained in another clique.

Two vertices are undistinguishable if they have the same closed neighbour set,

i.e., N [u] = N [v] if u, v are distinguishable. In the sense of adjacency matrix or

generalized adjacency matrix, (ai,j), two rows u, v are repeating rows if au,j = av,j for

all u �= j �= v and au,v = av,u = au,u = av,v.

A subgraph of graph G is a graph G′ = (V ′, E ′) where V ′ ⊆ V , and E ′ ⊂ E for

any e = {vi, vj} ∈ E ′, we have that vi, vj ∈ V ′. An induced subgraph of graph G,

G′ = (V ′, E ′), is a subgraph of G and e = {vi, vj} ∈ E ′ ⇐⇒ e ∈ E and vi, vj ∈ V ′.

A sequence of vertices in G, W = 〈w0, . . . , wp〉, is a walk of length p if {wi−1, wi} ∈

E for all i ∈ [p]: we also write it as an alternating sequence of vertices and edges,

W = 〈w0, e1, . . . , wp〉, where ei = {wi−1, wi}. A cycle of length c is a walk W =

〈w0, . . . , wc〉 where w0 = wc but there are no other repeated vertices in W . A path

is a walk which contains no repeated vertices. An intermediate vertices of a path

W = 〈w0, . . . , wp〉 is any vertex wi for 0 < i < p. A graph is connected if for all pairs

of vertices u and v, there exist a path contains both u, v. A connected component is

a maximal connected subgraph, i.e., no other subgraph properly contains it.

We use the definition in [1] to define the irreducibility of a matrix. A matrix A is

reducible if there is permutation τ on [n] so that

Aτ =

[
A1 0

0 A2

]
. (1.1.1)

A matrix is irreducible if there is no such permutation exists.

An interval graph is a graph with a set of line segments in R (compact real in-

tervals) as its vertex set, and there is an edge whenever two vertices intersect. An

interval graph is proper if there is no vertex properly contains another vertex. A unit

interval graph is an interval graph with all intervals having a unitary length.

3

An indifference graph G = ([n], E) is a graph equipped with an embedding Π :

[n] → R and a threshold distance d ∈ R, the vertices u, v ∈ [n] are adjacent if and

only if |Π(v)− Π(u)| � d.

A graph G is a complete graph with n vertices, denoted as Kn, if every pair of

vertices are adjacent. A complete bipartite graph with n + m vertices, denoted as

Km,n, is a graph with vertices partitioned into two sets V1, V2 with size m,n, where

any pair of vertices from the same partition are not adjacent and any pair of vertices

from different partitions are adjacent.

The vertex-edge incidence matrix of a graph G, B = (bi,j), is a binary m × n

matrix, with n = |V | and m = |E|, where each column j corresponds to a vertex vj

and each row i corresponds to an edge ei. The entry bi,j = 1 if ei ∈ E and vj ∈ e;

bi,j = 0 otherwise. The clique-vertex incidence matrix of a graph, B = (bi,j), is a

binary c× n matrix, with c is the number of different maximal cliques in the graph,

where each row to a maximal clique Ci. Each entry bi,j = 1 if vj ∈ Ci; bi,j = 0

otherwise.

A partial order is a binary relation, say �, on a set S where

1. � is reflexive, i.e., for all a ∈ S, s � s;

2. � is antisymmetric, i.e., for all a, b ∈ S, if a � b and b � a, then a = b;

3. � is transitive, i.e., for all a, b, c ∈ S, if a � b and b � c, then a � c.

1.2 Robinson matrix

Many research problems involve admitting a linear order on a set of pair-wise compa-

rable items, together with a pair-wise similarity measure of these items, and the items

are ordered closer if they are more similar than the farther pairs. There are several

applications of this strategy in different fields, such as evolutionary biology, sociol-

ogy, text mining, and visualization. Liiv ([16]) provided a thorough discussion on this

topic. Among all applications, we consider archaeology as the classic example, where

the items are the relics with undetermined manufacture date (year, era). We consider

the relics to be ordered according to their ages. When the similarities between each

pair are presented in the form of a matrix, this matrix will have the property that

entries on each row and column increase toward the diagonal and decrease away from

the diagonal. Such a matrix is called a Robinson matrix, or a Robinson similarity

matrix.

Formally, write the matrix entry on the ith row and jth column as (ai,j). A

4

symmetric matrix is a Robinson matrix if

for u < v < w au,v � au,w,

for v < w < u aw,u � av,u.
(1.2.1)

1.3 The Problem

In his book [8], Doran described two events in archaeology that expose archaeologists

to science and math. The first event is the development of the methods of absolute

dating, such as radiocarbon dating of objects, which introduced science into archae-

ology. The second event is the invention of sequence dating by Flinders Petrie, which

introduces mathematics to archaeology. Namely, absolute dating determines an “ab-

solute” manufacture date of an object, with some scientific methods. In contrast,

sequence dating only provides a linear order that reflects all the pairwise similarity

measures to order the more similar pairs of objects closer to each other. The Robin-

son matrix is closely related to the relative dating problem. For instance, if we set

the similarities as real numbers and the pairwise similarities to form a matrix, then

the resulting matrix has the form of Robinson matrix (i.e., property (1.2.1)) if the

order reflects the actual chronology.

Example 1.1. Consider a set of objects {1, 2, 3, 4, 5} and their manufacture dates,

Π(i), in term of years:

Object i 1 2 3 4 5

Manufacture date Π(i) 1900 1905 1906.5 1911.75 1912.75

We assume that the similarities ai,j are determined by the gap between the manufac-

ture dates such that, for two threshold distances, 8 year and 6 years,

au,v = 2 ⇐⇒ 0 � Π(v)− Π(u) < 6,

au,v = 1 ⇐⇒ 6 < Π(v)− Π(u) < 8,

au,v = 0 ⇐⇒ 8 < Π(v)− Π(u).

5

We obtain the similarity matrix A = (ai,j) as

(ai,j) =

1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 2 2 1 0 0

2 2 2 2 1 1

3 1 2 2 2 1

4 0 1 2 2 2

5 0 1 1 2 2

,

which is a Robinson matrix.

In Example 1.1, we compute a Robinson matrix from an absolute dating, and a

solution to a sequence dating follows immediately. In this thesis, we ask the converse

question, that is, if we are given a solution of a sequence dating problem

based on a set of similarities, can we find solutions to their absolute dating

that satisfies all the similarities? We call this absolute dating of the objects a

uniform embedding.

Suppose we are given a set of objects with their similarities, and its relative dating

problem is solved in the form of a Robinson matrix; for such a situation, we assume

the similarities cannot be determined precisely, and give a “degree of t” of similarity

between each pairs, where there are k + 1 different degrees, t = 0 or t ∈ [k], where k

represents “very similar” and 0 represents “not similar at all”. So each matrix is with

integer entries 0 � ai,j � k. Let Sn[k] denote the set of all n× n Robinson matrices

with entries that are taken from [k] and the diagonal entries are all k and let Dk be

the set of possible threshold vectors, Dk = {d ∈ R
k : d = (di)i∈[k], d1 > · · · > dk > 0}.

In this thesis, we define uniform embedding as the following.

Definition 1.2. Let A = (ai,j) be a Robinson matrix in Sn[k]. Given a threshold

vector d ∈ Dk, then a map Π : [n] → R is a uniform embedding of A with respect to

d if, for each pair u, v ∈ [n]:

au,v = t ⇐⇒ dt+1 < |Π(v)− Π(u)| � dt for t ∈ {0, . . . , k}, (1.3.1)

where we define dk+1 = −∞ and d0 = ∞, so that the lower bound for au,v = k and

the upper bound for au,v = 0 are trivially satisfied.

The recognition of Robinson matrices is extensively studied. Therefore, we assume

the matrices in this thesis are in the form of Robinson matrices: we will discuss further

in Section 2.2.

6

1.4 Motivations

We shall look at some motivations of our problem. First, we will see that finding

an embedding for a graph was previously studied by Roberts, called the indifference

graph. This implies that the naive case, i.e., the binary Robinson matrices, always has

a uniform embedding. Second, we will present an example that a Robinson matrix

does not have uniform embeddings, with respect to any threshold vector.

It is known in [13] that a binary symmetric matrix A, where its diagonal entries

are all 1’s, is a Robinson matrix if and only if A − In is the adjacency matrix of a

proper interval graph. In [21], Roberts shows that each class of proper interval graphs

and unit interval graphs is equal to the class of indifference graphs. Discussed in [25],

any Robinson matrix in Sn[k] can be seen as a set of k nested unit interval graphs.

Let A = (ai,j) ∈ Sn[k], denote G(t) = ([n], Et) as the t-th level graph of A for t ∈ [k],

where the edge sets Et are defined by {u, v} ∈ Et ⇐⇒ au,v � t. Let R(t) denote the

adjacency matrix of G(t). Then

A = Dn +
k∑

t=1

R(t), (1.4.1)

where Dn is a diagonal matrix. Moreover, A is a Robinson matrix if and only if

R(t)+ In is a Robinson matrix for all t ∈ [k]. Then, by Roberts’ result, the graph G(t)

of each R(t) is some indifference graph with some threshold distance dt. Denote the

associated embedding by Πt. If k = 1, then A = Dn + R(1). Roberts’ result applies

immediately that indifference graph G(1), equipped with Π1 and d1, is a uniform

embedding of A with respect to d1.

In this light, the problem of finding a uniform embedding of A with respect to

d = (dt) ∈ Dk of a Robinson matrix is equivalent to finding an embedding Π so that

the k indifference graphs equipped with Π and dt has R(t) as its adjacent matrix,

simultaneously. Notice that not all Robinson matrices has uniform embeddings.

7

Example 1.3. Consider the following two matrices A = (ai,j), B = (bi,j),

(ai,j) =

1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 2 2 1 0 0

2 2 2 2 1 1

3 1 2 2 2 1

4 0 1 2 2 2

5 0 1 1 2 2

(bi,j) =

1 2 3 4 5 6⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 2 1 0 0 0

2 2 2 2 1 1 1

3 1 2 2 2 1 1

4 0 1 2 2 2 1

5 0 1 1 2 2 2

6 0 1 1 1 2 2

In these two cases, A ∈ S5[2] and B ∈ S6[2]. Matrix A has a uniform embedding

Π with threshold vector d = (d1, d2)
� = (8, 6)�,

i 1 2 3 4 5

Π(i) 0 5 6.5 11.75 12.75

For matrix B, suppose there is a uniform embedding Π with respect to some d1 >

d2 > 0. Observe the following two inequalities are both implied by the constraints:{
Π(4)− Π(1) > d1,

Π(6)− Π(4) > d2
⇒ d1 + d2 < Π(6)− Π(1);

{
Π(2)− Π(1) � d2,

Π(6)− Π(2) � d1
⇒ Π(6)− Π(1) � d1 + d2.

Combining the inequalities d1+d2 < Π(6)−Π(1) � d1+d2 results in a contradiction.

Thus we conclude that matrix B does not have a uniform embedding.

Based on this example, we ask this question: what are the characteristics of

a Robinson matrix that has a uniform embedding?

1.5 Main Results

In Chapter 2, we discuss the näıve case of Sn[k] when k = 1, i.e., binary Robinson

matrices. We will describe, by Roberts’ result in [21], that any unit interval graph

has a representation as an indifference graph, such indifference graph can be seen

as a uniform embedding. Therefore, the binary Robinson matrices always have a

uniform embedding. The recognition of the unit interval graph is studied extensively;

we discuss one such strategy by scaling and translating the endpoints of the intervals,

and discuss why this method does not apply to our thesis.

8

In Chapter 3, we present our solution to the problem: a sufficient and necessary

condition so that a Robinson matrix has uniform embedding; we provide a construc-

tive proof to find a uniform embedding if the condition is satisfied. The condition

associates the upper/lower bound from the Robinson matrix (Definition 1.2) with

walks in its graph (as in Example 1.3): we call them upper- and lower-bound-walks

and they can be defined independently from the uniform embedding. The walks

concatenate the edges that share the same endpoints, and thus, by combining the

bounds obtained from the two edges, another upper/lower bound is implied by Defi-

nition 1.2. We consider all of the implied upper and lower bounds from Definition 1.2

of a Robinson matrix, and form them into a system of inequalities where the con-

straints are linear equations with the threshold distances as the variables. Then, we

formulate our main theorem: the Robinson matrix has a uniform embedding if and

only if the system of inequalities formed by the implied bounds has a solution. We

also discuss that only the upper- and lower-bound-paths (i.e., bound-walks that con-

tain no repeating vertices) contribute to this inequality system. We show that the

forward implication is trivial; we prove the converse implication by constructing a

uniform embedding with a given threshold vector and the sets of all implied upper

and lower bounds.

In Chapter 4, we discuss the complete procedure of computing a uniform embed-

ding of a Robinson matrix: the computation in the proof of the converse implication

requires the sets of upper and lower bounds and an appropriate threshold vector. We

propose a Floyd-Warshall-like algorithm, “Bound-Generation” algorithm, to com-

pute the upper- and lower-bound-paths in a Robinson matrix. Since the definition of

upper- and lower-bound-walks are different from the definitions of walks and paths

in conventional graph theory, we give the proof of correctness of our algorithm. We

reformulate the inequality system in Chapter 3 in terms of upper- and lower-bound-

walks so that the inequalities can be solved as a linear program and produce a solution

d ∈ Dk.

We also consider optimizing the performance of the Bound-Generation algorithm

by defining a partial order on the bounds, and we analyze the complexity of the

procedure. We denote M as the size of minimal and maximal elements of upper and

lower bounds under this partial order. Then we give a complexity analysis of the

procedure in terms of M and n, where n is the size of the matrix.

Finally, we discuss the case of k = 2 and propose a combinatorial algorithm that

computes a uniform embedding, i.e., we find a threshold vector without using a linear

9

program. Moreover, with the partial order, we employ Dilworth’s theorem and rewrite

the complexity analysis in terms of only n.

Chapter 2

Related Work

We devote this chapter to a review of work on Robinson matrices. We consider a

Robinson matrix in our work and determine whether this matrix has a uniform em-

bedding. Closely related to our work is the seriation problem. Section 2.1 introduces

some work that connects Robinson matrices with graph theory. Among the results,

the unit interval graphs associate with Robinson matrices closely. We discuss some

properties of unit interval graphs, whose adjacency matrices with diagonal entries

filled with 1s are binary Robinson matrices. Then, we connect the Robinson matrices

as a stack of nested unit interval graphs. We introduce an algorithm that transform

any proper interval graph into a unit interval graph; or equivalently, find a uniform

embedding of any binary Robinson matrix. In Section 2.2, we then talk about a short

history of the seriation problem and several works that recognize Robinson matri-

ces. In Section 2.3, we discuss uniform linear embeddings of diagonally increasing

graphons. Graphons are functions that can be seen as a generalization of matrices.

Diagonally increasing graphons satisfy a property similar to property (1.2.1), which

defines Robinson matrices. Uniform linear embeddings of graphons are similar to

uniform embeddings of matrices. We discuss how the results (on graphons) relate to

our results for matrices in Section 2.3.

2.1 Robinson matrix and Unit Interval Graph

In this section, we review some studies on the Robinson matrix. We look at some

works that associate Robinson matrices with graph theory; our work builds up an

intuition based on the graphs of Robinson matrices. We list some characterizations

of the binary Robinson matrices provided in different works from [10], [21], [17], and

[22]. We also discuss one construction of a unit interval graph from proper interval

graphs by Bogart and West ([2]), which is a näıve case of finding a uniform embedding

on binary Robinson matrices.

10

11

2.1.1 Graph Theory and Robinson Matrix

Flinders Petrie, as mentioned, invented the method of sequence dating. His method

represents the objects and features by a matrix, where each row corresponds to an

object and each column corresponds to a feature. The matrix with the arrangement

on objects that reveals a solution to the underlying chronological order is called a

Petrie matrix. To define the Petrie matrix, we need first to define the Consecutive

Ones Property (C1P). Consider a binary matrix (ai,j). If there is a permutation τ so

that the entries ai,τ(j) = 1 on rows are consecutive, this matrix is said to have the

C1P on rows; similarly, (ai,j) has C1P on columns if there is permutation τ so that

entries aτ(i),j = 1 on columns are consecutive. A binary matrix has C1P if it has C1P

on both rows and columns. A Petrie matrix is a vertex-clique incidence matrix that

has C1P without permuting rows and columns. That is, the permutation τ is the

identity permutation.

Kendall ([13]) showed that for any vertex-clique matrix P , P is a Petrie matrix if

and only if P�P is a Robinson matrix. With this equivalence, the problem of finding

whether or not a vertex-clique matrix P has C1P reduces to finding whether there is

a permutation matrix T , so that (TP)(TP)� is a Robinson matrix.

Further, Roberts’ characterization ([21]) also shows that a Robinson matrix corre-

sponds to the adjacency matrix of a unit interval graph, i.e., A is a Robinson matrix

if and only if A is an generalized adjacency matrix of a unit interval graph: recall

that a symmetric matrix (ai,j) is a generalized adjacency matrix of G = ([n], E) if

ai,j �= 0 ⇐⇒ {i, j} ∈ E. Thus, we may use graphs to describe the Robinson matri-

ces in the latter content. In the following, we list some characteristics on the proper

interval graph; and since the unit interval graphs are equivalent to proper interval

graphs, these properties applies to Robinson matrices as well.

Theorem 2.1 ([10, 21, 17, 22]). For graph G = ([n], E), the following are equivalent:

1. G is a proper interval graph.

2. [10] The clique-vertex incidence matrix of G has the C1P.

3. [10] (Clique condition) There is a permutation τ ∈ Pn such that the vertices

contained in any maximal clique of G are consecutive with respect to τ .

4. [21] G is a unit interval graph.

5. [21] G is a indifference graph with some embedding Π and threshold distance d.

6. [21] G is a K1,3-free interval graph (i.e., there is no K1,3 as induced subgraph

of G).

12

7. [17] (3-vertex condition) There is a permutation τ ∈ Pn such that for all x, y, z ∈

[n],

τ(x) < τ(y) < τ(z), {x, z} ∈ E ⇒ {x, y}, {y, z} ∈ E.

8. [22] (Neighbourhood condition) There is a permutation τ ∈ Pn such that for any

x ∈ [n] the vertices in N [x] are consecutive with respect to τ .

Although Gardi ([11]) proved the equivalence by Petrie matrices and the proper

interval graphs (i.e., (1) ⇒ (2) ⇒ (4) ⇒ (1)) before examining these works, we take

a detour to the more extensively studied topic, Robinson matrices.

2.1.2 Proper = Unit

In this subsection, we consider finding uniform embedding of a binary Robinson ma-

trix. By Theorem 2.1, the problem of finding a uniform embedding of a binary

Robinson matrix is equivalent to finding whether the graph of a matrix is a proper

interval graph, i.e., a graph is an indifference graph if and only if it is a unit interval

graph, if and only if it is a proper interval graph. Booth and Lueker in [3] first invent

one recognition algorithm for proper interval graphs, and later, more algorithms are

proposed, such as [17, 12, 6]. We find a proof of the equivalence between proper

interval graphs and unit interval graphs by [2] that constructs a unit interval graph

from a proper interval graph. We will see how this graph problem can be seen as a

special case of the uniform embedding problem.

Let A = (ai,j) ∈ Sn[k] with k = 1, which means A is a binary Robinson matrix.

Then, A − I is the adjacency matrix of a unit interval graph as in Item 4 of Theo-

rem 2.1. Let G = (V,E), where V = {Iv = [av, bv] : v ∈ [n]} and bv − av = 1 for all

v ∈ [n], be the unit interval graph representation of A. Take the middle point and

denote by Π(v) = (av + bv)/2, then |Π(v)−Π(u)| � 1 ⇐⇒ Iu ∩ Iv �= ∅. Then, Π is a

uniform embedding of Robinson matrix A with respect to 1. Notice that if we scale

the embedding Π by any d ∈ R, then dΠ, defined as (dΠ)(v) = d ·Π(v), is a uniform

embedding of A with respect to d. This concludes that any binary Robinson matrix

has a uniform embedding with respect to any d. Thus, if the graph representation

of a binary matrix is a unit interval graph, then the corresponding binary Robinson

matrix has a uniform embedding.

Then, by Theorem 2.1, a graph is a proper interval graph if and only if it is a unit

interval graph: Consider a unit interval graph and its intervals, if we take the middle

point of each interval, then the two intervals are adjacent to each other if and only if

13

the two middle points are within the unit length. Therefore, define a map that maps

n vertices, [n], to the middle points, such embedding is a uniform embedding of the

corresponding Robinson matrix. Thus, a binary Robinson matrix is an generalized

adjacency matrix of a proper interval graph if and only if it has a uniform embedding.

As we mentioned, recognizing proper interval graphs are extensively studied. If we

have an algorithm that transforms any proper interval graph to a unit interval graph,

then we find a uniform embedding for the corresponding binary Robinson matrix. In

[2], Bogart and West provide such an algorithm.

We will now describe the algorithm given in [2]. For a proper interval graph, the

fact that no interval is completely contained in another implies that the intervals can

be ordered such that V = {Iv = [av, bv] : v ∈ [n]} so that {av}, {bv} are both strictly

increasing, i.e., av < av+1 for all v ∈ [n − 1]. The algorithm is intuitive. Iteratively,

the algorithm adjusts the length of each interval Iv = [av, bv], for v = 1, . . . , n, to

the unit length. If the length of Iv is less than the unit length, then translate the

endpoints (both au’s and bu’s) on the right of bv to farther right; if the length of

Iv is greater than the unit length, then scale all endpoints on the left of bv, whose

interval are not adjusted yet, proportionally so that all the endpoints remains the

same order and is on the left of av + 1. Then, set new bv to av + 1, which finish

adjusting Iv. Precisely, the algorithm are defined as the following. Inductively, for all

v ∈ [n], suppose that all intervals Iu for u < v are adjusted to unit length. Consider

the following operation that adjusts interval Iv, for v ∈ [n].

1. Set α = max{av} ∪ {bu : bu ∈ Iv};

2. Scale proportionally or translate all bu that are between bv and α. Precisely, if

α < bv, then scale bu ∈ (α, bv] to (α, av + 1], with function f(x) = av+1−α
bv−α

x +
bv−av−1
bv−α

; If bv � α, then translate bw ∈ [bv,∞) by α − bv for all v < w. Finally,

set new bv = av + 1.

By the inductive hypothesis, all intervals before v are adjusted to the unit length.

And since we assumed that {av}, {bv} are strictly increasing, then we have that α <

min{av +1, bv}, i.e., for u < v, au < av and bu = au +1, so bu = au +1 < av +1, and

since the graph is proper, there are no u < v such that bu � bv. By the choice of α, the

endpoints bu for u < v are not involved in the adjustment of Iv. Finally, the scaling

and the translation does not change the order of aw, bw for all v < w, therefore the

graph remains the same. Therefore, the above procedure produces an interval graph

with the same adjacency matrix while all the intervals are of unit length.

14

In our work, for general Robinson matrices (i.e., in Sn[k]), however, we cannot

adapt the similar scaling/translating strategy. Intuitively, we can rewrite a Robinson

matrix into a family of binary Robinson matrices as in Equation (1.4.1). However,

notice that Definition 1.2 consist of an existence of a vector d = (di). When k = 1,

d = (d1) can be arbitrary without loss of generality. It is not shown, when k > 1,

that there exists a vector (di) that satisfies the condition. Thus, we cannot scale and

translate according to di’s. Alternatively, let a Robinson matrix be decomposed into a

family of nested proper interval graphs according to Equation (1.4.1), then transform

into a set of the unit interval graphs. However, defining a uniform embedding from

a unit interval graph is to take the middle point of each interval. Let I
(t)
v to be the

interval corresponds to vertex v in level graph G(t). Then, it requires the algorithm

to transform the middle points of I
(t)
v , for all t ∈ [k], to the same point in order to

define the uniform embedding with this strategy.

2.2 The Seriation Problem

In this section, we discuss the recognition of Robinson matrices. A symmetric matrix

A is a Robinsonian matrix if there exists a permutation matrix T so that TAT�

is a Robinson matrix. The permutation τ corresponding to T is called a Robinson

order. This setting is natural: recall the archaeology example, such that given a set of

objects and their pair-wise similarities as the entries, in order to find their sequence

dating, we need to find a permutation matrix so that it permutes columns and rows

to make it a Robinson matrix.

2.2.1 Seriation Problem

Given the similarities, finding the ordering so that the similarities have the “closer is

more similar” is known as the seriation problem. The seriation problem is originally

invented as an archaeological word to describe a method of relative dating : when

the methods of absolute dating (such as stratigraphy or radio carboning that directly

determines the age of the objects) cannot be applied to the newfound artifacts or

relics, archaeologists date the artifacts by their similarities to the others.

The bridge between math and archaeology is introduced after a series of works

by Petrie ([19]), Robinson ([23]), and Kendall ([13]). Flinders Petrie is commonly

recognized as one of the most important archaeologists who connects archaeology

and mathematics in his work Sequences in prehistoric remains ([19]). Petrie invented

15

sequence dating, in which it does not precisely provide the date (year/era) of the

manufacture date of the set of objects but provides a linear order on them. The Petrie

matrix is a common way of solving the seriation problem nowadays. In archaeology, a

Petrie matrix is a n×m matrix, where n is the number of items and m is the number

of identified features. Entry ai,e is set to 1 if object i has the feature e. Matrices in

this form are nowadays known as the vertex-clique incidence matrices.

W. Robinson put down another milestone on math and archaeology. Consider

a set of relics which are ordered as [n] = {1, 2, . . . , n} according to their actual

underlying chronological sequence. Denote ai,j as the similarity between relics i and

j, and notice that ai,j = aj,i for any two relics. If the ordering [n] on the objects indeed

corresponds to their chronological order, then the similarities satisfy Equation (1.2.1),

thus Robinson matrix is named after Robinson.

Readers may refer to the review [16] by Liiv for more background on archaeology

and seriation.

2.2.2 Recognizing Robinson Matrix

Suppose a matrix that consists of similarity measurements, but the measures are

obtained by “guessing”, then it is natural to ask whether this “guessing” is accurate

or not. It is also a presumption of our work, such that we assume the given matrix

is a Robinson matrix. In this subsection, we look at some works done on recognizing

whether a matrix is Robinsonian matrix, such as [3, 1, 6]. Readers may consult [25] by

Seminaroti who summarized the algorithms proposed during the past half a century,

in Table 3.6 and the corresponding section.

PQ-tree

Notice that for every Robinson matrix, there are at least two Robinson orders: one

Robinson order and its reversal; that is, the Robinson matrix itself and the Robinson

matrix obtained by permuting with permutation (n, n− 1, . . . , 2, 1). For example,

⎛
⎜⎜⎜⎜⎜⎜⎝

2 2 1 0 0

2 2 2 1 1

1 2 2 2 1

0 1 2 2 2

0 1 1 2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

2 2 1 1 0

2 2 2 1 0

1 2 2 2 1

1 1 2 2 2

0 0 1 2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

16

Moreover, if two rows are identical to each other rows, then we may reorder arbitrarily

and the resulting matrix is still a Robinson matrix. Booth and Lueker ([3]) designed

a data structure, PQ-tree, to store a family of permutations on the set [n]. A PQ-tree

is a tree where each element of [n] is a leaf node, and each non-leaf node is either

a P-node or a Q-node, each node has an ordering on its child nodes. The definition

of a PQ-tree is as the following. Based on one Robinson order, another permutation

is also a Robinson order if it can be generated by arbitrarily reordering the child

nodes of P-nodes while preserving the order of the child nodes of Q-nodes up to its

reversal. In [20, 18], two algorithms are proposed to recognize a Robinsonian matrix

using PQ-tree.

A Spectral Algorithm

In [1], Atkins et al. proposed a spectral algorithm that recognizes the Robinsonian

matrix based on the Fielder vector of its Laplacian matrix. The Laplacian matrix

LA of a symmetric matrix A = (ai,j) is the matrix LA = DA − A where DA =

(di,j) is a diagonal matrix where di,i =
∑

j∈[n] ai,j . The Fiedler value is the second

smallest eigenvalue, and an eigenvector corresponds to the Fiedler value is a Fiedler

vector. For simplicity to explain the intuition, we assume the given matrix is already

a Robinsonian matrix, is irreducible, and that contains no repeating rows. In [1], the

algorithm solves all the cases and return FALSE if the matrix is not Robinsonian; we

omit the complete procedure due to the relevancy of the content.

Atkins et al. show in [1] that, if a Robinson matrix A contains no repeating rows,

then any Fiedler vector of its Laplacian matrix is strictly increasing or decreasing

(i.e., let x = (xi) be a Fiedler vector, xi > xi+1 for all 1 � i < n or xi < xi+1 for all

1 � i < n).

Let T be a permutation matrix with appropriate dimension. The algorithm uses

the following linear algebra property. Notice that any two similar matrices share the

same characteristic polynomial; or equivalently, if matrices A and B has B = TAT�,

then the eigenvalues of A and B are the same. Let λ be an eigenvalue of A and let x

the corresponding eigenvector, then

(TAT�)Tx = TAx = T (λx) = λTx;

that is, Tx is the eigenvector corresponds to λ as an eigenvalue of TAT�. The

algorithm in [1] uses this property, where the subroutine is to find a permutation

matrix T that sorts a Fiedler vector of A in an increasing order, Tx. Then A is a

17

Robinsonian matrix if and only if TAT� is a Robinson matrix.

A Combinatorial Algorithm

Seriation problem for binary Robinson matrices is essentially a graph theory problem.

We mentioned that Roberts characterized that if a Robinson matrix is a generalized

adjacency matrix of a unit interval graph, then a list of properties in Theorem 2.1

applies to Robinson matrices as well. Also recall that Equation (1.4.1) rewrites a

Robinson matrix in Sn[k] as the adjacency matrix of a set of nested unit interval

grpahs. Therefore, finding an Robinson order of a matrix is equivalent to finding a

permutation τ so that each level graphs of the matrix satisfies the neighbour condition

(Item 8 in Theorem 2.1).

A series of works done by Habib ([12]), Corneil ([7, 6]), and Laurent and Semi-

naroti ([14, 15]) provides several combinatorial algorithms to recognize the Robinson

matrix. More precisely, to find a Robinson order of a Robinsonian matrix is to find a

permutation τ such that, for each level graph of A, τ satisfies the neighbour condition

(Item 8) in Theorem 2.1. In [6], Corneil proposed a 3-sweep algorithm that recognizes

the unit interval graphs base on the fact that unit interval graph has a perfect elim-

ination ordering. A perfect elimination ordering is an ordering, say [n], so that for

each i ∈ [n], N(i)∩ [i] forms a clique. In [24], Rose and Tarjan proposed a variation of

Breath-First Search algorithm (BFS algorithm), LexBFS algorithm, that breaks ties

in BFS algorithm according to a given order on the vertices in a graph. Habib ([12])

applied the LexBFS algorithm to recognize chordal graphs by recognizing its simpli-

cial vertex. Then, combining the fact that each unit interval graph contains at least

two simplicial vertices, Corneil proposed the 3-sweep algorithm that applies Lex-BFS

to a unit interval graph in [6]. Further, a graph is a unit interval graph if and only

if the ordering returned by the 3-sweep algorithm satisfies the neighbour condition.

Laurent and Seminaroti [14] proposed the algorithm, based on the 3-sweep algorithm

and that the Robinson matrix is a set of nested unit interval graphs, “refines” the

permutation so that it satisfies the neighbour condition for all level graphs G(t).

2.2.3 Time Complexity

In this thesis, we focus on the combinatorial properties of the algorithms; therefore,

we denote complexity of computing the eigenvalues as a variable, T (n), since the

algorithm involves some numerical analysis: it depends on which package does the

implementation use. All the above algorithms are in a polynomial time complexity:

18

In [1], the algorithm by Atkins et al.runs in O(n(T (n) + n log n)); the algorithm by

Laurent and Seminaroti ([14]) runs in k(m + n), where m is the number of positive

entries in the matrix and k is the maximum value in the entries (i.e., Sn[k]). In [25],

Seminaroti gives a survey about the algorithms on recognizing Robinson matrices,

and provides their novel algorithm base on the Similarity-First Search, which runs in

O(n + m logm). In this thesis, we will see that the procedure that determines and

computes a uniform embedding has a higher complexity than recognizing a Robinson

matrix. Therefore, in this thesis, we assume the matrices are given in the form of

Robinson matrix.

2.3 Uniform Linear Embeddings of Graphons

In this section, we discuss another important motivation of this thesis from [5] by

Chuangpishit, Ghandehari, and Janssen. Namely, these authors in [4] consider a

problem very similar to the one considered in this thesis, namely the problem of

finding a uniform embedding of a graphon rather than a matrix.

Let W0 denote the set of all symmetric measurable functions w : [0, 1]2 → [0, 1].

A function w ∈ W0 is called a graphon. A graphon w is diagonally increasing if, for

all x, y, z ∈ [0, 1],

w(x, y) � w(x, z) if x � y � z,

w(y, x) � w(z, x) if y � z � x.

The analysis in [5] assumed the graphons to be finitely valued, that is, let the range

of function w be range(w) = {α1, . . . , αk}, where α1 > α2 > · · · > αk. A graphon w

has a uniform linear embedding if there is an embedding π : [0, 1] → [0, 1] and real

numbers 0 < d1 < · · · < dk so that, for all x, y ∈ [0, 1],⎧⎪⎨
⎪⎩

w(x, y) = αi ⇐⇒ |π(x)− π(y)| � dk

w(x, y) = αi ⇐⇒ di < |π(x)− π(y)| � di+1 and 1 < i < k

w(x, y) = αi ⇐⇒ d1 < |π(x)− π(y)|

Notice that the definition of a diagonally increasing graphon is similar to the definition

of a Robinson matrix (i.e., 1.2.1), and the definition of the uniform linear embedding

is similar to uniform embedding. In the context of this thesis, a Robinson matrix is a

special case of graphons. Divide [0, 1] into n intervals, Ii = (bi, bi+1), where b1 = 0 and

bn+1 = 1. Define graphon w(x, y) = au,v ⇐⇒ x ∈ Iu, y ∈ Iv. Intuitively, obtaining a

graphon from a Robinson matrix is to divide the unit square [0, 1]2 into n × n grids

and assign value to each u, v-th grid by the entry value au,v.

19

We could also notice that, for any graphon w that is finitely valued (i.e., as

defined above), w can be determined by sets of functions as the following. Define

li, ri : [0, 1] → [0, 1] as

li(x) = inf{y ∈ [0, 1] : w(x, y) � αi} and

ri(x) = sup{y ∈ [0, 1] : w(x, y) � αi}.

In other words, li’s and ri’s, for i ∈ [k], indicates the boundary between the regions

where w(x, y) � αi and w(x, y) < αi.

The approach in [5] concatenates li’s and ri’s with appropriate domains to parti-

tion [0, 1] into intervals; and for each interval, define a uniform linear embedding of

the graphon. This approach is technical but based on the functions li and ri, and

gives a sufficient and necessary condition of a diagonally increasing function that has

a uniform linear embedding. However, we may not adapt their result to this thesis.

In their work, they assumed that set li, ri are strictly increasing; but, for Robinson

matrices, the boundary functions are the boundaries along the grids, which are de-

fined naturally to be step functions, and the step functions are not strictly increasing.

As for when li, ri that are not strictly increasing, the result does not apply to our

case.

Chapter 3

Uniform Embedding

In this chapter, we aim to prove the main result of this thesis, Theorem 3.18. Recall

the definition of uniform embedding, Definition 1.2, stated again here.

Given a matrix A ∈ Sn[k] and a threshold vector d ∈ Dk, a map Π : [n] →

R is a uniform embedding of A with respect to d if, for each pair u, v ∈ [n]

(1.3.1) is satisfied:

au,v = t ⇐⇒ dt+1 < |Π(v)− Π(u)| � dt for t ∈ {0, . . . , k},

where we define dk+1 = −∞ and d0 = ∞, so that the lower bound for

au,v = k and the upper bound for au,v = 0 are trivially satisfied.

We say that matrix A has a uniform embedding if there exists some d ∈ Dk so that

A has a uniform embedding with respect to d.

We will show that a uniform embedding with respect to d exists if and only

if all the inequalities implied by Definition 1.2 do not contradict each other, as in

Example 1.3: this is immediate for the implication, yet the converse requires more

tools to see. In Section 3.1, we study the form of the embedding Π of a uniform

embedding and show that, if a matrix has a uniform embedding, then it also has one

that is strictly increasing. Further, we show that, if a uniform embedding exists, then

there is a uniform embedding that also satisfies (1.3.1) but where both upper and

lower bound are strict inequalities. Section 3.2 defines the bounds in Example 1.3 in

terms of k-dimensional integer vectors and independent of the threshold vector Dk;

we define these bounds independent from the threshold vector d, but associate the

bounds with the edges in the graph of a Robinson matrix. We obtain walks and paths

from concatenating edges, and depending on the upper/lower bounds they induce, we

call them upper- and lower-bound-walks (or bound-paths). We then observe that the

upper- and lower-bound-paths (i.e., walks that contain no repeating vertices) are

sufficient to determine the existence of a uniform embedding of a given Robinson

matrix A: We express this condition in terms of a system of inequalities that involves

only the variable d1, . . . , dk. This system has a solution if and only if the matrix has

uniform embedding.

20

21

3.1 Strict Monotonicity of Uniform Embedding

In this section, we look at the form of a uniform embedding of a Robinson matrix.

This is expressed in the following theorem.

Theorem 3.1. Let A ∈ Sn[k]. If A has a uniform embedding, then there exists d ∈ Dk

and a uniform embedding Π of A with respect to d which is strictly increasing, and

which is such that the inequalities in (1.3.1) are all strict. That is, for all pairs of

u, v ∈ [n], u < v,

au,v = t ⇐⇒ dt+1 < Π(v)− Π(u) < dt, (3.1.1)

where dk+1 = 0 and d0 = ∞.

We assume the Robinson matrices in this section all have a uniform embedding

(so we do not need to repeat “if the matrix has a uniform embedding” every time).

Suppose Π is a uniform embedding of Robinson matrix A, we call Π(u) as the uniform

embedding of vertex u or the uniform embedding of row u. Notice, if the embedding

of two repeating rows u and v is Π(u) = Π(v), it does not violate inequalities (1.3.1).

However, to be able to distinguish different vertices, it is natural to look for a uniform

embedding that is injective. The strict lower bound of (3.1.1) implies that the uniform

embedding has the nice property of being injective. The removal of the absolute signs

together with the lower bound imply that a uniform embedding satisfying (3.1.1) is

strictly increasing. Thus, when we compute a new distance between the embedding

of vertices based on an old bound, for u < v < w, then we can write Π(w)− Π(u) =

Π(w)−Π(v)+Π(v)−Π(u) without the absolute value signs. Another rewrite is that

the strict upper bound on Π(v) − Π(u): this avoids the future proofs from dividing

into cases such that |Π(u)− Π(v)| = dt or |Π(u)− Π(v)| < dt, where t = au,v.

We break down the theorem into several steps. First, Lemma 3.2 proves that,

if a strictly increasing uniform embedding satisfies Condition (1.3.1), then we can

construct another uniform embedding with Condition (3.1.1). We then justify why

we assume Π(1) = 0 without loss of generality in Lemma 3.3. Then, we show that the

uniform embedding of a Robinson matrix with no repeating rows is always strictly

increasing in Lemma 3.4. By combining Lemma 3.2 and Lemma 3.4, we prove The-

orem 3.1 by showing that we can place the embedding of all repeating rows close

enough, while the embedding remains strictly increasing.

Lemma 3.2. Let Π be a uniform embedding of A ∈ Sn[k] with respect to d ∈ Dk

and suppose Π is strictly increasing. Then, there exists an increasing Π′ where all

inequalities are strict, i.e., satisfies Condition (3.1.1).

22

Proof: Let Π be a uniform embedding of A ∈ Sn[k] with respect to d ∈ Dk that is

strictly increasing. Write d = (di). If dt+1 < Π(v)− Π(u) < dt where t = au,v for all

u, v ∈ [n] with u < v, then Π′ = Π satisfies the statement of the lemma. Therefore,

we assume there exists at least one pair u, v ∈ [n] such that Π(v)−Π(u) = dt, where

t = au,v. Let u ∈ [n] to be minimum vertex (index) such that there is v ∈ [n]

with Π(v) − Π(u) = dt where t = au,v. Let v be the minimum as well. Notice,

for any i, j ∈ [n] with i < j, t = ai,j implies that dt+1 < Π(j) − Π(i), and thus

Π(j) > dt+1 + Π(i). Let ε = mini,j∈[n],i<j{Π(j) − Π(i) − dt+1 : ai,j = t}, and notice

that ε > 0. Then, define

Π0(i) =

{
Π(i) for i � u,

Π(i)− ε
2

for i > u.

Such Π0 is a uniform embedding of A with respect to d:

1. For any pairs i, j both in {1, . . . , u} or both in {u + 1, . . . , n}, Π(j) − Π(i) =

Π0(j)− Π0(i);

2. For any i ∈ {1, . . . , u}, j ∈ {u+ 1, . . . , n},

Π(j)− Π(i)− ε < Π(j)−
ε

2
− Π(i) = Π0(j)− Π0(i),

where the inequality holds since ε > 0 and the equality is given by the definition

of Π0.

Observe that Π0(v)−Π0(u) = Π(v)− ε
2
−Π(u) = dt−

ε
2
< dt, so that pair u, v satisfies

(3.1.1); and there is no new pairs u′, v′ ∈ [n] so that Π0(v
′)−Π0(u

′) = dt. Iteratively,

obtain Π1,Π2, . . . ,Πr until all such u, v pairs, where t = au,v and Π(v) − Π(u) = dt,

are adjusted to satisfy (3.1.1). Then, Π′ = Πr is a uniform embedding of A with

respect to d with all pairs of u < v, au,v = t ⇐⇒ dt+1 < Π(v) − Π(u) < dt (i.e.,

(3.1.1)).

Lemma 3.3. If Robinson matrix A ∈ Sn[k] has uniform embedding, then A has a

uniform embedding Π′ with Π′(1) = 0.

Proof: Let Π be a uniform embedding of Robinson matrix A with respect to d.

Define Π′ as Π′(v) = Π(v) − Π(1) for v ∈ [n], observe that Π′ is also a uniform

embedding of A with respect to d since the distance between Π(v)−Π(u) is retained.

Meanwhile, Π′(1) = Π(1)− Π(1) = 0, which was what we want.

This lemma essentially allows us to simultaneously translate images of Π and set

Π(1) = 0 without loss of generality.

23

Lemma 3.4. Let A ∈ Sn[k] be a Robinson matrix with no repeating rows. Suppose

Π is a uniform embedding of A with respect to d ∈ Dk, then Π is strictly monotone.

If Π(1) < Π(2), then Π is strictly increasing; and if Π(1) > Π(2), then Π is strictly

decreasing.

Proof: Let A ∈ Sn[k] that contains no repeating rows. Suppose that Π is a uniform

embedding of A with respect to d ∈ Dk. We will prove that Π is strictly increasing,

that is, assume Π(1) < Π(2), we will show Π(i) < Π(i+ 1) for all i < n.

To prove this lemma, we break it down to two parts. First we prove that all

vertices are embedded to distinct values. Second, we prove that the embedding Π is

increasing. And thus, Π is strictly increasing.

We assumed that there are no repeating rows in the matrix, therefore, the embed-

ding of the rows are distinct. To prove it, toward contradiction, suppose Π(u) = Π(v),

then

dt+1 < |Π(w)− Π(u)| = |Π(w)− Π(v)| � dt

for all w ∈ [n], and by Definition 1.2, au,w = av,w = t. This contradicts to the

assumption that A contains no repeating rows.

We now assume Π(1) � Π(2). We proceed an inductive proof such that Π re-

stricted to [v] is strictly increasing for each v from 2 to n. The base case, Π(1) < Π(2),

holds by the assumption and that Π(1) �= Π(2).

Inductively, suppose v � 2 and Π is strictly increasing restricted to [v−1]. By the

inductive hypothesis, it suffices to prove that Π(v − 1) < Π(v) to show Π is strictly

increasing restricted to [v]. Since there are no repeating vertices in A, let w ∈ [n] be

a vertex such that av−1,w �= av,w.

1. Suppose w < v. By the definition of Robinson matrix, (1.2.1), av−1,w > av,w.

Denote t1 = av−1,w, t2 = av,w for some t1 > t2. By Definition 1.2, dt1 < dt2 and

dt1+1 < Π(v − 1)− Π(w) � dt1 � dt2+1 < Π(v)− Π(w) � dt2 . (3.1.2)

In (3.1.2), the sequence of strict inequalities on the left and the right is from

Definition 1.2, the non-strict inequality in the middle is because t1 > t2 but

t1 = t2 + 1 is possible. Rewrite (3.1.2) to obtain Π(v − 1) < Π(v).

2. Suppose w has v < w. First need to show Π(v) � Π(w). Let t1 = av−1,w, t2 =

av,w, where t1 < t2, by the definition of Robinson matrix, (1.2.1). Then, by

Definition 1.2, dt1 > dt2 and

dt2+1 < Π(w)− Π(v) � dt2 � dt1+1 < Π(w)− Π(v − 1) < dt1 . (3.1.3)

24

0 R|

Π(i1)

|

Π(i2)

|

Π(j)

† † · · · †

Π(j + 1), . . . ,Π(j + ri)

|

ε

dt1
dt2

Figure 3.1: A sketch of proof of Theorem 3.1

Rewrite to obtain Π(v − 1) < Π(v).

This concludes Π(v − 1) < Π(v). Thus, if Π(1) < Π(2), then Π is strictly increasing

defined on any [v] for v from 2 to n. If we assume Π(1) > Π(2), then we can prove

Π is strictly decreasing with the same logic. Thus, Π is strictly monotone defined on

[n].

To complete the section, we prove Theorem 3.1. The proof is partially completed

by Lemma 3.2 and Lemma 3.4 but missing the repeating rows. The proof of Theo-

rem 3.1 is technical, so I lay down a proof sketch prior to the actual proof. Intuitively,

the repeating rows are essentially a set of undistinguishable vertices, and therefore, we

can map them to the same real number. However, for the statement of Theorem 3.1,

we want to find a strictly increasing function, so we want to find a map that em-

beds the repeating rows to different values. We proved Lemma 3.2, so obtaining the

strictly increasing mapping on the repeating rows is not hard to accomplish: consider

a matrix A that has a uniform embedding, and let row j, j + 1 be repeating rows in

A. We first get a uniform embedding Π of the matrix obtained from A by removing

all the repeating vertices except one. We can assume that Π is strictly increasing

according to Lemma 3.4, this means it follows Condition (3.1.1). Then there always

is space between Π(j) and Π(i) + dt where t = ai,j (i.e., Π(j) < Π(i) + dt). Then,

by the property of real numbers, we can fit any number of embedding on the interval

(Π(j),Π(j) + ε) with ε small enough. Define Π(j + 1) by arbitrary number in the

interval, Π(j + 1) satisfies Definition 1.2. Shown as in Figure 3.1.

Proof of Theorem 3.1: Suppose A has a uniform embedding with respect to d = (di).

Let I be an index set that contains maximum number of non-repeating rows by their

25

first appearance: for all j �∈ I, there is i ∈ I such that i, j are repeating rows and

i < j.

Let Π′ be a uniform embedding of A, then let Π′′ = Π′|I defined on I where

Π′′(v) = Π′(v) for all v ∈ I. Notice, the induced submatrix A[I] is a Robinson matrix

that contains no repeating rows and has a uniform embedding Π′′ and Π′′ is strictly

increasing by Lemma 3.4.

Either Π′′ satisfies (3.1.1) that all inequalities are strict, or there is Π′′(v)−Π′′(u) =

dt, where t = au,v; apply Lemma 3.2 to Π′′, we obtain a uniform embedding Π0 : I → R

that is a strictly increasing uniform embedding of A[I] with respect to d that satisfies

Condition (3.1.1) (i.e., all inequalities are strict). For each i ∈ I, let

2εi = min{dt − (Π0(i)− Π0(j)) : j < i, j ∈ I, ai,j = t}∪

{(Π0(j)− Π0(i))− dt+1 : i < j, j ∈ I, ai,j = t}.
(3.1.4)

Notice, Π0 is a uniform embedding of A[I] that is strictly increasing, i.e., for all i, j ∈

I, if i < j, then dt+1 < Π0(j)−Π0(i) < dt, and if j < i, then dt+1 < Π0(i)−Π0(j) < dt:

therefore 2ε > 0 (and thus ε > 0).

(In other words, for each of i ∈ I, interval (Π0(i),Π0(i)+2εi) defines the restricted

space of placing the embedding of the repeating rows that are identical as row i.

That is, for any row i+ k that is identical to row i, defining Π0(i+ k) � Π0(i) + 2εi

results in violating Π0 being a uniform embedding; or equivalently, we may only define

Π0(i + k) < Π0(i) + 2εi to obtain Π0 as a uniform embedding. Moreover, the scalar

“2” of 2ε can be any constant c > 1. That is, we will define all the embedding of

repeating rows, that are identical to row i, strictly less than Π0(i) + c · ε: precisely,

define the repeating rows in interval (Π0(i),Π0(i) + εi], where the embedding of the

repeating row with the largest index, i + ri, is Π0(i + ri) = Π0(i) + εi < Π0(i) + c · ε

for any c > 1.)

Let i < j be a consecutive pair in I (i.e., i, j ∈ I, there is no k ∈ I such

that i < k < j), denote ri be the size of index set {i + 1, . . . , j − 1} where rows

i, i+1, . . . , j−1 are repeating rows that are identical as row i in A. Define Π : [n] → R

where Π|I = Π0, and for each i ∈ I, define Π for j �∈ I by

Π(i+ k) = Π(i) +
k

ri
εi for 1 � k � ri.

Let i ∈ I be arbitrary and we verify that Π is a uniform embedding of A. We divide

into two cases, such that for all j ∈ I, j �= i, either i < j or j < i, we verify for all

k ∈ [ri], Π(j)− Π(i+ k) or Π(i+ k)− Π(j) satisfies (3.1.1).

26

1. First, assume j < i. Let 1 � k � ri. By definition, Π(i + k) − Π(j) = Π(i) −

Π(j) + k
ri
εi. Notice the following inequalities,

Π(i)− Π(j) +
k

ri
εi < Π(i)− Π(j) + εi

� Π(i)− Π(j) + dt − (Π(i)− Π(j))

= dt

where t = ai,j . This gives Π(i + k) − Π(j) < dt. Recall that ai+k,j = t = ai,j since

i, i+ k are repeating rows, this gives:

ai+k,j = ai,j = t ⇐⇒ dt+1 < Π(i)− Π(j) < Π(i+ k)− Π(j) < dt.

2. Next, assume i < j and 1 � k � ri. By definition, Π(j) − Π(i + k) = Π(j) −

(Π(i) + k
ri
εi) and observe that

Π(j)− Π(i)−
k

ri
εi > Π(j)− Π(i)− εi

� Π(j)− Π(i)− (Π(j)− Π(i)− dt+1)

= dt+1

where t = ai,j. This gives Π(j)− Π(i) > dt+1. Recall ai+k,j = ai,j = t and

ai+k,j = t = ai,j ⇐⇒ dt+1 < Π(j)− Π(i) < Π(j)− Π(i+ k) < dt.

So the two cases establish that Π is a uniform embedding of A with respect to d and

satisfies (3.1.1).

Note that the definition of dk+1 in Theorem 3.1 has changed from −∞ to zero as in

(3.1.1); this change enforces that Π is strictly increasing. In the later context, we

will assume that any uniform embedding Π of matrix A with respect to any d is a

map Π : [n] → R which satisfies (3.1.1) (with the new definition of dk+1). This will

simplify the proofs and reduce the need to distinguish different cases. By Theorem

3.1, we can make this assumption without loss of generality.

3.2 Bounds, Walks, and Their Concatenation

Recall that matrix B in Example 1.3 does not have a uniform embedding since a

contradictory bound is derived on Π(6)−Π(1). Consider matrixB and its graph shown

27

1 2 3 4 5 6

d1 d2

d2 d1

Figure 3.2: The graph of B in Example 1.3

in Figure 3.2, where orange edges represent the entries with value 1 and green edges

represent the entries with value 2. In addition, let intervals with arrows
dt indicate

dt is a lower bound on Π(u)−Π(v) for any uniform embedding, i.e., dt < Π(u)−Π(v);

and the intervals with bars
dt indicate dt is an upper bound of Π(u)−Π(v), i.e.,

Π(u) − Π(v) < dt. The contradiction on B also can be seen as a contradiction on a

sequence of vertices 〈1, 4, 6, 2, 1〉.

Definition 3.5. Let A ∈ Sn[k] and assume Π is a uniform embedding of A with

respect to d ∈ Dk. Fix u, v ∈ [n], u < v. A vector b ∈ Z
k is an upper bound on (u, v)

if the inequality Π(v)− Π(u) < b�d is implied by the inequality system (3.1.1).

Similarly, the vector b is a lower bound on (u, v) if the inequality b�d < Π(v) −

Π(u) is implied by (3.1.1).

It follows directly from inequality system (3.1.1) that, for any matrix A ∈ Sn[k],

and any pair u, v ∈ [n], the all-zero vector 0 is a lower bound on (u, v) since we

assumed all of the uniform embeddings are strictly increasing. We also extend the

lower bound and upper bound on (u, u). Note that if a is a lower bound and b is an

upper bound on (u, v) for any u < v, then 0 < (b − a)�d is implied. Therefore, a

bound on (u, u) is an inequality involving only d1, d2, . . . , dk, and does not involve Π.

Remark 3.6. Given any uniform embedding Π of Robinson matrix, for any u, v, w ∈

[n], the following equalities hold independently of d ∈ Dk.

Π(v)− Π(u) =

⎧⎪⎪⎨
⎪⎪⎩
(Π(w)− Π(u))− (Π(w)− Π(v)) if u < v < w

(Π(v)− Π(w))− (Π(u)− Π(w)) if w < u < v

(Π(w)− Π(u)) + (Π(v)− Π(w)) if u < w < v

(3.2.1)

(3.2.2)

(3.2.3)

28

Lemma 3.7. Let A ∈ Sn[k] and let u, v, s ∈ [n] with u < v.

1. If u < s < v, let a,a′ be lower bounds on (u, s), (s, v), b, b′ be upper bounds on

(u, s), (s, v). Then a+ a′ is a lower bound on (u, v) and b+ b′ is an upper bound on

(u, v).

2. If s < u < v, a,a′ be lower bounds on (s, u), (s, v), b, b′ be upper bounds on

(s, u), (s, v). Then a′ − b is a lower bound on (u, v) and b′ − a is an upper bound on

(u, v);

3. if u < v < s, a,a′ be lower bounds on (u, s), (v, s), b, b′ be upper bounds on

(u, s), (v, s). Then a− b′ is a lower bound on (u, v) and b− a′ is an upper bound on

(u, v).

Proof: Suppose A has uniform embedding Π with respect to any d. Consider when

u < s < v. Let a,a′ be lower bounds on (u, s), (s, v), and let b, b′ be upper bounds

on (u, s), (s, v). The following inequalities are implied by (3.1.1),

a�d < Π(s)− Π(u) < b�d

a′�d < Π(v)− Π(s) < b′�d

Apply the two sequences of inequality by Equation (3.2.3), then

(a+ a′)�d < Π(v)− Π(u) < (b+ b′)�d.

Other results can be obtained by the same logic.

Let χi ∈ Z
k denote the unit vector with 1 at the ith position and zero otherwise

and let 0 be the all-zero vector. Recall, we defined a symmetric matrix A = (ai,j) is

a generalized adjacency matrix of G = ([n], E) if {i, j} ∈ E if and only if ai,j �= 0.

Definition 3.8. Let A = (ai,j) ∈ Sn[k] and let A be a generalized adjacency matrix

of G = ([n], E). Let {u, v} ∈ E, define the upper bound induced by edge {u, v} as

β+({u, v}) = χt for t ∈ [k] so that au,v = t, and β+({u, v}) is not defined if au,v = 0.

Similarly, define the lower bound induced by edge {u, v} to be

β−({u, v}) =

{
χt+1 if au,v = t, t � k − 1;

0 if au,v = k.

For u, v ∈ [n] so that {u, v} �∈ E, define {u, v} to be a null-edge. In other word,

there is a null-edge {u, v} if au,v = 0. Define the lower bound induced by null-edge

{u, v} by β−({u, v}) = χ1.

29

Lemma 3.9. Let A = (ai,j) ∈ Sn[k], let u, v ∈ [n] and u < v. The upper bound

induced by edge {u, v}, β+({u, v}), is an upper bound on (u, v); the lower bound

induced by edge or null-edge {u, v}, β−({u, v}), is a lower bound on (u, v).

Proof: The proof follows from Condition (3.1.1) immediately. For all uniform em-

bedding Π of A with respect to any d, for any u, v ∈ [n], u < v, β+({u, v}) = χt and

β−({u, v}) = χt+1 or β−({u, v}) = 0 if au,v = k. Recall we assume without loss of

generality that Π satisfies (3.1.1),

dt+1 = χ�t+1d < Π(v)− Π(u) < χ�t d = dt;

or when β−({u, v}) = 0, the lower bound is 0; or when au,v = 0, Π(v) − Π(u)

is unbounded from above. Therefore, β+({u, v}) is an upper bound on (u, v) and

β−({u, v}) is a lower bound on (u, v).

In addition, we use bounds to rewrite (3.1.1) with bounds. For all t ∈ [k − 1], for

all u, v ∈ [n] where u < v,

au,v = t ⇐⇒ β−({u, v})�d < Π(v)− Π(u) < β+({u, v})�d, (3.2.4)

and for t = 0, β−({u, v})�d < Π(v)− Π(u).

Example 3.10. We use matrix A = (ai,j) in Example 1.3,

(ai,j) =

1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 2 2 1 0 0

2 2 2 2 1 1

3 1 2 2 2 1

4 0 1 2 2 2

5 0 1 1 2 2

,

as a generalized adjacency matrix of the graph in Figure 3.3. Coloured with the

same rule as in Figure 3.2, the orange edges represent the entries with value 2, green

edges are the entries with value 1, and pairs without an edge represent the entries

with value 0, or say they are null-edges. Notice that upper bound β+({1, 5}) is

not defined, but there are implied upper bounds: consider β+({1, 3}) = χ1 and

β+({3, 5}) = χ1. For any uniform embedding Π of A with respect to any d, Π

satisfies inequalities (3.1.1) and all the implied inequalities, then Π(5) − Π(1) =

Π(3)−Π(1) +Π(5)−Π(3) < (β+({1, 3}) + β+({3, 5}))�d = (χ1 +χ1)
�d. Therefore,

30

1 2 3 4 5

Figure 3.3: The graph of matrix A in Example 1.3

it is natural that 2χ1 = (2, 0)� is an upper bound on vertices (1, 5). Similarly, consider

β−({1, 3}) = χ2, β
−({3, 5}) = χ2, so 2χ2 = (0, 2)� is a lower bound on vertices (1, 5).

Consider the upper bounds on vertices (4, 5): there is β+({4, 5}) = χ2 as an upper

bound on (4, 5). But notice, it is not the only upper bound: consider β+({2, 5}) =

d1, β
−({2, 4}) = d2. Then for any embedding Π with respect to d, Π(5) − Π(4) =

((Π(5)− Π(2))− (Π(4)− Π(2)))� d < (β+({2, 5}) − β−({4, 5}))�d = (χ1 − χ2)
�d.

Thus, χ1 − χ2 = (1,−1)� is also an upper bound on vertices (4, 5).

Example 3.10 shows how bounds can be generated by concatenating edges or null-

edges that share the same endpoints. Next we define how to concatenate edges so

that it results in upper bounds or lower bounds on pairs of vertices.

Definition 3.11. Given an alternating sequence W = 〈w0, e1, w1, . . . , wp〉 and w0 <

wp. Suppose

ei is

{
an edge if wi−1 < wi,

an edge or a null-edge if wi−1 > wi,
(3.2.5)

then we call W a (w0, wp)-upper-bound-walk, and define the upper bound induced by

W as

β+(W) =
∑

i∈[p]:wi−1<wi

β+(ei)−
∑

i∈[p]:wi−1>wi

β−(ei).

Suppose

ei is

{
an edge if wi−1 > wi,

an edge or a null-edge if wi−1 < wi,

then we call W a (w0, wp)-lower-bound-walk, and define the lower bound induced by

W as

β−(W) =
∑

i∈[p]:wi>wi−1

β−(ei)−
∑

i∈[p]:wi<wi−1

β+(ei).

31

Lemma 3.12. For an alternating sequence of vertices and edges or null-edges W =

〈w0, e1, w1 . . . , wp〉, where ei = {wi−1, wi} that satisfies (3.2.5). Then, if w0 < wp,

then Sp(W) is an upper bound on w0, wp; if wp < w0, then −Sp(W) is a lower bound

on (wp, w0).

To simplify the notation in the following proof, consider W = 〈w0, . . . , wp〉, define

Sq(W) as

Sq(W) =
∑

i∈[q]:wi−1<wi

β+(ei)−
∑

i∈[q]:wi−1>wi

β−(ei),

defined on all q ∈ [p].

Proof: We proceed an inductive proof on the length p such that given W of length

p that satisfies (3.2.5): if w0 < wp, then Sp(W) is an upper bound on (w0, wp); if

wp < w0, then −Sp(W) is a lower bound on (wp, w0). When p = 1, by Lemma 3.9

1. if w0 < w1, then β+(e1) is an upper bound on (w0, w1);

2. if w1 < w0, then β−(e1) is a lower bound on (w1, w0).

Rewrite it in terms of Sq(W): given W = 〈w0, e1, w1〉, if w0 < w1, then S1(W) =

β+(e1) is an upper bound w0, w1; if w1 < w0, then −S1(W) = β−(e1) is a lower bound

on (w1, w0). So the base case holds.

Suppose that the inductive hypothesis holds for q, where q < p, such that, for

any alternating sequence W ′ = 〈w0, e1, w1, . . . , wq〉 that satisfies (3.2.5), Sq(W
′) is an

upper bound on (w0, wq) if w0 < wq and −Sq(W
′) is a lower bound on (wq, w0) if

wq < w0.

Let W = 〈w0, . . . , wp〉 be such that satisfies (3.2.5). Suppose that w0 < wp−1,

then Sp−1(W) is an upper bound on (w0, wp−1) by the inductive hypothesis. Recall

Lemma 3.7:

1. if w0 < wp−1 < wp, then β+(ep) is an upper bound on (wp−1, wp). So

Sp−1(W) + β+(ep) = Sp(W)

is an upper bound on (w0, wp) by Lemma 3.7 Item 1;

2. if w0 < wp < wp−1, then β−(ep) is a lower bound on (wp, wp−1). So

Sp−1(W)− β−(ep) = Sp(W)

is an upper bound on (w0, wp) by Lemma 3.7 Item 3;

32

3. if wp < w0 < wp−1, then β−(ep) is a lower bound on (wp, wp−1). So

β−(ep)− Sp−1(W) = −Sp(W)

is a lower bound on (wp, w0) by Lemma 3.7 Item 3.

Next, suppose wp−1 < w0, then −Sp−1 is a lower bound on (wp−1, w0) by hypoth-

esis. Again consider Lemma 3.7:

1. if wp−1 < w0 < wp, then β+(ep) is an upper bound on (wp−1, wp). So

β+(ep)− (−Sp−1(W)) = Sp(W)

is an upper bound on (w0, wp) by Lemma 3.7 Item 2;

2. if wp−1 < wp < w0, then β+(ep) is an upper bound on (wp−1, wp). So

(−Sp−1(W))− β+(ep) = −Sp(W)

is a lower bound on (wp, w0) by Lemma 3.7 Item 2;

3. if wp < wp−1 < w0, then β−(ep) is a lower bound on (wp, wp−1). So

(−Sp−1(W)) + β−(ep) = −Sp(W)

is a lower bound on (wp, w0) by Lemma 3.7 Item 1.

The above 6 cases conclude all possible orders of w0, wp−1, and wp: Either w0 < wp,

then Sp(W) is an upper bound on (w0, wp); or wp < w0, then −Sp(W) is a lower

bound on (wp, w0). This shows that the inductive hypothesis holds when the length

is p.

Given an alternating sequence W = 〈w0, . . . , wp〉 that satisfies (3.2.5) and suppose

wp < w0, so −Sp(W) is a lower bound on (wp, w0). Define the reverse of W , W←, as

the following and relabel the sequence as:

W← = 〈wp, ep, wp−1, . . . , w1, e1, w0〉

= 〈x0, f1, x1, . . . , xp−1, fp, xp〉,

where xi = wp−i and {xi−1, xi} = fi = ep−i+1 = {wp−i+1, wp−i}, and thus

fi =

{
an edge if xi−1 > xi,

an edge or a null-edge if xi−1 < xi.

33

Notice that we only relabelledW , so Lemma 3.12 still holds. Therefore, when−Sp(W)

is a lower bound on (wp, w0); or equivalently, −Sp(W) a lower bound on (x0, xp):

−Sp(W) =
∑

i∈[p]:wi−1>wi

β−(ei)−
∑

i∈[p]:wi−1<wi

β+(ei)

=
∑

j∈[p]:xj>xj−1

β−(fj)−
∑

i∈[p]:xj<xj−1

β+(fj) = β−(W←).

Meanwhile, notice W← satisfies the definition of a (x0, xp)-lower-bound-walk.

In the above, we argued how to concatenate edges and null-edges so that it gives

another upper bound (or lower bound) on a pair of vertices (u, v), where u < v.

Such concatenation is conventionally defined as a walk (in graph theory), but the

alternating sequence is not exactly a walk due to the possible inclusion of null-edges.

Thus, we distinguish the two kinds of sequences, namely, (w0, wp)-upper-bound-walk

if it induces an upper bound on (w0, wp), or (w0, wp)-lower-bound-walk if it induces

a lower bound on (w0, wp), as in Definition 3.11 and Lemma 3.12.

For abbreviation, we omit the (u, v) pair before upper- or lower-bound-walks if

the context is clear.

By Lemma 3.12, whenW is an (u, v)-upper-bound-walk, β+(W) is an upper bound

on (u, v); when W is an (u, v)-lower-bound-walk, then β−(W) is a lower bound on

(u, v). Here are some examples of upper- and lower-bound-walk in examples below,

and an intuitive picture in Figure 3.4.

Example 3.13. Use the matrix in Example 1.3 again, presented in Figure 3.4. Ob-

serve that the alternating sequence W4,5 = 〈4, {4, 2}, 2, {2, 5}, 5〉 is a (4, 5)-upper-

bound-walk. And notice β+(W4,5) = −β−({4, 2})+β+({2, 5}) = −(0, 1)�+(1, 0)� =

(1,−1)� is a lower bound on (4, 5).

Observe that the alternating sequenceW4,1 = 〈4, {4, 5}, 5, {5, 1}, 1〉 satisfies (3.2.5),

where {5, 1} is a null-edge. Then W←
4,1 = 〈1, {5, 1}, 5, {4, 5}, 4〉 is a (1, 4)-lower-bound-

walk and β−(W←
4,1) = −S2(W4,1) = −(−(1, 0)�+ (0, 1)�) = (1,−1)� is a lower bound

on (1, 4).

Also, notice that an alternating sequence W = 〈w0, . . . , v〉 may be both an upper-

and a lower-bound-walk if all the ei involved in W are edges (no null-edges).

34

1 2 3 4 5

d2

d1

d1 − d2

d1

d2d1 − d2

d2 d2

2d2

d1 d1

2d1

Figure 3.4: The graph of matrix A with induced bounds of bound-walks

Example 3.14. We repeat matrix A = (ai,j) in Example 1.3 again:

(ai,j) =

1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 2 2 1 0 0

2 2 2 2 1 1

3 1 2 2 2 1

4 0 1 2 2 2

5 0 1 1 2 2

The alternating sequence W = 〈1, {1, 3}, 3, {3, 5}, 5〉 is both a (1, 5)-upper-bound-

walk and a (1, 5)-lower-bound-walk. So β+(W) = β+({1, 3})+β+({3, 5}) = (1, 0)�+

(1, 0)� = (2, 0)�, and β−(W) = β−({1, 3}) + β−({3, 5}) = (0, 1)� + (0, 1)� = (0, 2)�.

These two examples are also presented in Figure 3.4.

Definition 3.15. Given two alternating sequencesW1 = 〈u, . . . , v〉 andW2 = 〈v, . . . , w〉,

denote W1 +W2 = 〈u, . . . , v, . . . , w〉 as the concatenation of W1,W2.

Remark 3.16. Let W be an alternating sequence and write W = W1 + W2, where

W = 〈u, . . . , s, . . . , v〉 and W1 = 〈u, . . . , s〉,W2 = 〈s, . . . , v〉. Then W is a (u, v)-

upper-bound-walk if and only if one of the following case holds for W1,W2, u, s, v:

35

1. W1 is a (u, s)-upper-bound-walk, W2 is an (s, v)-upper-bound-walk, and u <

s < v;

2. W1 is a (u, s)-upper-bound-walk, W
←
2 is a (v, s)-lower-bound-walk, and u < v <

s;

3. W←
1 is an (s, u)-lower-bound-walk, W2 is an (s, v)-upper-bound-walk, and s <

u < v.

Symmetrically with the same notation, W is a (u, v)-lower-bound-walk if and only if

one of the following holds

4. W1 is a (u, s)-lower-bound-walk, W2 is an (s, v)-lower-bound-walk, and u < s <

v;

5. W1 is a (u, s)-lower-bound-walk, W
←
2 is a (v, s)-upper-bound-walk, and u < v <

s;

6. W←
1 is an (s, u)-upper-bound-walk, W2 is an (s, v)-lower-bound-walk, and s <

u < v.

Further, in each of the above 6 cases,

1. by Lemma 3.7 Item 1, β+(W) = β+(W1) + β+(W2) is an upper bound on (u, v);

2. by Lemma 3.7 Item 3, β+(W) = β+(W1)− β−(W2) is an upper bound on (u, v);

3. by Lemma 3.7 Item 2, β+(W) = β+(W2)− β−(W1) is an upper bound on (u, v);

4. by Lemma 3.7 Item 1, β−(W) = β−(W1) + β−(W2) is a lower bound on (u, v);

5. by Lemma 3.7 Item 3, β−(W) = β−(W1)− β+(W2) is a lower bound on (u, v);

6. by Lemma 3.7 Item 2, β−(W) = β−(W2)− β+(W1) is a lower bound on (u, v).

3.3 A Sufficient and Necessary Condition

Section 3.2 introduced the necessary concepts to state the main theorem of this thesis,

that is: if a Robinson matrix has a uniform embedding with respect to threshold

vector d, then all the bounds that are implied by inequality system (3.1.1) “agree”

with each other. It is natural to state an implication on the existence of a uniform

36

embedding: if matrix has a uniform embedding, then there exists a threshold vector d

so that all lower bounds a induced by (u, v)-lower-bound-walks “agree” with all upper

bounds b induced by (u, v)-upper-bound-walks. Notice that the definition of bounds

is independent from the threshold vector, but for any d, the uniform embedding needs

to satisfy that for any lower bound on (u, v), a, and any upper bound on (u, v), b,

a�d < b�d.

As it turns out, this condition is also sufficient to show that the given matrix has

a uniform embedding. Further, we only need to consider the lower- and upper-bound-

paths, defined as lower- and upper-bound-walks containing no repeating vertices. We

denote the set of (u, v)-lower-bound-paths as Lu,v and the set of (u, v)-upper-bound-

paths as Uu,v. Consider the inequality system:

Condition 3.17. Let A ∈ Sn[k], for all u, v ∈ [n], u < v, for all upper bounds

b = β+(W1) where W1 ∈ Uu,v and for all lower bounds a = β−(W2) where W2 ∈ Lu,v,

a�d < b�d. (3.3.1)

Later, we abbreviate β+(Uu,v) and β+(Lu,v) for the set of all upper bounds and

lower bounds on (u, v) induced by any upper- or lower-bound-paths. With Condi-

tion 3.17, we state our main result.

Theorem 3.18. Given A ∈ Sn[k], A has an uniform embedding if and only if there

exists d ∈ Dk satisfying Condition 3.17.

We can prove the necessity of Theorem 3.18 without other tools:

Proof of the forward implication of Theorem 3.18: Suppose that A ∈ Sn[k] has a uni-

form embedding. By Theorem 3.1, there exists a uniform embedding Π with respect to

d ∈ Dk that satisfies inequality system (3.1.1). Then, for all u, v ∈ [n], u < v, for any

(u, v)-lower- and (u, v)-upper-bound-walks W1 ∈ Lu,v,W2 ∈ Uu,v, the induced lower

and upper bounds a = β−(W1), b = β+(W2) are implied lower and upper bounds on

(u, v), i.e., for all uniform embeddings Π with respect to d, a�d < Π(v)−Π(u) < b�d.

Therefore, omit the embedding Π, a�d < b�d for any induced bounds of lower- and

upper-bound-paths.

For the converse, we will obtain an iterative procedure to calculate the mapping

Π that satisfies Condition 3.17 in Section 3.4. However, we need to first prove the

Condition 3.17 stated in terms of “paths” implies that Condition 3.17 holds when

stated in terms of “walks”.

37

3.3.1 Cycles and Paths

In Section 3.2 we saw how walks can be used to generate new inequalities (i.e.,

bounds) that are implied by the inequality system (3.1.1). In this section, we show

that, for the existence of a uniform embedding, we need only to consider paths. A

(u, v)-upper or (u, v)-lower-bound-walk W = 〈u = w0, w1, . . . , wp = v〉 is an upper-

or lower-bound-cycle if u = v and W contains no other repeated vertices.

Note that the order in which the cycle is traversed determines whether it is an

upper- or lower-bound-cycle. Let C be an upper-bound-cycle, then notice C← is a

lower-bound-cycle: this gives β+(C) = −β−(C←).

Lemma 3.19. Let A ∈ Sn[k] and d ∈ Dk. Let C = 〈u1, . . . , up〉, u1 = up, be an

upper-bound-cycle. If d ∈ Dk satisfies Condition 3.17, then β+(C)�d > 0.

Proof: Write u = u1 = up. Let v = ui for some 1 < i < p, and suppose u < v. Write

W = W1+W2, whereW1 = 〈u = u1, u2, . . . , ui = v〉,W2 = 〈v = ui, ui+1 . . . , up−1, up =

u〉. By Lemma 3.12, β+(W1) is an upper bound on (u, v), and β−(W←
2) is a lower

bound on (u, v). By Remark 3.16,

β+(C) = β+(W1)− β−(W←

2)

Then, by the choice of d, β−(W←
2)�d < β+(W1)

�d and thus, β+(C)�d > 0.

The same logic applies when v < u. Write W1 = 〈v, . . . , u1〉 and W2 = 〈v, . . . , up〉,

so that C = W←
1 +W2 by Remark 3.16. Therefore, β+(C) = β+(W2)− β−(W←

1). By

the choice of d, β+(W2)
�d > β−(W1)

�d and thus β+(C)�d > 0.

Combining Lemma 3.19 and β+(C) = −β−(C←) gives β−(C←)�d < 0 if C is a

lower-bound-cycle.

Remark 3.20. Let W = 〈w0, . . . , wp〉 be a (w0, wp)-upper-bound-walk with w0 < wp.

DecomposeW = W1+C+W2 whereW1 = 〈u = w0, . . . , wi〉, C = 〈wi, . . . , wi+l〉,W2 =

〈wi+l, . . . , wp〉 where wi = wi+l. Notice, W is an upper-bound-walk if and only if C is

an upper-bound-cycle by Definition 3.11. By Definition 3.11, W1 +W2 is a (w0, wp)-

upper-bound-walk. Then, by Remark 3.16,

β+(W1 +W2) =

⎧⎪⎨
⎪⎩

β+(W1) + β+(W2) if w0 < wi < wp,

β+(W1)− β−(W←
2) if w0 < wp < wi,

β+(W2)− β−(W←
1) if wi < w0 < wp.

Then, by Lemma 3.12, β+(W) = β+(W1 +W2) + β+(C); this means we can detach

the cycles that are contained in a walk, and the remaining edges form another upper-

bound-walk. The same logic applies when W is a (w0, wp)-lower-bound-walk: If W is

38

a lower-bound-walk such that W = W1 + C +W2. Decompose W = W1 + C +W2,

then β−(W) = β−(W1 +W2) + β−(C).

Lemma 3.21. Let A ∈ Sn[k]. For any (u, v)-upper-bound-walk W , there exists a

(u, v)-upper-bound-path W ′ so that, for any d ∈ Dk, β
+(W ′)�d � β+(W)�d. Sim-

ilarly, for any (u, v)-lower-bound-walk W , there exists a (u, v)-lower-bound-path W ′

so that, for any d ∈ Dk, β
−(W)�d � β−(W ′)�d.

Proof: It is trivial when W is already a (u, v)-upper-bound-path. Suppose W =

〈u = w0, e1, w1, . . . , wp = v〉 contains a cycle. Decompose the walk W into

W1 = 〈u = w0, e1, . . . , wi〉,

C = 〈wi, ei+1, . . . , wi+l〉,

W2 = 〈wi+l, ei+l+1, . . . , wp = v〉.

such that wi = wi+l. Denote W ′ = W1 +W2. As discussed in Remark 3.20, C is an

upper-bound-walk, and β+(W) = β+(W ′)+β+(C). By Lemma 3.19, for any d ∈ Dk,

β+(W)�d = β+(W ′)�d+ β+(C)�d > β+(W ′)�d.

Iteratively remove any cycle in the walkW , sayW (i) is the lower-bound-walk obtained

by removing the ith cycle in W (i.e., W ′ = W (1)). Then obtain a sequence of walks

and inequalities:

β+(W (q))�d < · · · < β+(W (1))�d < β+(W)�d.

where W (q) contains no repeating vertices and is an upper-bound-path.

The same logic applies to lower-bound-paths: suppose W = W1 + C + W2 is a

lower-bound-walk, and thus C is a lower-bound-cycle. Then, β−(W) = β−(W1 +

W2)+β−(C), and β−(C)�d < 0, so β−(W)�d < β−(W1+W2)
�d. Iteratively remove

any cycle in the walk to obtain a lower-bound-path.

Lemma 3.21 shows that we only need to consider the upper- and lower-bound-

paths in Condition 3.17. In other words, fix a pair u, v ∈ [n], u < v, for any (u, v)-

upper-bound-walk, we can obtain a (u, v)-upper-bound-path by removing any cycle it

contains; similarly for (u, v)-lower-bound-walks. Let W1 be a (u, v)-lower-bound-walk

and W2 be a (u, v)-upper-bound-walk, we obtain a (u, v)-lower-bound-path W ′
1 and

a (u, v)-upper-bound-path W ′
2 from W1 and W2 by removing the cycles they contain.

Then, for any d ∈ Dk satisfies Condition 3.17,

β−(W1)
�d � β−(W ′

1)
�d < β−(W ′

2)
�d � β+(W2)

�d.

39

3.4 Finding a Uniform Embedding

In the last section, we stated a necessary condition on the threshold vector d if a

matrix has a uniform embedding. It turns out that it is sufficient for a matrix to

have a uniform embedding if the inequality system in Condition 3.17 has a solution.

In this section, we prove the converse of Theorem 3.18 by proposing a formula to

compute a uniform embedding Π : [n] → R of a given Robinson matrix A, given

β+(Uu,v), β
−(Lu,v) of A ∈ Sn[k] and d ∈ Dk that satisfies Condition 3.17. The

procedure is simple, we iteratively evaluate the restricted interval of where the next

vertex can be embedded base on all the previously embedded vertices, while it does

not violate Definition 1.2. By getting the interval, we define the embedding of the

vertex to be on the middle of the restricted interval.

We first put down the formula of the desired embedding Π.

Definition 3.22. Let A ∈ Sn[k] and suppose there is d ∈ Dk so that it satisfies

Condition 3.17. Define mapping Π on [n] as the following:

Π(1) = 0,

Π(v) = (ubv + lbv)/2 for 1 < v � n,
(3.4.1)

where ubv, lbv are defined based on v − 1 as:

ubv = min
i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

lbv = max
i∈[v−1]

{
Π(i) + max{a�d : a ∈ β−(Li,v)}

}
,

(3.4.2)

Notice that Uu,v and Lu,v denote the sets of (u, v)-upper- and (u, v)-lower-bound-

paths, they contain finitely many elements since there are no repeated vertices. And

therefore, ubv and lbv both can be attained. The initial Π(1) = 0 is justified as in

Lemma 3.3. Then iteratively, where ubv can be seen as the “evaluated minimum

upper bound” and lbv as the “evaluated maximum lower bound”. We will show that

Π defined as such is an uniform embedding of A with respect to d, which is the proof

of the converse implication of Theorem 3.18.

To prove that Π is an uniform embedding, we first show that Π is strictly increas-

ing.

Lemma 3.23. The map Π as in Definition 3.22 is strictly increasing. Precisely,

0 < Π(v − 1) � lbv < ubv for each v ∈ [n], and thus Π(v − 1) < Π(v) for all

v ∈ [n− 1].

40

Proof: We will show, inductively, that Π is strictly increasing on [v], for v ∈ [n], with

Π(v − 1) � lbv < ubv. For the base case, Π(1) itself is strictly increasing is trivial.

Inductively, suppose Π is strictly increasing defined on [v − 1]. Let u, w be the

vertices attaining ubv and lbv respectively. Let bmin ∈ β+(Uu,v) be such that b�mind =

min{b�d : b ∈ β+(Uu,v)}, and let amax ∈ β−(Lw,v) be such that a�maxd = max{a�d :

a ∈ β−(Lw,v)}, so that we have,

ubv = Π(u) + b�mind = min
i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

lbv = Π(w) + a�maxd = max
j∈[v−1]

{
Π(j) + max{a�d : a ∈ β−(Lj,v)}

}
.

By the choice of d that satisfies Condition 3.17, then a�maxd < b�mind.

Let WB be a (u, v)-upper-bound-walk such that bmin = β+(WB) and let WA be a

(w, v)-lower-bound-walk such that amax = β−(WA).

1. Suppose u = w, then Π(u) = Π(w). Then, amax is a lower bound on (u, v) and

bmin is an upper bound on (u, v). By the choice of d that satisfies Condition 3.17,

a�maxd < b�mind, and thus lbv < ubv.

2. Suppose u < w. Then, by Remark 3.16,WB+W←
A is a (u, w)-upper-bound-walk.

Notice, since u < w, Π(w) is defined after Π(u), then the evaluation of ubw in

Definition 3.22 involves Π(u), namely, ubw � Π(u) + min{b�d : b ∈ β+(Uu,w)}.

Meanwhile, by the inductive hypothesis, lbw < ubw, and thus Π(w) = (ubw +

lbw)/2 < ubw. Combine the above two inequalities and notice WB+W←
A ∈ Uu,v,

then

Π(w) < ubw � Π(u) + β+(WB +W←

A)�d,

which gives Π(w)−Π(u) < β+(WB +W←
A)�d. Then by Remark 3.16, β+(WB +

W←
A) = β+(WB) − β−(W←

A) = bmin − amax, where the last inequality holds by

the definition of ubw. So

lbv = Π(w) + a�maxd < Π(u) + b�mind = ubv.

3. Suppose w < u. Then by Remark 3.16,WA+W←
B is an (w, u)-lower-bound-walk.

In the case of w < u, Π(u) is defined after Π(w), then lbu � Π(w) +max{a�d :

a ∈ β−(Lu,w)}. By the inductive hypothesis and Definition 3.22, lbu < ubu,

and thus lbu < Π(u) = (ubu + lbu)/2. Combine the inequalities and notice that

WA +W←
B ∈ Lw,u,

Π(w) + β−(WA +W←

B)�d � lbu < Π(u)

41

Remark 3.16 gives β−(WA +W←
B) = amax − bmin, then

lbv = Π(w) + a�maxd < Π(u) + b�mind = ubv.

The above three cases conclude that lbv < ubv. Recall the fact that 0 is a lower bound

on any pair u, v: by the choice of d, for all 0 = 0�d � a�d for any a ∈ β−(Lv−1,v).

By the inductive hypothesis, we have that Π is strictly increasing on [v − 1], so it

suffices to show that Π(v− 1) < Π(v) to conclude that Π is strictly increasing on [v].

Π(v − 1) = Π(v − 1) + 0�d

� Π(v − 1) + min{a�d : a ∈ β−(Lv,v−1)} = lbv.
(3.4.3)

Therefore, combining all inequalities, we have

Π(v − 1) � lbv < (lbv + ubv)/2 = Π(v) < ubv,

which means the inductive hypothesis holds for case v.

Lemma 3.24. [The converse implication of Theorem 3.18] Given Robinson matrix

A ∈ Sn[k], and let Π be defined as in Definition 3.22. Then Π is a uniform embedding

of A that satisfies the inequality system (3.1.1).

Namely, given A = (ai,j) ∈ Sn[k] and let Π to be the embedding computed by

Definition 3.22. We need to show that given u < v, it satisfies Definition 1.2,

au,v = t ⇐⇒ dt+1 < Π(v)− Π(u) < dt.

Proof: Let u, v ∈ [n] with u < v, and au,v = t �= 0 (so {u, v} is an edge). Then

〈u, v〉 is a (u, v)-upper-bound-path, so β+({u, v}) ∈ β+(Uu,v). By Definition 3.11,

β+(u, v)�d = dt. By Definition 3.22,

Π(v) < ubv = min
i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

� Π(u) + min{b�d : b ∈ β+(Uu,v)}

� Π(u) + β+(u, v)�d

= Π(u) + dt.

Rewrite and we obtain Π(v)−Π(u) < dt. If t = 0, then the inequality Π(v)−Π(u) <

d0 = ∞ is trivially satisfied.

42

If t = k, then the inequality Π(v) − Π(u) > 0 is satisfied since Π is strictly

increasing. If 0 � t < k, then 〈u, v〉 is a (u, v)-lower-bound-path. So β−({u, v}) ∈

β−(Lu,v), and

Π(v) > lbv = max
i∈[v−1]

{
Π(i) + max{b�d : b ∈ β−(Li,v)}

}
,

� Π(u) + max{b�d : b ∈ β−(Lu,v)}

� Π(u) + β−(u, v)�d

= Π(u) + dt+1.

Rewrite and obtain Π(v)− Π(u) > dt+1.

Thus, we have established that Π defined by Definition 3.22 is a uniform embed-

ding of the given Robinson matrix A with respect to d.

Chapter 4

Testing the Conditions

In Chapter 3, we discussed a sufficient and necessary condition, Condition 3.17, so that

a Robinson matrix, in Sn[k], has a uniform embedding. Notice that Condition 3.17

itself is a system of inequalities, based on some d, such that a�d < b�d, where

b,a are obtained by enumerating the set of all (u, v)-upper- and lower-bound-paths.

In this chapter, we discuss the entire procedure of finding a uniform embedding,

including the enumeration of all the upper- and lower-bound-paths, find the threshold

vector d ∈ Dk, and finally compute the embedding Π. We employ a variation of the

Floyd-Warshall algorithm to generate all the upper- and lower-bound-paths. Then

we rewrite the inequality system based on upper- and lower-bound-path in terms of

upper-bound cycles in order to find a solution for d. We will also discuss a partial

order on the set of Zk, which reduces the complexity of the algorithm. We will discuss

the complexity of the entire program. Finally, we discuss a combinatorial algorithm

to find a uniform embedding when k = 2.

4.1 Bound Generation: A Variation of the Floyd-Warshall Algorithm

This section will discuss an algorithm that enumerates all the (u, v)-upper- and lower-

bound-paths. In 1962, the Floyd-Warshall algorithm ([9]) was invented to solve the

all-pairs shortest path problem of a graph (that contains no negative cycles). Consider

a graph G = (V,E) with a weight function w : E → R. Denote the vertex set of

size n in arbitrary order as V = {1, . . . , n}. The shortest path algorithm finds the

minimum distance between each pair of vertices i, j, D(i, j). The Floyd-Warshall

algorithm iterates through s ∈ V , and calculate the minimum distance of each pair

by considering the path that only contains intermediate vertices (the vertices that

are not the two ends in a path) in a restricted vertex set {1, . . . , s} for s = 1, . . . , n;

such a path, written as W = 〈i, . . . , j〉, is referred to as a s-path or a s-(i, j)-path.

The recursive relation is defined as the following: Initially, set D(i, j) = w({i, j}) if

{i, j} ∈ E, or D(i, j) = ∞ otherwise. Iteratively, update s from 1 to n:

D(i, j) = min{D(i, j), D(i, s) +D(s, j)} (4.1.1)

43

44

Without further analysis, the Floyd-Warshall algorithm is a dynamic program-

ming algorithm with time complexity O(n3). In addition, the algorithm detects neg-

ative cycles by checking the sign of each D(i, i) for i ∈ V.

4.1.1 Bound-Generation Algorithm

As mentioned, the necessary condition of Theorem 3.18, Condition 3.17, includes an

enumeration of all (u, v)-upper- and (u, v)-lower-bound-paths. Therefore, we employ

the strategy similar to Floyd-Warshall algorithm to enumerate all upper-bound-paths

and lower-bound-paths of a Robinson matrix A ∈ Sn[k]. Notice that the two algo-

rithms are not the same. For each pair of vertices, instead of the weight function w,

our “weight” function consists of β+ and β−, which induces upper bounds or lower

bounds implied by inequalities (3.1.1). The Floyd-Warshall algorithm determines the

path with smallest weight D(i, j); at any step, it can decide which path is the shortest

path. The Floyd-Warshall algorithm determines the best choice since the minimum

weight of the paths, D(i, j), is a real number. In our case, we cannot know which

element in β+(Uu,v) or β
−(Lu,v) contributes to the minimum or maximum evaluation

in advance. Precisely, real numbers are totally ordered, but bounds are not always

comparable. Therefore, we need to store all the upper- and lower-bound-paths or

their induced upper or lower bounds. Later in the thesis, we will prove there is a

partial order on the bounds (in fact, on Z
k), so that we may discard some bounds.

But essentially, the recording of bounds and the enumeration will cost more than the

simple comparison as in the Floyd-Warshall algorithm.

We implement our algorithm in Algorithm 1. Briefly, given a Robinson matrix

A = (au,v) ∈ Sn[k], Algorithm 1 performs the following operations and records upper-

bound-paths in UBW(u, v) and lower-bound-paths in LBW(u, v).

1. Initialize UBW(u, v) with {〈u, v〉} if au,v �= 0, or initialize to empty set if au,v = 0;

initialize LBW(u, v) with {〈u, v〉}.

2. Notice the idea from Floyd-Warshall algorithm that iteratively constructs the

paths with intermediate vertices restricted to [s] at each iteration s. We extend

this principle to generate all upper- and lower-bound-paths. In analogy, define a

s-(u, v)-upper-bound-path to be a (u, v)-upper-bound-path with its intermediate

vertices restricted to [s]; define a s-(u, v)-lower-bound-path to be a (u, v)-lower-

bound-path with its intermediate vertices restricted to [s]. At each iteration s,

45

Algorithm 1: Bound-Generation

input : Robinson matrix A ∈ Sn[k]

output: Lookup tables UBW, LBW defined on i, j ∈ [n], i < j: where

UBW(i, j) = Ui,j ,

LBW(i, j) = Li,j .

1 for i ∈ [n] do

2 for j = i, . . . , n do

3 if ai,j �= 0 then UBW(i, j) ← {〈i, j〉} ;

4 LBW(i, j) ← {〈i, j〉};

5 for s = 1, . . . , n do

6 for i = 1, . . . , n do

7 for j = i, . . . , n and i �= s �= j do

8 if i < s < j then

9 foreach W1 ∈ UBW(i, s) and W2 ∈ UBW(s, j) do

10 Add-Walk-To(UBW(i, j), W1 +W2);

11 foreach W1 ∈ LBW(i, s) and W2 ∈ LBW(s, j) do

12 Add-Walk-To(LBW(i, j), W1 +W2);

13 else if i < j < s then

14 foreach W1 ∈ UBW(i, s) and W2 ∈ LBW(j, s) do

15 Add-Walk-To(UBW(i, j), W1 +W←
2);

16 foreach W1 ∈ LBW(i, s) and W2 ∈ UBW(j, s) do

17 Add-Walk-To(LBW(i, j), W1 +W←
2);

18 else if s < i < j then

19 foreach W1 ∈ LBW(s, i) and W2 ∈ UBW(s, j) do

20 Add-Walk-To(UBW(i, j), W←
1 +W2);

21 foreach W1 ∈ UBW(k, i) and W2 ∈ LBW(k, j) do

22 Add-Walk-To(LBW(i, j), W←
1 +W2);

23 return UBW, LBW;

46

Algorithm 2: Add-Walk-To

input : A set of upper(lower)-bound-paths S and an

upper-(lower)-bound-path W

1 if W contains no repeating vertices then S ′ ← S ′ ∪ {W} ;

for each pair u, v ∈ [n], u < v, compute all s-(u, v)-upper- and s-(u, v)-lower-

bound-paths, for s = 1, . . . , n. In each iteration s, the concatenation of upper-

and lower-bound-paths follows Remark 3.16.

4.1.2 The Correctness of Bound-Generation Algorithm

We denote the set of all s-(u, v)-upper-bound-paths as Us
i,j and the set of all s-(u, v)-

lower-bound-paths as L
s
i,j. We prove the Bound-Generation() algorithm with a

similar proof as the proof of the Floyd-Warshall algorithm.

Theorem 4.1 (Correctness of Algorithm 1). Given a Robinson matrix A ∈ Sn[k].

Let UBW, LBW be the returned tables of Bound-Generation(A). Then LBW(i, j) = Li,j

and UBW(i, j) = Ui,j.

Proof: We proceed a proof by induction on the restricted intermediate vertex set [s]

for 0 � s � n, such that UBW(i, j) = U
s
i,j and LBW(i, j) = L

s
i,j at each iteration s.

Recall that we defined [0] = ∅. Line 1-4 initializes UBW(i, j) = {〈i, j〉} if ai,j �= 0

or empty otherwise, and LBW(i, j) = {〈i, j〉}. So UBW(i, j) = U
0
i,j and LBW(i, j) = L

0
i,j

for all i, j ∈ [n] for i < j, i.e., they contain the upper- and lower-bound-paths that

contain [0], no intermediate vertices.

Inductively, suppose UBW(i, j) = U
s−1
i,j and LBW(i, j) = L

s−1
i,j at the end of iteration

s− 1. We will show that UBW(i, j) = U
s
i,j and LBW(i, j) = L

s
i,j at the end of iteration s.

1. We first show UBW(i, j) ⊆ U
s
i,j . Let W ∈ UBW(i, j) at the end of iteration s.

Notice that Bound-Generation does not remove elements from UBW(i, j). We

first suppose that W ∈ UBW(i, j) at iteration s − 1 already, that is, W does

not contain vertex s, then W ∈ U
s−1
u,v by the inductive hypothesis. Note that

U
s−1
i,j ⊆ U

s
i,j , thus W ∈ U

s
u,v.

Next, suppose that W contains vertex s, which implies that W is added to

UBW(i, j) during iteration s. We write W = 〈i, . . . , s, . . . , j〉 by concatenation,

W = W1 +W2 where W1 = 〈i, . . . , s〉 and W2 = 〈s, . . . , j〉. Then, depending on

the order between i, j, s, either one of the following three cases holds:

47

(a) Line 10 generates W , W1 ∈ UBW(i, s) and W2 ∈ UBW(s, j), and i < s < j;

(b) Line 15 generates W , W1 ∈ UBW(i, s) and W←
2 ∈ LBW(j, s), and i < j < s;

(c) Line 20 generates W , W←
1 ∈ LBW(s, i) and W2 ∈ UBW(s, j), and s < i < j.

By the inductive hypothesis, UBW(i, s) = U
s−1
i,s , LBW(s, i) = L

s−1
s,i , UBW(s, j) =

U
s−1
i,s , LBW(j, s) = L

s−1
j,s at iteration s−1. This implies that W1,W2 or W

←
1 ,W←

2 ,

which appears in the above three cases, are (s − 1)-upper- or (s − 1)-lower-

bound-paths. Then, by Remark 3.16, W is a (i, j)-upper-bound-walk. Note

that W contains no repeating vertices since W ∈ UBW(i, j), i.e., Add-Walk-To

checks that W contains no repeating vertices. And since W1 and W2 contain

vertex s as the largest vertex , W is a s-(i, j)-upper-bound-path, i.e., W ∈ U
s
i,j .

2. We then need to show Ui,j ⊆ UBW(i, j). Let W ∈ U
s
u,v be an s-(i, j)-upper-

bound-path. If W does not contain vertex s, then W ∈ U
s−1
i,j . By the inductive

hypothesis, U
s−1
i,j = UBW(i, j) at iteration s − 1, therefore, W ∈ UBW(i, j) at

iteration s since there are no deleted elements.

Suppose W contains vertex s, then W can be decomposed as W = W1 + W2

where W1 = 〈i, . . . , s〉 and W2 = 〈s, . . . , j〉. Notice W1 and W2 do not contain

s as an intermediate vertex since they are paths, and W1 and W2 contain no

common vertices.

Suppose i < s < j, then W1 ∈ U
s−1
i,s and W2 ∈ U

s−1
s,j by Remark 3.16. By the

inductive hypothesis, UBW(i, s) = U
s−1
i,s and UBW(s, j) = L

s−1
s,j at iteration s − 1.

Then, at Line 10, W1 and W2 are enumerated, and since W1 and W2 are upper-

bound-paths that contain no common vertices, Add-Walk-To(UBW(i, j),W1+W2)

appends W1 + W2 to UBW(i, j). Similarly, when i < j < s, W1 ∈ U
s−1
i,s ,W←

2 ∈

L
s−1
j,s . By the inductive hypothesis, Ui,s = UBW(i, s),Lj,s = LBW(j, s) at iteration

s − 1, so W1 and W←
2 will be enumerated and W1 + W←

2 will be added to

UBW(i, j) at Line 15. Finally, when s < i < j, W←
1 ∈ L

s−1
s,i and W2 ∈ U

s−1
j,s . Then

Ls,i = LBW(s, i),Us,j = UBW(s, j) at iteration s − 1 by the inductive hypothesis.

Thus, W←
1 ∈ LBW(s, i),W2 ∈ UBW(s, j) will be enumerated and W←

1 + W2 will

be added to UBW(i, j) at Line 20.

The similar logic applies to show that LBW(i, j) = L
s
i,j at iteration s. Both di-

rections conclude that Us
i,j = UBW(i, j) and L

s
i,j = LBW(i, j) at the end of iteration s,

and the inductive hypothesis holds for case s. At iteration s = n, when the program

finishes, we have that UBW(i, j) = U
n
i,j = Ui,j and LBW(i, j) = L

n
i,j = Li,j, which was

what we want.

48

4.2 A Partial Order on Bounds

In this section, we introduce a partial order on Z
k, which is special on the bounds. No-

tice that in Bound-Generation, the algorithm generates all (u, v)-upper- and (u, v)-

lower-bound-paths, Uu,v,Lu,v. However, in Condition 3.17, we find a solution for

d with only the set of upper bounds induced by upper-bound-cycles; also in Defini-

tion 3.22, we calculate the uniform embedding using only the set of bounds that are in-

duced by the bound-paths, β+(Uu,v), β
−(Lu,v). This means that the upper bounds and

lower bounds are all we need. We also notice that, if two (u, v)-upper-bound-walks,

W1 and W2, contribute the same upper bound on (u, v), i.e., β+(W1) = β+(W2), we

need not to record both W1 and W2 in UBW(u, v). The following example shows there

are many bounds that can be ignored, in either Definition 3.22 or Condition 3.17.

Example 4.2. In Example 1.3 matrix A, bound (0, 1)� is an upper bound on (2, 3),

and bound (1, 0)� is an upper bound on (3, 5) and (2, 5). Then, the following upper

bounds are implied by the system (3.1.1).

Π(3)− Π(2) < d2

Π(5)− Π(2) < d1

Π(5)− Π(3) < d1

⎫⎪⎬
⎪⎭ ⇒

(Π(5)− Π(3)) + (Π(3)− Π(2))

= Π(5)− Π(2) < d1 + d2

and Π(5)− Π(2) < d1

So (1, 1)� and (1, 0)� are both bounds on (2, 5). Observe that, since d1 > d2 > 0,

(1, 0)d < (1, 1)d for all d ∈ D2. Apply these two bounds to Condition 3.17, if d

satisfies that, for all lower bounds a on (u, v), we have that a�d < (1, 0)d, then

a�d < (1, 1)d is trivially satisfied.

We introduce the following definition of a partial order on Z
k that generalizes the

above observation. We will use this definition to adjust the function Bound-Generation

and Add-Walk-To to identify and remove all such redundant bounds.

Definition 4.3. Define relation� on Z
k as follows. Given any a = (ai), b = (bi) ∈ Z

k,

a � b if
t∑

i=1

ai �

t∑
i=1

bi for all t ∈ [k].

Suppose a � b, we say a is tighter than b, or b is wider than a. Otherwise, a, b are

incomparable.

We show that this relation is actually a partial order on Z
k.

Lemma 4.4. Relation � defines a partial order on Z
k.

49

Proof: Let a = (ai) ∈ Z
k, indeed

∑t

i=1 ai �
∑t

i=1 ai for all t ∈ [k]. So � is reflexive.

Let a = (ai), b = (bi) ∈ Z
k. Suppose that a � b and b � a, then

t∑
i=1

ai �
t∑

i=1

bi,
t∑

i=1

bi �
t∑

i=1

ai for all t ∈ [k].

This gives
∑t

i=1 ai =
∑t

i=1 bi for all t. Thus, a1 = b1 and for all t such that 1 < t � k,

at =
t∑

i=1

ai −
t−1∑
i=1

ai =
t∑

i=1

bi −
t−1∑
i=1

bi = bt.

So � is antisymmetric.

Let a = (ai), b = (bi), c = (ci) ∈ Z
k. Suppose a � b and b � c, then

t∑
i=1

ai �

t∑
i=1

bi �

t∑
i=1

ci for all t ∈ [k].

This follows the definition such that a � c. So � is transitive.

In the following theorem, we will show that for arbitrary upper bounds a and

b, if a � b, then b is a “weaker” upper bound than a, and this theorem identifies

the “useful” upper and lower bounds in Definition 3.22 and Condition 3.17. As in

Example 4.2, (1, 0)� and (1, 1)� are upper bounds on (2, 5) both belong to β+(U2,5).

In Definition 3.22 that computes the uniform embedding, we get ub5 as the upper

bound on the placement of Π(5), and ub5 � Π(2) + (1, 0)�d < Π(2) + (1, 1)�d.

Therefore, (1, 0)� might be used to determine Π(5), but (1, 1)� will never be used.

Also consider in Condition 3.17, for any a = (a1, a2)
� ∈ β−(L2,5), we may make

up upper-bound-cycles C1, C2 such that β+(C1) = (1, 0)� − a = (1− a1,−a2)
�, and

β+(C2) = (1−a1, 1−a2)
�. If d = (d1, d2)

� satisfies that β+(C1)
�d = d1−a1d1−a2d2 >

0, then β+(C2)
�d = d1 − a1d1 + d2 − a2d2 > 0 since d2 > 0. Therefore, if bounds

a, b have that a�d � b�d for any d ∈ Dk, then b does not provide new information

to either Definition 3.22 or Condition 3.17. The following theorem provides a simple

way to determine this relation. Then, after proving this theorem, we will modify the

Bound-Generation algorithm with this partial order to keep only the bound-paths

that induce minimal bounds in UBW and maximal bounds in LBW. Also notice, this

theorem provides a second proof that � is a partial order.

Theorem 4.5. Let a, b ∈ Z
k, then a � b ⇐⇒ a�d � b�d for all d ∈ Dk.

We need some supplementary definitions and lemmas to prove this theorem. We

will devote the rest of this section to prove Theorem 4.5. The intuition of proving this

50

theorem is to construct a “buffer” bound c ∈ Z
k so that a�d � c�d � b�d holds for

any d ∈ Dk. The construction is very technical; therefore, I shall show one example.

Example 4.6. Consider ♥,♦,♣,♠ are four objects with weights d1, d2, d3, d4 where

d1 > d2 > d3 > d4 > 0. Then, a collection of a1 number of ♥, a2 number of ♦, a3

number of ♣, and a4 number of ♠ together has weight a�d, where a = (a1, a2, a3, a4)
�

and d = (d1, d2, d3, d4)
�. We consider two collections of objects, and arrange them

with into four slots:

Collection 1 ♥♥♥♥ ♦♦ ♣♣♣ ♠♠

Weights 4d1 2d2 3d3 2d4

Collection 2 ♥♥♥ ♦ ♣ ♠♠♠♠♠

Weights 3d1 d2 d3 5d4

Then, we rearrange the collection 2 as the following

Collection 1 ♥♥♥♥ ♦♦ ♣♣♣ ♠♠

Weights 4d1 2d2 3d3 2d4

Collection 2 rearranged ♥♥♥♠ ♦♠ ♣♠ ♠♠

Weights 3d1 + d4 d2 + d4 d3 + d4 2d4

Then, notice that the weight in each slot in collection 1 is greater than collection 2,

since di > d4 for any i < 3. We construct another collection 3 from collection 2 so

that, in each slot, replace ♠ by another type:

Collection 1 ♥♥♥♥ ♦♦ ♣♣♣ ♠♠

Weights 4d1 2d2 3d3 2d4

Collection 3 ♥♥♥♥ ♦♦ ♣♣ ♠♠

Weights 4d1 2d2 2d3 2d4

Collection 2 rearranged ♥♥♥♠ ♦♠ ♣♠ ♠♠

Weights 3d1 + d4 d2 + d4 d3 + d4 2d4

Then, notice that the weight of each slot in collection 1 is higher (heavier) than or

equal to the corresponding slot in collection 3; therefore the total weight of collection

1 is heavier than collection 3. Also, notice that we constructed collection 3 from

collection 2 by replacing ♠ by something heavier, i.e., ♥,♦, or ♣; therefore, the total

weight of collection 3 is heavier than collection 2. Let b = (bi),a = (ai), c = (ci) ∈ Z
4

denotes the number of ♥,♦,♣,♠ in each collection 1, 2, 3; then weight comparison

is a�d � c�d � b�d.

51

The above example shows an intuition of the proof of Theorem 4.5. Suppose two

vectors a = (ai), b = (bi) ∈ Z
k have that a � b, then a�d � b�d is obvious if ai � bi

for all i ∈ [k]. If the two vectors cannot be compared component-wise (i.e., ai � bi

for all i ∈ [k]), then we rearrange the components and construct a “buffer” vector

c = (ci) (such as collection 3), so that

• ci � bi for all i � k and

• we may obtain a�d � c�d easily, according to the construction.

Further, we will generalize the idea of the collection 3 in Example 4.6 so that,

iteratively for every sub-vector (i.e., the vector formed by the first t components),

we will construct a “buffer” vector that satisfies the above two conditions. In the

following content, we will denote function [x]+ to be

[x]+ =

{
x if x > 0,

0 if x � 0.

Definition 4.7. Let a = (ai), b = (bi) ∈ Z
k. Suppose a � b, define c with the

following steps.

Iteratively, for t = 1, . . . , k, define {ct,i}i∈[t] as follows. Define et = [at − bt]+.

Define ct,t = at − et. Then, define two sequences, {et,i}i∈[t−1] and {ft,i}i∈[t], as the

following. Define ft,1 = et. Then, for i = 1, . . . , t − 1, define et,i with ft,i and define

ft,i+1 with et,i:

et,i = min{ft,i, bi − ct−1,i},

ft,i+1 = ft,i − et,i.
(4.2.1)

Define ct,i = ct−1,i + et,i for all 1 � i < t. Define c = (ck,i)i∈[k].

Using Example 4.6 as an example. Consider a corresponds to collection 2 and b

corresponds to collection 1. Notice that, for t = 1, 2, 3, the procedure will construct

ct,i = ai for i < t. When t = 4, we have that 5 = a4 > b4 = 2. Then, define c4,4 = 2

and e4 = 3, i.e., e4 represents how many item we need to re-distribute to the previous

slots. Then, e4,i represents the number of items that is assigned to each slot i, and we

re-distribute them iteratively from 1 to t−1: we denote ft,i as “how many items remain

that need to be re-distributed before slot i”; naturally, ft,1 = et is the total number

of items that needs to be re-distributed. In Example 4.6, e4,1 = e4,2 = e4,3 = 1. After

the re-distribution, we define a new collection as collection 3: c4,i = c3,i+e4,i. Finally,

the redistribution follows the rule such that each c4,i � bi so that the comparison

between collection 1 and 3 remains simple.

52

Lemma 4.8. Let a = (ai), b = (bi) ∈ Z
k and suppose a � b. Following the notations

in Definition 4.7, for all t ∈ [k], the following holds:

1. Sequence {ft,i}i∈[t] is a non-negative and decreasing sequence.

2. For all i ∈ [t], ct,i � bi.

Proof: Let a = (ai), b = (bi) ∈ Z
k and suppose a � b. Following the notations

in Definition 4.7. We will give a proof by induction such that, for all t ∈ [k], {ft,i}

is a non-negative and decreasing sequence; and for all i ∈ [t], we have that ci � bi.

Consider the base case t = 1. The assumption that a � b gives that a1 � b1.

Therefore, et = [a1 − b1]+ = 0 and c1,1 = a1 � b1. Since t = 1 and et = f1,1 = 0,

the sequence with one element, {f1,1}, is non-negative and decreasing is vacuously

satisfied.

Inductively, for any t > 1, suppose that

Assumption 4.9.

• Sequence {ft−1,i}i∈[t−1] is a non-negative and decreasing sequence.

• For all i ∈ [t− 1], ct−1,i � bi.

We will show that

• Sequence {ft,i}i∈[t] is a non-negative and decreasing sequence.

• For all i ∈ [t], ct,i � bi.

Note that we defined et = [at − bt]+. If at � bt, then et = 0; if at > bt, then

et = at − bt > 0: therefore, et � 0. We will prove that {ft,i}i∈[t] is decreasing

by induction such that, for all i > 1, we have that ft,i � ft,i−1 � 0. Consider

the base case, i = 2, we have that ft,1 = et � 0; we also have, by the inductive

hypothesis Assumption 4.9, that b1 � ct−1,1; or equivalently, b1 − ct−1,1 � 0. Then,

Definition 4.7 defines that et,1 = min{ft,1, b1−ct−1,1}, and since both ft,1 and b1−ct−1,1

are non-negative, we have that et,1 � 0. Therefore, ft,2 = ft,1 − et,1 � ft,1, that is,

ft,2 � ft,1 � 0.

Inductively, suppose that, for any 2 < i � t, we have that ft,i � ft,i−1 � 0. We will

show that ft,i+1 � ft,i � 0. Note that ft,i � 0 is satisfied by the inductive hypothesis

already. Then, by Definition 4.7, et,i = min{ft,i, bi−ct−1,i}. Since, by Assumption 4.9,

we have that bi � ct−1,i, we have that bi − ct−1,i � 0. Then, since ft,i and bi − ct−1,i

are both non-negative, we have that et,i is non-negative by definition. Thus, we have

that ft,i+1 = ft,i + et,i � ft,i � 0.

Finally, we need to show that ct,i � bi. Since {ft,i} is a decreasing sequence, as

the above inductive proof shows, we have that et,i � 0 for all i ∈ [t − 1]. Then, by

53

Definition 4.7, for i < t, we have that 0 � et,i � bi − ct−1,i; or equivalently, ct−1,i � bi.

Definition 4.7 defines ct,t = at − et = at − [at − bt]+: if at � bt, then [at − bt]+ = 0

and we have that ct,t = at � bt; if at > bt, then [at − bt]+ = at − bt and we have that

ct,t = at − at + bt = bt. Therefore, we conclude that ct,i � bi for all i � t.

Lemma 4.10. Let a = (ai), b = (bi) ∈ Z
k and suppose a � b. Following the

notations in Definition 4.7, for all t ∈ [k], the following holds:

• et =
∑t−1

i=1 et,i.

•
∑t

i=1 ai =
∑t

i=1 ct,i.

Proof: Let a = (ai), b = (bi) ∈ Z
k and suppose a � b. We give a proof by induction

that, for any t ∈ [k], et =
∑t−1

i=1 et,i and
∑t

i=1 ai =
∑t

i=1 ct,i.

For the base case, when t = 1, Definition 4.7 defines c1,1 = a1 + e1. And since

a � b implies that a1 � b1, so e1 = [a1 − b1]+ = 0. Therefore, a1 = c1,1 and e1, which

is not defined, is satisfied trivially.

Inductively, suppose that, for any t > 1, we have et−1 =
∑t−2

i=1 et−1,i and
∑t−1

i=1 ai =∑t−1
i=1 ct−1,i. We will show that et =

∑t−1
i=1 et,i and

∑t

i=1 ai =
∑t

i=1 ct−1,i. We divide

into two cases: when at � bt and when at > bt. Note that, if at � bt, then et =

[at − bt]+ = 0 and ft,1 = et. From Lemma 4.8, we have that sequence {ft,1} is

decreasing and bi − ct,i � 0; therefore, when at � bt, ft,i = 0 for all i ∈ [t] and et,i = 0

for all i < t. Thus, et =
∑t−1

i=1 et,i = 0. Suppose that at > bt, then by Definition 4.7,

et = at − bt, so ct,t = bt. Notice that Equation (4.2.1) that defines ft,i+1 = ft,i − et,i,

and rewriting the equation we obtain ft,i = ft,i+1 + et,i. Expand et = ft,1 according

to Equation (4.2.1):

et = ft,1 = ft,2 + et,1

= ft,3 + et,2 + et,1

= ft,4 + et,3 + et,2 + et,1

= . . .

= ft,t + et,t−1 + · · ·+ et,1.

(4.2.2)

Then, we need to show ft,t = 0 so that et can be written by the sum of et,i only.

From Lemma 4.8, we have that ft,t � 0 since sequence {ft,i}i∈[t] is non-negative.

Suppose that ft,t > 0, then we have et,i = bi − ct−1,i for all i ∈ [t − 1]. That is, we

know that bi− ct−1,i < ft,i for any i � t. This is true since, otherwise, if et,i is defined

by ft,i � bi − ct−1,i for some i < t, then ft,i+1 = ft,i − et,i = 0; then, ft,t = 0 since we

54

show that {ft,i} is a non-negative and decreasing sequence in Lemma 4.8. Then we

obtain the following inequality.

at − bt = et = ft,t +
t−1∑
i=1

et,i >

t−1∑
i=1

et,i =
t−1∑
i=1

(bi − ct−1,i). (4.2.3)

By the inductive hypothesis, we have
∑t−1

i=1 ai =
∑t−1

i=1 ct−1,i. Then, substitute and we

have that

at − bt >
t−1∑
i=1

(bi − ct−1,i) =
t−1∑
i=1

bi −
t−1∑
i=1

ct−1,i =
t−1∑
i=1

bi −
t−1∑
i=1

ai.

And move terms in the above equation, we have that

t∑
i=1

ai >

t∑
i=1

bi

However, notice that we assumed a � b, we have
∑t

i=1 ai �
∑t

i=1 bi, and this is a

contradiction. Therefore, ft,t = 0, and et =
∑t−1

i=1 et,i.

Finally, we will show
∑t

i=1 ai =
∑t

i=1 ct,i. Note that we have et = [at − bt]+ =∑t−1
i=1 et,i, ct,t = at − et, and ct,i = ct,i−1 + ei. If at � bt, then et = 0 and et,i = 0 for all

i < t, so we have ct,t = at and ct,i = ct−1,i. Combining with the inductive hypothesis,

we have that
t∑

i=1

ai = at +
t−1∑
i=1

ai = ct,t +
t−1∑
i=1

ct,i =
t∑

i=1

ct,i.

Now we suppose that at > bt, then et = at − bt and ct,t = bt. Thus, we also have the

following equation:

t∑
i=1

ct,i = ct,t +
t−1∑
i=1

ct,i

= bt +
t−1∑
i=1

(ct−1,i + et,i)

= bt +
t−1∑
i=1

ct−1,i +
t∑

i=1

et,i

= bt +
t−1∑
i=1

ai + et

= bt +
t−1∑
i=1

ai + at − bt

=
t∑

i=1

ai,

(4.2.4)

55

which was what we want.

Proof of Theorem 4.5: (=⇒)We first prove the forward direction. Suppose a, b ∈ Z
k

such that a � b. We will show a�d � b�d for all d ∈ Dk.

We construct c ∈ Z
k use Definition 4.7 and we follow the notations in Def-

inition 4.7. We decompose the proof into two parts such that a�d � c�d and

c�d � b�d, and thus the conclusion follows.

By Lemma 4.8, we have that ci � bi, and thus cidi � bidi. Then

c�d =
k∑

t=1

ctdt �
k∑

t=1

btdt = b�d.

So c�d � b�d follows immediately.

To prove a�d � c�d, we give an inductive proof such that, for all t ∈ [k],∑t

i=1 at,idi �
∑t

i=1 ct,idi. Let et, {et,i}i∈[t], and {ct,i}i∈[t] defined as in Definition 4.7,

that is, et = [at − bt]+ =
∑t−1

i=1 et,i and ct,i = ct−1,i + et,i.

When t = 1, we have c1,1 = a1 by Lemma 4.10. Then, a1d1 = c1,1d1. This is the

base case of the inductive statement.

Inductively, suppose that, for any t > 1, we have
∑t−1

i=1 aidi �
∑t−1

i=1 ct−1,idi. We

divide into two cases when at � bt and when at > bt. When at � bt, Lemma 4.10 gives

ct,t = at and ct,i = ct−1,i for all i < t. Then, by the inductive hypothesis,

t∑
i=1

aidi = atdt +
t−1∑
i=1

aidi � ct,tdt +
t−1∑
i=1

ct−1,idi = ct,tdt +
t−1∑
i=1

ct,idi =
t∑

i=1

ct,idi,

which satisfies the inductive hypothesis.

Consider when at > bt, then et = at − bt > 0 and ct,t = bt. Consider the following

sequence of inequalities.

t∑
i=1

aidi = atdt +
t−1∑
i=1

aidt

� atdt +
t−1∑
i=1

ct−1,idt by the inductive hypothesis

= atdt +
t−1∑
i=1

ct−1,idt + ct,tdt − ct,tdt

= (at − ct,t)dt +
t−1∑
i=1

ct−1,idt + ct,tdt

= etdt +
t−1∑
i=1

ct−1,idt + ct,tdt

(4.2.5)

56

We write et =
∑t−1

i=1 et,i−1 as in Lemma 4.10; also note that di > dt, for all i < t,

implies that et,idi � et,idt since et,i � 0 by Lemma 4.8. Then, we have that

t∑
i=1

aidi = (
t−1∑
i=1

et,i)dt +
t−1∑
i=1

ct−1,idt + ct,tdt

� (
t−1∑
i=1

et,idi) +
t−1∑
i=1

ct−1,idt + ct,tdt

=
t−1∑
i=1

(et,i + ct−1,i)dt + ct,tdt

=
t−1∑
i=1

ct,idt + ct,tdt

=
t∑

i=1

ct,idt

(4.2.6)

as desired. Therefore, the inductive statement holds for case t.

When t = k, by definition c = (ci)i∈[k] where ci = ck,i, rewrite
∑t

i=1 aidi �∑t

i=1 cidt as a
�d � c�d, which was what we want.

Combine a�d � c�d and c�d � b�d, and we conclude that a�d � b�d.

(⇐=)Now we prove the converse of the statement. We proceed with a proof by

contrapositive. Let a = (ai), b = (bi) ∈ Z
k and suppose a �� b. We will show there

exists d ∈ Dk such that a�d > b�d.

Note that the statement a � b is defined as, for all t ∈ [k], we have that
∑t

i=1 ai �∑t

i=1 bi; then, the negation of it, a �� b, is that, exists t ∈ [k], we have
∑t

i=1 ai >∑t

i=1 bi. Suppose t ∈ [k] is the minimal counterexample such that, for all t′ < t,

t′∑
i=0

ai �
t′∑
i=0

bi (4.2.7)

and
t∑

i=1

ai >
t∑

i=1

bi. (4.2.8)

Combining the two inequalities, we have

at − bt >
t−1∑
i=1

bi −
t−1∑
i=1

ai � 0 (4.2.9)

Divide both sides by at − bt (which is positive),

1 >

∑t−1
i=1(bi − ai)

at − bt
. (4.2.10)

57

Let d1 > dt > 0 be so that

1 >

∑t−1
i=1(bi − ai)

at − bt
·
d1
dt

>

∑t−1
i=1(bi − ai)

at − bt
. (4.2.11)

i.e., pick a value for dt/d1 in the interval (
∑t−1

i=1(bi − ai)/(at − bt), 1). Since, for all

d ∈ Dk, 1 < i < t implies that d1 > di, it follows that

∑t−1
i=1(bi − ai)

at − bt
·
d1
dt

=
t−1∑
i=1

(bi − ai)d1
(at − bt)dt

�

t−1∑
i=1

(bi − ai)di
(at − bt)dt

(4.2.12)

Since at > bt and dt > 0, multiplying both sides of Equation (4.2.11) by (at − bt)dt

does not change the direction of the inequality. Combining Equation (4.2.11) and

(4.2.12), we have that

(at − bt)dt >
t−1∑
i=1

(bi − ai)di.

It follows that
∑t

i=1 aidi >
∑t

i=1 bidi. Let ε > 0 be so that
∑t

i=1 aidi =
∑t

i=1 bidi + ε.

Then choose small enough dt+1 > · · · > dk so that
∑k

i=t+1(bi − ai)di < ε (i.e., use di

arbitrarily small so that (bi − ai)di are small). Substitute it in the above equation so

that
t∑

i=1

aidi >

t∑
i=1

bidi +
k∑

i=t+1

(bi − ai)di

and so
∑k

i=1 aidi >
∑k

i=1 bidi by moving terms, and thus a�d > b�d, which was what

we want.

4.2.1 Modifying the Bound-Generation Algorithm

We now proceed to modify the Add-Walk-To program with the partial order �. Notice

that, in a complete graph of order n, any path has length at most n since each vertex

can appear at most once in the cycle. The order of the vertices in a cycle is not

restricted; therefore, consider the bounds in Condition 3.17 induced by upper-bound-

cycles, we will need to consider nk bounds at most. The Add-Walk-To algorithm

adds all bound-paths to each Uu,v and Lu,v, which involves O(nk) elements in each

set. With the partial order �, by Theorem 4.5, it suffices to keep only the minimal

and maximal elements under � in UBW and LBW, respectively, to satisfy Condition 3.17.

58

We present the modification in Algorithm 3. Instead of using only the bound-

paths, we modify the elements to pairs consisting of a bound and a bound-path, We

change program Add-Walk-To on Line 10, 20, 15 by Compare-Upper-and-Add-Walk-To,

and change Add-Walk-To on Line 12, 22, 17 by Compare-Lower-and-Add-Walk-To.

Let S be a set of upper-bound-paths, then we say that upper-bound-path W ∈ S

is a minimal element of S if β+(W) is a minimal element in all the induced upper

bounds of S, β+(S). Similarly, let S be a set of lower-bound-paths, then lower-bound-

path W ∈ S is a maximal element of S if β−(W) is a maximal element in all the

induced lower bounds of S, β+(S).

59

Algorithm 3: Bound-Generation-mod

input : Robinson matrix A ∈ Sn[k]

output: Lookup tables UBW, LBW defined on i, j ∈ [n], i < j. For each

i, j ∈ [n], i < j, UBW(i, j) contains pairs consisting of a bound and an

(i, j)-upper-bound-path, where the bound is a minimal element in

β+(Ui,j); LBW(i, j) contains pairs consisting of a bound and an

(i, j)-lower-bound-path, where the bound is a maximal element in Li,j

under �.

1 for i ∈ [n] do

2 for j = i, . . . , n do

3 if ai,j �= 0 then UBW(i, j) ← {(β+({i, j}), 〈i, j〉)} ;

4 LBW(i, j) ← {(β−({i, j}), 〈i, j〉)};

5 for s = 1, . . . , n do

6 for i = 1, . . . , n do

7 for j = i, . . . , n and i �= s �= j do

8 if i < s < j then

9 foreach (b1,W1) ∈ UBW(i, s) and (b2,W2) ∈ UBW(s, j) do

10 Compare-Upper-and-Add-Walk-To(UBW(i, j), (b1+b2,W1+W2));

11 foreach (a1,W1) ∈ LBW(i, s) and (a2,W2) ∈ LBW(s, j) do

12 Compare-Lower-and-Add-Walk-To(LBW(i, j), (a1+a2,W1+W2));

13 else if i < j < s then

14 foreach (b,W1) ∈ UBW(i, s) and (a,W2) ∈ LBW(j, s) do

15 Compare-Upper-and-Add-Walk-To(UBW(i, j), (b− a,W1 +W←
2));

16 foreach (a,W1) ∈ LBW(i, s) and (b,W2) ∈ UBW(j, s) do

17 Compare-Lower-and-Add-Walk-To(LBW(i, j), (a− b,W1 +W←
2));

18 else if s < i < j then

19 foreach (a,W1) ∈ LBW(s, i) and (b,W2) ∈ UBW(s, j) do

20 Compare-Upper-and-Add-Walk-To(UBW(i, j), (b− a,W←
1 +W2));

21 foreach (b,W1) ∈ UBW(k, i) and (a,W2) ∈ LBW(k, j) do

22 Compare-Lower-and-Add-Walk-To(LBW(i, j), (a− b,W←
1 +W2));

23 return UBW, LBW;

60

Algorithm 4: Compare-Upper-and-Add-Walk-To

input : A set of pairs consisting of an upper bound and an upper-bound-path

S, a pair consisting of an upper bound and an upper-bound-paht

(b,W)

1 if W contains repeating vertices then return ;

2 foreach (W ′, b′) ∈ S do

3 if b′ � b then return;

4 else if b � b′ then S ← S \ {(b′,W ′)} ;

5 S ← S ∪ {(b,W)};

Algorithm 5: Compare-Lower-and-Add-Walk-To

input : A set of pairs consisting of a lower bound and a lower-bound-path S,

a pair consisting of a lower bound and a lower-bound-path, (a,W)

1 if W contains repeating vertices then return ;

2 foreach (a′,W ′) ∈ S do

3 if a � a′ then return;

4 else if a′ � a then S ← S \ {(a′,W ′)} ;

5 S ← S ∪ {(a,W)};

61

The following two lemmas state that the minimal/maximal bound-paths can be

generated from other minimal/maximal bound-paths.

Lemma 4.11. Let W ∈ Uu,v, and let s be the largest intermediate vertex in W . Sup-

pose β+(W) is a minimal element in β+(Uu,v), writeW = W1+W2 with 〈u, . . . , s, . . . , v〉

and W1 = 〈u, . . . , s〉,W2 = 〈s, . . . , v〉. Then, one of the following condition holds:

⎧⎪⎪⎨
⎪⎪⎩

W1 is minimal in U
s−1
u,s ,W2 is minimal in U

s−1
s,v if u < s < v

W1 is minimal in U
s−1
u,s ,W

←

2 is maximal in L
s−1
v,s if u < v < s

W←

1 is maximal in L
s−1
s,u ,W2 is minimal in U

s−1
s,v if s < u < v

(4.2.13)

(4.2.14)

(4.2.15)

Proof: Let W ∈ Uu,v be such that β+(W) is a minimal element in β+(Uu,v) and let

s be the largest intermediate vertex in W . Write W = W1 +W2 and W1 = 〈u, . . . , s〉

and W2 = 〈s, . . . , v〉. Assume u < s < v, we show Equation (4.2.13) by contradiction.

Note that W1 ∈ U
s−1
u,s and W2 ∈ U

s−1
s,v .

Toward contradiction, suppose W ∈ U
s
u,v is minimal, W1 ∈ U

s−1
u,s is not minimal,

and W2 ∈ U
s−1
s,v is minimal. Since W1 is not minimal, there exists some W ′

1 such that

β+(W ′
1) � β+(W1). By Theorem 4.5, for any d ∈ Dk, β

+(W ′
1)
�d � β+(W1)

�d, and

thus

β+(W ′

1)
�d+ β+(W2)

�d � β+(W1)
�d+ β+(W2)

�d = β+(W)�d.

Convert back to the partial order, β+(W ′
1 + W2) � β+(W1 + W2) = β+(W), which

implies W is not minimal in U
s
u,v, which contradicts to the assumption. The same

case happens when W2 is not minimal in Us,v, or both W1 not minimal in U
s−1
u,s and

W2 is not minimal in U
s−1
s,v .

Similarly, the same logic applies to Equation (4.2.14), Equation (4.2.15).

By symmetry, the similar statement applies to lower-bound-paths.

Lemma 4.12. Let W ∈ L
s
u,v and W = 〈u, . . . , s, . . . , v〉. Write W = W1 +W2 with

W1 = 〈u, . . . , s〉,W2 = 〈s, . . . , v〉. Then

⎧⎪⎪⎨
⎪⎪⎩

W1 is maximal in L
s−1
u,s ,W2 is maximal in L

s−1
s,v if u < s < v

W1 is maximal in L
s−1
u,s ,W

←

2 is minimal in U
s−1
v,s if u < v < s

W←

1 is minimal in U
s−1
s,u ,W2 is maximal in L

s−1
s,v if s < u < v

(4.2.16)

(4.2.17)

(4.2.18)

These two lemmas apply to Bound-Generation-mod, such that all the minimal

upper-bound-paths and maximal lower-bound-paths are enumerated when UBW(i, j)

stores only the minimal elements and LBW(i, j) stores only the maximal elements at

each iteration.

62

4.3 Finding a Threshold Vector

Given Robinson matrix A ∈ Sn[k], recall that the iterative procedure given in Defini-

tion 3.22 involves a threshold vector d ∈ Dk that satisfies Condition 3.17. We devote

this chapter on how to obtain one of such vector d.

In Condition 3.17, the system of inequalities is described in terms of the induced

bound of lower- and upper-bound-walks, a, b, so that a�d < b�d. Notice, it is equiv-

alent to state Condition 3.17 as, for all u, v ∈ [n], for all a = β+(W2) ∈ β−(Lu,v), b =

β+(W1) ∈ β+(Uu,v) 0 < (b− a)�d. Then, consider it in terms of bound-walks, W1 is

a (u, v)-upper-bound-walk and W2 is a (u, v)-lower-bound-walk, and thus, W1 +W←
2

is an upper-bound-walk with the vertices on the two ends are the same (It may not

be a cycle since there may be common vertices in W1,W2). Recall Lemma 3.19 and

Lemma 3.21, we shown that by “detaching” bound-cycles from a bound-walk, it re-

sults in a “better” bound-walk in Condition 3.17. Therefore, let C be the set of

upper-bound-cycles, and rewrite such that d satisfies Condition 3.17:

For all C ∈ C, β+(C)�d > 0. (4.3.1)

Any cycle in a connected graph with vertex set [n] has length at most n. Any edge

in the cycle can contribute at most 1 to the coefficients of the induced bound. Thus

we have that, for any upper-bound-cycle C,

β+(C) ∈ Z
k
n :=

{
a ∈ Z

k :
k∑

i=1

|ai| � n

}
.

In particular, no coefficient of a bound, induced by a upper-bound-path, can have

absolute value more than n. This implies that the number of upper-bound-cycles is

at most nk, and thus the number of inequalities in (4.3.1) is at most nk.

Let variable z ∈ R, and 1 be the all-one vector. Define the linear program that

finds a solution to d = (di), where the objective function is z. Each row of the

constraint matrix, B, is b� for each b ∈ β+(C).

Maximize z

subject to Bd � z1

di − di+1 � z ∀i ∈ [k − 1]

and dk � z

(4.3.2)

Notice, d ∈ Dk has no solution if the solution of z being z � 0. Precisely, each entry

of Bd � z1 corresponds to b�d > 0 as in (4.3.1); each di − di+1 � z corresponds to

63

d = (di) is a strictly decreasing vector; dk � z corresponds to dk > 0. If the maximum

solution of z is non-positive, it implies that, for all solutions of d ∈ R
k, either d �∈ Dk

or there is b ∈ β+(C) such that b�d � 0.

4.4 Time Complexity of Computing a Uniform Embedding

In this section, we discuss the computation of a uniform embedding of a Robinson

matrix A. Consider the following steps.

1. Generate all upper- and lower-bound-paths using the Bound-Generation-mod

algorithm (Algorithm 3) and compute all upper-bound-cycles C.

2. Use a linear program solver to solve linear program (4.3.2). If linear program

(4.3.2) does not have a solution, then EXIT and print “No Solution”; otherwise,

return a solution d.

3. Apply β+(Uu,v), β
−(Lu,v) to compute a uniform embedding Π with respect to d

using the formula in Definition 3.22. Exit and return Π.

Recall, the complexity of the Floyd-Warshall algorithm is dominated by computing

all s-(i, j)-paths, such that it enumerates on all i, j, s ∈ [n]; thus, the complexity of

the algorithm is O(n3) where n is the number of vertices. Particularly, there is a

comparison on D(i, j) and D(i, s)+D(s, j); but D(i, j) are all real numbers, the cost

is a constant.

In Bound-Generation-mod algorithm, the same enumeration is needed. Then,

instead of the comparison on the real numbers, the algorithm needs to enumerate,

for each u, s, v ∈ [n], all the bound-paths in a pair of bound-paths on Line 10, 20,

or 15, and on Line 12, 22, or 17; then use Compare-Upper-and-Add-Walk-To or

Compare-Lower-and-Add-Walk-To to add a path to the corresponding set. Notice,

without using �, there are O(nk) bounds exists in each of Uu,v and Lu,v. By apply

� to the algorithm, we may reduce the size of bounds in each set by taking the

minimal/maximal elements, we denote this size by O(M). Then, the complexities of

Compare-Upper-and-Add-Walk-To and Compare-Lower-and-Add-Walk-To are both

O(nM) since they need to verify that the given upper-bound-walk is indeed an

upper-bound-cycle and compare it to all elements in the corresponding sets. On

each of Line 10, 20, or 15, and on Line 12, 22, or 17, it enumerates all the upper-

and lower-boundpaths, with complexity O(M2). Therefore, we conclude that the

complexity of Bound-Generation-mod with Compare-Upper-and-Add-Walk-To and

64

Compare-Lower-and-Add-Walk-To is O(n3M2(nM)) = O(n4M3). Unfortunately, we

could not determine the exact relation between O(M) and O(nk).

Use the linear program solver in [26] by Vaidya, the cost to solve a linear program

is O((n + d)1.5nL) where d is the number of constraints and L is the number of bits

of the entry values. In this thesis, we focus on the combinatorial properties of the

algorithm; therefore, we assume the bound on bit size of each entries, L, to be a

constant since it is more relevant to the implementation of the algorithm. In our

inequality system 4.3.2, the number of constraints d is M . Thus, the complexity of

solving linear program 4.3.2 is O((n+M)1.5n).

Finally, for the calculation of Π, Definition 3.22, for each v ∈ [n], it enumerates

O(M) elements in β+(S) in each set β+(Ui,v) or β−(Li,v) for i ∈ [v]. Then the

complexity is O(n2M).

So we conclude the overall complexity of the entire procedure is O(n4M3 + (n +

M)1.5n+ n2M) = O(n4M3), if we assume L is a constant.

4.5 The Uniform Embedding Algorithm of Case of k = 2

In this section, we consider the problem of finding the uniform embedding when k = 2,

i.e., the given matrix A = (ai,j) with ai,j ∈ {0, 1, 2}, and d = (d1, d2)
�. Recall that

the size of each entry of UBW, LBW is O(M), which cannot be determined precisely.

However, in the case of k = 2, we can determine the upper bound on the sizes in

terms of n. Also, we propose a combinatorial procedure to compute the uniform

embedding, if the matrix has a uniform embedding, i.e., without using the linear

program as in Section 4.3.

We rewrite the constraints in linear program 4.3.2 when k = 2: Let A ∈ Sn[2] and

let B be constraint matrix. Notice that B is a matrix of size M × 2, where M is the

number of minimal elements in β+(C). Each row of B being b�, where b = (b1, b2)
�

are the minimal elements in β+(C). Then, rewrite linear program as the following,

for z ∈ R and find solution for d = (d1, d2)
�,

Maximize z

subject to b1d1 + b2d2 � z for b = (b1, b2)
� ∈ β+(C)

d1 − d2 � z

and d2 � z

65

Now we rewrite the constraints, Bd, without z. For each b = (b1, b2)
�,

b1d1 + b2d2 � z ⇐⇒

{
d2 > −b1d1/b2 if b2 > 0

d2 < −b1d1/b2 if b2 < 0

d1 − d2 � z ⇐⇒ d2 < d1.

(4.5.1)

Notice that these constraints restrict a region in R
2. Also notice that the boundaries

of these restrictions are linear equations that pass the origin; and since the solutions

of d is restricted to d1 > d2 > 0. The constraints can be linearly ordered: Let

b1 = (b1, b2)
�, b2 = (b3, b4)

� be two bounds in the system, then −b1d2/b2 > −b3d2/b4

if and only if −b1/b2 > −b3/b4. Therefore, we can fix d1 = 1 without loss of generality,

and rewrite each constraint b = (b1, b2)
� as the following form:

d2 > −b1/b2 if b2 > 0,

d2 < −b1/b2 if b2 < 0.

while d2 < 1. Let R = min{1}∪{−b1/b2 : b2 < 0} and L = max{0}∪{−b1/b2 : b2 > 0}

and notice d has a solution if and only if L < R. Recall that there are finitely many

upper-bound-cycles, so the minimum and the maximum belong to elements in the

two sets that define L and R. Therefore, if L < R, then (1, d2)
� is a solution of d for

any d2 ∈ (L,R). Otherwise, if L > R, then d does not have a solution.

4.5.1 The Size of Bounds when k = 2

In this subsection, we discuss the number of minimal elements in β+(C), M , under

the partial order �, produced by Bound-Generation-mod.

Lemma 4.13. Let A ∈ Sn[2], i.e., if k = 2, and let C be the set of all upper-bound-

cycles. Then the number of minimal element in β+(C) under � is at most 2n.

First consider a partition of the set S = {b = (b1, b2)
� : b ∈ Z

2
k, b1 + b2 � n}

into n cases, for t ∈ [n], St = {(b1, b2)
� ∈ Z

2 : |b1| + |b2| = t}. For each t, partition

St = S1
t ∪ S2

t where

S1
t = {(−t+ i, i)� : 0 � i � t} ∪ {(i, t− i)� : 0 � i � t}, and

S2
t = {(−t+ i,−i)� : 1 � i � t} ∪ {(i,−t+ i)� : 0 � i � t}.

Notice that each Sj
t forms a chain.

66

1. First consider subset {(−t + i1, i1)
� : 0 � i1 � t} of S1

t , (−t + i1, i1)
� �

(−t+ i1+1, i1+1)� for each 0 � i1 < t. In the subset {(i2, t− i2)
� : 1 � i2 � t},

(i2, t − i2)
� � (i2 + 1, t − i2 − 1)� for 1 � i2 < t. When i1 = t and i2 = 0, the

elements in the two subsets are both (0, t)�. Therefore, S1
t forms a chain.

2. In subset {(−t + i1,−i1)
� : 1 � i1 � t} of S2

t , (−t + i1,−i1)
� � (−t + i1 +

1,−i1 − 1)� for each 1 � i1 < t. In the subset {(i2,−t + i2)
� : 0 � i2 � t},

(i2,−t + i2)
� � (i2 + 1,−t + i2 + 1)� for 0 � i2 < t. When i1 = t and i2 = 0,

both elements are (0,−t)�. Therefore, S2
t forms a chain.

Recall that there are only finitely many upper-bound-cycles in C, shown in Lemma 3.21.

Apply Dilworth’s theorem, such that, set S is a finite partially ordered set that can

be partitioned into 2n chains, and thus, the number of minimal elements is bounded

by 2n.

Example 4.14. Consider any example on Robinson matrix of order 5, Sn[2]. Then, all

the bounds with the absolute value of the coefficients summing up to 5 are in form

of: [
−5

0

]
�

[
−4

1

]
�

[
−3

2

]
. . . �

[
2

3

]
�

[
3

2

]
�

[
4

1

]

[
−4

−1

]
�

[
−3

−2

]
. . . �

[
2

−3

]
�

[
3

−2

]
�

[
4

−1

]

4.5.2 The Combinatorial Procedure and its Complexity

We summarize and present the combinatorial procedure to compute a uniform em-

bedding of a Robinson matrix when k = 2. Given Robinson matrix A ∈ Sn[k],

1. Generate all upper- and lower-bound-paths using the Bound-Generation-mod

algorithm (Algorithm 3). Compute all pairs of upper bound and upper-bound-

cycle, (β+(C), C), while keeping the pairs only if β+(C) is minimal in β+(C).

2. Fix d1 = 1. For each bound β+(C), convert it into a lower or upper bound

on d2, as in (4.5.1). Only keep two cycles (b1, β
+(C1)) and (b2, β

+(C2)) such

that, b1 = (b1, b2)
� has b2 < 0 and produces the smallest −b1/b2, b2 = (b3, b4)

�

has b4 > 0 and produces the largest −b3/b4. Notice that b1 produces L and b2

produces R. If L � R, then print NO SOLUTION. Exit and return C1 and C2.

Otherwise, L < R, then choose d1, d2 so that d2/d1 lies in (L,R).

67

3. Compute a uniform embedding Π with respect to (d1, d2) using the formula

given in Definition 3.22. Exit and return Π.

The Bound-Generation-mod algorithm still enumerates all i, j, s ∈ [n] in a triply

nested loop. In each iteration, Line 10, 11, 14, 16, 19, or 21 enumerates at most

(2n)2 bound-paths since there are at most 2n minimal or maximal elements in each

entry of UBW and LBW. On each Line 11, 12, 15, 17, 20, or 22, it checks does the

generated bound-walk is actually a bound-path and compares 2n elements to check its

minimality, which costs O(n2). Therefore, the complexity of Bound-Generation-mod

is O(n3 ·n2 · (n2)) = O(n7). Step 2 costs O(n) since C has at most 2n elements; Step 3

costs O(n2 ·n) = O(n3) steps to compute a uniform embedding using Definition 3.22,

based on the output of Bound-Generation-mod. Therefore, the overall complexity of

computing a uniform embedding of matrices in Sn[2] is O(n7). Note that the input

is a Robinson matrix and it consists of Θ(n2) entries. Let N = n2, the complexity of

the combinatorial algorithm for k = 2, with respect to the input size N , is O(N3.5).

Notice, this analysis only applies when k = 2. For any k > 2, we could not apply

Dilworth’s theorem to the bounds (k-dimensional integer vectors) to form chains; we

also could not fix d1 = 1 so that determine the restrictions on the rest of di, for all

i > 1, since there is no linear order on di’s. This explains why this thesis ends with

the case of k = 2, but not any higher case.

Chapter 5

Conclusion and Future Works

In this thesis, we studied how to identify whether a Robinson matrix has a uniform

embedding or not, and we provide a complete procedure to compute the uniform

embedding if there exists one. We first established a sufficient and necessary condition

on a Robinson matrix to have a uniform embedding, assuming the threshold vector

and all the implied bounds from the original inequalities are given. The necessity is

immediate. We proved the sufficiency by constructing a uniform embedding with a

threshold vector and the implied bounds. We generalized the bounds by k-dimensional

vectors, and we employed a Floyd-Warshall-like algorithm, Bound-Generation, to

generate all the implied bounds. We write the solution of the threshold vector in

a system of inequalities. If the system has a solution then there exists a uniform

embedding.

We also proposed a partial order on bounds (or k-dimensional vectors) that asso-

ciates with threshold vectors. With this partial order, we reduce the complexity of

Bound-Generation algorithm.

Finally, we provide an O(N3.5) combinatorial algorithm of computing the uniform

embedding when the given Robinson matrix has entries that are either 0, 1, or 2.

68

Bibliography

[1] Jonathan E Atkins, Erik G Boman, and Bruce Hendrickson. A spectral algorithm
for seriation and the consecutive ones problem. SIAM Journal on Computing,
28(1):297–310, 1998.

[2] Kenneth P. Bogart and Douglas B. West. A short proof that ‘proper = unit’.
Discrete Mathematics, 201(1):21–23, 1999.

[3] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones prop-
erty, interval graphs, and graph planarity using pq-tree algorithms. Journal of
Computer and System Sciences, 13(3):335–379, 1976.

[4] Huda Chuangpishit, Mahya Ghandehari, Matthew Hurshman, Jeannette
Janssen, and Nauzer Kalyaniwalla. Linear embeddings of graphs and graph
limits. Journal of Combinatorial Theory, Series B, 113:162–184, 2015.

[5] Huda Chuangpishit, Mahya Ghandehari, and Jeannette Janssen. Uniform linear
embeddings of graphons. European Journal of Combinatorics, 61:47–68, 2017.

[6] Derek G Corneil. A simple 3-sweep lbfs algorithm for the recognition of unit
interval graphs. Discrete Applied Mathematics, 138(3):371–379, 2004.

[7] Derek G Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P
Sprague. Simple linear time recognition of unit interval graphs. Information
processing letters, 55(2):99–104, 1995.

[8] James Edward Doran, Jim Doran, Frank E Hodson, and Frank Roy Hodson.
Mathematics and computers in archaeology. Harvard University Press, 1975.

[9] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June
1962.

[10] D. R. Fulkerson and O. A. Gross. Incidence matrices with the consecutive 1’s
property. Bulletin of the American Mathematical Society, 70(5):681 – 684, 1964.

[11] Frédéric Gardi. The Roberts characterization of proper and unit interval graphs.
Discrete Mathematics, 307(22):2906 – 2908, 2007.

[12] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-
bfs and partition refinement, with applications to transitive orientation, interval
graph recognition and consecutive ones testing. Theoretical Computer Science,
234(1-2):59–84, 2000.

[13] David Kendall. Incidence matrices, interval graphs and seriation in archeology.
Pacific Journal of mathematics, 28(3):565–570, 1969.

69

70

[14] M. Laurent and M. Seminaroti. A lex-bfs-based recognition algorithm for robin-
sonian matrices. Discrete Applied Mathematics, 222:151 – 165, 2017.

[15] Monique Laurent and Matteo Seminaroti. Similarity-first search: a new algo-
rithm with application to robinsonian matrix recognition. SIAM Journal on
Discrete Mathematics, 31(3):1765–1800, 2017.

[16] Innar Liiv. Seriation and matrix reordering methods: An historical overview.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 3(2):70–
91, 2010.

[17] Peter J Looges and Stephan Olariu. Optimal greedy algorithms for indifference
graphs. Computers & Mathematics with Applications, 25(7):15–25, 1993.

[18] Boris G Mirkin and Sergej N Rodin. Graphs and Genes. Biomathematics.
Springer, 1984.

[19] W. M. Flinders Petrie. Sequences in prehistoric remains. The Journal of the
Anthropological Institute of Great Britain and Ireland, 29(3/4):295–301, 1899.

[20] Pascal Préa and Dominique Fortin. An optimal algorithm to recognize Robinso-
nian dissimilarities. Journal of Classification, 31(3):351–385, 2014.

[21] Fred S Roberts. Indifference graphs, pages 139–146. Academic Press, 1969.

[22] Fred S Roberts. On the compatibility between a graph and a simple order.
Journal of Combinatorial Theory, Series B, 11(1):28–38, 1971.

[23] W. S. Robinson. A method for chronologically ordering archaeological deposits.
American Antiquity, 16(4):293–301, 1951.

[24] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[25] Matteo Seminaroti et al. Combinatorial algorithms for the seriation problem.
PhD thesis, ”Tilburg University”, 2016.

[26] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication.
In 30th Annual Symposium on Foundations of Computer Science, pages 332–337,
1989.

