
SERVIZ: AN INTERACTIVE VISUALIZATION FRAMEWORK
FOR THE ANALYSIS OF SEQUENTIAL RULES AND

FREQUENT ITEMSETS

by

Asal Jalilvand

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2021

© Copyright by Asal Jalilvand, 2021



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations Used . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background and Terminology . . . . . . . . . . . . . . . . 6

2.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Frequent Itemset Mining . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Sequential Pattern Mining . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Sequential Rule Mining . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Association Rules Visualization . . . . . . . . . . . . . . . . . . . . . 11

3.2 Sequential Rules Visualization . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Event Sequence Visualization . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Frequent Itemsets Visualization . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Domain Problem Characteristics . . . . . . . . . . . . . . 20

4.1 Ground Handling Terminology . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ii



4.3.2 Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Visual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Sequential Rule View . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.4 Frequent Itemset View . . . . . . . . . . . . . . . . . . . . . . 36
5.3.5 Distribution Views . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.6 Statistical Breakdown View . . . . . . . . . . . . . . . . . . . 37
5.3.7 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 6 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Sequential Rules from Sequences with Delayed Fuelling . . . . . . . . 39

6.2 Frequent Itemsets from Sequences in Freezing Weather . . . . . . . . 42

Chapter 7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Domain Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 User Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.1 Participant Selection . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.4 Scenario Exercises . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.5 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 59
8.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.1.3 Accuracy of the Analysis . . . . . . . . . . . . . . . . . . . . . 61

iii



8.1.4 Rare Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.1.5 Sequential Rule Simplification . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix A Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix B SeRVis Video Demo . . . . . . . . . . . . . . . . . . . . . . 72

iv



List of Tables

4.1 Labelling the events and time gaps . . . . . . . . . . . . . . . . 24

7.1 User study results for Q1-Q6 . . . . . . . . . . . . . . . . . . . 53

7.2 NASA Task Load Index (NASA-TLX) t-test . . . . . . . . . . 56

v



List of Figures

1.1 Framework overview . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Association rule visualizations techniques in literature. . . . . 14

3.2 Sequential rule visualizations in literature . . . . . . . . . . . . 15

3.3 Sequential rule visualizations in literature . . . . . . . . . . . . 17

3.4 Frequent itemset visualizations techniques in literature. . . . . 19

4.1 Airport apron and stand . . . . . . . . . . . . . . . . . . . . . 21

5.1 SeRVis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 SeRViz: Frequent itemsets view . . . . . . . . . . . . . . . . . 30

5.3 Two graphs for sequential rule {x, y} → z . . . . . . . . . . . 31

5.4 Overview graph . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Matrix with a. partially b. randomly ordered columns. . . . . 32

5.6 Two Directed Acyclic Graphs (DAGs) found for a set of sequen-
tial rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7 Sequential rule matrix . . . . . . . . . . . . . . . . . . . . . . 35

5.8 Encoding antecedent, consequent and labels with glyphs. . . . 36

5.9 Encoding item labels with color and size for frequent itemsets
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Target based analysis for delayed aircraft fuelling . . . . . . . 41

6.2 Sequential rule groups . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Target based analysis for delayed aircraft fuelling. . . . . . . . 43

6.4 Exploring frequent itemsets derived from sequences in freezing
weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 User study demographics . . . . . . . . . . . . . . . . . . . . . 48

7.2 Sequential Pattern Mining Framework (SPMF) plain-text output 50

vi



7.3 User study results for Q7-Q11 . . . . . . . . . . . . . . . . . . 54

7.4 NASA-TLX results . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Software interface and usability ratings . . . . . . . . . . . . . 58

8.1 System performance . . . . . . . . . . . . . . . . . . . . . . . 60

vii



Abstract

Sequential Rule Mining (SRM) discovers association relationship between items in

a sequence database, w.r.t. their temporal order. Often, the high number of mined

rules makes their exploration challenging. Visualization of Association Rules (ARs), a

closely related field in data mining, has been studied extensively to address scalability

issues; however, unlike Sequential Rules (SRs), the items in ARs are not partially

ordered. The small body of research investigating SR visualization enforces many

constraints on the rules that make their work less generalized. We tried to address

this problem by combining matrix-based visualization of ARs and the partial order

between rules’ items through topological sort. We developed an interactive system

for mining and visualizing SRs. We experimented the effectiveness of our approach

by conducting a user test and showing the reduced cognitive load for exploring SRs

compared to the plain-text output of a popular off-the-shelf rule miner for a real-world

dataset.

viii



List of Abbreviations Used

AI Artificial intelligence. 21

AR Association Rule. viii

ARM Association Rule Mining. 1, 2, 7, 8

CR Causal Rules. 61

DAG Directed Acyclic Graph. vi, 28, 31, 32, 34, 59, 60

DM Data Mining. 6, 7

FIM Frequent Itemset Mining. 1, 2, 7, 8, 27, 28, 36, 38, 44, 45, 49

FPM Frequent Pattern Mining. 6, 7

GUI Graphical User Interface. 14

LHS Left-hand-side. 8, 10

NASA-TLX NASA Task Load Index. v, vii, 49–56

RHS Right-hand-side. 8, 10

RWIS Road Weather Information System. 22

SLA Service Level Agreements. 20, 23, 26, 46, 61

SPM Sequential Pattern Mining. 2, 8, 9, 16, 38

SPMF Sequential Pattern Mining Framework. vi, 14, 26, 50, 59

SR Sequential Rule. viii

SRM Sequential Rule Mining. viii, 2, 9, 10, 16, 27, 28, 41, 45, 49

ix



Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Fernando Paulovich, for

his invaluable advice and continuous support throughout this research.

This research was enabled by support provided by DeepSense 1. I would like to

thank Professor Evangelos Milios and DeepSense for making my pursuit of graduate

studies in Canada possible. I would like to offer my special thanks to Ms. Jennifer

LaPlante, Dr. Chris Whidden and Dr. Geetika Bhatia for their insightful comments

and suggestions at every stage of this project.

I want to thank Halifax Stanfield International Airport (HSIA), the partner orga-

nization responsible for this project’s motivation. I wish to show my gratitude to Mr.

Brian LeBlanc and all the other domain experts from Halifax International Airport

Authority (HIAA), and Mr. Petr Zhigalin from Assaia for all their guidance and

cooperation during this project.

I also would like to extend my gratitude to my colleagues at the lab, especially

Mr. Leonardo Christino, for his support inside and outside this project.

I am deeply grateful for the support of my friends from home and the new friends

I made at Dalhousie University.

I would also like to thank my mother, Mehrnaz, for her support and belief in me.

I also appreciate all the support I received from my two lovely grandmothers the rest

of my family.

1www.deepsense.ca

x

www.deepsense.ca


Chapter 1

Introduction

In many domains, data is stored as a sequence of discrete events, ordered by their

occurrence time (e.g. stock market data, health care records, website clickstream,

and customer transaction history) [29]. There are numerous ways to analyze event

sequences for decision-making in real-world systems [29]. For example, the users’

clickstream in websites can be analyzed for a customized product recommendation or

revealing usability problems based on their navigation behaviour [29, 52]. In health

care, experts can investigate disease progression from clinical records to form best

practice guidelines [29, 55].

Overall, there are two kinds of analytical tasks [43]. First, predictive tasks such

as prediction and recommendation. Second, descriptive tasks for analyzing past and

gaining insights for decision-making [29, 43]. For predictive tasks, there are numerous

state-of-the-art models, such as neural networks, that focus on accurate predictions of

the upcoming events given historical data. Even though their results are promising,

the downside is that these models are often designed as black-boxes, and making sense

of their decisions is difficult [47, 20]. Descriptive tasks, on the other hand, discover

patterns that are human-understandable [43].

Frequent pattern mining algorithms are an example of descriptive analysis tasks

which are useful for finding hidden relationships in data and present them in the

form of easy-to-understand patterns [51, 2, 43]. Frequent Itemset Mining (FIM) is

one of the prevalent tasks in pattern mining. It was originated in the 1990s for

discovering the frequently bought-together items in transaction databases for market

basket analysis [20]. As an example, FIM on a set of customer transactions might

show that a group of customers buy organic foods frequently. In contrast, another

group is merely interested in junk food. An application of such insight could be

designing group promotions to increase revenue at the given store. A closely related

task that was introduced around the same time is Association Rule Mining (ARM),

1



2

which discovers patterns with strong association within their items. It processes the

frequently co-occurring itemsets and discards the ones with weak co-relation. These

patterns can potentially find cause-effect relationships between the items and help

data analysts and domain experts with decision-making [37]. To give an example, a

study by Benhacine et al. [5] used association rules to investigate the relationship

between mothers’ socio-economic background and getting babies vaccinated on time.

One of the patterns they found was that if a woman has at least four children and has

a liberal profession (the antecedent), she will likely not respect the vaccination dates

(the consequent). Such patterns can help the health authorities reduce the causes of

low immunization.

Variations of FIM and ARM apply to sequence databases, namely SRM and Se-

quential Pattern Mining (SPM) [20, 2, 23], respectively. An example of SPM used on

a sequence database is studying user navigation behaviour on a telecommunication

company’s website [52]. After analyzing frequent subsequences in clickstreams, the

data analysts found out customers are more likely to browse phone and data plans

while visiting the website with a desktop computer. This pattern revealed a need

for improving mobile site design to increase product views. Sequential rules are fre-

quent subsequences with a high correlation between the events. A real-life example

is a study by Vu et al. [73] on Australians’ travel history. One of the observed

travel behaviours was that people who take a trip to Laos (antecedent) are likely to

visit Thailand next (consequent) with a high probability. This information can help

tourism managers with travel package development.

One of the challenges of pattern mining algorithms is the extraction of a high

number of patterns even from small datasets, which makes the exploration and anal-

ysis of these patterns exhaustive [41]. Algorithmic-based [20] and visualization-based

[29] solutions have been proposed to deal with scalability issues to a certain extent.

A visual analytics framework for exploring the patterns can reduce the high cognitive

load in understanding the output of these algorithms [41]. Even though visualiza-

tion of frequent itemsets, association rules and sequential patterns has been heav-

ily researched over the years[41, 29], visualizing the sequential rules remains briefly

investigated. Sequential patterns, or more precisely, frequent subsequences found in

sequence databases, lack one computational layer of discarding subsequences with low
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correlation between the events (as in sequential rules) in their mining procedure[20].

Therefore, their visualization techniques lack the event correlation notion as well. As-

sociation rules, which are almost the counterpart of sequential rules, are not derived

from sequence databases, but from unordered transactions [2, 43]. Consequently,

their visualizations do not incorporate a notion of sequence and temporal order. A

few studies [65, 17] attempted to bridge the gap between the visualization of associ-

ation rules and sequential patterns. However, the proposed methods only work for a

small set of rules in terms of readability [17], or are highly domain-specific with many

enforced constraints that make the technique less usable for general scenarios [65].

This study proposes a new approach for interactive visualization of sequential rules

that conveys the notion of temporal order between the items, scales for a relatively

high number of rules, with few constraints regarding the rules so that the approach

could be used for a variety of domains. We hypothesize that our visual analytics

framework reduces the cognitive load of analysis and exploration of sequential rules

compared to the plain-text output of off-the-shelf rule mining tools.

We developed our solution over a case study of finding hidden patterns within

a log of ground handling operations at an airport. Ground handling operations can

be view as a sequence of services an aircraft receives between its arrival and depar-

ture at an airport [67]. These services include loading and unloading of passengers,

fuelling, parking or maintenance. We utilized data mining to analyze historical logs

of these operations to find frequent delay-related patterns. These patterns can help

the stakeholders understand what is adversely affecting ground handling operations’

performance to find a solution for it.

Fig.1.1 illustrates an overview of our proposed visual analytics solution for ex-

ploring frequent patterns in ground handling operations log while addressing the

challenges mentioned for sequential rule visualization. The first step is to preprocess

the data (Fig.1.1 (1)). The exact steps can vary based on application. For our target

domain in this study, we cleaned the logs based on guidance from domain experts and

removed unimportant flights such as non-passenger ones. Then we merged all data

sources (logs, flight details such as airline and aircraft information, and weather con-

ditions during each flight) and used the information to label both the ground handling

operations and the time gap between different services. Next, we used data mining
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Figure 1.1: An overview of the SeRVis framework and data processing pipeline.

to find sequential rules in labelled sequences of ground handling operations and the

frequent co-occurrence of labelled time gaps (Fig.1.1 (2)). Subsequently, the patterns

were post-processed to build a matrix of sequential rules with partial order of items

displayed with topologically sorted columns and a matrix of frequent itemsets (Fig.1.1

(3)). Finally, we visualize the matrices and the distribution of flight attributes per

pattern (Fig.1.1 (4)). For scalability, the rows of matrices are grouped by a similarity

criterion. The user interface is interactive and provides various features such as con-

figuring pattern mining parameters, filtering sequences (or time gap itemsets) before

data mining, and filtering mined patterns.

We evaluated the proposed visual analytics framework from two aspects. First,

the usefulness of the tool in aviation through individual interviews with two domain

experts. Second, the framework’s effectiveness in terms of reduced cognitive load in

pattern exploration through a study conducted with 12 users.

1.1 Contributions

Contributions of this thesis are summarized in the following:

• A novel approach for visualizing sequential rules w.r.t. to the partial order of

antecedents and consequents.
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• A visual analytics approach to identify sequential rules in sequences of aviation

ground handling operations, as well as frequent co-occurrence of certain intervals

between pairs of different operations (for example, a long time gap between

events A and B frequently co-occurs with a short time gap between events A

and C ).

1.2 Thesis Outline

The remainder of the thesis is organized as follows. In chapter 2, we discuss the data

mining concepts we utilized in this study. Next, we review the literature regarding

visualization of frequent patterns in chapter 3. After discussing our target domain and

data characteristics in chapter 4, we go through details of requirement analysis and

system design in chapter 5. Next, we demonstrate of the system functionality with

two use cases in chapter 6. We evaluate the system chapter 7,and finally conclude

the thesis in chapter 8.



Chapter 2

Background and Terminology

In this chapter, we present the background and definitions of the data mining concepts

used in this thesis.

2.1 Data Mining

In the information age we are living in, the governments, scientific institutions and

businesses invest in collecting an enormous amount of data [43]. But in reality, they

only use a small portion of it, often because there is no predefined plan on using this

data [43]. In todays’ competitive world, this information-rich data is considered an

asset and extracting valuable information from it is an important skill [43]. Data

mining is the process of using a computer-based methodology for extracting implicit

knowledge hidden in data [43].

Data mining activities are categorized into the following [43]:

• Predictive data mining tasks that focus on making predictions based on infer-

ence on available data. Regression and classification, for example, fall in this

spectrum.

• Descriptive data mining tasks that describe knowledge extracted from data.

There is no specific target variable; instead, the focus is more on associations,

correlations, and patterns in data. Cluster analysis and association rules are

examples of this type of data mining.

In exploratory research, where there is no notion of an interesting outcome, one

can take advantage of descriptive data mining to extract nontrivial information from

data [43]. To this end, one can utilize Frequent Pattern Mining (FPM), an important

subfield of Data Mining (DM), to find interesting frequent patterns from data. FPM

can be used with various data types, such as transactions, sequences, strings, and

6
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graphs, and extract various types of patterns, such as associations or frequent subse-

quences. The interestingness of these patterns can be objective (e.g. be based upon

statistical characteristics of data) or subjective (e.g. depends on application and user

preference) [53].

In the rest of this chapter, we will describe four FPM tasks related to our study.

2.1.1 Frequent Itemset Mining

FIM was introduced in the 1990s to discover frequently co-occurring products in

customer transactions [53, 2]. But since then, it has become a general DM task

and defined as finding the frequently co-occurring groups of nominal attributes in

a database. Its application in numerous domains such as product recommendation,

e-learning and malware detection has made it a popular research field. The task of

FIM can be formally described as follows [21, 2]:

Definition 2.1.1 (Frequent Itemset Mining). Let there be a transaction database

T = {T1, T2, ..., Tn}, where each transaction Ti(1 ≤ i ≤ n) is a set of items

Ti = {x1, x2, x3, ..., xl}. An itemset P is a set of items such that P ⊆ Ti. The support

(or absolute support) of itemset P , denoted as sup(P ), is defined as the number of

transactions that contain P , that is sup(P ) = |{Ti|P ⊆ Ti∧Ti ∈ T}|. Beside absolute

support, it may be reported as the ratio of transactions with a certain pattern over the

entire transaction database, defined as the relative support relSup(P ) = sup(P )/|T |.
The itemset P is frequent if its support is no less than a given minimum threshold

minsup, that is sup(P ) ≥ minsup. The discovery of all frequent sets of items (or

itemsets for short) in the given transaction database is the task of frequent itemset

mining.

Support is commonly used as the interestingness measure in FPM [2]. An itemset

with low support may have occurred in a dataset simply due to chance, thus it is

traditionally considered uninteresting [68].

2.1.2 Association Rule Mining

ARM is closely related to FIM, and both were proposed around the same time in the

early nineties [2] for decision-making in market basket analysis applications such as
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promotional pricing and product placements. But since then, ARM has been applied

to other problems such as medical diagnosis and web log mining as well. ARM can

be formally described as follows [32, 68, 2]:

Definition 2.1.2 (Association Rule Mining). Let there be a transaction database

T = {T1, T2, ..., Tn}, where each transaction Ti(1 ≤ i ≤ n) is a set of items

Ti = {x1, x2, x3, ..., xl}. A rule is an implication expression in form of X → Y , where

the itemset X ∪ Y is a frequent pattern and X ∩ Y = ∅. The itemsets X and Y

are called the antecedent (Left-hand-side (LHS)) and consequent (Right-hand-side

(RHS)), respectively. Support and confidence of the rule X → Y are defined as

sup(X → Y ) = sup(X ∪ Y ) and conf(X → Y ) = P (Y |X) = sup(X ∪ Y )/sup(X).

An association rule is a rule with support and confidence no less than given minimum

thresholds minsup and minconf, respectively. The discovery of all association rules

in the given transaction database is the task of association rule mining.

Similar to FIM, support can be used to filter out non-frequent and uninteresting

rules. The confidence interest measure, which is the conditional probability of Y

given X, can be viewed as a reliability measure for a rule. High confidence for the

rule X → Y means a strong co-occurrence relationship between X and Y , and a

higher chance of seeing Y in transactions that contain X [68]. In general, ARM is

a post-processing step for FIM where the rules satisfying confidence threshold are

derived from the frequent patterns [2].

2.1.3 Sequential Pattern Mining

In FIM and ARM, the order of items in transactions is not important. However, the

temporal order of items is a key element in many scenarios such as analyzing the

genome, web click stream, and customer buying behavior. For such scenarios, SPM is

proposed for discovering frequent subsequences in a set of sequences [20, 2]. Aggarwal

et. al [2] describe a sequence and a subsequence as follows:

Definition 2.1.3 (Sequence). A sequence s is an ordered list of itemsets where

s = 〈I1, I2, ...In〉. An itemset I = {i1, i2, ..., xk} is an unordered set of items.

Definition 2.1.4 (Subsequence). A sequence α = 〈a1, a2, ...an〉 is a subsequence of



9

sequence β = 〈b1, b2, ...bm〉, denoted by α v β (α is contained in β), if there exists

integers 1 ≤ j1 < j2 < ... < jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , ..., an ⊆ bjn .

SPM is formally described as follows [20, 2, 19]:

Definition 2.1.5 (Sequential Pattern Mining). Let there be a sequence database

S = {s1, s2, ..., sn}. Support of subsequence α, denoted by sup(α), in sequence database

S is the number of sequences in S that contain α, and is defined as

sup(α) = |{s|α v s ∧ s ∈ S}|. The subsequence α is frequent if its support is no less

than a given minimum threshold minsup, that is sup(α) ≥ minsup. The discovery

of all frequent subsequences in the given sequence database is the task of sequential

pattern mining.

2.1.4 Sequential Rule Mining

SRM is a variation of SPM where it mines X → Y rules implying if some items X

happen, they will be followed by other items Y with certain confidence (conditional

probability of P (Y | X)). We can view sequential rules as association rules with the

constraint of X appearing before Y [21].

The confidence value helps overcoming an important limitation in SPM. That is,

a pattern might have a high frequency in the data, but if the confidence is low, it

might not be the most beneficial pattern to use for decision-making. For example,

if the subsequence 〈a, b〉 is frequently seen in the dataset, but b only follows a in a

small portion of all the sequences that a takes place in, then a→ b would have a low

confidence. There are two types of sequential rules, and Fournier-Viger et all. [19]

describe them as follows:

Definition 2.1.6 (Standard Sequential Rule). A standard sequential rule

〈A1, A2, ...Ae〉 → 〈B1, B2, ...Bf〉 occurs in a sequence 〈C1, C2, ...Cg〉 if and only if there

exists integers 1 ≤ x1 < x2 < xe < y1 < y2 < ye ≤ f such that

A1 ⊆ Cx1 , A2 ⊆ Cj2 , ..., Ae ⊆ Cxe andB1 ⊆ Cy1 , B2 ⊆ Cy2 , ..., Be ⊆ Cye . Absolute sup-

port of a standard sequential rule sa → sb in a sequence database S is the number of

sequences where the rule occur, and is denoted as sup(sa → sb). Confidence of rule

sa → sb is defined as conf(sa → sb) = sup(sb ∪ sa)/sup(sa).
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Definition 2.1.7 (Partially-Ordered Sequential Rule). A partially-ordered sequential

rule Ia → Ib, where Ia and Ib are two unordered itemsets such that Ia ∩ Ib = ∅ and

Ia, Ib 6= ∅, occurs in a sequence s = 〈I1, I2, ...In〉 if and only if there exists an integer

k such that 1 ≤ k < n, Ia ⊆
⋃k

i=1 Ii and Ib ⊆
⋃n

i=k+1 Ii. Absolute support of a

partially-ordered sequential rule Ia → Ib in a sequence database S is the number of

sequences where the rule occur, and is denoted as sup(Ia → Ib). Confidence of rule

Ia → Ib is defined as conf(Ia → Ib) = sup(Ib ∪ Ia)/sup(Ia).

In a partially-ordered sequential rule X → Y , X and Y are unordered itemsets,

and the sequential ordering only exists between the antecedent and consequent of the

rule and not between the items inside the RHS and LHS sets. This property makes

partially-ordered sequential rules more general than the standard form so that one

partially-ordered rule can represent multiple standard rules [19].

One known problem with SRM is that sometimes a number of the mined rules

might be redundant[22].The literature defines redundancy as follows [22]:

Definition 2.1.8 (Sequential Rule Redundancy). A sequential rule ra = X → Y

is redundant with respect to another sequential rule rb = X1 → Y1 if and only if

conf(ra) = conf(rb) ∧ sup(ra) = sup(rb) ∧X1 ⊆ X ∧ Y1 ⊆ Y .

2.2 Conclusion

We can see that there are many variations of patterns to mine from datasets based

on the data structure. User task and domain context are the two main factors to

consider when deciding on which type of pattern(s) to extract [51]. For example, if

the order of items/events is important, we can look into sequential pattern variations.

There are many other different types of frequent patterns [2] that we did not discuss

in this chapter as their definition and applications are out of the scope of this study.
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Related Work

In this chapter, we review the visualization of the frequent patterns discussed in

chapter 2. First, we will review the literature regarding visualization of association

rules and sequential rules since these topics are most related to our study. Next,

we look at sequential patterns visualization since we are interested in the same data

structure (event sequences). Finally, we review the visualization of frequent itemsets.

3.1 Association Rules Visualization

Visualization of association rules is not a recent concept, and researchers have made

efforts to deal with the exponential number of generated rules by visualizing them

in a way that it is easier for the user to explore and interpret. In this study we

aim at visualizing the final result of the mining algorithms; however, some studies

aim at visualizing the mining procedure as well and allowing the user to modulate

the interestingness and constraints during the iterative mining process [11]. This

functionality is not included in our work. The following are the most common ways

of visualizing association rules.

Tables are the most basic type of pattern visualization [54, 18, 10]. Basically, each

rule/pattern is displayed in one column (or two columns could be allocated to RHS

and LHS, respectively [10]), followed by columns about additional information such

as confidence and support (Fig. 3.1(a)). It supports interactions such as sorting and

filtering. Once the number of mined rules become exponential, such representation

becomes hard to read and analyze.

Some studies suggested using scatter plots to provide an overview of interest mea-

sures (such as support and confidence) to deal with tables’ scalability issues. Fujimoto

et al. [26] proposed a method for filtering out interesting rules during the evaluation

of generated association rules. The rules are plotted with their objective measures,

such as Jaccard and Kappa. The user can select a subset with the objective measures

11
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in their desired range and further analyze the rules in that subset subjectively, us-

ing their domain knowledge. AssocExplorer [49] uses support and confidence for the

scatter plot axes and colour-coded the rules based on rule length or the user-defined

constraints such as availability of specific term(s) in the rules (Fig. 3.1(b)). DART

[80] utilized a more advanced scatter plot, RadVis [39], to shows temporal attributes

of the rules with different time granularities as anchors. These techniques could be

helpful when the user is interested in exploring the patterns based on the distribution

of interest measures. However, we are more concerned with focusing on the actual

events in pattern and their temporal order in sequences.

Unlike tables in which one cell displays the entire pattern as a single line, matrix-

based visualization techniques organize the antecedent and consequent itemsets on

the x and y-axes, respectively. Some designs such as 3DMVS [74] also used the third

dimension to display support and confidence in the matrix. It is easily understood

which itemsets are more frequent in the rules using matrix visualization. However,

it can become challenging to read and interpret due to a high number of extracted

rules [5, 32] or high-dimensional data [79]. In literature, different approaches such as

defining minimum support and confidence [79], clustering [32], and extraction of the

most expressive rules [5] have been explored to deal with visual clutter. Some authors

proposed an extra graph-based view to keep a matrix for overview of the rules and

use a graph for view details within a user-selected subset of the rules [63]. Hahsler

et al. [32] proposed a clustering method for dealing with clutter and introduced

grouped matrix-based visualization, which is now available in R package arulesViz

(Fig. 3.1(d)). Columns (representing antecedents) of the association rule matrix

grouped into hierarchical clusters based on an interest measure. Aggregated interest

measures of each cluster of antecedents per consequent are visualized with balloon

colour and size, at the intersection of their respective row and column. Benhacine

et al. [5] proposed a solution for the clutter caused by an exponential number of

rules using a colour-coded 2D matrix where the number of rules is reduced with

boolean modelling. Rows and columns represent attributes and rules, receptively.

The cell colour determines whether the corresponding attribute is in the LHS or RHS

of the rule. These variations naturally do not incorporate the partial order attribute

between RHS and LHS, as this property does not exist (or ignored) in the transaction
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database. However, since we are dealing with sequences, the temporal order of items

is important.

Several studies investigated using parallel coordinates [40] for association rule vi-

sualization. Parallel coordinates are a method for plotting multidimensional data

where each dimension is displayed with one parallel line. The association rules are

visualized by connecting the RHS items within parallel coordinates [79, 75, 81]. One

main problem of parallel axes is visual clutter regarding a high number of rules and

high-dimensional data. Zhang et al. [79] tried to address this problem using dimen-

sionality reduction and efficient reordering of dimensions and categories in parallel

axes (Fig. 3.1(c)). However, as mentioned, the purpose of reordering is for improving

the user experience and not incorporating the temporal order of the items, which is

expected since temporal order is non-existent in the problem the authors addressed.

Graph-based visualizations are another popular method for displaying association

rules (Fig. 3.1(e)). Common way of visualizing rules with graphs is using nodes for

rule items and edges for connecting items in rules, other visual features such as the

thickness of the edges or size of the nodes can be used to add support and confidence

to the view [42, 31, 50, 38, 60]. Graphs are visually intuitive; Kakar el at. [42] argue

that graphs are a better option compared to tables and matrices for showing the

association relationships. However, they can quickly become cluttered.

There is currently a handful of commercial tools for association rule visualization

such as aruleVis [31], Weka [33] and Orange [16] that provide some of the techniques

discussed above. By the time of writing this thesis, these products do not support

sequential rule visualization.

By definition [3], association rules are mined from transaction databases where

each transaction is an unordered set of items. Therefore, we do not see a sequential

order within antecedent and consequences in any of the discussed visualizations, as

expected. Graph-based methods could be modified to incorporate a sequential at-

tribute for the rules; however, they are prone to visual clutter. We proposed to use

matrix-based methods with modifications to address both temporal order of items

and scalability issues.
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a: SPMF Pattern Viewer [18]

b: Scatter plot in AssocExplorer [49] c: Parallel coordinates by Zhang et al [79]

d: Matrix in aRuleVis package [32] e: Graph in aRuleVis package [31]

Figure 3.1: Association rule visualizations techniques in literature.

3.2 Sequential Rules Visualization

Visualization of sequential rules has not received much attention. IBM offers a

sequence rule visualizer in the form of a table in its DB2 Intelligent Miner tool

[13, 14](Fig. 3.2(b)). Another example of the use of table is the SPMF [18] that

provides Graphical User Interface (GUI) for all the implemented pattern mining algo-

rithms (Fig. 3.2(a)). This technique suffers from the same readability issues discussed

for association rules.

D’Ambrosio et al. [17] investigated web usage and structure mining by measuring
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a: SPMF Pattern Viewer [18]

b:IBM Sequence Rules View [14] c: Scatter plot by D’Ambrosio et al. [17]

d: Tree by Siciliano et al. [66] e: Dendrogram by Shrestha et al. [65]

Figure 3.2: Sequential rule visualizations in literature. Table in (a) displays the 221
sequential rules mined from our dataset. The same patterns (identical pattern mining
parameters) are visualized with our proposed approach in Fig. 5.1
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similarity between web sections with multidimensional scaling and visualizing the

sequence rules of website visits by linking section nodes in the scatter plot (Fig.

3.2(e)). The rules discussed in this paper have only one antecedent and consequent;

even with such simplification, the visualization is prone to clutter and readability

problems. Siciliano et al. [66] used a regression tree framework to show sequence

rules and predict user navigation behaviour in websites (Fig. 3.2(d)). If the user

is interested in the events occurring near the end of the sequences, they have to

drill down and explore all branching subpatterns, which could be time-consuming.

Shrestha et al. [65] proposed a method for generating sequential rules w.r.t. a user-

specified temporal order in clinical scenarios. One of the constraints imposed by

the algorithm is the consecutiveness of the items in the rules. This constraint is

forced to generate consequential scenarios that do not skip any diagnosis steps. The

authors used dendrograms to organized the rules into hierarchies (Fig. 3.2(e)). This

approach is restrictive for scenarios where we do not require all the items in the rule

to be consecutive.

3.3 Event Sequence Visualization

There exists a considerable body of literature on the visualization of sequence data

for different analytical tasks [29]. We studied the literature to learn about important

considerations for the visualization of sequential patterns to incorporate in our visual

design of sequential rules. We summarize our findings in this section.

When the number of patterns is low, Sankey-based visualization [55, 77] or simply

listing each pattern in one line [45] can be used (Fig. 3.3(a)). However, when the

number of patterns is high, which is often the case with SPM (and SRM), these

methods can suffer from scalability issues.

Apart from the number of patterns, the length of the sequences is important to

consider as well. Several studies [47, 12, 76] investigated different clustering tech-

niques to deal with pattern visualization scalability issues and provide a summarized

visualization. But they all state that their approach works best with short-lengthened

sequences. The problems they faced with long sequences were either algorithmic or

visualization-based. In the former, the issues included assigning the patterns to wrong

clusters [47], or only one cluster when a long sequence can belong to several [12]. The
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a: Frequence [55]

b: Event sequence clustering [76]

c: Multi-alignment of sequences in [9]

Figure 3.3: Event sequence visualizations in literature.

latter [76] involved cardinality issues while colour-coding the events. As the number

of events grows, it can adversely affect readability (Fig. 3.3(b)).

Alignment of the patterns is a useful feature utilized in literature for studying

preceding and succeeding events of a selected event or point of time [58, 9, 12]. The

sequential patterns may be aligned by one [12], or multiple events [58, 9], and the data

analysis can compare before and after the selected event(s) across several patterns

(Fig. 3.3(c)).
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3.4 Frequent Itemsets Visualization

In this study, we are primarily interested in visualizing (partially-ordered) sequential

rules. However, based on our analysis requirements described in section 5.1, we

generated a transaction from each sequence by finding intervals between specific pairs

of events and aim to visualize the patterns discovered from the generated transaction

dataset. To this end, we reviewed the visualization methods for frequent itemsets

(and not sets in general).

There have been numerous studies researching ways of providing a visual summary

of frequent itemsets by means of polylines [46], circular graph [7], hypergraphs [27],

and tree-based structures [24, 71] (Fig. 3.4).

A recent study [24] argues that previous work did not comply with Shneiderman’s

“overview first, zoom and filter, then details-on-demand” mantra [64] by not providing

an overview of similar itemsets. The authors proposed a graph-based overview of

hierarchical clusters in frequent itemsets, followed by a tree-map detail view of each

cluster. Considering the need for an overview of similar patterns, we incorporated the

notion of merging itemsets by a similarity measure proposed in FpVAT [46] in our

matrix-based design. We utilize a similar design for both sequential rules and frequent

itemsets but with minor differences. This let us design a system for visualizing both

patterns without making it too complex for the end-user with different techniques.
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a: Polylines[46] b: Circular Graph [7]

c: Hypergraphs [27] d: Treemap [24]

Figure 3.4: Frequent itemset visualizations techniques in literature.



Chapter 4

Domain Problem Characteristics

In this chapter, we first provide an explanation for a few basic terms and domain

knowledge related to our target domain, followed by a description of the motivation

behind this study. Then, we discuss the data characteristics since they influenced

many of the design decisions of the framework.

4.1 Ground Handling Terminology

Each airport has an apron with multiple stands intended for parking of aircrafts (Fig.

4.1) [1].The time between an aircraft arrival at a stand until it is ready to depart, is

called a turnaround [67]. During this time, it receives a set of services, called ground

handling operations, such as fuelling, maintenance, exchange of cargo, baggage and

passengers to prepare for the return journey. These services need to be completed

within a scheduled time to ensure the aircraft will meet its scheduled departure time,

making this stage a fundamental part of the airport operations.

4.2 Motivation

This work was motivated by exploratory research conducted on a log of ground han-

dling operations at an airport. The stakeholders were interested in knowing if there

are any patterns within the logs that would help them increase the airport’s perfor-

mance. Ground handling operations follow a strict chronological order and are usually

expected to occur within a time slot defined in the Service Level Agreements (SLA)

[61]. Inefficient turnaround operations could result in significant delays, and in turn,

increase the costs for aviation stakeholders[61]. Turnaround punctuality is influenced

by factors such as the airport capacity, timeliness of the ground operations, technical

issues, and weather [25]. Domain experts are interested to know the patterns that

adversely affect the performance to develop an appropriate solution, optimize their

20
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a: An apron with multiple stands b: One stand

Figure 4.1: Airport apron and stand
source by:http://airports.londoncontrol.com

operations, and prevent revenue leakage.

We propose a visual prototype for the detection and exploration of the patterns via

data mining. The advantage of such a prototype is twofold. First, the use of pattern

mining algorithms decreases the time required to find such patterns manually. Second,

interactive visualizations increase the efficiency of the analysis [29, 41].

4.3 Data Description

In this section, we describe the data that the airport provided for analysis. Overall,

we integrated three datasets for the research described as follows:

Ground handling log: This dataset mainly includes the timestamps of start

and end of the ground handling operations for each turnaround at three airport

stands. The log is collected over three months (January-March 2020), using cameras

installed at the designated stands. The timestamps were automatically generated by

an Artificial intelligence (AI) system that processes the footage in real-time. Each

turnaround has a unique identifier. Each record in the log is defined by the turnaround

identifier, type of event, timestamp, and the AI system’s confidence level that detected

the event. The records in this dataset were anonymized and did not have flight meta-

data information. Note that the AI system only logged the operations visible on

the stand happening outside the aircraft. Therefore, information such as cleaning,

catering, cabin inspection, and the like is not included in the logs.

Flights: This dataset includes key information about the flights during the log

http://airports.londoncontrol.com
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collection period, including flight type (arrival or departure), airline, source and desti-

nation, scheduled and the actual time of arrival/departure, and the designated stand.

Weather: Detailed weather information recorded every half an hour with a Road

Weather Information System (RWIS).

4.3.1 Preprocessing

In this section, we will describe the main preprocessing steps we took (Fig.1.1 (1)).

First, we derived the following from the ground handling log:

• Turnaround duration: Duration between first and last timestamp recorded for

the turnaround.

• Time gaps between events : Duration between two events in a turnaround. The

domain experts were interested in analyzing the duration between specific event

pairs (and not all possible pairwise combinations). For example, the amount of

time it takes for a fueller to start fuelling after it has entered the stand.

• Turnaround performance: High/low performance label for each turnaround.

According to the domain experts we interviewed, a turnaround is perceived as

high performance if it is serviced under an hour, with shorter intervals between

its associated operations. This metric is one of the key measures used by the

experts for analysis and decision-making in our target domain.

• Event sequences : Sequence of ground handling events in each turnaround, cre-

ated from sorting the events per turnaround by their timestamp.

• Itemsets : An unordered set of time gaps derived for each turnaround.

We removed non-passenger and overnight flights (turnarounds with duration over

12 hours) from the data at the domain experts’ instruction. We also merged the

turnaround logs with flight information by matching stand and the actual time of

arrival/departures. The arrival flights’ actual time was compared against the Aircraft

entered stand event timestamp. In contrast, the departures were compared with the

Aircraft left stand.

After the merging step, we had 388 turnarounds with 52 unique events in total.

The average length of the turnarounds is 19 events.
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Labelling the events and time gaps

As mentioned before, we are interested in the punctuality patterns within the turna-

rounds. Arrival and departure events were easily labelled by comparing their actual

time against the scheduled time by the airlines (table 4.1a). However, for the other

events, we did not have access to the SLA contracts due to confidentiality. Therefore,

we could not compare each flight’s ground handling operations with the expected

schedule and identify delayed events or broken protocols. Consequently, we followed

a statistical approach instead. During the interviews with the domain experts, we

learned that the turnarounds’ performance is influenced by the airline, aircraft type,

season, weekday, and day time. Therefore, we first grouped the turnaround by these

factors. Then, for each group, we get the time difference between each event and

an origin, then compare the interval against the 0.33 and 0.66 quantiles, and label

the event as early, on-time or delayed (table 4.1b). Based on the recommendation of

one of the domain experts that we consulted during this study, the origin is Aircraft

on stand for high-performance flights and the start of the main operation for low-

performance flights. For example, for low-performance flights, the fuelling-related

operations must be timed from the entrance of the fueller on the stand. The fueller

entrance itself is timed from Aircraft on stand. We follow a similar approach for

labelling the time gaps (table 4.1c).

4.3.2 Data Characteristics

The characteristics of the data that we need to consider for the framework design are

the following:

C1 Varied turnaround length: The turnarounds do not receive an identical set

of services and depends on the flight type (for example, passenger or cargo

flight) and the contract between the airline and the ground handlers, and so on.

C2 Multivariate: Each turnaround has a number of attributes such as the flight

information, and a sequence of events (ground handling services).

C3 High Cardinality: The number of unique events in data is high.
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Arrival and departure Label
-15 min <Scheduled – actual <15 min on-time

Scheduled – actual ≤ -15 min early
Scheduled – actual ≥ 15 min delayed

(a) Arrival and departure

Other events Label
0.33 quantile ≤ time from origin (in seconds) ≤ 0.66 quantile on-time

time from origin (in seconds) <0.33 quantile early
0.66 quantile <time from origin (in seconds) delayed

(b) Other events

Time gaps between pairs of events Label
0.33 quantile ≤ interval (in seconds)≤ 0.66 quantile on-time

interval (in seconds) <0.33 quantile short
0.66 quantile <interval (in seconds) long

(c) Time gaps between pairs of events

Table 4.1: Labelling the events and time gaps

4.4 Conclusion

Motivated by the research purposes described in section 4.2, we preprocessed our

raw datasets to prepare them for pattern mining. We drove a sequence of ground

handling operations and an unordered itemset of intervals between specific events

for each turnaround. We labelled the items in sequences and itemsets based on

flight information and performance for a fruitful analysis. Based on the research

objectives, data characteristics of the final dataset after preprocessing, and design

lessons we learned from literature, we formulated the requirements and design goals

for our visual analytics framework as described in the following chapters.
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Methodology

In this chapter, we describe the system requirements, architecture and visual design.

5.1 Requirements

Two domain experts helped us understand the data and the turnaround performance

analysis process. One of the consulted domain experts has years of experience as

business aviation supervisor and as an airline duty manager. The other one is the

senior technology manager at the aforementioned airport. We based the requirements

on (1) the input of the domain experts over meetings and inquiries, and (2) the

literature review. The derived design requirements are summarized as follows:

R1 Provide an overview of patterns. Even though the domain experts did not

explicitly require an overview, we followed Shneiderman’s visualization mantra

[64] on the need for an overview that provides a high-level view of the patterns.

When the number of mined patterns is high, a summary becomes helpful.

R2 Provide exploration of sequential rules. The domain experts stated that

they are interested in the performance and punctuality analysis of the turnarounds.

The sequential ordering of the operations is important, and we need a white-box

analysis (as opposed to a black-box prediction model) of the relationship be-

tween the sequence events. To this end, we employ sequential rules to discover

such patterns [20].

R3 Explore relationship between intervals. The domain experts are concerned

about the time interval between different operations and often compare these

gaps against the expected duration in their analysis. Our prototype should also

support providing an understanding of the frequent patterns regarding intervals

of interest.

25



26

R4 Support exploration of multivariate data. Each turnaround has several at-

tributes, such as flight information and date. According to the domain experts,

these attributes influence the turnarounds’ punctuality; thus, it is essential to

include these details in the analysis to derive valuable insights.

R5 Support statistical breakdown of the patterns. During our discussions

with the domain experts, we learned that the status quo for analyzing the

turnaround performance is comparing the operations against a baseline. In the

absence of an accurate baseline (SLA in our case), the prototype must provide

statistical details per turnaround on demand. Moreover, the experts should see

the complete sequences/itemsets for each pattern to check their assumptions

during analysis.

5.2 System Architecture

We developed the SeRViz, an interactive visualization framework for the analysis

of sequential rules and frequent itemsets, based on the requirements in section 5.1.

For the implementation, we mainly used Python[70] and Flask [28] for the backend,

Vue.js 1 and D3 [6]. We used the SPMF open-source library [18] for pattern min-

ing. The backend mines the pattern from preprocessed data and post-processes the

results (Fig.1.1 (1),(2) and (3)). Users can run the frontend in modern web browsers

and configure pattern mining parameters and explore the results with interactive vi-

sualizations (Fig.1.1 (4)). The backend responds the fronted requests in JSON [57]

format.

For mining the sequential rules, we employed the TRuleGrowth algorithm [23].

One of the key features of this algorithm is the window size constraint. We designed

the SeRViz prototype in a way that the user can control the window size. They can

use their domain expertise to mine patterns within a specific time span. This choice

is based on the literature on visual analytics for frequent patterns, which suggest

segmenting long sequences since they can potentially include different patterns in

each segment [72, 12]. Furthermore, TRuleGrowth is one of the fastest 2 and most

1https://vuejs.org
2depending on how the window size constraint is set

https://vuejs.org
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memory efficient algorithms for SRM [18, 23]. After rule mining, we post-process

the rules to remove any redundancies and minimize the number of rules we need to

display for the user. For FIM, we used FP-Growth [34], for the speedy execution and

memory efficiency [18].

5.3 Visual Design

The design goals of the system based on the requirements are the following:

5.3.1 Design Goals

G1 Multi-level exploration of patterns. Following the visual information-

seeking mantra [64], we organize the pattern analysis in the following order:

the users can see an overview of the partial order of events found in rules (R1),

explore sequential rules (R2) or frequent itemsets (R3), analyze particular pat-

tern(s) (R4), and be able to view details of the associated sequences (R5). The

users must be able to filter (1) the sequences before pattern mining, (2) the

patterns after mining.

G2 Summaries of patterns based on a similarity criterion. Similar patterns

should be grouped to address scalability issues. This also provides an overview

(R1). We used identical consequent and overlapping sets as the similarity

measures for sequential rules and frequent itemsets, respectively. The choice of

these measures is based on our analytical approach in our use cases.

G3 Visualization of sequential rules w.r.t. to the partial order of an-

tecedents and consequents. The patterns must be visualized in a way to

convey the partial order between the items with the least cognitive load (R2).

Graphs and Sankey diagrams are intuitive and suitable for this purpose. How-

ever, visual clutter and readability are serious issues once the cardinality (C3)

and the number of patterns grow. Furthermore, we want the patterns to be

vertically aligned based on the items. This helps the user understand; for ex-

ample, an item appearing as consequent in one rule also appears in another

rule as an antecedent. The alignment can help with understanding a chain-like
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flow of rules in the sequences. For this purpose, we will utilize a matrix-based

visualization.

G4 Visualization of frequently co-occurring (labelled) intervals. The users

should be able to see the FIM results (R3). For this purpose, we used a matrix-

based visualization, similar to G3, so we do not overwhelm the user with too

many varying views.

G5 Support in-depth analysis of patterns. The user should be able to explore

additional data (attributes other than the events) associated with the sequences

of a pattern (R4, C1, and C2). Furthermore, the actual sequences, along with

their statistical information, must be provided on demand (R5).

We developed SeRViz based on the aforementioned requirements and design goals

(Fig.5.1). The analytical process provided by SeRViz involves the following steps: (1)

The user configures minimum support, confidence and window size for SRM (Fig.5.1

(A) (or only minimum support for FIM as in Fig. 5.2). Optionally, they can filter

sequences prior to SRM (or FIM) (Fig.5.1 (B)) (2) The user will see an overview

of the unique items found in the rules and their partial order (Fig.5.1 (C)) (3) The

rules(or frequent itemsets) are displayed in a matrix (Fig.5.1 (D), Fig. 5.2) (4) The

user can select a set of rules from the matrix and analyze them further using the

distribution analysis view (Fig.5.1 (E)) (5) A more detailed information about the

sequences that the selected patterns are derived from is available in the Performance

Breakdown section (Fig.5.1 (F)).

5.3.2 Overview

Overview graph (Fig.5.1 (C)), which is a DAG, shows the partial orders found between

items in the sequential rules (R1, G1). The nodes and links represent unique rule

items and their partial order, respectively. A directed edge x → y means there is at

least one rule X → Y , where x ∈ X and y ∈ Y (5.3 (a)). This design is different from

the common method of visualizing association rules with graphs (for example, as in

the arulevis package in R [31]). There are two types of nodes in that method: one

for items and one for rules. The edges demonstrate relationships in rules (5.3 (b)).
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Sequential Rules Frequent Itemsets
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Figure 5.1: SeRViz:(A) Sequential rule mining configuration for support, confidence
and window size. (B) Sequence filtering based on attributes and events. User will ad-
just the options prior to pattern mining. (C) Overview graph. The nodes are unique
events found in rules, and the edges represent partial order between the events. (D)
Pattern matrix. The columns are events and rows are rule. The rows are grouped by
consequent. Table legend displays event label guide. One of the groups is collapsed
and rows are sorted by consequent label, support and confidence. (E) Distribu-
tion analysis views showing distribution of categorical and numerical attributes of
the sequences associated with (selected) patterns. (F) Performance breakdown table
showing sequence details.
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Figure 5.2: SeRViz: Frequent itemsets view

The main idea behind this graph is finding an order for the columns of the rule

matrix using topological search. This graph’s rationale and generation are discussed

in more detail in section 5.3.3. The colour and size of nodes can optionally show either

frequency of the item in the mined patterns (Fig.5.4), or the betweenness centrality of

the node. The betweenness centrality measures how much a node falls on the shortest

path between other pairs of nodes in a graph [35]. A node with high centrality has a

strong influence over the information passing in the graph. An example of analyzing

betweenness centrality in the context of pattern mining is finding nodes with high

centrality degrees in a network of association rules from prescription records to find a

symptom that can be cured with many types of herbal teas [78]. Optionally, the user

can select a node from the graph to explore the patterns with that particular item in
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x y

z

rule

x y

z

(a) (b)

Figure 5.3: Two graphs for sequential rule {x, y} → z: (a) DAG of the partial order
(b) rule graph.

Figure 5.4: Overview graph with node size and colour adjusted by item frequency in
the sequential rules.

the antecedent or consequent.

5.3.3 Sequential Rule View

For visualizing the patterns, we utilized a matrix in which the rows and columns

represent patterns and unique events, respectively (Fig.5.1 (D)) (R2,G1-G3). A

matrix is a common visualization choice for association rules, as mentioned in chapter

3. Considering the characteristics of our data (C1,C3), we chose matrix since it is

more readable and less prone to clutter and overlapping links than graphs or Sankey

diagrams.

Unlike association rules, the antecedent and consequent itemsets in sequential

rules are partially ordered. Using a random order for the matrix columns can be

confusing in terms of conveying the partial order. For example, in Fig. 5.5 (b), for

patterns in rows r2 and r3, the user can identify the antecedents and consequents

easily with colors, but it may not be evident that the blue events take place before
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𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒

𝒓𝟏
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𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒

𝒓𝟏

𝒓𝟐

𝒓𝟑

𝒓𝟒

(a) (b)

Figure 5.5: Matrix with a. partially b. randomly ordered columns. Blue and orange
cells represent antecedent and consequent, respectively.

the orange ones. However, the order of columns in Fig. 5.5(a) is more aligned with

the common left to right flow of sequences. Another benefit of the latter design is that

the patterns are inherently aligned by events. Sequence (or pattern) alignment is one

the most common techniques used in event sequence analysis [29]. This is useful for

comparing the analyzing of events before and after an alignment point over multiple

patterns.

We propose algorithm 1 for finding a column order for the pattern matrix that in-

corporates the partial order of events. For the implementation, we used the Networkx

package in Python [30].

We create a DAG from sequential rules where a directed edge x→ y means there

is at least one rule X → Y , where x ∈ X and y ∈ Y (algorithm 2). Then, by sorting

the vertices topologically, we derive an order for the matrix columns. This way, we

make sure that the antecedents do not appear after consequents in the matrix rows.

For avoiding cycles in the graph, we might need to create multiple DAGs, and in turn,

multiple matrices (algorithm 1). Throughout our explorations, we rarely encountered

such situations (for example, in Fig. 5.6, which is for patterns mined specifically from

sequences with delayed Aft startboard belt connected). In such situations, the user can

view the matrices by selecting nodes from each DAG in the overview.
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Algorithm 1: Generating sequential rule matrices w.r.t. to the partial order

of antecedents and consequents.

Input: Set of sequential rules R = {r1, ..., ri}
Output: Rule Matrices with partially ordered columns M = {m1, ...,mk}
D ← ∅ . where di is a DAG generated from items in rules

M ← ∅ . where mi is a matrix with columns generated from topological sort

of di vertices

foreach ri ∈ R do

inserted← false

foreach dj ∈ D do

d́j ← AddRuleToDAG(ri,dj)

if d́j 6= ∅ then

inserted← true

break

end

end

if inserted 6= true then
D ← D∪ AddRuleToDAG(ri,K0)

end

end

foreach di ∈ D do

mi ← di rules × topological sort of di vertices

M ←M ∪mi

end

Item Glyphs

The rule items are visualized with circles in each row. We appended the relative

support and confidence to the matrix as columns (Fig.5.7). To improve the readability,

we used bars with width representing support and confidence values. Inspired by

[5], we encoded antecedent and consequents with colours. The sequence events are
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Algorithm 2: Adding a sequential rule to a DAG

Function AddRuleToDAG(r, d):

g ← d

foreach a ∈ r.LHS do

g ← g ∪ (a, r.RHS)

end

if g is acyclic then
return g

else
return ∅

end

Figure 5.6: Two DAGs found for a set of sequential rules.

labelled as delayed, on-time or early (which are naturally ordinal), and we encoded

these labels with color intensity and glyph size (Fig.5.8). If we had more classes,

we would avoid this design as it can become difficult to differentiate between colour

intensities.

Design alternatives: Instead of glyph colour and size, we could use one column

per label. This design would lead to #labels×#events number of columns, resulting

in a sparse matrix. Another option was not to use a matrix-based visualization and

use a combination of colour-coding the events and (multi)alignment, such as in [12, 9].

However, since we have many different event types (C3), it would be visually difficult
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Sequential Rules Frequent Itemsets
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Figure 5.7: Sequential rule matrix. Columns and rows represent items and rules,
respectively. The last two columns display relative support and confidence. The rows
are grouped by consequent. The second row is expanded to view all the patterns in
one group.

to distinguish between the events [69].

Consequent Groups

One problem we faced using a matrix is that it does not scale well for a high number

of patterns. Furthermore, the patterns do not always include all the unique events in

the dataset, especially if we use a small window size in the TRuleGrowth algorithm.

This leads to a sparse matrix with many rows. We grouped the rows by consequent

(G2). The choice of this criterion is based on our analysis approach, which is mostly

target-based. That is, we ask “what happens before x?” or “what if x happens?”. We

relaxed the problem by minimizing the scope to rules with only one consequence. To

show the distribution of each item in the group, we used a histogram per item. For

support and confidence, we report the average of the group.

When the matrix is in grouped mode, the group rows are sorted by the same
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Figure 5.8: Encoding antecedent, consequent and labels with glyphs.

topological order used for ordering the columns (Fig.5.7). The purpose is to embed

a chain-like flow of patterns in the matrix instead of an arbitrary order of rows.

5.3.4 Frequent Itemset View

We utilize FIM for finding frequent co-occurring labels within specific intervals be-

tween events (Fig.5.2) (R3, G1, G2 and G4). For the domain experts, these inter-

vals were the most important ones to analyze among all the pairwise combinations of

events. We used a matrix with design choices similar to the sequential rules matrix,

including choice of using colour and shape size for representing ordinal labels (Fig.

5.9). The most notable differences are the following:

• The order of columns are arbitrary. For each pattern we only have one set of

items, unlike sequential rules were we had two partially ordered itemsets.

• Row grouping criterion is itemset overlap instead of similar consequents.

Similarity Groups

We grouped similar rows in the matrix for dealing with scalability issues caused by a

high number of patterns (G2). We used set overlap as similarity metric, and define

two frequent itemsets Fi and Fj similar if Fi ∩ Fj 6= ∅.
Grouping the rows was inspired by FpVAT [46], which compressed the frequent

patterns with the same frequency range in one line. As Alsallakh et al. discuss in

their set visualization survey [4], the choice of similarity measure for sets depends on

the data and end goals. Thus, the grouping can be altered to use other metrics such

as Jaccard distance based on requirements.

Alternative: We initially built a graph based on itemsets similarity, with frequent

itemsets and non-empty overlaps as nodes and edges, respectively. The graph edges
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Figure 5.9: Encoding item labels with color and size for frequent itemsets matrix.
The term Delta refers to time difference between two events δ(ea, eb).

quickly become cluttered and difficult to analyze. We decided to discard this graph

both as the main visualization and the overview.

5.3.5 Distribution Views

Considering the multivariate nature of our data (C2), we utilized three charts to show

the distribution of sequence attributes (Fig. 5.1 (E)) (R4, G1 and G5). According

to domain experts, the categorical and numeric attributes associated with the ground

handling event sequences impact the operations’ performance. Thus, they are not only

interested in the frequent patterns, but also the sequences’ associated information.

The sunburst and calendar heatmap shows the distribution of categorical attributes

of the sequences used for pattern mining. The median of weather attributes per

pattern is visualized with parallel coordinates. These charts answer questions like

“this (these) pattern(s) happened at which stands? for which airlines? what time

of day? what was the weather like when this happened?”. If the user is interested

in a pattern, they can select it from the matrix by clicking on its row and see its

distribution charts. For example, in Fig. 5.1, a row is selected from the matrix (D),

and the charts show the distribution of attributes of the sequences with this pattern

(E). If the user does not select any particular patterns, the charts display distribution

over the entire (filtered) sequences.

5.3.6 Statistical Breakdown View

The statistical breakdown table (Fig. 5.1.F) provides details about the pattern se-

quences for the domain expert to validate their hypothesis (R5, G1 and G5). The

table is hidden to save space and becomes visible by selecting patterns and clicking

on the performance breakdown button. The domain expert can inspect the raw event

sequences and their categorical attributes (C2). Since we have labelled the events
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based on certain attributes and statistics, we provided this information along with the

actual sequences. For example, if an event is labelled as delayed w.r.t. its occurrence

time since the beginning of turnaround (δ(start, event)), the domain expert can see

the actual δ along with minimum, 0.33 quantile, median, 0.66 quantile and maximum

of that δ in sequences(4.3.1).

5.3.7 Interactions

SeRViz supports the following interactions to enhance the pattern exploration:

Interactive mining: Users can tune the SPM and FIM parameters (Fig. 5.1 (A),

5.2). Initially, the user can start working with patterns mined with preset parameters

and then tune them if required.

Sequence Filtering: Sequences can be filtered by categorical values and labels

(for example, mine patterns from sequences having delayed fueller connected) before

pattern mining. Furthermore, the performance breakdown table support text and

number search.

Pattern Filtering: If the user is only interested in patterns with a particular

event in the antecedent/consequent of the sequential rules, they can select the event

node from the overview graph. The rest of the views will be updated to show related

patterns/details for the selected node.

Pattern Selection: The rows in the pattern matrix are selectable, and once

clicked, the distribution charts and performance breakdown table are updated ac-

cordingly.

Sorting: The pattern matrix support soring rows by multiple columns. The

support and confidence will be sorted numerically, and event columns by the label.

5.4 Conclusion

In this chapter, we described our design requirements and how we tried to address

each of them with the design goal. For each visual component’s design, we also tried

to consider our data characteristics and the questions the component will answer. We

demonstrate the usability of SeRVis with a few use cases in the next chapter.



Chapter 6

Use Case

In this chapter, we use two use cases to demonstrate how the SeRVis system can be

used to find patterns in a log of ground handling operations. In the first use case, we

look for interesting patterns in a set of turnarounds where the fuelling was delayed.

The second use case is about finding undesirable patterns (for example, any longer

than usual intervals between operations) in freezing weather.

6.1 Sequential Rules from Sequences with Delayed Fuelling

This scenario presents Alice, a manager at an airport who wants to analyze the

turnarounds with delayed fuelling, or more precisely, turnarounds with labelled event

delayed fueller connected. Fuelling is one of the ground handling operations the do-

main experts, such as Alice, are most interested in. Inefficient fuelling is a waste of

energy and a loss of money for all stakeholders. Alice does not have the time to go

through every single turnaround individually, so she decides to use SeRVis to find

and analyze the most frequent patterns. She is interested in knowing what events,

including Fueller connected, are delayed and what were the steps that led to them

and in what conditions.

She first filters the sequences with delayed fueller connected (Fig.6.1 (A)). With

only 119 flights with delayed fuelling, she defines a pattern interesting if it has ap-

peared in at least near 20 flights (support = 15%), and the probability of seeing

an event given a certain subsequence before it must be high (confidence = 70%)

(Fig.6.1 (B)). She sets the window size to 15, half of the maximum sequence length

in this dataset. She is interested in the patterns from ground handling operation

events within close proximity. After setting the mining configuration, she mines the

patterns.

Initially, the matrix is in grouped mode (Fig. 6.2). Alice notices aggregated an-

tecedents found for Fueller connected as a consequent (red rectangle in Fig. 6.2). She
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learns that Aircraft entered stand (mostly laballed as on-time) and Fueller on stand

(mostly lablled as delayed) were top most frequent antecedents of her target event

(red rectangle in Fig. 6.2). delayed Fueller connected affected Fueller disconnected,

Fueller left stand and Pushback started and partially contributed to their delay (blue

rectangle in Fig. 6.2).

Alice selects her target event, Fueller connected, from the overview graph to filter

the related patterns. Then, she looks into the group with her target event as the

consequent and sorts the rows by support. One unexpected rule she finds is {Ontime

aircraft on stand} → {delayed fueller connected}, which has occurred in 51% of the

filtered sequences, with almost perfect confidence. She was not expecting to see a

delay in fuelling for turnarounds that were arrived on time and ideally would get

serviced as scheduled. She selects the row from the table and analyzes the associated

attributes. The pattern existed in all three airport stands, mostly in mornings (be-

tween 4:00 A.M. to 11:59 A.M.), and in cold (air and ground temperature around 0

◦C) and humid (relative humidity around 70%). At this point, Alice could look into

these flights’ turnaround history to investigate if something is blocking the fueller

from getting connected to the aircraft in the situations mentioned above. She gets

curious to know how many of the flights with this pattern also had a delayed depar-

ture. Thus, she queries the performance breakdown table with delayed Aircraft left

stand, which giver her 12 (out of 60) flights. This could mean the ground handling

operations were often swift enough to prepare the aircraft to depart on time despite

the disruptions.

Next, Alice explores the patterns related to Aircraft left stand to see in she finds

any patterns regarding delayed departures, which have a lot of costs associated with

them [56]. These costs include negative passenger experience, compensation of de-

layed flights for airlines, and wasted labour productivity [56]. Alice selects her new

target from the overview (Fig.6.3 (A)). In the group of Aircraft left stand as the con-

sequent, she notices a dark orange bar in label distribution, which represents a delay

(Fig.6.3(B)). We collapse the group and find the frequent pattern {delayed passenger

door open, delayed pushback started} → {delayed aircraft left stand} with the support

of 17% and confidence of 87%. From the distribution analysis views, Alice learns

that this trend has occurred mostly in stands 8 and 23 (Fig.6.3(C)). It seems like this
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Sequential Rules Frequent Itemsets
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Figure 6.1: Target based analysis for delayed aircraft fuelling. (A) The sequences are
filtered by target event. (B) SRM parameters are set. (C) Target event is selected
from the overview graph (yellow node). Tooltips or label option help the user find the
event. (D) Group with target event as consequent is collapsed and sorted by support
column. A pattern is selected from the matrix. (E) Attribute distribution analysis for
the selected pattern. (F) Sequence details for the selected pattern. User can search
for a specific event in the sequences.

pattern frequently happens throughout the week. At this point, Alice could form a

hypothesis about a passenger boarding issue at these two stands and investigate if it

is true using full turnaround history (if available) of the corresponding flights.
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Sequential Rules Frequent Itemsets
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Figure 6.2: Sequential rules grouped by consequent. The big red rectangle shows the
aggregated antecedents of Fueller connected, while the blue one shows all the groups
in which this event appears an antecedent.

6.2 Frequent Itemsets from Sequences in Freezing Weather

This use case presents Bob, a manager working at an airport situated in a climate

with long snowy winters and frequent cold-season storms. Bob wants to know how

freezing weather is affecting the intervals between ground handling operations. He

first filters the turnarounds having both ground and air temperature below 0 ◦C

(Fig.6.4(A)), then he mines itemsets with minimum support of 15% (fig.6.4(B)). He

only wants to explore the patterns that took place in at least 25 flights since anything

less than that could be due to chance.

In the pattern matrix, he sees a group with only long labels, indicating a group

of inefficient turnarounds (Fig.6.4(C)). Once he collapses the group rows, he can see

an itemset of intervals {Aircraft parked-Bridge connected, Fueller on stand-Fueller

connected} all labelled as long, with average support of 15%. Bob interprets this

pattern as follows: A group of flights took a long time for the bridge to get connected

to the aircraft after arrival. Also, the fueller did not get connected to the aircraft for

a long time after it had entered the stand. Bob investigated one of the patterns and

found out that it happened at stands 16 and 23, mostly on Tuesday mornings (from
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Figure 6.3: Target based analysis for delayed aircraft fuelling. Investigating Aircraft
left stand patterns. (A) Target event is selected from the overview graph (yellow
node). (B) The group with target event as the cosequent shows a dark orange bar in
the corresponding cell, hinting a delay-related pattern. Group is collapsed and rows
are sorted by support and confidence. (C) Attribute distribution for the selected
pattern.

4:00 A.M. to 11:59 A.M.) (Fig.6.4(D)). Having access to more turnaround details, Bob

could look for causes of disruption in these flights and inspect if there is a common

technical issue affecting them.
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Figure 6.4: Exploring frequent itemsets derived from sequences in freezing weather.
(A) The itemsets are filtered by weather conditions. (B) FIM parameter is set (C)
Group with multiple long time gaps is collapsed. A pattern is selected from the
matrix. (D) Attribute distribution analysis for the selected pattern.



Chapter 7

Evaluation

To evaluate the system usability, we conducted individual interviews with two aviation

domain experts, along with a user study on a group of non-expert volunteers. Through

the rest of this chapter, we will describe the evaluation steps.

7.1 Domain Expert Interviews

To get the domain experts’ feedback on the SeRVis framework and its usability in

aviation, we interviewed two domain experts from the airport that provided us with

the ground handling logs. Their field of expertise is management and supervision of

air service operations. Note that the interviewees were not the same experts whom

we consulted during the study. The interview sessions included around 10-15 minutes

presentation on an overview of the study and a brief background on FIM and SRM.

Then, we demonstrated the use cases in chapter 6 in about 10 minutes. After the

presentations, we asked for their feedback on the system. We asked if they found the

patterns in use cases insightful, whether they would be interested in using SeRVis for

day-to-day operations and if they had any suggestions to improve the system. Each

of the interview sessions took about 30 minutes in total. Ideally, we would have had

a longer evaluation session to train the domain experts on how to use the system.

Then, ask them to perform exploratory analysis and find patterns that they find

insightful. However, due to time constraints of the experts, we changed the domain

expert evaluation strategy. We summarize the interview results in the two following

sections:

7.1.1 Usability

The experts stated that the framework could potentially provide valuable information

for the airport and the airlines. According to one of the experts, the airport collects

a lot of data but does not analyze it to the level of detail presented in this study.
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Currently, they only look at how often a particular flight number or a route number is

delayed, but the airlines would be interested in knowing the causes. Whenever there

are delays, the airport is concerned with understanding the responsible parties (for

example, the ground handlers, airlines, or airport), or potential facility issues. Thus,

a system that could help them extract such information is beneficial. Furthermore,

the experts were interested in the attribute distribution analysis about the gates and

aircraft type. For assigning each aircraft to a specific gate, knowing which type of air-

crafts performs worse at which gates can help them with a more efficient assignment.

One of the experts mentioned that they would rather have the over-night flights not

removed in the preprocessing step since that kind of flight can influence delays in

morning turnarounds, and it would be valuable to analyze their influence.

We discussed the lack of full operation history per flight in the data and not

having access to SLA information. The experts agreed that if the dataset could be

expanded with boarding and resource information, the system may help find insights

to improve performance time. For example, different airlines have contracts with

different companies for ground handling operations. There is a preparation time

before each turnaround for moving the companies’ equipment to the designated stand,

and analyzing this stage is crucial since it can be time-consuming. The dataset could

be expanded to include these details as well for more fruitful analysis. Moreover,

SLA standards vary among airlines, which should be incorporated in the labelling.

For example, we labelled some arrivals as delayed since they were 15 minutes late,

but this threshold can be 8 minutes for some airlines.

7.1.2 User Interface

The experts suggested several changes in the user interface. One of the things both

of the experts pointed out was the time unit in the detail table (Fig.5.1 (F)), which

is reported in seconds. They suggested changing the unit to minutes or hours, which

is more convenient for their use. The support and confidence in the matrix could be

reported in percentages instead of ratio, which is more suitable for reporting. The

calendar view could be improved to display the delays as well. For example, red

could determine delays or interruptions in a day, while green can stand for expected

performance. Lastly, the weather information can include labels such as snowing and
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raining, or more information is provided to the user on how to interpret the numbers.

7.2 User Test

We conducted a user study to assess the system’s usability, possible improvements

and whether our proposed visual framework reduces the cognitive load of exploring

patterns. The study was conducted online and anonymously using Microsoft Forms.

The volunteers were given a series of video tutorials on the data mining concepts and

how to interact with the system. Then, they had to perform several analytical tasks

to answer the scenario-based questions. Finally, they were asked to rate the system

from different aspects. The average time for completing the test was 73 minutes.

7.2.1 Participant Selection

We looked for volunteers by sending a recruitment notice to computer science students

at Dalhousie University since they are already familiar with interactive software. We

were also expecting the computer science students to be familiar with the data mining

concepts and require less training for using the prototype. The notice was emailed

to students through csjobs@cs.dal.ca, which all the computer science students are

automatically subscribed to it. Ideally, we were looking for 30 participants, but only

19 students volunteered, and 13 of them completed the study. A possible reason for

not completing the user test could be the long average duration of completing the

survey.

We discarded one of the inputs where the volunteer had copy-pasted the question

in the text answers or had left them blank and had chosen Quit for the multi-choice

questions and selected the neutral option for the majority of the Likert questions.

The demographic questionnaire results reveal that users were familiar and com-

fortable with using visualizations and interactive user interface (Fig. 7.1). Seven

volunteers had completed the bachelors, and the other five had completed masters.

Only a few users were familiar with data mining concepts used in the study.
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Neutral
Not so well
Not well at all
I prefer not to answer

How familiar are you with Data Analytics Tools, such as Microsoft Excel or
Tableau?

C
ou

nt

a: Interactive user interface b: Data analytics

25.0%

16.7%

41.7%

16.7%
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Very well
Well
Neutral
Not so well
Not well at all
I prefer not to say

How familiar are you with data mining?
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Very well
Well
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Not so well
Not well at all
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How familiar are you with frequent itemset mining?
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c: Data mining d: Frequent itemset mining

8.3%

16.7% 16.7%

50.0%

8.3%
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Very well
Well
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Not so well
Not well at all
I prefer not to answer

How familiar are you with association rules?
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25.0% 25.0% 25.0%
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Very well
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Not well at all
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How familiar are you with sequential rules?
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e: Association rules f: Sequential rules
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Little or no formal education
High school or equivalent
College or university
Master
Doctoral
Post-Doctoral
I prefer not to answer

What is the highest level of education you have completed?
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Daily
Weekly
Monthly
Yearly
Never
I prefer not to say

How often do you use tools that use visual/graphical representation, and not
only text and/or numbers?

C
ou

nt

g: Education h: Using visual/graphical representation

Figure 7.1: User study demographics revealing familiarity of the users with different
topics used in the study and their education level
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7.2.2 Experiment Setup

We invited the participants through the csjobs@cs.dal.ca email list and sent the con-

sent form to whoever responded to the notice. The consent form described the study

procedure, and the volunteers could read it to decide if they wanted to proceed with

the study. The consent form is found in appendix A. A link to the Microsoft form and

login credentials for using the SeRVis website was provided to those who consented

to participate.

7.2.3 Training

Once the users answer a basic demographic questionnaire (Fig. 7.1), they are provided

with a series of short one-minute tutorials on FIM, SRM, filtering sequences and

mining patterns, how to use the pattern matrix, and how to select a row and analyze

the attribute distributions and pattern details. Furthermore, they are provided with

brief definitions of the airport apron, stand and ground handling operations to get

familiar with the terms used in the analytical questions.

7.2.4 Scenario Exercises

The exercises were designed for two objectives. First, assess our hypothesis that

a visual analytics framework will reduce the cognitive load of exploring patterns.

Second, the usability of framework design. For the first part, we designed two similar

sets of three questions. The user is asked to answer the first set with plain-text output

of a popular pattern mining library that is merely a list of patterns. The second set of

questions should be answered using the visual prototype. After each set of questions,

the user is asked to answer the NASA-TLX [36] to measure their workload. Ideally,

we expect to see a lower (mental) workload for the visual prototype. The second part

of the assessment is a series of tasks targeting design goals G2-G5 to see if the users

can use all the features properly.

Exercise Rationale

The first three questions assess the users’ ability to answer basic data mining questions

from the plain-text output of a popular off-the-shelf pattern mining library [18] (Fig.
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Figure 7.2: SPMF[18] plain-text output for mining sequential rules from 388 se-
quences, with minimum support = 10%, minimum confidence = 70%, and window
size = 15.

7.2). The patterns were already mined, and the result was displayed to the user

with a browser. The users were asked to copy-paste the entire line with the correct

answer for convenience. When we evaluated the responses, we noticed some users

wrote only one part of the rule (for example, without the support and confidence) or

had added explanations to their answer. We edited the questionnaire key to accept

all possible correct answers. The questions about the patterns in pure text format

are the following:

Q1 What is the most frequent sequential rule? (highest support)?

Q2 What is the rule showing the most probable causes of “ontime Fueller con-

nected”?

Q3 Can you find an item called “ontime Aircraft parked-Fueller on stand”? What

other item(s) most frequently appear with it?

These questions were followed by a NASA-TLX questionnaire. Then, another set

of similar questions, listed below, were asked but this time the users were asked to

use the visual prototype. Note that these questions inherently assess design goals

G3 and G4 as well. We want to see if the users can easily identify antecedents and

consequents, interest measures, and itemsets having specific items. After answering

the second set of questions, the users were asked to fill the NASA-TLX questionnaire

once again.
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Q4 Which of the following rules has perfect confidence X → Y, P (X|Y ) = 1?

Q5 Which of the following set of events are most frequently lead to “on-time Bridge

disconnected”?

Q6 Can you find an item called “ontime Aircraft parked-Fueller on stand”? What

other item(s) most frequently appear with it?

For evaluating G2, we asked the following two questions to see if the user can

use the grouped mode properly and read the aggregated antecedents for a given

consequent or find the groups where an item appears as an antecedent.

Q7 In the grouped matrix (Group by consequence switch on), which of the following

effect “Fueller connected”?

Q8 In the grouped matrix (Group by consequence switch on), which of the following

does “Fueller connected” effect?

Lastly, to evaluate whether the user can use the features related to G5, we asked the

following questions. Note that we also asked the user to perform a sequence filtering

by setting air and ground temperature to a certain range and also configuring the

mining parameters.

Q9 How many sequences were filtered?

Q10 In the following rule: “delayed Passenger door closed → delayed Pushback

started support: 0.22 confidence: 0.86”, what can we understand with distribu-

tion analysis?

Q11 How many of the sequences with the rule you found in the previous question

have “delayed fueller on stand” in their sequences?

Results

We first report how many of the volunteers answered the analytical questions correctly,

and then compare the NASA-TLX results for plain-text and visual prototype.

We compared two sets of questions Q1-Q3 and Q4-Q6 together (table 7.1). First,

we noticed that Q4 and Q6 have a higher number of correct responses than Q1 and
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Q3 (75% and 50% vs. 66.7% and 41.7%), which means users were more successful in

finding the correct answer using the visual prototype (table 7.1 (a) and (c)).

In Q4, we expected the users first to ungroup the rows and then find the answer

by sorting them by confidence. The wrong answers came from selecting the row with

the highest average confidence in grouped mode. One possible reason could be that

the users assumed that high average confidence among all groups means the rules in

that group must have the highest confidence overall, which was not the case. Or they

forgot about what support and confidence values mean in the grouped mode, even

though we mentioned that in the Microsoft Forms before tasks. One possible solution

is training with more examples and explanations.

In Q5 and Q6, we were expecting the users to use the multi-sort feature of the

matrices and sort the rows based on the event/item in the questions, and then by

support. When we analyzed the wrong answers, we noticed that most of the incorrect

answers are due to not sorting the rows by the support and selecting the first row

with the requested labelled event/item. Perhaps the users assumed that the rows are

sorted by support by default.

Fig. 7.3 shows the result of the last set of analytical questions Q7-Q11. Questions

Q7 and Q8 had multi-choice answers, and most users were able to find the correct

answers. These questions required the users to change the default mining parameters

and set the minimum support higher before answering the questions. We guess that

the wrong answers for Q8 might be due to not changing the default parameters and

including rules with lower support.

Q9 was a sanity check to see if the users could filter the sequences properly for

answering the last three analytical questions. The majority of the wrong answers for

Q10 was due to not selecting the specific pattern row and selecting the answer that

corresponds to the aggregated attribute distribution for all the filtered sequences.

Ten users answered Q11 since it was optional, and people who were able to select

the pattern from the matrix row successfully were also able to answer this question

correctly. Even though we covered the pattern selection in the tutorial videos, perhaps

the system required more training before use.

The comparison of NASA-TLX questionnaire shows that overall, the visual pro-

totype did reduce the cognitive load of pattern exploration (Fig. 7.4).
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Text Question SeRVis Question

66.7%

33.3%

0

1
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3

4

5

6

7

8
Answers

correct
incorrect
blank

What is the most frequent sequential rule? (highest support)
66.7% correct

C
o
u
n
t

16.7%

75.0%

8.3%

0

1

2

3

4

5

6

7

8

9
Answers

on-time Fueller connected ==> on-time …
on-time Aft starboard belt connected,  …✔
ontime Aft port catering connected ==> …
on-time Fueller on stand ==> on-time Fueller…
Quit

Which of the following rules has perfect confidence (X==>Y, P(X|Y)=1)?
75.0% correct

C
o
u
n
t

Q1 Q4

(a) Finding highest support/confidence

Text Question SeRVis Question

25.0%

58.3%

16.7%

0

1

2

3

4

5

6

7
Answers

correct
incorrect
blank

What is the rule showing the most probable causes of "ontime Fueller connected"?
25.0% correct

C
o
u
n
t

25.0%

16.7%

58.3%

0

1

2

3

4

5

6

7
Answers

 on-time Pushback tug … ✔
on-time Fueller on stand, …
on-time Pushback tug entered …
on-time Aircraft left stand
Quit

Which of the following set of events are most frequently lead to "on-time Bridge
disconnected"?
25.0% correct

C
o
u
n
t

Q2 Q5

(b) Finding antecedents/consequents

Text Question SeRVis Question

41.7% 41.7%

16.7%

0

1

2

3

4

5
Answers

correct
incorrect
blank

Can you find an item called "ontime Aircraft parked-Fueller on stand"? What
other item(s) most frequently appear with it?

41.7% correct

C
o
u
n
t

41.7%

50.0%

8.3%

0

1

2

3

4

5

6
Answers

on-time Fueller on stand-Fueller…
long Fueller on stand-Fueller …
on-time Fueller disconnected-...✔
short Fueller disconnected-…
Quit

Can you find an item called "ontime Aircraft parked-Fueller on stand"? What
other item(s) most frequently appear with it?

50.0% correct

C
o
u
n
t

Q3 Q6

(c) Finding certain co-occurrence

Table 7.1: User study results for Q1-Q6. Each pair of questions assess a specific
analytical task where the users have to answer using two different tools.

To assess if the difference in the overall average of the NASA-TLX results is

statistically significant, we used the paired t-test [44] since we have same group of
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91.7% 91.7%

83.3%

0
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4

6

8

10

Answers

{Aircraft parked} ✔
{Fueller on stand}✔
{Pushback started}
{Bridge connected}✔
Quit

In the grouped matrix (Group by consequence switch on), which of the following
effect "Fueller connected"?

66.7% correct
C
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83.3%

58.3%

33.3%

8.3%

0

2

4

6

8

10
Answers

{Fueller disconnected} ✔
{Fueller left stand} ✔
{Aircraft left stand}
{Pushback started}
Quit

In the grouped matrix (Group by consequence switch on), which of the following
does "Fueller connected" effect?

33.3% correct
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n
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Q7 Q8

83.3%

16.7%

0

2

4

6

8

10
Answers

114 ✔
284

How many sequences were filtered?
83.3% correct

C
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n
t

33.3%

50.0%

16.7%

0

1

2

3

4

5

6
Answers

Occurs at all gates, mostly…
Occurs at all gates, 23 more…
This patterns is found at ... ✔
There is no such rule.
Quit

In the following rule: "delayed Passenger door closed ==> delayed Pushback
started support: 0.22 confidence: 0.86", what can we understand with

distribution analysis?
50.0% correct

C
o
u
n
t

Q9 Q10

50.0%

8.3% 8.3% 8.3% 8.3%

16.7%

0

1

2

3

4

5

6
Answers

16 ✔
18
2
24
9
blank

How many of the sequences with the rule you found in the previous question have
"delayed fueller on stand" in their sequences?

50.0% correct

C
o
u
n
t

Q11

Figure 7.3: User study results for Q7-Q11. For Q7 and Q8, the correct percentage
(reported with green text) represents the percentage of the users that selected all the
correct answers; partial selections do not count.

subjects and we want to compare the their input from two different conditions. To

this end, we first need to make sure the amount of change in samples (NASA-TLX
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Figure 7.4: NASA-TLX results comparison for plain-text output vs. SeRVis visual
prototype. The answers were on scale of 1 (=very low) to 7(=very high).

results from text and visualization) are normally distributed and both samples have

the same covariance to satisfy paired t-test assumptions [44]. For the former we used

the Shapiro-Wilk normality test w.r.t. to our sample size [59]. For the latter, we used

the Levene’s test [62]. Levene’s test is robust to non-normally-distributed samples.

Both of our individual samples were not normally distributed when we checked the

Shapiro-Wilk test, however for the paired t-test, the difference in the amount of

change between each pair of samples is normally distributed 7.2.

For each pair of the questions, our hypothesis is that using a visual prototype

will reduce the workload compared to using a text-based tool. Once we make sure

that the assumptions of paired t-test are satisfied, we conducted the t-test. As we

see in table 7.2, out hypothesis is accepted in all cases except Performance where the

users had to rate how well they thought they had executed the tasks. One possible

reason for same average could be that most users were not familiar with data mining

concepts before the study (Fig. 7.1), thus were not sure if they have fulfilled what

was asked from them.

7.2.5 Questionnaire

After the analytical questions, the users were asked to answer two Likert question-

naires to rate the interface and the software usability [8]. The users could optionally



56

Tool Mean Standard Deviation
Text (T) 6.42 0.95

SeRVis (S) 3.92 1.55
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.95 0.65 Yes
T and S have the same covariance Levene 2.77 0.11 Yes

T and S averages are significantly different Paired t-test 3.95 0.00 Yes

(a) Mental demand

Tool Mean Standard Deviation
Text (T) 4.75 2.13

SeRVis (S) 2.50 1.55
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.94 0.47 Yes
T and S have the same covariance Levene 1.32 0.26 Yes

T and S averages are significantly different Paired t-test 3.08 0.01 Yes

(b) Physical demand

Tool Mean Standard Deviation
Text (T) 5.42 1.71

SeRVis (S) 3.25 1.53
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.92 0.33 Yes
T and S have the same covariance Levene 0.00 1.00 Yes

T and S averages are significantly different Paired t-test 3.22 0.01 Yes

(c) Temporal demand

Tool Mean Standard Deviation
Text (T) 3.83 1.99

SeRVis (S) 4.25 1.83
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.94 0.55 Yes
T and S have the same covariance Levene 0.02 0.89 Yes

T and S averages are significantly different Paired t-test -0.62 0.55 No

(d) Performance

Tool Mean Standard Deviation
Text (T) 5.92 1.26

SeRVis (S) 3.25 1.69
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.94 0.47 Yes
T and S have the same covariance Levene 0.74 0.40 Yes

T and S averages are significantly different Paired t-test 3.75 0.00 Yes

(e) Effort

Tool Mean Standard Deviation
Text (T) 5.50 1.71

SeRVis (S) 3.00 1.68
Hypothesis Test Statistics P Hypothesis Accepted?

T-S is normally distributed Shapiro-Wilks 0.89 0.13 Yes
T and S have the same covariance Levene 0.00 1.00 Yes

T and S averages are significantly different Paired t-test 3.12 0.01 Yes

(f) Frustration

Table 7.2: NASA-TLX t-test to investigate statistical significance. α is considered
0.05 for to compare the p-values.

answer two open-ended questions to comment on the system.

Results

Overview of the results is found in Fig. 7.5. One of the things users have rated and is

also reflected in their answers is that they have found the system challenging to learn.
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We even received a comment regarding the learning curve in the open-ended questions

at the end of the survey: “This System is new and initially It took me a bit of time

to get a hang of it, but it was fairly easy to understand it”. Or another comment

stated that working with groups was confusing: “The grouping was confusing and

it was difficult to locate a certain item in the matrix”. This can explain why the

users did not perform well in the tasks that required them to work with the grouping

feature. We conclude that the prototype requires more training for the users to grasp

all features fully.

The users responded positively to the design choices such as glyphs and groupings.

They also agreed that the visual prototype is easier to use compared to a text-based

list of patterns. More than half of the users did not find the use of a variety of visual

components overwhelming (Fig. 7.5 (a)).

We also received several suggestions through open-ended questions. One request

was to add a reset button for the default configurations. One of the participants men-

tioned that they did not use the overview graph and its labels get cluttered and hard

to read. Another user demanded the interface to be more interactive and seamless.

One use suggested highlighting the entire column rather than having tooltips to show

them the glyphs’ name. They also believed tooltips could provide more information

other than the event/item names.

We received some compliments on the visual appeal of the framework including

“A very neat system with good UX1.” and “The system was not only useful but also

visually attractive.”

7.2.6 Discussion

We were able to show that users experienced a lower workload when they worked

with a visual prototype compared to using plain text output. Most of the users were

able to use the features in SeRVis. As we mentioned, the study was conducted online

and there was no interaction with the users and they completed the study on their

own using video tutorials. Perhaps having in-person training sessions, or longer on-

line session with practice sessions and more examples for the users could improve the

results.

1User Experience
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A search interface composed of many visual elements is too overwhelming

Overall, the visualization-based system is intuitive to use

Having visual components for different pattern types and parameter distributions is overwhelming

I understand the what nodes, links and colors hue in overview graph mean.

I can differentiate different items with color and glyph mapped to them.

The distribution analysis visual components are easy to understand.

I like being able to see the actual sequence of items in data.

I preferred to have each visual component in a separate window.

I wanted to have more control over filtering the data.

Grouping of the patterns in the matrix helped me get an overview of the patterns.

Grouping of the patterns in the matrix helped me search for patterns easily.

Overview graph helped me look for patterns having a particular item in them.

Somewhat Disagree Strongly Disagree Neutral Somewhat Agree Strongly Agree

a: Software interface
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50%

I think that I would like to use this system frequently

I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a technical person to be able to use this system

I found the various visualizations in this system were well integrated

I thought there was too much inconsistency in this system

I would imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

The video was very effective for me to quickly learn to use the system

The pre-defined step by step was essential for me to discover the usefulness of the system

For sequential rules, the visual interface makes it easier to explore patterns compare to
raw output.

For frequent itemsets, the visual interface makes it easier to explore patterns compare to
raw output.

Somewhat Disagree Strongly Disagree Neutral Somewhat Agree Strongly Agree

b: Software usability [8]

Figure 7.5: Software interface and usability ratings



Chapter 8

Conclusion

In this study, we developed a visual analytics framework to explore sequential rules

and frequent itemsets in a sequence dataset of ground handling operations at an

airport. We formulated our analytical requirements based on discussions with domain

experts to design the framework accordingly. Following the design goals, we created

the SeRViz that allows the user to mine frequent patterns with desired configurations

and displays the output in an interactive matrix-based visualization. We evaluated

the efficacy of our framework by conducting two use cases on the dataset. Further

study is required to examine the effectiveness of this tool in aviation, using fine-grained

data and larger datasets. In the following sections, we describe the limitations and

ideas for system improvement in future work.

8.1 Limitations and Future Work

8.1.1 Performance

The SPMF library used for pattern mining does not provide a feature for the user

to know each pattern is mined from which sequences/itemsets. Therefore, we needed

to add a post-processing level on top of pattern mining to find the associated se-

quences/itemsets for each pattern. For the sequential rules, we have two other layers

of post-processing for removing redundancies, and building the DAGs described in

section 5.3.3. During our experiments, we noticed that these layers of post-processing

increase the time complexity of pattern mining and adversely affect the user expe-

rience. As we can see in Fig. 8.1, as long as the number of rules is not in order

of a few hundred, the pattern mining user experience is not seamless. To overcome

this problem and improve the performance, we plan to combine pattern mining and

post-processing into one algorithm.
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a: Execution time vs. support b: Execution time vs. confidence

Figure 8.1: System performance. We timed the backend processing time for mining
the sequential patterns, finding sequences of each pattern, redundancy removal and
DAG generation. (a) confidence = 60% and window = 12 (b) support = 10% and
window = 12. The experiments were conducted on a 64-bit operating system with 8
GB of RAM and CPU with 2.50 GHz clock speed.

8.1.2 Scalability

We discuss the visual scalability for each of the sequential rule and frequent itemset

matrices.

In the sequential rules matrix, the number of rows and columns in grouped mode is

equal to the number of unique events in the worst-case scenario. In ungrouped mode,

number of rows are equal to the number of patterns. Features such as filtering, sorting,

and increasing support and confidence can help, but it still remains a challenge as

the number of patterns grows. For datasets with a higher number of unique events,

we can try grouping columns, for example, by category, for the matrix’s horizontal

scalability. For the vertical scalability, we can try grouping rows by more constraints

compared to the current design.

In the frequent itemsets matrix, our major challenge is the vertical scalability

in ungrouped mode, as the number of unique items (in our target domain, it is a

predefined set of deltas requested by the domain experts) is low. Using the grouped

mode and only collapsing rows of a group of interest, and the multi-sort feature can

curb this challenge.
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8.1.3 Accuracy of the Analysis

One major limitation we had for this study is that we did not have access to the

airport-airline SLAs due to confidentiality constraints. Each airline has its specific

business rules/procedures for ground handling operations. For example, some airlines

expect the fueller to connect and start fuelling the aircraft in one minute after the

fueller’s arrival at the stand. According to one of the domain experts, the most valu-

able information can be derived from comparing airline operations schedule against

the actual turnaround and looking for potential SLA violations by handlers such as

fueler/caterer, and so on. In the absence of such information, we did not know how

accurately SLA was performed for each turnaround. Thus, we looked at the statis-

tical distribution of each event’s occurrence w.r.t. to a starting point (e.g. arrival).

Consequently, the labelling might be inaccurate from an aviation perspective. We

can improve this by incorporating the airline countdowns and constraints in data.

In this paper, we proposed a method for visualization of sequential rules which has

the potential of revealing cause-effect relationships in data [37]. However, one must

be careful that association rules and Causal Ruless (CRs) are not interchangeable;

although CRs imply association, the reverse may not always be true [48]. Thus this

system is not applicable for cases where the user is solely interested in casual rela-

tionships. Furthermore, particularly for our main target domain, the turnarounds’

punctuality is influenced by many external factors such as delayed flight cycles, techni-

cal malfunctions, and so on. [25]. Hence, when we look at a pattern that, for example,

demonstrates that specific antecedents lead to a delayed event, there might be reasons

beyond those antecedents contributing to that delay. More accurate analysis might

be possible with more details about the turnaround history in data.

8.1.4 Rare Patterns

Another limitation is that rare but interesting patterns might be filtered out by

support/confidence threshold. A workaround could be using algorithms specifically

designed for finding rare patterns [15].
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8.1.5 Sequential Rule Simplification

For simplicity, we mined the rules with only one consequent. We explicitly set the

maximum number of consequents to one in the TRuleGrowth algorithms and avoided

discarding any pattern in the post-processing. We plan to extend the use of prototype

to rules with more than one consequent.
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Appendix A

Consent Form

CONSENT FORM  

 

Sequential Rule and Pattern Visualization 

 

You are invited to take part in a research study being conducted by, Asal Jalilvand, an MCS 

graduate student in the Faculty of Computer Science at Dalhousie University. The purpose of 

this research is to analyze and verify the ease-of-use and usefulness of our proposed system for 

visualization and exploration of sequential patterns.  

If you choose to participate in this research, you will be asked to perform pre-set operations 

and analysis through our web app and anonymously answer questions regarding its usability, 

which are listed below. The survey should take approximately 45-60 minutes.  

 You will complete a demographic questionnaire. 

 You will be given a tutorial on how to use the software. 

 You will be given a practice session to use the software. 

 You will be given an evaluation questionnaire. 

 You will perform four tasks of searching answers the system. 

 You will submit the post-study questionnaire and comment. 

  

Your participation in this research is entirely your choice. You do not have to answer questions 

that you do not want to answer (by selecting prefer not to answer), and you are welcome to 

stop the survey at any time if you no longer want to participate. All you need to do is close your 

browser or browser window. I will not include any incomplete surveys in my analyses. If you do 

complete your survey and you change your mind later, I will not be able to remove the 

information you provided as I will not know which response is yours. 

 

For accessing the visual prototype, you will be given login credentials for the website. Please do 

not share or expose them to others. Also, please do not collect, use, reproduce, store or 

disclose, the information shared with you.  

 

Your responses to the survey will be anonymous.  This means that there are no questions in the 

survey that ask for identifying details such as your name or email address. All responses will be 

saved on a secure Dalhousie computer. Only Asal Jalilvand, Prof. Fernando Paulovich will have 

access to the survey results.  
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I will describe and share general findings of this research in a journal and/or conference 

publication. I will destroy all information 5 years after reporting the results. 

  

The risks associated with this study are no greater than those you encounter in your everyday 

life. 

  

To thank you for your time for completing the evaluation you will automatically be entered for 

a draw to win a $50 gift card for participating in the survey. Your contact information will not be 

linked in any way to your survey responses. 

  

You should discuss any questions you have about this study with Asal Jalilvand or Prof. 

Fernando Paulovich.  Please ask as many questions as you like before or after participating. My 

contact information is asal.jalilvand@dal.ca. 

  

If you have any ethical concerns about your participation in this research, you may contact 

Research Ethics, Dalhousie University at (902) 494-3423, or email ethics@dal.ca (and reference 

REB file # 2020-5321).” 

  

If you agree to complete the survey, please answer this email with “I accept the consent 

agreement”, and the link to the survey will be sent to you. 

 

 

Regards, 

Asal Jalilvand 



Appendix B

SeRVis Video Demo

A video demo of the first use case in chapter 6 is uploaded as an electronic supple-

ment on Dalspace. This video may also be found at Youtube https://youtu.be/

snxpXPj1Vmg.
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