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Abstract

A poultry company must coordinate the collection of flocks of chickens from many

farms to meet the demand of its customers while fulfilling the facility’s operational

constraints. The profits of the farmers, each of whom have production goals, must

also be considered due to supply management. A modified version of the multi-period

lot sizing with supplier selection problem framework is used to formulate three models

for the problem: an integer program, a weighted goal program, and a minmax goal

program. A two-stage stochastic variation of the problem is then considered, in which

forecasts of the average weight of each flock are uncertain. The three proposed models

are adapted to solve the stochastic variation of the problem. Soft robust optimization

is used with the integer program. Time series analysis is used to identify the growth

rate of each flock as a normally distributed random variable and weight predictions

are made based on this, then the deterministic and stochastic models are tested.

The experiments reveal that in both the deterministic and stochastic problems, the

minmax goal programming approach significantly reduces the maximum expected

deviation from optimality without significantly impacting quota fulfillment, reducing

risk of a large deviation from optimality for all parties. The value of stochastic

solution is also observed to be quite large, reducing the maximum expected deviation

from optimality by between 40.3% and 86.6% of its original value when a stochastic

formulation is implemented for five test weeks.
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Chapter 1

Introduction

The poultry industry is important in Canada. Over the past decade, Canadians’

chicken consumption has continually increased while their consumption of beef and

pork products has decreased. Using availability as a proxy for consumption, this

is noted by a 2019 Statistics Canada study [75], which observes a 7.6% increase

in chicken availability in Canada between 2009 and 2017 compared to 9.4% and

11.8% decreases in the availability of pork and beef, respectively. This shift may be

economically motivated. While its 19.1% price increase over that period of time was

similar to the 26.3% increase for pork, it was much smaller than the 63.1% increase for

beef. In more absolute terms, chicken is a popular protein source for many Canadians

due to its affordability, carrying an average price of $7.94/kg as of October 2020 in

comparison to $11.38/kg for ground beef (typically the least expensive type of beef)

or $11.65/kg for pork chops [74].

Affordable food is particularly important in Nova Scotia, where as of 2018 the

median household income for single-parent families was 15% lower than the national

median and 9% lower for two-parent families [72]. Despite these income discrepancies,

the average Nova Scotian household only spent $20/month less than the national

average on groceries in 2017 [73]. In fact, according to 2020 studies by the Government

of Nova Scotia [31] and Statistics Canada [76], 13.3% of Nova Scotians lived below

the poverty line in 2018 and 15.3% experienced food insecurity, both the highest

proportions of anywhere in Canada. These statistics demonstrate an above-average

need for economical, nutritious food in Nova Scotian communities. As the most cost-

effective meat, it is important to keep chicken production stable and efficient to avoid

the adverse impact of unnecessary price increases on food insecurity.

This stability is facilitated by a supply management system [77], allowing Canada

to limit the production of chicken (as well as other poultry, eggs and dairy) to what its

citizens will actually consume, ensuring predictable prices and consistent availability.

1
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A supply management system has three components: production quotas, minimum

prices, and import tariffs. The first two components are managed by provincial

boards of farmers, while the third is federally administrated. A production quota

establishes the maximum total weight of chicken that a farmer can produce without

being forced to pay a fine per unit weight. The minimum price is the lowest price per

unit weight at which farmers may sell their flocks to processors. Finally, high import

tariffs keep most foreign chicken products out of the Canadian market. Collectively,

the three components of the supply management system create an uncompetitive

market designed to meet public need. The tariffs ensure the chicken sold in Canada is

primarily domestic, while minimum prices and production quotas discourage farmers

from trying to undercut their competitors.

The uncompetitive environment encouraged by the supply management system

homogenizes the experience of a processing company purchasing from different farmers

because the prices are typically the same and the farmers have production quotas that

encourage them to grow chickens of a similar average weight. Accordingly, the system

encourages teamwork between the farmers and the processing companies. Each farmer

wants to produce their full quota amount to maximize profit and they will be strongly

disincentivized from working with a processing company again if the company makes

decisions purely in its own interest rather than considering the farmer’s quota.

Before chicken can be sold to consumers, it must be prepared and packaged by

a poultry processing company. The company purchases flocks of chickens from a

variety of farmers and retains their business by determining an optimal procurement

schedule to help all of them meet their production quotas. Procurement scheduling

is important because a flock of chickens must be processed in a relatively narrow

window of time. Once the chickens have reached the minimum acceptable size, it

typically takes only three to four days before they grow too large to produce a product

customers will purchase, meaning that a farmer cannot simply produce the amount

requested by the decision maker and set it aside to await pickup. The farmer is

effectively producing continuously until the flock has been processed.

Because not all chickens grow at the same rate, their exact weight on a given

day in the future cannot be known. Thus, to help the farmers meet their targets,

forecasts must be made about the weights of the flocks before scheduling them to get
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all farmers as close to their targets as possible. The schedule is additionally limited

by the company’s operating constraints, which dictate the amount of chicken to be

processed each day as well as restricting the average flock sizes and locations that can

be scheduled for collection on the same day. The uncertainty of the weight forecasts

and how that can affect scheduling practices should also be considered.

While this thesis focuses on a supply management problem in the context of

agriculture, its model may be adapted for applications elsewhere. For example, inde-

pendent power producers (IPPs) are used as a source of electricity in some countries

such as Taiwan [41], although the state continues to distribute power to its citizens.

If the country wishes to reduce its carbon footprint, the power distributor might offer

the IPPs guarantees of a minimum share of the market in exchange for producing

more renewable energy. The distributor would then be responsible for minimizing

cost by planning how much power would be purchased from each IPP as demand

fluctuates over the course of the day while considering that some IPPs have power

generation targets to meet.

1.1 Overview

In Chapter 2, a review of literature relevant to this problem is provided. This in-

cludes literature about the poultry industry, the multi-period lot sizing with supplier

selection problem (MLSSP), the stochastic lot sizing problem and multiobjective for-

mulations used to solve it, and common scenario generation techniques. Opportuni-

ties for contribution are identified concerning the modelling of a system under supply

management, production planning with competing interests, the stochastic lot sizing

problem under uncertain supply, and comparison of different solution methods.

In Chapter 3, a detailed description of the Deterministic Flock Procurement Prob-

lem (DFPP) is given and the problem is compared to the MLSSP. DFPP is identified

as deterministic because its weight forecasts are assumed to be certain knowledge of

the future. An integer program (IP) is formulated to solve the problem, then its limi-

tations are evaluated. Two goal programming (GP) formulations are then considered,

a weighted GP (WGP) and a minmax GP (MGP). The WGP is identified as present-

ing a higher risk of loss in a single week to each competing interest, although it notes

that this risk may be offset by higher expected quota fulfillment levels throughout
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the sixteen-week quota period. A need to compare the relative risk of loss in a single

week against the possibility of gain across the quota period is identified for the IP,

WGP, and MGP formulations of the DFPP, which are identified as [DIP], [DWGP],

and [DMGP] respectively.

In Chapter 4, DFPP is modified to consider the Stochastic Flock Procurement

Problem (SFPP), in which weight forecasts are considered uncertain and their stochas-

ticity can be represented by a scenario set. Soft robust optimization (SRO) [60, 61]

is used to reformulate the IP from Chapter 3, then stochastic versions of the WGP

and MGP are also generated. The increased risks of large losses by a single party

posed by the SRO and stochastic WGP frameworks are identified and theoretically

compared, then the need to compare the relative risk of loss in a single week against

the possibility of gain across the quota period is identified for the SRO, WGP, and

MGP formulations of SFPP, which are identified as [RP], [SWGP], and [SMGP] re-

spectively. A visual map of the formulations for DFPP and SFPP can be observed

in Figure 1.1 demonstrating how the different solution methods relate to each other.

In Chapter 5, a weight forecasting model is developed based on a case study. It

finds that the growth rate of each flock can modelled as a normally distributed random

variable and estimated by an 8-point moving average. The process of determining

parameters and generating scenario sets from the case data is described. Lastly, a

computational experiment finds that the MGP formulation causes a notable reduction

in risk of a large deviation without significantly impacting expected gains in quota

fulfillment for both DFPP and SFPP.

Finally, Chapter 6 summarizes the findings of this thesis and proposes considera-

tions for future work.
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Figure 1.1: A map of the formulations presented in this thesis and how they relate to each
other.



Chapter 2

Literature Review

This chapter contains an overview of literature relevant to DFPP and SFPP. First,

it reviews papers concerning poultry production planning, noting that not many ex-

ist. Next, it defines the multi-period lot sizing problem and surveys the techniques

currently used to solve variants of this problem. Third, it examines papers that have

solved the multi-period lot sizing problem under at least one uncertain parameter,

specifically identifying stochastic goal programming as a technique used in these sit-

uations and briefly regarding common scenario generation techniques one might use

for these stochastic problems. Finally, it identifies opportunities for contribution in

the literature, most notably a lack of production planning problems considering com-

peting financial interests and of studies of the stochastic lot sizing problem under

uncertain supply.

2.1 Poultry Industry

Several applications of schedule optimization for the poultry industry have been pub-

lished, so it is prudent to review these first. Taube-Netto [78] is among the first to

recognize the potential in poultry production planning and provides a detailed break-

down of the process before presenting software designed to save Sadia Concordia SA

more than $50 million over a three-year period. It notably breaks this complex pro-

cess into individual modules such as Site Planning and Chick Planning. This thesis

primarily focuses on what is identified as the Flock Planning & Control module, the

step of the process when flocks are identified for slaughter on a particular day. While

the procurement process is described in great detail, Taube-Netto does not formu-

late a scheduling model at any point, preferring simply to state that the software

developed is capable of scheduling flocks.

Oliveira and Lindau [1] present a framework for poultry scheduling when pickup

days are already fixed and the collection times must be scheduled to minimize loss of

6
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mass. While the details of the solution are not of interest because DFPP and SFPP

do not consider scheduling practices on a more granular level than choosing a day for

each flock, its characterization of the problems inherent in the choosing a slaughter by

age or slaughter by weight methodology is useful. Slaughter by age is distinguished by

a simple solution and volatile final result due to the variance of average flock weights,

whereas slaughter by weight is noted as requiring additional equipment in the barns

and requiring additional time-sensitive information which might narrow the window

inside which a schedule can actually be made.

Brevik et al. [16] and Solano-Blanco et al. [71] both propose a mixed-integer linear

program for production planning and scheduling decisions for a poultry manufacturer

seeking to minimize cost. While minimization of cost is desirable, the cases studied

are of companies with a higher level of vertical integration than what is considered

in DFPP or SFPP, appearing to possess more agency over the quantities and timing

of chicks placed in hatcheries.

Khamjan et al. [48] establish a swine procurement model considering pig growth

and size distribution. While this is not explicitly about poultry, it is still similar

enough to merit consideration. It treats different size ranges as different products,

then uses a two-phase heuristic to predict which combinations of products herds will

contain at different periods of time and create a schedule which minimizes cost based

on that. It is worth noting that this approach assumes deterministic knowledge of

the growth rates of the herd.

Aparicio et al. [9] propose a weighted additive model to assess the technical effi-

ciency of dairy farmers in Canada. Like the Canadian poultry industry, the Canadian

dairy industry is subject to supply management. The proposed model evaluates the

average deviation from optimal production in each province, noting that this devia-

tion from optimality becomes smaller when the production quotas assigned to each

dairy farmer are taken into account. The proposed model offers high-level insights

without being able to provide specific operational recommendations, as well as failing

to account for other production constraints when evaluating optimality.

Focusing more on flock weight forecasting and less on scheduling, Johansen et al.

[43, 44] and Johansen et al. [45] use dynamic neural network models to effectively

lower the root mean squared forecasting error in comparison to existing poultry weight
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models. Reducing forecasting error is crucial in providing a higher degree of confi-

dence in the optimality of one’s chosen scheduling methodology. Huang et al. [39] and

Xiao et al. [88] both have similar levels of success in forecasting poultry growth rates

when comparing the performance of back-propagation neural networks and multiple

linear regressions. All five sources consider detailed information about environmen-

tal conditions throughout the flock’s life cycle, but nothing in the literature defines

a forecasting model for growth rates when the farmers do not keep a log of these

conditions.

2.2 Lot Sizing Problem

The multi-period lot sizing problem was first defined in 1958 by Wagner and Whitin

[85]. It identifies a forecast of product demand dt over a time horizon t ∈ T and

aims to determine how many units xt to order in each time period t to minimize

cost. In 2005, Basnet and Leung [14] were the first to consider the multi-period lot

sizing problem with supplier selection. This extension of the model considers a set of

products i ∈ I and a set of suppliers j ∈ J . Each product i has demand Dit in each

time period t and each supplier j has a purchase price Pij for each product i. The

model aims to decide how many units xijt of each product i must be ordered from

each supplier j in each time period t to minimize cost.

Once forecasts have been made for each flock’s growth rate, the core of DFPP be-

comes a variant of the multi-period lot sizing problem with supplier selection because

it is a situation in which a purchaser must efficiently acquire a product from a set of

suppliers in a given set of time periods. In the case of DFPP and SFPP, it is notable

that the decision maker must purchase each product offered by each supplier exactly

once, and the question is to determine when each purchase can be made to satisfy de-

mand. By examining the different ways other multi-period lot sizing problems with

supplier selection have been approached, ideas for the best solution to DFPP and

SFPP may be generated.

The multi-period lot sizing problem is commonly modeled as a mixed integer

program (MIP) [5, 7, 8, 14, 21, 24, 49, 50, 51, 59, 65, 84]. While these are all unique

variations on the basic multi-period lot sizing problem with supplier selection (for

example, only some discuss variants of the problem with multiple products [5, 14, 21,
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49, 50, 59, 65]), they all have an objective function which seeks exclusively to minimize

cost, or similarly maximize profit in the case of Mohammadi et al. [59]. While

maximizing profit is important to any business, this is insufficient for DFPP and SFPP

because it does not account for how a decision in one period could affect the decision

maker’s relationship with a supplier in a future period. Supplier satisfaction has not

previously been considered as a complication of the multi-period lot sizing problem.

The methodology must consider the profits of many farmers at once, differentiating

between solutions that are good for every farmer and those that are very good for

most of them and bad for a few. Thus, we begin to look toward a multiobjective

programming approach in the literature.

Assadipour and Razmi [11] consider the problem of inventory lot sizing and sup-

plier selection for an assembly system. Like the aforementioned lot sizing problems,

the paper seeks strictly to maximize profit, but it diverges from these problems in

its multiobjective formulation. It is formulated as a multiobjective problem due to

the imprecise nature of several coefficients and thus the fuzzy nature of the expected

profit for a given solution, seeking to maximize the expected profit while minimizing

the risk of lower profit. These objectives are then combined into a single objective

function to create a mixed integer program which is solved by particle swarm opti-

mization. Awareness of this approach may be valuable because, while it does not

consider satisfaction of multiple parties, it considers a solution for multiple objective

functions associated with the lot sizing problem at once.

Azadnia et al. [12] propose a multi-period lot sizing model in which sustainable

supplier selection is considered, a form of supplier selection accounting not only for

economic considerations but also for environmental and social criteria by calculating

sustainability scores for each supplier. Maximization of economic, environmental and

social scores is considered alongside minimization of cost in a multiobjective model

which is successfully solved with both a weighted sum method and an augmented

ε-constraint method. Both of these methods are effective, but it is worth noting that

the augmented ε-constraint method produced a number of Pareto-optimal solutions

rather than just one solution, and when the solutions were brought to the case study

company’s experts they found it difficult to select the best solution from among

those presented. An approach like this could cause undue loss of productivity while
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its similarly efficient solutions are analyzed if new problems are solved on a regular

basis. The weighted sum method produces comparable solutions to the augmented

ε-constraint method. It can also be noted that the multiobjective formulations incur

less than a 2% cost increase in exchange for a significant sustainability increase.

The tradeoff between cost and sustainability demonstrates the potential efficacy of

multiobjective programming in remaining cost-efficient while accounting for social

factors.

Liao and Rittscher [53] examine a multi-period procurement lot sizing problem

considering both supplier and carrier selection, developing a multiobjective program-

ming model to minimize total cost, defects, and late deliveries. It combines them via

a similar weighted sum method as proposed in Azadnia et al. [12], but experiments

with how different weights affect solution quality. The proposed model generates so-

lutions using a genetic algorithm customized to suit the problem. While it does not

provide a baseline against which the quality of its solutions can be evaluated, its use

of sensitivity analysis to establish a set of weights which lead to effective solutions is

an analytical tool worthy of consideration.

Rezaei and Davoodi [66] present a multiobjective formulation of the multi-period,

multi-product lot sizing problem with supplier selection. This formulation attempts

to minimize cost while maximizing both the quality and service levels. Like Liao

and Rittscher [53], the authors develop a solution with a genetic algorithm, using the

NSGA-II algorithm outlined by Deb et al. [22] as a base and introducing a novel,

problem-specific operator to achieve convergence toward a solution more quickly. The

formulation attempts to identify overall trends in quality from suppliers using an

exponential time-dependent function to prioritize suppliers whose products are on

average of higher quality. The total service level objective function is an appealing

idea because it helps address the issue of uncertain supply by not assuming the amount

requested from a supplier is always equivalent to the amount delivered.

Razmi and Maghool [63] propose a fuzzy multiobjective model for the multi-

period, multi-product lot sizing problem with supplier selection further complicated

by discount price schemes. The authors develop solutions using both the augmented ε-

constraint method and the reservation-level Tchebycheff procedure (RLTP) to balance

the minimization of cost and maximization of total value of purchasing, a metric
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which accounts for qualitative performance criteria. Application of both methods to

a numerical example allows the authors to draw useful conclusions about optimal

purchasing habits, such as when delay of payment is useful with different suppliers

in the event of a limited budget. It is also noted that while the methods find good

solutions - RLTP generally finding better solutions than augmented ε-constraint -

the solver struggles as the problem size grows and a metaheuristic method might be

needed to handle problems with more than ten suppliers and five time periods. In

the case of a tool being designed for practical use, this is an important note because

computational efficiency leading to a reasonable runtime is important to many users.

They may not want to wait for hours; particularly when there is a chance they may

need to update some data and run the program again. Nonetheless, a Tchebycheff

method should be considered as a solution if the issue of computational efficiency can

be resolved.

Ustun and Demirtas [82, 83] experiment with Tchebycheff methods to address

a multiobjective take on the multi-period lot sizing problem with supplier selection

with a two-stage methodology. First, they use an analytic network process to eval-

uate intangible qualities and develop weights to attach to suppliers based on expert

opinions of 14 criteria pertaining to each supplier. Second, they use Tchebycheff

methods to balance budget, quality, and purchasing value goals. One problem [82]

is solved using a hybrid of weighted and Tchebycheff GP, while the other [83] uses

RLTP much like Razmi and Maghool [63]. The latter [83] also tries ε-constraint and

preemptive GP methods, but finds them less effective than the Tchebycheff approach.

The authors claim that RLTP has a significant advantage over goal programming due

to the decision maker’s participation in an interactive decision process, but this may

once again come up as an issue when presented as a tool to users expected to reg-

ularly solve new problems without technical knowledge of the program or access to

technical guidance. In this sense, a less interactive approach which will consistently

produce an acceptable solution is preferable, an experience which is afforded by the

weighted Tchebycheff goal programming [82]. A similar model is later used by Demir-

tas and Ustun [23] and solved purely with weighted goal programming, ignoring the

Tchebycheff metric entirely. It achieves a solution, but does not find the quality of

its solution noteworthy.
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Choudhary and Shankar [19] also propose a goal programming model for joint

decisions pertaining to lot sizing and supplier selection. It compares three GP tech-

niques – preemptive, non-preemptive, and weighted Tchebycheff fuzzy GP – using

a value path approach to analyze the tradeoffs offered by making improvements on

any one of the multiple objective functions. This is an attractive form of analysis

for this problem because it enables scenario-based analysis according to user-defined

factors, working well in tandem with the weight sensitivity analysis of Choudhary

and Shankar [18] and Liao et al. [53].

2.3 Stochastic Optimization

Stochastic programming is a branch of methodologies commonly used to deal with

uncertainty in mathematical programs. Specifically, the stochastic lot sizing problem

is a well-studied variant of the lot sizing problem featuring uncertain demand. It is

typically a multi-period problem which does not feature supplier selection, formulated

as a MIP seeking to minimize cost. Existing literature has scrutinized the efficacy

of many existing heuristics [13, 17, 25, 46, 80] or proposed new ones [42, 52, 67],

used Monte Carlo simulations [4, 20], or even found ways to modify the problem

to create tractable formulations [13, 37, 79]. However, very little work has been

done to understand the lot sizing problem with known demand and uncertain supply.

While this type of problem is certainly less common, it is relevant to the agricultural

industry, where goods are often marketed by weight and the exact weight of goods to

be marketed is unknown until their arrival at the facility.

While it still deals with uncertain demand rather than supply, Kang and Lee [46]

propose a solution to the stochastic lot sizing problem which accounts for supplier

selection, an uncommon consideration in the literature. It formulates a multiobjective

model seeking to both minimize total cost and maximize service level, solving it by

using the ε-constraint method to transform the multiobjective formulation into a

mixed integer program. It then finds that this MIP can be efficiently solved by a

modified version of the heuristic dynamic programming model originally presented

as a solution to the lot sizing problem by Wagner and Whitin [85]. The model

handles the stochasticity of the demand with a chance constraint, assuming normal

distribution and placing orders such that the demand will be satisfied with at least α



13

certainty according to z -values defined for the problem. This form of problem-solving

may be useful because a modified version of the service level chance constraint could

be relevant to DFPP and SFPP, in which flocks must be purchased from farmers at

the right weights to help them meet their quotas.

Stochastic lot sizing problems sometimes incorporate robust optimization tech-

niques as a tradeoff between optimization of expected value and of worst-case sce-

narios, providing a more moderate form of risk aversion. Different authors have done

this in different ways. For example, Hu and Hu [38] and Keyvanshokooh et al. [47]

identify multiple sources of uncertainty in a two-stage stochastic program and solve

one stage’s variables stochastically while defining an uncertainty set for the other

stage’s variables and solving it with robust optimization. Curcio et al. [20] optimize

the expected value of a multistage stochastic problem while using a budget polyhedral

uncertainty set to ensure model robustness.

Azizi et al. [13] and Hu and Hu [37] both approach the stochastic lot sizing prob-

lem with a scenario approach rather than using chance constraints. While solving

the problem for an exhaustive list of scenarios quickly becomes computationally un-

realistic when a different set of scenarios is available for each time period, they use

scenario generation based on the mean, variance, kurtosis and skewness of the data

to discretize the demand’s continuous distribution before using fast-forward scenario

reduction to choose a subset of scenarios that is collectively most representative of all

possibilities, in one instance reducing 3125 scenarios to just 15 while losing very little

information. In particular, Hu and Hu [37] utilize a stability test to see how far they

can lower the number of scenarios in the interest of efficiency while keeping enough

of them to develop a useful solution.

2.3.1 Stochastic Goal Programming

Stochastic goal programming is an effective way of balancing multiple objectives under

uncertainty. This uncertainty may be captured by any of several methods, including

fuzzy programming [26, 54, 57, 69], chance constraints [2, 56, 62, 64, 68, 69, 91] or

scenario sets [10, 56, 92]. Scenario sets become useful for assessing the expected value

of an objective function when decisions are made in multiple stages rather than all

at once, and are thus appealing for SFPP.
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Arabi et al. [10] consider the design of an algal biofuel supply chain network,

building a goal program which seeks to simultaneously maximize profit and minimize

greenhouse gas emissions. The alternative fuel price is considered under uncertainty,

and the weighted goal program constructed penalizes deviations from the optimal

value for each objective function in each scenario proportional to the probability of

that scenario. Monte Carlo simulation is used to generate scenario data in the case

study and the conclusion is drawn that the stochastic model is more profitable than

the deterministic model.

Mahmoodirad and Niroomand [56] similarly consider another supply chain net-

work design problem which seeks to maximize profit and minimize environmental im-

pact. It considers five different cost parameters associated with transportation under

uncertainty, using a belief degree-based system to construct scenarios in the absence

of historical data. A goal programming approach is attempted with a scenario-based

expected value formulation as well as with a chance constraint-based formulation.

While the study does not declare the quality of one method’s solution to be superior

to the other, it can be noted that the computational time of the chance constrained

method grows more quickly than the scenario-based formulation.

Zhou and Erdogan [92] introduce a two-stage resource allocation model for wild-

fire suppression and resident evacuation, creating a preemptive goal program which

minimizes the number of people in high-risk areas, then the costs incurred by the

fire. Population density, percent of population evacuated, and property value are all

considered as uncertain parameters affected by the fire’s intensity and speed. The

resulting plan is deemed comprehensive and realistic, although the authors do not

compare it with any other resource allocation models to indicate improvement.

Although it is not common, some stochastic GP techniques have been mixed with

soft robust optimization [60, 61]. In SRO, much like two-stage stochastic GP, un-

certain parameters are represented by a set of scenarios while decision variables are

divided into here-and-now and wait-and-see variables. Penalty variables are then

defined to allow some of the constraints to be violated, and a new objective func-

tion is introduced including a penalty function. It is uncommon because SRO and a

stochastic GP both penalize deviations, but the approach can be useful in programs

where deviations from a goal value and deviations from feasibility are two separate
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things. Yu and Li [89] first highlighted the efficacy of this approach in a GP context,

applying a slightly modified version of SRO to a stochastic GP to improve compu-

tational efficiency. Zahedi-Seresht et al. [90] also investigate the utility of SRO in

solving stochastic GPs, formulating a set of scenarios for a data envelopment analysis

(DEA) model. It creates a weighted GP using scenario probabilities as weights and

finds its robust counterpart, solving the DEA problem S times more efficiently than

existing methods and obtaining comparable results, where S is the number of scenar-

ios. While these papers do not attempt to quantify the robustness of their solution in

comparison to other methods, they do demonstrate the conditions under which SRO

can be effectively applied to stochastic GP problems.

2.3.2 Scenario Generation

The stochasticity of a program is often represented by scenarios and their correspond-

ing probabilities. These scenarios are by definition discrete, which makes stochastic

programming quite easy for a system which has a finite and predictable set of states,

but more difficult for a system whose uncertainty is dictated by a continuous distribu-

tion. SFPP is a two-stage problem, so it represents uncertainty with scenarios. The

marginal distributions of each source of uncertainty in the problem can be discretized

by generating a set of scenarios that are representative enough of them to help the

program produce an effective solution.

Several methods of scenario generation for continuous distributions have been used

in the literature, although one of the most common is the moment matching method

proposed by Høyland and Wallace [40]. It provides a generalized model which can

be adjusted and solved to produce a multi-period scenario tree based on the relevant

statistical properties of a distribution. Several researchers [27, 33, 36, 81] use it

effectively to generate large decision trees across long planning horizons, the latter

taking advantage of measurements such as skewness and kurtosis to set the problem

up effectively despite an asymmetrical, non-Gaussian distribution. Unfortunately,

this method can result in an intractably large scenario set when considering many

independent sources of uncertainty.

Random sampling is another scenario generation method frequently used by the

literature [15, 30, 32, 35, 70, 86]. Unlike moment matching, it does not seek to
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generate a set of scenarios that is as evenly spaced out as possible; rather, it sets

a finite number of realizations and draws randomly from each distribution to create

a scenario set. Multiple scenario sets are generated and solved to ensure a stable

solution has been found. For example, Homem-de-Mello [35] solves 25 iterations of

each problem configuration to ensure stability.

While moment matching and random sampling are the two most prevalent meth-

ods, other techniques for scenario generation exist. Before proposing a different sce-

nario generation method, Hochreiter and Pflug [34] note that optimal scenario sets

result simply from minimization of a probability metric or distance between the sets

of points, leaving the number of conceivable generators at least as large as the number

of statistical distance measurement methods. It goes on to consider cases in which

moment matching may produce strange results by illustrating examples in which two

very different distributions both have the same mean, variance, skewness and kurtosis

and solves these problems by minimizing Wasserstein distances rather than using the

traditional moment matching method. Hochreiter and Pflug claim that this is a par-

ticularly useful method if the system is very sensitive to the tails of the distribution

because it offers more weight to the tails.

2.4 Opportunities for Contribution

Several opportunities for contributions can be identified in the different areas of focus

studied in this literature review. This thesis aims to make contributions in these

areas. According to the current literature, no published work could be found doing

any of the following:

• Modelling an agricultural system under supply management to create a pre-

scriptive optimization model.

• Considering the multi-period lot sizing problem under the influence of multiple

stakeholders with competing financial interests.

• Considering a multiobjective formulation of the multi-period lot sizing problem

with uncertain supply.

• Comparing the performance of SRO and stochastic GP techniques.
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The body of work studying production planning in the poultry industry or in

agricultural systems under supply management is quite small. It lacks material in

which multiple farmers’ interests must be considered in parallel, despite the fact that

consistently developing solutions that ensure each farmer turns a good profit on their

flock is an essential component of ensuring the ability to do repeat business with

them. The only published work that could be found concerning agricultural supply

management makes high-level observations about the productivity of the farmers it

studies, but cannot provide operational recommendations. A useful contribution in

this area would be to formulate a model to optimize farmer productivity subject

to supply management and operational constraints. This contribution would create

a model that would remain useful with some adjustments when applied to poultry

production without supply management or another supply managed industry with

different operational constraints.

The primary objective function of the lot sizing problem has historically been

profit. While multiobjective functions have been established to enable the decision

maker to make what they feel is an appropriate tradeoff on profit in exchange for

another criterion, such as quality or environmental sustainability, they have all con-

sidered a single party that benefits from the decisions suggested by the model. This

can be observed in Table 2.1, which identifies several criteria relevant to DFPP or

SFPP and shows every paper reviewed which addresses a multi-period lot sizing prob-

lem with more than one of these criteria.

Reference Multi-Supplier Multiobjective Multi-Party Stochastic

[11], [12], [23], [53], � �
[63], [82], [83]

[46] � � �
[67] � �

This thesis � � � �

Table 2.1: Comparison of references.

The profit of multiple parties must be considered separately from other goals

because those parties have competing interests, and so a significant loss to one goal

in exchange for marginal improvements to several others may not be an acceptable

solution. Whereas Table 2.1 shows that the current body of work focuses on the



18

profit of the manufacturer, a useful contribution in this area would be to develop a

formulation of the lot sizing problem attempting to maximize the benefit of multiple

parties at once while continuing to work within the manufacturer’s constraints. In

addition to its application to the system defined in this thesis, this contribution would

enable sustainable models such as minimizing the ecological impact of harvesting a

commodity in several locations at once.

Stochastic versions of the lot sizing problem have been studied extensively under

uncertain demand, but not under uncertain supply. This observation is consistent

with the typical lot sizing problem in practice: customer demands are often unknown

and must be predicted but it is assumed that the supplier will be able to deliver

exactly the requested number of units. However, suppliers in the agricultural sector

deal with living, growing products. They cannot be certain of exactly how many

units they will produce until their product has been harvested. Accordingly, a model

for a lot sizing problem in this sector should be capable of accounting for supplier

uncertainty. A useful contribution in this area would be to propose a lot sizing model

which considers certain demand and uncertain supply. In addition to its applications

in agriculture, uncertain supply is a useful consideration if a supplier may experience

production shortages after orders have been placed.

While SRO and stochastic GP techniques have been explored in the literature,

no direct comparisons have been made of their efficacy. Both can be used when the

multi-period lot sizing problem has manufacturing guidelines which may need to be

violated to develop a feasible solution. A useful contribution would be to compare

SRO and stochastic GP to evaluate any performance tradeoffs each may offer over

the other. Beyond the multi-period lot sizing problem, this contribution would be

useful to any optimization problem seeking to minimize cost or maximize profit while

satisficing other criteria.

It can be noted that the only published work studying poultry weight forecasting

also uses detailed environmental data to make predictions. Other work has assumed

a uniform growth rate across every flock. A practical managerial contribution in this

area would be to develop a method of scheduling that is applicable to poultry pro-

cessors with multiple suppliers whose operations they do not control. This method
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would be able to balance the interests of each supplier while using a technique re-

quiring minimal information from the supplier to make predictions about each flock’s

growth rate.



Chapter 3

Deterministic Flock Procurement Problem

This chapter discusses several formulations that can be used to solve DFPP. First,

the problem is defined and its similarity to the MLSSP is described. Next, the

notation used in each formulation is collected and formally stated. Third, an IP

is developed based on the work done by Basnet and Leung [14] and its limitations

are evaluated. Finally, a WGP formulation is defined based on work by Ustun and

Demirtas [82, 83], its limitations are similarly evaluated, and an alternative MGP

formulation is proposed to mitigate the drawbacks of the IP and WGP methods.

3.1 Notation

The following notations are used to formulate the IP, WGP, and MGP presented in

this chapter.

Sets:

I = {1, 2, ..., |I|} The set of eligible flocks, indexed by i and i′.

T = {1, 2, ..., |T |} The set of days, indexed by t.

J = {1, 2, ..., |J |} The set of farmers, indexed by j.

G = {1, 2, ..., |G|} The set of geographic areas, indexed by g and g′.

Decision Variables:

xit A binary variable, 1 if flock i is picked up on day t, 0 otherwise.

ygt A binary variable, 1 if area g is visited on day t, 0 otherwise.

ri′it A binary variable, 1 if flocks i′ and i are picked up on the same day t, 0

otherwise.

20
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Parameters:

eij 1 if flock i belongs to farmer j, 0 otherwise.

wit The expected average weight per chicken of flock i on day t in kg.

ni The number of chickens in flock i.

qj The desired portion of the weight quota of farmer j.

fgi 1 if flock i is located in area g, 0 otherwise.

cg′g 1 if pickups can be made from areas g′ and g in the same day, 0 otherwise.

ε The allowable deviation from 1
|T | for the proportion of total weight produced

on day t to total weight produced across all days t ∈ T .

λd The weight of goal d in the WGP for d ∈ {1, 2, 3}.

kd The normalization constant of goal d in the WGP and MGP for d ∈ {1, 2, 3}.

Intermediate Variables:

φ The maximum deviation of the MGP.

θ1t Goal 1 on day t; the total amount of chicken, in kg, produced on day t.

θ2i′it Goal 2 for flocks i′ and i on day t; the difference between the average weights

of flocks i′ and i if they are both scheduled on day t and 0 otherwise.

θ3j Goal 3 for farmer j; the proportion of qj farmer j expects to produce in

total.

z1+t The amount by which goal 1 exceeds target amount 1 on day t.

z1−t The amount by which target amount 1 exceeds goal 1 on day t.

z2+i′it The amount by which goal 2 exceeds target amount 2 between flock i′ and

flock i on day t. A corresponding z2−i′it is not relevant to the problem.

z3+j The amount by which goal 3 exceeds target amount 3 for farmer j.

z3−j The amount by which target amount 3 exceeds goal 3 for farmer j.
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3.2 Problem Description

A poultry company purchases flocks of chickens from many barns in their region.

Due to industry standards, each barn follows a similar pattern for raising their flocks.

When the flocks are newly hatched, they are delivered from a hatchery to a farmer.

Hatcheries are separate businesses from farms, owned and operated by different peo-

ple. Farms are economic entities, each controlled by a single owner who might have

multiple barns. When the flocks are between three and four weeks old, the farmers

will weigh some of the chickens and send an average weight to the decision maker at

the poultry company. The measurement sent to the poultry company is referred to

as an interim weight. When the flocks are approximately five weeks old, the poultry

company sends trucks to collect them to be taken to the plant for processing. This

process is depicted in Figure 3.1.

Figure 3.1: Flocks from hatching to processing

The barns take between one and three weeks to be cleaned, depending on the

farmer, then a new flock is placed. The cleaning time is usually three weeks, so a

typical flock cycle lasts for eight weeks. The division of responsibilities among the
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hatcheries, farmers, and the poultry company is illustrated in Figure 3.2. While each

party may offer input on any step in the process, the decision is ultimately made

by the party to whom the step has been assigned. The diagram also denotes the

timeframe relative to flock collection in which each stakeholder has responsibilities.

Figure 3.2: Diagram illustrating the responsibilities of each stakeholder in the procurement
process.

It can be observed from Figure 3.2 that the poultry company begins making

decisions less than one week before flocks are collected, once they have received interim

weights from these farmers. Although the decision maker may offer input earlier in

the process, they do not hold decision-making power until this point. They must make

forecasts to determine when flocks will be ready for collection and what their average

weight will be at that time. The window of time in which a flock is appropriate

for collection is typically about three days before its expected value in sales sharply

declines, so it is important for forecasts to be accurate enough to ensure each flock is

scheduled inside that window. Flocks are typically processed between 34 and 39 days

old. The procurement manager’s professional judgment is used to determine the final

eligible set of flocks to be processed before the schedule is created. Flocks are collected
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between day 1 and day |T |. After |T | days of flock collection and processing, |T | days
of downtime occur in which no flocks can be collected or processed. Forecasts can be

made about the average weight of a flock 2|T | days before it is collected. Scheduling

decisions must be made at least |T | + 1 days in advance to give the transportation

department time to arrange collection of the flocks. The scheduling process occurs

once every 2|T | days. A visualization of the timeline can be observed in Figure 3.3.

Figure 3.3: The timeline of the DFPP planning process.

It can be noted that each week can be treated as a discrete problem rather than

considering a rolling horizon model because knowledge is not gained about the next

scheduling period until the current scheduling period can no longer be adjusted. For

example, consider the timeline presented in Figure 3.3. Flocks are collected in the

current scheduling period between day 1 and day |T |. The next set of flocks will be

collected in the next scheduling period between day 2|T |+1 and day 3|T |. The latest
a decision can be made about any part of the current scheduling period is day -1,

at which point forecasts can only be made until day 2|T | − 1. Because no forecasts

can be made about the next scheduling period during the planning of the current

scheduling period, each scheduling period is considered a separate problem.

Procurement schedules must account for operational constraints in three areas:

the processing plant, transportation, and farmers. The workload for the employees at

the plant should remain balanced each day to allow them to work at a consistent pace

rather than overworking them one day and underworking them the next, so similar

total weights of chicken should be processed each day because quantities of chicken are

measured in kilograms (kg). The difference between average flock weights collected

in a given day also cannot be too large. The machinery is set at the beginning of each

day based on the average size of the chickens that will be processed that day. The
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defect rate has been observed to increase if flocks with more than a 0.2 kg average

weight difference are processed on the same day. For example, scheduling 2.15 and

2.35 kg flocks on the same day is optimal, scheduling 2.10 and 2.40 kg flocks together

is not.

Transportation constraints must also be considered when modelling the problem.

The distance between some of the barns supplying the poultry company may be quite

large. It is assumed that the company’s transportation department recommends that

collection from two distant areas cannot be scheduled on the same day because this

distance might increase the number of trucks required to collect the same number of

flocks. Geographically, clusters of barns can be identified. The decision maker may

decide that certain areas may not be scheduled on the same day.

Chicken production in Canada is regulated by provincial boards. These boards

define sixteen-week periods and a quota for each farmer. A farmer’s quota is the

total amount of chicken, in kg, they can produce in a quota period without paying a

penalty fee per unit weight. Because farmers sell chicken by weight, producing less

than their quota makes their flocks in that period less profitable than they could be.

Thus, each farmer has a goal amount and producing under or over that amount is

undesirable because it is less profitable. It is advisable for the poultry company to use

their schedule to help the farmers meet their quotas as closely as they can because it

incentivizes the farmers to continue to work with the poultry company rather than

with their competitors. A farmer considers their quota fulfilled if they have produced

between 99% and 102% of the quota amount.

Note that DFPP makes the following assumptions:

• The trucks collecting the flocks do not have a maximum capacity. If a non-local

cluster is scheduled to be visited on a given day, it is feasible to collect any

number of flocks from that cluster.

• The processing facility of the poultry company does not have a production

capacity. It is feasible to schedule any number of flocks on the same day as long

as none are from competing non-local clusters.

• Demand is sufficient to ensure that all chickens are sold on the day they are

processed. Considerations for holding cost or perishable goods are not necessary.
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• Geographic clusters are defined such that |G| ≤ |T |

3.2.1 Lot Sizing Problem

The formulation of the MLSSP can be adapted to suit DFPP. The MLSSP was first

addressed in 2005 by Basnet and Leung [14]. Defining a set of products I, a set of

suppliers J , and a set of time periods T , the authors construct a MIP to decide how

many units of each product i to order from each supplier j in each time period t. An

objective function is used to minimize costs under the constraint of meeting demand

in each time period. Its decision variables are defined as Xijt, the number of product

i ordered from supplier j in period t, and Yjt, a binary variable which is 1 if an order

is placed from supplier j in period t and 0 otherwise. Its parameters are defined as

Dit, the demand for product i in period t, Pij, the purchase price per unit of product i

from supplier j, Hi, the holding cost of product i per period, and Oj, the transaction

cost for supplier j. An analogue to each of these variables can be identified in DFPP

with the exception of the costs Hi and Oj, which can be set to 0 because holding

is assumed to not occur and transaction costs are fixed based on which flocks have

been selected for collection before actually creating the procurement schedule. While

additional constraints must be formulated, Basnet and Leung [14] provide a good

framework to which these constraints can be added.

First, consider the sets I, J , and T . I is the set of products to be scheduled in the

original formulation. In DFPP, each flock waiting to be scheduled will have a unique

impact on the problem, contributing a different amount to the production quota of

a different farmer. The flocks cannot be treated interchangeably, and thus can each

be considered a unique product i ∈ I, making I the set of flocks in DFPP. J is the

set of suppliers in the original formulation. The flocks are sold by the farmers, so

J is the set of farmers in DFPP. Note that each flock i ∈ I is exclusively available

from a single farmer j ∈ J . T is the set of time periods in the original formulation.

DFPP decides on which day each flock will be collected, making each day t ∈ T a

time period.

Next, consider the decision variables Xijt and Yjt. In the original formulation,

Xijt is defined as the number of product i ordered from supplier j in period t. In

DFPP, the decision to be made is whether a flock i is collected from farmer j in
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period t. The decision is binary because only collecting part of a flock is not possible.

Additionally, because only one farmer j can supply each flock i, the the more compact

decision variable xit can be used. In the original formulation, Yjt is a binary variable

determining whether an order is placed from supplier j in period t and it is used in

the objective function to total the transaction costs when minimizing cost. Because

transaction cost itself is not a concern, Yjt is unnecessary. However, as previously

mentioned, there is a constraint on which geographic areas can be visited in the same

day. Defining G as the set of geographic areas and g ∈ G as an area in this set, this

can be captured by the parameter cg′g, a binary parameter which is 1 if areas g′ and

g can be visited in the same day and 0 otherwise. The decision variable ygt can now

also be established, a binary variable which is 1 when area g is visited in period t and

0 otherwise. To ensure areas g′ and g are not visited unless cg′g = 1, the constraint

yg′t + ygt ≤ cg′g + 1 ∀g′ ∈ G, g ∈ G, t ∈ T (3.1)

can be established. Like the transaction cost, this constraint complicates ordering

certain products depending on where they come from. To complete the geographic

constraints, fgi can be defined as a binary parameter which is 1 if flock i is located in

area g and 0 otherwise. The decision variable xit must be connected to this parameter,

so a constraint is used to ensure ygt is 1 if any flock collected in period t belongs to

area g.

∑
i∈I

fgixit ≤ |I|ygt ∀g ∈ G, t ∈ T (3.2)

It can be noted that when fgi = 0, xit may assume a value of 1 regardless of the value

of ygt: this is acceptable because ygt should not constrain xit unless flock i belongs to

area g.

The parameters of the original MLSSP formulation must now be considered. The

demand in the original formulation is Dit, the demand in units for product i in

period t. However, demand must be considered differently in the case of DFPP.

When processed on day t, flock i produces a total weight of chicken based on the

number of chickens in the flock, ni, and the average weight per chicken in flock i on

day t, wit. Thus, the total weight produced by harvesting flock i on day t is niwit.

The units of this measurement are kg. The expected total weight to be harvested
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across all days is ∑
t∈T

∑
i∈I

niwit

|T | , (3.3)

because the expected value of wit for flock i across all days t ∈ T is
∑
t∈T

wit

|T | . Note that

deterministic knowledge of wit is assumed in DFPP. Later, SFPP will be considered,

in which a distribution of possible wit values are used rather than assuming the single

set will always be correct. If the poultry company produces a similar overall amount

of chicken in kg each day, they will satisfy the demand of their customers. Thus, the

demand for each day t ∈ T is

Dt =

∑
k∈T

∑
i∈I

niwik

|T |2 , (3.4)

which can be balanced by a constraint.

∑
i∈I

niwitxit ≥ Dt ∀t ∈ T (3.5)

It can be noted that this demand, unlike the demand of the original MLSSP, is not

indexed by flock i because chicken is the same product once it reaches the consumer.

However, production requirements must also be considered for the farmers. Each

farmer has a production quota to meet, and it is in the best interest of the decision

maker to help the farmer meet their quota as closely as possible so they will continue to

be incentivized to work with the poultry company. This quota can be viewed as each

farmer creating demand for their own flocks. Let eij be a binary parameter taking

the value of 1 if flock i is owned by farmer j and 0 otherwise. The total amount

of chicken produced by farmer j across all time periods t ∈ T can be calculated

by
∑
i∈I

∑
t∈T

eijniwitxit. Letting the demand created by farmer j be a production goal

qj, considering that farmers are satisfied producing at 99-102% of their quota, this

demand can be fulfilled by the constraints

∑
i∈I

∑
t∈T

eijniwitxit ≥ 0.99qj ∀j ∈ J (3.6)

∑
i∈I

∑
t∈T

eijniwitxit ≤ 1.02qj ∀j ∈ J. (3.7)
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These constraints ensure that each farmer j produces a total weight between 99-102%

of qj.

The original objective function is to minimize cost, however, it can be noted

that the cost of materials is not directly an issue for the decision maker because

the company expects to spend the same amount per kg regardless of supplier or

time period. The primary concern when scheduling procurement is to ensure each

farmer meets their production quota without exceeding it and being forced to pay a

penalty. Because deviation from a farmer’s maximum production quota results in a

proportional loss of profits for that farmer, this deviation can be considered a cost.

Thus, an objective function must be formulated to maximize production for each

farmer.

max
∑
i∈I

∑
t∈T

∑
j∈J

eijniwitxit

qj
(3.8)

This objective function scales the production by weight of each farmer j according

to their production goal qj to ensure that farmers with lower production goals are

not forced to disproportionately underproduce: for example, a deviation of 1000 kg

for a farmer with production goal q has a similar profit margin impact to a deviation

of 5000 kg for a farmer with production goal 5q. Using suboptimal production as

an analogue to profit in this way also allows the final comparison to the MLSSP

formulation to be drawn: Pij, the price of product i from supplier j, is analogous to

niwit in DFPP because they both define the scale of the contribution of the decision

variable Xijt or xit to the objective function.

Finally, additional constraints must be considered to finish adapting this frame-

work to DFPP. Production is constrained by the average size per chicken of flocks

scheduled on the same day, which should not have a difference of greater than 0.20 kg.

Defining a binary variable ri′it, which indicates whether flock i′ and flock i have both

been scheduled on day t, constraints can be defined to ensure no two flocks scheduled
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on the same day have average weights which differ by more than 0.20 kg.

ri′it|wi′t − wit| ≤ 0.20 ∀i′ ∈ I, i ∈ I, t ∈ T (3.9)

ri′it ≤ xi′t ∀i′ ∈ I, i ∈ I, t ∈ T (3.10)

ri′it ≤ xit ∀i′ ∈ I, i ∈ I, t ∈ T (3.11)

ri′it ≥ xi′t + xit − 1 ∀i′ ∈ I, i ∈ I, t ∈ T (3.12)

Constraint (3.9) allows flocks i′ and i to be scheduled on the same day only if their

average weight difference is less than 0.20 kg, while Constraints (3.10) - (3.11) force

ri′i to 0 if xi′t or xit is 0 and Constraint (3.12) forces ri′it to 1 if xi′t and xit are both

1. A constraint can be defined to ensure that each flock is scheduled for collection

exactly once.

∑
t∈T

xit = 1 (3.13)

Because xit is a binary variable, this constraint forces it to adopt the value of 1 for

exactly one day t ∈ T .

Having defined a framework to be used for DFPP, IP and GP formulations to

solve the problem can now be considered.

3.3 Integer Programming

The literature review notes that a MIP is a common method of modelling the MLSSP.

It was first used when the problem was introduced by Basnet and Leung [14] and it

is an effective approach when the sole objective of the decision maker is to minimize

cost or maximize profit. Having defined the objective of DFPP to be maximizing

production for each farmer, using quota fulfillment as an analogue for profit, an

IP formulation is a natural first step for DFPP. Note that DFPP generates an IP

rather than a MIP because all of its decision variables are binary. This formulation

is presented below and henceforth referred to as [DIP].
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[DIP]:max
∑
i∈I

∑
t∈T

∑
j∈J

eijniwitxit

qj
(3.14)

s.t.

|T |∑
i∈I

niwitxit∑
t∈T

∑
i∈I

niwit

≤ 1

|T | + ε ∀t ∈ T (3.15)

|T |∑
i∈I

niwitxit∑
t∈T

∑
i∈I

niwit

≥ 1

|T | − ε ∀t ∈ T (3.16)

∑
i∈I

∑
t∈T

eijniwitxit ≤ 1.02qj ∀j ∈ J (3.17)

ri′it|wi′t − wit| ≤ 0.20 ∀i′ ∈ I, i ∈ I, t ∈ T (3.18)

ri′it ≤ xi′t ∀i′ ∈ I, i ∈ I, t ∈ T (3.19)

ri′it ≤ xit ∀i′ ∈ I, i ∈ I, t ∈ T (3.20)

ri′it ≥ xi′t + xit − 1 ∀i′ ∈ I, i ∈ I, t ∈ T (3.21)∑
t∈T

xit = 1 ∀i ∈ I (3.22)

∑
i∈I

fgixit ≤ |I|ygt ∀g ∈ G, t ∈ T (3.23)

yg′t + ygt ≤ cg′g + 1 ∀g′ ∈ G, g ∈ G, t ∈ T (3.24)

xit, ygt, ri′it ∈ {0, 1} ∀g ∈ G, i′ ∈ I, i ∈ I, t ∈ T (3.25)

Many of the constraints are presented as they were initially formulated, although

some have been adjusted to fit [DIP]. Equation (3.14) is as it was initially formu-

lated, an objective function seeking to maximize the sum of the proportions of the

production goals qj produced by each farmer j. Constraints (3.15) - (3.16) have been

reformulated from the demand constraint initially presented in Constraint (3.5), no-

tably by separating part of Dt onto the left hand side to leave only 1
|T | on the right

hand side, allowing a tolerance ε to be added. When ε = 0, the company is required

to produce exactly 1
|T | of its total weight of chicken each day. Due to the varying sizes

of the flocks, it is unlikely that a feasible solution will exist in which exactly the same

amount of chicken can be produced every day, so a tolerance is added. The tolerance

must be two-sided to prevent slightly underproducing on all days except one and

severely overproducing on one day: for example, if Constraint (3.15) was not used in
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a 4-day week with tolerance ε = 0.03, three days could each produce 22% of the total

weight and the fourth day could produce 34% of the total weight. Constraint (3.17)

sets a production limit for farmer j at 1.02qj kg. Because the objective function al-

ready seeks to maximize production, the minimum production to satisfy a farmer of

0.99qj is not used. Constraint (3.18) ensures that no two flocks i′ and i scheduled on

the same day have average weights that differ by more than 0.20 kg. This constraint

and Constraints (3.19) - (3.21) that follow it to constrain ri′it are exactly as they were

previously defined and so do not require a more detailed explanation. The same is

true of Constraint (3.22) ensuring each flock is picked only once in the set of days T ,

Constraint (3.23) ensuring geographic areas are scheduled in the same day only when

this is allowed, and Constraint (3.24) ensuring that flocks located in a geographic

area can be picked only when this area is visited. Finally, Constraint (3.25) sets xit,

ygt, and ri′it as binary variables.

This formulation is idealistic. While it reflects the constraints of DFPP in a perfect

world, the parameters of the problem may not always be such that a feasible solution

exists because there is no guarantee that a schedule can be created that ensures the

proportion of total weight produced each day is within the range of 1
|T | ± ε. Even if

such a schedule exists, there is also no guarantee that it will respect the maximum

daily weight spread of 0.20 kg.

It is important for a formulation solving DFPP to always have a feasible solu-

tion. The poultry company must continue to schedule flocks for collection every week

regardless of whether a schedule can be created that follows all of their guidelines.

Therefore, a method should be used which attempts to follow all of these guidelines,

but allows deviations if no feasible solution would otherwise exist. This can be done

with a multiobjective program.

3.4 Goal Programming

Multiobjective programming is another approach often used to optimize the MLSSP

when the problem becomes more complex than simply maximizing expected profit

subject to dynamic demand. Common objectives added to the problem include mini-

mizing defect rate or maximizing an environmentally sustainable criterion. A general

procedure for developing a multiobjective framework is demonstrated by Ustun and
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Demirtas [82, 83], in which the authors define a set of objective functions and their

constraints, then choose a solution method that is anticipated to be effective. This

section takes the same approach to DFPP, then uses the framework developed to

create WGP and MGP formulations.

3.4.1 Formulating Objectives

Anything the formulation must achieve should be defined by either an objective func-

tion or a constraint. While a constraint must be met for a solution to be considered

feasible, an objective function simply takes the best value it can. Because the prior-

ity of the decision maker is to always develop a solution, even if it does not follow

all of their scheduling guidelines, any constraint which poses a risk of causing the

problem to have no feasible solution should be converted to an objective function.

Two requirements can be identified which fit this description: the weight balancing

requirement indicated by Constraints (3.15) - (3.16) and the maximum average weight

difference per day indicated by Constraint (3.18).

The first objective function to formulate is the weight balancing function. It is

defined by

min
∑
t∈T

(z1+t + z1−t ) (3.26)

s.t. θ1t =

|T |∑
i∈I

niwitxit∑
t∈T

∑
i∈I

niwit

∀t ∈ T (3.27)

θ1t − z1+t + z1−t =
1

|T | ∀t ∈ T. (3.28)

Each instance of θ1t for t ∈ T has a target value of 1
|T | rather than requiring maxi-

mization or minimization, and its deviations from the target value are measured by

z1+t and z1−t . Minimizing these deviations will get θ1t as close to the target value as

possible. θ1t quantifies the proportion of weight produced on day t to the total weight

produced across all days t ∈ T . Because this objective function aims to guide θ1t to

a target value, GP is an effective form of multiobjective optimization. Thus, further

objective functions defined in this section should be defined in a way that allows them

to be added to a GP formulation.
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The next objective function to formulate is the maximum average weight difference

function. Preparing to put it into a GP formulation, it can be defined by

min
∑
i′∈I

∑
i∈I

∑
t∈T

z2+i′it (3.29)

s.t. θ2i′it = ri′it|wi′t − wit| ∀i′ ∈ I, i ∈ I, t ∈ T (3.30)

θ2i′it − z2+i′it ≤ 0.20 ∀i′ ∈ I, i ∈ I, t ∈ T. (3.31)

Each instance of θ2i′it should be penalized if it exceeds 0.20. θ2i′it quantifies the differ-

ence in average weight per chicken between flock i′ and flock i on day t if they are

both collected that day, and takes a value of 0 otherwise. A negative deviation term

is not included in the objective function because the solution should not be penalized

for pairing flocks with average weights per chicken that differ by less than 0.20 kg.

Finally, the third objective function to consider is maximizing the proportion of

the production goal qj produced by each farmer j. The goal can be modified slightly to

attempt to satisfy as many farmers as possible rather than directly trying to maximize

their production. As previously noted, farmers are satisfied when producing between

99-102% of their production quota. It is also technically possible for farmers to

produce more than 102% of their quota, but it is not profitable to do this because they

are penalized for the total weight produced past 102%. Considering that producing

under 99% or over 102% is undesirable, an objective function can be formulated.

min
∑
j∈J

(z3+j + z3−j ) (3.32)

s.t. θ3j =
∑
i∈I

∑
t∈T

eijniwitxit

qj
∀j ∈ J (3.33)

θ3j − z3+j ≤ 1.02 ∀j ∈ J (3.34)

θ3j + z3−j ≥ 0.99 ∀j ∈ J (3.35)

Each instance of θ3j is penalized if the farmer’s total production is under 0.99qj or if

it exceeds 1.02qj. θ3j quantifies the anticipated total weight of chicken produced by

farmer j across all days t ∈ T .

It can be noted that while qj is linked to the quota amount for farmer j, it can be

changed each week according to how closely the farmer’s goals were met earlier in the

quota period. For example, consider a farmer who possesses two identical barns and
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is assigned an 80 000 kg quota over 16 weeks. Each barn can produce a flock every

8 weeks and their cycles are offset by 4 weeks: one produces flocks in weeks 4 and

12, the other produces flocks in weeks 8 and 16. Table 3.1 displays how the farmer’s

production target is adjusted over time if the schedule forces the farmer to produce

only 90% of their production target each time. Initial Quota refers to the quota

amount, in kg, that has not yet been produced at the start of the week. Amount

Produced refers to the amount of chicken, in kg, produced that week. End Quota

refers to the quota amount, in kg, that has not yet been produced at the end of the

week.

Week qj (kg) Initial Quota (kg) Amount Produced (kg) End Quota (kg)

4 20 000 80 000 18 000 62 000
8 20 667 62 000 18 600 43 400
12 21 700 43 400 19 530 23 870
16 23 870 23 870 21 483 2387

Table 3.1: A theoretical farmer produces 90% of their production target each week.

Table 3.1 shows that if the farmer produces 90% of their production target in each

of the four weeks they are scheduled to produce, they will still produce 97% of their

quota. A similar exercise, producing 110% per week instead of 90% per week, would

show that the farmer would produce 103% of their quota. A farmer experiencing

a deviation from optimality in one week does not require preferential treatment in

subsequent weeks to ensure they meet their quota. It is still important to attempt

to meet production targets in the early weeks of a quota period to ensure production

targets will be attainable in the later weeks of the quota period. In a practical

application, the extent to which production targets can be adjusted may depend on

company guidelines regarding the range of average weights in which a flock should be

purchased.

Having defined the objective functions which must be balanced, and considering

the constraints previously defined in [DIP], a goal program can now be created.

3.4.2 Weighted Goal Program

When a GP formulation is implemented for the MLSSP in the literature, it can be

observed that it is commonly formulated as a WGP. It allows the decision maker
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to designate a weight for each of the objective functions according to the perceived

importance of achieving the target value of that function. The WGP formulation is

provided below and henceforth referred to as [DWGP].

[DWGP]:min λ1

∑
t∈T

z1+t + z1−t
k1

+ λ2

∑
i′∈I

∑
i∈I

∑
t∈T

z+2i′it
k2

+ λ3

∑
j∈J

z+3j + z−3j
k3

(3.36)

s.t. Constraints (3.19) - (3.25)

Constraints (3.27) - (3.28)

Constraints (3.30) - (3.31)

Constraints (3.33) - (3.35)

z1+t , z1−t , z2+i′it, z
3+
j , z3−j ≥ 0 ∀i′ ∈ I, i ∈ I, j ∈ J, t ∈ T (3.37)

The [DWGP] formulation is composed primarily of constraints that have previ-

ously been established. The objective function presented in Equation (3.36) is a sum

of the deviations weighted by λ. Each deviation is scaled by a normalization con-

stant k to allow their summation despite having different units. Constraints (3.19)

- (3.25) carry over from the [DIP] formulation with no modification, while the con-

straints identified from (3.27) to (3.35) can be used because they have been designed

specifically to fit into a goal program. Constraint (3.37) provides a non-negativity

constraint for the deviations from each goal.

[DWGP] improves on [DIP] in an important way by allowing the scheduling guide-

lines to be violated and attempting to minimize the violations. This practice ensures

that even if no schedule exists which perfectly adheres to the guidelines, a sched-

ule can always be generated that almost adheres to them. Importantly, recalling that

farmers can produce more than 102% of their quota if they pay a penalty which makes

the additional weight produced no longer profitable, [DWGP] also allows a farmer to

be scheduled to produce slightly over 1.02qj if it is preferable to underproducing. For

example, consider a farmer who has one flock. The total weight of the flock grows

by approximately 0.05qj per day. If location constraints prevent the flock from be-

ing scheduled for collection on the day its weight will be 0.98qj, it can be scheduled

for the following day when its weight will be 1.03qj. If the [DIP] constraint is in

place, this decision cannot be made and the flock must be scheduled for collection
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a day earlier rather than later, when its weight will be 0.93qj. Better solutions can

be reached when overproducing and underproducing are both considered undesirable

but possible.

It can be noted that the location constraints have been left as constraints rather

than being converted to another objective function; this decision is made based on

the assumption that geographic clusters have been defined such that |G| ≤ |T |. The
location constraints only present the possibility of infeasibility if |G| > |T |, because a
worst-case-scenario schedule would no longer exist in which each location is assigned

a single day on which all of its flocks will be collected. Because |G| ≤ |T | for each

instance the decision maker will solve, an additional goal concerning the locations

visited in the same day is not necessary.

[DWGP] is not flawless, however. By only considering the weighted total of the de-

viations, the program fails to consider how the magnitude of a single deviation might

affect the practicality of implementing its associated solution. For example, consider

an instance of DFPP with 15 farmers, then consider two solutions to this problem

each with an identical amount of deviation in θ1t and θ2i′it. In the first solution, 14 of

the 15 farmers produce at 99% of their production goal, while one farmer produces at

85% of their production goal. The total deviation for this solution is 14 percentage

points. In the second solution, all 15 farmers produce at 98% of their production

goal. The total deviation for this solution is 15 percentage points. Although [DWGP]

would choose the first solution, it is likely that the farmers, and therefore the decision

maker, would prefer the second. [DWGP] does not adequately consider the interests

of multiple parties simultaneously if at least one of those parties is averse to a loss in

a single week in exchange for the possibility of a gain across multiple weeks.

DFPP is solved every week for a similar set of farmers. Two approaches to the

probability of loss in a single week can be defined for these farmers: individualistic

and collectivistic. In the individualistic approach, each party wishes to minimize

the deviation that affects them each week. A party in the context of DFPP is any

entity with a unique interest in optimizing part of the objective function, specifically

a farmer or the poultry company itself. Each farmer is interested in minimizing the

deviation from optimality of their own production. The poultry company is interested

in balancing production across each day and minimizing the maximum average weight
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difference between two flocks collected in the same day. This means that DFPP has

|J | + 1 parties with conflicting interests which must be balanced. An individualistic

party seeks to minimize their loss in a single week, so they do not find individual

solutions which cause them to occasionally sustain a much larger loss than the other

parties acceptable, even if doing so increases their expected value across a long time

horizon during which many iterations of DFPP are solved. Conversely, a collectivistic

party seeks to minimize the total loss of all parties in a single week. By accepting that

they may occasionally sustain a much larger loss than the other parties, they may

increase their expected value across a long time horizon during which many iterations

of DFPP are solved.

The [DIP] and [DWGP] formulations both take the collectivistic approach. While

the benefits of this approach should certainly be considered, in reality, farmers may

prefer an individualistic approach. Accordingly, a formulation should be designed to

suit this preference and enable a quantitative comparison of the approaches.

3.4.3 Minmax Goal Program

Minmax, or Chebyshev, goal programming (MGP) was first introduced by Flavell

[28] in 1976. It defines an achievement function for a GP framework which seeks to

minimize the maximum deviation, scaled by the normalization constant k, from any

goal. This is a useful GP formulation because it prioritizes optimizing the worst-case

scenario. MGP is ideal for the farmers who prefer an individualistic approach because

it ensures that whichever party must accept the largest deviation from optimality

could not be assigned a better solution without forcing another party to accept an

even larger deviation from optimality. In the example case with 15 farmers provided

earlier, a MGP formulation would choose to schedule 15 farmers to each produce at

98% rather than scheduling 14 of them to produce at 99% and the last at 85%. The

MGP formulation of DFPP is presented below and henceforth referred to as [DMGP].
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[DMGP]:min φ (3.38)

s.t.
z1+t + z1−t

k1
≤ φ ∀t ∈ T (3.39)

z2+i′it
k2

≤ φ ∀i′ ∈ I, i ∈ I, t ∈ T (3.40)

z3+j + z3−j
k3

≤ φ ∀j ∈ J (3.41)

Constraints (3.19) - (3.25)

Constraints (3.27) - (3.28)

Constraints (3.30) - (3.31)

Constraints (3.33) - (3.35)

z1+t , z1−t , z2+i′it, z
3+
j , z3−j ≥ 0 ∀i′ ∈ I, i ∈ I, j ∈ J, t ∈ T (3.42)

The objective function of [DMGP] is presented in Equation (3.38) alongside the

additional constraints it brings to the problem in Constraints (3.39) - (3.41). These

constraints ensure that φ assumes the value of the greatest deviation. As in [DWGP],

a normalization constant k has been used to allow the deviations to be compared

quantitatively. The rest of the formulation is identical to the constraints presented

in [DWGP].

Generating solutions with [DMGP] solves the problems presented by [DIP] and

[DWGP] solutions. By using a GP formulation to allow some constraints to be vio-

lated, [DMGP] avoids the possibility of having no feasible solution that is presented by

[DIP]. By specifically using a MGP formulation to minimize the maximum deviation,

[DMGP] avoids assuming the collectivistic nature of [DIP] and [DWGP], lowering risk

for all parties involved.

While an inability to generate a feasible solution is not a desirable trait in a

formulation for DFPP, a collectivistic approach should not automatically eliminate a

formulation from consideration. If the increase in expected value is sufficient, it may

justify the increased risk assumed by each party. The risk and reward associated with

this approach must be analyzed, but first, the problem should be considered under

uncertainty. The expected value of wit is used to generate solutions in [DIP], [DWGP],

and [DMGP], but it is a prediction which carries an inherent degree of uncertainty
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rather than being a known value. Adaptations to the formulations presented in this

chapter should be considered to account for this uncertainty.



Chapter 4

Stochastic Flock Procurement Problem

This chapter discusses SFPP, a modified version of DFPP which acknowledges the

uncertainty inherent in the weight predictions. First, the modified problem is de-

scribed as a two-stage stochastic optimization problem. Next, changes or additions

to notation are listed. Finally, modified versions of [DIP], [DWGP], and [DMGP] are

proposed which address SFPP.

4.1 Notation

The following notations are used to model the stochastic problem. Only notations

that have changed from or been added to the deterministic problem are mentioned.

Sets:

S = {1, 2, ..., |S|} The set of scenarios, indexed by s.

Decision Variables:

xits A binary variable, 1 if flock i is picked up on day t in scenario s, 0 otherwise.

ri′its A binary variable, 1 if flocks i′ and i are picked up on the same day t in

scenario s, 0 otherwise.

Parameters:

wits The expected average weight of flock i on day t of scenario s in kg.

ps The probability of scenario s.

ψ The weight of the feasibility penalty function used in SRO.

41
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Intermediate Variables:

φs The maximum deviation in scenario s for the stochastic MGP.

θ1ts Goal 1 on day t; the total amount of chicken, in kg, produced on day t in

scenario s.

θ2i′its Goal 2 for flocks i′ and i on day t in scenario s; the difference between the

average weights of flocks i′ and i if they are both scheduled on day t and 0

otherwise.

θ3js Goal 3 for farmer j in scenario s; the proportion of qj farmer j expects to

produce in total.

z1+ts The amount by which goal 1 exceeds target amount 1 on day t in scenario

s.

z1−ts The amount by which target amount 1 exceeds goal 1 on day t in scenario

s.

z2+i′its The amount by which goal 2 exceeds target amount 2 between flock i′ and

flock i on day t in scenario s.

z2−i′its The amount by which target amount 3 exceeds goal 2 between flock i′ and

flock i on day t in scenario s.

z3+js The amount by which goal 3 exceeds target amount 3 for farmer j in scenario

s.

z3−js The amount by which target amount 3 exceeds goal 3 for farmer j in scenario

s.

z1ts SRO penalty amount for weight balancing on day t in scenario s.

z2i′its SRO penalty amount for exceeding the maximum average weight difference

between flock i′ and flock i on day t in scenario s.

z3js SRO penalty amount for deviating from production goal qj in scenario s.
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4.2 Problem Description

DFPP was previously described in Chapter 3. While the proposed solution methods

are useful given the assumptions of DFPP, the quality of their solutions may degrade

if the assumption of known future weights is relaxed. This relaxation acknowledges

the inherent variability present in predicted weight values. DFPP is optimized only

for the expected scenario, so it might not remain optimal if a scenario other than the

average one is realized. The quality of the solution can be improved by reducing the

number of decisions made under uncertainty.

Two sets of decision variables are currently calculated under uncertainty: xit, a

binary variable which dictates when each flock is picked up, and ygt, a binary variable

which dictates when collection teams are sent to different geographic areas for pickup.

From a practical perspective, xit can be determined any time before the trucks are

sent out to collect the flocks, but ygt must be determined far enough in advance for

the transportation department to make arrangements for drivers and catchers to work

that day.

Assume that average flock weight predictions can be made with certainty no more

than |T | days in advance, but predictions with uncertainty can be made up to 2|T |
days in advance. Also assume that geographic clusters must be chosen |T | + 1 days

before the start of the week to give the transportation department time to coordinate

drivers and catchers. Consider Figure 4.1, a timeline of the SFPP planning process.

Figure 4.1: A timeline of the planning process for SFPP.

Figure 4.1 shows that the decision maker must determine ygt, the geographic

clusters to be visited each day, on day −|T |. The day each flock must be collected,

xit, does not need to be determined until day 0. Because day 0 is |T | days before the
last day, the average flock weights can be known with certainty when xit is determined.
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SFPP can be modeled as a two-stage stochastic program. In the first stage, the

geographic areas which need to be visited each day are determined, still bound by the

restrictions that certain areas cannot be scheduled on the same day. ygt is determined

while the flock weights wits can be predicted but are still uncertain. Uncertainty in

the flock weight is captured through a finite number of scenarios, indexed by s ∈ S,

so the subscript s is added to wit to indicate a range of possible outcomes. The

second stage chooses which barn floors will be collected each day, deciding xits for

each scenario s. Once the scenario has been identified on day 0 based on which set of

weights wits most closely matches the week’s predicted weights, the appropriate set

of xits will determine which flocks are picked up each day.

4.3 Robust Optimization

The first formulation to adapt is [DIP]. However, some additional modifications must

be made for this formulation to be worthy of consideration. A prominent concern

when using [DIP] to address DFPP is that its constraints limit it too much, often

leaving no feasible solution to be found as a result. If [DIP] is reformulated as a

stochastic program with no other modifications, this concern is not addressed. SRO

can be used to reformulate it and allow some of its constraints to be violated at a

penalty cost.

The essential part of SRO to establish is the composition of its objective function,

which takes the form

σ(y, x1, x2, ..., xs) + ψρ(z1, z2, ..., zs). (4.1)

Appropriate σ(.) and ρ(.) functions must be chosen. The feasibility penalty weight

ψ can be decided when numerical analysis begins. Considering ξs as the objective

function of [DIP] under scenario s, a good choice is its expected value σ(.) =
∑
s∈S

psξs.

This function is consistent with the collectivistic approach [DIP] is originally described

as taking. A common and effective choice for the feasibility penalty function is ρ(.) =∑
s∈S

|zs|. Considering these functions, [DIP] can be reformulated using SRO. The
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reformulation is presented below and henceforth referred to as [RP].

[RP]:max
∑
i∈I

∑
t∈T

∑
j∈J

∑
s∈S

eijniwitsxits

qj
ps−

ψ
∑
s∈S

ps(
∑
t∈T

|z
1
ts

k1
|+

∑
i′∈I

∑
i∈I

∑
t∈T

|z
2
i′its

k2
|+

∑
j∈J

|z
3
js

k3
|)

(4.2)

s.t.

|T |∑
i∈I

niwitsxits∑
t∈T

∑
i∈I

niwits

+ z1ts =
1

|T | ∀t ∈ T, s ∈ S (4.3)

ri′its|wi′ts − wits|+ z2i′its ≤ 0.20 ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.4)∑
i∈I

∑
t∈T

eijniwitsxits

qj
+ z3js = 1.02 ∀j ∈ J, s ∈ S (4.5)

ri′its ≤ xi′ts ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.6)

ri′its ≤ xits ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.7)

ri′its ≥ xi′ts + xits − 1 ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.8)∑
t∈T

xits = 1 ∀i ∈ I, s ∈ S (4.9)

∑
i∈I

xitsfgi ≤ |I|ygt ∀g ∈ G, t ∈ T, s ∈ S (4.10)

yg′t + ygt ≤ cg′g + 1 ∀g′ ∈ G, g ∈ G, t ∈ T (4.11)

xits, ygt, ri′its ∈ {0, 1} ∀g ∈ G, i′ ∈ I, i ∈ I, t ∈ T, s ∈ S. (4.12)

Equation (4.2) is the objective function of [RP]. It calculates the expected value

of farmer quota fulfillment across all scenarios and penalizes feasibility violations

according to their absolute value. These violations are weighted according to their

expected probabilities and additionally by the term ψ, whose magnitude determines

the tradeoff between solution robustness and model robustness. Solution robustness

ensures the solution is nearly optimal according to σ(.) for any scenario, whereas

model robustness ensures the solution is nearly feasible according to ρ(.) for any sce-

nario. In the case of [RP] specifically, more solution robustness means the optimal

quota fulfillment of the farmers has been considered more important, whereas more

model robustness means that more weight has been placed on minimizing the devia-

tions from the scheduling guidelines. An increase in ψ implies an increase in model

robustness and a corresponding decrease in solution robustness. The reverse is also
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true. Constraint (4.3) adds a penalty term z to its [DIP] counterpart, Constraints

(3.15) - (3.16), and simplifies them as one constraint by assuming that the tolerance

ε = 0 because the constraint can now be violated at a penalty cost. Constraint (4.4)

adds a penalty term z to its [DIP] counterpart, Constraint (3.18). Constraints (4.6)

- (4.8) constrain ri′its and are exactly as they were previously defined in Constraints

(3.19) - (3.21), except the decision variable ri′it is now additionally indexed by s.

Similarly, the decision variable xit becomes xits, modifying Constraint (3.22) to Con-

straint (4.9) to ensure each flock is picked only once in the set of days T in each

scenario s ∈ S. Constraint (3.23) is also modified to Constraint (4.10) to ensure that

geographic areas are scheduled in the same day only when this is allowed. Constraint

(4.11) is the same as Constraint (3.24), ensuring that flocks located in a geographic

area can be picked only when this area is visited. Finally, Constraint (4.12) sets xits,

ygt, and ri′its as binary variables.

While Constraint (4.5) also adds a penalty term to its counterpart, Constraint

(3.17), it can be noted that it additionally changes the sign of the constraint from

≤ to =. This change is necessary because ρ(.) has been added to the objective

function. If the sign of the constraint is left as ≤, z3js will remain 0 when a farmer

underproduces but will increase when that farmer overproduces. Even accounting for

the fact that overproducing naturally increases σ(.) and underproducing naturally

decreases σ(.), the imbalance forces overproduction to penalize the objective function

ψ−1 times more harshly than underproduction despite the fact that they are equally

undesirable. For example, consider a farmer j who is currently producing at 102% of

their production goal qj. If this farmer instead produces at 103% of qj, the objective

function will increase by 0.01ps in σ(.) and decrease by 0.01psψ in ρ(.) whether the

sign used is ≤ or =. The net impact of this 1% increase on the objective function

is that it decreases by 0.01ps(ψ − 1). Conversely, consider if this farmer produces at

101% of qj. If the sign in the constraint is ≤, z3js = 0. The impact on σ(.) is that

it will decrease by 0.01ps and the impact on ρ(.) is 0. The net impact of the 1%

decrease on the objective function is that it decreases by 0.01ps. However, if the sign

in the constraint is =, z3js = 0.01ps, so the impact is that the objective function will

decrease by 0.01ps in σ(.) and decrease by 0.01psψ in ρ(.). The net impact of the 1%

decrease on the objective function is that it decreases by 0.01ps(ψ+1). As long as ψ
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does not assume a value close to 1, changing the sign in Constraint (4.5) from ≤ to

= causes overproduction and underproduction to be penalized more evenly.

The [RP] reformulation effectively addresses the most major concern with [DIP],

namely the risk of not finding a feasible solution. Because [RP] is a formulation

which seeks primarily to maximize the sum of expected farmer quota fulfillment, it

is a collectivistic formulation. Its performance must be evaluated to test the risk

it poses of a large maximum deviation and the corresponding reward it may carry

of higher expected farmer quota fulfillment. Before this assessment can be done,

however, stochastic reformulations of [DWGP] and [DMGP] must still be defined.

4.4 Goal Programming

The multiobjective optimization framework provided by Ustun and Demirtas [82, 83]

can be easily adapted to suit a two-stage stochastic program. Adaptations of the GPs

defined for DFPP in Chapter 3 are presented in this section. The purpose and value

of WGP and MGP formulations for DFPP has already been stated in Chapter 3, and

these GP methods remain useful when the problem is stochastic.

The first objective function to reformulate is the weight balancing function. It is

defined by:

min
∑
s∈S

∑
t∈T

ps(z
1+
ts + z1−ts ) (4.13)

s.t. θ1ts =

|T |∑
i∈I

niwitsxits∑
t∈T

∑
i∈I

niwits

∀t ∈ T, s ∈ S (4.14)

θ1ts − z1+ts + z1−ts =
1

|T | ∀t ∈ T, s ∈ S. (4.15)

Minimizing the deviations z1+ts and z1−ts will get θ1ts as close to its target value 1
|T |

as possible. The objective function balances the deviations from each scenario s

by weighting it according to the probability of occurrence of that scenario, ps. θ1ts

quantifies the proportion of weight produced on day t to the total weight produced

across all days t ∈ T in scenario s.
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The next objective function to reformulate is the maximum average weight differ-

ence function. It is defined by:

min
∑
s∈S

∑
i′∈I

∑
i∈I

∑
t∈T

psz
2+
i′its (4.16)

s.t. θ2i′its = ri′its|wi′ts − wits| ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.17)

θ2i′its − z2+i′its ≤ 0.20 ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S. (4.18)

Each instance of θ2i′its should be penalized if it exceeds 0.20. θ2i′its quantifies the

difference in average weight per chicken between flock i′ and flock i on day t in scenario

s if they are both collected that day, and takes a value of 0 otherwise. A negative

deviation term is not included in the objective function because the solution should

not be penalized for pairing flocks with average weights per chicken that differ by less

than 0.20 kg. The objective function balances the deviations from each scenario s by

weighting it according to the probability of occurrence of that scenario, ps.

Finally, the third objective function to consider is maximizing the proportion of

the production goal qj produced by each farmer j across all scenarios s ∈ S. Similar to

how it is done in the deterministic formulation, the goal is modified slightly from the

[RP] to attempt to satisfy as many farmers as possible rather than directly trying to

maximize their production. As previously noted, farmers are satisfied when producing

between 99-102% of their production quota, so this objective function can be defined

by:

min
∑
s∈S

∑
j∈J

ps(z
3+
js + z3−js ) (4.19)

s.t. θ3js =
∑
i∈I

∑
t∈T

eijniwitsxits

qj
∀j ∈ J, s ∈ S (4.20)

θ3js − z3+js ≤ 1.02 ∀j ∈ J, s ∈ S (4.21)

θ3js + z3−js ≥ 0.99 ∀j ∈ J, s ∈ S. (4.22)

Each instance of θ3js is penalized if the farmer’s total production is under 0.99qj or if

it exceeds 1.02qj. θ3js quantifies the anticipated total weight of chicken produced by

farmer j across all days t ∈ T for each scenario s ∈ S. Having defined the objective

functions which must be balanced, and considering the constraints previously defined

in [RP], goal programs can now be created.
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4.4.1 Weighted Goal Program

It is straightforward to convert [DWGP] to a two-stage stochastic formulation, simply

changing the variables which must now be indexed by scenario s ∈ S and taking the

expected value of the objective function across all scenarios. The formulation is

presented below and henceforth referred to as [SWGP].

[SWGP]:max
∑
s∈S

ps

(
λ1

∑
t∈T

z1+ts + z1−ts
k1

+ λ2

∑
i′∈I

∑
i∈I

∑
t∈T

z2+i′its
k2

+ λ3

∑
j∈J

z3+js + z3−js
k3

)

(4.23)

s.t. Constraints (4.6) - (4.12)

Constraints (4.14) - (4.15)

Constraints (4.17) - (4.18)

Constraints (4.20) - (4.22)

z1+ts , z1−ts , z2+i′its, z
3+
js , z

3−
js ≥ 0 ∀i′ ∈ I, i ∈ I, j ∈ J, t ∈ T, s ∈ S (4.24)

The [SWGP] formulation is composed primarily of constraints that have previously

been established. The objective function presented in Equation (4.23) is the expected

value of the sum of the deviations weighted by λ across all scenarios s ∈ S. Each

deviation is scaled by a normalization constant k to allow their summation despite

having different units. Constraints (4.6) - (4.12) carry over from the [RP] formulation

with no modification, while the constraints identified from (4.14) to (4.22) can be used

because they have been designed specifically to fit into a goal program. Constraint

(4.24) provides a non-negativity constraint for the deviations from each goal.

The [RP] formulation focuses specifically on maximizing production. It allows

violation of the constraints which might otherwise prevent it from generating a feasible

solution and penalizes the objective function according to these violations, but its

objective function is still focused directly on maximizing production. [SWGP] takes a

more balanced approach by trying to minimize any deviations from the characteristics

that make a solution desirable. While [SWGP] is still a collectivistic approach because

its objective function evaluates deviations from the goals according to the total of

those deviations rather than considering their size individually, it generates a solution

which treats each goal with equal importance rather than constructing an objective
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function focused on maximizing quota fulfillment and only incidentally penalizing it

for deviations from the other goals.

[SWGP] is expected to create a more balanced solution than [RP] because it places

as much importance on θ1ts and θ2i′its as it does on θ3js, which is anticipated to result in

a solution with less deviation from the weight balancing or maximum average weight

difference goals than [RP] would produce. If both are determined to be acceptable

collectivistic approaches and the farmers wish to take a collectivistic approach, the

decision maker determines how much risk of a large deviation they feel is acceptable to

assume for their goals while continuing to efficiently collect and process every flock.

The risk and reward associated with these formulations can be observed through

numerical analysis, but a MGP formulation must be constructed first.

4.4.2 Minmax Goal Program

Just as [DWGP] can be converted to [SWGP], so too can [DMGP] be converted

to a stochastic MGP by appropriately indexing scenario-dependent parameters and

variables by s ∈ S and taking the expected value of the maximum deviation in each

scenario as the objective function. The formulation is presented below and henceforth

referred to as [SMGP].

[SMGP]:min
∑
s∈S

psφs (4.25)

s.t.
z1+ts + z1−ts

k1
≤ φs ∀t ∈ T, s ∈ S (4.26)

z+2i′its
k2

≤ φs ∀i′ ∈ I, i ∈ I, t ∈ T, s ∈ S (4.27)

z+3js + z−3js
k3

≤ φs ∀j ∈ J, s ∈ S (4.28)

Constraints (4.6) - (4.12)

Constraints (4.14) - (4.15)

Constraints (4.17) - (4.18)

Constraints (4.20) - (4.22)

z1+ts , z1−ts , z2+i′its, z
3+
js , z

3−
js ≥ 0 ∀i′ ∈ I, i ∈ I, j ∈ J, t ∈ T, s ∈ S. (4.29)



51

The objective function of [SMGP] is presented in Equation (4.25) alongside the

additional constraints it brings to the problem in Constraints (4.26) - (4.28). These

constraints ensure that φs assumes the value of the greatest deviation in scenario s,

and the objective function is the expected value of this deviation across all scenarios.

It can be noted that this problem can be robustified by minimizing the maximum

deviation over all scenarios, in which case φ would not be subscripted by s. It is

likely that such an approach would produce an unnecessarily conservative solution.

While each party affected by the solution wishes to minimize their own risk of a large

deviation, one outlier scenario s for which a good solution could not be generated

could make the whole solution much worse despite only having a small probability

of occurrence. As in [SWGP], a normalization constant k is used to allow the devi-

ations to be compared quantitatively. The rest of the formulation is identical to the

constraints presented in [SWGP], carrying Constraints (4.6) - (4.12) over from the

[RP] formulation with no modification and using the constraints identified between

Constraints (4.14) and (4.22) because they have been designed specifically to fit into

a goal program.

[SMGP] and its deterministic counterpart [DMGP] are individualistic formula-

tions. [SMGP] seeks to minimize the maximum expected deviation across all scenar-

ios s ∈ S, and it is expected to be preferable to farmers who are averse to loss in

a single week even if it leads to gain across the quota period. This individualistic

approach must now be compared against the proposed collectivistic approaches [RP]

and [SWGP]. They should be tested to observe if an individualistic approach can be

expected to produce a significantly lower maximum risk, if a collectivistic approach

can be expected to produce significantly higher expected quota fulfillment, and what

the magnitude of the exchange is if one exists between maximum risk and optimal

quota fulfillment.



Chapter 5

Case Study

With several formulations now developed to solve the deterministic and stochastic

forms of this problem, their efficacy should be compared by attempting to quantify

the tradeoffs between the individualistic and collectivistic formulations. Before this

can be done, the models must be tested with real data. The company that provided

the data is kept anonymous by referring to them as ABC Poultry. The weight fore-

casting process is discussed in detail, eventually deciding to model growth rates as a

normally distributed random variable and predict them with an 8-point moving aver-

age. The process of generating the other parameters that were not directly provided

by ABC Poultry data is also discussed, including location clusters, farmer weight

goals, normalization constants, SRO penalty weights, and GP weights. Methods of

scenario generation are considered for the stochastic problem, deciding to use the

random sampling method to create sets of 20 scenarios and run multiple trials to

ensure stability. Finally, the deterministic and stochastic problems are tested with

their respective formulations, finding that in both instances the collectivistic approach

creates a risk of suboptimal production in one week without offering the benefit of

a noticeable increase in expected production optimality. The experiment concludes

that [DMGP] should be used for the deterministic problem and [SMGP] should be

used for the stochastic problem.

5.1 Case Study Details

This research is sponsored by a Mitacs Accelerate grant. It contains a problem that

was solved in partnership with an industry client, ABC Poultry, as part of a design

project. As is typical of the design process in industry, some work had to be done to

define the problem more clearly before a solution could be proposed and agreed upon

by all stakeholders. Several techniques were used to define the problem, including

a series of interviews, a precedence diagram, supplier-input-process-output-customer

52
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(SIPOC) analysis, and finally a project charter.

The first step was to have a series of conversations with the ABC Poultry procure-

ment manager, who is responsible for the process, to gain a better understanding of

the scheduling procedures and their decision-making role in them. A list of questions

was prepared in advance for each interview to create a structure for the conversation

and ensure certain things were discussed, but it was not intended to be an exhaustive

list of the questions to be asked. After three of these sessions, enough information

had been gathered to create a precedence diagram.

A precedence diagram was the next logical step because it would encapsulate on a

single page exactly what had been gleaned from the interviews about the procurement

process. This was helpful for two reasons: it could be provided to ABC Poultry for

verification so any changes could be made, thus lowering the risk of miscommunication

affecting the design process, and it was an efficient way to convey information about

the process to stakeholders from outside the company. It identified three major

decision makers in a flock’s life cycle - a hatchery, a farmer, and ABC Poultry - and

showed the order of events that would happen to the flock from beginning to end

while denoting which party had control over each event and when each decision had

to be made. Once all parties had reviewed and agreed upon the precedence diagram,

a SIPOC analysis was conducted.

SIPOC analysis was used to examine the processes driven by ABC Poultry’s de-

cisions. The supplier and input sections were used to identify parties who provided

data used for decision-making and what that data was. The process section identi-

fied which decisions were being made with those data sets. Finally, the output and

customer sections identified the information produced by the processes and where

the information had to go. This information was also reviewed with ABC Poultry’s

procurement manager. Once the SIPOC diagram had been adjusted, it provided a

valuable framework showing which data would be necessary for completion of the

project.

Finally, a project charter was created in consultation with all of the project’s

stakeholders. By defining a business case, problem statement, project scope, goals,

and a contact plan, the project’s purpose and boundaries were very clearly defined.

Regular reference to this document ensured that the project accomplished everything
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it set out to do without wasting any time or resources by adding features or solving

problems outside the project scope. By clearly defining which things the project

would and would not do, the project charter was influential on the generation of a

complete, detailed problem description.

The tool developed has successfully been integrated into ABC Poultry’s procure-

ment planning process. The tool serves three major purposes: centralizing procure-

ment data, tracking hatchery placement cycles, and scheduling flocks for collection.

Centralizing the procurement data is an important feature because different sets of

data were previously stored in many different files, requiring tedious cross-referencing

to regularly generate reports. Tracking hatchery placement cycles is important be-

cause it allows ABC Poultry to see which barns are expected to produce two flocks

in a sixteen-week quota period and which are expected to produce three. This allows

the user to ensure a similar number of flocks can be scheduled each week, potentially

recommending that the hatcheries move barns forward or back a week in their place-

ment schedule as needed. While ABC Poultry does not have the authority to decide

exactly when the barns will receive their flocks, their requests regarding moving barns

forward or backward by a week are generally respected by the hatcheries. Due to the

previously decentralized nature of their data, this was a time-consuming process for

ABC Poultry before the tool centralized the data and automated the process of iden-

tifying which barns would be ready for new flocks each week. Finally, a feature to

schedule flocks for collection is included with the tool. It allows the user to define a

date range and minimum age for flock collection, then see weight forecasts for every

flock that will be eligible for collection in the date range. The user confirms which

flocks will be collected in the date range and the target average weight for each flock,

then the program generates a schedule. This scheduling feature solves the problem

at the core of this thesis. Before implementing the tool, ABC Poultry would retrieve

the collection of flocks and develop a solution to the scheduling problem manually,

first making a manual prediction about the average weight per chicken of each flock.

The purpose of the tool, defined in consultation with ABC Poultry, was to for-

malize the procurement planning process and minimize the number of sources to be

consulted before making procurement decisions. Automation was encouraged where
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possible when formalizing aspects of the process. Improvement of scheduling perfor-

mance was intentionally not identified as a goal because it would be too difficult to

measure given the records that had been kept. A direct measurement of the savings

provided by the tool could not be performed because ABC Poultry did not provide fi-

nancial data, but because the tool eliminates several previously time-consuming tasks

through automation and centralization of data, making these tasks trivial or allowing

them to be delegated, ABC Poultry considers the tool a success.

5.2 Weight Forecasting

While it is straightforward to consult the data to determine many of the parameters

in the goal program, weight predictions do not come readily available with the interim

weights. These predictions must be made based on the characteristics of the data.

ABC Poultry’s existing weight prediction procedure is manual: their procurement

manager will look at the last two to three average flock sizes and make an estimate as

a multiple of 0.05. The success of this method has been tracked over several years and

shown to be approximately 85% according to the company’s success metric, which

considers a prediction useful if it is within 100 grams of the true value and not useful

otherwise. The goal of this section is to match the efficacy of the existing forecasting

method while taking a more systematic approach, allowing the weight forecasting

process to be automated rather than relying on intuition.

5.2.1 Growth Model Shape

The first step to predicting weights is to understand how the chickens are expected to

grow. ABC Poultry uses two breeds of chickens. Both companies provide an expected

growth chart for their chickens based on extensive observation, noting their expected

weight day-by-day. For the purposes of this analysis, these growth charts are treated

as the true population mean. The expected weight of the chickens every day for the

first six weeks of their lives is graphed in Figure 5.1.

Farmers typically send ABC Poultry an update on the average weight of their

flock when the flock is 25-30 days old, with most flocks slaughtered at 35-40 days old.

The growth of the flock must be predicted from the provided interim weight of 25-30
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Figure 5.1: Daily expected weights of the two chicken breeds from 0 to 42 days old. One
breed is shown in red, the other in black.

days. The expected weights of the two breeds between three and six weeks old are

shown in Figure 5.2.

Figure 5.2: Daily weights of the two chicken breeds from 21 to 42 days old. One breed is
shown in red, the other in black.

It can be observed that while one breed is expected on average to be slightly

heavier at three weeks old, both breeds appear to grow at very similar rates between

three and six weeks old. It can also be observed that linear regression is an effec-

tive approximation of the function. A linear regression based on ABC Poultry data

between 2011 and 2017 can be observed in Figure 5.3.
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Figure 5.3: Linear regression representing average flock growth between 2011 and 2017.

The linear function yielded by this regression, ŷ = 86x− 876, is shown in red and

the 120270 points used for the regression are shown in black. At first inspection, the

function appears to fit well. This is confirmed by an R-squared value of R2 = 0.89,

showing that the linear regression explains approximately 89% of the model’s variance.

The efficacy of this model can be tested by using it to make predictions about the

future. Because the model was trained on data from 2011-2017, it can be tested with

data from 2018 forward.

ABC Poultry has a simple binary metric to measure proportion of useful predic-

tions based on what they find is relevant to their business practices. Each prediction

of a flock’s average weight is considered useful if it is within 100 grams of the true

value (either higher or lower is acceptable) and not useful otherwise. In the case of the

linear regression ŷ = 86x− 876, 26.62% of predictions made for 2742 flocks processed

between 2018 and 2020 are considered useful. This is an underwhelming statistic.

It can be improved by remembering the aforementioned interim measurement, which

is received before a prediction must be made about a flock. When a data point is

provided to associate with the flock, the regression’s b0, or intercept, value becomes

less necessary. The purpose of the intercept value is to anchor the function some-

where vertically on the graph, whereas the b1, or slope, value determines how fast the

chickens are anticipated to grow. When an actual data point is provided, b1 can be

used on its own to predict a second y-value given a second x-value. When this is done

(assuming a growth rate of 86 g/day for each flock from the interim weight), 40.59%
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of the predictions made for the same 2742 flocks tested earlier are considered useful.

This statistic is a noticeable improvement on 26.62%, but should still be improved to

achieve the 85% accuracy of the manual forecasting method. To further improve the

predictions, the different growth rates of each flock must be analyzed and accounted

for in the model.

5.2.2 Predicting Growth Rates

Analyzing growth rates is important because, unlike analyzing flock weights directly,

it allows the way growth rates change over time to be studied so any patterns can be

identified. While weights are influenced by demand and when ABC Poultry decides

to slaughter each flock, growth rates are not. These growth rates can be considered

as a time series, which provides several opportunities for analysis. The graph of the

time series can be observed in Figure 5.4.

Figure 5.4: Time series representation of average flock growth between 2013 and 2020.

The time series begins in 2013 because data was not logged consistently enough

prior to then. Each point in the time series corresponds to the average across one

week of all growth rates observed from flocks slaughtered that week. It does appear

that growth rates trend in different directions over time, most notably that they have

generally trended upward over the last 3-4 years. How these growth rates are related

to future growth rates can be represented by graphing their autocorrelation. A graph

displaying autocorrelation from a lag of -52 to +52 weeks (a ±1 year window) can be
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observed in Figure 5.5.

Figure 5.5: Autocorrelation between lags of ±52 weeks.

Some amount of periodicity is immediately evident upon inspection of the graph.

It can be observed that the autocorrelation experiences spikes every 8 weeks and does

not show any other interesting patterns. While a theoretical autocorrelation graph

should be symmetrical, it is understandable for a ±1 year graph to be as asymmetrical

as this one with a relatively small sample size of 7 years. Periodicity can be further

examined by using a power spectrum, as shown in Figure 5.6.

Figure 5.6: Power spectrum showing frequency composition of the growth rate time series.

Ignoring the spike immediately following 0 on the frequency axis, which typically
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exists on a power spectrum as a product of its resolution (e.g. because the power

spectrum has 128 points, it spikes at f = 1
128

), the power spectrum is dominated by

an impulse at approximately f = 0.125, corresponding to a period of T = 1
0.125

= 8

weeks as observed in the autocorrelation function. Smaller spikes also exist near

f = 0.25 and f = 0.375: as these are multiples of f = 0.125, it is likely that they are

harmonics of it rather than being indicative of anything meaningful about the time

series itself.

Inspection of the farmers’ practices shows what might introduce an 8 week period

to the growth rates. The farmers partnered with ABC Poultry keep each flock on

a different barn floor, and the vast majority of barn floors exist on 8-week cycles.

Most flocks spend 5 weeks growing on the barn floor, then are removed and the next

3 weeks are spent cleaning that barn floor before the next flock arrives. Introducing

the barn floor as a factor would account for a number of smaller, potentially relevant

factors at once: a non-exhaustive list of examples could include feed type or amount,

environmental conditions, average stress levels, and any farmer behaviours that could

affect growth rates.

Because the barn floor appears to be the only factor to account for in the growth

rates, the next logical step is to separate the data according to barn floor. Once

sorted, an autocorrelation function can be graphed for each barn floor. Points on

these autocorrelations will generally be spaced 8 weeks apart, as there are typically

8 weeks between flocks, so graphing them in the lag window ±7 is expected to pro-

vide a roughly ±1 year window through which to view the function. The average

autocorrelation function across a sample of 203 barn floors is shown in Figure 5.7.

It can be observed that the autocorrelation function quickly drops to 0 and stays

close to it. The red lines represent a confidence interval of ±1.96√
N
, inside which 95%

of non-zero autocorrelations are expected to exist if the process is independent and

identically distributed, or i.i.d. Consider Xt, the growth rate on a barn floor in

period t. Its autocovariance at lag h is γ(h) = E(Xt+h−μ)(Xt−μ), which quantifies

the relationship between any growth rate Xt and a later growth rate Xt+h. The

autocorrelation at lag h is ρ(h) = γ(h)/γ(0), quantifying the relationship between Xt

and Xt+h . Because all of the non-zero-lag autocorrelations from ρ(−7) to ρ(7) are

inside the confidence interval, it is assumed that the process is i.i.d.
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Figure 5.7: Average autocorrelation function of all barn floors from 2013 to 2020.

The next step is to determine the distribution of the process. A histogram illus-

trates the shape of the data, as shown in Figure 5.8.

Figure 5.8: Histogram of growth rates observed from each flock on all barn floors standard-
ized by that barn floor’s mean and variance, 2013-2020.

The histogram is constructed by standardizing each flock’s growth rate according

to the mean and variance in that flock’s barn floor. Working under the assumption

that all barn floors will assume a distribution with the same shape, just having dif-

ferent parameters, standardizing them makes it possible to combine them and judge

the shape of their distribution more accurately. As one might anticipate, the growth
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rates appear to follow a normal distribution. This can be confirmed with a QQ plot,

shown in Figure 5.9.

Figure 5.9: QQ plot comparing sample vs theoretical quantiles of growth rate data for
Gaussian distribution.

A QQ, or quantile-quantile, plot functions by comparing the theoretical quantiles

of a distribution against the sample quantiles of the data set provided. It is an

efficient way of visualizing how well a data set fits the normal distribution because

the points will form a straight line if the data is normally distributed. While the

tails diverge from the expected values as they approach 3 standard deviations from

the mean, the rest of the sample and theoretical values match up closely enough that

normality is a reasonable assumption. This means that while each barn floor may

have different parameters μ and σ2, the sequence of growth rates for each of them

is ultimately represented by a random variable {Xt} ∼ N(μ, σ2). It is reasonable

to make a prediction about a given barn floor with this information as E(Xt) = μ.

There is no autocorrelation, so no predictions can be made with respect to how the

growth rates will fluctuate about μ for each future t.

The true average growth rate for a barn floor, μ, cannot be known in implemen-

tation, so a substitute average x̄ must be used as an approximation instead. While

it would be ideal to be able to use x̄ determined from across the barn floor’s his-

tory, this is not reasonable in practice. If anything changed on the barn floor that

would significantly affect the parameters, it would take years for this change to be

meaningfully reflected in x̄. Thus, the model must remain responsive to change while
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still using enough data points that it reasonably attempts to accurately estimate the

mean. To that end, the mean is estimated with an 8-point moving average. The num-

ber 8 was chosen because it was the largest number that worked with the information

about the barns’ conditions provided by ABC Poultry. Too many factors affecting

the health of the chickens would have changed further back than 8 cycles in the same

barn, as things such as food and medication are often changed in unsynchronized

sixteen-month rotations. The model can be represented as:

{Xt} =

∑8
n=1 Xt−n

8
(5.1)

Thus, predictions can be made for a flock based on growth rates with the following

formula:

Wfinal = Winterim +Xtndays (5.2)

Where Wfinal is the final average weight of the flock, Winterim is the average weight

of the flock when the farmer provides an interim weight at 25-30 days, and ndays is

the number of days anticipated between the interim weight and the flock’s slaughter.

When the model is tested for its proportion of useful predictions, just as the variations

on the linear regression predictions were tested earlier to find 26.62% and 40.59%, it

estimates 84.12% of its predictions are useful. A 99% confidence interval estimates

the true proportion of useful predictions this model will produce exists in the range

[82.29%, 85.96%]. This is close enough to satisfy the goal of 85% accuracy.

5.2.3 Inspecting Residuals

Once a time series model has been chosen, it is important to examine its residuals

when compared to the time series itself. If its residuals demonstrate any patterns,

this may be a sign that the time series model should account for another factor.

While many time series models are technically examined in this section, using the

assumption about standardizing their data from Figure 5.8, a histogram of their

standardized residuals can also be graphed in Figure 5.10.

Based on the normal distribution provided for reference on top of the histogram,

it can be observed that the residuals are also normally distributed with a mean of 0.
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Figure 5.10: Histogram of standardized residuals from all growth rate predictions, 2013-
2020.

Their autocorrelation can also be checked to ensure their independence, as shown in

Figure 5.11.

Figure 5.11: Autocorrelation of standardized residuals from all growth rate predictions,
2013-2020.

Just as in the case of the growth rates themselves, it can observed that there is

no autocorrelation present in the residuals. It is assumed that they are random white

noise, and thus that modelling the growth rates as a normally distributed random

variable is acceptable without requiring any additional terms.
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5.3 Determining Parameters

Many of the problem’s parameters are objectively defined by data, although several

had to be generated based on other parameters or defined in consultation with ABC

Poultry based on their current scheduling practices. Determining geographic clusters

and their relationships, weight goals, normalization constants and penalty weights

required effort beyond simply reading data. While weight predictions technically fall

under this category as well, they have already been discussed in detail.

The first thing which must be discussed is the geographic clustering used to sim-

plify the problem’s location constraints. A less formal version of this process was

initially described by the company, but it was historically done subjectively rather

than by using codified relationships between barns. Fortunately, the natures of the

locations lent themselves well to clustering. The location of each barn was recorded

on a map of the area surrounding the ABC Poultry processing facility. Figure 5.12

depicts a map of clusters similar to the one used in this case study. The real map is

not shown to maintain the anonymity of ABC Poultry.

Figure 5.12: Clusters of ABC Poultry barns.

ABC Poultry accepted the clusters without modification, allowing the set G to

be defined for the problem. At the company’s request, members of two different non-

local clusters cannot be scheduled on the same day. This information allows cg′g to

be defined for the problem. For other applications of this model, cg′g could assume a
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value of 1 for a pair of non-local clusters that could be scheduled on the same day.

Values for the weight goals qj must be generated for experimental purposes because

records were not kept of each farmer’s goals. It is important to note that the value

qj is more granular than the corresponding quota for that farmer. While a quota is

defined for a sixteen-week period, the weight goal is defined differently for each week

based on the flocks to be sold. The weight goal may also be set higher or lower for

the same number of chickens based on the farmer’s production to date in the quota

period. Accordingly, each farmer’s weight goal in a week is assumed to be a random

number from a uniform distribution bounded by
∑

i∈I eijniwi,1 and
∑

i∈I eijniwi,|T |,

where j identifies the farmer. These limits are chosen for the uniform distribution

because they represent the lower and upper limits of what the farmers are expected to

be able to produce. Farmer j would produce
∑

i∈I eijniwi,0 kg if all of their flocks were

collected on day 1 and
∑

i∈I eijniwi,|T | kg if all of their flocks were collected on day

|T |. The values are determined more methodically in practice: farmers are generally

instructed to grow their flocks with a target of 2.25 kg/chicken, so qj is set according

to this and adjusted if it will help the farmer meet their quota. Setting targets like

this is possible because of the opportunity for manual review before the problem is

solved. The scheduling tool makes the weight goals qj available for review and editing

by ABC Poultry’s procurement manager prior to creating a schedule in case they have

additional information that might cause them to be higher or lower than otherwise

expected, such as a flock’s unique target weight. A lack of opportunity for manual

review coupled with the fact that general production targets have often changed in the

company’s history means that the qj generated from the random uniform distribution

is more likely to provide a problem that can be appropriately solved.

Normalization constants k also had to be defined in the interest of comparing the

deviations from each goal value and accurately identifying the maximum deviation.

The process began by setting each farmer’s normalization constant k3 to 1, scaling

their z
k
values so a 1% increase in deviation would result in a 0.01 increase in the term.

Once k3 had been selected, it could be taken as a fixed value relative to which k1 and

k2 would be decided. This was done through sensitivity testing of a sample week in

the Excel tool, which uses [DMGP], and confirmed across several more sample weeks.

First, k2 was set to a large number M . This would temporarily ensure that weight
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spreads over 0.20 kg were not penalized, effectively making the only two goals of the

program to help all farmers meet their goals and to evenly spread the total weight

produced across each day. Then k1 was set to 0.01 and an iteration of the problem

was solved. If k1 is too low, it will penalize the total weight spread too harshly and

only optimize the problem based on which schedule gets the weight per day closest to

even rather than giving any consideration to the farmers’ quotas. If k1 is too high, it

will fail to penalize uneven days in a meaningful way and could potentially allow too

many flocks to be scheduled for collection on the same day. The amount was slowly

increased until arriving at k1 = 0.33, which created a schedule that appeared to strike

an appropriate balance between balanced days and quota management. This value

was then used to generate four sample week schedules, each of which also balanced

the requirements appropriately. With the value of k1 now fixed, the same process was

applied to k2, yielding a value of k2 = 0.5.

The penalty weight ψ for [RP] and the goal programming weights [λ1, λ2, λ3] for

[DWGP] and [SWGP] were also selected through a similar process, although they

were tested in Python rather than in Excel. [RP] was tested with ψ = 0.1, 1, 5, 10,

and 100, and found that appropriately balanced solutions were achieved with ψ = 10.

The goal programming weights were set inversely proportional to the size of the set

determining how many deviation variables they had, setting λ1 and λ2 to
1
|T | and λ3 to

1
|J | . No further adjustments were made because these weights produced appropriately

balanced solutions in the test weeks.

5.4 Scenario Generation

Each barn floor has an associated random variable used to model its growth rate,

which is normally distributed with mean μ and standard deviation σ. For any set of

days T , each member of the set of flocks I is associated with one of these random

variables. A scenario set with realizations of |I| random variables must be generated

for that week. The literature identifies two dominant methods of scenario generation:

moment matching, first used by Høyland and Wallace [40] and random sampling,

such as Homem-de-Mello [35] uses. Both methods seek to generate a scenario set

which retains all marginal distributions, meaning that the set of realizations for each

variable should have the same mean μ and standard deviation σ as the distribution
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of that variable.

The advantage of the moment matching method is that it allows the decision

maker to generate a complete multi-period scenario tree that respects the marginal

distributions of each random variable in each time period even if a low number of

scenarios has been chosen for each time period. This is helpful because it allows the

decision maker to keep the complete decision tree to a manageable size as the number

of time periods increases. The most significant disadvantage of moment matching is

its long computational time as a non-convex problem, which is exacerbated by the

large number of independent random variables presented by SFPP. The program must

find a solution matching the mean and standard deviation of each of these variables

simultaneously.

The advantage of moment matching over random sampling becomes diminished

as the number of scenarios per time period increases. As this number increases,

the set of randomly sampled scenarios naturally begins to approximate the marginal

distributions more closely. This can be observed through experimentation. If n

random observations are drawn from a normal distribution with mean μ = 0 and

standard deviation σ = 1, and the sample mean x̄ and standard deviation s are

recorded as unbiased estimators of the distribution’s parameters, N trials of this

experiment can be performed to develop confidence intervals for x̄ and s. Table 5.1

shows the results of this experiment with N = 1000 sets of samples drawn and 95%

confidence intervals constructed for various sample sizes n.

n x̄ s

5 [-0.88, 0.87] [0.28, 1.61]
10 [-0.62, 0.60] [0.53, 1.42]
20 [-0.44, 0.45] [0.68, 1.30]
40 [-0.30, 0.31] [0.76, 1.21]
80 [-0.22, 0.22] [0.84, 1.15]
160 [-0.16, 0.15] [0.89, 1.11]

Table 5.1: 95% confidence intervals for N = 1000 sample sets of size n.

Predictably, the estimates become more accurate as the sample size increases. The

confidence intervals in Table 5.1 have a relationship with the sample size n. If the

lower bound of the confidence interval for x̄ at sample size n is defined as LBn and its

upper bound is defined as UBn, a relationship of UB4n−LB4n

UBn−LBn
≈ 0.5 can be observed,
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which is consistent with the Central Limit Theorem: as the sample size quadruples,

the width of the confidence interval is reduced by approximately 50%. The same

relationship holds for s, so as n continues to increase, the accuracy of the estimators

x̄ and s will improve proportionately to this relationship.

Using a larger scenario set is not trivial. As Florian et al. [29] note, the multi-

period lot sizing problem is NP-hard, so its transformations must also be NP-hard.

As transformations of the multi-period lot sizing problem, DFPP and SFPP are both

NP-hard. Each formulation of SFPP has a large number of variables and constraints,

and will have to be tested multiple times to ensure consistency. The case study, for

example, has average set sizes of |I| = 30, |J | = 15, |T | = 4, and |G| = 4. The

number of decision variables and constraints these parameters create can be observed

in Table 5.2.

Model Decision Variables Constraints

DIP 3736 18269
DWGP 7374 25507
DMGP 7375 29126
RP 3720|S|+ 16 18249|S|+ 16

SWGP 7358|S|+ 16 25521|S|+ 16
SMGP 7359|S|+ 16 29140|S|+ 16

Table 5.2: The number of decision variables and constraint when each model is applied to
the case study.

Considering the NP-hardness of the problems and the large problem sizes shown

in Table 5.2, it is clear that the size of SFPP must be carefully managed to obtain

a solution in a reasonable time. Based on the options tested in Table 5.1, n =

20 scenarios will be used for the numerical analysis because it presents substantial

improvements over n = 5 and n = 10 in both x̄ and s while presenting a confidence

interval for its estimate of the mean that is less than one standard deviation wide.

If creating a histogram of a standard normal distribution, a middle bin of [−0.5, 0.5]

would be reasonable because it is a good measure of the middle of the distribution.

It can be claimed with 95% confidence that x̄ would belong in this range for n = 20,

whereas this claim cannot be made for n = 10. While it would be recommended in

practice to use the largest possible scenario set that could be solved in the amount

of computational time allotted to the program, a smaller number of scenarios will
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suffice for the purpose of efficiently comparing the models. When considering a larger

scenario set, the L-shaped method [55] could be implemented to reduce computational

time.

5.5 Experiment Results

When designing a method to evaluate the relative efficacy of each formulation, it is

important to remember that any of them will look like the best option if its objective

function is the sole criterion in the analysis. Accordingly, several criteria should be

used for experimentation reflecting the benefits of the individualistic and collectivistic

approaches presented to the farmers. Solution time will also be measured to determine

if one approach is significantly easier or more difficult to compute than the others,

information which could in practice inform the number of scenarios used to create a

schedule.

The criterion to be used to evaluate the individualistic dimension of the problem

is the objective function of the minmax goal program. This quantifies the expected

maximum allowable deviation from optimality for any one party, which could be one

of the farmers or ABC Poultry. When it is measured for a collectivistic approach

and compared with the individualistic approach, it demonstrates the magnitude of

the risk of a large deviation from optimality assumed by each party.

Several criteria must be used to evaluate the collectivistic dimension of the prob-

lem effectively. While the objective function of the minmax goal program can be

used as the only criterion for the individualistic dimension because it identifies the

worst-case deviation, which is the single deviation most likely to make a solution un-

desirable regardless of which goal it affects, the collectivistic dimension must examine

the impact on each goal to ensure solutions are balanced. When this is measured for

an individualistic approach and compared with the collectivistic approach, it demon-

strates the magnitude of the gains that could be made by the farmers by assuming

increased risk of a large deviation from optimality.

The following is a list of the five criteria to be recorded:

• Time: the average amount of time the solver took to solve a trial. Its units are

seconds or minutes and its optimal value is 0.
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• Objective function value (OFV): the average value assumed by the minmax

objective function for the solution of a trial. It has no units and its optimal

value is 0.

• Deviation from quota (DFQ): how close to the optimal range of 99-102% of a

farmer’s production goal the average solution comes for the average farmer.

• Weight balance (WB): a metric referring to how close to evenly balanced the

weights are on an average day. Its units are percentage points and its optimal

value is 0.

• Weight spread (WS): the maximum difference in average weight per chicken of

two flocks scheduled on the same day in a trial. Its units are kg and its optimal

value is any number between 0 and 0.20, inclusive.

It is unlikely that one method will be superior in every category, although this

method should be recommended if this is the case. This analysis seeks to observe

whether an inverse relationship exists between OFV and DFQ, suggesting that as the

value of OFV becomes less desirable, the value of DFQ becomes more desirable. The

goal of this analysis is to characterize how much individual risk the farmers take on

by adopting a collectivistic approach, and how much expected benefit that approach

offers. As long as the average values of WB and WS are acceptable for a formulation,

detailed analysis of their exact values is not necessary. Determining which values are

acceptable must be done situationally: while a WS value of 0.30 is generally undesir-

able, for example, it may be unavoidable in some weeks. This situational evaluation

should be done in relation to the results from the other formulations. Consequently,

a decision rule must be developed to define whether a formulation is acceptably bal-

anced. In this experiment, any formulation presenting OFV more than 0.100 above

the minimum OFV calculated by a MGP should be rejected. An OFV more than

0.100 above the minimum implies that an improvement is possible comparable to

reducing DFQ by 10 percentage points, improving WB by 3.3 percentage points, or

reducing a WS of at least 0.25 kg by 0.05 kg, all without introducing another devi-

ation of that size elsewhere. However, this decision rule is just the first step. If a

solution is not rejected by the decision rule, it does not mean that it has equal merit
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to other solutions, only that the solutions are balanced enough that the comparison

is worth making.

All experiments described in this section were run on a Windows 10 PC with a

Ryzen 5 3600X processor at 3.8 GHz and 8 GB of RAM. The solver CPLEX was

used via the Python package docplex. The solver was given two stopping conditions:

a 15-minute time limit and a 1% optimality gap.

5.5.1 Deterministic Models

The first step is to test the deterministic models. 53 weeks were selected from between

2018 and 2020 in which a similar amount of chicken was processed during each day

the facility was open. A tolerance of 5% of the week’s total weight was used to decide

whether two amounts were similar. The [DMGP], [DWGP], and [DIP] formulations

were solved for each week. Based on the results from [DMGP] and [DWGP], the

weight balancing tolerance parameter ε = 0.03 was used for [DIP]. The results are

recorded in Table 5.3 and subsequently visualized in Figure 5.13. Note that the units

of time are seconds.

Trial Time (s) OFV DFQ WB WS

DMGP 3.48 0.136 6.93 2.65 0.26
DWGP 5.85 0.202 5.73 2.75 0.22
DIP 1.40 0.083 3.68 1.70 0.20

Table 5.3: Data from testing 53 weeks of the deterministic formulations.

Figure 5.13 scales each criterion according to the maximum value of that criterion

in Table 5.3. For example, the maximum Time value in the table is 5.85 for [DWGP],

so the value for [DMGP] is scaled to 3.48/5.85 = 0.59. [DIP] initially looks superior to

[DMGP] and [DWGP] because a low value is ideal for each solution, but it should be

noted that these statistics were only collected from trials in which the solver obtained

a solution. Whereas [DMGP] and [DWGP] each produce a solution for all 53 weeks,

[DIP] produces a solution for only 4 of the 53. [DIP] demonstrates that concerns about

its inability to produce feasible solutions are well-founded and justifies the GP and

SRO approaches taken in the subsequent formulations of DFPP and SFPP. Because

these subsequent formulations attempt to minimize violation of scheduling guidelines

rather than setting a maximum value the violations can take, they ensure feasibility
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Figure 5.13: Data from testing 53 weeks of the deterministic formulations.

regardless of the parameters of the problem. Thus, [DIP] should be removed from

consideration entirely.

[DMGP] and [DWGP] can both be solved in a reasonable time and both achieve

an acceptable WB and WS, so their OFV and DFQ can be compared. A paired

t-test cannot be used to compare the OFV or DFQ values of [DMGP] and [DWGP]

because their differences are not normally distributed. While its non-parametric

equivalent, the Wilcoxon signed-rank test [87] might be considered because it does

not require an assumption of normal distribution, this test only determines whether

the mean difference of the paired observations is 0. The test cannot quantify the

magnitude of the difference, which is an essential component of evaluating the tradeoff

between [DWGP] and [DMGP]. The data can still be inspected by visualizing it

with a histogram and observing the shape of its distribution. [DMGP] offers large

improvements on the maximum deviation of several of the solutions calculated for

[DWGP]. These improvements can be observed in Figure 5.14.

In 8 of 53 cases, the difference is 0. In the other 45, [DMGP] offers the preferable

OFV, in 9 such cases offering an improvement of more than 0.10, which would cause

the [DWGP] solutions for these cases to be rejected based on the previously defined

decision rule. This difference illustrates the stability of [DMGP] as well as the volatil-

ity of [DWGP]: in 6 of the 9 cases, the difference of the maximum deviations is at
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Figure 5.14: The difference between [DMGP] OFV and [DWGP] OFV.

least 0.20, more than double the threshold for rejection.

The large improvement [DMGP] provides in OFV is contrasted by a small im-

provement the averages presented in Table 5.3 suggest [DWGP] might offer in DFQ

over [DMGP]. Their differences can be inspected in a histogram, presented in Figure

5.15.

Figure 5.15: The difference between [DMGP] DFQ and [DWGP] DFQ.

It is not immediately evident from Figure 5.15 whether [DWGP] reliably offers

the better DFQ value. The most likely outcome appears to be a modest improvement
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in DFQ of less than 2 percentage points, consistent with the average difference of 1.2,

but improvement is not guaranteed. In 11 of 53 cases, the DFQ of [DWGP] is worse

than that of [DMGP].

Based on this analysis, it can be concluded that choosing [DWGP] over [DMGP]

poses a significant risk in exchange for an insignificant reward. 9 of 53 [DWGP]

solutions in the test data contain a deviation large enough to cause the decision maker

to reject the solution, something which is never a concern for a [DMGP] solution.

Regardless of whether the farmers prefer an individualistic or collectivistic approach,

the [DMGP] model should be used when solving the deterministic problem to ensure

the solution will not be rejected.

5.5.2 Stochastic Models

Having compared the deterministic models, the stochastic models can similarly be

tested on 5 randomly selected weeks from the 53 weeks used to test the deterministic

problem. Based on the parameters defined for the problem, each week can take up

to 20 hours to test. 25 scenario sets are generated for each week, each containing

20 scenarios, and the average of each evaluation criterion is displayed in Table 5.4.

The data from the table is subsequently visualized in Figure 5.16, which shows the

average value across all 5 test weeks for each criterion. Each criterion has been scaled

based on its maximum observed value in the same manner as Figure 5.13. Time is

measured in seconds. Having previously concluded that [DMGP] is the best solution

to the deterministic problem, it is solved for the stochastic problem in addition to

[SMGP], [RP], and [SWGP] to provide a baseline from which to calculate the value

of stochastic solution (VSS).

The first thing that can be noted from Table 5.4 is the inferiority of the [DMGP]

solution in comparison to the solutions from the other formulations. While it produces

a solution in a matter of seconds rather than taking minutes and its average DFQ

and WB are comparable to those of the stochastic solutions, the average WS forces

OFV to assume a much higher value than it does for the other formulations. It is

likely that its higher average WS comes from an inability to account for multiple

scenarios. While the values of DFQ and WB are insulated by the effect of risk

pooling through multiple flocks because underestimation of one growth rate may be
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Trial Time (s) OFV DFQ WB WS

DMGP-1 5.4 0.325 3.72 0.78 0.36
SMGP-1 720.0 0.099 3.92 1.52 0.25
RP-1 586.2 0.165 4.03 2.18 0.22

SWGP-1 910.8 0.139 4.38 1.21 0.24
DMGP-2 3.0 0.356 5.20 3.62 0.38
SMGP-2 408.0 0.165 4.86 3.45 0.28
RP-2 384.6 0.349 4.45 5.98 0.23

SWGP-2 760.8 0.230 4.51 3.32 0.26
DMGP-3 3.0 0.322 3.43 0.54 0.36
SMGP-3 352.8 0.059 3.65 1.00 0.22
RP-3 316.8 0.134 3.61 1.65 0.21

SWGP-3 892.2 0.094 3.49 0.85 0.22
DMGP-4 4.8 0.360 3.64 0.76 0.38
SMGP-4 577.2 0.069 3.79 1.27 0.23
RP-4 475.8 0.148 3.38 2.07 0.21

SWGP-4 916.8 0.120 3.90 1.02 0.23
DMGP-5 1.8 0.404 6.23 3.12 0.40
SMGP-5 386.4 0.221 6.01 4.33 0.31
RP-5 221.4 0.306 5.73 4.43 0.31

SWGP-5 357.0 0.279 5.99 2.98 0.32

Table 5.4: Average data from 25 trials for each of 5 test weeks for each stochastic formulation
and [DMGP].

Figure 5.16: Average values of criteria across 5 test weeks for each stochastic formulation
and [DMGP].
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offset by overestimation of another, WS experiences the opposite effect. Consider a

simple version of SFPP with one day and one farmer who must meet a 3000 kg quota.

Additionally, assume that each flock will produce 80%, 100%, or 120% of its predicted

weight, each scenario with 1
3
probability. The farmer can raise one 3000 kg flock, two

1500 kg flocks, or three 1000 kg flocks. Each flock will contain the same number

of chickens. The probabilities of the worst-case scenarios for DFQ and WS can be

observed in Table 5.5 as the number of flocks changes. WB is omitted because the

problem only concerns one day, so balancing weight across each day is not relevant.

Number of Flocks DFQ Worst-Case Probability WS Worst-Case Probability

1 66.7% 0%
2 22.2% 22.2%
3 7.4% 44.4%

Table 5.5: The probability of maximum deviation from the goal occurring in DFQ and WS
as the number of flocks changes.

A worst-case scenario for DFQ is for the farmer to produce either 2400 or 3600 kg

of chicken, both a 600 kg deviation from their 3000 kg quota. A worst-case scenario

for WS is for any flock to produce 80% of its predicted weight while any other flock

produces 120% of its predicted weight. Table 5.5 shows that as the number of flocks

increases, the probability of DFQ realizing one of its worst-case scenarios decreases

while the probability of WS realizing one of its worst-case scenarios increases. If a

second day is added to the problem and 3000 kg are also scheduled for that day, the

WB worst-case scenario is that all of the flocks on one day produce 2400 kg while

all of the flocks on the other day produce 3600 kg. WB will be similar to DFQ by

decreasing its probability of realizing a worst-case scenario as the number of flocks

increases.

In the context of the case study, approximately 8 flocks are scheduled per day.

When DFPP is solved, average flock weights are still uncertain. DFQ and WB are

both insulated from the negative effects of this uncertainty because of the number of

flocks scheduled each day. This effect can be observed in Table 5.4, where [DMGP]

exhibits DFQ and WB values that are as good as, or sometimes better than, those of

the formulations designed to handle SFPP. Conversely, enough flocks are scheduled

each day to make WS more likely to assume a higher, and therefore worse, value.
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When a DFPP solution is applied to SFPP, risk pooling shields DFQ and WB from

assuming worse values due to variance, but it does not protect WS. Because WS still

becomes worse when a DFPP solution is applied to SFPP, the average OFV can also

be expected to be higher. In the case study, the OFV of [DMGP] is high enough that

it crosses the threshold for rejection for SFPP in each test week.

[SMGP] produces a high VSS when compared to [DMGP]. Because OFV for SFPP

is determined by the objective function of [SMGP], and [DMGP] is the deterministic

formulation of [SMGP], the OFV difference of the two formulations is the VSS. A

paired t-test can be conducted between the [DMGP] OFV and [SMGP] OFV to

determine 95% confidence intervals for the VSS in each week, presented in Table 5.6.

It displays the lower (LB) and upper (UB) bounds of the confidence interval for the

expression [DMGP ]OFV − [SMGP ]OFV in the unitless terms of OFV, as well as a

percentage improvement of the expected OFV for [DMGP] that week.

Week LB UB LB (%) UB (%)

1 0.194 0.257 59.6 79.1
2 0.175 0.208 49.2 58.4
3 0.248 0.279 77.0 86.6
4 0.265 0.290 73.6 80.6
5 0.163 0.203 40.3 50.2

Table 5.6: 95% confidence intervals for the VSS reformulating [DMGP] as [SMGP].

The significance of the differences presented in Table 5.6 is that they illustrate the

reduction in maximum expected deviation presented by using a stochastic formulation

of the MGP, [SMGP], rather than using a deterministic formulation, [DMGP]. For ex-

ample, a 95% confidence interval for the difference in week 4 is [0.265, 0.290], which

corresponds to one of the following improvements without introducing a similarly-

sized devation elsewhere: a DFQ improvement of 26.5-29.0 percentage points, a WB

improvement of 8.8-9.7 percentage points, or a WS reduction of 0.13-0.15 kg from

an initial solution of at least 0.33-0.35 kg. Even in the week with the least improve-

ment, the stochastic solution still improves OFV by more than 40%, and in some

cases may offer improvements upward of 80%. This illustrates the importance of

using the stochastic formulation for scheduling if possible. Because the lower bound

of the difference is also greater than 0.100 in every case, this confirms with 97.5%
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certainty that [DMGP] must be rejected, having α
2
certainty rather than α because

the comparison is one-tailed.

The VSS presented by using [SMGP] instead of [DMGP] becomes plain when con-

sidered in a practical context. Consider the SFPP timeline presented in Figure 4.1, in

which geographic clusters are chosen for each day on day −|T |, flock collection days

are determined on day 0, and flocks are collected between days 1 and |T |. The differ-
ence between DFPP and SFPP is that DFPP also requires flocks to be scheduled for

collection on day −|T |. While the flock weights are still uncertain on day −|T |, their
expected value is used because DFPP presents no opportunity for recourse when the

flock weights become known |T | days later. The VSS represents the improvement in

performance that can be achieved by delaying the decision to schedule flocks for col-

lection by |T | days. It has been observed that [DMGP] presents a much less desirable

WS than the other formulations tested for SFPP, despite displaying a comparable

DFQ and WB. It can be concluded that the primary effect of delaying the decision to

schedule flocks for collection by |T | days is a significant WS improvement. Because

WS is monitored in the interest of minimizing defect rates, lowering it significantly

also lowers defect rates. Therefore, implementing [SMGP] instead of [DMGP] lowers

defect rates.

Knowing now that [DMGP] can be ignored, [SMGP], [RP], and [SWGP] can be

examined. In each week, their WB and WS are all at comparable levels which allows

their OFV and DFQ to be compared, although making this claim about weeks 2 and 5

does merit brief discussion. In week 2, [RP] has a noticeably lower WS than the other

two formulations. However, this solution comes at the cost of a much worse WB than

the other solutions achieve. Because each formulation has been forced to take on one

somewhat undesirable value, it can be concluded that a solution with good WB and

WS cannot be constructed without significantly impacting DFQ. Thus, the OFV and

DFQ of each non-[DMGP] solution in Week 2 can be compared. Week 5 experiences

a similar issue: a solution with a desirable WS is not found. Even [SMGP], designed

specifically to minimize the worst deviation, cannot on average find a solution with

a lower WS than 0.31 without severely impacting another criterion. While a WS

of 0.30 or greater is generally undesirable, there is no evidence of a better option

given the flocks that must be scheduled that week. Thus, the OFV and DFQ of each



80

non-[DMGP] solution in Week 5 can be compared.

It may be noted that [RP] is compared to [SMGP] and [SWGP] on the basis of

expected performance despite the fact that it is a robust formulation and the other

two are stochastic formulations. Any consideration of this approach must account

for the fact that σ(.), the non-penalty function part of the [RP] objective function,

is singularly focused on maximizing the expected quota fulfillment of the farmers.

While σ(.) is penalized by ρ(.), the expected value of deviations from the scheduling

guidelines, this metric is similarly evaluated in [SMGP] and [SWGP]. This leaves σ(.)

as the unique element of the objective function in [RP], granting the formulation a

stronger focus on maximizing the expected quota fulfillment of the farmers, which

therefore minimizes the deviation from quota, DFQ. Accordingly, it is acceptable to

compare [RP] to [SMGP] and [SWGP] on the basis of expected performance because

the only unique element of its objective function still helps to minimize expected

DFQ.

OFV can first be considered to evaluate the magnitude of the deviation risked by

using each formulation. Paired t-tests can be used to develop confidence intervals

of the difference in OFV for each pair of formulations in each week. The results of

these tests, using 95% confidence intervals, are presented in Table 5.7 and visualized

in Figure 5.17. Percentages are provided based on the first number in the calculation,

i.e. if the calculation is [A]-[B] then the appropriate LB (%) is calculated by LB/[A].

The same is true of UB (%) and UB. While these percentages are not referenced in the

analysis, they are intended to provide the reader with a point of reference illustrating

the significance of the differences presented.

Interpreting Table 5.7 requires considering the calculation provided in the first

column. For example, examine the first row. The calculation [RP ]OFV −[SMGP ]OFV

finds the difference between the OFV of [RP] and the OFV of [SMGP]. If the difference

is a positive number, OFV is higher for [RP]; if the difference is a negative number,

OFV is higher for [SMGP]. LB and UB show that a 95% confidence interval for

the difference is [0.034, 0.097], demonstrating that the OFV of [RP] is expected to

be higher, and therefore worse, with at least 95% confidence. Because [RP ]OFV is

the first term in the Calculation column, LB (%) and UB (%) present LB and UB

respectively as percentages of the OFV of [RP], suggesting that [SMGP] improves the
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Calculation Week LB UB LB (%) UB(%)

[RP ]OFV − [SMGP ]OFV 1 0.034 0.097 20.5 59.0
[RP ]OFV − [SWGP ]OFV 1 0.019 0.034 11.5 20.6

[SWGP ]OFV − [SMGP ]OFV 1 0.008 0.070 5.8 50.0
[RP ]OFV − [SMGP ]OFV 2 0.169 0.200 48.4 57.3
[RP ]OFV − [SWGP ]OFV 2 0.101 0.136 28.9 39.0

[SWGP ]OFV − [SMGP ]OFV 2 0.057 0.075 24.8 32.6
[RP ]OFV − [SMGP ]OFV 3 0.068 0.083 50.7 61.9
[RP ]OFV − [SWGP ]OFV 3 0.033 0.047 24.6 35.1

[SWGP ]OFV − [SMGP ]OFV 3 0.032 0.039 34.0 41.5
[RP ]OFV − [SMGP ]OFV 4 0.072 0.083 48.6 56.1
[RP ]OFV − [SWGP ]OFV 4 0.028 0.040 18.9 27.0

[SWGP ]OFV − [SMGP ]OFV 4 0.039 0.048 32.5 40.0
[RP ]OFV − [SMGP ]OFV 5 0.074 0.096 24.2 31.4
[RP ]OFV − [SWGP ]OFV 5 -0.001 0.060 -0.3 19.6

[SWGP ]OFV − [SMGP ]OFV 5 0.028 0.084 10.0 30.1

Table 5.7: Paired t-test comparisons of the difference of mean OFV values for each pairing
of [SMGP], [RP], and [SWGP] for each week.

Figure 5.17: Paired t-test comparisons of the difference of mean OFV values for each pairing
of [SMGP], [RP], ad [SWGP] for each week.

OFV of [RP] by between 20.5% and 59.0%.

Upon observing Table 5.7, a consistent pattern emerges: [SMGP] will produce

the best OFV and [RP] will produce the worst OFV. The only time a result suggests
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otherwise is in the comparison of [RP] and [SWGP] in week 5, where the 95% con-

fidence interval contains 0. If a 93% confidence interval is constructed to make the

same comparison, it does not contain 0. [SWGP] is still heavily favoured to provide a

better OFV. While [SMGP] is optimized according to OFV, and thus it is predictable

that it will be the best by this metric, it is still useful to be able to quantify the

improvement.

On average, [RP] has an OFV 0.098 higher than [SMGP]. If the decision maker

could be guaranteed this would be the OFV difference with very little variance, [RP]

might be an acceptable model, but it is very close to the threshold for rejection of

0.100. Its observed worst-case scenario should be identified to consider whether the

model might produce a solution that would be rejected by ABC Poultry. According

to the week 2 confidence interval in Table 5.7, it can be claimed with 95% confidence

that [SMGP] offers an OFV improvement over [RP] in the range [0.169, 0.200]. Week 2

presents the largest OFV improvement between any pair of the stochastic formulations

in any week, an improvement which greatly exceeds the threshold for rejection. The

magnitude of the corresponding improvements is comparable to those referenced in

the analysis of the deterministic solutions. A 0.200 OFV reduction corresponds to

bringing the worst DFQ level of a farmer 20 percentage points closer to the optimal

value, improving the WB of the worst day by 6.7 percentage points, or reducing a WS

of at least 0.30 kg by 0.10 kg. It is useful to observe this because it makes the decision

maker aware of a chance that [RP] will produce a solution imbalanced enough that

it cannot be used.

[SWGP] offers more moderate OFV results: it is consistently better than [RP],

but worse than [SMGP]. It does not produce any solutions with a significant enough

improvement to be made in OFV to merit rejection, averaging an OFV increase

of 0.048. According to the confidence intervals presented in Table 5.7, the largest

improvement [SMGP] may offer over it in any of the test weeks is 0.084, corresponding

to bringing the worst DFQ level of a farmer 8.4 percentage points closer to the optimal

value, improving the WB of the worst day by 2.8 percentage points, or or reducing a

WS of at least 0.242 kg by 0.042 kg. While these improvements are desirable, none

of them are indicative of a solution imbalanced enough to be rejected.
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Data indicates that moving from using [SMGP] to [RP] risks a much larger max-

imum deviation, possibly leading to rejection of the solution. Moving from using

[SMGP] to [SWGP] risks a more moderate increase in maximum deviation the farmers

may find acceptable in exchange for a DFQ improvement if they agree to a collectivis-

tic approach, although this exchange cannot be properly evaluated until its reward is

quantified. This reward can be examined in a similar manner to OFV. The results of

the paired t-test comparisons of DFQ, using 95% confidence intervals for each pairing

of [SMGP], [RP], and [SWGP], are presented in Table 5.8 and subsequently visualized

in Figure 5.18. As in Table 5.7, percentages are provided to give the reader a point

of reference, LB (%) is calculated by LB/[A] for [A]-[B], and the same is true of UB

(%) and UB.

Calculation Week LB UB LB (%) UB(%)

[SMGP ]DFQ − [RP ]DFQ 1 -0.262 0.044 -6.7 1.1
[SWGP ]DFQ − [RP ]DFQ 1 0.153 0.547 3.5 12.5

[SMGP ]DFQ − [SWGP ]DFQ 1 -0.597 -0.320 -15.2 -8.2
[SMGP ]DFQ − [RP ]DFQ 2 0.226 0.591 4.7 12.2
[SWGP ]DFQ − [RP ]DFQ 2 -0.106 0.223 -2.4 4.9

[SMGP ]DFQ − [SWGP ]DFQ 2 0.216 0.484 4.4 10.0
[SMGP ]DFQ − [RP ]DFQ 3 -0.114 0.195 -3.1 5.3
[SWGP ]DFQ − [RP ]DFQ 3 -0.263 0.012 -7.5 0.3

[SMGP ]DFQ − [SWGP ]DFQ 3 0.062 0.271 1.7 7.42
[SMGP ]DFQ − [RP ]DFQ 4 0.120 0.319 3.2 8.4
[SWGP ]DFQ − [RP ]DFQ 4 0.081 0.329 2.1 8.4

[SMGP ]DFQ − [SWGP ]DFQ 4 -0.066 0.096 -1.7 2.5
[SMGP ]DFQ − [RP ]DFQ 5 0.122 0.429 2.0 7.1
[SWGP ]DFQ − [RP ]DFQ 5 0.140 0.385 2.3 6.4

[SMGP ]DFQ − [SWGP ]DFQ 5 -0.137 0.163 -2.3 2.7

Table 5.8: Paired t-test comparisons of the difference of mean DFQ values for each pairing
of [SMGP], [RP], and [SWGP] for each week.

Table 5.8 can be interpreted similarly to Table 5.7, with the one difference being

that it examines DFQ differences rather than OFV differences. While a clear hierarchy

emerges when OFV is examined in Table 5.7, the same is not true when DFQ is

examined in Table 5.8. For each pairing, the paired t-test is inconclusive for two of the

five weeks: weeks 1 and 3 for [SMGP] and [RP], weeks 2 and 3 for [SWGP] and [RP],

and weeks 4 and 5 for [SMGP] and [SWGP]. It can be observed that in the pairings
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Figure 5.18: Paired t-test comparisons of the difference of mean DFQ values for each pairing
of [SMGP], [RP], and [SWGP] for each week.

where the tests are not inconclusive, [RP] shows an average of a 0.301 percentage

point improvement over [SMGP] and a 0.273 percentage point improvement over

[SWGP]. Because [SMGP] is better than [SWGP] with 95% confidence in week 1 and

worse with 95% confidence in weeks 2 and 3, no assertion of an improvement in either

direction should be made.

Ultimately, the test weeks give no evidence that any formulation will consistently

yield a better DFQ value than another formulation. This makes the collectivistic

approach unappealing, asking the farmers to adopt an increased risk of suboptimal

profit in a single week without providing an incentive of increased expected profit.

Accordingly, [SMGP] should be used to solve the stochastic problem rather than [RP]

or [SWGP] regardless of whether the farmers prefer an individualistic or collectivistic

approach.

5.5.3 Managerial Insights

Even if a decision maker chooses to continue scheduling by hand rather than imple-

menting [DMGP] or [SMGP], the analysis provided by this chapter still offers several

contributions. The insights offered may be particularly useful to those working in the

poultry industry. The following observations can be made:
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• Useful predictions can be made about the average growth rate of a flock of

chickens based on the growth rates of previous flocks raised in the same barn.

• Risk pooling offers an improvement in performance for meeting quotas and

balancing weight across days in exchange for a reduction in performance in

managing the maximum average weight difference between flocks, potentially

leading to a higher defect rate.

• Delaying the scheduling of flocks for procurement until their average weights

are known results in schedules which adhere significantly better to production

guidelines.

A weight forecasting model is established which has comparable accuracy to the

existing ABC Poultry method without requiring additional human input. Having

the ability to make forecasts without requiring detailed knowledge of each farmer is

useful because it enables automation of the process and allows the responsibility to

be assumed by new people more easily. Identifying that average flock growth rates

can be estimated by the average of previous growth rates in the same barn creates

a forecasting model which is less reliant on the data recorded by farmers. Previous

models explored in the literature [39, 43, 44, 45, 88] have required daily records of

average flock weights and environmental factors such as temperature and humidity.

These factors must either be recorded automatically by expensive state-of-the-art

equipment some farmers may not possess, or manually, which expects a farmer to

make a time-consuming daily change to their routine. This forecasting model only

relies on a single piece of information from the farmer, which can be recorded manually

with inexpensive equipment. The weight forecasting model developed in this thesis is

a useful contribution to poultry companies purchasing from farmers who lack state-

of-the-art equipment.

The effect of risk pooling on DFQ, WB, and WS is observed, concluding that using

a greater number of flocks meets quotas and balances total weight across days more

reliably, but risks a higher defect rate. By evaluating the best DFPP solution method,

[DMGP], in the context of SFPP, it can be observed that WS is adversely affected

by uncertainty when an average of approximately 8 flocks per day are scheduled.

Based on the reasoning presented earlier in this chapter, it can be concluded that
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reducing the number of flocks per day will help reduce WS, and therefore defect rate.

Consideration should be given to how the severely the magnitude of the reduction will

negatively impact DFQ and WB. If a poultry company decides an acceptable trade

may be made to improve WS at the expense of the other two metrics, this observation

is a useful contribution by suggesting that the company should take steps to ensure

their suppliers produce fewer, larger flocks.

The large VSS presented between [DMGP] and [SMGP] illustrates the power of

delaying schedule decisions until flock weights are known. In terms of the case study,

[DMGP] and [SMGP] are the closest to ABC Poultry’s manual scheduling approach

because they are all individualistic approaches. Farmers have different methods of

providing average flock weights. Some weigh their chickens manually, creating the

need for the deterministic formulations, but others have outfitted their barns with

more modern equipment. This equipment includes scales built into parts of the barn

itself and provides daily digital updates on the average flock weights. In a week where

every barn to be scheduled has this technology, last-minute schedule adjustments

with certain knowledge of the flock weights are possible. By offering a significant

reduction in maximum deviation if the exact schedule is not finalized until the day

before collection begins, the two-stage stochastic approach offers a valuable way for

a poultry company to reduce WS, and thus average defect rates, in these weeks. It

can be noted that this contribution is also valuable to poultry companies in areas

not subject to supply management. While the model would need to be adjusted by

replacing the goal of meeting farmer quotas with a goal of maximizing profit, reducing

WS to reduce defect rates is still appealing. This information incentivizes any poultry

company to delay their flock scheduling until their weight forecasts become certain,

even if trucks must be scheduled to visit geographic clusters earlier than that.



Chapter 6

Conclusion

This thesis considers a production planning problem in which forecasts must be made

about an uncertain supply, then this supply must be scheduled across a time horizon

subject to a set of operating constraints while considering the competing interests of

multiple parties simultaneously in the solution.

After reviewing the relevant literature, Chapter 2 identifies an opportunity for

contribution by considering a production planning problem which must balance com-

peting interests and consider the stochastic multi-period lot sizing problem under

uncertain supply. By creating and testing three formulations each for the determin-

istic and stochastic problem, useful models are created to accomplish this goal in the

context of DFPP and SFPP.

Chapter 3 applies two common approaches to the multi-period lot sizing problem

to solve DFPP by developing an integer program [DIP] and a weighted goal program

[DWGP], then proposes a less frequently considered approach in the minmax goal

program [DMGP]. It qualifies [DIP] and [DWGP] as collectivistic and [DMGP] as

individualistic, then considers that the collectivistic solutions present an increased

risk of loss in a single week in exchange for the potential of expected gain. It concludes

that testing should be performed to quantify this relationship.

Chapter 4 considers SFPP, a modified version of DFPP with uncertainty incorpo-

rated into the weight predictions by having farmers send a second set of average flock

weights as late as possible. It uses soft robust optimization to adapt [DIP] to the

problem as [RP], then stochastic versions of [DWGP] and [DMGP] are proposed as

[SWGP] and [SMGP], respectively. It is noted that [RP] and [SWGP] are still collec-

tivistic approaches while [SMGP] is individualistic, concluding that testing should be

done to quantify the tradeoff in single-week risk vs expected reward in case it differs

from that of the deterministic problem.

Chapter 5 analyzes flock history from ABC Poultry to model the growth rate

87
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of each flock as a normally distributed random variable, then approximates the ex-

pected value of this variable with an 8-point moving average to make predictions.

When the models of the deterministic problem [DIP], [DWGP], and [DMGP] are

tested, [DMGP] is observed as the superior solution because it provides a significant

reduction in the risk of a large maximum deviation in exchange for a statistically

insignificant change in production optimality for the farmers. When the models of

the stochastic solution [RP], [SWGP], and [SMGP] are tested, [SMGP] is observed as

the superior solution because it provides statistically significant improvements on test

data, yielding reductions in expected maximum deviation ranging from 5.8% to 61.9%

while demonstrating no evidence of a significant reduction in production optimality.

This thesis makes the following contributions:

• An agricultural system is modelled under supply management to create prescrip-

tive optimization models: DFPP and SFPP both define agricultural systems

under supply management. After creating three models to solve each problem,

the MGP approach is observed to produce the superior optimization model for

both problems.

• The multi-period lot sizing problem is considered under the influence of multiple

stakeholders with competing financial interests: DFPP and SFPP both require

the optimization of the production of competing stakeholders. The best solu-

tion methods [DMGP] and [SMGP] consistently reduce the maximum expected

deviation from optimality, thereby lowering the risk of a solution disproportion-

ately impacting a farmer, without reducing the expected quota fulfillment of

that farmer.

• A multiobjective formulation of the multi-period lot sizing problem with uncer-

tain supply is created: [SMGP] and [SWGP], the stochastic GP formulations of

SFPP, both provide a multiobjective formulation of the multi-period lot sizing

problem with uncertain supply.

• The performance of SRO and stochastic GP techniques is compared: [RP] is

compared to [SWGP] and [SMGP]. SRO may provide a small average improve-

ment in the criterion its objective function optimizes (DFQ) at the cost of larger

maximum deviations from optimality compared to stochastic GP.
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In addition, the following managerial insights are provided:

• Useful predictions can be made about the average growth rate of a flock of

chickens based on the growth rates of previous flocks raised in the same barn.

In the case study, a forecasting model is established using a moving average of

the growth rates for the 8 flocks most recently raised in the same barn.

• Risk pooling offers an improvement in performance for meeting quotas and

balancing weight across days in exchange for a reduction in performance in

managing the maximum average weight difference between flocks, potentially

leading to a higher defect rate. In the case study, it is observed that scheduling

approximately 8 flocks per day provides good performance in DFQ and WB but

unacceptable performance in WS.

• Delaying the scheduling of flocks for procurement until their average weights

are known results in schedules which adhere significantly better to production

guidelines. In the case study, it is observed across five test weeks that delaying

this decision reduces maximum deviation by between 40.3% and 86.6%.

The case study shows that ABC Poultry should implement a minmax goal pro-

gramming approach to procurement scheduling moving forward, and additionally that

the company should encourage farmers to adopt the practice of sending a second set

of weights the day before collection begins for the week.

6.1 Future Work

SFPP assumes that farmers providing average flock weights on Sunday enable pre-

dictions accurate enough to be considered certain. If this is no longer considered to

be the case, and it is assumed that a flock’s average weight cannot be known with

certainty until the day before collection, SFPP could be considered as a multi-stage

stochastic problem. Once the week of collection arrives, farmers provide daily average

weights until their flocks are collected. Each day is its own stage, so the problem has

n + 1 stages for n days. The geographic areas to be visited would still be selected

in the first stage the week before collection, but each subsequent stage would only

determine the flocks to be collected that day.
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While the problem of uncertain supply is solved for SFPP using scenario gener-

ation, alternative methods of handling uncertainty could also be considered for the

problem. Alternative formulations could be considered in which the uncertainty of

the weight predictions is captured by chance constraints or fuzzy programming.

Weather conditions might be considered. A bridge could become closed for a day

due to inclement weather, causing some of the barns the decision maker purchases

from to become inaccessible that day. A multi-stage stochastic programming approach

could be considered by assessing the probability of bridge closure for each day during

planning, then making an updated set of decisions each day when the 24-hour forecast

reveals whether the bridge will be closed the next day.

Another variant of DFPP or SFPP might be considered where farmers receive pri-

ority if they have produced an unsatisfactory overall amount across a recent sixteen-

week quota period. This extension would take the form of a modification to the GP

framework assigning higher weights to deviations by farmers who had recently under-

or over-produced across an entire quota period. In addition to their applications in

the WGP, the weights could still be used in the MGP by modifying what constitutes

two deviations of the same magnitude. While this thesis shows in Chapter 3 that ad-

justing production targets each week helps produce quota amounts more accurately,

it does not consider how to balance who is impacted by large deviations over time.

Preemptive GP could also be used. A higher priority than any other goal could be

assigned to minimizing deviations for farmers who have recently been forced to de-

viate from their quotas or a lower priority than any other goal could be assigned to

minimizing deviations for farmers who have not. The extension would be a valuable

contribution because it is helpful to farmers to reduce their chances of suboptimal

production in consecutive quota periods.

An additional dimension of stochasticity could also be considered for SFPP by

assuming an uncertain flock size based on a variable mortality rate. Not every egg

placed with a farmer becomes a chicken that is processed because some of them die due

to sickness or environmental factors. A model predicting flock size at collection and a

formulation considering the uncertainty inherent in that prediction would be a useful

contribution. A model could also be created for mortality rate based on the weather.

As climate change creates more extreme temperatures, it becomes harder for chickens
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to survive in the back of a truck, particularly in areas of the world that are already

especially hot or cold. Their mortality rates could be monitored and corrective action

taken if an increase was observed over time, ensuring more sustainable production.

A poultry company can also consider sustainability by ensuring they purchase from

suppliers with sustainable practices. Azadnia et al. [12] present a multi-period lot

sizing model with supplier selection in which each supplier is assigned a sustainability

score based on environmental, social, and economic qualitative criteria. While the

decision maker for DFPP and SFPP cannot choose to collect flocks from some farmers

and not others, sustainability scores could be used to determine which farmers to

prioritize as suppliers when requesting flocks from farmers. Alternatively, a multi-

stage stochastic problem could be considered in which the first stage selects which

farmers will receive flocks from the hatcheries each day and the second and third

stages are the two stages of SFPP. A problem like this requires more decision making

power than is assumed in DFPP or SFPP because the decision maker also controls

the hatcheries.

A larger poultry company might be considered without downtime between each

week of production, creating a modified version of SFPP. A rolling horizon model

is useful when production occurs every day. Remembering that geographic clusters

must be selected for collection 2|T | days in advance, flock weight predictions can be

made 2|T | days in advance and average flock weights can be known with certainty

|T | days in advance, a stochastic dynamic programming model can be established.

Each day t is a new stage requiring yg,t+2|T | and xi,t+1 to be decided and sent to

the transportation department, influenced by the decision variables xi,t+2,s through

xi,t+2|T |,s. It can be noted that while the average flock weights would be known for

each day until t + |T |, xi,t+2,s through xi,t+|T |,s would still be indexed by scenario

because more weight predictions become certain every day and the decision must

only be made a day in advance.

Vehicle routing decisions might be added to the problem. Oliveira and Lindau

[1] propose a routing problem which seeks to minimize loss of mass between flock

collection and processing, an approach which could be taken to DFPP or SFPP.

Observations could then be made about whether implementing this approach leads

to an increase in prediction accuracy, or if the weight forecasting model could be
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modified to predict the average weight of a flock based on its collection time.

Decisions on behalf of the transportation department might also be considered in

a bilevel program that treats the transportation department as the leader and the

procurement department scheduling flocks for collection as the follower. A variant of

DFPP or SFPP could be considered in which the transportation department at the

poultry company can set their policy each week about which geographic clusters can

be visited in the same day. The department would seek to minimize cost by properly

utilizing its drivers and equipment, anticipating which policy would result in the most

efficient schedule each week.

Bilevel programming can also be used to assist decision making in hatcheries.

One hatchery supplies many farms, and those farms may supply multiple poultry

companies. Assume each poultry company can make predictions based on the age

of a flock and the barn it is raised in, rather than requiring an interim weight. The

poultry companies can solve DFPP or SFPP and use the objective function of their

formulation to evaluate their satisfaction with the flock placement schedule a hatchery

generates. As the leader, the hatchery would place flocks with farms to maximize the

satisfaction of the followers, who are the poultry companies. Different formulations

could use stochastic and robust optimization and observe the differences in their

solutions.

A supply management system is not a constraint everywhere in the world: while

it is used across Canada, countries as close as the United States do not have a sim-

ilar system [77]. If Canada abandoned the supply management system, DFPP and

SFPP would change. Because farmers would no longer have quotas to meet, the de-

cision maker would be free to consider flock purchases based on the most profitable

schedule. SFPP would become a multi-product MLSSP with stochastic supply and

demand, considering chickens in different weight ranges as different products. Bilevel

programming can also be considered as a solution to capture the competitive nature of

the free market, viewing the decision maker at the poultry company as the leader and

the decision maker at each farm as a follower. The poultry company would schedule

flocks for collection and offer to pay a premium for chickens of a certain size because

they are easier to sell, incentivizing farmers to make a decision more complex than

raising the flock to be as heavy as possible.
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If the supply management system is abolished, the assumption that holding cost

is unnecessary might be relaxed. Canada initially adopted the supply management

system to control a production surplus [3] and it is possible that the surplus could

return if the system disappeared. If the demand of the market is less than the

supply of chicken, the poultry company must hold the surplus until it can be sold.

Consideration must also be given to the perishability of the chicken, which can only

be held for a finite amount of time before becoming unsellable and incurring a waste

cost. The multi-period lot sizing problem with perishable goods has been considered

in the literature [6, 58], but not with supplier selection.

Perishability can also be considered in the context of a major disruption to the

market such as a pandemic. While demand for any amount of supply can be a

reasonable assumption under supply management, the assumption does not hold if

the market changes quickly enough. Consider the effects of the COVID-19 pandemic.

Many restaurants temporarily closed when Canada went into lockdown in 2020 [3],

causing demand for food products including poultry to decrease rapidly and for some

of those perishable products to be wasted. An extension of this thesis could consider

a version of DFPP or SFPP which can be implemented when the decision maker is

at a heightened risk of lockdown. The model would use the probability of lockdown

to penalize the objective function based on the proportion of sales that could be lost

if restaurants closed again. Assuming that restaurants are more likely to purchase

smaller chickens because they pay a price per unit weight but sell their pieces for a

flat rate, the proportion of each flock expected to be purchased by restaurants would

vary based on the flock’s average size.
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