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Abstract

Machine Learning algorithms have made significant contributions in today’s world,

leading to an increased usage of these algorithms in fields such as healthcare, finance,

judiciary and science. However, as the application of ML algorithm surges, the need

for transparent and interpretable models becomes essential. This is particularly ap-

plicable to domain experts such as medical practitioners, finance analysts, who rely

on these algorithms’ results to make decisions that can significantly impact someone’s

life. Therefore, despite these algorithms’ immense predictive power, they tend to be

a black box in nature when explaining the results or decisions made. Visual repre-

sentations have shown to be instrumental in addressing such an issue of increasing

model transparency, allowing users to grasp models’ inner workings. Visualization

touches upon complex algorithms’ intrinsic nature and highlights some of the crucial

factors needed to interpret them. Despite their popularity, visualization techniques

still present limitations in terms of visual scalability, mainly when applied to analyze

popular and complex models, such as Random Forests(RF). In this work, we propose

‘Random Forest Similarity Maps’ (RFMap), a scalable interactive visual analytics

tool designed to analyze RF models. RFMap focuses on explaining the inner working

mechanism to users in a simplistic way through three views, describing individual

data instances’ predictions, providing an overview of the entire forest of trees, and

highlighting instances’ input feature values. The interactive nature of RFMap allows

users to visually interpret the models’ errors and decisions, establishing the necessary

confidence and users’ trust in RF models to make better use of the algorithm and

improve performance. The effectiveness of our technique is demonstrated using two

user scenarios and validation of the results are done through a thorough user study,

which shows that most of the users were able to interpret and understand RF models

using our tool.
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Chapter 1

Introduction

Machine Learning (ML) algorithms have seen widespread usage in numerous fields

over the past few years. From music recommendations [39] to understanding whether

or not a patient has a severe infectious disease [36], ML has become a part of our

day-to-day life, and their dependencies have only increased with time. ML algo-

rithms’ strong predictive capability has triggered many organizations to rely on these

techniques for effective data-driven decision-making. Specifically, in ML, the demand

for solving classification problems has been significant, usually involving assigning

appropriate class labels to new and unseen instances [26].

However, with the increase in the complexity of problems and dataset features,

better algorithms are necessary to derive accurate models. The need to have greater

predictive performance levels in real-life use cases often leads to a very intrinsic prob-

lem, i.e., its interpretation [11]. For instance, COMPAS (Correctional Offender Man-

agement Profiling for Alternative Sanctions), a software for judging the likelihood

of a criminal defendant becoming a recidivist, has been widely criticized for its bi-

ased racial decisions [5]. It was observed from the algorithm results that people of

color were at greater risk of recidivism than white defendants. Since ML techniques

have become ubiquitous, especially in crucial decision-making involving humans, there

is a considerable demand to explain the complex algorithms’ work-ability and help

decision-makers gain confidence and trust in the algorithm [17].

Visualization has been a natural choice for users to understand the black-box

nature of complex ML algorithms [12]. In recent times, visual metaphors such as

Node-Link diagrams [43], Decision Tables [25], and Matrix views [41, 42] have been

widely used to interpret models. However, these techniques are prone to scalability

issues and can often not capture an algorithm’s overall working mechanisms since they

are usually designed to inform about particular predictions. This hinders the user

from getting a holistic picture of the model and can lead to misinterpretations. The

1
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issue is particularly seen with ensemble models such as Random Forests (RF) [42,

60], which is a collection of decision trees, and visualizing every tree in a human

interpretable form is complex. Another issue happens when auditing results. With

the current existing approaches [42, 60], the local interpretability focus on presenting

only the decision paths (or logic rules) used by an instance, which is not helpful

enough for most of the ML models, specifically for those based on multiple trees such

as RF [35]. The problem, in this case, is losing the context, which is deemed one of

the essential aspects of visual analytics tasks.

To address the above mentioned issues, we propose a tool to represent the knowl-

edge learned (rules) by an RF model and allow for interpretation.

1.1 Research Questions

In light of the issues referenced previously, the current work will attempt to answer

the following research questions:

• Is it possible to understand what knowledge a RF model has learned globally?

• Is it possible to understand the reasons behind a specific decision while preserv-

ing the global context?

• Is it possible to have a comparative analysis between two or more RF models?

1.2 Proposal

In this work, we propose Random Forest Similarity Map (RFMap), a scalable and in-

teractive visual analytics tool to address the research questions discussed above. Our

visual representations are based on multidimensional projection techniques [54, 40]

enabling users to visualize entire models, making them easy to understand. RFMap

allows a user to analyze the entire model globally and enables auditing of individual

instances or a cluster of instances locally to explain how a specific decision was made

without losing the forest’s global context. A similar approach has been widely used

to understand certain aspects of Deep Neural Networks [24, 21]. However, to the best

of our knowledge, this is the first time this is used to interpreting Random Forests.
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1.3 Contributions

In summary, the primary contributions of this work are the following:

• An interactive visualization tool that supports explanation of data instances.

without losing the global context of the forest.

• Two novel multidimensional projection based visual metaphors to understand

the instances and induced logical rules.

• A scalable technique to visualize vast number of trees (decision paths) in a

Random Forest model.

• The proposed technique is validated through a user study conducted with 18

participants.

1.4 Thesis outline

The remainder of the thesis is organized as follows: in Chapter. 2, we present the lit-

erature review of ML model explainability strategies, general visualization techniques

used in model interpretation, and visualizations of RF models. Chapter. 3 presents

background information on RF, design goals and analytical tasks supported by our

solution. Also, RFMap is introduced in detail. In Chapter. 4, we explain the work-

ability of our technique using two different user scenarios and show how our system

helps in the interpretation of entire RF models and local instances while maintaining

the global context. Finally, we discuss and present our technique’s limitations and

draw conclusions in Chapter. 6.



Chapter 2

Related Work

As ML algorithms garner more attention with time, the need for Explainable AI

(XAI) has also increased substantially. There has been vast progress in the research of

explaining the black-box nature of algorithms by using visual representations [42, 41,

60], knowledge extraction methods [41, 42, 37, 45] and influence based techniques [59,

14]. In this work, we focus on visual representations as the primary medium to

interpret ML algorithms.

2.1 General Explainability Strategies

In the literature survey of existing explainability strategies, Adadi et al. [2] categorize

the methods primarily into: (i) complexity-based (ii) scope-based (iii) model-based.

The complexity of a model tends to be directly proportional to its interpretation.

Hence, the nature of a model in terms of its complexion is non-trivial in explaining

it. To reduce complexity in understanding ML models, the overall knowledge learned

by the model is typically extracted. These are called knowledge extraction meth-

ods. Such knowledge extraction techniques, specifically in black-box algorithms like

Artificial Neural Networks (ANN), have proven efficient in simplifying their black-

box nature. In this regard, rule-based knowledge extraction methods have leaped

in the direction of approximating complex models using simpler, interpretable ones.

Humbird et al. [22], presents a technique to build deep feed-forward neural networks

based on decision trees, thus allowing to build model surrogates that are easy to un-

derstand. Letham et al. [30] proposes an explainable method (Bayesian Rule Lists)

based on decision lists (consisting of if-then statements), making predictive models

more interpretable to human. Mashayekhi et al. [38] presents another way of extract-

ing rules specifically from Random Forest (RF) models. They employ optimization

strategies, specifically ‘hill climbing algorithm’ to select valuable rules instead of all

the rules, thus allowing them to deal with scalability issues. In our work, we make

4
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use of rule-based extraction techniques to interpret black-box models, but our main

focus lies on being able to represent the rules using visual metaphors and not on the

knowledge extraction part.

Another strategy takes into consideration the global or local scope of models. In

general, a model’s global scope targets explaining the entire model logic [55, 30, 57, 33]

to help a human understand models’ internal behavior. Global explanations touch on

the factors such as understanding how a model makes judgments, what features were

involved in the decision-making process, and knowledge (decision paths, weights, etc.)

learned by the model. On the other hand, local interpretation is about explaining a

particular instance and its resulting predictions [50]. Taking inspiration from these

techniques, we present a system that explains the local instances and preserves the

overall global structure, helping users keep a perspective of how a complex model has

learned knowledge, thereby reducing the cognitive load on users.

The third strategy touches upon a model’s nature, i.e., it being agnostic or spe-

cific. Model-agnostic explanation techniques apply to all models irrespective of their

nature [2, 49]. In contrast, model-specific strategies are limited to a particular model

and generally apply to simpler models in structure, such as Decision Trees or linear

models. However, recent research has allowed for the distillation of complex models

so they can be converted into simpler form and hence be transparent [53]. This en-

ables explanations to be made from a particular model perspective, which helps in

touching upon that model’s specifics. For this research, our target is aiding users in

understanding the black-box nature of ‘RF models’.

2.2 Visualization for Interpreting Models

Visual metaphors have been seen to address the problem of interpreting ML algo-

rithms for quite some time. In recent years, numerous visual analytics systems have

been developed to explain the inner workings of a model [46, 15], extracting informa-

tion from a model, i.e., post-hoc interpretability [41, 60, 2] or to enable performance

diagnosis for building more accurate models [3, 48, 4]. Naturally, visual representa-

tions have been an optimal choice when explaining complex ML models.

Fred Hohman et al. [21] propose a visual analytics system (Fig 2.1) for Deep Neu-

ral Networks (DNN) that summarizes the activation aggregations from all classes to
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help to understand the critical neurons contributing to a particular classification using

dimensionality reduction techniques. They also provide a graph representation of the

‘neuron-influenced’ aggregations to show the relationship between different neurons

that finally leads to a prediction [21]. In another line of work, Zahavy et al. [58] use a

3D t-SNE to visualize the state transitions of the learned policies from a Deep-Q net-

work used in reinforcement learning. ActiVis [24] is another system deployed across

Facebook to interpret the black-box nature of deep neural networks. They use a

2-D projection to explain instances’ activation using t-SNE and place instances with

similar activation values together. Cantareira et al. [10] introduce an approach to

explore a Neural network’s hidden layer activities and simplifying the inner working

mechanism of such complex networks. Their novel technique focuses on comparing

projections derived from multiple stages in a neural network and visualizing the dif-

ferences in perception. Taking a similar approach to ours, Rauber et al. [47] in their

research, focuses on improving classification systems. They present projection-based

visualizations that can help developers interpret particular interesting insights in a

classification model and improve these systems through feature selection.

Figure 2.1: SUMMIT: summarizes and visualizes what a Deep learning model has
learned [21]

In general, these point-based visualization techniques have been focused on ex-

plaining deep neural networks. On the other hand, RFMap is specific to RF models.

It allows users to understand the data instances and the decision paths in a forest
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Figure 2.2: ActiVis: Projected instances activations [24]

by using 2-D projections techniques, making our RFMap easily interpretable and

scalable.

2.3 Random Forest Visualization

A RF model consists of a large number of decision trees that function together as

an ensemble. Each tree model makes its predictions (vote), and the class with the

most votes is considered to be the final predicted class [8]. Such a large collection of

decision trees and their underlying working mechanism makes the model black-box in

nature. Hence, visualizing the entire forest of trees to make it interpretable for users

is an ongoing research problem. The ability to represent a forest of decision trees to

explain each tree’s structure and properties is daunting. Hansch et al. [18] propose

an interactive visualization system based on a botanical approach to interpret and

improve RF models. They emphasize that the factors that lead to an increase or

decrease in an RF models’ performance are not easy to express as scalars. Hence,

visualizing the entire RF model with all the decision trees can help in better inter-

pretation. However, their work applies only to RF models based on binary trees.

Moreover, the scalability of the forest visualization is a concern when thousands of

decision trees are used.

To show the correlation between the decision trees in an RF model and data

instances, Breiman and Wald [9] presented a multidimensional scaling (MDS) based

projection. They use proximity measure, which is inherent to the RF algorithm as
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similarity measure to display the clusters formed among the trained instances and

allow for outlier identification. In our technique, we use their ‘proximity measure’

as a distance metric to project our instances. However, we extend their method

to build a visual representation that allows for the explanation of class separability

and enables local inspection of the instances by preserving the context of the forest.

Lau et al. [29] uses a method of aggregation for the collection of trees based on

the number of appearances of a feature at node positions. They focus on feature

importance and interaction to derive information on variables applied at each node

of a tree. However, these tasks become challenging as they increase the number of

feature variables. Additionally, their system cannot handle tree depths greater than

8, which makes it practically non-usable.

Neto et al. [42] in their work, named ExMatrix(Fig 2.3), present a matrix-based

visual metaphor to aid in the global and local interpretation of RF models. They

propose a novel method to extract each tree’s decision path as rules and uses the

matrix visualization together with properties such as certainty of rules, coverage,

voting committee decision to make interpretation easy for users. While ExMatrix

presents a single view of decision paths and their associated properties, they do not

allow users to compare and see similarities or differences between the various decision

paths. Ming et al. [41] introduces a model-agnostic, rule-based visual analytics sys-

tem, named RuleMatrix (Fig 2.4) that targets the explanation of black-box models

by using model induction techniques and presents a matrix-based visual metaphor.

However, RuleMatrix is not scalable when it comes to visualizing thousands of rules.

Closely related to our work is iForest [60]. iForest (Fig 2.5) incorporates different

visual representations into a platform that aims at explaining an RF model. Al-

though iForest visualizes decision paths for a specific prediction, they fail to preserve

the global context among the entire forest of trees when supporting analysis of local

predictions. This is very critical in the case of RF models. It will allow a user to gain

insights into the knowledge learning process from different parts of the forest, giving

a holistic picture of the entire decision-making process. In our work, we specifically

focus on this aspect and allow users to understand the decision paths used by an

instance while keeping the entire forest of trees in context. Our technique can also
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Figure 2.3: ExMatrix: a Matrix based visual representation to interpret RF model
[42]

Figure 2.4: RuleMatrix: Another matrix based visualization to understand rules [41]

handle models with thousands of decision trees, thus allowing us to address the vi-

sual scalability issue, which is seen with systems like iForest [60], ExMatrix [42] and

RuleMatrix [41].
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Figure 2.5: iForest: A Visual Analytics system to interpret RF model [60]



Chapter 3

Methodology

3.1 Background

A classification process involves developing a model, i.e. function F by taking a

dataset X= {x1,...,xN} of size N and their labeled classes Y = {y1,...,yN} along with

their features F ={f1,...,fM} to predict the class yn for new unseen instances xn. As

part of the classification process, the dataset X is divided into two subsets, Xtrain and

Xtest. The function F is trained on Xtrain and the trained function is then applied to

Xtest [42]. A Random Forest (RF) classification model consists of individual decision

trees DT1,...,DTk as ensembles [8]. Each decision tree is trained on a random subset

of sample with replacements derived from the training data along with a randomly

selected set of features. The resulting predictions from individual decision trees are

then put through a voting process and the class receiving highest votes is considered

to be the final predicted class [6, 8]. The construction of the RF algorithm is shown

in Algorithm 1[60, 28].

To aid in the interpretation of RF models, our technique uses rule-based knowledge

extraction procedures [42] and visualizes each ‘decision path’ of a tree as logic rules

R={r1,..rz}. A decision path is a path starting from the root node to the leaf node in

a single decision tree, and the outcome from the leaf node determines the predicted

class C after it goes through the voting process. Along with the extracted logical

rules R, we also derive two other important properties using Neto et al.’s [42] vector

extraction technique for supporting interpretation of the rules - rule coverage, rcov
z

and rule certainty, rcert
z . Rule coverage, rcov

z is defined as the value obtained after

dividing the number of instances in Xtrain that is valid for that rule’s class rclass
z by

the total number of instances of rclass
z present in the set Xtrain. Rule certainty, rcert

z

is the vector of each class’ probabilities that is derived from the decision path, i.e.,

the leaf. Since a RF model usually comprises many decision trees, using the decision

path, as a rule, comes as an effective choice when visualizing the entire forest of trees,

11
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Algorithm 1: Random Forest(x,J,A,B)

Result: Ensemble of trees, {DT1,..DTk}

1. for j=1 to J

2. Select a bootstrap sample of size A from training sample x.

3. Grow a tree using the bootstrap data recursively on each node.

4. while number of nodes in the tree does not reach a certain criteria do
Select b features at random from the input feature B.

Pick the best feature for split from b.

Based on a criteria, split the node into child nodes.

end

5. Return the ensemble of trees

thereby allowing us to design scalable and easy-to-interpret visual metaphors.

3.2 Design Goals

After reviewing the literature in RF models visualization and dimensionality reduction-

based classification model analysis, we present our system’s design goals. These goals

are listed below:

G1: Global interpretation. An RF model is a collection of trees. One of the

best ways to interpret the ensemble model’s inner working mechanism is to allow

users to understand what knowledge the overall model has learned [60]. After the RF

model training, the model presents an overview of the relationships between the data

instances and the various decision paths, given a target class label. These relationships

between decision paths and data instances mirror the RF model’s working mechanism

at a granular level and help users comprehend the generic knowledge (valid for most

of the instances) or specific knowledge (valid for only a few instances) learned by the

model. Therefore, it simplifies the model’s complex nature and presents the knowledge

learned (whether generic or specific), helping to understand how the overall RF models

decisions. By enabling the interpretation of the knowledge learned by an RF model,
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we aim to explain the model globally.

G2: Local interpretation by preserving the global context. Local inter-

pretation describes the reasons behind a specific decision for a particular instance [2].

In most RF models, local interpretation usually involves presenting the decision paths

used by the instance [42]. However, to perform local interpretation effectively, preser-

vation of the global context of the forest is essential so users can compare the used

logic rules in context with the other rules in the forest and answer questions such as -

‘Are the decisions made from the most certain logic rules in the forest?’, ‘Does these

rules have a good amount of data support(coverage) as compared to others in the for-

est?’. Being able to answer these questions not only helps users develop trust in their

local explanation but also allows them to retain the local faithfulness [51] on unseen

instances. Local interpretation also means allowing users to find out hidden patterns

from the dataset or a specific set of examples and deduce further explanations based

on them [60].

G3: Comparative analysis of RF models. Another design goal is the ability

to have a comparative analysis between two or more RF models to assist model devel-

opers in selecting reliable models [31]. An RF model is built using various parameters

such as number of trees, splitting criteria, maximum depth of a tree, maximum num-

ber of features to be considered during a split, among others. These factors are very

imperative and influence the overall prediction capability of a model [47]. By visual-

izing and comparing RF models built using different properties, we can interpret their

functioning and shed light on some hidden patterns. For example, what happens to

a model when we do not limit the trees’ depth, allowing all trees to grow indefinitely.

3.3 Analytical Tasks

Based on the related work discussed in Sec. 2 and to fulfill our design goals, we have

developed the following analytical tasks.

T1: Analyzing structure and properties of decision paths. The decision

path in every RF model tree provides a way to understand the final predicted class.

Hence, the analysis of the structural differences between various logic rules is im-

perative to uncover the black-box nature of an ensemble model (G1). For instance,
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how do we know which group of rules among the forest classifies samples as a par-

ticular class? Have they learned anything generic from the training data? We aim

to provide users an answer to these questions through our technique. Other than

analyzing structural similarities between logic rules, it is also essential to know about

the properties such as a rule’s class probabilities (certainty) and how much training

data support a decision path has concerning its predicted class (rule coverage). High

coverage and certain logic rules are the important ones in the model as they are

valid for the majority of the instances (generic knowledge) and important to the RF

committee [42].

T2: Visualizing the forest. Visualizing an entire forest of trees is a challenging

task, and its complexity increases with the number of trees used in an RF model.

To support the case of understanding the working mechanism of complex ensemble

models with certain number of trees (G1), it is essential to provide a way to visualize

the entire forest. Visualizing the forest also helps users in understanding where a

decision path is located within the forest and how these decision paths are related to

one another [18]. Hence, to summarize the structure and understand various decision

paths that form an RF model, visualizing the entire forest is non-trivial.

T3: Interpreting class separation among instances. The primary goal of

any ML classification problem is to separate the data instances into their respective

classes. By establishing a clear decision boundary between the classes, we can validate

the model’s accuracy, understand its inner working mechanism (G1), and allow for

the improvement of models through comparative analysis (G3) [47]. Thus, providing

a visual metaphor to understand the class separation between the instances in a

dataset is crucial.

T4: Knowledge utilized by the model to make a prediction. To under-

stand the prediction of a single instance or a group of instances, it is necessary to

know what knowledge was utilized by the model [41], i.e., which logic rules were used

to classify an instance. While local interpretation methods allow users to know what

rules (decision path) were applied to a sample [42, 60], there is a lack in interpreting

the knowledge learned from the entire forest of logic rules visually, preserving the

global context (G2). The ability to inspect local instances while having a visual cue

of the used rules from the forest allows users to perform in-depth interpretation, and
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it provides insights on the voting process for that instance.

T5: Understanding the instances. Analyzing the structure of instances in

a dataset helps provide intuition into specific hidden patterns that can, in turn,

assist in understanding the way an RF model works on similar types of instances

(G2). For example, by analyzing the inter class overlaps among samples in a dataset,

we can interpret class errors made by the model in a classification problem. Also,

understanding similarities or differences between a group of instances can help the user

develop reasoning on how the RF model sees every instance and how it differentiates

them.

T6: Performing model diagnosis. To develop an understanding of RF models’

performance, i.e., how properly the model can separate the classes, ML model experts

and developers often need to drill down and analyze certain aspects, such as detecting

the mistakes made by a model using confusion matrices [16] and visually comparing

multiple confusion matrices [52]. Although confusion matrices are easy to use, they

become challenging to interpret when the number of classes increases in a multi-class

classification problem [47]. By having the ability to visualize the patterns formed

among the logic rules in a model and compare it with other models (G3), users can

develop their confidence in the models’ overall functioning and select the model that

produces the desired result.

3.4 Overview

This section discusses our solution, RFMap proposed based on the design goals men-

tioned in Chapter. 3.2. RFMap comprised visual representations, and steps involved

in interpreting RF model are presented in Fig. 3.1. Primarily, in our technique, we

focus on three visualizations: Instance view, Forest view & Feature View. To fulfill

our design goals, we have amalgamated the three views into a cohesive and scalable

system. The integration of all the three views into one interactive system (Fig. 3.1)

allows us to target both global (G1) and local (G2) interpretability perspectives [32].

We emphasize that to clearly understand the knowledge learned from a vast forest of

trees, presenting only the decision paths when explaining the results of classification

is not very beneficial [35]. Therefore, preserving the forest’s global context is imper-

ative for local interpretation so users can understand from which part of the forest
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an instance is using the logic rules. Our method also enables users to further drill

down into analyzing the used rules contextually with the other forest rules to help

them answer some of the crucial questions discussed in (G2). The global preserva-

tion approach can also help shed some light on one of the essential components of RF

models, i.e., the voting committee.

In our approach, the logic rules are first extracted from an RF model A and the

necessary instance-rule and rule-instance mappings are derived using the ExMatrix

package [42]. Using RFMap, the user first explores the Instance View B to under-

stand how the RF model sees all the data instances and analyzes the separation of

classes among instances 1 of the dataset. This view also helps a user to understand

the similar and differing instances from RF models’ perspective and enables inter-

pretation of misclassified instances 2 . Users can click on any particular instance 3

to perform local interpretation to understand which logic rules were used to classify

the instance while having the global context of the forest C preserved. The pre-

served forest view helps the user perform contextual analysis of the used logic rules

with other forest rules. The highlighted rules 4 in the Forest View C displays the

used logic rules. The Forest View also allows users to derive an understanding of

the structure of various logic rules and the certainty of their predictions, as shown in

5 . To understand the classification of instances from a global perspective, users can

lasso-select a rule or cluster of rules 6 from the Forest View and the instances being

classified would be highlighted like in 7 . The lasso-selection of rules also intuitively

presents the feature values of instances using those rules in the Feature View D .

RFMap is a web-based tool developed using D3.js [7], Vanilla JS, Plotly [44] and

Bootstrap for the front-end, and Python for the back-end. The motivations and

visualizations for understanding instances and logic rules are further discussed in the

following sections.

3.5 Visualization design preliminaries

Based on the effective results achieved by using dimensionality reduction techniques

in the interpretation of neural networks [46, 24], we adopt a similar strategy to build

both of our Instance and Forest views. We also incorporate a third view to visualize

the feature values of instances used by a rule or group of rules, called Feature View.



17

Figure 3.1: RFMap system with Iris dataset. The letters indicate the system’s dif-
ferent modules. (A) is the Logic rule extraction part, after which we derive the
instance-rule and rule-instance matrix for our projections; (B) is the Instance View ;
(C) is the Forest View ; (D) is the Feature View ; the user first explores the Instance
View and notices the three separated cluster of classes by color. One of the cluster (1)
is shown in dotted circles. They take a note of some misclassified instances (2) from
the view. They then click on an instance (3) to understand the knowledge learned by
the instance from the forest. The highlighted rules in (4) shows the logic rules being
used by the particular instance. The user analyzes the structural differences (similar
or not similar rules) and certainty, coverage of the various logic rules as shown in (5).
To understand a ‘knowledge cluster’, the user draws a lasso around the certain cluster
of rules (6) and the instances covered by the rules are highlighted in (7). For enabling
further interpretation and analysis, the knowledge contents are shown in (D).
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An inherent problem with using dimensionality reduction methods for visualization is

that they can result in cluttered visuals and occlusion issues. This issue particularly

applies to our research work since we build our visual representations based on the idea

of whether an instance uses a logic rule to be classified or not. Hence it is expected

that a lot of instances might end up being in the same position of projection if they

use the same rule. To remove the projection overlaps and meet our design goals,

we employ a distance-preserving grid layout algorithm [20] that uses a binary space

partitioning technique together with the projections obtained for creating orthogonal

grid layouts for both Instance and Forest views. The method first maps the data

instances to 2D points using a projection technique preserving the dissimilarity as

much as possible. Then a partition-scheme is utilized to assign each point into a grid

cell by maximizing the below cross-correlation function [20]

CC =
1

N2

N∑
i

N∑
j

(λ(gi, gj)− λ)(δ(di, dj)− δ)
σλσδ

(3.1)

where δ(di, dj) is the dissimilarity between the samples, λ(gi, gj) is the distance be-

tween grid cells, λ is the mean distance between any two cells, δ is the mean distance

between any two pair of samples, and δλ and δσ are the standard deviations. Al-

though the grid layout algorithm allows us to tackle the occlusion problem, we still

need to maintain the distance of the actual group of instances or logic rules so that our

representation is valid. Therefore, we employ the technique of addition of “dummy”

points before allocating the projections into the grids as per Hilasaca et al. [20]. This

method targets the low-density areas of a projection to add points to represent space.

One of the critical goals of our work is to be able to interpret what knowledge an

RF model has learned (G1) and understand the knowledge learning process for an

instance while preserving the global context of the forest (G2). However, our focus

lies on the principle that interpreting the overall RF model should not be mentally

overwhelming for the user. It should be easy to understand from an explainability

perspective. By taking motivation from these goals, we decide on visualizing just the

decision paths (logic rules) instead of individual decision trees to represent an entire

forest of trees.
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3.6 Instances view visualization

The first visual representation, Instance View (Fig. 3.2), is a 2D projected represen-

tation of the instances in a dataset based on an RF model. The key idea behind

designing a visualization to interpret data instances is to allow users to understand

the structural similarities or dissimilarities (T5) between these instances considering

what has been learned by the RF model. We intend to give users an idea of how

similar the instances are in the RF model’s eyes irrespective of whether the data is

high-dimensional [19]. Therefore, the instances’ similarity will vary based on model to

model. Using our technique, we visualize the class separability among the instances

(T3) and allow model developers to visualize their model’s performance, detect out-

liers, and wrongly classified instances. A near-to-accurate RF model will present a

visualization with clear decision boundaries between the classes with very few within-

class overlaps [47]. This serves as an initial guide for developers in building effective

and robust RF models.

We start with building an RF model based on several parameters, such as the

total number of trees, maximum depth, split criteria, and so on. In any projection-

based technique, the distance metric choice is critical, and its performance relies on

the metric used. Hence, an ideal alternative to aligning with our design goals is the

Proximity measure suggested in [8]. This measures for two samples x1 and x2 the

number of times the same leaf node (decision path) classifies both samples t within

each decision tree, normalized by the total number of trees in the entire forest. Based

on this concept, we derived the following dissimilarity measure

Dissimilarity(x1, x2) = 1− 1

M

M∑
m=1

∑
t∈ϕ̃L,θm

1(x1, x2 ∈ xt) (3.2)

where ϕ̃L,θm represents the set of leaf nodes in a tree ϕL,θm and M is the total number

of trees in the forest [8]. This dissimilarity range in [0, 1] with values closer to 0

indicating samples reaching the same leaf and values closer to 1 samples reaching

different leaves, thus representing the instances from a models perspective [34].

To project our dataset using this dissimilarity, we use the Multidimensional Scaling

(MDS) technique [54]. We use MDS based on Breiman et al.’s adoption [8] of MDS

for visualizing training data to understand clusters and outliers from an RF model
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perspective. Also, MDS is a global technique, and since, in our case, it is vital to

enable interpretation of groups of instances (Fig. 3.1A) based on the class labels (T3)

rather than preserving local neighborhood, it is a reliable alternative.

Projection-based techniques represent data instances with high dimensions into

more human interpretable forms, such as 2D. However, it is also critical to understand

how well the data is represented in a lower dimension to not present with a wrong

representation. In the case of our MDS projection, we measure the effectiveness of

projected points using a metric called Stress [27]. As per the definition, Stress of an

entire projection is measured as the difference between the actual distance of all points

and their projected values. For this work, we adapt Kruskal’s formula to compute

the stress value per point approximately (qi) using the below formula.

stress(qi) =

∑N
j (d′(pi, pj)− d(qi, qj))

2∑N
i

∑N
j d

′(pi, pj)
(3.3)

where pi is the original point, d′ (pi, pj) is the distance between original points and

d(qi, qj) is the distance between projected points. We focus on displaying stress per

point to bring out the projection method’s effectiveness and allow users to build up

their trust on the projected points.

Each instance in the Instance View is drawn as a rounded-rectangle filled with

the color of their original labeled class. In the case of misclassified instances, the

outside stroke color surrounding the rectangle represents the model’s predicted class,

and the filled color inside represents their original class(Fig. 3.2). We also incorporate

the computed stress value, s for each data point by controlling the opacity, O of the

rectangles using

O =



1, if 0 ≤ s ≤ 0.025

0.8, if 0.025 ≤ s ≤ 0.05

0.7, if 0.05 ≤ s ≤ 0.1

0.6, if 0.1 ≤ s ≤ 0.2

0.5 if s > 0.2

Therefore, data instances whose projected representation is almost equal to their

original high-dimensional representation will visually be much brighter. Our primary
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Figure 3.2: Instance View: Represents misclassified instances, decision boundary
between the three classes and outliers.
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focus is to present a visual metaphor to help the user understand how the RF model

sees every instance after being trained. This way, we can establish a hypothesis

regarding the instances’ structure and derive further explanation on new and unseen

data (T5). By analyzing the various cluster of instances formed, a user can get an

idea of the generic knowledge learned by an RF model and explore how a particular

group is different from others in terms of their prediction or feature values. This is

very helpful specifically for users who need to derive case-based reasoning based on

these instances’ interpretation.

Another key element that users can gain insight into using the Instance View is

detecting the within-class outliers [34]. By computing the average proximity value of

an instance with respect to all other instances in a dataset, we can show the instances

that have high overlaps with other class instances and affirm that these samples are

the ones that the RF fails to classify correctly. Thus, the Instance view serves as an

effective solution for users to interpret the classification errors, detect outliers and

understand the decision boundary.

3.7 Forest view visualization

The second visualization, Forest View ( Fig. 3.3), was designed to allow users to ana-

lyze every decision path (logic rules) in the forest and thereby gain an understanding

of what the RF model has learned (G1). To derive insights on the structure of vari-

ous logic rules, it is essential to identify the similarities or differences between various

logic rules. In our technique, two or more rules are considered to be exactly identical

if they classify the same instances. A near-to-similar set of rules will have an inter-

section of instances and will be closer to proximity. These similar rules form distinct

sets of high certainty clusters, which we refer to as a ‘strong knowledge cluster’. A

‘strong knowledge cluster’ suggests that the model has learned strong (high coverage)

relations between training instances given a target class. The ‘knowledge clusters’ rep-

resents a very well-defined piece of knowledge learned by the RF model since these

clusters are valid for most of the data instances and, therefore, more generic. To our

knowledge, this is the first time an RF model’s learning is visualized this way. Other

than interpreting generic ‘knowledge clusters’, analyzing the instances’ classification

from the point of view of a set of rules can also provide insights into understanding
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Figure 3.3: Forest View: visualizing the forest of logic rules(decision paths) in the
Random Forest model. Shows high( big circles) and low (small circles) coverage paths.
Strong knowledge clusters are seen to be formed inside the model. Individual class
probabilities can be seen when hovered over a rule, as shown by the arrow.

the patterns defined by these set of logic rules, i.e., what kind of instances a set of

rules classify as a particular class? We enable users to answer questions like these by

selecting a set of logic rules and visualizing the various hidden patterns.

The view for visualizing the logic rules is also based upon the same underlying

principle of projections. However, the choice of distance metric used and the projec-

tion technique applied varies here. To do the projection, we utilize an instance-rule

matrix derived from the ExMatrix package [42], Imn, imn∈ [0, 1] (#instances x #rules)

that gives a binary value of 0 or 1 based on whether an instance uses a rule or not

for classification, and then apply a transpose on it. The result is a rule-instance

matrix(#rules x #instances), Rij, rij∈ [0, 1], where 0 represents a rule not used by

an instance and 1 means the rule is used. Since the value of the matrix elements is

binary, we focus on selecting a distance metric that can help us preserve the closeness

between rules specifically for this kind of binary data. After reviewing the literature

of distance measures used for a binary dataset, we selected Jaccard as the optimal

choice for our problem [13]. Then, the non-linear dimensionality reduction algorithm

UMAP [40] is used to project the rules into a 2D space. UMAP performs well in

preserving the distances between both local and global samples. Since our focus is
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to maintain the balance between similar logic rules (local) and also the overall rules

based on class labels (global) to make explanations on the model workings (G1), we

choose UMAP as the most suitable projection technique.

We draw each decision path as a Pie chart to allow users to understand the

resulting class probabilities for each leaf node. For the decision paths whose certainty

of classification is 1, the pie chart would look like a circle filled with the predicted class

color. Users can also hover over individual pie charts to gain relevant information

on the decision path, such as the rule coverage percentage, rule certainty probability,

and final predicted class (T1). A forest of trees will generally have a set of high and

low coverage decision paths. Since it is critical for users to interpret which rules are

important from the RF model perspective, we control the size (radius r) of each pie

chart based on the coverage value, c. The outer radius r of the pie charts are defined

using the following.

r =


11, if c ≥ 70

9, if 30 ≤ c ≤ 70

6 if c < 30

Hence, high-coverage decision paths will be comparatively bigger than the low-

coverage ones. We extend the Forest View to allow users to compare multiple (G3)

RF models by placing the views side-by-side in our system.

3.8 Feature view visualization

The Feature view (Fig. 3.4) is designed as a combination of Parallel Coordinate plot

(PCP) and a Bar chart to help support analysis of the instances’ feature values from

both global (G1) and local (G2) perspectives. From a global point of view, we focus

on understanding the patterns defined by the logic rules through this visualization

displaying the valid instances with their feature value ranges so users can effectively

compare them and derive certain insights, such as how a set of rules are different from

others in terms of the instances they classify. Locally, we enable users to analyze the

input feature values of the selected data instances to understand the differences or

similarities between them from not the perspective of the RF model but the actual



25

Figure 3.4: Feature View: PCP showing the relationship among various features of
instances in the Iris dataset.

dataset.

Each feature in a PCP is represented as a vertical bar, and the advantage of using

this plot is that these bars can have different ranges and units. It has also proved to

be beneficial in representing high-dimensional dataset [23]. The lines in the PCP are

colored as per the original class label for each instance. To locally inspect differences

among features, users can select a group of instances in the Instance View, and the

PCP will present their feature values. For global analysis, we allow users to lasso

select a cluster of logic rules from the Forest View, and the PCP will display all the

instances that leverages this cluster for its classification. To support the analysis of

the logic rules using the PCP, a bar chart is incorporated into the Feature View that

displays a count per class for instances using the set of logic rules.



Chapter 4

Experiments and Results

In this section, we present three usage scenarios to evaluate the effectiveness of RFMap

in interpreting and visualizing Random Forest (RF) models. We leverage the ExMa-

trix [42] package to perform rule extraction as discussed in Sec. 3.

4.1 Usage Scenario 1: Breast Cancer Diagnostic

In this usage scenario, we describe Karen, a Data Scientist working with a healthcare

company who needs to understand the overall working mechanism of an RF classifi-

cation model to align it to her understanding. Interpreting the classification model

is imperative for her company so the decisions can be trusted and put to real-time

use for medical experts. To do that, Karen uses our RFMap system to visualize and

interpret an RF model she has developed to classify breast cancer diagnosis. The

dataset she uses to train the RF model is from the University of Wisconsin (Wis-

consin Breast Cancer Diagnostic [56]), and it contains samples of solid breast masses

collected from 569 patients, out of which 357 were labeled as Benign (B) and 212 as

Malignant (M). The total number of features in the dataset is 30. Karen develops

the classification model by randomly selecting 70% of the dataset as training and the

remaining 30% as testing. To build the model, she sets the total number of trees as

ten and does not limit their depths. For evaluating the quality of a split, she uses

‘Gini’ as criteria. The resulting model comprises 184 decision paths (rules), and the

accuracy of testing data is 98.8%.

Karen loads the RF model in the ‘RFMap’ system and is presented with the

Instance, Forest, and Feature Views. She first inspects the Instance View and notices

two significant clusters of classes, Orange (Malignant) and Blue (Benign) as seen in

Fig. 4.1 1 & 2 . The clusters have a clear visible separation between them, with only

a few instances from both the classes on the top and bottom center parts. Seeing the

clear separation between the two classes visually in the system allows her to affirm to

26
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Figure 4.1: RFMap system with Breast Cancer dataset. (1) & (2) RF model clearly
separates the majority of the instances based on predicted classes and forms two
clusters. (3) Misclassified instance 136 and its neighbour 161 selected. (4) Rules
used by the instances highlighted in the Forest View. (5) Parallel coordinate shows
the difference between the two selected instances. (6) A lasso-drawn to understand
a ‘knowledge cluster’. (7) Instances using the ‘knowledge cluster’ highlighted in the
Instance View. (8) PCP shows the knowledge content defined by the cluster. (9) Bar
chart displays the count per class for all instances using the ‘knowledge cluster’.
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the understanding that the model’s performance is good, and it is confused only about

a few instances (T3). She also observes that the not properly separated instances are

less brighter than the clearly separated ones. This means their position cannot be

fully trusted, which matches the model’s perception in these instances. She quickly

notices three instances that have outer stroke color ‘Blue’ and the inside circles are

filled with ‘Orange’, giving her an indication that the model has wrongly classified

these three instances as ‘Benign’ (T5). Identifying false negatives is very important,

especially for her organization, which deals with cancer diagnosis. So, she hovers over

these three data points to know which specific patient IDs were wrongly classified so

they can be investigated in depth.

Karen then focuses her analysis on one specific misclassified instance, i.e., instance

136. She understands from the bright transparency that its position in the view

can be relied upon, and it definitely belongs there. The instance lies at a close

proximity to the other ‘benign’ instances, which means the RF model sees these

instances as similar. She wants to drill down more to understand if the model is

confused and wrongly predicts or if this is because of the instance having similar

feature value ranges with the neighboring instances. The RFMap system allows her

to click on an individual instance or a group of instances to analyze their feature

values in the Feature View (T5). So she clicks on instance 136 and its immediate

neighbor 161 (Fig. 4.1 3 ), and goes to the Feature View. She realizes that other

than ‘texture worst’, the rest of the features have almost similar values for both the

samples (Fig. 4.1 5 ).

Karen then moves to the Forest View to analyze the knowledge (T4) utilized from

the forest to classify these two instances. From the highlighted red rules, she gets

a clear picture of the decision paths used by both of these instances. Karen notes

that the rules used to classify instance 136 and neighboring ones have differences.

She also does a contextual analysis of the rules used by instance 136 in terms of the

other forest rules to understand their certainty and coverage. Karen notices that

eight of the rules are from the blue ‘knowledge cluster’ and two are ‘orange’ rules

from the middle of the forest. She notes that although the two ‘orange’ rules are

certain in their predictions, they have little coverage since they are smaller in size.

She hovers over these two ‘orange’ rules to get the actual coverage value and sees
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that they are 0.6% and 5%. These values are significantly less than the other ‘blue’

rules from the strong cluster of knowledge, which suggests that these have learned

considerably less from the training data and therefore have no significant impact on

the ‘voting process’. This contextual analysis level in terms of the entire forest helps

Karen develop trust in her local explanations. Karen thinks instance 136 might be a

rare case since position wise it belongs to the ‘blue’ cluster and has similarities with

other blue instances, but its ground truth label is ‘orange’. She decides to bring it

to an oncologist’s attention so they can investigate in detail the case. Being able

to perform this kind of interpretation is very beneficial for her as this way, she can

increase her trust in the model so it can be used to classify unseen instances.

After developing her understanding of the instances locally, Karen decides to gain

insights on the predictions from the forest of trees’ perspective (T2). Her objective is

to look into the inner working mechanisms of the RF model to make it transparent.

She observes two ‘strong knowledge clusters’. One with ‘blue’ rules and other with

‘orange’ rules as represented in Fig. 4.1 4 . Karen understands the significance of

these strong clusters of knowledge and wants to gain more insights, specifically on

the ‘blue benign cluster’. She draws a lasso around this cluster 6 and the Instance

View highlights all the instances using this set of rules 7 . The first thing she spots is

that this ‘knowledge cluster’ covers all the perfectly classified benign instances, which

means that this cluster has learned a very well-defined piece of knowledge from these

instances and is very generic. To further understand the pattern between all the rules

in this cluster, she scrolls down to the Feature View and sees from the bar chart 9

that 344 instances are from the ‘blue’ class and 16 are from the ‘orange’ class. Karen

observes the pattern among the ‘blue’ cluster rules in terms of the instances’ features

8 . This helps her make hypotheses on any unseen instance (patient) as they will

probably be classified as ‘benign’ if they have similar features. She notes the features

that are too low or high in values so domain experts can develop a clear understanding

of ‘benign’ class cells.

Karen also grabs the attention of the low coverage decision paths in the middle

of the forest (Fig. 4.1 4 ) that have not formed strong clusters. These rules have

internally developed some homogeneous groups but have no class-level separation.

She assumes that using these rules might lead to instances not being separable in
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Figure 4.2: (A) Left: Instance View where instances selected are marked by an arrow.
These instances are not clearly separated, and hence Karen wants to investigate if
they use the rules from the center part in Forest View. Right: Forest View shows the
used decision paths highlighted in Red. The majority of the rules belong to the center
part, which has all the low-coverage rules. (B) Left: Instance View with two perfectly
classified instances selected. Right: These instances use high-coverage decision paths
from the two Blue and Orange clusters.
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their true classes and decides to analyze if her hypothesis is true. So, she clicks on

one Blue and Orange instance (T4) from the top and below portion of the Instance

View which are not clearly separated by the model as shown in Fig. 4.2(A). She

notices that these instances primarily use the low-coverage decision paths (Fig. 4.2A

(Right)). She also selects two perfectly classified instances (Fig. 4.2B) and spots the

high-coverage decision path clusters in the Forest View. These explanations help her

validate that the initial understanding was correct, and the model is unable to classify

the instances that were not clearly separated in the Instance View when using these

rules. The ability to learn these insights from using the RFMap system makes Karen’s

model transparent and gives her the confidence to put it into real-time practice.

4.2 Usage Scenario 2: Election Votes

The second usage scenario presents John, a Senior Data Scientist, who is working

with a Strategy & Analytics team that develops ML models to predict the potential

tendency of voting for US presidential elections given users’ preferences. He receives

two RF models that a team member has developed. As part of his role, John needs

to evaluate various ML models so they can be deployed to the production systems. In

the past, John has seen models performing very well with high accuracy on training

and testing data, but when it comes to using them real-time on new and unseen data,

the models have failed to generalize at times. This has led to wrong predictions, and

the trust in such type of application is lost. Therefore, John’s goal is to select a robust

and generic model from among the two, so it works well on unseen samples in the

future. The first model (Model 1) is built using 20 decision trees with a max depth

of 7, and the accuracy 94.48%. The second model (Model 2) has 30 decision trees

with a depth limit of 2 and accuracy of 94.3%. Although both models’ accuracy does

not significantly differ, he would like to analyze the models in detail, so he does not

just select a model based on ‘high accuracy’. John learns about the ability to do

comparative analysis among various RF models using the RFMap system and starts

his analysis.

He first loads Model 1 into the system as shown in Fig. 4.3. This model is large,

comprising 1596 rules (decision paths). His previous experience with visualizing big-

ger models, such as this, has been overwhelming because the systems were either
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Figure 4.3: A complex model with 1596 rules. The model has 20 trees, max depth:7,
Accuracy: 94.48%.
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Figure 4.4: A simple model with 120 rules. The model comprises of 30 trees,
max depth:2, Accuracy: 94.3%.

unable to visualize the entire model or the complexity in interpretation was very

high. The scalable nature of RFMap helps him visualize the whole model with var-

ious logic rules. He notices that there are two knowledge clusters in this model, but

most of the rules are very specific (low coverage), with some being certain and some

not. More specific low-coverage rules imply that they have not learned much from

the training data and hence not very useful. John then loads up Model 2 (Fig. 4.4),

and from the Forest View he sees that there are two strong knowledge clusters in this

model with only a few specific (low-coverage) rules. This model’s strong knowledge

clusters are mostly very high in coverage, meaning they have learned good relation-

ships from the training data samples and, therefore, more generic. He inspects the

rules’ certainty in the two strong knowledge clusters and is satisfied that they have a

high inclination towards their respective classes.

John concludes from his comparative analysis (T6) that a balance between cover-

age and certainty is a very important criteria in case of evaluating RF models, i.e., a

model comprising of rules that are high on certainty but low on coverage (like Model

1) will lead to specific knowledge learning. However, a model with higher coverage

and lower certainty rules will mean the model has not learned any robust knowledge

and results in lower prediction capabilities. Therefore, in this case, Model 2 might be

the ideal one for John to select as they have more generic rules which are also highly
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certain, thus establishing a right balance between certainty and coverage. The abil-

ity to derive insights about the knowledge clusters (generic rules), specific rules, and

certainty-coverage balance is not available in traditional model evaluation techniques,

and being able to compare multiple RF models using the RFMap system helps John

in assessing the model not just from the perspective of ‘accuracy’, thus giving him

a much effective model. He is also convinced that the marginal loss in accuracy by

selecting Model 2 (94.3%) instead of Model 1 (94.48%) is acceptable as long as he

has a generic model that can predict well on unseen data.

4.3 Usage Scenario 3: University Admit

This usage scenario presents Sam, a prospective Graduate (Masters) student looking

for admissions into universities in the US. He wants to use a Machine Learning algo-

rithm to predict his chances of getting Admit(1) or No Admit(0) based on features -

GRE score, GPA, and University Rank. The dataset used for training his model is

from UCLA[1] and has a record of 400 students, out of which 273 received no admit,

and the remaining 127 were able to secure admits. Sam’s primary focus is to interpret

his algorithm’s workings with the dataset so he can develop trust and confidence in

the predictions and finally use it to predict his chances of getting admission or not.

To achieve this goal, Sam trains a RF model and employs the RFMap system to de-

duce insights. He adds ten trees in the forest with a maximum depth of 5 assigned to

each tree and uses ‘Gini’ as splitting criteria. The result is a model with an accuracy

of 74.1% and 233 decision paths(rules). He understands that although the model’s

accuracy is not very ideal for individual predictions, it can be used to derive certain

conclusions in terms of knowledge learning, misclassifications, etc.

Sam opens up the RFMap tool, and from the legend in the View, he understands

that purple bubbles represent an ‘Admit’ and green bubbles represent ‘No Admit’.

He goes to the ‘Instance View’ and notices that there is no clear separation(T3)

between the two class of instances(Figure 4.5A), which is correct since the model is

not very accurate and makes many mistakes. However, he does see that the top-left

portion consists of instances mostly belonging to ‘Admit’ class, and the below portion

towards the right are instances from the ‘Non Admit class. Sam then moves to the

Forest View (Figure 4.5B) and is interested in exploring the forest of trees (T2) to
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Figure 4.5: RFMap system with University Admit dataset. (A)(1) Sam clicks on
a few misclassified instances(highlighted in black) and the corresponding logic rules
are highlighted in Forest View ; (B)(2) hovering over a logic rule shows marginal
probabilities.

develop his understanding with the various decision paths. He notes from the pie

charts in the view that most of the rules do not have 100% certainty when predicting

instances and believes these rules are the ones which results in the model being less

accurate, resulting in misclassifications. He also does not see any ‘strong knowledge

cluster’ formed inside the forest(T1) and every rule is mixed up with others. This

gives him the idea that the model has not learned enough from the training data and

that he might need to get some more data to build up a concrete model.

Sam notices many misclassified ‘Non Admit’ instances on the top left part of the

Instance View and decides to perform some local interpretation to understand more.

He selects a few instances (highlighted in black) from the Instance View as shown in

Figure 4.5A(1) and observes the decision paths in the Forest View (T4). He hovers

over the logic rules (Figure 4.5B(2)) and realizes that majority of these paths have

individual class probabilities on the margin i.e.,(55-45% or 60-40%). Sam now affirms

to his analysis that the decision paths with certainty values in boundary, may lead

to misclassifications.

Since Sam’s target is to secure an admit into a university, he is curious to un-

derstand which features significantly impact positive and negative predictions. So he
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Figure 4.6: RFMap system with University Admit dataset. (A)(1): A lasso is drawn
around a cluster of ‘purple’ logic rules in the Forest view ; (2): A lasso is drawn
around a cluster of ‘green’ logic rules; (B): knowledge content of the ‘purple’ group of
rules visualized in the Knowledge-Content view to understand ‘Admit’ criteria; (C):
knowledge content of the ‘green’ group of rules visualized in the Knowledge-Content
view to understand ‘Non Admit’ criteria;

decides to select a group of certain ‘green’ cluster and ‘purple’ cluster to perform anal-

ysis (T1). He draws a lasso on the small cluster of three purple rules (Figure 4.6A1)

and goes to the ‘Knowledge-Content View’ (Figure 4.6B). He notices that there are

15 purple-class and 5 green-class instances. The purple instances using these rules

have GPA>3.5, university rank of 1 and GRE score>470. Now, he lasso selects the

green group of rules (Figure 4.6A2) and observes the feature values (Figure 4.6C).

This time, for majority of the green instances, GPA is less than 3.4, university rank

is 3 and GRE<470. This contrastive analysis globally, helps Sam understands the

feature range needed for an ‘Admit’ into US universities, which allows him to make

hypotheses on unseen data(T5). E.g., if someone has a GPA of 3.5, their university

rank is less than 3 and GRE score is 500, they will probably have higher chances of

getting admissions.
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User Study

5.1 Study Design and Tasks

A quantitative and qualitative study was conducted to evaluate the effectiveness and

ease-of-use of RFMap in interpreting RF models. Our primary goal is to understand

whether users can derive general insights about an RF classification model by inter-

acting with the system and explaining their predictions so they can build up trust in

the model. By evaluating the ability to accomplish the tasks, a general consensus is

computed among all the participants, thus helping us determine the usability of the

tool.

Figure 5.1: Figure shows the current job role for all the participants in the study.

The total number of participants recruited for the study was 18. Out of them, 7

were ‘not working’ and were from a pool of graduate students comprising of Masters

and PhD students with very good knowledge of ML and specifically RF models.

Three were working as Applied and Research Data scientists, 2 were ML engineers,

1 was a Data Analyst in the software industry. The remaining 4 had other positions

(Data engineer, Cloud engineer, Developer) and 1 did not disclose their working role

(Fig 5.1). Among these participants, 16 had a ‘Computer Science’ degree and the

remaining 2 were from ‘Mathematics’ background (Fig 5.2). Also, from the entire

37



38

Figure 5.2: Plot shows the field of study of all the participants in the study.

Figure 5.3: Plot shows the level of education of all the participants in the study.

population, 8 of them had completed ‘Masters’, 7 had University degree and rest 3

were PhD’s as seen in Fig 5.3.

Figure 5.4: Chart shows the familiarity of the participants with visualization plots.

All the participants were interacting with the tool for the first time but had an
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Figure 5.5: Chart shows the familiarity of the participants with Random Forest model.

extensive background with Data visualization plots(17 well to very well familiarity

and 1 neutral, Fig 5.4) and Random Forest models (16 well to very well familiarity and

2 neutral, Fig 5.5). Twelve individuals rated their familiarity with Visual Analytics

tool high (well to very well), and the other 6 had neutral or not well exposure as

shown in Fig 5.6.

Figure 5.6: Responses to: “How familiar are you with Visual Analytics tools, such as
Qlik, Tableau, or Power BI?”

All of our participants were comfortable (13 extremely, 4 very and 1 comfort-

able) with using interactive user interfaces (Fig 5.7) and 94.4% among them used

interactive interfaces frequently (often, very, extremely) as seen in Fig 5.8. The en-

tire group(100%) said that they use tools involving visual representations often, very

often or extremely often as compared to text (Fig 5.9).

The user study was conduced remotely. Each participant was initially presented
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Figure 5.7: Chart shows the comfort level of the participants with interactive inter-
faces.

Figure 5.8: Figure shows the frequency of the participants with using interactive
interfaces.

Figure 5.9: Chart shows the frequency of the participants with using visual tools
instead of text.

with a tutorial video on RF models and logic rules extraction, followed by another
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demonstration on using the RFMap system. Every individual had an opportunity

to explore the tool and ask any questions after developing some familiarity with the

tool. Participants were then presented with a set of demographic questions. For

the first part of the study, we designed tasks to allow users to use the tool’s various

visualization components and interactivity functions practically, for example, inter-

preting misclassified instances, knowledge clusters, making selections on instances to

understand the decisions made by the model, analyzing similar or dissimilar instances

and understanding the reasons behind misclassifications. After executing every task

using the system, the participants were asked to respond to two sets of 5-point Likert

scale assessment to judge their experience and complexity level with performing the

tasks and get an overall experience of the system. Finally, two open-ended questions

were presented to have user’s subjective feedback on the overall functionality, quality

and any suggestions for future improvement of the tool.

5.2 Results and Feedback

The average time taken by all the participants to complete the tasks and qualita-

tive questions was 38’(including two tutorial videos). The tutorial of the system

can be accessed at - https://www.youtube.com/watch?v=ZcUyCBjlVpE. The study

comprised of 9 task-based questions that covered both global and local perspectives

for RF models interpretation. A summary of the tasks and their relationship to our

design goals and tasks is presented in Table 5.1.

The descriptive statistics is computed for the participants response to the ques-

tions and is presented as follows. For the first two questions (Q1,Q2), participants

were asked to interpret misclassified instances from the ‘Instance View’. Among all

the participants, 94.4% of them responded correctly with 3 as the total number of

misclassified instances and ‘Malignant’ as the original class for misclassified instances.

The next two questions involved interpreting ‘knowledge clusters’ and analyzing the

logic rules used to classify the instances from the Forest View. For the first one (Q3),

94.4% of the participants gave the correct answer and for the second(Q4), 100% were

able to understand the decision making process for local instances.

Another question(Q5) touched upon interpreting the structural differences among

instances using the Feature view, to which, 94.4% of them responded correctly. The
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Task Goal Question Percentage of correct re-
sponses

T5 G2 Q1: How many misclassified in-
stances do you spot from the ‘In-
stance View’?

94.4%

T5 G2 Q2: The misclassified instances in
the ‘Instance View’ were originally
from which class?

94.4%

T1, T2 G1 Q3: How many strong ‘knowledge
clusters’ can you spot in this Ran-
dom Forest model from the ‘Forest
View’?

94.4%

T4 G2 Q4: Which set of rules are used to
classify Instance 136?

100%

T5 G2 Q5: Instance 136 and its neighbour-
ing instance 161 have a significant
difference for which feature value?

94.4%

T3, T5 G1, G2 Q6: What can we infer from the or-
ange ‘knowledge cluster’ in this Ran-
dom Forest model? Select all the op-
tion that applies.

77.7%, 88.8%, 83.3%

T4, T5 G2 Q7: What is the reason behind the
misclassification of Instance 264?

83.3%

T3 G1 Q8: From the ‘Instance View’, I can
validate that the RF model is mostly
able to separate the instances into
two groups(classes).

94.4%

T1, T2,
T4

G1, G2 Q9: The ‘outlier’ instances like the
highlighted ones in the image are not
clearly separated because?

88.8%

Table 5.1: Summary of the user study’s tasks and their relation with the design goals.
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reasons behind misclassification of instances was also asked (Q7) to determine using

the system and 83.3% of the recruited participants responded correctly to it.

The remaining three questions were targeted towards deriving insights from a

knowledge cluster (Q6), ability to interpret effectiveness of the model by under-

standing the decision boundary (Q8) and understanding rule properties (coverage,

certainty) (Q9). The first one was a multiple choice question and no one selected the

wrong answer. The second question was rightly answered by 88.8% and the final one

had 94.4% right responses.

After the completion of tasks, the participants’ responded to the the 5-point

Likert-scale questions to assess the user interface, complexity in performing the tasks

and the overall system. The results are summarized in the Table 5.2 and 5.3. Most

of the participants agreed(66.6% Strongly Agree, 22.2% Somewhat Agree) that the

logic rules and their properties were easy to analyze from the system. Regarding inter-

preting classified or misclassified instances, 17 out of the total 18 participants showed

strong agreement. When asked about how complex it was to interpret and compare

instances using the various visualization in the system, 83.3% strongly agreed it was

easy for them. Finally, 72.2% of the participants strongly agreed that they would be

able to interpret more RF models on their own using this tool.

The feedback on the system was also collected through subjective questions. Two

of the ML Engineers mentioned - ‘they would like to use the tool in their day-to-day

job’ and ‘a very good system to understand RF models’. Another two participants

recommended having a feature to understand ‘feature importance’. We also received

some feedback on incorporating the “values of accuracy and loss to support interpre-

tation”. One participant provided feedback for future work saying that the system

could help “understand how much weight the model applies to each logic rule / fea-

ture / etc. when it classifies a particular point; what is emphasized currently is the

coverage, which is also interesting, but different”.
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Table 5.2: Post Evaluation user feedback for the RFMap’s interface.
Question Strongly

Disagree
Somewhat
Disagree

Neutral Somewhat
Agree

Strongly
Agree

The decision paths (rules) and their
properties are easy to interpret from
the system.

0 0 2 4 12

The functionalities in the tool are
self-explainable and easy to use.

0 0 2 6 10

I understand what class an instance
is classified/misclassified as effec-
tively.

0 0 0 1 17

I can differentiate between high and
low coverage rules.

0 0 1 3 14

Having a Visual Analytics tool to
visualize the entire Random Forest
model is overwhelming.

11 5 1 1 0

Having a visual system to explain
the workability of Random Forest
makes it easy to interpret.

0 0 0 5 13

The ‘Parallel coordinate plot’ used
to display the feature values is very
helpful.

0 1 1 5 11

The number of functionalities pro-
vided are sufficient to interpret the
Random Forest model.

0 1 4 7 6

You can perform the tasks shown in
the video with ease.

0 0 1 3 14

The graphs were easy to interpret
and compare different instances.

0 0 1 2 15

The labels were clear, and choices of
datasets were enough to understand
interpretation of Random Forest.

0 0 0 7 11

The choice of color used for Visual-
ization are effective.

0 1 1 3 13
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Table 5.3: Post Evaluation user feedback for the Software usability.
Question Strongly

Disagree
Somewhat
Disagree

Neutral Somewhat
Agree

Strongly
Agree

I think that I would like to use this
system frequently

0 0 3 3 12

I found the system unnecessarily
complex

17 1 0 0 0

I thought the system was easy to use 0 0 0 4 14

I found the various visualizations in
this system were well integrated.

0 0 1 2 15

I thought there was too much incon-
sistency in this system

16 2 0 0 0

The video was very effective for me
to quickly learn to use the system

0 0 1 5 12

I would be able to interpret more
Random Forest models on my own
now using the system.

0 0 2 3 13



Chapter 6

Conclusions

In this research work, we present Random Forest Similarity Maps (RFMap), an in-

teractive visualization tool that supports the explanation of RF models globally and

locally by preserving the forest context. RFMap uses multidimensional projection

techniques to visualize the forest of decision paths and explain the structural rela-

tionships between the data instances from the model’s perspective. It also helps users

visualize RF models with thousands of logic rules, one of the most scalable visualiza-

tion solutions for RF analysis. To prove the effectiveness of our technique, we present

three user scenarios and the results from a user study that summarizes the useful

applications of RFMap in various domains. The results show that the tool can help

understand RF models from the multiple perspectives discussed in this work.

6.1 Discussions

In this section we discuss some of the limitations we found in our work and how we

address them in the future.

Application

We have developed the RFMap system by considering interpretability for RF mod-

els. However, the system can be extended to understanding any ML model based on

rules. With the growing demand for knowledge extraction techniques, i.e., transform-

ing complex models like deep neural networks to surrogate models, our system can

be beneficial from a visual interpretation perspective. The system also sheds light

on some of the important elements of a classification problem like misclassifications,

within-class overlaps, accuracy, and so on, which allows model developers to build

better models in the future.

46
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Visualization

The two visual components of our system, Instance and Forest Views are based on

multidimensional projections techniques. Projection-based techniques have enabled

us to visualize thousands of decision paths and data instances in one single frame,

thus reducing the load on the human mind and producing visual metaphors that are

very scalable. Complex machine learning models like ensembles, deep networks have

seen a huge rise in their application in the industry and research works. And as

we develop more complex models, the need for scalable and robust visual analytics

systems is imperative.

Although projection-based methods have allowed us to visualize an entire forest

of trees with thousands of decision paths, these techniques often face the problem of

reliable representations since converting high-dimensional data to a lower, human in-

terpretable form is practically very complex. In this research work, we keep this prob-

lem in mind, especially when designing the Instance View and make use of stress [27]

to show users reliable and non-reliable data points. We design the non-reliable data

instances as less transparent so users can intuitively differentiate the reliable points

from the non-reliable ones in the visualization.

Another problem that was observed during the early development phases of the

RFMap system is that the icons (circles in the Instance View, pie-charts in the Forest

View) suffered from a visual clutter issue. Since our whole rationale behind designing

the system was based on whether or not an instance uses a particular rule for classifi-

cation and how similar or not they were, many instances and decision paths occupied

the same visual space when they had common elements. The result was visualization

with occlusion issues. To tackle this problem, we leveraged a binary partitioning grid

algorithm [20]. This helped us place each element (instance or rule) in a single grid

while still maintaining the actual distances between them as much as possible.

Other than the positive feedback that we received from the participants of our user

study, we have observed that RFMap also has a couple of interesting avenues for future

research. Incorporating ‘feature importance’ and ‘splitting criteria’ is something we

plan to be working on in the future to broaden the perspectives of explaining RF

models. Other than that, our goal in the future would be to extend our technique to

other ML models based on rules. One area that we also plan to research about is how
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we make the system valuable for users who do not have an in-depth understanding of

the ML models. An interesting feedback that we received from one of the participants

is - “I am not an expert in ML, but seeing the video and playing with the tool

helps me get the basic idea and understand how the random forest model is making

it’s decisions”. The feedback helps us understand that the current system has the

potential to benefit users with basic knowledge of ML. In the future, we would like to

conduct a more focused study with such specific group of people to understand the

requirements better.
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[47] Paulo E. Rauber, Alexandre X. Falcaõ, and Alexandru C. Telea. Projections as
visual aids for classification system design. Information Visualization, 17(4):282–
305, 2018.

[48] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D. Williams.
Squares: Supporting Interactive Performance Analysis for Multiclass Classifiers.
IEEE Transactions on Visualization and Computer Graphics, 23(1):61–70, 2017.

https://plotly.com/javascript/parallel-coordinates-plot/
https://plotly.com/javascript/parallel-coordinates-plot/


53

[49] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-Agnostic Inter-
pretability of Machine Learning. (Whi), 2016. http://arxiv.org/abs/1606.

05386.

[50] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should i trust
you?” Explaining the predictions of any classifier. Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
13-17-Augu:1135–1144, 2016.
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