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ABSTRACT 

Pillars are commonly used in underground mines to maintain the stability and integrity of 

the openings. An optimum design of mine pillars dictates that the pillars should be as small 

as possible and meet the load-bearing requirements. Therefore, a proper estimation of the 

rock mass strength is of paramount importance for a reliable design of mine pillars. It is 

known that the Hoek-Brown failure criterion, with its strength parameters obtained based 

on the Geological Strength Index, tends to underestimate the confined strength of well 

interlocked jointed hard rock masses. Therefore, pillar designs based on this approach 

could lead to oversized pillars due to underestimated strength of the pillar core. The central 

objective of this research is to better understand the strength and failure mechanisms of 

highly interlocked jointed pillars. For this purpose, a grain-based model is developed using 

the continuum numerical program RS2 to reproduce the laboratory behavior of intact and 

heat-treated Wombeyan marble. The heat-treated Wombeyan marble is considered to serve 

as an analogue for a highly interlocked jointed rock mass. An iterative calibration 

procedure is utilized to match the macro-properties of RS2-GBM to those of marble. It is 

found that the calibrated RS2-GBM captures some of the most important characteristics of 

brittle rocks, including the non-linear strength envelope and the change in the failure mode 

with increasing confinement. Next, the calibrated RS2-GBM of granulated marble is 

upscaled to simulate jointed pillars of various width-to-height ratios. The results of 

numerical simulations inferred that the slope of the pillar stability curve obtained from this 

approach is comparatively steeper than those of existing continuum and discontinuum 

models of jointed pillars. This is attributed to the high degree of block interlock leading to 

higher rock mass strength at the pillar core. It is demonstrated that this modeling approach 

provides more realistic results in terms of pillar failure processes compared to other 

continuum models, in which the rock mass is simulated as a homogeneous medium. The 

advantage of the continuum over the discontinuum GBM is its shorter computation time. 

Therefore, the proposed modeling approach can be used as a practical tool for stability 

analysis and design of mine pillars in jointed rock masses.  
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CHAPTER 1 INTRODUCTION 

1.1. OVERVIEW 

A pillar is a column of in situ rock left between two or more underground openings. Pillars 

are used in different underground mining methods as a natural support to maintain the local 

stability and integrity of the openings (Figure 1-1). The objective of underground mine 

design is to maximize ore extraction and concurrently maintain a safe working environment 

for the mining personnel and equipment. In some underground mining methods, pillars are 

left within the orebody (e.g., room-and-pillar). Hence, an optimum design of mine pillars 

dictates that the pillars should be as small as possible and meet the load-bearing 

requirements. 

 
Figure 1-1: A pillar in a stone mine in Southern Appalachian area, USA (Esterhuizen et al., 2006).  

The most common method for pillar design is premised on the observation of full-scale 

pillar performance. Several empirical pillar strength formulae have been developed for 

both coal (e.g., Salamon & Munro, 1967; Hustrulid, 1976) and hard rock pillars (e.g., 

Hedley & Grant, 1972; Von Kimmelmann et al., 1984; Krauland & Soder, 1987; Potvin et 

al., 1990; Lunder & Pakalnis, 1997). These formulae provide a relationship between the 

pillar stress to the intact rock strength ratio and the pillar width-to-height (W/H) ratio. The 

empirical approaches have been widely used over the past few decades to design pillars of 

various W/H ratios, typically ranging between 0.5 and 2.5.  

Figure 1-1
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In recent years, with an increase in computational power, numerical modeling has emerged 

as a powerful tool for conducting routine stability analysis and designing mine pillars. 

Estimating the rock mass strength is the first step in the numerical simulation of mine 

pillars. Different failure criteria, such as the linear Mohr-Coulomb and the non-linear 

Hoek-Brown, have been used in numerical programs based on continuum methods to 

investigate the effects of rock mass condition, in-situ stress magnitude, and pillar geometry 

on pillar strength and stability (e.g., Martin & Maybee, 2000; Mortazavi et al., 2009; Kaiser 

et al., 2011; Rafiei Renani & Martin, 2018; Sinha & Walton, 2018). Discontinuum 

numerical methods are mostly used to simulate the failure process of hard rock pillars, 

including fracture initiation and propagation leading to spalling and slabbing of the pillar 

walls, and shear failure at the pillar core (e.g., Elmo & Stead, 2010; Li et al., 2019). 

It is notable that both continuum and discontinuum numerical methods require an estimate 

of the rock mass strength over a wide range of confinement. Underestimating the rock mass 

strength may lead to over-designed pillars, which could result in ore loss during the mining 

operation. Overestimating the rock mass strength may result in under-designed pillars 

creating an unsafe environment for mine personnel and equipment. Hence, it is crucial to 

properly estimate the rock mass strength in order to develop representative rock mass 

models for an optimum pillar design. This thesis focuses on the strength and failure 

mechanisms of pillars in jointed hard rock masses. 

1.2. PROBLEM STATEMENT 

The pillar strength is known to be a function of the pillar W/H ratio. Hoek (1983) discussed 

the influence of pillar W/H ratio on the confinement and pillar strength, as illustrated in 

Figure 1-2. This figure schematically depicts that there is little or no confining pressure 

(𝜎3 ) in slender pillars (i.e., W/H < 0.7). Therefore, the pillar strength is close to the 

unconfined rock mass strength (𝜎𝑐𝑚). For wider pillars, especially those with W/H ratios 

greater than 4, the confining pressure at the pillar core can be as high as 55% of the 

maximum principal stress (𝜎1). Therefore, it is crucial to make a proper estimation of the 

confined strength of jointed rock masses in pillar design. 
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Figure 1-2: Influence of pillar W/H ratio on confining stress and strength of pillars (after Hoek, 

1983). 

The Hoek-Brown failure criterion (Hoek & Brown, 1980, 1997, 2019; Hoek et al., 2002) 

is widely used to estimate the strength and deformation properties of jointed rock masses. 

In the generalized form of the Hoek-Brown failure criterion, the rock mass strength (𝜎1) is 

a function of confinement (𝜎3) according to the following equation: 

𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (𝑚𝑏 (
𝜎3
𝜎𝑐𝑖
) + 𝑠)

𝑎

 Equation 1-1 

In this equation, the constant 𝑚𝑏 denotes a reduced value of intact rock parameter 𝑚𝑖 , 

while 𝑎 and 𝑠 are constants for the rock mass. The values of 𝑚𝑖 and 𝜎𝑐𝑖 are obtained from 

the statistical fit to the results of laboratory triaxial tests on intact rock specimens with 

confining pressures ranging from 0 to 50% of the Unconfined Compressive Strength (UCS; 

Hoek & Brown, 1997). In the original version of the Hoek-Brown failure criterion (Hoek 

& Brown, 1980), 𝑚𝑏/𝑚𝑖 and 𝑠 are functions of the Rock Mass Rating (RMR; Bieniawski, 

1973) and the Tunnelling Quality Index (Q; Barton et al., 1974). Subsequently, the Hoek-

Brown failure criterion was updated by Hoek and Brown (1997) and Hoek et al. (2002). In 

both versions, the strength of a jointed rock mass is estimated by degrading the strength of 
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an intact rock to that of the rock mass using the Geological Strength Index (GSI) and the 

Disturbance factor (D).  

The rock mass characterization system GSI was developed by Hoek (1994) and Hoek et al. 

(1995) in order to link the failure criterion to engineering geology observations in the field. 

Figure 1-3 presents the GSI chart by Hoek and Brown (2019). The GSI chart is used to 

define the quality of a jointed rock mass based on the degree of interlock and the surface 

condition of discontinuities. The degree of interlock is defined as the kinematic freedom of 

individual rock blocks to rotate and slide along the block forming joints (Hoek et al., 1995; 

Bahrani and Kaiser, 2020). D refers to the degree of the disturbance in the vicinity of the 

excavation walls caused by blasting (Hoek & Brown, 2019). 

The Hoek-Brown strength parameters (𝑚𝑏, 𝑠, and 𝑎) in Equation 1-1 are functions of GSI 

and D and can be determined using the following equations: 

𝑚𝑏 = 𝑚𝑖exp⁡((𝐺𝑆𝐼 − 100)/(28 − 14𝐷))  Equation 1-2 

𝑠 = exp⁡((𝐺𝑆𝐼 − 100)/(9 − 3𝐷))  Equation 1-3 

𝑎 = (1/2) + (1/6)(exp⁡(−𝐺𝑆𝐼/15) − exp⁡(−20/3))  Equation 1-4 

Recently, Hoek and Brown (2019) discussed the applicability of the Hoek-Brown failure 

criterion and the GSI system for estimating the strength of jointed rock masses: 

“The GSI system assumes that, because the rock mass is made up of a sufficiently large 

number of joint sets and randomly oriented discontinuities, it can be treated as a 

homogeneous and isotropic mass of interlocking blocks. Failure of this rock mass is the 

result of sliding along discontinuities or rotation of blocks, with relatively little failure of 

the intact rock blocks.” 
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Figure 1-3: Geological Strength Index (GSI) chart (after Hoek & Brown, 2019). Rock masses with 

GSI values greater than 65 shaded in red. 
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Hoek and Brown (2019) further postulated that this approach underestimates the strength 

for massive to moderately jointed rock masses represented by GSI values greater than 65 

(area highlighted in red in Figure 1-3); therefore, Equation 1-2 to Equation 1-4 need 

modifications for such rock masses. In the GSI system, such rock masses are generally 

described as massive (GSI = 85-100), well interlocked (GSI = 75 - 85), and interlocked 

(GSI = 65 - 75) rock masses. In the Canadian Shield, rock masses at great depths (i.e., > 

1.5 km) are found to be massive to moderately jointed (i.e., GSI > 65), which is why it is 

recommended that the Hoek-Brown failure criterion should not be used to estimate their 

strengths, especially at high confinement (Kaiser et al., 2011). 

Kaiser et al. (2011), Valley et al. (2011), Bahrani and Kaiser (2013), Bahrani et al. (2014), 

and Bewick et al. (2019) hypothesized that the Hoek-Brown failure criterion 

underestimates the confined strength of highly interlocked jointed rock masses (i.e., GSI > 

65). In such rock masses, the rock blocks are hard and brittle, and the joints are rough and 

non-persistent. Due to difficulties in conducting laboratory tests on large scale rock masses, 

the behavior of highly interlocked jointed rock masses under confined conditions has been 

studied in the laboratory on physical models and analogues for such rock masses 

(Gerogiannopoulos, 1976; Gerogiannopoulos & Brown, 1978; Rosengren & Jaeger, 1968).  

Gerogiannopoulos (1976), Gerogiannopoulos and Brown (1978) and Rosengren and Jaeger  

(1968) studied the laboratory behavior of intact and heat-treated Wombeyan marble under 

both unconfined and confined compressions. The term ‘granulated’ refers to heat-treated 

marble specimens. The strength of granulated marble was found to increase rapidly with 

an increase in confining pressure, gradually approaching its intact strength. This results in 

a highly non-linear strength envelope caused by the high degree of interlock between the 

calcite grains. Rosengren and Jaeger (1968) suggested that the granulated Wombeyan 

marble can be treated as a model for a randomly jointed rock mass, while Bahrani and 

Kaiser (2013) and Bahrani et al. (2014) discussed that it can be served as an analogue for 

a highly interlocked jointed rock mass. In this rock mass analogue, the calcite grains are 

analogues for intact rock blocks, and grain boundaries are analogues for joints.  
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Bahrani and Kaiser (2020) investigated the influence of the degree of interlock between 

rock blocks on the strength of jointed rock masses at different levels of confinement. 

According to them, the main factors contributing to the degree of block interlock in a 

jointed rock mass include block shape, block size, joint orientation, joint surface condition 

(i.e., roughness), joint persistence, and block strength. Figure 1-4 demonstrates how the 

level of non-linearity of the strength envelope decreases with a decline in the degree of 

interlock. In other words, the higher the degree of interlock, the higher the curvature of the 

strength envelope. Bahrani & Kaiser (2020) also concluded that: 1) the confined strength 

of non-persistently jointed and blocky hard rock masses (i.e., GSI > 65) is likely to be 

higher than that estimated by the GSI strength equations; and 2) the Hoek-Brown failure 

criterion may be used to estimate the confined strength of well interlocked, persistently 

jointed rock masses comprising hard rock blocks, only if the joints are smooth and non-

dilatant. 

 
Figure 1-4: Schematic failure envelopes and fabric of granular assemblies for flexible sandstone, 

granulated marble, locked sand and loose sand (Bahrani & Kaiser, 2020). 
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In order to estimate the confined strength of highly interlocked jointed rock masses, 

Bahrani et al. (2014) simulated the laboratory behavior of granulated Wombeyan marble 

using PFC (by Itasca), which is a discontinuum program based on the Distinct Element 

Method (DEM). More recently, Bahrani and Kaiser (2020) used the calibrated PFC model 

of granulated marble to investigate the applicability of the Hoek-Brown failure criterion 

for estimating the confined strength of highly interlocked jointed rock masses. For this 

purpose, they back analyzed the strength of calcite grains (intact rock analogue) from their 

calibrated PFC model, and then used the Hoek-Brown failure criterion with a GSI value of 

100 to determine its strength envelope. Thereafter, they reduced the GSI value to 67 to 

match the UCS of granulated marble (i.e., rock mass analogue), as shown in Figure 1-5. 

Through this exercise, they concluded that the GSI approach underestimates the confined 

strength of granulated marble (Figure 1-5), and in effect, the confined strength of highly 

interlocked jointed rock masses. 

 
Figure 1-5: Comparison of strength data and Hoek-Brown envelopes of the model of calcite grain 

(intact rock analogue) and granulated Wombeyan marble (rock mass analogue) by Bahrani and 

Kaiser (2020). 

Columnar basalt is an example of a highly interlocked jointed rock mass. Figure 1-6 

demonstrates how the granular structure of Wombeyan marble (Figure 1-6a) is comparable 

to the structure of a columnar basaltic rock mass (Figure 1-6b). According to Bahrani and 

Kaiser (2020), the columnar basalt represents an extreme case of a jointed rock mass in 

terms of the degree of block interlock. As shown in Figure 1-6b, the medium in this rock 

mass is divided into several columns that are typically hexagonal with side lengths in the 

Figure 1-4
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order of a few tens of centimeters. The columns can slide along their long axis; however, 

in the direction perpendicular to their long axis, they cannot rotate or slide without 

disrupting the rock mass fabric or breaking through the intact rock blocks due to the high 

degree of interlock (Bahrani & Kaiser, 2020).  

 
Figure 1-6: a) Grain geometry of Wombeyan marble under microscope (Rosengren & Jaeger, 1968) 

compared to: b) the structure of columnar basaltic rock mass (Di et al., 2011). 

According to Bahrani et al. (2014) and Bahrani and Kaiser (2020), the dilation caused by 

the geometric incompatibility between the rock blocks in a highly interlocked jointed rock 

mass results in an initially steep strength envelope at low confinement, which is not 

captured by the conventional Hoek-Brown failure criterion. For this reason, the pillar 

design in highly interlocked jointed rock masses using the conventional Hoek-Brown 

criterion could lead to overdesigned pillars due to the underestimated rock mass strength. 

This, in turn, could potentially cause economic loss due to lower ore extraction. For this 

reason, Bahrani et al., (2014) and Bahrani and Kaiser (2020) emphasized on the need for a 

revised criterion for estimating the confined strength of highly interlocked, non-

persistently jointed rock masses. In this context, the present thesis aims at estimating the 

strength of pillars in such rock masses and investigating their failure mechanisms as a 

function pillar W/H ratio using an advanced two-dimensional (2D) numerical modeling 

method.  

(b)(a)
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1.3. OBJECTIVE AND APPROACH 

The central objective of this research is to better understand the strength and failure 

mechanisms of highly interlocked jointed pillars. Toward that end, the laboratory behavior 

of Wombeyan marble is simulated using the continuum numerical method, based on the 

methodology proposed by Bahrani (2015). The calibrated models of granulated marble, 

which serves as an analogue for a highly interlocked jointed rock mass, are then used to 

simulate highly interlocked jointed pillars. The general approach for this research includes: 

• Developing a continuum grain-based model to replicate the laboratory behavior of 

intact and heat-treated (granulated) Wombeyan marble using the numerical program 

RS2 (Rocscience, 2019); 

• Upscaling the calibrated grain-based model of granulated Wombeyan marble to 

simulate highly interlocked jointed pillars with different W/H ratios and to investigate 

their strength and failure mechanisms; and 

• Comparing the numerically estimated pillar stability curves with those of jointed pillar 

strength formulas obtained from continuum and discontinuum models. 

1.4. THESIS OUTLINE 

The findings of this research are presented in five chapters: 

Chapter 1 introduces the motivation, objectives, and the approach for conducting this 

research. 

Chapter 2 provides a comprehensive review of different approaches used to design mine 

pillars. This chapter summarizes the failure mechanisms of hard rock pillars based on field 

observations. This is followed by a review of the empirical methods developed to estimate 

pillar stress and strength. Next, pillar stability databases developed for different mines are 

presented, which is followed by a comparison of the empirical formulas for estimating the 

pillar strength. Subsequently, numerical methods used to simulate pillar failure are 
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reviewed. Finally, a comparison between the pillar strength envelopes obtained from 

empirical and numerical modeling approaches is undertaken.  

Chapter 3 presents the findings of numerical simulations of intact and heat-treated 

Wombeyan marble. In this chapter, the procedure for developing and calibrating a Grain-

Based Model (GBM) in RS2 is discussed in detail. The simulation results, including the 

failure modes and the strength envelopes, are compared with those of laboratory tests.  

In Chapter 4, highly interlocked jointed pillars are simulated using the calibrated 

continuum GBM of heat-treated Wombeyan marble. The underlying assumption in this 

chapter is that the heat-treated Wombeyan marble is an analogue for a highly interlocked 

jointed rock mass. The GBM of heat-treated Wombeyan marble is first upscaled, and then 

used to simulate pillars of various W/H ratios. Next, the strength of jointed pillars derived 

from upscaled GBMs are obtained, and the results are compared to the jointed pillar 

stability curves obtained from other numerical models.  

Chapter 5 provides a summary of this research, including the major findings, and presents 

recommendations for future work.



12 

 

CHAPTER 2 LITERATURE REVIEW 

2.1. INTRODUCTION 

In this chapter, the failure mechanisms of hard rock mine pillars based on field observation, 

and different empirical and numerical approaches used for pillar design are reviewed. The 

specific topics covered in this chapter are: 

• Failure mechanisms of mine pillars including structurally-controlled and stress-induced 

failure, and associated pillar classification/rating systems;  

• Empirical pillar design approaches for determining the average pillar stress and 

estimating the pillar strength; 

• Pillar stability databases developed for different mines; 

• Simulation of progressive failure of hard rock pillars using different numerical methods; 

and  

• Comparison between empirical and numerical pillar stability curves. 

2.2. FAILURE MECHANISMS OF MINE PILLARS 

The presence of geological structures and local stress conditions play important roles on 

the failure mechanisms of mine pillars. At shallow depths (i.e., < 1 km) and low in-situ 

stress conditions, geological structures control the failure mode of pillars. For example, 

rock wedges and blocks falling into openings from pillar walls and sliding pillar bodies 

along a single weak joint are typically observed at low stresses. The rock mass failure 

caused by the pre-existing geological structures is often referred to as structurally-

controlled failure. An increase in the magnitude of in-situ stresses due to an increase in the 

mining depth results in the change in the mode of rock mass failure to spalling and slabbing 

near the pillar walls and shear failure through the pillar core (Martin and Maybee, 2000). 

This type of failure is referred to as stress-induced failure. In some cases, the stress-induced 

failure may be associated with a sudden release of energy (e.g., rock bursting; Kaiser and 

Tang, 1998). This section reviews both the structurally-controlled and stress-induced pillar 

failures observed in the field, and the associated pillar rating/classification systems 

developed for different mines. 
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2.2.1. Structurally-Controlled Failure 

Esterhuizen et al. (2006) proposed a visual rating system to assess pillar stability conditions 

based on the data collected from 21 limestone mines in the Eastern United States. The 

surveyed limestone pillars have an average width of 14.5 m, and the W/H ratio varies from 

0.53 to 3.52. This visual rating system was divided into two categories: The Geological 

Structure Rating (GSR) and the Pillar Stress Rating (PSR). Figure 2-1 illustrates the GSR 

used in these mines to evaluate the performance of pillars for structurally-controlled failure. 

Detailed descriptions of the GSR rating parameters are provided below: 

• None – 1: Less than 0.3 m of jointed block falls during blasting (Figure 2-1a). 

• Minor – 2: Pillar shape is affected by 0.3–1 m block fallout. Steps may be formed at 

the bedding planes. There is no or little further fallout after initial mining and scaling 

(Figure 2-1b). 

• Moderate – 3: Pillar shape is affected by 1–3 m block fallout. There is continuous 

structurally-controlled fallout after initial mining and scaling. 

• Severe – 4: Greater than 3 m block fallout. The pillar is re-shaped by large block 

extrusion and sliding along the steep plane. There is continuous structurally-controlled 

fallout after initial mining and scaling. 

• Very severe – 5: Pillar is bisected with a throughgoing discontinuity dipping at more 

than 35º. The pillar strength depends on the strength of discontinuities. 

The other category of this visual rating system, PSR, deals with pillars experiencing stress-

induced failure, which is discussed in the next section. 
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Figure 2-1: Geological Structure Rating (GSR) for pillars in limestone mines (Esterhuizen et al., 

2006). 

Brady and Brown (2006) provided a more comprehensive summary of structurally-

controlled pillar failures under different geological conditions. As can be seen in Figure 

2-2, typical structurally-controlled failures at low in-situ stress conditions are: 1) shear 

failure through the core of the pillars along an inclined joint (Figure 2-2a); 2) internal 

splitting within pillars with highly deformable (soft) planes (Figure 2-2b); 3) transgressive 

sliding for pillars with an inclined joint set (Figure 2-2c); and 4) buckling failure of the 

pillars with thinly bedded rock blocks (Figure 2-2d).  

 
Figure 2-2: Structurally-controlled failures of pillars: a) single shear failure; b) internal splitting; c) 

transgressive sliding; and d) buckling failure (Brady & Brown, 2006). 
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(c) Moderate - 3 (d) Severe - 4 (e) Very severe - 5
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2.2.2. Stress-Induced Failure 

Pritchard and Hedley (1993) developed a pillar deterioration classification system and 

divided the progressive failure process of tilted (inclined) hard rock pillars in the Denison 

mine, ON, into six stages, as illustrated in Figure 2-3.  

 
Figure 2-3: Failure process of tilted pillars observed in Denison mine, ON (after Pritchard and 

Hedley, 1993). 
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The description of each stage in this classification is provided below: 

• Stage 1: Minor spalling is observed near the pillar walls (Figure 2-3a). 

• Stage 2: Major spalling and slabbing are observed near the pillar walls (Figure 2-3b). 

• Stage 3: Axial splitting within the pillar is observed and the fractures propagate towards 

the pillar core; (Figure 2-3c). 

• Stage 4: The pillar exhibits an extreme spalling process at the walls, and rock slabs 

slide along the prominent bedding planes over time (Figure 2-3d). 

• Stage 5: Fractures propagate and coalesce at the pillar core leading to the crushing of 

the pillar and severe rock bursting (Figure 2-3e). The pillar is at the final stage of its 

load-carrying capacity. 

• Stage 6: Large roof failure occurs when the pillar support is diminished and the 

unsupported hanging wall is free to converge and fail (Figure 2-3f). 

Lunder and Pakalnis (1997) introduced a pillar classification system that was used in the 

H-W mine of Westmin Resource Ltd. This system classifies the fracturing processes of 

massive hard rock pillars into five categories:  

• Class 1: No signs of stress-induced fracturing (Figure 2-4a). 

• Class 2: Pillar corners break up (Figure 2-4b). 

• Class 3: Fracturing can be observed on the pillar walls (Figure 2-4c). The length of the 

fracture is less than half of the pillar height, and the aperture is less than 5 mm. 

• Class 4: The length of the fracture is greater than half of the pillar height, and the 

aperture is between 5 mm and 10 mm (Figure 2-4d). 

• Class 5: The pillar fails, and rock blocks fall out (Figure 2-4e). The fractures coalesce 

and propagate toward the center and eventually cut through the pillar core. The fracture 

aperture is greater than 10 mm. 

The final mode of failure for the pillar is described as an “hour-glass” shape (Lunder & 

Pakalnis, 1997), as the pillar geometry is re-shaped by the spalling process resulting in a 

smaller width at the mid-height of the pillar compared to its initial width. Figure 2-4 

illustrates the five stages of fracturing processes of hard rock pillars based on “the common 

pillar classification system” proposed by Lunder and Pakalnis (1997). 
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Figure 2-4: Schematic illustration of pillar stability classification used at Westmin Resource Ltd. 

(Lunder & Pakalnis, 1997). 

Esterhuizen et al. (2006) proposed the Pillar Stress Rating (PSR) as a category of the visual 

rating system (described in Section 2.2.1) to assess stress-induced failure in hard rock 

pillars (Figure 2-5). A detailed description of the PSR is provided below:  

• None – 1: No stress-related fracturing or spalling is observed within the pillar (Figure 

2-5a). 

• Minor – 2: Minor spalling and slabbing are observed near the pillar walls (Figure 2-5b). 

• Moderate – 3: Spalling and slabbing are observed near the pillar walls. The length of 

the fractures is more than 1 m (Figure 2-5c). 

• Severe – 4: The length of the open crack is more than 1 m and the square shape is no 

longer visible (Figure 2-5d). 

• Very severe – 5: The formation of large open cracks leads to an extreme hour-glass 

shape. At this stage, the pillar has likely lost most of its residual strength (Figure 2-5e). 

Figure 2-2
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Figure 2-5: Pillar Stress Rating (PSR) in limestone mines (Esterhuizen et al., 2006). 

Roberts et al. (2007) proposed a pillar rating system based on field observations in six 

underground lead mines in the US. Figure 2-6 presents the six classes of pillar conditions 

in this pillar rating system. 

• Class 1: The pillar remains intact and there is no indication of stress-induced fractures 

(Figure 2-6a). 

• Class 2: Minor spalling is observed at the pillar corners and pillar walls (Figure 2-6b). 

The length of the fractures is short relative to the pillar height (i.e., less than half of the 

pillar height). 

• Class 3: Substantial spalling is observed at the pillar corners and walls (Figure 2-6c). 

The length of the fractures is up to half of the pillar height. 

• Class 4: Continuous fractures propagate toward the pillar core (Figure 2-6d). 

Substantial spalling is observed at the pillar corner and walls. The length of the fracture 

is greater than half of the pillar height. 

• Class 5: Large continuous open fractures cut through the pillar core (Figure 2-6e). The 

“hour-glass” shape is well-developed. Massive spalling and slabbing can be observed 

on the pillar walls. 

• Class 6: The pillar completely fails, and an extreme “hour-glass” shape develops 

(Figure 2-6f left). Large rock blocks may fall out from the pillar walls (Figure 2-6f 

right). At this stage, the pillar only contains minimum residual load-carrying capacity. 

(a) None - 1 (b) Minor - 2

(c) Moderate - 3 (d) Severe - 4 (e) Very severe - 5
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Figure 2-6: Pillar rating system proposed by Roberts et al. (2007). 

The pillar rating/classification systems reviewed above have some commonalities in terms 

of fracturing processes in hard rock pillars under high in-situ stress conditions: 

• First, fracturing starts at the corners of the pillar and propagates parallel to the pillar 

walls, leading to spalling and slabbing.  

• Then, the fractures caused by spalling and slabbing propagate towards the pillar core, 

resulting in an “hour-glass” shape of the pillar (i.e., the width at the mid-height of the 

pillar is less than its original width).  

• Finally, the fractures coalesce at the pillar core leading to a “crushed” pillar condition. 

The residual strength of the pillar tends to diminish and the crown/roof of the opening 

or the hanging wall is free to converge over time.  

The pillar failure modes and mechanisms described above are solely from field observation 

of pillar performances. In the following section, empirical approaches for estimating 

average pillar stress and strength are presented, and the results are related to the field 

observations reviewed above. 

Figure 2-3

(a) Class 1 (b) Class 2 (c) Class 3

(d) Class 4 (e) Class 5 (f) Class 6
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2.3. EMPIRICAL PILLAR DESIGN APPROACHES 

In empirical pillar design approaches, the Factor of Safety (FOS) is usually used to assess 

pillar stability. The FOS is calculated using the following equation: 

𝐹𝑂𝑆 =
𝑃𝑖𝑙𝑙𝑎𝑟⁡𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝐼𝑛𝑑𝑢𝑐𝑒𝑑⁡𝑝𝑖𝑙𝑙𝑎𝑟⁡𝑠𝑡𝑟𝑒𝑠𝑠
  Equation 2-1 

Where the pillar strength refers to the local strength of the pillar, and the induced pillar 

stress refers to the stress acting normal to the mid-height plane of the pillar. An FOS less 

than 1, in which the induced pillar stress is greater than the pillar strength, should be 

avoided unless the yielding of the pillar is needed. In order to determine the FOS of a pillar, 

accurate estimates of pillar stress and strength are necessary. This section reviews different 

methods used to estimate these two parameters. 

2.3.1. Traditional Pillar Stress Estimation Methods 

2.3.1.1. Tributary Area Theory 

The tributary area theory is used to determine the average axial stress of pillars (i.e., 

average pillar stress), where the stress state or mining geometries are not complex (e.g., a 

vertical pillar under uniaxial loading in the room-and-pillar mining method). The theory 

was first developed by Bunting (1911) and later used by Salamon and Munro (1967), 

Hedley and Grant (1972), Pariseau (1982), Szwilski (1982) and Lunder and Pakalnis (1997) 

to estimate the average axial stress in a pillar. The theory implies that pillars “share” the 

load from adjacent openings. The assumption in this theory is that the vertical stress acting 

normal to the mid-height of the pillar is constant (i.e., confinement at the pillar core is not 

considered). 

Figure 2-7 illustrates the plan view of typical squat pillars in the room-and-pillar mining 

method. The average stress of the pillar can be expressed as a function of the extraction 

ratio (𝑒) according to the following equation: 
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𝜎𝑝 =
𝛾𝑧

1 − 𝑒
 Equation 2-2 

In this equation, 𝛾 refers to the unit weight of the overburden, and 𝑧 is the depth of the mid-

height of the pillar from the ground surface. Therefore, the term 𝛾𝑧 represents the vertical 

stress acting normal to the mid-height of the pillar. Furthermore, 𝑒 can be expressed as: 

𝑒 = [(𝑎 + 𝑐)(𝑏 + 𝑐) − 𝑎𝑏]/(𝑎 + 𝑐)(𝑏 + 𝑐) Equation 2-3 

where 𝑎 and 𝑏 are the side lengths of the pillar, and 𝑐 represents the span of the opening, 

as shown in Figure 2-7. 

 
Figure 2-7: Plan view of squat pillars and the parameters for the tributary area analysis (Brady and 

Brown, 2006). 

According to Hoek and Brown (1980), the tributary area theory is also applicable to 

irregular and long pillars (e.g., rib and barrier pillars). Note that for special cases, such as 

sill pillars, the stress acting normal to the mid-height centerline is the horizontal stress 

instead of the vertical stress. In this case, the term 𝛾𝑧 in Equation 2-2 might need to be 

modified to 𝑘𝛾𝑧, where 𝑘 refers to the in-situ stress ratio.  
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2.3.1.2. Numerical Modeling 

Numerical modeling is a tool that can be used to simulate complex mine geometries, 

analyze induced stresses, and assess the stability of underground excavations. These are 

the distinct advantages of numerical modeling over the tributary area theory. In the last 

century and early 21st century, elastic continuum models have been used in different 

numerical programs to determine the average pillar stress. The numerical programs used 

for this purpose were based on the Boundary Element Method (BEM; e.g., BITEM, 

MINTAB, BEAP, NFOLD, Examine2D/3D, and MAP3D) and the Finite Element Method 

(FEM; e.g., Phase2). Due to the low computational power and associated long model 

runtimes, the numerical models used to determine the average pillar stress only considered 

the induced elastic stresses caused by mining activities. In other words, the stress 

redistribution due to rock mass yielding was not considered in these models. According to 

Hoek and Brown (1980) and Hudyma (1988), the average pillar stresses in the numerical 

models were calculated by averaging the vertical stresses (𝜎𝑌𝑌) acting normal to the mid-

height plane of the pillars. 

2.3.2. Traditional Pillar Strength Estimation Methods 

The estimation of pillar strength has been the subject of several investigations in the past 

few decades. Several researchers have created pillar stability databases for different mines 

by evaluating in-situ pillar performances, as described in Section 2.2. In this regard, several 

pillar stability graphs have been developed to present the rock mechanics data (i.e., stress 

and strength) for classified pillar conditions (i.e., stable, unstable, and failed pillar case 

histories). Each data point in the pillar stability graphs represents the ratio of average pillar 

stress to the UCS of intact rock specimen versus the W/H ratio of a particular pillar case. 

The empirical formulae (or curves) were then developed by fitting the data points in the 

pillar stability graphs to estimate the pillar strength. In this document, these empirical 

curves are referred to as the Pillar Stability Curves (PSC). A review of pillar stability 

databases and associated PSCs developed for different mines are provided in this section. 

Note that the pillar conditions indicated in these databases (i.e., stable, unstable, and failed) 
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are based on “the common pillar stability classification” proposed by Lunder and Pakalnis 

(1997). 

Hedley and Grant (1972) analyzed the stability of pillar cases in the uranium mines in the 

Elliot Lake district of Ontario, Canada. In these mines, the main rock type is quartzite with 

UCS values ranging from 210 MPa to 275 MPa (Hedley & Grant, 1972). The database 

includes both squat and rib pillars. Figure 2-8 presents the case histories in the database 

with a total of 28 pillar cases, of which 23 cases are classified as stable, 2 are classified as 

unstable (or partially failed), and 3 are classified as failed (completely crushed). Hedley 

and Grant (1972) also developed a PSC to estimate the pillar strength as a function of pillar 

W/H ratio, as shown in Figure 2-8. 

 
Figure 2-8: Pillar stability graph and the empirical PSC developed for Elliot Lake Uranium mines 

(after Hedley and Grant, 1972). 

Von Kimmelmann et al. (1984) investigated the stability of pillars at the Selebi and Phikwe 

mines of BCL Ltd. in South Africa. The mechanical properties of the intact rock specimens 

are summarized in Table 2-1. Figure 2-9 presents the data for squat and long pillars 

collected from both mines. This database consists of a total of 57 pillar cases, including 15 

stable pillars, 13 unstable pillars, and 29 failed pillars. The PSC developed by Von 

Kimmelmann et al. (1984) based on this database is also illustrated in Figure 2-9. 
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Table 2-1: Mechanical properties of intact rock specimens at Selbi-Phikwe mine (after Von 

Kimmelmann et al., 1984). 

Pillar position UCS (MPa) Young’s modulus (GPa) Poisson’s ratio 

Hangingwall 89.0 88.8 0.25 

Orebody 94.1 81.1 0.24 

Footwall 189.1 90.7 0.26 

 

 
Figure 2-9: Pillar stability graph for Selbi-Phikwe mines and the empirical PSC proposed by Von 

Kimmelmann et al. (1984). 

Hudyma (1988) and Potvin et al. (1990) analyzed the stability of rib pillars in open stope 

mines in the Canadian Shield. The UCS of the intact rock specimens ranges from 70 MPa 

to 316 MPa. The rib pillar stability data and the proposed PSC are presented in Figure 2-10. 

In total, the database consists of 47 pillar case histories, of which 26 cases are classified as 

stable, 9 are classified as unstable (sloughing), and 12 are classified as failed.  
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Figure 2-10: Pillar stability graph for rib pillars in Canadian open stope mines and the 

corresponding PSC proposed by Hudyma (1988) and Potvin et al. (1990). 

Brady (1977), Krauland and Soder (1987), and Sjöberg (1992) collected limited pillar data 

from Mount Isa mines in Australia, the Black Angel mine in Greenland, and the 

Zinkgruvan mine in Sweden, respectively. Brady (1977) presented two stable and one 

failed rib pillar cases from Mount Isa mines in Australia. The ore bodies consist of bands 

of sphalerite, galena, and pyrrhotite in the bedded dolomitic, pyritic, and tuffaceous shale 

(Brady, 1977). The orebody rock has a UCS of 170 MPa and Young’s modulus of 80 GPa 

(Brady, 1977). Krauland and Soder (1987) presented 14 unstable squat pillar cases in the 

Black Angle mine in Greenland. The main rock type in this mine is limestone, which has 

a UCS of 100 MPa. Sjöberg (1992) presented 4 unstable and 5 failed sill pillar cases in the 

Zinkgruvan mine in Sweden. The types of host rock are mainly limestone and skarn with 

UCS values ranging from 215 MPa to 265 MPa (Sjöberg & Tillman, 1990). Krauland and 

Soder (1987) and Sjöberg (1992) developed PSCs based on their databases. The combined 

pillar database for these mines and the PSCs are summarized and plotted together in Figure 

2-11.  
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Figure 2-11: Pillar stability graph from Brady (1977), Krauland and Soder (1987), and Sjöberg 

(1992) and the proposed empirical PSCs. 

Lunder and Pakalnis (1997) analyzed the stability of pillars at the H-W mine of Westmin 

Resources Ltd. in Canada. In this mine, the rock mass consists of massive sulphide with an 

average intact rock UCS of 172 MPa. The pillar stability database from this mine includes 

pillar case histories for discrete pillars (i.e., square or circular pillars), rib pillars, and nose 

pillars (1 or more side confined). A total of 31 pillar case histories were collected, of which 

2 cases were stable, 11 were unstable, and 18 were failed (Figure 2-12).  

 
Figure 2-12: Pillar stability graph for H-W mine of Westmin Resource Ltd (Lunder and Pakalnis, 

1997). 

Lunder and Pakalnis (1997) combined the pillar stability databases created by Hedley and 

Grant (1972), Brady (1977), Von Kimmelmann et al. (1984), Krauland and Soder (1987), 

Potvin et al. (1990), and Sjöberg (1992), and that of the H-W mine. Since the pillar 
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classification systems in different mines used different criteria to assess the pillar 

conditions, Lunder and Pakalnis (1997) developed a “common pillar stability classification” 

(reviewed in Section 2.2.2) and applied it to all the databases. This combined database 

consists of a total of 68 failed pillars, 52 unstable pillars, and 58 stable pillars. Lunder and 

Pakalnis (1997) proposed a PSC based on this combined pillar stability database, as shown 

in Figure 2-13.  

 
Figure 2-13: Pillar stability graph and the PSC proposed by Lunder and Pakalnis (1997) based on 

the combined stability database (after Brady, 1977; Hedley & Grant, 1972; Hudyma, 1988; Krauland 

& Soder, 1987; Lunder & Pakalnis, 1997; Sjöberg, 1992; Von Kimmelmann et al., 1984). 

The pillar stability formulas developed from the databases reviewed above are summarized 

in Table 2-2 and their corresponding curves are plotted in Figure 2-14. Note that in the PSC 

proposed by Lunder and Pakalnis (1997), the term 𝜅, called the ‘mine pillar friction term’, 

is a function of the average pillar confinement, and therefore, the pillar W/H ratio. As can 

be seen in Figure 2-14, the empirical PSCs follow a similar trend in terms of the slope and 

non-linearity of the curves, except for that proposed by Potvin et al. (1990), which is linear 

and has a much higher slope than the rest.  

In general, different empirical PSCs suggest different ratios of the pillar stress to the intact 

rock strength (𝜎𝑝/UCS) for a given pillar W/H ratio. This could be due to the following 

reasons: 1) in different mines, different classifications and criteria were used to assess pillar 

conditions; 2) the databases and their corresponding PSCs were developed based on in-situ 

performances of different types of pillars (e.g., sill pillars, squat pillars, and rib pillars); 

and 3) the actual failure modes (i.e., structurally-controlled and stress-induced failures) 
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were not reported in the references, although it is expected that most of them are stress-

induced failures. 

Table 2-2: Empirical strength formulas for hard rock pillar summarized by Renani and Martin 

(2018).  

Pillar strength,  𝒑 (MPa) 
   

(MPa) 
Rock mass type 

No. of 

pillars 
References 

133(𝑊0.5/𝐻0.75) 230 Quartzite 28 Hedley and Grant  (1972) 

65(𝑊0.46/𝐻0.66) 94 Metasediments 57 
Von Kimmelmann et al. 

(1984) 

35.4[0.778 + 0.222(𝑊/𝐻)] 100 Limestone 14 Krauland and Soder (1987) 

0.42𝜎𝑐(𝑊/𝐻) 70-316 Canadian Shield 23 Potvin et al. (1990) 

74[0.778 + 0.222(𝑊/𝐻)] 240 Limestone/Skarn 9 Sjöberg (1992) 

0.44𝜎𝑐(0.68 + 0.52𝜅) 172 Massive sulphide 31 Lunder and Pakalnis (1997) 

 

 

 
Figure 2-14: Comparison between empirical PSCs for hard rock pillars. 

 

2.4. NUMERICAL SIMULATION OF HARD ROCK PILLARS 

Numerical methods typically used to study the mechanical behavior of brittle rocks include: 

1) continuum (e.g., FEM); 2) discontinuum (e.g., Discrete Element Method, DEM); and 3) 

hybrid continuum-discontinuum (e.g., hybrid Finite-Discrete Element Method, FDEM) 

methods. The progressive failure of massive to moderately jointed hard rock pillars can be 
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simulated in continuum numerical programs by assigning different failure criteria (e.g., 

Hoek-Brown and Mohr-Coulomb) and constitutive laws (e.g., elastic-brittle and strain 

softening). In elastic models, the FOS or strength factor is usually used to assess the pillar 

stability. In inelastic models, yielded elements/zones can be used as an indication of rock 

mass failure. Furthermore, the progressive failure of jointed hard rock pillars can be 

simulated in discontinuum and hybrid continuum-discontinuum methods as long as the 

rock joints, which simulated as frictional or cohesive contacts, are integrated into the 

numerical models.  

In this section, numerical approaches based on the continuum and discontinuum methods 

used to simulate the failure of hard rock pillars are reviewed. The PSCs developed based 

on the results of the numerical simulations of hard rock pillars are also presented and 

compared with various pillar stability charts. 

2.4.1. Continuum Methods 

Martin and Maybee (2000) used Phase2 (former version of RS2 by Rocscience) to 

investigate the influence of rock mass quality on the strength of jointed pillars. The 

numerical program Phase2 is based on the implicit FEM. In their study, the rock mass was 

simulated as a homogeneous material and the Hoek-Brown parameters for GSI values of 

40, 60, and 80 were used to determine the PSCs, as shown in Figure 2-15. However, they 

discussed that the simulation results using the Hoek-Brown failure criterion for GSI 40, 60 

and 80 do not follow the trends of the stability lines proposed by Hedley and Grant (1972) 

or Lunder and Pakalnis (1997).  
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Figure 2-15: The PSCs obtained from the continuum numerical models of jointed rock pillars by 

Martin and Maybee (2000). 

Martin and Maybee (2000) also used elastic models with the Hoek-Brown brittle 

parameters (𝑠  = 0.11, and 𝑚𝑏  = 0) in Phase2 to estimate the strength of massive to 

moderately jointed hard rock pillars in the Canadian Shield. The Hoek-Brown brittle 

parameters were initially proposed by Martin et al. (1999) to predict the depth of brittle 

failure around tunnels. The assumption in this approach is that the failure process of 

massive brittle rocks at low confinement is dominated by cohesion loss. Therefore, the 

frictional strength component in the Hoek-Brown criterion (i.e., 𝑚𝑏) can be assigned a low 

or zero value in elastic models (Martin et al., 1999; Martin & Maybee, 2000). Martin and 

Maybee (2000) and Maybee (2000) used the strength factor of 1 at the pillar core as an 

indication of pillar failure in their continuum elastic models. In Figure 2-16, it can be seen 

that the PSCs obtained from their numerical simulations for FOS of 1 and 1.4 agree well 

with the combined pillar stability database presented by Lunder and Pakalnis (1997). 
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Figure 2-16: Comparison of the pillar stability data and PSCs from Phase2 elastic models with Hoek-

Brown brittle parameters (Martin & Maybee, 2000). 

Mortazavi et al. (2009) used the two-dimensional continuum program, FLAC, to 

investigate the non-linear behavior of pillars as a function of the pillar W/H ratio. FLAC is 

a numerical program based on the Finite Difference Method (FDM). In their simulations, 

the host rock was assumed to be elastic, and the pillar was simulated as a strain-softening 

material using the Mohr-Coulomb parameters. In their models, the stopes were gradually 

excavated from the two sides of the pillar, which allowed the stresses to be redistributed 

within the pillar. They found that the pillars exhibited a softening behavior at small W/H 

ratios (i.e., 0.5 to 1.5), and became strain-hardening when the W/H ratio was greater than 

2, as shown in Figure 2-17. 
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Figure 2-17: Average pillar stress versus axial strain curves obtained from numerical simulation of 

hard rock pillars with strain softening material behavior by Mortazavi et al. (2009). 

Figure 2-18 shows the PSCs obtained from the simulation results for FOS of 1 and 1.5, and 

their comparison with the pillar stability data compiled by Lunder and Pakalnis (1997). As 

can be seen in this figure, the PSCs increase non-linearly with an increase in the W/H ratio. 

It is concluded that the curve for FOS = 1 generally agrees with the combined pillar stability 

data (Figure 2-18) up to a W/H ratio of 1.5. The numerically estimated PSCs suggest that 

pillars with W/H ratios greater than 1.8 seem to be indestructible. 

 
Figure 2-18: Comparison of pillar stability data and FLAC modeling results using the strain 

softening material behavior with Mohr-Coulomb strength parameters (Mortazavi et al., 2009). 
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Kaiser et al. (2011) proposed a modified Hoek-Brown failure criterion for massive to 

moderately jointed rock mass. They introduced a modified GSI parameter (i.e., GSI’), 

which is a function of the confining pressure and the GSI. They replaced the original GSI 

in the generalized Hoek-Brown failure criterion with GSI’, which can be obtained using 

the following equation: 

𝐺𝑆𝐼′ =
𝑀 − (

𝑀
100
) 𝐺𝑆𝐼

1 + 𝑒−𝜎3+
𝜎𝑐𝑖
10 ⁡
+ 𝐺𝑆𝐼 Equation 2-4 

In the above equation, 𝜎𝑐𝑖 is the uniaxial compressive strength for the intact rock obtained 

from laboratory tests, 𝜎3  is the confining pressure at failure, and 𝑀  is a constant that 

controls the strength degradation at elevated confinement (i.e., 𝜎3 > 𝜎𝑐𝑖/10).  

The strength envelopes obtained from the original and modified Hoek-Brown failure 

criteria for different values of GSI are compared in Figure 2-19. As can be seen in Figure 

2-19b, the modified Hoek-Brown strength envelope is an S-shaped curve with different 

strength degradations at low and high confinement. Kaiser et al. (2011) discussed that since 

the tensile failure is inhibited at high confinement, the rock mass strength degradation from 

the intact strength should be lower at high confinement (i.e., 𝜎3 > 𝜎𝑐𝑖/10) than that at low 

confinement (i.e., 𝜎3 < 𝜎𝑐𝑖 /10). Therefore, this conceptual approach estimates a higher 

strength at high confinement compared to the original Hoek-Brown criterion, as 

demonstrated in Figure 2-19.  
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Figure 2-19: Comparison between: a) original Hoek-Brown failure criterion; and b) modified Hoek-

Brown failure criterion for various GSI values (after Kaiser et al., 2011). 

The modified Hoek-Brown criterion (i.e., S-shaped criterion) was then used to simulate 

hard rock pillars in Phase2. Figure 2-20 compares the pillar stress-strain curves obtained 

from both the modified and original Hoek-Brown criteria. The modeling results indicate 

that the model based on the original Hoek-Brown criterion with the GSI strength equations 

systematically underestimate the pillar strength for W/H ratios greater than 1.5. 

 
Figure 2-20: Comparison between pillar stress-strain curves obtained from continuum models with 

original and modified Hoek-Brown failure criteria (Kaiser et al., 2011). 

(a) (b)
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Sinha and Walton (2018) developed a progressive S-shaped yield criterion in the three-

dimensional (3D) FDM program, FLAC3D, to investigate the pillar strength as a function 

of the pillar W/H ratio. Three components of this complex criterion (i.e., yield, peak, and 

residual envelopes) are shown in Figure 2-21. The blue dashed line in this figure is used to 

divide the left and right portions of the three envelopes (Figure 2-21). In the yield envelope, 

the left portion corresponds to the Crack Initiation (CI) threshold, and the right portion 

follows the modified Mogi’s line. In the peak envelope, the left portion is coincident with 

the Spalling Limit (SL), while the right portion is defined by the Crack Damage (CD) 

threshold. The residual envelope is obtained through simultaneous degradation of both the 

portions of the peak envelope (Sinha and Walton, 2018). 

 
Figure 2-21: Schematic representation of progressive S-shaped yield criterion proposed by Sinha and 

Walton (2018). 

Sinha and Walton (2018) used their progressive S-shaped yield criterion to simulate hard 

rock pillars with varying W/H ratios. The stress-strain curves along with the progressive 

failures of pillars with W/H ratios of 1, 2, and 3 are illustrated in Figure 2-22. As can be 

seen in the figure, pillars with W/H ratios greater than 2 exhibit a strain-hardening behavior. 

The numerically estimated PSC along with the pillar stability data collected by Lunder and 

Pakalnis (1997) are shown in Figure 2-23. In this figure, the PSC clearly differentiates 

between the stable and failed pillar cases in the combined pillar stability database (Sinha 

and Walton, 2018), although 2 failed cases small W/H ratios are still below the proposed 

PSC.  
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Figure 2-22: Stress-strain curves for pillars with width-to-height ratios of 0.5, 1, 2, 3 and 4 obtained 

from FLAC3D models with progressive S-shaped yield criterion (Sinha and Walton, 2018). 

 

 
Figure 2-23: PSC from FLAC3D models with progressive S-shaped yield criterion (Sinha & Walton, 

2018) compared to the pillar stability data compiled by Lunder and Pakalnis (1997). 

Renani and Martin (2018) simulated hard rock pillars in the Elliot Lake uranium and 

Selebi-Phikwe mines using the 3D FDM program, FLAC3D, by implementing a strain-

dependent non-linear Cohesion Weakening-Frictional Strengthening (CWFS) model. A 

linear CWFS approach was first implemented in FLAC by Hajiabdolmajid et al. (2000) to 

simulate brittle rock failure near underground openings. In the non-linear CWFS model, 
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both the cohesion and friction angle are functions of the plastic shear strain 𝜀𝑝 (Figure 

2-24). As can be seen in this figure, cohesion is weakened before the frictional strength is 

fully mobilized as the plastic shear strain increases. 

 
Figure 2-24: Non-linear CWFS model proposed by Renani & Martin (2018). 

The pillar axial stress versus axial strain curves obtained by FLAC3D with the non-linear 

CWFS model are shown in Figure 2-25. The stress-strain curves exhibit brittle response 

for slender pillars (i.e., W/H = 0.5 and 1), strain-softening behavior for wider pillars (i.e., 

W/H = 1.5 and 2), and strain-hardening behavior for pillars with W/H ratios greater than 

2.5. The results agree well with those obtained by Mortazavi et al. (2009) and Sinha and 

Walton (2018).  
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Figure 2-25: Average stress versus axial strain curves using non-linear CWFS model in FLAC3D 

(Renani & Martin, 2018) for pillars at: a) Elliot Lake mine; and b) Selebi-Phikwe mine. 

As illustrated in Figure 2-26, the PSCs obtained from the simulation of pillars at Elliot 

Lake and Selebi-Phikwe mines show good agreements with the field data. As discussed by 

Renani and Martin (2018), the non-linear CWFS model shows more conservative 

estimations of the pillar strength at W/H ratios between 0.5 and 2, and predicts a higher 

strength than empirical approaches at W/H ratios greater than 2 (Elliot Lake) and 2.5 

(Selebi-Phikwe).  

 
Figure 2-26: PSCs obtained from FLAC3D models with non-linear CWFS material behavior for: a) 

Elliot Lake uranium mines; and b) Selebi-Phikwe mines (Rafiei Renani & Martin, 2018). 

(a) (b)

(a) (b)
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2.4.2. Discontinuum Methods 

The advantage of discontinuum methods over continuum methods is that progressive 

fracturing of hard brittle rocks under various loading conditions can be explicitly simulated. 

In continuum methods, the intact rock failure is only represented by yielded elements/zones, 

when the stress within the element/zone exceeds the assigned strength. However, in 

discontinuum methods, fracture initiation at pre-peak loading stages and their propagation, 

which may result in the detachment of rock pieces, can be explicitly simulated. In this 

section, some of the most important numerical simulations of hard rock pillars conducted 

using discontinuum programs are briefly reviewed. 

One of the first numerical simulations of pillar fracturing processes using the discontinuum 

method (i.e., PFC by Itasca) was conducted by Diederichs (2000). Figure 2-27a shows the 

PFC model of a pillar consisting of nearly 9,000 circular particles (disks) bonded together 

at their contact points. Diederichs (2000) simulated pillar loading by increasing the axial 

stress using a wall at the top boundary of the PFC model. The pillar was loaded until the 

core was yielded. Figure 2-27b shows the compressive forces within the pillar model before 

it reaches the peak stress. As can be seen in this figure, the pillar core is highly confined, 

and spalling occurs on the pillar walls.  
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Figure 2-27: a) A pillar model developed in PFC by Diederichs (2000); b) distribution of compressive 

forces immediately prior to core yielding.  

Elmo and Stead (2010) integrated a Discrete Fracture Network (DFN) model into the 

numerical program, ELFEN (by Rockfield), to simulate the jointed pillars in the Middleton 

mine, UK. ELFEN is a program based on the hybrid Finite-Discrete Element Method 

(FDEM). By integrating the DFN into the numerical models, the discontinuities at the rock 

mass scale can be explicitly simulated. This rock mass model is called the Synthetic Rock 

Mass (SRM). Figure 2-28 shows the fracturing processes of jointed pillars with different 

W/H ratios. They also investigated the influence of fracture intensity (i.e., P21) on the pillar 

strength. The PSCs for P21 values of 1.8 and 2.6 are also shown in Figure 2-29. As evident 

from this figure, the strength of slender pillars (i.e., W/H = 0.5) estimated by the P21 value 

of 2.6 is below 10% of the intact rock UCS. Based on this result, Elmo and Stead (2010) 

concluded that the failure of slender pillars is predominantly controlled by naturally 

occurring discontinuities, and the impact of discontinuities diminishes as the pillar width 

increases. Furthermore, the spalling process on the pillar walls is captured in wider pillar 

models (Figure 2-28), which is consistent with field observations described in Section 2.2.2.  

(a) (b)
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Figure 2-28: Fracturing evolution and failure modes of jointed pillars captured by ELFEN (Elmo & 

Stead, 2010). 

 

 
Figure 2-29: The PSC obtained from the discontinuum numerical models of jointed rock pillars by 

Elmo and Stead (2010). 

Esterhuizen et al. (2011) used the two-dimensional discontinuum program, UDEC, to 

investigate the effect of a single discontinuity on the pillar strength. Figure 2-30a shows 

the PSC of a pillar with no discontinuity compared to that affected by a discontinuity 

dipping at 60°. In their study, Esterhuizen et al. (2011) concluded that the discontinuity 

caused a much greater reduction in pillar strength in slender pillars (i.e., W/H < 1.0). 
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Figure 2-30: The PSCs obtained from the discontinuum numerical models of massive and jointed 

pillars by Esterhuizen et al. (2011). 

Li et al. (2019) simulated the progressive failure of massive granitic pillars at the Creighton 

mine in Canada using a combined continuum-discontinuum program, IRAZU (by 

Geomechanica). The simulation results for the pillars of different W/H ratios are shown in 

Figure 2-31. The stress-strain curves obtained from these models show a brittle behavior 

in a slender pillar, which then become hardening as the pillar W/H ratio increases. These 

results are consistent with those of continuum models (e.g., Mortazavi et al., 2009; Rafiei 

Renani & Martin, 2018; Sinha & Walton, 2018). Furthermore, the brittle damage leading 

to spalling, the detachment of rock blocks from the pillar walls, and the inclined shear 

fractures through the pillar cores are well captured by the Irazu models.  

 
Figure 2-31: Stress-strain response and failure process of massive granitic pillars simulated using a 

hybrid continuum-discontinuum model by Li et al. (2019). 
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2.5. SUMMARY 

This chapter first summarized structurally-controlled and stress-induced failures of hard 

rock pillars from field observations. The failure of pillars at shallow depths (i.e., low in-

situ stress conditions) is controlled by the presence of discontinuities. As the mining depth, 

and therefore, in-situ stress magnitude increases, the spalling of the pillar walls leading to 

an hour-glass shape becomes the dominant mode of failure for hard rock pillars.  

The empirical and numerical pillar design approaches were also reviewed in this chapter. 

The numerical approaches have shown a distinct advantage over the empirical approaches 

with regards to the estimation of average pillar stress and strength. By considering different 

failure criteria and constitutive models, the progressive failure of hard rock pillars under 

an overall compressive loading condition can be captured using both the continuum and 

discontinuum numerical methods.  

Figure 2-32 shows a comparison between the PSCs of massive to moderately jointed hard 

rick pillars obtained from the empirical and numerical approaches. The numerical PSCs 

generally agree with most of the empirical PSCs for W/H ratios less than 1.5. However, 

the numerical PSCs suggest that the pillar strength increases more rapidly when the W/H 

ratio is greater than 1.5, which results in steeper curves than those of the empirical PSCs. 

This is because the combined pillar stability database (Figure 2-13) includes limited failed 

case histories for pillars with W/H ratios greater than 1.5, resulting in flatter curves as 

compared to those of numerical PSCs. For this reason, Martin and Maybee (2000) 

suggested that the applicability of the empirical PSCs should be limited to pillars with W/H 

ratios less than 2. The empirical PSCs suggest a more conservative design for wider pillars, 

which may lead to overdesigned pillars, and therefore, loss of ore and profit for the mining 

companies.  
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Figure 2-32: Summary of PSCs obtained from empirical methods (dashed/dotted lines) and 

numerical modeling (solid lines) for massive to moderately jointed pillars. 

Figure 2-33 shows a comparison between PSCs of jointed pillars obtained from the 

continuum and discontinuum numerical approaches. In all these cases, the pillar strength 

increases rapidly with the increase in the W/H ratio. The slopes of PSCs from these studies 

as well as those of massive pillars obtained from continuum modeling are steeper than the 

empirical PSCs (Figure 2-32), indicating the effect of increasing confinement on the pillar 

strength with increasing the W/H ratio. Unfortunately, there is no stability database for 

jointed pillars for comparison with numerical modeling results presented in Figure 2-33.  

 
Figure 2-33: Summary of PSCs obtained from continuum and discontinuum numerical models of 

jointed rock mass by Martin and Maybee (2000) and Elmo and Stead (2010) 
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In the following chapters, a Grain-Based Model (GBM) is developed using a continuum 

numerical program, and calibrated to the properties of Wombeyan marble. The GBM of 

heat-treated Wombeyan marble is upscaled and then used to investigate the strength of 

highly interlocked jointed rib pillar as a function of the pillar W/H ratio. The PSC obtained 

from this study will then be compared to those of jointed pillars reviewed in this chapter 

(i.e., Figure 2-33). 
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CHAPTER 3 A CONTINUUM GRAIN-BASED MODEL FOR 
INTACT AND GRANULATED WOMBEYAN MARBLE1 

3.1. INTRODUCTION 

The design of surface and underground excavations in jointed rock masses requires the 

knowledge of the mechanical properties of the rock at different scales (i.e., laboratory 

specimen, rock block, and rock mass), which are influenced by the presence of 

heterogeneities (Laubscher & Jakubec, 2001). Hence, it is important to understand how 

and to what extent heterogeneities affect rock behavior and its properties at different scales. 

At the laboratory specimen scale, heterogeneity is represented by the complex 

microstructure, pre-existing micro-cracks, various mineral grains, and small veins and 

fractures. At the rock block scale, heterogeneity can be found in the form of veins and 

cemented joints. At the rock mass scale, heterogeneity is in the form of discontinuities of 

various lengths, orientations, and levels of persistence, as well as rock blocks of various 

geometries. 

It is known that micro-cracking and fracturing processes leading to the failure of brittle 

rocks are controlled by the presence of heterogeneity. Heterogeneity results in the 

concentration of tensile stresses inside a rock medium even under an overall compressive 

loading condition. Local tensile stresses may lead to the development of tensile cracks 

when the magnitude of tensile stress exceeds the local tensile strength of the rock. 

According to Lan et al. (2010), grain-scale heterogeneities can be divided into three main 

types: 1) grain geometric heterogeneity, which results from different shapes (i.e., 

angularities and sphericities) and sizes of mineral grains; 2) grain property heterogeneity, 

which arises from the variation in strength and deformation properties of different mineral 

grains; and 3) grain contact heterogeneity due to the anisotropy of grain boundary 

distributions (i.e., length, orientation, and properties). 

 
1 A version of this chapter was published in Computers and Geotechnics: Li, Y and Bahrani, N. 2021. A 

continuum Grain-Based Model for Intact and Granulated Wombeyan marble. Computers and Geotechnics, 

129, 103872. 
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Numerical modeling is a powerful tool that has been used to investigate the influence of 

heterogeneity on the failure process and strength of brittle rocks. Three numerical methods 

typically used to study the mechanical behavior of rock-like materials are continuum, 

discontinuum, and hybrid continuum-discontinuum methods (Hoek et al., 1991; Jing & 

Hudson, 2002; Lisjak & Grasselli, 2014). With recent advances in computational power 

and software programs, it is now possible to incorporate grain-scale heterogeneities into 

numerical analyses. As an example, the Discrete Fracture Network (DFN) models (Elmo 

& Stead, 2010; Ivars et al., 2011) implemented in different numerical modeling programs 

can be used to generate polygonal cells based on the Voronoi tessellation technique 

(Dershowitz, 1985), and simulate the microstructure of brittle rocks. This approach, called 

the grain-based model (GBM), allows for simulating pre- and post-peak fracturing 

processes of brittle rocks under various loading conditions (Lan et al., 2010). The GBM 

has been implemented in commercial discontinuum and combined continuum-

discontinuum programs to reproduce the laboratory behavior of brittle rocks (e.g., Kazerani 

& Zhao, 2010; Lan et al., 2010; Bahrani et al., 2014; Ghazvinian et al., 2014; Gao et al., 

2016; Abdelaziz et al., 2018; Liu et al., 2018; Wang & Cai, 2018; Sinha & Walton, 2020). 

However, to the author's knowledge, no attempt has been made to use continuum numerical 

programs (e.g., finite element method) to systematically calibrate a GBM to the laboratory 

properties of a brittle rock. 

Various types of heterogeneities have been simulated using commercial continuum 

numerical programs. Valley et al. (2010) and Bewick et al. (2012) investigated the 

influences of grain stiffness and grain geometric heterogeneities on the grain-scale stress 

path and the formation of tensile stresses in a laboratory-scale specimen using the finite 

element program Phase2 (former version of RS2; Rocscience, 2019). Valley et al. (2010) 

developed a heterogeneous model by assigning different stiffness values to the mesh 

elements (i.e., stiffness heterogeneity). They found that stiffness heterogeneity alone is 

sufficient to generate tensile cracks before the peak stress. However, the strength envelope 

of this model was found to be linear. Furthermore, the known transition in the failure mode 

(i.e., axial splitting at low confinement and shear failure at high confinement) could not be 

captured by this heterogeneous continuum model. Bewick et al. (2012) developed a 

continuum Voronoi tessellated model in Phase2 and investigated the influence of grain 
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geometric heterogeneity on the tensile stresses generated within a specimen under 

compression. From the results of elastic models, they concluded that grain boundary 

orientation and grain system arrangement control the generation of tensile stresses inside a 

brittle rock specimen (Bewick et al., 2012). 

The continuum Voronoi tessellated model has also been used to simulate heterogeneities 

at the rock mass scale (Kaiser et al., 2016;  Day et al., 2019). Kaiser et al. (2016) simulated 

a jointed rock mass using a Voronoi tessellated model in Phase2 to investigate the 

influence of large-scale heterogeneities on the variation of in-situ stress magnitudes with 

depth. They concluded that the observed stress variability in the Canadian shield can be 

attributed to rock mass geometric and property heterogeneities. Day et al. (2019) combined 

the Voronoi tessellated blocks and parallel joint sets to explicitly simulate the veins and 

block forming joints, respectively, near mine drifts. They demonstrated how inter- and 

intra-block structures control the rock mass behavior (i.e., both displacement and failure 

mode) around underground openings.  

The numerical simulations reviewed above demonstrate the influence of heterogeneities on 

rock behavior at different scales. However, the applicability of the continuum-based 

Voronoi tessellated model (or continuum GBM) for simulating brittle rock failure should 

be first investigated by calibrating the model to the results of controlled laboratory tests, 

and then extended to rock mass scale problems. In this chapter, the laboratory behavior of 

Wombeyan marble is simulated using a continuum GBM developed in RS2 (Rocscience, 

2019) (called RS2-GBM). The laboratory triaxial test results of intact and heat-treated 

Wombeyan marble are used for numerical simulation and model calibration. The central 

objective of this chapter is to evaluate whether RS2-GBM can be used to capture some of 

the most important characteristics of brittle rocks, including the non-linear strength 

envelope and the observed post-peak response and failure mode at various levels of 

confinement. 

3.2. BACKGROUND 

The laboratory behavior of intact coarse-grained Wombeyan marble, from a quarry near 

Wombeyan in New South Wales, Australia, was studied by Paterson (1958), Rosengren 
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and Jaeger (1968), Gerogiannopoulos (1976), and Gerogiannopoulos and Brown (1978) 

under unconfined and confined compressive loading conditions. Gerogiannopoulos (1976) 

and Paterson (1958) observed a typical post-peak response of brittle rocks in the stress-

strain curves of intact marble, changing from brittle behavior at low confinement (i.e., 

𝜎3 = 0 - 3.5 MPa), to strain-softening with increasing confinement (i.e., 𝜎3 = 10 - 21 MPa), 

to perfectly plastic at high confinement (i.e., 𝜎3 = 28 - 46 MPa), and to strain-hardening at 

extremely high confinement (i.e., 𝜎3 = 70 - 100 MPa), as shown in Figure 3-1a and b. Note 

that the stress-strain curves in Figure 3-1a show some variations in the values of Young’s 

modulus for intact marble at different levels of confinement; the Young’s modulus tends 

to increase with increasing confinement. This is interpreted to be due to the presence of 

pre-existing micro-cracks in the specimens. 

Rosengren and Jaeger (1968) and Gerogiannopoulos (1976) also conducted unconfined and 

confined compression tests on heat-treated Wombeyan marble. In this case, the intact 

marble specimens were heated up to 600℃. This resulted in the separation of mineral grains 

(mostly calcite) at the grain boundaries due to the anisotropy of the thermal expansion of 

calcite grains. The tensile strength of granulated marble was determined to be nearly zero 

(i.e., 0.03 MPa) from the direct tensile tests (Rosengren and Jaeger, 1968). Rosengren and 

Jaeger (1968) used the term ‘granulated’ to refer to the heat-treated marble. According to 

Rosengren and Jaeger (1968), the granulated marble can be regarded as a model of a 

randomly jointed rock mass, while Bahrani and Kaiser (2013) suggested that it can be 

served as an analogue for a highly interlocked jointed rock mass.  

Figure 3-1c and d present the stress-strain curves of granulated Wombeyan marble reported 

by Gerogiannopoulos (1976) and Rosengren and Jaeger (1968), respectively. As can be 

seen in these figures, the elastic modulus systematically increases as confinement increases. 

The stress-strain curves of granulated marble are highly non-linear in their initial loading 

stages, and the degree of non-linearity decreases as the confining pressure increases. Note 

that the stress-strain curves from the tests by Rosengren and Jaeger (1968) in Figure 3-1d 

show a higher degree of non-linearity than those by Gerogiannopoulos (1976) in Figure 

3-1c. According to Hoek and Martin (2014) and Peng et al. (2015), the non-linearity of the 

stress-strain curves in brittle rocks is due to the closure of pre-existing micro-cracks. In the 
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granulated marble specimens, the grains are separated and open at their boundaries due to 

heating. Therefore, the non-linearity of the stress-strain curves is the result of the closure 

of open grain boundaries. The granulated marble exhibits a strain-softening behavior for a 

wide range of confinement (i.e., 𝜎3 = 0 - 20 MPa) and only becomes perfectly plastic at 

high confining pressures (i.e., 𝜎3 > 20 MPa). 

 
Figure 3-1: Stress-strain curves obtained from laboratory triaxial tests on Wombeyan marble: a) 

intact marble by Gerogiannopoulos (1976); b) intact marble by Paterson (1958); c) granulated 

marble by Gerogiannopoulos (1976); and d) granulated marble by Rosengren and Jaeger 1968).  

The unconfined and confined peak strengths of both intact and granulated Wombeyan 

marble are presented in Figure 3-2. It can be seen from this figure that the Unconfined 

Compressive Strength (UCS) of granulated marble is less than a third of its intact UCS. 

However, the strength of granulated marble increases more rapidly than the intact strength 
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as the confining pressure increases until it approaches about 80% of the intact strength at a 

confining pressure of about 10 MPa. 

 
Figure 3-2: Laboratory triaxial test results of intact and granulated Wombeyan marble (after 

Gerogiannopoulos, 1976). 

The laboratory behavior of intact and granulated Wombeyan marble was simulated by 

Bahrani et al. (2011, 2014) using a GBM in PFC (Itasca Consulting Group, 2008), which 

is a numerical program based on the Distinct Element Method (DEM). As shown in Figure 

3-3a, in PFC-GBM, each grain consists of a number of circular particles bonded together 

at their contact points using the parallel bond logic (Potyondy & Cundall, 2004). The grain 

boundaries are represented by smooth-joint contacts (Potyondy, 2010). A comparison 

between the strengths of the calibrated PFC-GBMs and those of intact and granulated 

Wombeyan marble is shown in Figure 3-3b. 
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Figure 3-3: a) Grain structure of PFC-GBM; b) comparison between unconfined and confined 

strengths obtained from laboratory tests and calibrated PFC-GBMs of intact and granulated marble 

(after Bahrani et al., 2014). 

In the following sections, the finite element program RS2 (Rocscience, 2019) is used to 

reproduce the laboratory behavior of intact and granulated Wombeyan marble, following 

the methodology proposed by Bahrani et al. (2014). First, the procedure to construct a 

GBM in RS2 and its calibration to the strength of Wombeyan marble are presented. Then, 

elastic analyses are conducted to better understand the influence of grain-scale 

heterogeneities on the evolution of stresses inside the specimen during compressive loading. 

Next, the results of triaxial tests simulated on inelastic RS2-GBMs including the stress-

strain curves and failure modes are presented and compared with those of PFC-GBMs 

reported by Bahrani et al. (2014). 

3.3. GRAIN-BASED MODEL OF WOMBEYAN MARBLE 

3.3.1. Discrete Fracture Network in RS2 

The built-in DFN generator in RS2 can be used to construct different types of joint network, 

including the parallel joint set, cross joint set (i.e., bedding planes with short cross joints), 

Baecher (Baecher et al., 1977), Veneziano (Dershowitz, 1985), and Voronoi (Dershowitz, 

1985; Dershowitz & Einstein, 1988). In RS2, the Voronoi joint network can be employed 

to subdivide a homogeneous finite element model into non-overlapping convex polygons 

(i.e., Voronoi cells) to generate a GBM simulating the microstructure of crystalline rocks, 
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as shown in Figure 3-4. The Voronoi joint network can be categorized into different 

polygonal shapes based on their regularities, including irregular polygons (Figure 3-4a), 

medium regular polygons (Figure 3-4b), almost regular polygons (Figure 3-4c), and regular 

hexagons (Figure 3-4d and e). The cell density can be assigned either by the number of 

cells per area or the average length of the cell boundary. Different constitutive models can 

be assigned to the cells or finite elements (e.g., Mohr-Coulomb, Hoek-Brown, etc.). 

 
Figure 3-4: Voronoi joint networks in RS2: a) irregular polygon; b) medium regular polygon; c) 

almost regular polygon; d) regular hexagon in horizontal orientation; and e) regular hexagon in 

vertical orientation. 

In the Voronoi tessellated model (or GBM), the contact between two grains representing 

the grain boundary is an open-ended joint element (also called finite element interface; 

Ghabaussi et al., 1973; Goodman et al., 1968). The joint element is a one-dimensional four-

noded quadrilateral element with a negligible thickness (Riahi et al., 2010). It is an edge-

to-edge contact in which interconnectivity does not change with time. Figure 3-5 presents 

the configurations of a joint element before and after deformation. As can be seen in this 

figure, the two sides of the joint element have equal lengths. Before deformation occurs 

(Figure 3-5a), nodes 1 and 4 of the joint element share the same position, while nodes 2 

and 3 share another position. When the blocks start to deform (Figure 3-5b), the nodes can 

move normally and tangentially from each other. According to Riahi et al. (2010), large 

displacement, rotation, or strains of discrete objects can be accommodated by the joint 

element so long as these mechanisms do not change contacting node couples.  
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Figure 3-5: Interpretation of Goodman finite element interface (joint element) in RS2 (after Riahi et 

al., 2010): a) undeformed joint element; and b) deformed joint element. 

The joint elements in RS2 are assigned strength and stiffness properties. Relative 

movement of the two sides of a joint may be elastic or inelastic. Inelastic joints with 

perfectly plastic or brittle post-peak response can be simulated by assigning a failure 

criterion (e.g., Mohr-Coulomb, Barton-Bandis, etc.) and appropriate residual strength 

properties, to allow for shear (slip) or tensile yielding between the two discrete bodies. The 

residual strength parameters will be in effect if joint slip or tensile yielding occurs (i.e., 

peak strength envelope is exceeded). For example, in the case of the Mohr-Coulomb failure 

criterion, if the shear stress on a joint element exceeds the joint peak shear strength, slip 

(or shear yielding) occurs, and the cohesion and friction angle of the joint element are 

reduced to their residual values. Similarly, if the normal stress on a joint element exceeds 

the joint peak tensile strength, tensile yielding occurs, and the tensile strength of the joint 

element is reduced to its residual value. 

3.3.2. RS2-GBM of Wombeyan Marble 

A 20 mm × 50 mm GBM was constructed in RS2 (v.10.08) to represent a Wombeyan 

marble specimen (Figure 3-6). The chemical analyses conducted by Paterson (1958) 

showed that the mineralogical composition of Wombeyan marble is mainly calcite (i.e., 

96% of CaCO3). Therefore, only one mineral type representing calcite grains was 

considered in this simulation. 

Bewick et al. (2012) pointed out that the distribution of grain boundary orientation in the 

GBM with regular hexagon grain structures (i.e., Figure 3-4d and e) is not uniform, and 

this results in a non-uniform tensile stress distribution along the grain boundaries. Their 

analyses showed that the distributions of grain boundary orientation for other polygon 
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shapes (i.e., irregular, medium, and almost irregular) are uniform. Hence, these models 

(Figure 3-4a, b and c) have similar tensile stress distributions along the grain boundaries 

during uniaxial loading (Bewick et al., 2012). A series of sensitivity analyses were 

conducted to investigate the influence of grain geometry on the UCS of the GBM. It was 

found that as long as the numbers of mesh elements in the GBMs with irregular, medium 

regular, and almost regular cells are close, the difference between the strength of these 

models is negligible (i.e., within ± 3 MPa of the UCS of intact marble). Such difference is 

not significant compared to the average UCS of intact marble specimens, which is 74.5 

MPa. Therefore, in this study, the Voronoi tessellated model with medium regular cells 

(Figure 3-6a) was selected to generate the RS2-GBM and represent the grain structure of 

Wombeyan marble (compare Figure 3-6b and Figure 3-6c). 

 
Figure 3-6: a) Geometry of RS2-GBM of Wombeyan marble and its boundary conditions for UCS 

test simulation; b) closer view of GBM showing grain structure and mesh elements, and comparison 

with: c) grain structure of Wombeyan marble (Rosengren & Jaeger, 1968). 

According to Rosengren and Jaeger (1968) and Gerogiannopoulos (1976), the average 

grain size of Wombeyan marble is between 1 and 2 mm. In the RS2-GBM of Wombeyan 

marble, the average length of the contact between two grains (i.e., grain boundary) is 0.9 

mm. This setting resulted in at least 10 grains across the specimen’s width, which is 

Shear

Tension

Sigma 1

min (stage): 0.00 MPa

max (stage): 0.00 MPa

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Figure 3-6

20 mm

5
0
 m

m

10 mm

Shear

Tension

Sigma 1

min (stage): 0.00 MPa

max (stage): 0.00 MPa

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4
.5

4
.2

5
4

3
.7

5
3

.5
3

.2
5

3
2

.7
5

2
.5

2
.2

5
2

1
.7

5
1

.5
1

.2
5

1
0

.7
5

-2.5 -2.25 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6

(a) (b) (c)



56 

 

consistent with the suggestion by the ISRM (Bieniawski & Bernede, 1979; see Figure 3-6a). 

This means that the average grain size of the RS2-GBM is about 2 mm, which is consistent 

with that of PFC-GBM by Bahrani et al. (2014).  

Six-noded uniform triangular elements were used to mesh the grains (Figure 3-6b). The 

results of sensitivity analyses conducted on mesh density indicated that the strength of RS2-

GBM decreased with increasing the mesh density and became constant when the total 

number of mesh elements was greater than 11,000. Therefore, to minimize the influence of 

mesh size on modeling results, the total number of mesh elements in the five realizations 

of RS2-GBM was selected to be more than 11,000 (i.e., between 12,000 and 13,000 which 

resulted in a density of 25 to 27 finite elements per grain). 

In the simulations of unconfined and confined compression tests, the lower boundary of 

the model was fixed in vertical direction except for its midpoint, which was fixed in both 

vertical and horizontal directions (Figure 3-7). A displacement boundary was directly 

applied to the top boundary of the numerical specimen to simulate the UCS test (Figure 

3-7a). In the simulation of confined tests, a distributed load was applied to three boundaries 

of the numerical specimen at the first loading stage, as shown in  Figure 3-7b (left). Starting 

from the second loading stage, a displacement boundary was applied to the top boundary 

of the numerical specimen, while the distributed load at the two sides was kept constant, 

simulating a constant confining pressure, as shown in Figure 3-7b (right). The GBM was 

loaded with a strain rate of 0.0001 per stage (i.e., displacement rate of 0.005 mm/stage). 

The selected strain rate was reduced near the peak stage to be able to accurately capture 

the peak strength. 
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Figure 3-7: RS2-GBM boundary conditions in: a) unconfined compression test; and b) confined 

compression test, showing the boundary conditions at the first loading stage (left) and the rest of 

stages (right). 

3.3.3. Calibration Assumptions 

The goal of the RS2-GBM calibration was to match its macro-properties to the laboratory 

properties of intact and granulated Wombeyan marble, including the unconfined and 

confined compressive strengths and the elastic modulus. The simulation results, such as 

the stress-strain curves and failure modes, are compared to those of laboratory tests 

(Gerogiannopoulos, 1976; Paterson, 1958) and PFC-GBM (Bahrani et al., 2014) in Section 

3.5. The calibration of RS2-GBM to the laboratory properties of Wombeyan marble 

required adjusting the following micro-properties, including those of grains and grain 

boundaries: 

• Properties of grains:  

(a) Peak and residual tensile strength (𝜎𝑡𝑔𝑝 and 𝜎𝑡𝑔𝑟); 

(b) Peak and residual cohesion (𝑐𝑔𝑝 and 𝑐𝑔𝑟); 

(c) Peak and residual friction angle (𝜑𝑔𝑝 and 𝜑𝑔𝑟); 
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(d) Young’s modulus (𝐸𝑔); 

(e) Poisson’s ratio (𝑣𝑔). 

• Properties of grain boundaries (i.e., joints):  

(a) Peak and residual tensile strength (𝜎𝑡𝑏𝑝 and 𝜎𝑡𝑏𝑟); 

(b) Peak and residual cohesion (𝑐𝑏𝑝 and 𝑐𝑏𝑟); 

(c) Peak and residual friction angle (𝜑𝑏𝑝 and 𝜑𝑏𝑟); 

(d) Shear stiffness and normal stiffness (𝑘𝑠 and 𝑘𝑛).  

Therefore, thirty-two unknown individual input parameters were required for the 

calibration RS2-GBM (i.e., 16 for intact and 16 for granulated marble). In order to reduce 

the complexity of the calibration process, some assumptions were made to decrease the 

number of unknown micro-parameters. The calibration assumptions are consistent with 

those used by Bahrani et al. (2014) for the calibration of PFC-GBM, as described below: 

Assumption 1: The heating process reduced the grain boundary cohesion (𝑐𝑏𝑝) and tensile 

strength (𝜎𝑡𝑏𝑝) to nearly zero. Therefore, grain boundary cohesion and tensile strength of 

0.1 MPa (as opposed to 0 MPa) were used in the RS2-GBM of granulated marble to avoid 

convergence error (see Figure 3-8a). 

Assumption 2: The heating process did not affect the frictional strength of the grain 

boundaries. In other words, the heating process only destroyed the cohesive bond between 

the grains but did not affect the basic friction angle and the roughness of the grain 

boundaries. Therefore, the peak friction angles of the grain boundaries (𝜑𝑏𝑝) in the GBMs 

of intact and granulated marble were assumed to be equal (Figure 3-8a). 

Assumption 3: The heating process did not affect the grain properties. Hence, the grain 

strength and deformation properties in the GBMs of intact and granulated marble were 

assumed to be the same (Figure 3-8b). 

Assumption 4: Grain tensile failure was assumed to reduce the grain shear strength to 

residual in the GBMs of intact and granulated marble (Figure 3-8b). This means that if an 

element within a grain yielded in tension, the shear strength (and the tensile strength) of 

this element was dropped to its residual value (i.e., 𝑐𝑔𝑟 = 15 MPa and 𝜑𝑔𝑟 = 37°). 
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Figure 3-8: Assumptions in RS2-GBM calibration: a) Reduction of grain boundary strength after 

heating; b) grain peak and residual strength envelopes for GBMs of intact and granulated marble; c) 

grain boundary peak and residual strength envelopes for GBM of intact marble; and d) grain 

boundary peak and residual strength envelopes for GBM of granulated marble. 

Assumption 5: Grain boundary failure was assumed to reduce the grain boundary shear and 

tensile strengths to residual in the GBM of intact marble (Figure 3-8c). The residual grain 

boundary tensile strength (𝜎𝑡𝑏𝑟) and cohesion (𝑐𝑏𝑟) were assumed to be 0.1 MPa. 

Assumption 6: The peak and residual friction angles of the grain boundaries (𝜑𝑏𝑝 and 𝜑𝑏𝑟) 

were assumed to be the same in the GBMs of intact and granulated marble (Figure 3-8c 

and d). 

Assumption 7: The ratio of grain boundary normal to shear stiffness (𝑘𝑛/𝑘𝑠) was assumed 

to be 10. 
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Assumption 8: The Young’s modulus of the grains was summed to be 80 GPa to be 

consistent with the results of laboratory tests conducted on calcite grains (Belikov, 1967; 

Broz et al., 2006). 

The assumptions summarized above significantly simplified the model calibration process 

by reducing the number of unknown input parameters from 32 to 9. The details of the 

calibration process are discussed next. 

3.3.4. Model Calibration 

An iterative calibration process similar to that proposed by Bahrani et al. (2014) was used 

to match the macro-properties of RS2-GBM to those of intact and granulated Wombeyan 

marble. As shown in Figure 3-9, the simulations started by calibrating the GBM to the 

properties of granulated marble, and then continued by calibrating the GBM to the 

properties of intact marble.  

Model calibration to granulated marble: First, the GBM was calibrated to the Young’s 

modulus of granulated marble by adjusting the stiffness parameters of the grain boundaries, 

assuming that the Young’s modulus of the calcite grain is 80 GPa based on Assumption 8. 

Then, the unconfined and confined strengths were matched by adjusting the grain strength 

properties and the grain boundary friction angle. During the calibration, it was found that 

the grain shear strength parameters control the strength of the GBM at high confinement 

(i.e., 𝜎3 = 10.34 – 34.47 MPa), and the grain boundary friction angle controls the strength 

of the GBM at low confinement (i.e., 𝜎3 = 0 – 10.34 MPa).  

Model calibration to intact marble: Once the GBM of granulated marble was calibrated, 

its grain strength and stiffness properties and grain boundary friction angle were directly 

used in the GBM of intact marble, following Assumption 3. At this stage, the Young’s 

modulus of the GBM was matched by adjusting the grain boundary stiffness parameters. 

Then, the strengths of the GBM were matched to the laboratory test results by adjusting 

the grain boundary tensile strength and cohesion. 
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The calibration process explained above was iterated until the macro-properties of both 

GBMs matched the laboratory properties of intact and granulated Wombeyan marble. Note 

that no attempt was made to match the Poisson’s ratio of the GBM to that of Wombeyan 

marble due to the lack of laboratory test data. It is concluded that the grain and grain 

boundary tensile strengths control the UCS and the grain and grain boundary shear 

strengths control the confined strength of the GBM. 

 
Figure 3-9: Procedure for calibrating the RS2-GBMs to laboratory properties of intact and 

granulated Wombeyan marble. 

In this study, five realizations for the grain structure (i.e., five Voronoi joint networks) were 

generated with a single combination of micro-properties to obtain a range for the macro-

properties. The average values of the macro-properties were then used for comparison with 

the laboratory test results and calibration of the GBM. 

3.3.5. Calibration Results 

The grain and grain boundary properties for the calibrated GBMs of intact and granulated 

marble are provided in Table 3-1 and Table 3-2, respectively. Note that the grain properties 

in the GBMs of intact and granulated marble are the same (see Table 3-1). In Table 3-2, 

the stiffness values of the grain boundaries (i.e., 𝑘𝑛 and 𝑘𝑠) for granulated marble are four 
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times lower than those for intact marble. According to Rosengren and Jaeger (1968) and 

Gerogiannopoulos (1976), the heating process resulted in an increase in the volume of 

granulated marble specimens due to opening of the grain boundary cracks. Therefore, the 

stiffness parameters of the grain boundaries in the GBM of granulated marble were 

assumed to be lower than those of the GBM of intact marble. Note that no initial 

assumption was made for the stiffness values of the grain boundaries in the GBMs of intact 

and granulated marble, and they were obtained through the calibration process described 

in the previous section.  

Table 3-1: Grain properties of calibrated RS2-GBM. 

GBM 

Grain properties (peak / residual) 

 𝒈𝒑/ 𝒈𝒓 

 (MPa) 

𝝋𝒈𝒑 / 𝝋𝒈𝒓  

(°) 

 𝒕𝒈𝒑⁡/  𝒕𝒈𝒓 

 (MPa) 

𝑬𝒈  

(GPa) 

Intact 45 / 15 37 / 37 14 / 0.1 80 

Granulated 45 / 15 37 / 37 14 / 0.1 80 

 

Table 3-2: Grain boundary properties of calibrated RS2-GBM. 

GBM 

Grain boundary properties (peak / residual) 

 𝒃𝒑⁡/  𝒃𝒓 

 (MPa) 

𝝋𝒃𝒑 / 𝝋𝒃𝒓 

(°) 

 𝒕𝒃𝒑 /  𝒕𝒃𝒓 

 (MPa) 

𝒌𝒏  

(GPa/m) 

𝒌𝒔  

(GPa/m) 

Intact 40 / 0.1 50 3 / 0.1 240,000 24,000 

Granulated 0.1 / 0.1 50 0.1 / 0.1 60,000 6,000 

 

The unconfined and confined strengths for five model realizations of intact and granulated 

marble are provided in Table 3-3 and Table 3-4, respectively. The percentage errors in 

these tables were calculated based on the average strength of all model realizations and the 

average laboratory test results reported by Gerogiannopoulos (1976). It can be seen in these 

tables that the calculated errors are less than 10% for most confining pressures, except for 

𝜎3 = 3.45 MPa in the GBM of intact marble, and 𝜎3 = 3.45 and 17.24 MPa in the GBM of 

granulated marble. 
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Table 3-3: Unconfined and confined strengths of RS2-GBMs of intact marble and calculated 

percentage errors. 

   (MPa) 
Realizations 

Average 
% 

Error No. 1 No. 2 No. 3 No. 4 No. 5 

0 74.2 77.1 73.1 77.7 70.4 74.5 2.1 

3.45 101.2 100.3 97.4 99.6 100.6 99.8 12.4 

6.89 111.0 111.0 109.8 110.6 113.1 111.1 3.1 

10.34 117.7 119.9 117.6 117.5 118.7 118.3 4.0 

13.79 127.6 127.3 125.1 127.5 126.9 126.9 2.8 

17.24 136.1 134.6 132.8 136.6 135.4 135.1 2.0 

20.68 145.0 141.8 142.0 143.8 144.1 143.4 7.1 

27.58 161.8 161.1 160.6 162.8 160.7 161.4 4.3 

34.47 181.1 181.1 180.1 182.7 180.1 181.0 5.4 

 

 

Table 3-4: Unconfined and confined strengths of RS2-GBMs of granulated marble and calculated 

percentage errors. 

   (MPa) 
Realizations 

Average % Error 
No. 1 No. 2 No. 3 No. 4 No. 5 

0 19.3 22.8 22.1 26.0 18.8 21.8 9.0 

3.45 67.3 71.4 66.0 68.1 67.0 68.0 17.6 

6.89 88.6 92.2 88.5 92.0 89.9 90.2 2.2 

10.34 104.9 104.7 101.2 105.2 102.5 103.7 0.1 

13.79 114.1 114.2 113.1 115.0 114.6 114.2 6.1 

17.24 123.9 123.7 122.8 124.7 125.2 124.1 11.1 

20.68 132.2 133.0 132.2 135.5 133.2 133.2 4.8 

27.58 152.7 151.7 151.6 153.7 154.7 152.9 0.5 

34.47 173.0 171.8 170.9 174.1 173.1 172.6 5.0 

 

As discussed by Bahrani et al. (2014), Tatone and Grasselli (2015), Abdelaziz et al. (2018), 

and Sinha and Walton (2020), and demonstrated by Bahrani and Hadjigeorgiou (2018), 

when the number of unknown parameters (i.e., micro-properties) in a discontinuum model 

is more than the number of known parameters (i.e., target macro-properties), the solution 

(i.e., micro-properties of the calibrated model) is indeterminate. This means that multiple 

combinations of input parameters can lead to equivalently well-calibrated models. 

Therefore, the micro-properties listed in Table 3-1 and Table 3-2 represent one solution 

(i.e., a combination of micro-properties) that is qualitatively equivalent to other possible 
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solutions. An example of how two calibrated models with different sets of input parameters 

could lead to comparable results in terms of failure mode and rock deformation are 

provided by Bahrani and Hadjigeorgiou (2018). Further research on how the choice of 

input parameters (i.e., micro-properties) on modeling results (i.e., stress redistribution and 

failure mode) at both micro- and macro-scales is suggested. 

Figure 3-10 presents the unconfined and confined strengths for calibrated GBMs of intact 

and granulated marble. In general, the strengths of both intact and granulated Wombeyan 

marble are well-captured by the RS2-GBMs for the full range of confinement, as the results 

are consistent with those of laboratory tests by Gerogiannopoulos (1976) (Figure 3-10a) 

and PFC-GBMs by Bahrani et al. (2014) (Figure 3-10b). It can be seen in these figures that 

the non-linearity of the strength envelopes for both intact and granulated marble is well 

captured by the calibrated RS2-GBMs, although a linear Mohr-Coulomb criterion was used 

for both grains and grain boundaries. 

 
Figure 3-10: Comparison between the peak strengths of calibrated RS2-GBMs and: a) laboratory 

tests by Gerogiannopoulos (1976); b) PFC-GBMs by Bahrani et al. (2014). 

Figure 3-11 shows how the Young’s modulus of granulated Wombeyan marble increases 

with increasing confinement. The RS2-GBM overestimates the Young’s modulus of 

granulated marble at low confinement (i.e., 𝜎3 = 0 – 13.79 MPa). This is due to fact that 

the opening of the grains at their boundaries caused by heating was not explicitly simulated, 

and therefore their closures during compressive loading were not captured by the RS2-

GBM. This was also the case in the PFC-GBMs by Bahrani et al. (2014). Figure 3-11 
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confirms that the elastic modulus of the RS2-GBM of granulated marble matches both the 

laboratory test (Gerogiannopoulos, 1976) and PFC simulation results (Bahrani et al., 2014) 

at high confinement (i.e., 𝜎3 > 17 MPa). Note that pre-existing cracks were not simulated 

in the GBM of intact marble. For this reason, the Young’s modulus of the calibrated RS2-

GBM of intact marble was found to be independent of the confining pressure (i.e., about 

61 GPa at all confining pressures). 

 
Figure 3-11: Confined elastic modulus of RS2-GBM of granulated marble compared to the results of 

PFC-GBM by Bahrani et al. (2014) and laboratory tests by Gerogiannopoulos (1976). 

As demonstrated in this section, the RS2-GBM is capable of reproducing the laboratory 

behavior of intact and granulated Wombeyan marble, in terms of the peak strength for the 

full range of confinement and the Young’s modulus at high confinement (i.e., 𝜎3 > 17 MPa). 

In the next section, elastic RS2-GBMs are used to investigate the evolution of grain-scale 

stresses and the development of tensile stresses inside the grains and along the grain 

boundaries during compressive loading. 

3.4. GRAIN-SCALE STRESS PATH 

Elastic RS2-GBMs of intact marble were used to investigate the influence of grain-scale 

heterogeneity on the evolution of grain and grain boundary stresses at different levels of 

confinement. For this purpose, the grain node stresses (i.e., major and minor principal 

stresses on each node inside the grains) and the grain boundary normal stresses were 
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analyzed to better understand the tensile stresses generated within the grains and along the 

grain boundaries, respectively, during compressive loading. 

3.4.1. Unconfined Compression 

Figure 3-12 illustrates the grain node stresses and grain boundary normal stresses at 35%, 

75%, and 100% of the peak stress (i.e., UCS) for the elastic GBM of intact marble. In 

Figure 3-12a, c, and e, the grain node stresses are plotted in 𝜎1-𝜎3 space, and the average 

stress is indicated by the black cross. In these figures, the black dashed line divides the 

compression (𝜎3 > 0 MPa) and tension (𝜎3 < 0 MPa) zones, and the grain strength envelope 

is shown with the black solid line.  

Figure 3-12a, c, and e show the scatter of grain node stresses around the 𝜎3 = 0 MPa axis 

in the unconfined compression test due to grain-scale heterogeneities. At 35% of the peak 

stress (Figure 3-12a), about 50.3% of the nodes are under tension (i.e., 𝜎3 < 0 MPa). At 

this stress level, the tensile stress of only a few nodes within the numerical specimen (about 

0.7%) exceeds the tensile strength of the grains, which is 14 MPa (see Table 3-1). As the 

axial load increases (Figure 3-12c and e), the scatter in the stress magnitudes (both 𝜎1 and 

𝜎3) increases. The percentage of node tensile stress magnitudes greater than the grain 

tensile strength also increases with increasing the axial load; 5.1% and 9.3% of the nodes 

at 75% and 100% of UCS, respectively. However, the percentage of node stresses 

experiencing tension remains constant as the axial load increases (i.e., 50.3%). Note that 

the average percentage of node stresses under tension for five model realizations is 50.2% 

and the standard deviation is 0.64%. In general, the results of elastic RS2-GBMs are 

consistent with those of PFC models by Diederichs (2000), who showed that almost half 

of the specimen is under tension in the UCS test. This is attributed to the grain geometric 

heterogeneity arising from different ball sizes and arrangements in the PFC model. 
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Figure 3-12: Grain-scale stresses in elastic RS2-GBM: a), c), and e) grain node stresses at 35%, 75%, 

and 100% of UCS; b), d), and f) grain boundary normal stress distributions at 35%, 75%, and 100% 

of UCS. Black dashed line represents the border between tension (   < 0) and compression (   > 0) 

zones. Black crosses indicate the average values of    and   . 

 

In Figure 3-12b, d, and f, the grain boundary normal stresses (𝜎𝑛) are plotted against the 

grain boundary angle from vertical. The black dashed line divides the compression (𝜎𝑛 > 

0 MPa) and tension (𝜎𝑛  < 0 MPa) zones. In Figure 3-12b, about 22.8% of the grain 
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boundary segments are under tension during uniaxial loading. These grain boundaries are 

orientated between 0° and 40°, and between 140° and 180° from the vertical loading 

direction, although the majority of them are sub-parallel to the loading direction (i.e., 

between 0° and 10° and between 170° and 180° from vertical). The percentage of grain 

boundaries in the tension zone is constant and independent of the magnitude of the applied 

axial stress, i.e., 22.8 % (Figure 3-12d and f). However, the magnitudes of tensile stress 

along these grain boundaries increase as the axial load increases. This is consistent with 

the results of numerical simulations by Bewick et al. (2012). 

Figure 3-13 illustrates the spatial distribution of elastic tensile stresses (i.e., 𝜎3 < 0) within 

the RS2-GBM at the peak stress. This figure shows that the tensile stresses are concentrated 

near the grain boundaries that are sub-parallel to the loading direction. The magnitudes of 

tensile stresses at the centre of the grains are lower than those near the subvertical grain 

boundaries. This suggests that grain-scale heterogeneities result in the formation of tensile 

stresses within the model, which could lead to the generation of tensile cracks from the 

grain boundaries and their propagation towards the centre of the grains as axial stress 

increases. 

 
Figure 3-13: Minor principal stress contours at peak stress from elastic RS2-GBM of intact marble. 
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3.4.2. Confined Compression 

Figure 3-14 shows the evolution of grain node stresses and grain boundary normal stresses 

at the peak stress for three confining pressures (i.e., 0 MPa, 3.45 MPa and 34.47 MPa). 

Figure 3-14a, c, and e illustrate that the scatter in the node stresses (i.e., magnitudes of 𝜎1 

and 𝜎3) increases with increasing confinement, as the average value (black cross) shifts to 

the right in the compression zone. This results in a decrease in the percentage of grain node 

stresses under tension due to an increase in the confinement. Note that the percentage of 

node stresses under tension is reduced from 50.3% under an unconfined condition to 6.1% 

at a confining pressure of 34.47 MPa (Figure 3-14e).  

Figure 3-14b, d, and f demonstrate how the normal stress acting on the grain boundary 

segments is a function of grain boundary orientation in both unconfined and confined 

compression tests. It can be seen from these figures that tensile stresses (𝜎𝑛 < 0 MPa) are 

generated along the grain boundaries that are oriented between 0° and 40° and between 

140° and 180° from the loading direction, although the majority of the nodes under tensile 

stress are sub-parallel to the loading direction (i.e., between 0° and 10° and between 170° 

and 180° from vertical). Furthermore, the percentage of grain boundary segments under 

tension decreases with increasing confinement. Note that the percentage of grain boundary 

segments under tension is reduced from 22.8% under an unconfined condition to 7.5% at 

a confining pressure of 34.47 MPa (Figure 3-14f). 
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Figure 3-14: Grain-scale stresses in elastic RS2-GBM: a), c), and e) grain node stresses at 0 MPa, 3.45 

MPa, and 34.47 MPa confining pressures; b), d), and f) grain boundary normal stress distributions at 

0 MPa, 3.45 MPa, and 34.47 MPa confining pressures. Black dashed line represents the border 

between tension (   < 0) and compression (   > 0) zones. Black crosses indicate the average values 

of    and   .  

Figure 3-15 summarizes the percentages of node stresses (Figure 3-15a) and grain 

boundary segments (Figure 3-15b) experiencing tension over the full range of confinement. 

Both Figure 3-15a and b show that the percentages of grain node stresses and grain 

boundary segments under tension decrease with increasing confinement.  
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Figure 3-15: Percentages of: a) node stresses; and b) grain boundary segments under tension in 

elastic RS2-GBM. 

The results of elastic RS2-GBMs presented in this section demonstrated how grain-scale 

heterogeneity results in the generation of tensile stresses within a rock specimen under an 

overall compressive loading condition. Furthermore, it was illustrated how the confining 

pressure reduces the tensile stresses generated within the grains and along the grain 

boundaries, although some tensile stresses are still formed even at high confining pressures. 

This is consistent with the results of numerical analyses by Sinha and Walton (2020), who 

used the Bonded Block Model (BBM) in UDEC to simulate laboratory triaxial tests on 

Creighton granite. They found that the number of tensile cracks decreased, and the number 

of shear cracks increased with increasing confinement, although some tensile cracks still 

occurred at high confinement (e.g., 60 MPa; Sinha & Walton, 2020). Note that no attempt 

was made to quantify the level of heterogeneity of the GBM in the present study. Further 

information on how to measure heterogeneity in a GBM can be found in Liu et al. (2018). 

3.5. STRESS-STRAIN RESPONSE AND FAILURE MODE 

The results of the calibrated RS2-GBMs of intact and granulated marble, including the 

stress-strain curves and failure modes under unconfined and confined compression are 

presented in this section. In these models, the stresses were continuously calculated at all 

loading stages by averaging the stresses of all the nodes within the GBM. The strain was 
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measured from the displacement of the upper model boundary. Note that the lower model 

boundary was fixed in vertical direction. 

3.5.1. Unconfined Compression 

Figure 3-16 presents the stress-strain curves for the RS2-GBMs of intact and granulated 

marble under unconfined compression. In this figure, the GBM of intact marble exhibits a 

brittle response with a sudden stress drop following the peak stress (Figure 3-16a). In 

contrast, the GBM of granulated marble shows ductile behavior (Figure 3-16b).  

 
Figure 3-16: Stress-strain curves of RS2-GBMs for: a) intact; and b) granulated marble under 

unconfined compression. The red circles on each curve represent loading stages at 35%, 75%, 100% 

of the UCS and the first loading stage in the post-peak region. 

Figure 3-17 illustrates the progressive damage (i.e., grain and grain boundary yielding) at 

35%, 75%, and 100% of the UCS, and the first loading stage in the post-peak region of the 

GBMs of intact (Figure 3-17a) and granulated (Figure 3-17b) marble. These stages are 

highlighted with red circles on the stress-strain curves in Figure 3-16. The upper images in 

Figure 3-17a show that the grain boundary yielding initiates before 35% of the UCS in the 

GBM of intact marble. As can be seen in these figures, grain boundary cracks (i.e., yielded 

joints) are subparallel to the loading direction. The crack initiation stress level for the 

calibrated GBM of intact marble is lower than that of a typical crystalline rock. This is 

considered to be a limitation of the adopted calibration procedure. It is possible to increase 

the grain boundary tensile strength to obtain a more realistic crack initiation stress level. 
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However, this would affect the peak strength of the GBM of intact marble at low 

confinement. Therefore, the crack initiation stress level was not considered as a calibration 

target in this study. 

The lower images of Figure 3-17a show that the grains start to yield at about 75% of the 

UCS. The yielded grains are randomly located within the specimen. At the post-peak stage, 

the yielded grains propagate to form a through-going yielded zone representing a macro-

fracture. The pattern of yielded grains suggests combined axial splitting and shear failure 

as the primary mode of failure for the GBM of intact marble under unconfined compression. 

In this model, only 5.5% of the elements yielded up to the peak stage, while 36.4% of the 

elements yielded in the first post-peak stage. The significant amount of yielded grains at 

the post-peak stage is attributed to the influence of heterogeneity on the generation of 

tensile stresses (shown in Figure 3-12). Note that the residual tensile strength of the finite 

elements is nearly zero (0.1 MPa). This means that when an element yields in tension, its 

tensile strength drops to 0.1 MPa. This results in further redistribution of the stresses in 

adjacent elements and yielding of more elements in tension. Therefore, more yielded grains 

occur in the post-peak stage than pre-peak stages, especially at low confinement, where the 

type of most yielded elements is tension. 

The upper images in Figure 3-17b illustrate that most of the grain boundaries in the model 

of granulated marble yield during the early stages of uniaxial loading (i.e., 𝜎1 < 35% UCS). 

This is due to the low tensile strength of 0.1 MPa assigned to the grain boundaries 

simulating thermal-induced grain boundary damage. The lower images in Figure 3-17b 

show that only a few grains randomly located within the GBM yielded during uniaxial 

loading. In general, the results of simulations using the RS2-GBM in terms of the failure 

modes for both intact and granulated marble are consistent with those of PFC-GBMs 

reported by Bahrani et al. (2014). 
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Figure 3-17: Progressive failure of RS2-GBMs of: a) intact; and b) granulated marble under 

unconfined compression. Yielded grain boundaries (upper images) and yielded grains (lower images) 

are presented at four loading stages indicated by red circles in Figure 3-16. 
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3.5.2. Confined Compression 

Figure 3-18 shows the stress-strain curves of the calibrated RS2-GBMs of intact and 

granulated marble at different confining pressures (i.e., 0 - 34.47 MPa). As can be seen in 

Figure 3-18a, the known transition in the post-peak response from brittle to ductile with 

increasing confinement is well captured by the GBM of intact marble. This is consistent 

with the laboratory test results by Gerogiannopoulos (1976) and Paterson (1958), as shown 

in Figure 3-1a and b. The stress-strain curves for the GBM of granulated marble shows a 

perfectly plastic response up to about 10 MPa confinement and becomes strain hardening 

at higher confining pressures (Figure 3-18b). This is not consistent with the laboratory test 

results reported by Gerogiannopoulos (1976) (Figure 3-1c) and Rosengren and Jaeger 

(1968) (Figure 3-1d), who show that the post-peak response of granulated marble is strain 

softening under unconfined compression and gradually changes to perfectly plastic as the 

confining pressure increases to 34.47 MPa. 

 
Figure 3-18: Stress-strain curves for RS2-GBMs of: a) intact marble; and b) granulated marble. 

Figure 3-19 presents the failure modes of intact marble at various levels of confinement 

(i.e., 0 MPa, 3.45 MPa and 34.47 MPa) obtained from laboratory tests and numerical 

simulations conducted using RS2-GBM (this study) and PFC-GBM (by Bahrani et al., 

2014). Figure 3-19a, e, and i show the yielded grains (right) and grain boundaries (left) in 

RS2-GBM. The images on the left show that the yielded grain boundaries are oriented 

subparallel to the loading direction. Although the number of yielded grain boundaries 
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decreases as the confining pressure increases, some yielded grain boundaries still occur at 

high confinement (i.e., Figure 3-19i). This is consistent with the results of elastic analyses 

discussed in the previous section (i.e., Figure 3-14 and Figure 3-15), showing that some of 

the grain boundaries are under tension even at high confinement.  

The patterns of yielded grains shown in Figure 3-19a, e and i are used to identify the mode 

of failure for the RS2-GBM at different confining pressures. The failure modes of RS2-

GBMs of intact marble are consistent with those obtained from laboratory tests by Paterson 

(1958): axial splitting under unconfined compression (Figure 3-19b); shear failure at low 

confinement (Figure 3-19f); and conjugate shear bands at high confinement (Figure 3-19j). 

The failure modes captured by RS2-GBMs are also comparable to those of PFC-GBMs, as 

shown in Figure 3-19c, g, and k. The images on the left and right illustrate inter- and intra-

grain cracks in the PFC-GBM, respectively. The results of PFC-GBMs indicate that: 1) in 

the unconfined compression test, macro-fractures are mainly formed by the accumulation 

of inter-grain tension cracks that are sub-parallel to the loading direction (Figure 3-19c); 

and 2) in the confined compression tests, the macroscopic shear bands are formed due to 

the interaction of inter- and intra-grain tensile cracks, although the number of shear cracks 

increases with increasing confinement (Figure 3-19g and k; Bahrani et al., 2014).  

The failure modes of PFC-GBMs are generally consistent with those of RS2-GBMs, 

although the PFC-GBMs show a different mode of grain failure. The results of PFC-GBM 

show that the number of inter-grain shear cracks increases with increasing confinement. 

However, in the RS2-GBM, the number of yielded grain boundaries decreases as 

confinement increases. It is found that the contribution of yielded grain boundaries in the 

RS2-GBM at the post-peak stages (Figure 3-19i) is less than that in the PFC-GBM (Figure 

3-19k) at high confinement. Furthermore, the upper images of Figure 3-19d, h, and l 

illustrate that the grains in the RS2-GBM yield in both tension and shear at zero and 3.45 

MPa confinements, and in pure shear at 34.47 MPa confinement (upper image in Figure 

3-19l). However, the lower images in Figure 3-19d and h illustrate that most of the intra-

grain cracks at zero and 3.45 MPa confinements in the PFC-GBM are tensile cracks. At 

high confinement, the failed grains in the PFC-GBM consist of tensile and shear cracks 

(lower image in Figure 3-19l). 
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Figure 3-19: Failure modes of intact marble at various levels of confinement: a), e), and i) RS2-GBM 

in this study; b), f), and j) laboratory triaxial tests by Paterson (1958); c), g), and k) PFC-GBM by 

Bahrani et al. (2014). d), h) and l) closer views of grain failure in RS2-GBM (upper images) and PFC-

GBM (lower images). 

A comparison between the failure modes of RS2-GBM (Figure 3-20a, d and g) and PFC-

GBM (Figure 3-20b, e and h) of granulated marble is provided in Figure 3-20. In the 

unconfined compression test simulated in RS2 (Figure 3-20a), most of the grain boundaries 
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yield due to their low tensile strength and cohesion of 0.1 MPa. However, only a few grains, 

randomly located within the numerical specimen, yield in both tension and shear (upper 

image in Figure 3-20c). This is consistent with the failure mode of PFC-GBM (Figure 

3-20b), which shows only a few intra-grain tensile cracks (lower image in Figure 3-20c). 

Note that it was assumed by Bahrani et al. (2014) that all the grain boundaries in the PFC-

GBM of granulated marble are purely frictional (i.e., zero tensile strength and cohesion). 

Therefore, only intra-grain cracks can be seen in their simulation results. Bahrani et al. 

(2014) discussed that the failure of PFC-GBM of granulated marble at zero confinement 

mainly involves sliding of the grains along their boundaries, and for this reason, only a few 

intra-grain cracks occur under unconfined compression. This is well captured by the 

calibrated RS2-GBM. 

The number of yielded grain boundaries in the RS2-GBM at low confinement (i.e., 𝜎3 = 

3.45 MPa; Figure 3-20d) is lower than that under unconfined compression. The yielded 

grain boundaries are mainly subparallel to the loading direction in this model. The number 

of yielded grains at this confining pressure is more than that of the RS2-GBM under an 

unconfined condition (image on the right side of Figure 3-20d). This is also consistent with 

the results of PFC-GBM by Bahrani et al. (2014), who noted that a small amount of 

confinement prevents the grains from opening and sliding along their boundaries, resulting 

in an increase in the number of intra-grain cracks at this confining pressure compared to an 

unconfined condition (Figure 3-20e). 
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Figure 3-20: Simulated failure modes of granulated marble at various levels of confinement: a), d), 

and g) RS2-GBM in this study showing grain boundary (left) and grain (right) yielding; b), e), and h) 

PFC-GBM by Bahrani et al. (2014) showing intra-grain cracks; and c), f), and i) closer views of grain 

failure in RS2-GBM (upper images) and PFC-GBM (lower images). 

Figure 3-20 Sigma 1

min (stage): -13.50 MPa

max (stage): 352.00 MPa

 -20.00

  11.67

  43.33

  75.00

 106.67

 138.33

 170.00

 201.67

 233.33

 265.00

 296.67

 328.33

 360.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

J o b  T it le : D g r_ u c s

V ie w  T it le : C o m p re s s io n  te s t: a xia l s tre s s  v s  s tra in  a n d  c ra c k s

J o b  T it le : D g r_ 3 .4 5 M P a

V ie w  T it le : C o m p re s s io n  te s t: a x ia l s tre s s  v s  s tra in  a n d  c ra c k s

Shear

Tension

Sigma 1

min (stage): -13.50 MPa

max (stage): 352.00 MPa

 -20.00

  11.67

  43.33

  75.00

 106.67

 138.33

 170.00

 201.67

 233.33

 265.00

 296.67

 328.33

 360.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

J o b  T it le : D g r_ 3 4 .4 7 M P a

V ie w  T it le : C o m p re s s io n  te s t: a xia l s tre s s  v s  s tra in  a n d  c ra c k s

Shear

Tension

Sigma 1

min (stage): -10.69 MPa

max (stage): 449.04 MPa

 -20.00

  19.17

  58.33

  97.50

 136.67

 175.83

 215.00

 254.17

 293.33

 332.50

 371.67

 410.83

 450.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Sigma 1

min (stage): -10.69 MPa

max (stage): 449.04 MPa

 -20.00

  19.17

  58.33

  97.50

 136.67

 175.83

 215.00

 254.17

 293.33

 332.50

 371.67

 410.83

 450.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Shear

Tension

Sigma 1

min (stage): -19.31 MPa

max (stage): 827.02 MPa

 -20.00

  50.83

 121.67

 192.50

 263.33

 334.17

 405.00

 475.83

 546.67

 617.50

 688.33

 759.17

 830.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Sigma 1

min (stage): -19.31 MPa

max (stage): 827.02 MPa

 -20.00

  50.83

 121.67

 192.50

 263.33

 334.17

 405.00

 475.83

 546.67

 617.50

 688.33

 759.17

 830.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0 MPa

3.45 MPa

34.47 MPa

(g) (h)

Yielded joint

Element yielded in shear

Element yielded in tension

Intra-grain shear crack

Intra-grain tensile crack
Legend

(a) (b)

(d) (e)

RS2-GBM PFC-GBM

Shear

Tension

Sigma 1

min (stage): -13.50 MPa

max (stage): 352.00 MPa

 -20.00

  11.67

  43.33

  75.00

 106.67

 138.33

 170.00

 201.67

 233.33

 265.00

 296.67

 328.33

 360.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

J o b  T it le : D g r_ u c s

V ie w  T it le : C o m p re s s io n  te s t:  a xia l s tre s s  v s  s tra in  a n d  c ra c k s

(c)

Shear

Tension

Sigma 1

min (stage): -10.69 MPa

max (stage): 449.04 MPa

 -20.00

  19.17

  58.33

  97.50

 136.67

 175.83

 215.00

 254.17

 293.33

 332.50

 371.67

 410.83

 450.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

J o b  T it le : D g r_ 3 .4 5 M P a

V ie w  T it le : C o m p re s s io n  te s t:  a x ia l s tre s s  v s  s tra in  a n d  c ra c k s

(f)

Shear

Tension

Sigma 1

min (stage): -19.31 MPa

max (stage): 827.02 MPa

 -20.00

  50.83

 121.67

 192.50

 263.33

 334.17

 405.00

 475.83

 546.67

 617.50

 688.33

 759.17

 830.00

5
4

.5
4

3
.5

3
2

.5
2

1
.5

1
0

.5
0

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

J o b  T it le : D g r_ 3 4 .4 7 M P a

V ie w  T it le : C o m p re s s io n  te s t:  a xia l s tre s s  v s  s tra in  a n d  c ra c k s

(i)

Element yielded in tension 

and shear

  



80 

 

At high confinement (i.e., 𝜎3 = 34.47 MPa; Figure 3-20g), fewer yielded grain boundaries, 

which are shorter in length, are seen in the RS2-GBM of granulated marble compared to 

those at zero and 3.45 MPa confining pressures. The pattern of yielded grains shown in the 

image on the right side of Figure 3-20g suggests a conjugate shear banding as the main 

mode of failure at this confining pressure. This failure mode is comparable to that of PFC-

GBM (Figure 3-20h). The macroscopic shear fractures in the PFC-GBM are formed due to 

the interaction between intra-grain tensile and shear cracks (lower image of Figure 3-20i) 

(Bahrani et al., 2014), while in the RS2-GBM, the failed grains consist of several elements 

yielded in shear (upper image of Figure 3-20i). This is also consistent with the results of 

elastic analyses (Figure 3-14), which suggest that most of the nodes are under compression 

at high confinement (i.e., σ3  = 34.47 MPa). When the shear stress exceeds the shear 

strength of a finite element inside a grain, the element yields in shear. For this reason, the 

mode of yielded elements at high confinement is shear only. Unfortunately, neither 

Rosengren and Jaeger (1968) nor Gerogiannopoulos (1976) provided the pictures of failed 

granulated marble specimens at these confining pressures. Therefore, the failure modes of 

RS2-GBMs of granulated marble were only compared to those of PFC-GBMs by Bahrani 

et al. (2014). 

3.6. DISCUSSION 

It was demonstrated in this chapter that the proposed continuum grain-based model (RS2-

GBM) captures some of the important characteristics of brittle rocks under laboratory 

loading conditions. The simulation results were also found to be consistent with those of 

calibrated PFC-GBMs reported by Bahrani et al. (2014). However, this modeling approach, 

as other numerical methods used to simulate the micro-mechanical behavior of brittle rocks, 

has its own limitations. Among them are its limitations in capturing the non-linearity of the 

stress-strain curve due to crack closure and the observed post-peak response for granulated 

marble. These are discussed in more detail in this section. 
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3.6.1. Non-Linear Stress-Strain Curve 

According to Martin and Chandler (1994) and Hoek and Martin (2014), the stress-strain 

curve of a brittle rock can be divided into five regions: 1) crack closure, 2) elastic region, 

3) stable crack growth, 4) unstable crack growth, and 5) peak and post-peak region. The 

non-linearity of the stress-strain curve in the early loading stages (i.e., crack closure) is 

caused by the closure of pre-existing (natural or drilling-induced) micro-cracks (e.g., grain 

boundary cracks, intragranular cracks, and trans-granular cracks; Lim et al., 2012). In 

Figure 3-1, the stress-strain curves of granulated marble show a more non-linear response 

than those of intact marble due to the high density of grain boundary cracks caused by 

heating.  

A comparison between the axial stress-axial strain curve of intact Wombeyan marble under 

an unconfined condition and those of calibrated PFC-GBM and RS2-GBM are provided in 

Figure 3-21a. It can be seen in this figure that neither PFC-GBM nor RS2-GBM captures 

the initial non-linear region of the stress-strain curve in intact marble. Unfortunately, 

Gerogiannopoulos (1976) did not provide the stress-strain curve of granulated Wombeyan 

marble under unconfined compression. However, it is expected from the results of 

laboratory tests by Rosengren and Jaeger (1968) that the stress-strain curve of granulated 

Wombeyan marble under unconfined compression is highly non-linear (see Figure 3-1d). 

Figure 3-21b also shows that the stress-strain curves of the calibrated PFC-GBM and RS2-

GBM of granulated marble are linear. This is because micro-cracks in the granulated 

marble specimens caused by heating were simulated as frictional, but not open cracks. 

Therefore, their closures during compressive loading were not captured by the GBMs.  
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Figure 3-21: Stress-strain curves and failure modes of RS2-GBM and PFC-GBM under unconfined 

compression for: a) intact marble; and b) granulated marble. In Figure 3-21a, the stress-strain 

curves of calibrated GBMs are compared to that of intact Wombeyan marble by Gerogiannopoulos 

(1976). Note: simulated failure modes correspond to the loading stages shown by red circles on the 

stress-strain curves. 

In the granulated marble, it is observed that the non-linearity of the stress-strain curves 

decreases (Figure 3-1c and d) and the Young’s modulus increases as confinement increases 

(Figure 3-11). Both RS2-GBM and PFC-GBM of granulated marble overestimate the 

unconfined Young’s modulus of granulated marble when calibrated to its confined 

Young’s modulus. This is because grain boundary damage in the granulated marble was 

not simulated as open cracks. For this reason, only the Young’s modulus of the GBM at 

high confinement (i.e., 𝜎3 > 17.24 MPa) was matched to that of granulated Wombeyan 

marble. It is worth mentioning that thermal-induced micro-cracking and associated crack 
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closure during compressive loading and non-linear stress-strain response have been 

explicitly simulated in PFC by Tian et al. (2020). 

3.6.2. Post-Peak Behavior 

Figure 3-1a and b show that the post-peak response of intact Wombeyan marble is brittle 

at zero confinement, changes to strain-softening at low confinement, becomes perfectly 

plastic at high confinement, and exhibits a strain hardening behavior at extremely high 

confinement. This is well captured by the calibrated RS2-GBM of intact marble (Figure 

3-18a). The granulated Wombeyan marble responds in a strain softening manner for a wide 

range of confining pressure, and only shows a perfectly plastic behavior at high 

confinement (Figure 3-1c and d). This behavior was well captured in PFC-GBM by 

Bahrani et al. (2014). However, the post-peak response of the calibrated RS2-GBM of 

granulated marble is perfectly plastic for the full range of confinement, as shown in Figure 

3-18b and Figure 3-21b. This is interpreted to be due to the amount of grain yielding and 

its residual strength, which control the post-peak response of the RS2-GBM.  

In the simulations of intact marble, the failure of RS2-GBM at zero confinement is 

dominated by progressive grain boundary yielding in the pre-peak loading stages. Once the 

stress passes its peak value, a large number of grains yield simultaneously, resulting in a 

sudden drop in the stress to its residual value (Figure 3-21a). For this reason, the RS2-GBM 

of intact marble exhibits a brittle response under unconfined compression. In the RS2-

GBM of granulated marble, the failure is dominated by yielding of the grain boundaries, 

which are frictional contacts with the same peak and post-peak strength and deformation 

properties. The perfectly plastic response of RS2-GBM of granulated marble is therefore 

attributed to the yielding of only a few grains which begins in the pre-peak loading stages 

and gradually increases in the post-peak region (see Figure 3-17b). 

The difference in the kinematic assumptions and formulations of the joints in the FEM and 

the DEM, representing grain boundaries in the GBM, could also contribute to different 

post-peak responses observed in the RS2-GBM and PFC-GBM (Figure 3-21b). As 

discussed earlier, the grain boundaries in the RS2-GBM are simulated using joint elements, 
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which are four-noded quadrilateral interfaces with negligible thickness. According to Riahi 

et al. (2010), the interconnectivity between the solid and the joint element in the FEM 

remains unchanged throughout the solution process, despite the displacement that occurs. 

This means that the detachment of grains at their boundaries is not simulated in RS2-GBM 

(Figure 3-21). However, in the DEM, contact pairings can change throughout the solution 

process as the algorithm updates the positions of the discrete objects and determines 

detached as well as newly formed contacts (Riahi et al., 2010). In the PFC-GBM, the grain 

boundaries are represented by smooth-joint contacts that can simulate problems in which 

block connectivity changes extensively, resulting in complete detachment and large 

deformation (see failure mode of PFC-GBM in Figure 3-21). The detached grains result in 

the redistribution of stresses within the specimen, reducing the average stress to a residual 

value that is lower than that of RS2-GBM for the same amount of axial strain (e.g., compare 

the axial stresses at 0.003 axial strain in Figure 3-21b). While the interconnectivity between 

the grains in the RS2-GBM remains unchanged (i.e., grains do not detach), only the 

residual grain strength can contribute to the post-peak strength. Since only a few grains 

yield during the failure process of the RS2-GBM of granulated marble, the stress-strain 

curve of this model exhibits a plastic response. This means that much higher stress is 

required in the RS2-GBM to achieve the same amount of strain that occurred in the PFC-

GBM. 

3.6.3. Path Forward 

As mentioned earlier, granulated marble is suggested to serve as an analogue for a highly 

interlocked jointed rock mass (Bahrani et al., 2014; Bahrani & Kaiser, 2013). In this 

material, the grains and grain boundaries are analogues for rock blocks and block 

boundaries (i.e., joints) in a jointed rock mass. Apart from some of the limitations of the 

RS2-GBM discussed above, this modeling approach is proven to be capable of capturing 

some of the unique characteristics of granulated marble, including the rapid increase in the 

peak strength with increasing confinement, resulting in a highly non-linear strength 

envelope (Figure 3-10). This suggests that this modeling approach can potentially be used 

as a tool to simulate highly interlocked jointed rock masses and estimate their strengths, 
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especially at high confinement. This is of significant importance for hard rock pillar design 

in deep mines (Bahrani et al., 2014; Kaiser et al., 2011).  

Bahrani et al. (2014) suggest that a numerical model properly calibrated to the strength of 

granulated Wombeyan marble can potentially capture the rapid strengthening effect of 

jointed hard rock pillars with increasing the width-to-height ratio observed in the pillar 

database (Lunder & Pakalnis, 1997; Martin & Maybee, 2000). In this regard, the PFC-

GBM would probably be an appropriate tool to simulate jointed pillars, not only because 

it captures the peak strengths and failure modes of granulated marble, but also because it 

results in a more representative post-peak response compared to the calibrated RS2-GBM. 

This is because PFC-GBM can simulate progressive inter- and intra-block fracturing 

processes and block detachment past the peak stress, resulting in a more realistic stress 

redistribution within the pillar during mining-induced stress changes. However, the main 

advantage of the RS2-GBM over PFC-GBM is its much shorter computation time, making 

it a more practical tool, not only during the model calibration stage but also for generating 

and running large-scale mine models. For example, in a finite element model of a mine 

pillar, the Voronoi tessellation approach can be used to simulate the pillar and its nearby 

jointed nature of the rock mass with input properties of the calibrated RS2-GBM of 

granulated marble. A homogeneous material with equivalent strength and deformation 

properties can then be used to represent the rock mass far from the pillar to capture the 

stress redistribution caused by excavations.  

3.7. SUMMARY 

In this chapter, the applicability of a continuum grain-based model developed in RS2 

(called RS2-GBM) for simulating brittle rock failure was evaluated by simulating the 

laboratory behavior of intact and heat-treated (granulated) Wombeyan marble reported by 

Gerogiannopoulos (1976). A systematic calibration approach was used to match the macro-

properties of RS2-GBMs to those of intact and granulated marble. 

The results of simulations using elastic RS2-GBMs showed that grain-scale heterogeneity 

controls the variation of stresses within a specimen during compressive loading. Both 

grains and grain boundaries experience tensile stresses during compressive loading, even 
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at high confinement. The results of simulations using inelastic RS2-GBMs of intact marble 

indicated that grain boundary yielding mainly occurs during pre-peak loading stages, while 

grain yielding dominates the failure in the post-peak region. It was shown that the RS2-

GBM calibrated to the peak strength of intact marble could capture the observed post-peak 

response and failure mode at different levels of confinement. 

The RS2-GBM well captured the non-linear strength envelope of the granulated marble. 

Although the failure modes of RS2-GBM of granulated marble were found to be consistent 

with those of previously calibrated PFC-GBM, it exhibited a plastic post-peak response, 

independent of confinement. This is interpreted to be due to the gradual yielding of a few 

grains in the post-peak region and the inability of the RS2-GBM in capturing grain 

detachment from their frictional boundaries that occur in the post-peak loading stages of 

the granulated marble. 

Detailed analysis of the calibrated RS2-GBMs of intact and granulated marble revealed 

that the proposed continuum GBM can be used as a tool for simulating brittle rock failure. 

The advantage of this modeling approach over discontinuum GBMs (e.g., PFC-GBM) is 

its shorter runtime resulting in more efficient model calibration. In the next chapter, the 

calibrated RS2-GBM of granulated marble, which is suggested to serve as an analogue for 

a highly interlocked jointed rock mass, is used to simulate jointed pillars to better 

understand their strengths and failure mechanisms as a function of pillar width-to-height 

ratio.  
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CHAPTER 4 SIMULATION OF HIGHLY INTERLOCKED 
JOINTED PILLARS USING UPSCALED CONTINUUM 

GRAIN-BASED MODELS 

4.1. INTRODUCTION 

The majority of research on pillar design, including empirical formulae (Hedley & Grant, 

1972; Von Kimmelmann et al., 1984; Krauland & Soder, 1987; Potvin et al., 1990; Lunder 

and Pakalnis, 1997) and numerical simulations (Martin & Maybee, 2000; Mortazavi et al., 

2009; Kaiser et al., 2011; Sinha & Walton, 2018; Rafiei Renani & Martin, 2018), has been 

mostly focused on estimating the strength of pillars in massive to moderately jointed rock 

masses. As such, minimal work has been conducted to better understand the influence of 

the degree of block interlock, which in fact, is an important parameter in determining the 

GSI value for a jointed rock mass, on the strength of jointed pillars. Furthermore, the 

continuum methods commonly used to simulate pillars consider the rock mass as a 

homogeneous medium. Although these methods employ complex constitutive laws to 

represent the post-peak rock mass response, they fail to capture the observed pillar failure 

mechanisms. In order to address these gaps, this chapter aims at investigating the strength 

and failure mechanisms of jointed pillars by explicitly simulating rock mass geometric 

heterogeneities using a two-dimensional (2D) continuum numerical modelling approach. 

For this purpose, numerical simulations are conducted with respect to the laboratory 

properties of heat-treated Wombeyan marble, which has been suggested by Bahrani and 

Kaiser (2013) and Bahrani et al. (2014) to serve as an analogue for a highly interlocked 

jointed rock mass. First, the previously calibrated continuum Grain-Based Model (GBM) 

of heat-treated marble is upscaled to simulate rib pillars of various W/H ratios. Next, the 

modeled pillars are loaded monotonically until reaching failure. The pillar strength as a 

function of pillar W/H ratio is compared to those estimated by other continuum and 

discontinuum models. The simulation results of jointed pillars provide insights into the role 

of geometric heterogeneity on damage initiation and propagation, leading to the failure of 

pillars of various W/H ratios during compressive loading. 
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4.2. GRANULATED MARBLE, AN ANALOGUE FOR A HIGHLY 

INTERLOCKED JOINTED ROCK MASS 

As discussed in Chapter 1, Bahrani and Kaiser (2020) investigated the applicability of the 

Hoek-Brown failure criterion for estimating the confined strength of granulated marble (i.e., 

highly interlocked jointed rock mass analogue). For this purpose, they modified the 

calibrated PFC-GBM of granulated marble to generate a massive rock mass model by 

removing the frictional joints and replacing them with cohesive bonds. They used the 

Hoek-Brown failure criterion with a GSI value of 100 to fit the strength of the massive 

rock mass model. Next, they lowered the GSI value to 67 to match the UCS of the model 

of granulated marble (see Figure 1-5).  

A similar exercise was conducted using the results of calibrated RS2-GBM. First, the 

Hoek-Brown failure criterion with a GSI value of 100 was used to represent the strength 

of a massive rock mass (Figure 4-1). In this case, the strength of the massive rock mass 

was assumed to be the same as the strength of the grains representing rock blocks in the 

calibrated RS2-GBM of Wombeyan marble, which has a UCS of 180 MPa (i.e., 𝑐𝑔𝑝 = 45 

MPa and 𝜑𝑔𝑝 = 37°). Then, the GSI value was lowered to 63 to match the UCS of the 

jointed rock mass model. As shown in Figure 4-1, the confined strength of the jointed rock 

mass model is underestimated by the HB-GSI approach. Next, the GSI value was increased 

to 76 to match the confined strength of the jointed rock mass model. Figure 4-1 shows that 

the estimated strength envelope overestimates the UCS of the jointed rock mass model. 
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Figure 4-1: Comparison between the strengths and the Hoek-Brown failure envelopes for massive 

rock mass model and highly interlocked jointed rock mass model (i.e., granulated marble).  

The results of this exercise indicate that the HB-GSI approach cannot capture the rapid 

strengthening behavior of highly interlocked jointed rock masses due to confinement. This 

has important implications for the design of jointed pillars. The UCS of a jointed rock mass 

is most relevant when estimating the strength of slender pillars (e.g., W/H = 0.5) and the 

strength at the walls of wide pillars (e.g., W/H = 2) due to their relatively low confinement. 

However, the confined strength of a jointed rock mass becomes relevant when estimating 

the strength of the pillar core and designing wide pillars (e.g., W/H = 2). Therefore, since 

the HB-GSI approach cannot capture the observed rapid strengthening behavior of highly 

interlocked jointed rock masses, the design of highly interlocked jointed pillars based on 

this approach may lead to over-sized pillars and therefore ore loss. 

In Chapter 3, it was suggested that the RS2-GBM can be used as an alternative tool to 

simulate jointed rock masses and estimate their strength because of its much shorter 

computation time compared to discontinuum modeling approaches. In this chapter, the 

calibrated RS2-GBM of granulated marble is upscaled to simulate jointed rib pillars to gain 

better insights into their strength and failure mechanisms. In the following section, detailed 

descriptions of the adopted model upscaling approach and the development of the pillar 

models are provided. 
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4.3. SIMULATION OF HIGHLY INTERLOCKED JOINTED PILLARS 

4.3.1. Upscaling Approach in RS2-GBM 

According to Shin (2010), Lan et al. (2013), and Dadashzadeh (2020), the calibrated GBMs 

can be upscaled to investigate the response of rock masses near the pillar walls and around 

the underground openings. Herein, two approaches can be used to increase the size of a 

GBM: 1) increasing the size of the model without changing the grain size; and 2) increasing 

the size of both the model and the grains by keeping their size ratio constant. Several 

researchers have used the former approach to investigate the influence of the specimen size 

on the UCS of defected and non-defected rocks (e.g., Bahrani & Kaiser, 2016; Li et al., 

2018; Stavrou et al., 2019). The latter approach, in which both the model and the grain 

sizes are increased, has been used by Dadashzadeh (2020) to simulate brittle failure around 

underground openings. For this purpose, Dadashzadeh (2020) proposed a two-step 

upscaling approach in a UDEC grain-based model with elastic Voronoi blocks (i.e., grains): 

1) parameter upscaling, and 2) geometry upscaling. First, she calibrated a UDEC-GBM to 

the results of triaxial compression tests on a limestone. In the parameter upscaling stage, 

she iteratively reduced the peak friction angle of the contacts (i.e., grain boundaries) from 

40° to 0° until the model UCS matched the in-situ spalling strength (i.e., crack initiation 

stress level). In the next step, she upscaled the model geometry (from laboratory to in situ) 

by maintaining the ratio between the model and grain sizes. This required an adjustment to 

the contact normal and shear stiffness values to ensure that the macro-strength of the 

upscaled GBM remains the same as the in-situ spalling strength. 

Since granulated marble is considered as an analogue for a highly interlocked jointed rock 

mass, the RS2-GBM of granulated marble should be upscaled in a way that the strength 

and deformation properties of the jointed rock mass model remain the same as those of 

granulated marble. For this reason, the geometry upscaling approach proposed by 

Dadashzadeh (2020) was adopted in this chapter to increase the scale of the calibrated 

GBM to that of a rock mass to simulate jointed pillars. Therefore, the ratio of the model 

size to the grain size was kept constant, and only the joint stiffness properties were adjusted. 
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Figure 4-2a shows the RS2-GBMs at two scales, indicating that the geometric 

arrangements of the Voronoi blocks (i.e., grains) in the original and upscaled models are 

the same. This means that the total numbers of Voronoi blocks and joint elements are 

identical in the two models. Figure 4-2b shows the influence of the model scale on the UCS 

and Young’s modulus of the GBM. Note that the UCS and Young’s modulus of upscaled 

models are normalized to those of the original model (i.e., laboratory-scale model). In 

Figure 4-2b, the joint (normal and shear) stiffness properties of the upscaled GBMs are the 

same as those of the original model. As shown in this figure, both the UCS and Young’s 

modulus of the GBM increase as the model scale increases. 

Figure 4-2c illustrates the relationship between the joint stiffness ratio (RJ) and the model 

geometry scaling ratio (RG) required to obtain the same simulation results (i.e., strength, 

Young’s modulus, and failure mode) in different model scales. RJ is the ratio between the 

joint normal (or shear) stiffness in the upscaled model and that in the original model (i.e., 

laboratory scale). RG is the ratio between the width (or height) of the upscaled model and 

that of the original model (i.e., laboratory scale). As seen in Figure 4-2c, RJ is inversely 

related to RG, indicating that the joint stiffness parameters need to be reduced by a factor 

of 0.1 for every 10 times upscaling the model geometry. Note that the joint normal to shear 

stiffness ratio in the upscaled model is the same as that of the original model (i.e., 𝑘𝑛/𝑘𝑠= 

10).  

The relationship developed in Figure 4-2c was used to modify the joint stiffness properties 

in the upscaled GBMs. The results shown in Figure 4-2d indicate that by using this 

relationship, the UCS and Young’s modulus of the GBMs become independent of the 

model scale. Note that since the goal of this study was to investigate the strength and failure 

mechanisms of field-scale jointed pillars, the upscaling approach described above was used 

to simulate pillars at their actual sizes (i.e., 2 m by 5 m pillar model rather than 20 mm by 

50 mm pillar model). 
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Figure 4-2: a) Schematic of original and upscaled RS2-GBMs; b) influence of model scale on UCS 

and Young’s modulus of GBM using constant joint (normal and shear) stiffness parameters; c) 

relationship between joint stiffness ratio (RJ: ratio between joint normal stiffness in the upscaled 

model and that in the original model), and model geometry scaling ratio (RG: ratio of the upscaled 

model size and the original model size); and d) influence of model scale on UCS and Young’s 

modulus of GBM using modified joint stiffness parameters based on the relationship in c). 

 

4.3.2. Pillar Model Specifications 

Figure 4-3 shows the geometry of the pillar model constructed in RS2. This model was 

divided into continuum and discontinuum domains to simulate the host rock and a pillar. 

In the continuum domain (Figure 4-3a), the host rock was represented by an elastic 

homogenous material. The discontinuum domain (Figure 4-3b) was constructed using the 
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RS2-GBM of granulated marble calibrated in Chapter 2 and upscaled using the 

methodology described in the previous section. The joints in the discontinuum domain have 

an average length of 0.09 m, dividing the rock medium into several polygonal blocks 

(Figure 4-3b). A pillar height (H) of 5 m was used in all the models, and the pillar W/H 

ratio was varied by changing the pillar width (W). The discontinuum domains in the 

modeled pillars (i.e., five models with W/H ratios of 0.5, 0.75, 1, 1.25, and 1.5) were 

generated from a single Voronoi joint network. Therefore, the block geometries at the pillar 

cores were identical in all the models. Note that the entries (i.e., rooms) in the pillar models 

were scaled to the pillar width (W). This means that the width of the entries increases as 

the pillar W/H ratio increases. This was done to maintain a constant extraction ratio of 67% 

in all the pillar models. 

 
Figure 4-3: a) RS2 model geometry showing the continuum and discontinuum domains and the pillar 

with a W/H ratio of 1; b) closer view of the discontinuum domain showing the monitoring lines used 

to monitor axial displacements (red lines) and the stress measurement area (shaded in light gray) 

used to calculate average pillar stress. 
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As shown in Figure 4-3a, the continuum domain is larger than the discontinuum domain. 

This difference was maintained to allow for the redistribution of elastic stresses during 

pillar loading. The discontinuum domain was extended to above and below the pillars to 

allow for the propagation of block and joint yielding. The discontinuum domain was 

meshed with six-noded uniform triangular elements with a density of 25-27 elements per 

block, consistent with the GBMs developed by Li and Bahrani (2021). In the continuum 

domain, a six-noded graded mesh with larger elements was used to reduce the computation 

time. The left and right sides of the continuum domain were fixed in the horizontal direction, 

while the lower boundary of the model was fixed in both vertical and horizontal directions. 

The excavation boundaries were set to free, and a displacement boundary was applied to 

the top boundary of the model to load the pillar until the core yielded (see Figure 4-3a). 

Figure 4-3b shows the query lines and the stress measurement area used to calculate the 

pillar axial strain and stress, respectively. The pillar axial stress was continuously measured 

by averaging axial stresses at all node locations within the pillar (shaded area in Figure 

4-3b) at every loading stage. Hoek and Brown (1980) and Hudyma (1988) suggested that 

the average pillar stress can be calculated by averaging the stresses normal to the pillar 

mid-height plane. The simulation results showed that the difference between the average 

stress within the entire pillar area and that along the pillar mid-height plane is negligible 

(i.e., error < 5%). The axial strain was obtained from the difference between the average 

axial displacements of the upper and lower monitoring lines (red lines in Figure 4-3b) 

divided by the pillar height. Each monitoring line consisted of 100 equally spaced 

monitoring points. 

The strength and elastic properties of the grains and the strength properties of the grain 

boundaries from the calibrated RS2-GBM of granulated marble (Li & Bahrani, 2021) were 

directly assigned to the rock blocks and joints in the discontinuum domain of the pillar 

models, respectively. According to Li and Bahrani (2021), the grains (i.e., blocks) in the 

RS2-GBM of granulated marble (i.e., jointed rock mass) has a UCS of 180 MPa and a 

Young’s modulus of 80 GPa. These properties are comparable to those of hard rock pillars 

(e.g., Hedley & Grant, 1972; Brady, 1977; Potvin et al., 1990; Lunder & Pakalnis, 1997). 

The grain boundaries (i.e., joints) in the RS2-GBM of granulated marble (i.e., jointed rock 
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mass) were assigned nearly zero tensile strength and cohesion (i.e., 0.1 MPa), and a friction 

angle of 50°. It is reasonable to assume that the joints in a jointed rock mass have a tensile 

strength of nearly zero. The friction angle of 50° used for the grain boundaries (i.e., joints) 

is in fact the equivalent friction angle, consisting of a basic friction angle of 35° and a 

dilation angle of 15°. It should be noted that a more realistic behavior of the joints can be 

simulated using the non-linear Barton-Bandis criterion (Barton & Bandis, 1990) rather than 

the linear Mohr-Coulomb criterion that was used in this study. The joint stiffness properties 

(i.e., grain boundary normal stiffness and shear stiffness in RS2-GBM) were modified 

based on the approach described in Chapter 4.3.1 and shown in Figure 4-3c. In the 

calibrated RS2-GBM of granulated marble, the joint normal stiffness was 60,000 GPa/m. 

Since the model size was increased from 20 × 50 mm2 to 2 × 5 m2, the joint normal stiffness 

was reduced from 60,000 GPa/m to 600 GPa/m in the pillar models. The input properties 

for both the continuum and discontinuum domains of the RS2 pillar models are given in 

Table 4-1. 

Table 4-1: Input properties of rock blocks and joints in the RS2 models of jointed pillars. 

Domains Input properties Rock block Joint 

Continuum 
Young’s modulus 12.3 GPa - 

Poisson’s ratio 0.3 - 

Discontinuum 

Cohesion (peak/residual) 45/15 MPa 0.1/0.1 MPa 

Friction angle (peak/residual) 37º/37º 50º/50º 

Tensile strength (peak/residual) 14/0.1 MPa 0.1/0.1 MPa 

Young’s modulus 80 GPa - 

Poisson’s ratio 0.3 - 

Normal stiffness - 600 GPa/m 

Shear stiffness - 60 GPa/m 
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4.4. SIMULATION RESULTS 

4.4.1. Elastic Analyses 

Elastic models (i.e., elastic properties for both rock blocks and joints) were first used to 

investigate the influences of rock mass geometric heterogeneity and pillar size on tensile 

stresses generated within the pillars and the evolution of stresses at the pillar core during 

pillar loading. Figure 4-4 presents the spatial distribution of tensile stresses within the 

pillars with the W/H ratios of 0.5, 1, and 1.5 at the pillar peak stress obtained from inelastic 

models. It was found that the tensile stresses are mainly concentrated around the subvertical 

joints at the early stages of pillar loading and then extended across the rock blocks as the 

pillar load increases. 

As shown in Figure 4-4a, most of the area in the slender pillar (i.e., W/H = 0.5) is under 

tension. However, the tensile stresses are mainly concentrated near the walls of the wider 

pillars (i.e., W/H = 1 and 1.5). In other words, the portion of the pillar area experiencing 

tension is smaller in wider pillars compared to the slender pillars. Further analysis of the 

tensile stress distribution in Figure 4-4 reveals that the magnitudes of tensile stresses near 

the walls of the pillar with the W/H ratio of 1.5 are higher than those in the pillars with the 

W/H ratios of 1.0 and 0.5. This is because the stress contours in these models are shown at 

stress levels corresponding to the peak stresses of their inelastic models (i.e., 𝜎1 = 21 MPa, 

65 MPa, and 122 MPa in pillar W/H = 0.5, 1.0, and 1.5, respectively). Since the models 

shown in Figure 4-4 are elastic, localized stress redistribution due to joint and finite element 

yielding is not captured. This resulted in higher localized tensile stresses in wider pillars. 

 

 



97 

 

 
Figure 4-4: Tensile stress contours (i.e.,    < 0) at the peak stress for the pillar W/H ratios of: a) 0.5; 

b) 1; and c) 1.5. A 0.5 × 0.5 m2 area indicated by the red box was used to analyze the stress evolution 

during pillar loading in Figure 4-5. 

Figure 4-5 illustrates the scatter of stresses at the core of the modeled pillars with the W/H 

ratios of 0.5, 1.0, and 1.5 at their peak loading stages. The core areas within which the 

stresses were extracted are shown with red boxes in Figure 4-4. As shown in Figure 4-5, 

the scatter of node stresses at the pillar core increases as the pillar W/H ratio increases from 

0.5 to 1.5. The node stresses at the pillar core shift from the initial stress state (i.e., 𝜎1 = 𝜎3 

= 0 MPa) to the right in the compression zone during pillar loading. In the slender pillar 

(i.e., W/H = 0.5), nearly half of the pillar core is under tension (i.e., 48.5%), whereas only 

3.6% of the core experiences tension in the wide pillar (i.e., W/H = 1.5). In the pillar with 

the W/H ratio of 1, 17.5% of the nodes at the pillar core are under tension.  
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Figure 4-5: Scatter of pillar core node stresses at pillar peak loading stages. The dashed line divides 

the tension (   < 0) and compression (   > 0) zones. The core area within which the node stresses 

were extracted are indicated by red boxes in Figure 4-4. 

Figure 4-6 summarizes the percentages of finite element nodes and joint element segments 

experiencing tension within the entire pillar area (shaded area in Figure 4-3b). Note that a 

joint element segment is under tension when the induced normal stress is less than zero 

(i.e., 𝜎𝑛  < 0). This figure shows how the percentage of node stresses under tension 

decreases from 37.9% to 17.8% as the pillar W/H ratio increases from 0.5 to 1.5. Similarly, 

the percentage of joint element segments under tension decreases from 17.0% to 9.5% as 

the pillar W/H ratio increases from 0.5 to 1.5. 

 
Figure 4-6: Influence of pillar W/H ratio on nodes (in %) and joint element segments (in %) under 

tension in elastic pillar models. 
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The results of elastic analyses presented in this section demonstrated the impact of pillar 

W/H ratio on the distribution of tensile stresses near the sidewalls and at the pillar core. It 

was found that even the highly confined pillar core (i.e., the core of pillar with the W/H 

ratio of 1.5) experiences tension due to the influence of geometric heterogeneities. This 

inference is consistent with the findings of Sinha and Walton (2020) and Li and Bahrani 

(2021), who showed that tensile stresses leading to tensile cracking are still formed within 

a laboratory specimen at high confining pressures. 

4.4.2. Inelastic Analyses 

Inelastic models (i.e., inelastic properties for both rock blocks and joints) were used to 

better understand the failure process and estimate the strength of pillars of various W/H 

ratios. Figure 4-7a illustrates the stress-strain curves for five models with W/H ratios 

ranging from 0.5 to 1.5. The stress-strain curves of the pillars exhibit a plastic response. 

These findings are not consistent with the results of previous numerical studies conducted 

by Mortazavi et al. (2009), Rafiei Renani and Martin (2018), and Sinha and Walton (2018). 

These studies inferred that the post-peak response of pillars gradually changes from brittle 

in slender pillars to ductile in wide pillars. This inconsistency is considered a limitation of 

the RS2-GBM approach, which will be discussed in more detail later in this chapter. In 

addition, Figure 4-7b shows the pillar peak stress normalized to the UCS of the intact rock 

block (i.e., 180 MPa) for different pillar W/H ratios. As illustrated in this figure, the PSC 

for the simulated highly interlocked jointed pillars is almost linear.  
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Figure 4-7: a) Stress-strain curves of modeled pillars with W/H ratios of 0.5, 0.75, 1, 1.25, and 1.5; 

and b) pillar stability curve obtained from RS2 pillar models. 

Figure 4-8 illustrates the progressive failure of pillars with the W/H ratios of 0.5, 1, and 

1.5 at 35%, 85%, and 100% of the pillar peak stress (i.e., 𝜎𝑝), and the first loading stage in 

the post-peak region. In the pillar with a 0.5 W/H ratio, most of the joints are observed to 

yield at early loading stages (i.e., < 35% 𝜎𝑝), while only a few yielded blocks can be seen 

past the peak stress. This observation is consistent with the study conducted by Elmo and 

Stead (2010), who indicated that the strength of slender pillars is controlled by the presence 

of pre-existing discontinuities. In the pillar with a W/H ratio of 1, yielded joints are oriented 

parallel to the loading direction and appear at early loading stages (i.e., < 35% 𝜎𝑝). These 

yielded joints interact with each other and coalesce to generate relatively long slabs near 

the pillar walls. The yielded joints at the pillar core are shorter compared to those near the 

pillar walls. This is due to the higher induced confinement at the pillar core than that near 

the pillar walls. As the pillar load increases, block yielding propagates from the pillar walls 

towards the core until the core ultimately yields in the post-peak loading stage. This 

condition resembles “crushed” pillars observed in hard rock mines. A similar failure 

process can be seen in the modeled pillar with a W/H ratio of 1.5. However, the mode of 

block yielding at the core in this pillar is different from those in the pillars with the W/H 

ratios of 0.5 and 1. 
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Figure 4-8: Simulated failure processes of pillars with the W/H ratios of 0.5, 1, and 1.5. Closer views 

of the pillar failure mode within the boxed areas are illustrated in Figure 4-9. 

Closer views of the failure modes at the pillar core (boxed areas in Figure 4-8) in the peak 

and post-peak loading stages are illustrated in Figure 4-9. As shown in this figure, the 

lengths and the number of yielded joints at the pillar core decrease as the pillar W/H ratio 
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increases. The mode of element yielding at the core of the pillar with the W/H ratio of 0.5 

is combined tension-shear. This finding is consistent with the failure mode of the GBM of 

granulated marble under unconfined compression, as described in Chapter 3. With the 

increase in the pillar W/H ratio to 1.5, the mode of element yielding at the core changes to 

pure shear. Only a few elements yielded in the combined tension-shear can be found at the 

core of the pillar with the 1.5 W/H ratio (Figure 4-9c). The failure mode at the core of this 

pillar is consistent with that of the GBM of granulated marble at high confinement (i.e., 𝜎3 

= 34.47 MPa), as described by Li and Bahrani (2021). 

 
Figure 4-9: Closer views of the boxed areas in Figure 4-8 showing the failure modes in the peak and 

post-peak loading stages of the pillar with the W/H ratios of: a) 0.5; b) 1; and c) 1.5. 

Figure 4-10 shows the average confinement within the modeled pillars (shaded area in 

Figure 4-3) and the distributions of minimum and maximum principal stresses along the 

mid-height of the pillar models at their peak stresses. As seen in Figure 4-10a, the average 

confinement for the pillar with the 0.5 W/H ratio is close to zero, it increases non-linearly 

with an increase in the pillar W/H ratio and reaches about 27 MPa in the pillar with the 

W/H ratio of 1.5. In Figure 4-10b, the confinement near the pillar walls is nearly zero in all 

three pillar sizes. As expected, the confinement at the pillar core is higher in the pillar with 

the W/H ratio of 1.5 than that with the W/H ratio of 1.0. The confinement is nearly zero at 
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the core of the slender pillar (i.e., W/H = 0.5). Note that 𝜎3 in Figure 4-10b, is in fact the 

effective confining pressure resulting from the Poisson’s effect. Other factors such as the 

presence of joints, as well as block and joint yielding also affected the magnitudes of 𝜎3 

within the pillar. 

 
Figure 4-10: a) Average confining pressure (  ) within modeled pillars as a function of pillar W/H 

ratio; and distributions of: b)    and c)    along the mid-height of modeled pillars with the W/H 

ratios of 0.5, 1, and 1.5. 
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Figure 4-10c compares the distributions of 𝜎1 along the mid-height of the modeled pillars 

with the W/H ratios of 0.5, 1.0, and 1.5. This figure shows that 𝜎1 is almost zero near the 

pillar walls and increases towards the pillar core in all the three pillar models. This suggests 

that the blocks near the pillar walls have a negligible impact on the overall strength of the 

modeled pillars. In the slender pillar (i.e., W/H = 0.5), some areas of high-stress 

concentration can be identified near the pillar core. In the wider pillars (i.e., W/H = 1.0 and 

1.5), 𝜎1  increases rapidly and more systematically towards the pillar core. Both Figure 

4-10b and c illustrate that the stress magnitudes at the cores are higher in comparison to 

those near the walls in the wider pillars (e.g., W/H = 1.5). This is believed to affect the 

overall strength of the wider pillars resulting in a steep PSC, as shown in Figure 4-7.  

4.4.3. Pillar Stability Curve (PSC) 

In this section, the PSC of modeled pillars is compared with those of jointed pillars from 

existing continuum and discontinuum models. As shown in Figure 4-11, the slope of the 

PSC of modeled pillars from this study is steeper than those of joined pillars simulated by 

continuum (Martin & Maybee, 2000) and discontinuum (Elmo & Stead, 2010) models. It 

can be seen in this figure that the strength of the slender pillar (i.e., W/H = 0.5) in this study 

is close to those with the GSI value of 60 (Martin & Maybee, 2000) and the P21 value of 

2.6 (Elmo & Stead, 2010). The failure mode of the simulated slender pillar is also consistent 

with those of discontinuum models by Elmo and Stead (2010), who demonstrated that the 

behavior of slender pillars is predominantly influenced by the presence of discontinuities. 

Figure 4-11 demonstrates how the strength of highly interlocked jointed pillars increases 

as the pillar W/H ratio increases and approaches that represented by the GSI value of 80 

for the pillar W/H of 1.5.  
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Figure 4-11: The PSC in this study compared to those obtained from continuum (Martin and 

Maybee, 2000) and discontinuum (Elmo and Stead, 2010) models of jointed pillar. 

This rapid strengthening of highly interlocked jointed pillars resulting in a steep PSC is 

consistent with the strength envelope of jointed rock mass analogue (Figure 4-1), which is 

represented by GSI values of 63 and 76 under unconfined and confined conditions, 

respectively. The higher slope of the PSC in this study compared to those of jointed pillars 

by Elmo and Stead (2010) (i.e., PSCs for P21 = 1.8 and 2.6) can be attributed to the 

difference between the degrees of block interlock in the two jointed rock masses. In the 

jointed pillars simulated by Elmo and Stead (2010), the joints were relatively long, 

critically oriented and had a friction angle of 35°, whereas the joints in the highly 

interlocked jointed pillars are relatively short, randomly oriented and have an equivalent 

friction angle of 50°. The difference between the PSCs presented in Figure 4-11 

demonstrates the impact of the degree of block interlock on the strength of jointed pillars 

and offers a promising avenue for further research. 

4.5. DISCUSSION 

4.5.1. Post-Peak Behavior 

The results of numerical simulations of hard rock pillars using continuum models by 

Mortazavi et al. (2009), Rafiei Renani and Martin (2018), and Sinha and Walton (2018), 

demonstrated that the post-peak behavior of hard rock pillars transforms from brittle in 

slender pillars to strain-hardening in wide pillars. However, this behavior was not captured 
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by the modeled pillars in this study (see Figure 4-7a). As discussed by Li and Bahrani 

(2021), this is mainly due to the kinematic assumptions and formulations of joint elements 

in the FEM, representing the thermally-damaged grain boundaries in the GBM of 

granulated marble and frictional discontinuities in the upscaled GBMs of pillars. As 

discussed by Riahi et al. (2010), in the FEM, the interconnectivity between the solid (block) 

and the joint element remains unchanged throughout the solution process, despite the 

displacement that occurs. Therefore, the detachments of blocks (finite elements) at their 

boundaries (joint elements) and associated stress redistributions are not captured in the 

RS2-GBM with frictional joints (Li and Bahrani, 2021). This resulted in plastic response 

in the GBM of granulated marble independent of confinement, as shown in Figure 3-18b, 

and modeled pillars independent of the pillar W/H ratio, as shown in Figure 4-7a. 

It should be noted that since the continuum GBM cannot explicitly capture the detachment 

of rock blocks from their frictional boundaries and associated stress redistribution, which 

could result in further fracturing leading to the pillar core failure at a lower applied load, it 

is postulated that the strength of wide pillars is overestimated. This in combination with 

the plastic response of the rock blocks near the core of wider pillars, could have contributed 

to the estimated PSC, which is steeper than those of jointed pillars simulated using the 

hybrid finite-discrete element method by Elmo and Stead (2010). Therefore, further 

research on the progressive failure and strength of highly interlocked jointed pillars using 

discontinuum methods is warranted. 

4.5.2. Progressive Damage and Failure Mechanism 

Several researchers developed different pillar stability classification systems (e.g., 

Esterhuizen et al., 2006; Lunder & Pakalnis, 1997; Pritchard & Hedley, 1993) to evaluate 

the pillar performances in hard rock mines through assessing the pillar failure modes at 

various stress levels. These classification systems present several commonalities in terms 

of the pillar failure processes, as summarized below: 

• First, fracturing initiates at the corners of the pillar and propagates parallel to the pillar 

walls. This leads to spalling and slabbing of the pillar walls.  
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• Then, the fractures caused by the spalling process extend to the pillar core, resulting in 

an “hour-glass” shaped pillar (i.e., the width at the mid-height of the pillar is less than 

its original width).  

• Finally, the fractures coalesce at the pillar core leading to a “crushed” pillar condition.  

The progressive failure of hard rock pillars has been simulated in continuum programs by 

Rafiei Renani and Martin (2018) using the non-linear strain-dependent CWFS model, and 

by Sinha and Walton (2018) using the progressive S-shaped criterion. Figure 4-12 

compares the failure process of a jointed pillar with a W/H ratio of 1 simulated using a 

heterogeneous continuum model (i.e., upscaled RS2-GBM in this study; Figure 4-12a) with 

those by Rafiei Renani and Martin (2018) (Figure 4-12) and Sinha and Walton (2018) 

(Figure 4-12c), in which the massive rock mass was simulated as a homogeneous material.  

 

Figure 4-12: Comparison between failure process of pillars with a W/H ratio of 1 simulated using 

different continuum models: a) heterogeneous continuum model (i.e., upscaled RS2-GBM); b) 

homogeneous continuum model (i.e., FLAC3D) with non-linear CWFS by Rafiei Renani and Martin 

(2018); and c) homogeneous continuum model (i.e., FLAC3D) with progressive S-shaped yield 

criterion by Sinha and Walton (2018). 
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In the pillar simulated using the upscaled GBM (Figure 4-12a), the damage near the pillar 

walls (i.e., yielded joints) was noticed to occur at early loading stages (i.e., < 35% 𝜎𝑝). The 

yielded joints interact with each other and coalesce to generate relatively long slabs. The 

simulated failure process at the pillar walls show resemblance to the progressive spalling 

and slabbing observed in hard rock pillars as described by Pritchard and Hedley (1993), 

Lunder and Pakalnis (1997), and Esterhuizen et al. (2006). As the pillar load increases, the 

rock block yielding initiates near the walls (i.e., at 35% 𝜎𝑝 in Figure 4-12a) and propagates 

towards the pillar core (at 35% - 100% 𝜎𝑝  in Figure 4-12a). This process results in an 

“hour-glass” shaped pillar. In the post-peak stage, the yielded rock blocks coalesce at the 

pillar core, a condition which is similar to a “crushed” pillar observed in the field. 

Figure 4-12b and c show the failure processes of massive hard rock pillars simulated by 

Rafiei Renani and Martin (2018; Figure 4-12b) and Sinha and Walton (2018; Figure 4-12c). 

In these models, the failure initiates from the corners of the pillars at about 70% (Figure 

4-12b) and 100% (Figure 4-12c) of the pillar peak stress. As the pillar load increases, 

yielding propagates towards the pillar core. In the post-peak loading stages, the yielded 

zones coalesce to create conjugate shear bands, representing a “crushed” pillar condition. 

However, the tensile damage near the pillar walls leading to subsequent spalling and 

slabbing, which is expected to occur at earlier loading stages was not captured by these 

models. This is due to the lack of heterogeneities and associated localized tensile stresses 

in these models, causing shear failure of the rock mass even in slender pillars, where the 

confinement is relatively low. The results of numerical simulations using the hybrid finite-

discrete element method as studied by Elmo and Stead (2010) and Li et al. (2019) confirm 

the effect of heterogeneities on the progressive failure process of hard rock pillars, 

including the formation of tensile fractures leading to spalling of the pillar walls and shear 

failure at the pillar core. 

According to Cai (2011) and Bewick et al. (2019), spalling in massive to moderately 

jointed rock masses occurs at about 30-50% of the intact rock UCS near underground 

excavations. However, spalling was found to occur at much lower stress in the pillars 

simulated using the upscaled RS2-GBM (Figure 4-12a). This is due to the fact that the rock 

mass simulated in this study is highly jointed, and therefore, spalling was observed to occur 
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due to the tensile yielding of the joints rather than yielding of the intact rock. For this reason, 

the spalling strength in this rock mass should not be compared with that of massive to 

moderately jointed rock masses. It is expected that the spalling strength increases as the 

joint persistence decreases, and eventually reaches that of massive rock masses (i.e., 30-

50% of intact UCS). A comprehensive study on the influence of joint persistence on the 

strength of jointed hard rock masses was conducted by Bahrani and Kaiser (2020). Their 

investigations demonstrated that the unconfined and confined strengths of jointed rock 

masses increase with the decrease in the joint persistence. In the future, similar analyses 

should be conducted to investigate the influence of joint persistence on the spalling strength, 

the overall pillar strength, and the failure mechanisms of jointed pillars. 

4.6. SUMMARY 

This chapter investigated the strength and failure mechanisms of highly interlocked jointed 

pillars using an upscaled continuum GBM, previously calibrated to the properties of 

granulated Wombeyan marble. The granulated marble was considered representative of an 

analogue for a highly interlocked jointed rock mass. 

The results of elastic pillar models showed that tensile stresses are generated across the 

entire width of the slender pillar (i.e., W/H = 0.5) and are mainly concentrated near the 

walls of wider pillars (i.e., W/H = 1 and 1.5). The simulation results using inelastic models 

indicated that the failure mode of the slender pillar is dominated by the yielding of the 

joints. In the wider pillars, the failure is initiated by the yielding of the joints near the pillar 

walls at relatively low pillar stress (i.e., < 35% 𝜎𝑝), followed by the yielding of the rock 

blocks, which propagates towards the pillar core with the increase in the pillar load. 

The Pillar Stability Curve (PSC) obtained from the results of inelastic pillar models was 

found to be steeper in comparison to those of jointed pillars from existing continuum and 

discontinuum numerical simulations. The investigations demonstrated that this modeling 

approach (i.e., GBM with frictional joints) is unable to capture the transition in the post-

peak response from brittle behavior in slender pillars to strain-hardening in wide pillars. 

However, the approach captures a more realistic failure process (i.e., tensile damage 
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leading to spalling near the pillar walls and shear failure at the pillar core) compared to 

other continuum models in which the rock mass was simulated as a homogenous material. 

The modeling results presented in this chapter offer a first contribution in assisting a better 

understanding of the strength and failure mechanisms of highly interlocked jointed pillars. 

It is recommended that future studies should focus on the influence of factors contributing 

to the degree of block interlock in a jointed rock mass, such as the joint persistent, joint 

roughness, block shape, and block size on the strength and failure mechanisms of pillars 

of various W/H ratios.  
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CHAPTER 5 SUMMARY, CONCLUSIONS AND 
RECOMMANDATIONS FOR FUTURE RESEARCH 

5.1. SUMMARY 

In this research, a continuum Grain-based Model (GBM) was developed using the 2D 

numerical program RS2 to simulate an analogue for a highly interlocked jointed rock mass 

and investigate the strength and failure mechanisms of jointed rib pillars. In Chapter 1, it 

was discussed that the highly interlocked jointed rock mass represents an extreme case of 

a jointed rock mass, in terms of degree of interlock between its constituent rock blocks. 

Furthermore, it was discussed that the Hoek-Brown failure criterion based on the GSI 

system (i.e., HB-GSI) tends to underestimate the confined strength of massive to 

moderately jointed rock masses. Therefore, the pillar design in such rock masses based on 

the HB-GSI approach could lead to oversized pillars due to underestimating the rock mass 

strength at the pillar core, especially in wider pillars. The central objective of this research 

was to investigate the strength and failure mechanisms of highly interlocked jointed pillars. 

The following two steps were taken to achieve this objective: 

Step 1: An RS2-GBM was developed and calibrated to the laboratory properties of intact 

and granulated Wombeyan marble reported by Gerogiannopoulos (1976):  

In the RS2-GBM, the grains were simulated as a homogeneous medium consisting of 

several six-noded triangular finite elements, and the grain boundaries were simulated using 

four-noded quadrilateral joint elements. In the simulations of Wombeyan marble, several 

assumptions were made as briefly described below: 

• The cohesive bond between the grains was destroyed during the heating process; 

• Heating did not affect the friction angle of the grain boundaries; 

• Heating did not affect the strength and elastic properties of the grains; 

• Open cracks induced by the heating process was not simulated. 

In other words, the strength and elastic properties of the grains in the models of intact and 

granulated marble specimens were assumed to be the same. The grain boundaries of intact 

marble were assumed to be cohesive, while those of granulated marble were purely 
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frictional. Based on these assumptions, an iterative process for calibrating the GBM to the 

laboratory properties of both intact and granulated Wombeyan marble was developed. The 

simulation results (i.e., strength envelope and failure mode) of the RS2-GBMs were 

compared with those of laboratory tests (i.e., Paterson, 1958; Rosengren & Jaeger, 1968; 

and Gerogiannopoulos, 1976) as well as the simulation results of PFC-GBM by Bahrani et 

al. (2014).  

Step 2: An approach was developed to upscale the RS2-GBM of granulated marble to a 

field scale rock mass specimen and simulate jointed pillars of various W/H ratios: 

The granulated marble has been suggested to serve as an analogue for a highly interlocked 

jointed rock mass. In this model, the grains and grain boundaries are analogues for rock 

blocks and joints, respectively. This means that the strength and elastic properties of the 

jointed rock mass should be the same as those of granulated marble. For this purpose, the 

joint normal (and shear) stiffness parameters were modified in the upscaled model in such 

a way to be the same as the strength and deformation properties of the original model (see 

the procedure details in Chapter 4). The upscaled model of granulated marble was then 

used to simulate jointed rib pillars of various W/H ratios. 

The strength of modeled pillars (normalized to the UCS of intact rock) was plotted as a 

function of pillar W/H ratio to create a Pillar Stability Curve (PSC), which was then 

compared to the PSCs obtained from continuum and discontinuum numerical models of 

jointed pillars. The limitations and advantages of this modeling approach, in terms of the 

pillar peak strength, failure mode and post-peak response compared to other continuum 

modeling approaches were discussed. 

5.2. CONCLUSIONS 

The following conclusions were emerged from the simulations of intact and granulated 

Wombeyan marble and jointed pillars: 

• Effect of grain-scale heterogeneity on stress variation and tensile stress generation  
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The results of simulations using elastic RS2-GBMs showed that grain-scale heterogeneities 

(i.e., grain geometric and grain boundary orientation heterogeneities) control the variation 

of stresses within a specimen during compressive loading. It is concluded that the grain-

scale heterogeneity leads to the generation of tensile stresses within a specimen (i.e., within 

the grains and on the grain boundaries) even at high confinement. When the magnitudes of 

tensile stresses exceed the tensile strength of the grains and grain boundaries, tensile 

damage occurs. This usually happens at early stages of compressive loading before the 

peak stress is reached. 

• RS2-GBM of intact Wombeyan marble 

The simulation results using the RS2-GBM calibrated to the properties of intact Wombeyan 

marble indicated that the grain boundary yielding mainly occurs during pre-peak loading 

stages, while grain yielding dominates the failure in the post-peak region. It was shown 

that the RS2-GBM calibrated to the peak strength of intact marble could capture the 

observed post-peak response and failure modes at different levels of confinement.  

• RS2-GBM of granulated Wombeyan marble 

The RS2-GBM well captured the non-linear strength envelope of the granulated marble 

(i.e., highly interlocked jointed rock mass analogue). Although the failure modes of RS2-

GBMs of granulated marble were found to be consistent with those of previously calibrated 

PFC-GBM, the calibrated RS2-GBMs exhibited a plastic post-peak response, independent 

of the level of confinement. This is interpreted to be due to the gradual yielding of a few 

grains in the post-peak region and the inability of the RS2-GBM in capturing grain 

detachment from their frictional boundaries that occurred in the post-peak loading stages 

of granulated marble. Apart from this limitation, it is suggested that RS2-GBM can be used 

as a practical tool to simulate jointed rock masses because of its much shorter computation 

time compared to discontinuum modeling approaches. 

• Simulation of jointed rib pillars using elastic models 

The results of elastic pillar models showed that tensile stresses are generated across the 

entire width of the slender pillar (i.e., W/H = 0.5), whereas they are mainly concentrated 
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near the walls of wider pillars (i.e., W/H = 1 and 1.5). The confining pressure at the pillar 

core increases with increasing the pillar W/H ratio. This suggests the importance of reliable 

estimation of confined rock mass strength when designing pillars. 

• Simulations of jointed rib pillars using inelastic models 

The simulation results using inelastic models indicated that the failure mode of the slender 

pillar (i.e., W/H = 0.5) is dominated by the yielding of the joints. In wider pillars (i.e., W/H 

= 1 and 1.5), the failure is initiated by the yielding of joints near the pillar walls at a 

relatively low pillar stress (i.e., < 35% 𝜎𝑝), followed by the yielding of rock blocks, which 

propagates towards the pillar core as the pillar load increases. The failure process of 

modeled pillars is consistent with those observed in the field. It was suggested that this 

approach captures a more realistic failure process (i.e., tensile damage leading to spalling 

near the pillar walls and shear failure at the pillar core), compared to other continuum 

models in which the rock mass is simulated as a homogenous material. 

• Pillar Stability Curve (PSC) 

It was highlighted that the PSC obtained from this research should be compared to PSCs 

of jointed pillars. The PSC obtained from the inelastic pillar models was found to be steeper 

than those of jointed pillars simulated using continuum and discontinuum numerical 

programs (Martin & Maybee, 2000; Elmo & Stead, 2010). 

5.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

The following provides some recommendations for future research to further advance the 

understanding of the failure mechanisms and strength of pillars in highly interlocked 

jointed rock masses: 

• Discontinuum modeling of jointed pillars:  

In this study, numerical simulations of jointed pillars were conducted using the continuum 

program RS2. It was discussed that the detachment of rock blocks near the pillar walls 

leading to spalling and slabbing at earlier loading stages was not captured. Further analyses 



115 

 

of jointed pillars should be undertaken using discontinuum programs to more realistically 

capture the failure processes of highly interlocked jointed pillars.  

• 3D modeling of jointed pillar: 

As discussed in Chapter 4, the PSC obtained from the modeled pillars was for jointed rib 

pillars. In such pillars, the length is much greater than the width (L >> W). According to 

Dolinar and Esterhuizen (2007), the length of the pillar has some effects on the strength of 

wider pillars. Therefore, future simulations of highly interlocked jointed pillars should be 

conducted using 3D numerical programs to better understand how the pillar length affects 

the pillar strength. 

• Degree of interlock: 

As discussed by Bahrani and Kaiser (2020), a jointed rock mass with Voronoi rock blocks, 

such as columnar basaltic rock masses, is an extreme case of a jointed rock mass in terms 

of the degree interlock between the rock blocks. A more comprehensive study on how to 

the degree of interlock can be quantified and how it affects the confined rock mass strength 

should be conducted. It is expected that jointed rock masses with lower degrees of rock 

block interlock will have lower confined strength. Therefore, further studies on the 

influence of degree of rock block interlock on the strengths and failure mechanisms of 

jointed pillars is recommended. 

• Joint persistence: 

The models of granulated marble presented in this thesis and by Bahrani and Kaiser (2020) 

represent an analogue for a highly interlocked jointed rock mass with 100% joint 

persistence. Further analyses can be conducted to investigate how joint persistence affect 

the strength and failure mechanisms of mine pillars. 
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APPENDIX A - PILLAR STABILITY DATABASE 

Table A-1: Pillar stability database collected from the Selbi - Phikwe mines of BCL Ltd. in South 

Africa presented by Von Kimmelmann et al. (1984). Long pillar case histories shaded in grey. 

Condition W/H UCS (MPa) Average pillar stress (MPa) σp/UCS 

Stable 

1 94 25 0.27 

1.5 94 29 0.31 

1.25 94 40 0.43 

0.9 94 28 0.30 

1 94 45 0.48 

1.48 94 48 0.51 

1.3 94 50 0.53 

1.2 94 47 0.50 

0.86 94 26 0.28 

0.86 94 30 0.32 

1.25 94 35 0.37 

1.00 94 35 0.37 

0.80 94 35 0.37 

0.70 94 37 0.39 

1.30 94 60 0.64 

Unstable 

0.43 94 35 0.37 

0.40 94 50 0.53 

0.39 94 28 0.30 

0.50 94 34 0.36 

0.62 94 34 0.36 

0.64 94 35 0.37 

0.87 94 40 0.43 

0.75 94 47 0.50 

0.83 94 48 0.51 

0.70 94 48 0.51 

0.89 94 53 0.56 

0.39 94 54 0.57 

0.46 94 55 0.59 

Failed 

0.61 94 56 0.60 

0.45 94 48 0.51 

0.30 94 48 0.51 

0.30 94 48 0.51 

0.30 94 48 0.51 

0.38 94 50 0.53 

0.63 94 53 0.56 

0.70 94 55 0.59 

0.50 94 55 0.59 

0.47 94 55 0.59 

0.61 94 55 0.59 

0.80 94 58 0.62 

0.75 94 58 0.62 

0.50 94 58 0.62 

0.25 94 58 0.62 

0.50 94 59 0.63 

1.00 94 59 0.63 

0.50 94 59 0.63 

0.50 94 59 0.63 
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0.50 94 59 0.63 

1.13 94 60 0.64 

0.30 94 60 0.64 

0.61 94 63 0.67 

0.61 94 54 0.57 

0.46 94 55 0.59 

0.66 94 55 0.59 

0.64 94 56 0.60 

0.70 94 63 0.67 

0.75 94 63 0.67 

 

 

Table A-2: Pillar stability database collected from the uranium mines in the Elliot Lake district of 

Ontario, Canada presented by Hedley and Grant (1972). 

Condition W H W/H Average pillar stress (psi) UCS (psi) σp/UCS 

Stable 

10 10 1.00 5000 30458 0.16 

10 10 1.00 6400 30458 0.21 

20 18 1.11 3800 30458 0.12 

10 10 1.00 7600 30458 0.25 

10 10 1.00 7500 30458 0.25 

20 18 1.11 4000 30458 0.13 

10 10 1.00 8500 30458 0.28 

10 10 1.00 9400 30458 0.31 

20 20 1.00 4600 30458 0.15 

20 18 1.11 4800 30458 0.16 

18 18 1.00 5400 30458 0.18 

20 14 1.43 7600 30458 0.25 

40 20 2.00 5800 30458 0.19 

22 20 1.10 5000 30458 0.16 

20 14 1.43 7600 30458 0.25 

20 14 1.43 8000 30458 0.26 

19 18 1.06 6400 30458 0.21 

20 20 1.00 7203 30458 0.24 

20 8 2.50 7600 30458 0.25 

20 8 2.50 7900 30458 0.26 

20 8 2.50 8600 30458 0.28 

15 9 1.67 10500 30458 0.34 

20 9 2.22 12600 30458 0.41 

Unstable 
10 10 1.00 11400 30458 0.37 

10 9 1.11 13400 30458 0.44 

Failed 

10 9 1.11 15200 30458 0.50 

10 9 1.11 15700 30458 0.52 

15 10 1.50 18500 30458 0.61 
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Table A-3: Sill pillar stability database collected from Zinkgruvan mine in Canada presented by 

Sjöberg (1992). 

Condition W/H UCS (MPa) Average pillar stress (MPa) σp/UCS 

Unstable 

0.63 240 68 0.28 

1 240 84 0.35 

1.03 240 74 0.31 

1.22 240 67 0.28 

Failed 

0.78 240 95 0.40 

1.25 240 83 0.35 

1.25 240 100 0.42 

1.42 240 82 0.34 

1.75 240 92 0.38 

 

 

Table A-4: Squat pillar stability database collected from Black Angle mine in Greenland presented 

by Krauland and Soder (1987). 

Condition W/H UCS Average pillar stress (MPa) σp/UCS 

Unstable 

0.88 100 39.3 0.39 

0.88 100 47.5 0.48 

0.83 100 31 0.31 

0.74 100 29 0.29 

0.74 100 31 0.31 

0.66 100 47.5 0.48 

0.62 100 31 0.31 

0.59 100 29 0.29 

0.55 100 29 0.29 

0.53 100 31 0.31 

0.51 100 37 0.37 

0.47 100 41.4 0.41 

0.45 100 25 0.25 

 

 

Table A-5: Rib pillar stability database collected from Mount Isa mines in Australia presented by 

Brady (1977). 

Condition W/H UCS Average pillar stress (MPa) σp/UCS 

Stable 
2.33 170 39.3 0.23 

2.33 170 55.6 0.33 

Failed 1 170 88.7 0.52 
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Table A-6: Rib pillar stability database collected from open stope mines in Canadian Shield 

presented by Potvin et al. (1990). 

Condition W H W/H UCS (MPa) 
Average pillar 

stress (MPa) 
σp/UCS 

Stable 

24 52 0.46 265 38 0.14 

21 39 0.54 176 26 0.15 

27 40 0.68 176 28 0.16 

30 44 0.68 265 40 0.15 

30 40 0.75 176 33 0.19 

30 40 0.75 176 29 0.16 

45 53 0.85 200 51 0.26 

21 24 0.88 176 29 0.16 

21 21 1.00 100 31 0.31 

21 21 1.00 100 26 0.26 

32 28 1.14 90 30 0.33 

15 12 1.25 176 37 0.21 

15 12 1.25 176 33 0.19 

24 18 1.33 72 36 0.50 

33 23 1.43 316 75 0.24 

12 8 1.50 215 28 0.13 

33 20 1.65 121 55 0.45 

17 10 1.70 310 46 0.15 

15 7 2.14 215 29 0.13 

24 11 2.18 148 66 0.45 

33 15 2.20 316 76 0.24 

20 8 2.50 310 46 0.15 

17 6 2.83 72 31 0.43 

35 12 2.92 148 63 0.43 

21 5 4.20 72 39 0.54 

18 4 4.50 72 48 0.67 

Unstable 

24 52 0.46 265 72 0.27 

15 27 0.56 176 28 0.16 

27 46 0.59 265 59 0.22 

24 38 0.63 160 70 0.44 

30 44 0.68 265 82 0.31 

15 18 0.83 100 31 0.31 

25 28 0.89 90 32 0.36 

25 27 0.93 70 29 0.41 

15 15 1.00 176 43 0.24 

Failed 

15 49 0.31 200 64 0.32 

9 20 0.45 100 38 0.38 

11 23 0.48 316 99 0.31 

15 30 0.50 100 38 0.38 

14 28 0.50 90 49 0.54 

11 20 0.55 121 69 0.57 

15 27 0.56 176 31 0.18 

11 18 0.61 316 102 0.32 

27 40 0.68 176 38 0.22 

19 28 0.68 90 41 0.46 

30 40 0.75 176 57 0.32 

15 18 0.83 100 40 0.40 
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Table A-7: Pillar stability database collected from H-W mine in Canada presented by Lunder and 

Pakalnis (1997). Rib pillar case histories shaded in grey. 

Condition W/H UCS (MPa) Average pillar stress (MPa) σp/UCS 

Stable 
1.48 172 49.6 0.29 

1.8 172 56.7 0.33 

Unstable 

1.95 172 99.9 0.58 

1.2 172 77.9 0.45 

1.15 172 70.8 0.41 

0.88 172 70.8 0.41 

1.74 172 85 0.49 

1.9 172 91.8 0.53 

1.28 172 63.8 0.37 

3.03 172 91.8 0.53 

1.48 172 63.8 0.37 

3 172 42.5 0.25 

1.95 172 77.9 0.45 

Failed 

1.02 172 93.5 0.54 

1.02 172 93.5 0.54 

1.4 172 93.5 0.54 

1.58 172 93.5 0.54 

1.08 172 93.5 0.54 

0.94 172 93.5 0.54 

0.87 172 93.5 0.54 

1.29 172 93.5 0.54 

1 172 93.5 0.54 

1.48 172 105.4 0.61 

1.38 172 93.5 0.54 

1.43 172 105.4 0.61 

1.3 172 98.6 0.57 

1.33 172 91.8 0.53 

0.96 172 88.4 0.51 

1.78 172 98.6 0.57 

1.08 172 93.5 0.54 

0.62 172 93.5 0.54 

 

 


