
DETECTION OF UDP FLOOD ATTACKS IN WIRELESS
SENSOR NETWORKS BY VISUALIZATION ON PARALLEL

COORDINATE PLOT

by

Neha Chukkayapally

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

February 2021

c© Copyright by Neha Chukkayapally, 2021

I owe my mother everything. It is because of her that I am

where I am right now and who am in my life. Thank you

AMMA for all eternity. It wouldn’t have been possible to stay

sane under so much stress and finish my thesis without the help

of my best friend - Sarferoze. He has been and always will be the

person I will be the most grateful for second only to my mother.

Last but not the least, I would like to thank all of my friends for

making my life so joyful. During these three years of studying

and worrying, the fun I had with them is the only reason I didn’t

make a run for it!!

ii

Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

List of Abbreviations Used . xii

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Introduction to Data Visualization 1

1.1.1 Types . 1

1.1.2 Benefits . 4

1.2 Introduction to Wireless Sensor Networks 5

1.2.1 Basic architecture . 6

1.3 Distributed Denial of Service (DDoS) Attacks 7

1.4 DDoS attacks in WSNs and security concerns 8

1.5 Data Visualization for Network Traffic Analysis 10

1.6 Motivation and Scope . 11

1.7 Aims and Objectives . 12

1.8 Thesis Contribution . 12

1.9 Organization of thesis . 13

Chapter 2 Related Works . 15

2.1 Research on visualization models for traditional wired networks 15

2.2 Research on DDoS attacks in WSN 20

2.3 Research on visualization models for Wireless Sensor Networks 22

2.4 Summary . 25

iii

Chapter 3 Methodology . 26

3.1 Approach . 26

3.2 Tools and Algorithms . 32
3.2.1 Cooja Simulator . 32
3.2.2 K-Means . 34
3.2.3 Mini Batch K-Means . 36
3.2.4 Parallel Coordinate Map (PCM) 37

3.3 Python libraries . 38

Chapter 4 Experiment . 41

4.1 Simulation setup and parameters 41
4.1.1 Network environment setup 42
4.1.2 Generated dataset . 45

4.2 Programming setup . 47

4.3 Summary . 49

Chapter 5 Evaluation Methodology and Result Analysis . . 50

5.1 Definitions of evaluative metrics 50

5.2 Comparative performance of the attacker and non-attacker sce-
nario in WSN environment . 52
5.2.1 Delay . 52
5.2.2 Control Overhead . 52
5.2.3 Energy Consumption . 53
5.2.4 Power Consumption . 54
5.2.5 Processing Time . 54
5.2.6 Packet Loss . 55
5.2.7 Idle Time . 56

5.3 Performance comparison of the clustering algorithms 56
5.3.1 K-means clustering results 56
5.3.2 Mini batch k-means clustering results 57
5.3.3 Observations made during clustering 58

5.4 Visualization on PCM . 61
5.4.1 Energy Consumption Vs. Power Consumption 63
5.4.2 Central Processing Unit (CPU) time Vs. Idle time . . . 63
5.4.3 Delay and Vs. Packet loss 63

5.5 Summary . 65

iv

Chapter 6 Conclusion and Future Work 66

6.1 Conclusion . 66

6.2 Future Work . 67

Bibliography . 69

v

List of Tables

4.1 Hardware requirements . 42

4.2 Software requirements . 42

4.3 Network simulation parameters 43

4.4 Features of the generated dataset 45

4.5 Features of the preprocessed dataset 47

4.6 Clustering implementation parameters 47

vi

List of Figures

1.1 Example of a stream graph 2

1.2 Example of a bar graph . 2

1.3 Example of a treemap . 3

1.4 Example of a donut chart 3

1.5 Example of a line chart . 4

1.6 Wirelss Sensor Network (WSN) 5

3.1 Overview of the proposed methodology 31

4.1 Screenshot of Cooja running the simulation with all the
set parameters . 44

4.2 Screenshot of the resultant dataset 46

4.3 Screenshot of the resultant dataset 46

4.4 Screenshot of the resultant dataset 46

5.1 Delay in Wireless Sensor Networks (WSN) 52

5.2 Overhead in the Routing Protocol for Low Power and
Lossy Networks (RPL) based WSN 53

5.3 Energy consumption of the nodes in WSN 53

5.4 Power consumption of the nodes in WSN 54

5.5 Processing time of the nodes 55

5.6 Packet loss in WSN . 55

5.7 Idle time in WSN . 56

5.8 Scatter plot for K-means 57

5.9 Scatter plot for Mini Batch K-Means 57

5.10 Comparative performance evaluation of the clustering
algorithms . 58

vii

5.11 Inertia vs Number of clusters(3) for k-means and mini-
batch k-means . 59

5.12 Inertia vs Number of clusters(5) for k-means and mini-
batch k-means . 60

5.13 Inertia vs Number of clusters(10) for k-means and mini-
batch k-means . 61

5.14 Visualization on Parallel Coordinates Plot 62

5.15 Energy Consumption Vs. Power Consumption 63

5.16 CPU time Vs. Idle time 64

5.17 Delay Vs. Packet Loss . 64

viii

Abstract

Distributed Denial of Service (DDoS) attacks are one of the most destructive

attacks that threaten network systems’ security today. In this type of attack,

the attacker tries to make a targeted computer or network unreachable to its

intended users by incapacitating the server. Many detection and prevention

tools, systems, and algorithms have been developed over the years to determine

and restrain these intrusions. Many mechanisms that are available in the

market try to visualize the after-effects of these breakthroughs. However,

not many of them have explored the concept of using visualization itself for

detecting these attacks. With technology growing day-by-day, Wireless Sensor

Networks (WSNs) have gained popularity because these are very cost-effective

and have other advantages over the wired networks. Like other technologies,

these too are being harrowed by DDoS attacks. Therefore, there is much

research interest in developing visualization-based detection models for WSNs.

This field is still in its infant stage of development.

This thesis’s framework is a detection model based on data visualization for

User Datagram Packet (UDP) flood attacks on WSN. A dataset is generated

using the Cooja simulator to identify the resource consumption attributes

under regular and attack situations. The dataset is then separated into their

corresponding groups (attack and non-attack) using k-means and mini-batch

k-means clustering algorithms. The clustered data is then visualized onto a

parallel Coordinate Map (PCM). The data points on PCM form a unique

pattern, thus assisting the network administrator to quickly identify that an

attack is taking place and can take necessary action. Performance comparison

of both the clustering algorithms shows that mini-batch k-means exhibits an

improvement of 10% over the k-means algorithm. The experiment’s outcome

conveys that this model is simple yet effective in detecting DDoS attacks in

WSNs.

ix

List of Abbreviations Used

6LowPAN IPv6 over Low -Power Wireless Personal Area Networks

AnNetTe Analyzing Network Technology

API Application Programming Interface

BS Base Station

CoAP Constrained Application Protocol

CPU Central Processing Unit

CSV Comma Separated Values

DAO Destination Advertisement Object

DAO-ACK Destination Advertisement Object- Acknowledgement

DDoS Distributed Denial of Service

DIO DODAG Information Object

DIS DODAG Information Solicitation

DNS Domain Name System

DODAG Destination oriented Directed Acyclic Graph

DoS Denial of Service

EM Expectation-Maximization

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

x

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

MAC Media Access Control

MDS-VOW Multi-Directional Scaling - Visualization Of Wormhole

NS2 Network Simulator2

OSI Open System Interconnection

PCAP Packet Capture

PCAV Parallel Coordinates Attack Visualizer

PCM Parallel Coordinate Map

PCTT Parallel Coordinates version of Time-tunnel

PDE Python Development Environment

PDR Packet Delivery Ratio

PoD Ping of Death

PSL Python Standard Library

RPL Routing Protocol for Low Power and Lossy Networks

SAVE Sensor Anomaly Visualization Engine

SFC Space Filling Curves

xi

SNA Sensor Network Analyzer

SSE Sum of Squared Errors

TCP Transmission Control Protocol

UDGM Unit Disk Graph Medium

UDP User Datagram Packet

WSN Wireless Sensor Networks

xii

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Srinivas Sampalli, for

guiding and supporting me in every stage of my thesis. Your kindness and

understanding are some of the main reasons for me to move under your su-

pervision when I thought I would not be able to continue any further. Your

easy-going approach has helped me develop my thesis topic even though I am

new to this area of research and finish it off successfully. Thank you for being

there at all times.

I want to thank my committee members for accepting to be part of the

committee. It is an honor to have such professional geniuses in my defense.

I want to thank all the lab members for being so helpful and giving me

inputs and ideas when I needed them the most.

I am thankful to my family for supporting and not pressuring me when I

took the time to get here.

xiii

Chapter 1

Introduction

1.1 Introduction to Data Visualization

Although data visualization has been in use since time immemorial, right since

when cave dwellers used to draw them on their caves’ walls to communicate,

the term was coined only very recently. The most basic question of what data

visualization is and how it has come to light and is now playing a significant

role in today’s fast-paced technological world, the roots can be found from our

early ages themselves.

The word data visualization is self-explanatory. Put in simple words; it

means the data, be it numbers, text, or any other form, is represented in the

form of graphs or pictures. This representation can be thought of as a mapping

between the original data and the graphical elements that are drawn[5]. When

we look at large paragraphs of data or pages full of statistics, our minds become

boggled and cannot perceive this massive amount of data. Instead, suppose

the same data is put in the form of a picture or a graph. In that case, it is

very easily understandable because our minds have been designed in such a

way to understand data in the form of visualization quickly. Difficult concepts

can be grasped, hidden patterns can be recognized, data can be analyzed, and

decisions can be made with data visualization.

1.1.1 Types

Based on what type of information it represents, data visualization can be

categorized as follows:

Change Over Time: Shift over time is one of the most popular and

easiest data visualization forms. It is a visual aspect that reflects how a number

1

2

in a certain sense has evolved. By looking at the results over time, one can

see the progression of decided success and the future trend. Stream graph is

an example of change over time visualization.

Figure 1.1: Example of a stream graph[12]

Category Comparison: In this type of visualization, several statistics

are placed side-by-side, and the association between them is analyzed. With

this visualization’s help, we can understand how each statistic has contributed

to a business or organization’s success or failure. An example of this type of

visualization is a bar graph.

Figure 1.2: Example of a bar graph[57]

3

Part to the Whole: Sometimes, instead of comparing numbers amongst

themselves, it makes more sense to understand their relative importance as

part of a whole. This type of visualization is all about this concept. A treemap

can be used to depict this type of data.

Figure 1.3: Example of a treemap[13]

Distribution: The incidence and volume are more relevant than direct

results in distribution charts. They display how many times in a span a series

of values exists. It is a little like part-to-all, but it is used mostly for numbers.

A donut graph implements distribution.

Figure 1.4: Example of a donut chart[68]

4

Flow: Flow maps are all about movement than volume. This type of

visualization shows how a statistic or indicator has evolved and its evolution

to other periods and points. Here, the main concern is about the connection

of the indicator with all other aspects at various points of time. Like in the

change over time type of visualization, stream graphs can also display the flow.

Another type of visualization that presents this information is a line chart.

Figure 1.5: Example of a line chart[6]

1.1.2 Benefits

A good visualization can be defined as a balance between form and func-

tion and which can serve its main purpose successfully - to communicate

information[5]. With good visualization, there are many advantages. Some

of them are as follows:

• Promotes comprehension and interpretation

• Recognize relationships, patterns, and interdependencies

• Convenient to share

• Quick forecasts

5

1.2 Introduction to Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are immensely gaining popularity because

they have some unique features such as cost-effectiveness, being able to be set

up without much infrastructure, accommodation of new devices at any time,

etc., when dealing with real-world challenges. WSN is a wireless network with-

out infrastructure. It comprises small devices that work together and gathers

information. This set of spatially distributed and committed devices, also

known as sensors, are used for tracking and documenting the physical con-

ditions of the atmosphere and organizing the data gathered at a centralized

spot[16]. The sensor nodes mainly have CPU, memory, transceiver (for send-

ing and receiving signals from one node to another), and battery. The sensor

nodes are connected to a Base Station (BS) that serves as the WSN device

processing unit[39]. This base station is connected to other WSNs, which are

part of the Internet of Things (IoT) system for information exchange.

Figure 1.6: Wirelss Sensor Network (WSN)[51]

The main features[27] of WSNs are as follows:

• The devices WSN comprises of are autonomous.

• Each node exchanges knowledge regarding its neighborhood.

• It is ideal for distributed implementation.

6

• Knowledge is primarily distributed to a single node.

• Interconnecting devices like bridges, routers, etc., are not required.

1.2.1 Basic architecture

WSNs follow the Open System Interconnection (OSI) model. Accordingly,

there are five layers in the sensor networks: the physical layer, data-link layer,

network layer, transport layer, and application layer. There are three cross-

over layer planes and the five layers: power management plane, mobility man-

agement plane, and task management plane. These layers are used for network

control and for the sensors to function together to improve the overall network

performance[18].

The main functions of each layer are[18]:

Physical Layer

This layer acts as an interface for transmitting a stream of bits and other

functions like data encryption, signal detection, frequency selection.

Data Link Layer

Data frame recognition, Media Access Control (MAC) and error management,

multiplexing data streaming, guaranteeing point-point or point-multi-point

stability are the primary responsibilities of this layer.

Network Layer

The main function of this layer is routing. There are many routing protocols

available in WSNs. These algorithms’ primary responsibility is to find reliable

paths for the message transmission, detect redundant paths, and work on them

accordingly.

Transport Layer

The nature of WSN is multi-hop. So, there arises congestion at different points

in the network at different times. However, the main congestion occurs when

7

each sensor node in the sensor network captures some information and tries

to pass it on to the sink node. The main responsibility of the transport layer

is to reduce this congestion. So, many protocols are part of this layer in order

to do this.

Application Layer

This layer is responsible for the management of traffic. The bitstream of data

received from the previous layers is converted into an understandable form and

sends out queries to other nodes or servers to obtain information.

1.3 Distributed Denial of Service (DDoS) Attacks

While the internet is trying to achieve the pinnacle of technological innovation

that was unimaginable a decade or two ago, it is still being plagued by some of

the deadliest attacks of which DDoS attacks are playing a significant role even

though the strongest of cybersecurity measures are in place. DDoS attacks

have been part of the criminal toolbox[34] for more than two decades now and

are only becoming more assertive.

A Denial of Service (DoS) is a type of cyber attack where a targeted sys-

tem or a targeted network is overloaded with a massive number of packets or

requests to drain its capabilities and make it unavailable to legitimate users.

DDoS attacks are a type of DoS attacks where more than one system is used

to bring down the targeted system or network by sending malicious traffic. By

bombarding a system from more than one location with attack packets, the

attacker can easily disrupt the system and render it useless within no time.

These types of attacks are more dangerous than DoS attacks since the origin

of the attack cannot be pinpointed because many systems are being used at

a time. The attacker launches a DDoS attack with remotely controlled slave

computers known as zombies or bots. These bots form a network of connected

devices, which is known as a botnet. The attacker manages this botnet with

the help of a command and control server[38].

8

Some of the most commonly occurring DDoS attacks are:

• Ping of Death (PoD) or Internet Control Message Protocol (ICMP) At-

tacks

• UDP Flood

• SYN Flood

• Hyper Text Transfer Protocol (HTTP) Flood

• Slowloris

• Zero-Day Attacks

• Buffer OverFlow Attacks

• TearDrop Attacks

1.4 DDoS attacks in WSNs and security concerns

Similar to wired networks, every node in WSN is also vulnerable to many

insider and outsider attacks[?]. Since WSNs could be part of IoT, which is

spread over a vast area with a vast number of devices and objects connected

as a network, the chances of security attacks occurring on them are very high.

DDoS attacks in the area of WSNs can be categorized as active attacks and

passive attacks.

Passive DDoS attacks are those in which the intruder or attacker is not

harming the system in a physical sense. However, the aim is to steal impor-

tant information from the nodes and network by secretly listening to the traffic.

The attacker behaves like any other node, and thus it is challenging to catch

the culprit because he/she does not leave any obvious traces that might track-

back to him/her. Eavesdropping is one type of attack where the attacker spies

on the packets traveling through the network to steal information. Whereas in

active attacks, the intruder identifies some loopholes in the existing protocols

and uses them to launch attacks on the system. These are fatal than passive

9

attacks, but since abnormalities can be observed in the network traffic. In

contrast, an attack occurs, it is easily identifiable that a culprit is working

against the setup. An example of this type of attack is UDP flood attack.

In this intrusion, the attacker floods the targeted system’s ports by sending

too many Internet Protocol (IP) packets containing user datagrams. UDP is

a connectionless and sessionless networking protocol[14]. It does not require a

three-way handshake to establish a connection. This feature has many advan-

tages and, at the same time, makes the sensor network susceptible to attacks.

When the server receives a UDP packet, it initially checks if any program or

task is listening to this port. When it finds no program, it sends out an ICMP

packet to let the sender know that the destination is unreachable[15]. The

attacker sends out a huge number of these packets to flood the target. The

receiver system now wastes its resources to respond with ICMP messages and

thus becomes unresponsive after some time.

Some of the most common DDoS attacks that take place in WSNs are:

• Jamming

• Node Tempering

• Collision

• IP Spoofing

• Black holes and sink holes

• Sybil attacks

• Hello flood

• UDP flood

• SYN flood

10

1.5 Data Visualization for Network Traffic Analysis

Data visualization has been in use for quite some time now to show complex

data clearly and effectively by representing through graphical means[63]. It

has been used in many fields, and its usage in network security[33][64] has

only started a few years ago. Network traffic can be defined as the amount

of data or information that moves across a network at any given time. The

data in the network traffic is usually made up of network packets. The network

data (carried by the network packets) is very complicated and cannot be easily

understood in large tables. Thus, the application of data visualization to un-

derstand the intricate details of network data has become immensely popular

in recent times. It helps us to understand, analyze and find useful information

from this mirage of data.

Just like in the case of wired networks, visualization tools have been de-

veloped for WSNs also. Some of the existing visualization tools are Surge,

MoteView, Octopus, Sensor Network Analyzer (SNA). These display the op-

eration of the network, the traffic between two sensor nodes, and provides

network topologies and sensor details to users with live information so that

the deployed sensor network could be debugged in real time[63]. Also, with

the help of these tools, the sensor network’s health and performance can be

monitored, specific packets that the user is interested in can be viewed at any

given time.

Even though these existing tools can monitor the sensor networks, they are

still not equipped to visualize security-related data and events[63]. It means

that when some unpredictable security attacks are launched against sensor

network nodes, these tools cannot predict and understand the anomalies that

occur while an attack is taking place. So, it is essential for a visualization

system not only to be able to monitor the network but also to be able to differ-

entiate between normal and abnormal activities[63]. Along with being able to

differentiate between regular and aberrant actions, the administrator monitor-

ing the network must also discern, categorize and assess the security-related

11

incident by looking at the visually represented network data. Furthermore,

data visualization has laid foundations to help reach all these goals with its

powerful approach.

Many visualization-based attack detection methods have been proposed

for wired networks. Since WSNs are relatively newer, this visualization-based

approach to detect security attacks, mainly DDoS attacks, has not been used

much in this area. Thus, there is a lot of potential for visualization based

DDoS attack methods to successfully and efficiently detect DDoS attacks in

WSNs.

1.6 Motivation and Scope

DDoS attacks are among the most prevalent cyber attacks that afflict the cy-

ber world’s security. Since network traffic data is very complex, it is not easy

to understand it by looking at the packets that comprise the traffic. This com-

plexity becomes manifold when the data being dealt with is Wireless Sensor

Network data due to their dynamic nature. When the non-attack data itself

in these networks is very complicated to comprehend, the user or the network

administrator cannot conceive the irregularities that occur while an intrusion

occurs. The main motivation for this research is the limited number of visu-

alization based DDoS attack detection models available for WSNs.

The main changes that occur when a sensor network is in an attack situa-

tion are the increase in the systems’ resource consumption levels. Many DDoS

attack datasets are available on the internet, and other sources but none of

them contain information about reserve dissipation like power, energy, packet

loss, etc. To obtain these optimal features, a dataset is generated using a

simulator. The dataset contains systems’ use of sources under normal and

attack conditions. In order to identify the abnormalities, these data points

should be separated into their respective groups. To do this, clustering algo-

rithms can be used since these work without any prior training. Nevertheless,

the clusters that come as the output are still unclear since the network data

12

is continuous and is thus humongous in size. Then, data visualization comes

into the picture. Any form or level of compound data can be easily understood

by representing it in a pictorial form. A parallel coordinate plot is handy to

visualize high-dimensional data like network data. Thus, these clustered data

points are plotted onto this plot. The points break out into two groups, and

the graphical representation allows the user to identify an abnormal scene

within moments. Therefore, a parallel plot presentation with the assistance of

clustering algorithms can be useful in detecting DDoS attacks in WSNs.

1.7 Aims and Objectives

The main objectives of the proposed work are as follows:

• To create a dataset with the optimal features for detecting UDP flood

attacks in a WSN using a simulator.

• To design a visualization based DDoS attack detection model that uses

clustering algorithms and parallel plot in order to effectively detect UDP

attacks in WSNs.

• To evaluate both the clustering algorithms and show that mini-batch

k-means is better than k-means when the data is vast and complex.

1.8 Thesis Contribution

The key handouts of the research work are:

• The main contribution of this thesis is to develop a visualization based

DDoS attack detection model for detecting UDP flood attacks in WSNs.

• The resource consumption features required for the detection of DDoS

attacks like energy consumption, delay, packet loss, power consumption,

idle time, and CPU time are not available in the datasets that can be

accessed from various sources online or elsewhere. Thus, a dataset with

these optimal features is generated with the help of a simulator called

Cooja.

13

• Successful detection means to be able to identify which data is benign

and which is malicious. This is done with the help of two clustering

algorithms - k-means and mini-batch k-means.

• The clustering is done based on metrics like the systems’ resource con-

sumption under attack and non-attack conditions.

• The clustered data is visualized onto a parallel coordinate plot - a type

of visualization technique used to represent high-dimensional data. The

data branches out into two and forms a pattern. The data items belong-

ing to different groups show up in different colors.

• Consequently, the visualization-based model is successful in detecting

UDP attacks in WSNs by distinguishing between regular and irregular

data in different colors.

• The two clustering algorithms are then compared based on evaluation

metrics, and it is shown that mini-batch k-means clustering algorithm

has high clustering accuracy than k-means algorithm when the data is

enormous and is a better method for clustering when dealing with com-

plex and high-dimensional data[65][31].

1.9 Organization of thesis

The rest of the report is organized as follows:

Chapter 2 surveys the existing DDoS attack detection mechanisms based

on the visualization for traditional wired networks. It then discusses about

the DDoS attacks that take place in WSNs. It provides a detailed literature

survey about the mechanisms and visualization models that were developed

for the detection of DDoS attacks in WSNs.

Chapter 3 outlines the proposed model for the thesis work. It provides the gen-

eral approach’s outline and gives details about the technologies, algorithms,

and libraries used in the framework.

14

Chapter 4 gives details about how the experiment was carried out, the

hardware and software requirements, the simulation setup, and the set param-

eters.

Chapter 5 defines the evaluation and performance metrics used in order to

assess the system. It presents the results of the experiment and delivers a

detailed analysis of the outcomes.

Chapter 6 concludes the thesis and describes the future directions.

Chapter 2

Related Works

This chapter surveys some of the vital research done in visualization models

developed over the years for wired networks and sensor networks.

2.1 Research on visualization models for traditional wired

networks

Chen et al. [28] have proposed a visualization tool named Analyzing Network

Technology (AnNetTe). This tool aims to monitor the network and discover

different attacks that take place in the network. AnNetTe has three visual-

izations with various levels of details - the timeline overview, ring graph, and

connection river. There are three parts to the timeline overview itself. The first

timeline shows details like CPU load, number of denial logs, and total bytes.

The second timeline focuses on showing the anomaly detection timelines by

using the entropy of the system. The third timeline is a zoom function. The

ring graph displays the chosen time relations, structured and grouped by sub-

net[28]. Moreover, lastly, the connection river part of the visualization tool

gives a parallel coordinate view. The axes are the IP addresses, connection

time, and the ports used. With the help of this visualization system, DDoS

attacks like port scans, host scans, UDP flood attacks, etc., can be detected

even before the attacks fully take place.

Lee et al. [40] designed a real-time network security monitor called Visual-

Firewall for detecting DoS attacks. It gives four views: real-time traffic, visual

signature, statistics, and Intrusion Detection System (IDS) alarm. Each one of

these views provides various detail, levels that help the network administrator

detect any anomalies. In the real-time traffic view, the packets that enter and

leave the firewall are represented using glyphs. This view aims to show what

15

16

packets are going through the firewalls and which ones are being rejected. In

the visual signature view, the packets’ flows are represented as lines on a par-

allel coordinate plot. Different color codings are used in order to show what

protocol a packet is using. The statistics view aims to show the network’s

overall throughput over time [40]. On a line chart, the throughput is repre-

sented in bytes/second. The IDS alert view displays IDS alerts in four-axis

diagram. With these in-depth visualizations, even a beginner can understand

which is normal and attack traffic.

Yang and Liu [66] have used parallel coordinates to detect DDoS attacks.

Node resource consumption is expressed in this approach as the values of the

axes. A fold line represents resource usage for each node. Since the network

data is vast and is very complicated when all the data points are represented as

fold lines on a parallel coordinate plot, it becomes very cluttered, and drawing

patterns and conclusions from the visualization becomes impossible. In order

to overcome this problem, the k-means clustering algorithm is used. One of

the main disadvantages of using k-means is that the number of clusters (k)

must be provided manually. Then, the cluster centers are selected randomly

when the algorithm is being run. The manual selection of cluster centers re-

duces the performance of the algorithm drastically. So, an interactive k-means

algorithm is proposed. In this algorithm, the dataset is initially illustrated on

a parallel plot. With human cognition, the user manually picks out the num-

ber of clusters by observing the plot’s intersection points. The user can also

pick centers such that the number of iterations is reduced, so the performance

is improved.

Zhang et al. [68] proposed an interactive visual system called DDoS Viewer

for detecting DDoS attacks by surveying the visual patterns. The core host

represents the main node. The gap between the center node and the other

nodes is equal to the frequency of correspondence between them. In this

representation, the node will stand out from the other nodes comparatively

situated in the community while an abnormally regular contact occurs. Many

concentrated clusters in varying colors then represent each node. If the number

17

of ports of a node used in the network is high, the contrast would be greater.

The degree of color in the concentric circles becomes higher. In the case of a

DDoS attack, this method accurately identifies the suspicious nodes.

Blue et al. [26] created a real-time visualization tool called NetGrok to

depict the computer network usage. It represents the data by using a graph

and tree-map visualization. This work aims to use visualization techniques

for real-time, streaming data [26]. The two visualizations capture: 1. hosts

via IP, 2. the bandwidth use of hosts, 3. the interactions between the hosts.

The visualization part has been implemented using the Prefuse visualization

library. The system’s data can be input as a pcap file or capture traces from

a live network. In the graph representation, all the hosts are represented as

nodes. The local hosts are inside a dashed ring, whereas the foreign nodes lie

outside the dashed ring. Edges connect all the hosts. Based on the usage of the

bandwidth, the hosts are colored accordingly. If the node’s color is green, it

means utilizing the optimal amount of bandwidth whereas, if the node is red, it

uses bandwidth more than it should under ordinary circumstances. Whenever

a DDoS attack occurs, it is easier to identify the irregularity from this graph

because the bandwidth usage increases drastically and is visible as a large red

blob. With hosts, the tree is grouped as leaf nodes and classes as internal

nodes. In the tree-map, the host’s size represents the number of connections,

while the color denotes the host’s bandwidth usage relative to other nodes.

NetGrok also has other useful techniques embedded in it like overview, zoom

and filter, details on demand.

Zhang and Huang [69] have implemented a visual methodology to detect

flood attacks -a type of DDoS attack. In this paper, they came up with three

coefficients to understand the flood attacks’ behaviors and measure the net-

work’s performance under the attack situations. The three coefficients are a)

the density of the attack that predicts the characteristics of the flood attack;

b) the complexity of the system that reflects the capacity of the system to

manage flood attacks; and c) the scalability to identify the extent of the effect

of the flood attack at the victim’s location. In visualization, each flood attack

18

is represented as an assigned node containing its unique attributes. When the

attack scale is more significant than 0.5, it means that the system has catego-

rized the corresponding flood attacks as high-level DDoS attacks. The graph

model describes floods, and their attributes are a classical undirected graph

composed of nodes and edges. The nodes represent flood traffic attributes,

and edges are calculated based on the attack scale factor.

Choi et al. [29] have presented a Parallel Coordinates Attack Visualizer

(PCAV) to detect attacks like internet worms, scan attacks including DDoS

attacks. As the axes of the parallel coordinate plane, the source IP address,

destination IP address, destination port, and the packet’s average length are

set. The main thing that differentiates this paper from all other works is that

instead of using packet data to show as the fold lines on the plot, flow data

is represented. When put on the coordinate map, these groups of flow lines

form a particular shape for each attack type. So, nine unique patterns for

nine different types of attacks are identified. These novel signatures provide

a simple and effective way for network administrators to identify the attacks

and create a response plan. Flow data was used instead of packet data because

it dramatically decreases the processing time and provides compatibility with

famous routers that export flow data to Cisco routers, such as Net-Flow. They

have also demonstrated their results with real-time traffic data, which shows

the credibility of their work.

Okada [49] created a Parallel Coordinates version of Time-tunnel (PCTT)

for the spotting of intrusion attacks. Time tunnel is a multi-dimensional data

visualization tool, and the parallel coordinate version that was made use of in

this approach has all the features of parallel coordinate visualization. It uses a

combination of PCTT and 2D to 2D visualization to detect intrusion attacks

[49]. 2D to 2D visualization uses four dimensions to map data onto a 3D plane.

This 2D to 2D visualization feature has been added to the PCTT. Usually, the

four attributes that help identify certain network attacks patterns are source

IP address, destination IP address, source port number, and destination port

number. 2D to 2D visualization also comes in handy for the identification of

19

certain access formats.

Seo et al. [3] developed a system named CCSvis based on cylindrical coor-

dinates to identify various types of network attacks including DDoS attacks.

This is similar to the pattern recognition perceived by parallel coordinates.

The approach mainly focuses on detecting botnet attacks in Domain Name

System (DNS) traffic, one of the deadliest DDoS attacks. CCSvis uses a new

method representing the botnets’ behavior, also known as zombies, and de-

fines a variety of threat patterns on cylindrical coordinates. For this grasp

of the patterns, five attributes are extracted from the DNS packets, including

the client IP address, the query type, the domain name, the time-stamp, and

the flag, and are represented on cylindrical coordinates. The group of data

forms a specific pattern for a different type of attack. Thus, five signatures

are identified from these patterns, making the detection of the attacks easier

for the network administrators.

Lu et al. [42] have derived a new method based on concentric circle visual-

ization to represent multi-dimensional data related to networks. This method

is an effective way to discern DDoS attacks because it can recognize visual

patterns. On the parallel coordinate map, since the data is high-dimensional,

there are many overlaps. To reduce the clutter that lessens the effectiveness of

the visualization, concentric circles are used. They use poly curves to connect

values (vertexes) rather than polylines used in parallel coordinate approaches.

In the evaluation that was performed at the end, it is shown that this system

based on the concentric circle approach reduces clutter by 15% when com-

pared to the parallel coordinate approaches [13]. Using this new method they

have devised, they have developed an integrated visual network scanning sys-

tem called CCScanViewer. The new technique successfully realizes the threat

features emerging from a range of networking trends, such as network scan

features and DDoS attacks.

Samak et al. [55] represent the patterns in network data flow by using the

Space Filling Curves (SFC) which render the collected information as images

20

that display the perceivable patterns. In this paper, the network traffic is

viewed as images or video clips sampled over short time intervals. The packet

collection that corresponds to the same time slot is a single image frame and

will be counted against the strength of the image pixels [55]. Each pixel in

the picture corresponds to a particular value in a single (or vector) packet

header region. The SFCs come into the picture while mapping the packets’

flow properties onto the pixels’ coordinates. Their approach to improved SFC

clustering properties makes irregularities such as large scale DDoS attacks and

scanning events readily detectable relative to other conventional techniques.

Zhang et al. [67] developed a network monitoring tool called NetViewer to

detect DDoS attacks and other types of anomalous behavior and to represent

them visually. For this purpose, the tool examines the packet headers. This

header data is then represented as images or frames. For such a formulation,

a set of samples can be seen as a sequence of frames or images. This represen-

tation facilitates image analysis and video coding techniques, including scene

shift and motion prediction, to display exciting traffic properties on packet

header details. The research brings together methodologies from image pro-

cessing and video analysis to visualization to make real-time traffic patterns

possible.

2.2 Research on DDoS attacks in WSN

Garg et al. [32] have done a brief survey about the security constraints that

are part of the WSNs and listed out all the DDoS attacks that can be launched

in the different layers of the WSN architecture model. The work’s main aim

is to give a short introduction to all the various types of attacks in each layer

so that mechanisms can be developed to curb these attacks.

In [40], all the security attacks have been categorized into various types

based on their impacts like data integrity and confidentiality, power consump-

tion, service availability and bandwidth consumption, routing, identity, and

privacy. DDoS attacks fall into some of these categories.

21

Qureshi et al. [53] have done a short survey that mainly focuses on attacks

in the physical layer. The work’s main aim is to group the attacks that occur in

the physical layer, compare several properties like how the attacks take place,

the schemes that are used to launch the attacks, the impacts these attacks

have on the layer, and finally, the detection and defensive methods that are

applied in order to contain these attacks.

Security attacks, including DDoS attacks, can be classified into various

categories based on divergent indicators like the attackers’ domain, the tech-

niques these attackers use to launch an attack, etc. In [43], based on these

indicators, the attacks are categorized into types like passive or active, internal

or external, different protocol layer, stealthy or non-stealthy, cryptography or

non-cryptography related attacks.

Bharat and Sahoo [25] have done a detailed study of WSNs and have

come up with an approach that closely examines the threats and weaknesses

in WSNs due to their dynamic nature. Elaborate work has been done to

point out the challenges related to security, routing, and middleware. The

paper then lists out all the security attacks that occur in each protocol layer

and their counteractive measures proposed over the years by researchers to

prevent these attacks. The approach also provides a study of data aggregation

and energy-efficient routing protocols for WSNs [25].

[44] and [30] present all the DDoS attacks that occur at different layers

of the Transmission Control Protocol (TCP) model of the WSNs. Then the

defense mechanisms against all of these attacks have also been discussed. This

study’s main aim is to give a brief overview of the attacks and their counter-

active procedures to guide future researchers to come up with better defense

steps to provide better protection against DDoS attacks.

22

2.3 Research on visualization models for Wireless Sensor

Networks

V. Nigam et al. [48] have proposed a profile based visualization model to detect

DDoS attacks in WSNs. In their work, they continually visualize the network

traffic in order to monitor the network. This helps to identify anomalous be-

havior and to monitor the performance and resource usage of each sensor node.

In this scheme, each sensor node is closely monitored, and their corresponding

messages and traffic generated in the network are looked upon. When a sensor

node forwards too many packets or is creating huge traffic congestion or dis-

turbance in the network, or is using up too much of the network’s resources,

it is categorized as an attack node. Its traffic is stopped from flowing into the

network. Thus, a DDoS attack that consumes up the entire bandwidth, which

leads to the ultimate break down of the network, is detected and prevented.

The network’s performance under other schemes and this profile-based scheme

are compared, and the results prove that this model has a considerably better

detection rate than others.

SecVizer [54] is a visualization tool capable of monitoring traffic generated

from QualNet from wired and wireless networks. This tool visualizes the wire-

less sensor network’s topology from a three-dimensional perspective to show

the network’s activities. It also uses a parallel coordinate plot to detect se-

curity attacks in their early stages itself effectively. The DDoS attacks that

take place in WSNs form different patterns in both the topology visualization

window and on a parallel coordinate map, which helps in the efficient detection

of these deadly attacks.

In [61], the proposed Multi-Directional Scaling - Visualization OfWormhole

(MDS-VOW) is an attack detection visualization model that identifies the

wormhole attacks that take place in sensor networks. In this scheme, the

existing network is reestablished using multi-directional scaling. Since there

will arise errors related to distance estimations [35] while scaling, a surface

smoothing scheme is used. When the network is under normal conditions, the

23

network topology is flat. Nevertheless, when there is a wormhole, the network

looks like it is being pulled from both ends by the wormhole. Thus, the MDS-

VOW method detects the wormhole by visually depicting the anomaly looking

like a distortion caused by the wormhole on the renovated network.

Like in [61], the same authors have proposed a visualization-assisted detec-

tion of Sybil attacks in WSNs. A Sybil attack is an attack in which one sensor

node gains possession of multiple identities and operates as these nodes. In

this proposed method also, there is a security module as well as a visualization

module. In the network security component, the network topology and its ge-

ometrical data [62] are used to identify any Sybil attacks. The visualization

module then uses the results from the security module to identify anomalous

patterns and fake identities.

Varsha et al. [37] have come up with an early detection of DDoS attacks in

WSNs. In this method, the number of transmissions for each node is reduced

based on the number of neighbor nodes in their transmission range to prevent

packets’ flooding by any one node. The network is grouped into grids, and each

of these grids has an examiner node. This examiner node computes the number

of neighbors for each node and their threshold value of the number of packets.

If a huge number of packets are being sent by a node that exceeds its threshold

value, the examiner node examines this with the Packet Delivery Ratio (PDR)

of its neighbor nodes. If the node’s PDR is abnormal, the network stops the

node from further communicating with the other nodes, thus detecting the

possibility of a DDoS attack in the early stages itself.

In this paper [36], the researchers have proposed a novel visualization model

called SRNET for network security in WSN. This system can analyze and

detect complicated patterns that occur in the sensor networks. It mainly

focuses on selective forwarding attacks and jamming attacks by visualizing the

network data onto three multi-coordinated views: a) multi-dimensional crossed

view that shows the network topology and helps in monitoring the evolving

status [35] of the two types of attacks b) crossed view which is combined with

24

the track view in order to identify the source of the attacks c) track view tracks

the source and identifies the pattern of a potential attack.

Lu et al. [41] established an integrated method for detecting Sybil attacks

on mobile WSNs by visualizing and evaluating several topology trends. The

automatic reordering and evaluation algorithms [36] that have been used in

this approach help find the attacker nodes quickly and more efficiently in the

network topology when an attack scenario appears. Here, time series analysis

has also been used to keep track of the attack duration. This analysis is based

on time histograms and a time segmental automated process.

Shi et al. [56] have come up with an attack detection mechanism known

as Sensor Anomaly Visualization Engine (SAVE) in WSNs using visualization

as a means. It makes use of the integrated approach by using the powerful

visual analytic technology and works in three phases: a) data preprocessing,

which includes cleaning, organization, and normalization of the data b) the

abnormality identification of sensor nodes on a centroid by cluster-based tem-

poral and spatial projection (data points that are not centroid are marked as

outliers) c) multifaceted viewing like topology display of the sensor network

routing, high-dimensional sensor properties, and correlation-based projection

vision and projection dimension vision [35].

In [59], the proposed system is a visual assisted tool called EyeSim for

identifying the DDoS attacks in IP-enabled WSNs. This tool is interactive and

helps users monitor and identify wormhole links present in the sensor network.

It can also be used to identify the anomalous nodes that are responsible for

forming the wormhole link. The system can also perform network data analysis

based on the routing information available and expose which nodes are working

as the attacker nodes. The results prove that EyeSim can effectively detect

various wormhole attacks in real-time and have good detection accuracy.

25

2.4 Summary

Chapter 3 has provided a detailed study of previous works that discuss the

various visualization models and systems that the researchers have developed

over the years to detect DDoS attacks in traditional wired networks. Then,

the research related to DDoS attacks in WSNs has been outlined. Finally, the

frameworks based on data visualization to detect DDoS attacks in WSNs have

been provided.

Chapter 3

Methodology

This chapter describes the proposed approach. The suggested framework com-

prises two modules - the dataset generation module and the clustering-based

data visualization module. The chapter gives a detailed overview of the tools,

algorithms, and libraries used as part of the designed approach.

3.1 Approach

While network researchers surely went several steps ahead and built some of

the most technologically advanced wireless networks like the Internet of Things

(IoT) and Wireless Sensor Networks (WSNs), the attacker community is not

far behind. WSNs are unique in their design and have many advantages over

the traditional wired networks. In my opinion, the scope of this WSN is time-

critical WSNs. For example, a WSN used to monitor the precipitation of an

area of land becoming the victim to a DDoS attack is very rare because the

attackers have nothing to gain by attacking this WSN. Another WSN is used

to monitor the containers’ temperatures inside a chemical factory or nuclear

power plant. If this data is tampered with, it can wreak havoc in the form

of human life loss and nuclear weapon loss. Since the attacker’s main aim

in flood type of attacks is to flood the system with useless packets and stop

important information from reaching its destination, they target these time-

critical systems. So, time-critical sensor networks are the scope of this work.

Because WSNs are infrastructure-less, the nodes in the sensor network tend

to be very variable. Due to this dynamicity, the nodes have become a target

for several DDoS attacks. DDoS attacks are intrusions where a select system

or network is made unavailable to the actual users. These attacks have been a

trouble to networks before wireless infrastructure and are now causing distress

26

27

to the sensor networks. UDP flood attack is a type of DDoS attack that hap-

pens in both WSNs and wired networks where the attacker floods the targeted

system’s ports with UDP datagrams. In turn, the system sends an ICMP

packet to the sender, replying that no port is listening to the request it has

sent. Thus, the victim machine loses precious computation time and resources

in sending these unnecessary packets while it has other important tasks to do.

Applying data visualization for detecting DDoS attacks is a fairly new field

that has gained attention in the past two decades. The main task at hand

is to use this concept in securing WSNs against DDoS attacks, which is the

main motivation for this research work. The procedure thus aims at building

a visualization-based DDoS detection model in WSNs. This is achieved in two

parts.

The first module generates a dataset with both UDP attack and non-attack

data. There are very limited datasets available for DDoS attacks in WSNs.

Some of them being WSN-DS[19], Captured Zigbee packets from commer-

cial smart home devices [17] etc. In the papers encountered while doing this

research, many of the works simulated their datasets using Network Simu-

lator2 (NS2), Cooja, OMNET++, and similar simulating tools. However,

the resource consumption features required for designing this model were not

available in these datasets. To obtain this data, a dataset is generated by

using the Cooja simulator. As mentioned earlier, even though other simula-

tors are available for simulating WSN environments, Cooja was used because

it has several advantages over other simulators. The problem with the cur-

rent simulators is that they can simulate only a single system level at once.

Because of this drawback, the developers cannot use the simulator for both

high-level algorithm development and low-level development such as device-

driver implementations[50]. Whereas with Cooja, cross-level or simulations at

different levels like network, operating, and machine code levels can be built

simultaneously[50]. So, Cooja is efficient, scalable, flexible, and extensible[50].

It is an open-source simulation software that runs on Contiki operating sys-

tem. It is simple to use and can very effectively build a WSN environment

based on RPL - a type of routing protocol for low-power networks like sensor

28

networks.

The simulation captures the required attributes: energy consumption, power

consumption, delay, packet loss, CPU time, and idle time of the sensor nodes

when they are under normal conditions and when they are attacked. Some-

times, a task might be vast and time-consuming. Then the nodes take more

energy to finish this task than they usually take. Just because the nodes

consume more reserves, it cannot be classified as an attack situation. Thus

the receiving rate attribute of the nodes further assists in detecting a break-

through. The attacker mainly achieves his goal of flooding the targeted system

by sending too many packets too frequently. That means the attacked nodes

have too many incoming packets, i.e., the Received Packets is very high. From

the resultant dataset, only the features mentioned above are preprocessed be-

cause only those are useful for detecting attacks. The timers, parameters,

conditions, and requirements set and needed to run the simulation are pro-

vided in the next chapter.

In the next step, k-means and mini-batch k-means clustering algorithms

are applied to the dataset using Python programming language in Spyder In-

tegrated Development Environment (IDE). The conditions for identifying an

attacker are specified in the experiment chapter. Clustering is a process of

grouping items, things, data, etc., based on some metrics. It is an unsuper-

vised learning method in which the machine is expected to identify similarities

and differences between the unsorted items of the dataset and group them

into various categories based on these parallels and disparities[23]. Cluster-

ing is a continuous process of knowledge discovery[22] that involves judgment

and loss. For the proposed approach, clustering techniques work better than

classification techniques because of two main reasons[2]:

• The dataset to be dealt with is quite huge.

• The work’s objective is to distinguish anomalies from regular data for

which clustering is the most suitable choice.

29

K-means is the most commonly used and effective algorithm when cluster

analysis is involved. But network data is enormous and complicated. When

such data is provided to k-means, it has to do too much computation to arrive

at the results. This is because it tries to work on the entire data at a time,

which is not feasible and only leads to mis-clustering and too many outliers.

Effective clustering is needed for this work because we are dealing with a time-

sensitive and destructive attack situation. If the attacker is successful, it leads

to the breakdown of the entire network. Thus, to overcome this limitation,

the approach suggests using mini-batch k-means algorithm. This algorithm

works similarly to k-means. However, instead of working on the entire data, it

divides it into mini batches. By doing this, the algorithm is not under pressure

to process everything at once. Thus, it works uniformly and arrives at better

clustering results than k-means with less number of data points being wrongly

clustered and with limited anomalies[65][31].

So now, all the data points have a label assigned to them, either attack

or non-attack. The clustering results of both the algorithms are depicted on

scatter plots - a type of visualization method which shows the relationship

between the x and y-axis. In the next step, the mini-batch k-means based

clustered results are plotted onto a parallel coordinate plot since it is already

established that it has better performance over k-means. In the intrusion

detection system, visualizing the information is crucial. The reasons why

visualization is necessary are discussed as follows:

• Visualization effectively deals with highly noisy and heterogeneous data.

The network traffic’s complex environment is highly correlated with the

features of source address, packet length, port number, TCP flag, and

destination address. However, visualization assists in intuitively under-

standing the traffic scenario even under such complexity.

• It provides perceptual clues for identifying attacks even without under-

standing statistical algorithms and mathematical functions.

• It provides faster results compared to the anomaly detection models in

30

identifying the attacks. The attack visualization employs pre-defined im-

age patterns rather than training and comparing the data with historical

patterns.

There are many types of visualizations like stream graphs, pie charts, line

charts, etc., that could depict the sensor network data. For example, the

stream graph discussed in the introduction section could depict this data since

the number of features to be used is only 7. But there are many other features

like Source ID, Destination ID, etc., in the generated dataset, which may

help determine the attack if used in the graphical representation. But these

features cannot be put all at once on the stream graph because its capacity is

only ten features at a time. Similarly, other visualization methods have their

shortcomings. The proposed methodology uses a parallel coordinate graph

because it has several advantages over other methods which overcome the

limitations mentioned above:

• The network data visualization must ensure scalability, which is assured

by parallel coordinates with multiple dimensions. The maximum number

of axes that could be shown at a time is 25. No other method has this

capability.

• Parallel coordinates-based attack visualization makes it easy to under-

stand the correlations, divergences, and trends present even in the most

complex datasets.

• Moreover, it can handle continuous as well as categorical data.

The attack data points show up on one end of the cluster axis and the

benign points at the other end in different colors on the parallel plot. The

plot separates the data from one another, thus detecting the UDP attack.

By observing this pattern, the network administrator or user can understand

the abnormal conditions and promptly curb the attack. Figure 3.1 gives an

overview flowchart of the presented design.

31

Figure 3.1: Overview of the proposed methodology

32

3.2 Tools and Algorithms

This section provides the general functionality of the utilized simulating tool

for generating the dataset, the clustering algorithms for categorizing data

points, and the visualization method to graphically show the clustered dataset.

• Cooja Simulator

• K-means

• Mini-Batch K-means

• Parallel Coordinates Map (PCM)

3.2.1 Cooja Simulator

Cooja is a java-based network simulator designed for emulating real hardware

platforms in WSNs. It is an application that runs on Contiki operating system.

Contiki is an open-source software designed especially for devices that work

with constrained resources like IoT and WSNs whose base code is written in

C programming language. Contiki supports high standard IP protocols like

TCP, UDP and HTTP as well as low power protocols like RPL, Constrained

Application Protocol (CoAP), IPv6 over Low -Power Wireless Personal Area

Networks (6LowPAN)[21].

In Cooja, the sensor nodes are known as motes. There are different types

of motes like Wismote, Z1 mote, sky mote, ESB mote, etc. Each of these

motes works similarly but differs only in the features like memory, CPU, clock

speed, etc. Any type of mote has to be selected for the creation of the network

setup. The motes can be placed randomly, in an elliptical manner, or a linear

manner. The simulator interface comprises five windows:

• The network window shows the arrangement of the motes. The motes are

represented in different colors. The green-colored one is the sink mote,

the yellow ones are the sender motes, and the others can be colored

according to the user’s choice. When the cursor hovers on a mote in the

network window, the green ring that appears represents the transmission

33

range of the mote. Details like the radio information of the particular

mote, its attributes, and the radio traffic flowing between the motes can

also be observed in this window.

• Simulation control window allows the user to control the speed of the

simulation, to start, pause and reload the current simulation[46].

• In the note window, the user can jot down critical information about the

simulation and can save it to review afterward.

• The timeline window shows events like the communication between layer

two and the motes over a period of time.

• The mote output window prints any data that the motes outputs. This

is where the actual message communication that takes place between the

motes is displayed. The data file can be saved, which will be the dataset

generated by running the simulation.

Routing Protocol for Low Power and Lossy Networks (RPL)

The main objective of a routing protocol in any network is to keep track of all

the routes available on the network so that any two systems can communicate,

routing tables can be built, and decisions on the routing can be made. RPL

is thus a routing protocol used in wireless networks which comprise of devices

with low power consumption and use IPv6[8].

This protocol is based on the concept of Destination oriented Directed

Acyclic Graph (DODAG) which means that the devices are connected so that

no loops are formed. A single destination node is known as the root/sink node

to which all the information is passed from the nodes present in the network.

The formation of the loops is avoided by using the concept of ranks. Each node

calculates its position in the network concerning its surrounding nodes, called

rank or cost[46]. The sink node to which all the nodes send the information acts

as an interface between the network and other sensor networks. Along with

Contiki, several other operating systems implement RPL protocol like LiteOS,

TinyOS, T-Kernel, EyeOS[8]. To build the topology and for communication to

34

happen between the sensor nodes, the RPL protocol uses four types of control

messages:

• DODAG Information Solicitation (DIS): This message is used to request

information from other nodes. This is mainly sent in order to discover

the neighboring nodes[8].

• DODAG Information Object (DIO): This message is sent as a response

to the DIS message to share one node’s information with the other node

that has requested the information. It is also sent out at times in order

to refresh the information of the nodes.

• Destination Advertisement Object (DAO): This message is sent to the

parent node to update the information of the child nodes.

• Destination Advertisement Object- Acknowledgement (DAO-ACK): This

is an acknowledgment message sent by the parent node to the child or

leaf node.

3.2.2 K-Means

The k-means algorithm is the most commonly used clustering algorithm be-

cause of its simplicity and effectiveness. It works iteratively to partition the

dataset into non-intersecting groups/clusters concerning the number of clus-

ters (k) specified by the user. Each data point of the dataset belongs to only

one cluster. The algorithm works so that the data points are assigned to a

given cluster by ensuring that the Sum of Squared Errors (SSE) (shown as

in Eq.1) between the cluster center and the data point is minimal. Thus,

the intra-cluster distance, which is defined as the distance between the cluster

center and the data points belonging to a cluster, is minimum. At the same

time, the inter-cluster distance defined as the distance between two cluster

centers is maximum. This way, all the data points that are similar to one an-

other are grouped, and those that are different fall into different groups. The

idea behind the k-means algorithm’s working is to resolve the Expectation-

Maximization (EM) problem. In E-step, each data point is assigned to the

35

closest cluster. The cluster center is updated in the M-step after a data point

has been assigned to the cluster.

E =
k∑

=1

∑

p∈c

(p − m)2 (3.1)

with k clusters, C the set of objects in a cluster, m the center point of a cluster.

The working of the algorithm is presented below[4]:

Algorithm 1 K-Means clustering algorithm

1: Let X = x1,x2,x3,.,xn be the set of data points and V =

v1,v2,.,vc be the set of centres.

2: Randomly select ’c’ cluster centers.

3: Calculate the distance between each data point and cluster centres with

the Euclidean distance formula:

d(p, q) =
�
(p1 − q1)2 + (p2 − q2)2 (3.2)

4: Assign the data point to the cluster center whose distance from the cluster

center is minimum of all the cluster centers.

5: Recalculate the new cluster centre using:

 = (1/c)
c∑

j=1

 (3.3)

6: Recalculate the distance between each data point and new obtained cluster

centers.

7: If no data point was reassigned, then stop; otherwise, repeat from step 3.

36

3.2.3 Mini Batch K-Means

K-means is very popular because of its efficient performance. Nevertheless,

when the size of the dataset increases by manifold, the computation that the

k-means has to do also increases proportionally because the entire dataset has

to be present in the memory while clustering is taking place, which in turn

reduces its efficiency. To reduce the algorithm’s temporal and spatial cost

while performing the clustering[20], an alternative method has been proposed

called mini-batch k-means. It is a slightly modified version of k-means.

This algorithm works very similarly to its parent. However, the main

difference is that instead of storing the entire dataset in the memory, it stores

a small batch of data of a fixed size selected randomly in the memory[20]. In

each iteration, a new data point is selected randomly from the entire dataset

and is used to update the clusters until convergence is reached. A convex

combination of values of the prototypes[20] is used to update the clusters by

each mini-batch. The learning curve of the algorithm decreases with each

iteration. When the number of iterations increases, the randomly selected

data point has little to no change on the clusters. Thus, with the learning

rate that falls with the increase in the number of iterations, convergence is

achieved. This leads to the saving of significant computational time[65][31].

The working of mini-batch k-means[65] is similar to that of k-means, and

the pseudocode of the algorithm is provided below.

Algorithm 2 Mini Batch K-Means clustering algorithm

1: Let X = x1,x2,x3,.,xn be the set of data points and B =

b1,b2,.,bc be the number of batches the data points have been di-

vided into.

2: Randomly select ’c’ cluster centers.

3: Allocate small batch data to the nearest cluster center using Euclidean

distance formula.

4: Update the cluster center iteratively until the cluster center does not

change anymore.

37

3.2.4 PCM

A Parallel Coordinate Map (PCM) or simply parallel plot or graph is a type of

visualization technique widely used to represent numerical data that is multi-

faceted or multi-dimensional. It is beneficial for users when trying to find

patterns or associations between the quantitative values. It so often hap-

pens that the various numerical values under observation or in a given dataset

have different proportions and are measured using different units[63]. In these

scenarios, a parallel plot is very appropriate. When the data is put on this

graph, it is easy to understand the correlations, parallels, and groups in multi-

dimensional datasets and whether these unraveled associations are good, bad,

or have no unique relationships. So, the primary purpose of parallel coordi-

nates is to visualize high-dimensional data, which is very difficult to achieve

because the information is enormous to look at, and most of the visualization

techniques used in day-to-day life will not be able to successfully depict this

data without losing some or most of the important information. When most

of the lines drawn between these axes are parallel to each other, there is a

positive association between these two aspects. Whereas, when these lines

criss-cross each other and form patterns similar to X, it means there is a neg-

ative relationship between them[7].

In a parallel plot, each feature or attribute is shown as an axis, and these

axes are placed parallel to each other vertically with equal space between them.

Each data entity is defined on each axis by connected line segments generated

from a connected collection of points[63]. After drawing the graph, we get

a collection of lines that shows the multi-attribute portrayal of all the data

elements[63]. There is one problem to be solved before drawing the map. Since

the data can have different units and magnitudes measurements, the data has

to be normalized first. The scales of the dimensions have the same units, and

now a meaningful comparison can be made between them. One of the most

common normalization techniques is to range each axis between its minimum

and maximum values[63]. Usually, a zero is placed at one end of the axis and

a one at the other end, but they can be replaced with anything according to

38

the users’ convenience.

In order to better recognize the hidden relationships, three methods can

be used[21]:

• Colouring: With this filter, a single line or multiple interest lines can

be colored according to users’ choice. This is normally helpful when one

particular value has to be compared against others.

• Reordering: Even when the entire dataset is sitting in front of us in

the most simplified version, it is still challenging to find what we were

searching for with the way the visualization is depicted. Sometimes, by

changing the axes’ order beside each other, it becomes easier to find

things. Also, since a parallel plot is a set of lines, it most often is clut-

tered. By changing the order of the axes, there is a high possibility of

reducing this clutter. So, by reordering the axes, the map’s understand-

ability can be enhanced, and the hidden patterns can be identified very

easily.

• Brushing: During the analysis of massive datasets, there is a chance

of over-plotting, and thus, the analysis of such representation becomes

nearly impossible[63]. To overcome this problem, brushing technique can

be used. Here, specific data points can be shown while other elements are

faded out. This helps highlight specific subsets of data, which reduces

the clutter, and the representation becomes aesthetically more attractive,

thus disclosing many hidden details.

3.3 Python libraries

Python libraries are pieces of code written in python that have some inbuilt

functions. These libraries give access to installing the required modules or

packages, which can be used to achieve specified tasks. The section gives a

brief elucidation of the libraries that were used in the framework.

39

NumPy: NumPy short form for Numerical Python plays a significant

role in supporting the multi-dimensional, large arrays and matrices, incor-

porating the numerous high-level mathematical functions for the arrays and

matrices operations[60]. It is an extension of the python programming lan-

guage, providing an efficient interface for storing and operating data buffers

with high density. It helps process the arrays with the storage of values in

the same data types and eases the arrays’ math operations. It provides effi-

cient data operations and storage with the increased size of the array. NumPy

arrays are the core of data science tools in python.

Pandas: Pandas library dramatically assists in the analysis and manipu-

lation of the data, especially time series and numerical tables with the offering

of data operations and data structures[45]. Pandas package is built on top of

NumPy. It supports the implementation of a data frame in an efficient manner.

Pandas is based on two data structures, namely series and data frames. Series

refers to a one-dimensional structure in the form of a list of items, and data

frames refer to the two-dimensional structure in the form of a table with mul-

tiple columns. Data frames consist of row and column labels for homogeneous

and heterogeneous data types with or without missing data. Pandas enables

converting the data structures to data frame objects, missing data handling,

histogram or box plotting, and column insertion or deletion[45].

Scikit-learn: Scikit-learn library supports learning and decision-making

through the accumulation of different classification, clustering, and regression

algorithms. It is a Python module that is built on top of the SciPy pack-

age for machine learning. Scikit-learn is an industry-standard package for

Python-based data science projects. It provides a concise interface to the va-

riety of machine learning algorithms, supports the handling of data mining

and machine learning tasks such as classification, clustering, regression, di-

mensionality reduction, and model selection[52]. With the incorporation of

the efficient versions of the multiple common algorithms, Scikit-learn greatly

assists the data scientists in performing the machine learning projects.

40

Matplotlib: Matplotlib library is the extension of the numerical math-

ematics that is NumPy, which plays an essential role in embedding the plots

into applications through the object-oriented Application Programming In-

terface (API) based on the general-purpose Graphical User Interface (GUI)

toolkits[24]. Matplotlib helps visualize the data as two-dimensional graphs and

diagrams, including scatter plots, histograms, and non-cartesian coordinates

graphs. It greatly assists the visualization for the data science projects, which

is compatible with the different graphics backends and operating systems.

Matplotlib is also referred to as the everything-to-everyone and cross-platform

approach with the advantage of supporting the dozens of output types and

backends within the scientific Python world.

Scatter Plot: A Scatter plot is a type of mathematical diagram repre-

senting the data points between two different variables using dots, which is

also called the scatter graph and scatter chart. In the scatter plot, each dot’s

location on the horizontal and vertical axis refers to an individual data point’s

values, which assists in observing the relationship between the numerical vari-

ables.

Plotly: Plotly is an interactive and open-source python plotting library,

supporting 40 unique chart or graph types with the coverage of the financial,

statistical, scientific, 3-dimensional, and geographic use-cases[58].

Chapter 4

Experiment

This chapter presents the experimental setup for the dataset generation in

the Cooja simulator and the clustering-based visualization on a parallel plot.

It provides the details about the simulation’s hardware and software require-

ments, the set parameters and timers to run the simulation, the working of

the attacker nodes, and presents the final dataset generated. The chapter also

details the programming setup for clustering and parallel plot using python

and the packages and functions used in the coding.

4.1 Simulation setup and parameters

To successfully run a simulation whose output will be used for designing the

detection model, standard network connections with good quality and ade-

quate memory are required. These two requirements can be met with the

Cooja simulator, which is designed explicitly for emulating the environments

of WSNs with all the security and quality requirements in place.

Contiki Operating System: The open-source operating system of Con-

tiki is mainly designed for resource-constrained devices. Contiki supports a

full stack IP network with different high-standard IP protocols and different

low-power standard protocols.

Cooja Simulator: It models the proposed simulation system based on

the consideration of the network connectivity and protocol performance with

the advantage of provisioning the emulation of the real hardware platforms.

41

42

Table 4.1 and 4.2 show the hardware and software requirements for imple-

menting the proposed simulation model.

Table 4.1: Hardware requirements

Processor Pentium Dual-Core CPU E5800 @ 3.2GHZ
Monitor SVGA
Memory 4096 MB RAM

Table 4.2: Software requirements

Operating System Ubuntu 16.04 LTS 64bit
Networking tool Contiki 3.0, Cooja Simulator

Machine learning tool Scikit-learn
Language for networking C

Machine learning Python

4.1.1 Network environment setup

The network environment setup implements the dataset generation using the

Cooja simulator on Contiki based on RPL routing protocol. Cooja enables

the emulation of the wireless sensor network without the need for a particular

mote.

It conducts the experiment on a 100 x 100 sq. meters grid of 40 nodes, in-

cluding the sink nodes and client nodes. The Contiki motes’ implementation

is to be performed using the Wismote nodes, with 16KB RAM and 256KB

flash memory. It builds the RPL network by considering the Wismote mode

for both the static sink node and mobile client nodes. The simulation model

assigns the total simulation time as 60 seconds and 50m as the nodes’ com-

munication range. To configure the transport layer, it utilizes UDP in which

the transmission size of the data for every node is 127 bytes. The simula-

tion model utilizes the Unit Disk Graph Medium (UDGM) with distance loss

43

and packet loss due to the advantage of real-world emulation capability of the

shared media collision and lossy links in the IoT network[46]. The MAC and

the physical layer are modeled with the 802.15.4 MAC layer protocol and the

UDGM propagation model.

Table 4.3 illustrates the simulation parameters for the network environ-

ment.

Table 4.3: Network simulation parameters

Number of Client Nodes 40
Number of Server Node 1

Sensor Type wismote
Propagation Type Unit Disk Graph Model
Transport Agent UDP

RPL Mode of Operation No downward route
Data-Transmission Interval 30 seconds

Attacker Interval 1 second
Data Set Generation Time 300 seconds

Cooja builds the WSN environment in the form of a graph (G) with nodes

(V) and edges (E) for the generation of the dataset. In the modeled WSN,

each edge (E) means that the connected two nodes are within the transmission

range. Since Cooja works with RPL protocol, it builds the topology with the

help of 4 control messages - DAO, DIS, DIO, and DAO-ACK thus forming a

DODAG. Only DIO packets carry some data in this setup, which are messages

from child nodes sending their updated information as a response to the DIS

messages sent by their parents. Under normal working of the sensor network,

the parent nodes send out DIS messages every 30 seconds and send the UDP

messages every 30 seconds. This transmission does not create any congestion

in the network, and thus the resource consumption by the systems is in control.

Nodes 5, 11, 23, and 40 were selected as the attacker nodes. To launch

UDP flood attacks, the attacker node sends UDP packets to a benign node

every 1 second, asking for an open port even though it has no use for it. It

44

also sends out DIO messages to the targeted system at random times, sending

its information even though the targeted node is not its parent and has not

asked for it. The attacker node’s transmission interval is very frequent than

the time frame used by the benign nodes. So, the system becomes flooded

with these useless messages so that resources are consumed in high values to

process the packets. Therefore the attacker achieves his goal of exhausting

valuable reserves of energy.

Figure 4.1 shows the screenshot of the Cooja simulator. The node green

in color is the sink node, and those pink in color are the UDP attack nodes.

Figure 4.1: Screenshot of Cooja running the simulation with all the set pa-
rameters

45

4.1.2 Generated dataset

The generated dataset with legitimate nodes and UDP attacker nodes is shown

in table 4.4. The simulation results are raw Packet Capture (PCAP) files saved

as Comma Separated Values (CSV) file.

Table 4.4: Features of the generated dataset

S.No Fields Description
1 Frame No. Order of message or serial no. of message
2 Time Message arrival time
3 Source source ID
4 Destination Destination ID
5 Instance ID Unique identifier in the network (same for all nodes)
6 Version Version no. of DODAG (same for all nodes)
7 Source Address IP address of the source node
8 Destination Address IP address of the destination node
9 Root ID of the root node
10 Node ID Node identity
11 Sending Rate Data packet sending count of the node
12 Sending Time Data packet sending time of the node
13 Energy Consumption Energy consumed by the nodes to do a task
14 Power Consumption Energy consumed by the nodes per unit time
15 Idle Time Time taken to wait for the execution of a task
16 Packet Loss No. of failed packets of data while in transmission
17 Delay Time taken by each packet to reach the server node
18 CPU Time CPU time taken for the execution of a task
19 Received Packets Received packet count at t time
20 Forwarded Packets Forward packet count at t time
21 Hops Number of hops present in a path
22 Delta Time Inter-packet arrival time
23 Rank Node’s topology level in the tree
25 MOP Mode of Operation
26 DTSN Destination Advertisement Trigger Sequence Number

Figures 4.2, 4.3 and 4.4 are the screenshots of the resultant dataset.

From the resultant dataset, only the optimal features like power consumption,

energy consumption, packet loss, delay, idle time, CPU time along with Re-

ceived Packets are preprocessed and separated into a CSV. The received packets

feature is useful for the categorization of attacker nodes. The resultant dataset

46

after prepossessing is shown in table 4.5

Figure 4.2: Screenshot of the resultant dataset

Figure 4.3: Screenshot of the resultant dataset

Figure 4.4: Screenshot of the resultant dataset

47

Table 4.5: Features of the preprocessed dataset

S.No Fields Description
1 Energy Consumption Energy consumed by the nodes to do a task
2 Power Consumption Energy consumed by the nodes per unit time
3 Idle Time Time taken to wait for the execution of a task
4 Packet Loss No. of failed packets of data while in transmission
5 Delay Time taken by each packet to reach the server node
6 CPU Time CPU time taken for the execution of a task
7 Received Packets Data packet receiving count of the node

4.2 Programming setup

To perform clustering, it is necessary to install the Anaconda software that

supports machine learning algorithms’ execution using python language on the

Spyder IDE.

Table 4.6: Clustering implementation parameters

Language Python 3.8
Machine Learning Library NumPy, Pandas, Scikit-learn

Visualization library Matplotlib
Development Environment Spyder IDE

Algorithms K-means and mini-batch K-means

Python: Python is a high-level programming language, which is an in-

terpreted language and more suitable for the development of desktop and web

applications.

Anaconda: Anaconda is one of the python distributions that offer a

python interpreter along with a set of python tools and packages. It incor-

porates both conda and python with the scientific computing-focused pre-

installed packages. Anaconda python distribution also provides the Python

Development Environment (PDE) - Spyder IDE with an editor[1].

48

Spyder IDE: To execute or run the code written in python programming

language, the scientific Spyder IDE is widely used. This IDE has the features

of interactive testing, advanced editing, introspection, and debugging. It in-

corporates useful features such as providing the IPython(Qt) console, enabling

the snippets of code execution from the editor in the console, performing step-

by-step execution, parsing the files in the editor continuously, and providing a

visual warning for the errors[11].

To perform computational modeling and scientific computing, the experi-

mental model necessitates additional libraries or packages instead of using the

Python Standard Library (PSL). With the target of creating plots, operat-

ing matrices, and applying specialized numerical methods, additional python

libraries have been used. The experimental model implements the proposed

clustering algorithms to categorize the data points into their respective clusters

for DDoS attack detection using additional python libraries such as NumPy

and Pandas Scikit-Learn and Matplotlib.

sklearn.cluster.KMeans[9] was used to implement the K-Means clustering

algorithm with the number of clusters set to 2 and the maximum number of

iterations set to 50. The default value for the maximum number of iterations

for the k-means algorithm is 10. The dataset to be clustered is large in size.

So, when this default value was set, the algorithm hasn’t reached the point of

convergence, i.e., the point where all the points are placed in their respective

clusters, and the centroids of the clusters do not change. The experiment was

conducted by setting the iteration value to 20, 25, 30, 35, 40, 45, and 50. The

algorithm did not reach the convergence for any of these values except for

value 50. 50 was the minimum iterations required for this dataset to reach

convergence.

learn.cluster.MiniBatchKMeans[10] was used to implement the mini-batch

k-means algorithm with the number of clusters set to 2, the maximum number

of iterations set to 50, and the batch size set to 500. Since mini-batch k-means

and k-means are similar to each other, the value of maximum iterations was set

to 50 like in k-means for the reason mentioned above. The default value for the

49

batch size is set to 100 in sklearn. The mini-batch k-means algorithm was run

with several batches sized like 250, 300, 600, 700, 1000, etc., the algorithm’s

performance is best when the batch size is set to 500 with the combination of

50 iterations.

pandas.plotting.parallel coordinates was used to draw the parallel plot to

represent the clustered dataset. The attack data belongs to cluster one, and

the non-attack data belongs to cluster zero. An axis with zero at the bottom

and one at the top in the parallel plot represents the cluster axis. The non-

attack data is shown in green color, whereas the attack data is shown in red

color.

4.3 Summary

This chapter explains how the experiment was done in detail. It specifies all the

conditions under which this demonstration was performed and provided details

about the classes, packages, libraries used, and their provided parameters.

Chapter 5

Evaluation Methodology and Result Analysis

This chapter discusses the definitions of the performance measures used to

validate the RPL based WSN environment setup and the clustering algorithms.

Initially, it provides a comparative performance evaluation of the WSN with

and without the impact of UDP attack on the network. Secondly, it explains

the clustering results on scatter plots, and their performance is compared

against one another using a bar graph. Lastly, it presents the visualization on

a parallel plot, which helps identify patterns and detect the UDP attack.

5.1 Definitions of evaluative metrics

To assess the sensor network’s performance under attack and non-attack sit-

uations, the evaluation metrics such as delay, control overhead, energy con-

sumption, power consumption, processing time, idle time, packet loss, and

memory consumption are used. These metrics are later used to draw the axes

of the parallel plot. To evaluate the performance of clustering algorithms, ho-

mogeneity, accuracy, and v-score are applied. The definitions of the metrics

mentioned above are as follows:

Delay: The time taken by each packet to reach the server node in the

network.

Control Overhead: The ratio between the number of control messages

sent and the number of actual data received at each node.

Energy Consumption: The total amount of energy consumed by the

nodes in the network.

50

51

Power Consumption: The total amount of energy consumed by the

nodes per unit time in the network.

Processing Time: The total time spent by a node to process a network

task.

Idle Time: The amount of time taken to wait for the execution of the

nodes in the network.

Packet Loss: The total number of failed packets of data when traveling

towards their destination in the network.

Memory Consumption: The total amount of memory utilized by the

nodes throughout its execution in the network.

Homogeneity: It indicates that each generated cluster comprises only

the members or data that belongs to a single class. The homogeneity value

lies between zero and one, in which degree one refers to the optimal result of

the cluster.

Completeness: It measures the clustering performance in the form of

assigning the members belonging to a particular class in the same cluster.

The range of completeness is between zero and one.

V-measure: It is the harmonic mean of homogeneity and completeness,

which measures the satisfaction of the homogeneity and completeness in their

criteria based on the entropy values.

52

5.2 Comparative performance of the attacker and non-attacker

scenario in WSN environment

An assessment of the impact created by the UDP attack on the WSN envi-

ronment set up by the Cooja simulator is explained with the metrics under

attack and non-attack scenarios in this section.

5.2.1 Delay

Figure 5.1 illustrates the delay of the network with and without the attacker

scenario. The delay in the network increases with the increase in the number

of attackers in the network. The delay-influenced factors in the mobility-based

RPL network are packet loss and network holes. The network without attacker

scenario obtains 0.0521 seconds of delay, and with attacker attains 0.2564 sec-

onds of delay.

Figure 5.1: Delay in WSN

5.2.2 Control Overhead

Figure 5.2 shows the control overhead. While building the network to discover

the routes, control messages are exchanged. The nodes’ dynamic movement in-

creases the possibility of the parent node’s disconnection from the child nodes,

which results in the increased control overhead. The sensor network has a

53

control overhead of 369 packets when there are no attacks but results in an

overhead value of 378 packets when the network is affected by the attack.

Figure 5.2: Overhead in the RPL based WSN

5.2.3 Energy Consumption

The energy consumption of the network for two scenarios is depicted in Figure

5.3. The consumption of energy in the network is greatly affected by malicious

nodes, frequent topology changes, and mobility. The normal WSN consumes

72841.887 mJ of energy, whereas the UDP attack affected network consumes

75528.952 mJ of energy during the execution of the input data.

Figure 5.3: Energy consumption of the nodes in WSN

54

5.2.4 Power Consumption

Figure 5.4 demonstrates the power consumption. The consumption of power

in the network is 1697.397 MW when the attacks are absent, whereas the con-

sumption of the power increases to 1712.904 MW when the network is affected

by the attack for the same set of data processing.

Figure 5.4: Power consumption of the nodes in WSN

5.2.5 Processing Time

Figure 5.5 illustrates the processing time in the RPL based network. The

processing time plays a significant role in supporting the execution of time-

critical IoT applications, which comprise WSNs. The network affected by the

DDoS attack takes 4666226147 ticks to process the input dataset whereas, the

normal IoT network spends 4442009067 ticks of processing time to process the

same input dataset.

55

Figure 5.5: Processing time of the nodes

5.2.6 Packet Loss

Figure 5.6 illustrates the packet loss. The affected network exhibits an in-

creased packet loss at 73. The packet loss causes performance degradation in

terms of time efficiency and leads to the failure of IoT applications connected

to the WSN.

Figure 5.6: Packet loss in WSN

56

5.2.7 Idle Time

The idle time in the network is shown in Figure 5.7. The idle time in the attack-

affected sensor network is 248680271 ticks higher than the typical network’s

idle time. This is because the attack increases the nodes’ inactivity due to the

sensor network’s delayed data packet transmission.

Figure 5.7: Idle time in WSN

5.3 Performance comparison of the clustering algorithms

The results of k-means and mini-batch k-means clustering are illustrated in

the form of scatter plots, which show the relationships between the x-axis and

y-axis. Their performance results are depicted using a bar graph.

5.3.1 K-means clustering results

Figure 5.8 depicts the scatter plot of the k-means clustering for the corre-

sponding input data. As shown in the figure, k-means distinguishes the data

points or nodes as the attacker (blue colored dots) and non-attacker (orange-

colored dots) with increased false positives even after filtering or reducing the

number of features in the input dataset. The orange dots are scattered, and it

can be comprehended that a significant amount of nodes are wrongly clustered.

57

Figure 5.8: Scatter plot for K-means

5.3.2 Mini batch k-means clustering results

The results obtained by the mini-batch k-means clustering algorithm are il-

lustrated in Figure 5.9. Compared to the k-means algorithm, the grouping

effectively distinguishes the nodes’ characteristics. The clustering is uniform.

The attack nodes are shown by orange dots, whereas blue dots show the non-

attack data points. (The color associated with the clusters is opposite in the

case of k-means). There are very few outliers. Better clustering by mini batch

k-means is accomplished by analyzing the mini batches’ features rather than

analyzing them all at a time.

Figure 5.9: Scatter plot for Mini Batch K-Means

58

The performance evaluation of the clustering algorithms is illustrated in

Figure 5.10. The attack detection model with mini-batch k-means achieves

higher clustering performance, significantly detecting the UDP attacks. It ef-

fectively clusters them into a group with less mis-clustering than the k-means

algorithm. Mini-batch k-means clustering yields the homogeneity, complete-

ness, and v-score measure values of 0.0165, 0.0127, and 0.0142, respectively.

This is a nearly 10% increase in the performance than k-means clustering whose

values lie at 0.0104, 0.0082, and 0.0092 in the same order. It is because ana-

lyzing the attack behaviors in mini batches, i.e., a small set of data points, ac-

curately distinguishes between the attack points and non-attack points, which

reduces the outliers and mis-clustering. K-means tries to analyze the attack

behaviors on the entire dataset at a time, which only increases its computation,

degrading its performance and efficiency.

Figure 5.10: Comparative performance evaluation of the clustering algorithms

5.3.3 Observations made during clustering

Two clustering algorithms, namely, k-means and mini-batch k-means, have

been applied to cluster the preprocessed dataset. The number of clusters(k)

into which the dataset had to be divided was set to two because the distinction

between the two sets is obvious. There should be two groups, attack, and

non-attack data, after they are grouped. While experimenting, k was set to

different numbers like 3, 5, and 10. During these experiments, the batch size

59

was kept constant at 500. Figures 5.11, 5.12, and 5.13 show the plots between

inertia or Sum of Squared Errors (SSEs) and the number of clusters - 3, 5,

and 10, respectively. For each cluster, the sum of squared error is defined as

inertia[47]. So, small inertia means the cluster is dense, or the data points

are close to one another[47]. From these graphs, it can be observed that the

inertia of mini-batch k-means decreases with the increase in the number of

clusters.

(a)

(b)

Figure 5.11: Inertia vs Number of clusters(3) for k-means and mini-batch
k-means

60

(a)

(b)

Figure 5.12: Inertia vs Number of clusters(5) for k-means and mini-batch
k-means

The performance of the mini-batch k-means algorithm over k-means is

higher by 10% in this experiment. This means their performance is almost

at level to each other. This is because mini-batch k-means give better cluster

results under some circumstances, and not all of them are met in this experi-

ment. When the dataset is huge with many attributes or features, it is better

than k-means because the computational cost reduces dramatically by storing

only a part of the dataset in batches in the memory while performing cluster-

ing. However, the difference in the cost is huge when the number of clusters

is large, and the batch size is small[20]. Nevertheless, in this experiment, the

61

(a)

(b)

Figure 5.13: Inertia vs Number of clusters(10) for k-means and mini-batch
k-means

number of clusters is deficient, i.e., only 2. So, the difference is not very much.

The clustering quality is better than that of k-means, but it improves further

when the number of clusters increases.

5.4 Visualization on PCM

The parallel coordinates plot of the attack detection model based on mini-

batch k-means clustering is depicted in Figure 5.14. It was already established

that mini-batch k-means has better performance over k-means. Thus mini-

batch k-means based clustered results are visualized on the parallel coordinate

62

graph. The network performance metrics such as energy consumption, power

consumption, processing time, CPU time, idle time, delay, and packet loss

form the plot’s axes. After clustering is applied, each data point is assigned

a class, either zero (blue color) or one (red color). The datum that has label

zero belongs to the non-attack set, and those that have label one belong to

the attack set. The label is also appended to the parallel plot as an axis with

zero at the bottom and one at the top. The clustered data points belonging

to their respective groups branch out on the plot. Their representation in

different colors clearly distinguishes them and makes it explicit for the user

or network administrator to spot atypical situations like attacks. Since the

dataset is quite large, the graph becomes cluttered by drawing all points at

once. So, the metrics are restricted between 100 and 150 to distinguish the

two groups effectively. In the following section, different graphs are drawn

to understand better how the designed system detects attack scenarios. The

cluster axis lies in the center, and the axes on the left and right side of this

axis are changed to form various combinations.

Figure 5.14: Visualization on Parallel Coordinates Plot

63

5.4.1 Energy Consumption Vs. Power Consumption

Figure 5.15 illustrates the performance of the RPL based WSN with the com-

bination of energy consumption and power consumption while applying the

attack detection model.

Figure 5.15: Energy Consumption Vs. Power Consumption

5.4.2 CPU time Vs. Idle time

The visualization of the CPU time and idle time performance in the sensor

network with the result of the attack detection model is depicted in Figure

5.16.

5.4.3 Delay and Vs. Packet loss

Figure 5.17 visualizes the relationship between the delay and packet loss per-

formance measures using the parallel coordinates model.

64

Figure 5.16: CPU time Vs. Idle time

Figure 5.17: Delay Vs. Packet Loss

65

5.5 Summary

This chapter presented the result analysis of the impact created by the UDP

attack on the sensor network. This chapter has shown the performance im-

provement by the mini-batch k-means clustering algorithm in the visualization-

based attack detection model compared to the k-means clustering with the help

of evaluation metrics such as homogeneity, completeness, and v-measure. Fur-

thermore, the visualization of the attack scenario using parallel coordinates is

illustrated.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

DDoS attacks have been, and more powerful versions of them are still being

used as potential methods to disrupt the networks’ security. Although several

visualization-based detection models have been developed for network security

of traditional wired networks, this idea has not been explored much in secur-

ing Wireless sensor Networks (WSNs), which predominate today’s network

systems across the globe. This is because these networks are dynamic, can

be built with minimal resources, and are cost-effective. While researchers are

trying to tap into the full potential of WSNs, the attackers have also taken ad-

vantage of these sensor networks’ dynamic nature. They have launched many

types of DDoS attacks. Thus, in this thesis work, a visualization-based DDoS

attack detection model for WSNs has been proposed.

In this approach, a dataset containing non-attack and UDP attack data

was generated to identify optimal features for attack detection like energy con-

sumption, power consumption, packet loss, delay, CPU time, and idle time.

Under normal conditions, the sensor nodes use the required amount of reserves

to complete a task. However, under attack situations, they tend to consume

higher than usual amounts of these resources. Not all conditions under which

a sensor node uses more energy than usual can be suspected as attack con-

ditions. Thus another feature called Received Packets (number of packets

received by a node per unit time) also helps distinguish between the attacker

and non-attacker nodes. Then, k-means and mini-batch k-means algorithms

are applied to the dataset to separate the data into two apparent groups with

the parameters mentioned earlier. The clustered data points are then visual-

ized onto a parallel coordinate graph to identify the unique patterns they form

66

67

and discern attack points from non-attack points. The malicious points lie on

one edge of the cluster axis, whereas the benign points lie on the other end.

This branching out of the data points shows that the proposed model quickly

identifies an attack situation, and anybody using it can tell so by merely look-

ing at the graph. The comparative performance analysis of both the clustering

algorithms determines that mini-batch k-means has an improvement of 10%

over the k-means algorithm. This reveals that the developed system is ac-

curate and straightforward in detecting UDP flood attacks in WSNs and has

made a notable contribution to the field of network security in WSNs.

6.2 Future Work

The research work focuses on detecting flood types of DDoS attacks, namely

UDP attacks. When a system in the sensor network is under a flood attack,

the main change is that the targeted system consumes more resources than

under regular conditions, creating a bottleneck in the entire sensor network.

The work’s main aim was to focus on the effects of flood attacks on the sensor

nodes’ resource consumption. In other types of DDoS attacks in WSNs like

a wormhole, blackhole, or sinkhole attack, the main aim of the attacker is to

either steal the information by attracting other nodes to send the information

to it by showing the shortest path or to drop the packets so that important in-

formation can be stopped from reaching the destination. These attacks do not

create noticeable congestion in the network by using the systems’ resources or

the network. So, in my opinion, this work would be best applicable to detect

other types of flood DDoS attacks rather than non-flood attacks.

68

The possible future directions of this research work could be:

Usage of a different clustering algorithm: In this work, the k-means

clustering algorithm was used as the benchmark over which the mini-batch k-

means algorithm was used to improve the system’s performance with better

clustering results. Any other algorithm could be used as an alternative for

better accuracy in clustering results.

Detection of different types of DDoS attacks: The proposed model

is designed to detect only UDP flood attacks in WSNs. It can be improved

further to detect different types of attacks and multiple intrusions instead of

a single attack.

Bibliography

[1] Anaconda (Python distribution). https://en.wikipedia.org/wiki/

Anaconda_(Python_distribution). [Online; accessed Jan-2021].

[2] Clustering — When You Should Use it and
Avoid It. https://www.explorium.ai/blog/

clustering-when-you-should-use-it-and-avoid-it/. [Online;
accessed Jan-2021].

[3] Cylindrical coordinates security visualization for multiple domain com-
mand and control botnet detection. Computers and Security, pages 141–
153.

[4] Data Clustering Algorithms - k-means clustering algorithm.
https://sites.google.com/site/dataclusteringalgorithms/

k-means-clustering-algorithm. [Online; accessed Jan-2021].

[5] Data visualization. https://en.wikipedia.org/wiki/Data_

visualization. [Online; accessed Jan-2021].

[6] Line charts — mekko graphics. https://www.mekkographics.com/

resources/charts-by-type/line/. [Online; accessed Jan-2021].

[7] Parallel coordinates. https://en.wikipedia.org/wiki/Parallel_

coordinates#CITEREFInselberg1997. [Online; accessed Jan-2021].

[8] RPL (IPv6 Routing Protocol for LLNs). https://en.wikipedia.org/

wiki/RPL_(IPv6_Routing_Protocol_for_LLNs). [Online; accessed Jan-
2021].

[9] sklearn.cluster.KMeans. https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html. [Online; accessed Jan-
2021].

[10] sklearn.cluster.MiniBatchKMeans. https://scikit-learn.org/

stable/modules/generated/sklearn.cluster.MiniBatchKMeans.

html. [Online; accessed Jan-2021].

[11] Spyder - Anaconda Documentation. https://docs.anaconda.com/

anaconda/user-guide/tasks/integration/spyder/. [Online; accessed
Jan-2021].

[12] Stream Graph — Data Viz Project. https://datavizproject.com/

data-type/stream-graph/. [Online; accessed Jan-2021].

69

70

[13] Treemap and sunburst components. https://docs.oracle.com/

middleware/1212/adf/ADFUI/dv_treemap.htm#ADFUI12939. [Online;
accessed Jan-2021].

[14] UDP Flood. https://www.imperva.com/learn/ddos/udp-flood/. [On-
line; accessed Jan-2021].

[15] UDP Flood Attack. https://www.cloudflare.com/en-ca/learning/

ddos/udp-flood-ddos-attack/. [Online; accessed Jan-2021].

[16] Wireless sensor networks. https://en.wikipedia.org/wiki/Wireless_
sensor_network. [Online; accessed Jan-2021].

[17] Akestoridis, Dimitrios-Georgios and Harishankar, Madhumitha
and Weber, Michael and Tague, Patrick. CRAWDAD dataset
cmu/zigbee-smarthome (v.2020-05-26). http://www.crawdad.org/

cmu/zigbee-smarthome/20200526/. [Online; accessed Jan-2021].

[18] Ahmad Abed Alhameed Alkhatib and Gurvinder Singh Baicher. Wireless
sensor network architecture. In International conference on computer
networks and communication systems (ICNCS 2012), volume 35, pages
11–15, 2012.

[19] Iman Almomani, Bassam Kasasbeh, and Mousa AL-Akhras. Wsn-ds:
A dataset for intrusion detection systems in wireless sensor networks.
Journal of Sensors, 2016:1–16, 01 2016.

[20] Javier Béjar Alonso. K-means vs mini batch k-means: a comparison.
2013.

[21] Sobhan babu B., Lakshmi Padmaja P., Ramanjaneyulu T., Lak-
shmi Narayana I., and Srikanth K. Role of COOJA Simulator in IoT.
International Journal of Emerging Trends Technology in Computer Sci-
ence (IJETTCS), Volume 6, Issue 2, March - April 2017:pp. 139–143.

[22] Bansal, Shubham. Cluster analysis. https://en.wikipedia.org/wiki/
Cluster_analysis#Applications. [Online; accessed Jan-2021].

[23] Bansal, Shubham. Supervised and Unsupervised learn-
ing - GeeksforGeeks. https://www.geeksforgeeks.org/

supervised-unsupervised-learning/. [Online; accessed Jan-2021].

[24] Paul Barrett, J. Hunter, J.T. Miller, J.-C Hsu, and P. Greenfield. mat-
plotlib – a portable python plotting package. 12 2005.

[25] Bharat Bhushan and Gadadhar Sahoo. Recent advances in attacks, tech-
nical challenges, vulnerabilities and their countermeasures in wireless sen-
sor networks. Wireless Personal Communications, 98, 01 2018.

71

[26] Ryan Blue, Cody Dunne, Adam Fuchs, Kyle King, and Aaron Schulman.
Visualizing real-time network resource usage. In In Proc. Visualization for
Computer Security: 5th Int. Workshop, Vizsec 2008, page 119. Springer,
2008.

[27] Miriam Carlos-Mancilla, Ernesto Lopez-Mellado, and Mario Siller. Wire-
less sensor networks formation: Approaches and techniques. Journal of
Sensors, 2016:1–18, 03 2016.

[28] Siming Chen, Fabian Merkle, Hanna Schäfer, Cong Guo, Hongwei Ai,
Xiaoru Yuan, and Thomas Ertl. Vast 2013 minichallenge 3: Annette
collaboration oriented visualization of network data. 01 2013.

[29] Hyunsang Choi, Heejo Lee, and Hyogon Kim. Fast detection and vi-
sualization of network attacks on parallel coordinates. Computers and
Security, 28(5):276–288, July 2009.

[30] Munish Dhar and Rajeshwar Singh. A review of security issues and de-
nial of service attacks in wireless sensor networks. International Journal
of Computer Science and Information Technology Research, 3(1):27–33,
2015.

[31] Ali Feizollah, Nor Anuar, Rosli Salleh, and Fairuz Amalina. Compara-
tive study of k-means and mini batch k- means clustering algorithms in
android malware detection using network traffic analysis. 08 2014.

[32] Sunil Ghildiyal, Amit Kumar Mishra, Ashish Gupta, and Neha Garg.
Analysis of denial of service (dos) attacks in wireless sensor networks.
IJRET: International Journal of Research in Engineering and Technology,
3:2319–1163, 2014.

[33] Nazrul Hoque, Dhruba K Bhattacharyya, and Jugal K Kalita. A novel
measure for low-rate and high-rate ddos attack detection using multivari-
ate data analysis. In 2016 8th International Conference on Communica-
tion Systems and Networks (COMSNETS), pages 1–2. IEEE, 2016.

[34] Hulme, George. DDoS explained: How distributed denial of service
attacks are evolving. https://www.csoonline.com/article/3222095/

ddos-explained-how-denial-of-service-attacks-are-evolving.

html. [Online; accessed Jan-2021].

[35] E. Karapistoli and A. A. Economides. Wireless sensor network secu-
rity visualization. In 2012 IV International Congress on Ultra Modern
Telecommunications and Control Systems, pages 850–856, 2012.

[36] Eirini Karapistoli, Panagiotis Sarigiannidis, and Anastasios Economides.
Srnet: A real-time, cross-based anomaly detection and visualization sys-
tem for wireless sensor networks. pages 49–56, 10 2013.

72

[37] Kanchan Kaushal and Varsha Sahni. Early detection of ddos attack in
wsn. International Journal of Computer Applications, 134:14–18, 01 2016.

[38] Keary, Tim. DoS vs DDoS attacks: The Differences and
How To Prevent Them. https://www.comparitech.com/net-admin/

dos-vs-ddos-attacks-differences-prevention/. [Online; accessed
Jan-2021].

[39] Kumar, Shivam. Wireless Sensor Network (WSN). https://www.

geeksforgeeks.org/wireless-sensor-network-wsn/. [Online; ac-
cessed Jan-2021].

[40] C. P. Lee, J. Trost, N. Gibbs, Raheem Beyah, and J. A. Copeland. Visual
firewall: real-time network security monitor. In IEEE Workshop on Vi-
sualization for Computer Security, 2005. (VizSEC 05)., pages 129–136,
2005.

[41] Aidong Lu, Weichao Wang, Abhishek Dnyate, and Xianlin Hu. Sybil at-
tack detection through global topology pattern visualization. Information
Visualization, 10:32–46, 01 2011.

[42] Liangfu Lu, Jiawan Zhang, Mao Huang, and Lei fu. A new concentric-
circle visualization of multi-dimensional data and its application in net-
work security. J. Vis. Lang. Comput., 21:194–208, 08 2010.

[43] Teodor-Grigore Lupu. Main types of attacks in wireless sensor networks.
In Proceedings of the 9th WSEAS International Conference on Signal,
Speech and Image Processing, and 9th WSEAS International Conference
on Multimedia, Internet amp; Video Technologies, SSIP ’09/MIV’09, page
180–185, Stevens Point, Wisconsin, USA, 2009. World Scientific and En-
gineering Academy and Society (WSEAS).

[44] Djamel Mansouri, Lynda Mokddad, Jalel Ben-Othman, and Malika
Ioualalen. Preventing denial of service attacks in wireless sensor networks.
In 2015 IEEE International Conference on Communications (ICC), pages
3014–3019. IEEE, 2015.

[45] Wes Mckinney. pandas: a foundational python library for data analysis
and statistics. Python High Performance Science Computer, 01 2011.

[46] Tayyab Mehmood. Cooja network simulator: Exploring the infinite pos-
sible ways to compute the performance metrics of iot based smart devices
to understand the working of iot based compression routing protocols,
2017.

[47] Robert Miller. Clustering: Why to use it. https://

towardsdatascience.com/clustering-why-to-use-it-16d8e2fbafe,
2017. [Online; accessed March-2021].

73

[48] V. Nigam, S. Jain, and K. Burse. Profile based scheme against ddos at-
tack in wsn. In 2014 Fourth International Conference on Communication
Systems and Network Technologies, pages 112–116, 2014.

[49] Y. Okada. Network data visualization using parallel coordinates version
of time-tunnel with 2dto2d visualization for intrusion detection. In 2013
27th International Conference on Advanced Information Networking and
Applications Workshops, pages 1088–1093, 2013.

[50] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt. Cross-level sensor network simulation with cooja. Local
Computer Networks, Annual IEEE Conference on, 0:641–648, 11 2006.

[51] Fauzi Othman and Khairunnisa Shazali. Wireless sensor network appli-
cations: A study in environment monitoring system. Journal of Procedia
Engineering, 41:1204 – 1210, 12 2012.

[52] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12(85):2825–2830, 2011.

[53] Waseem Raja, Majid Anwar, Anazida Bakhtiari, Abdul Zainal, Kashif
Abdullah, and Kashif Qureshi. Security issues and attacks in wireless
sensor network. 30:1224–1227, 06 2014.

[54] Giovani Rimon Abuaitah. Trusted Querying over Wireless Sensor Net-
works and Network Security Visualization. PhD thesis, Wright State Uni-
versity, 2009.

[55] Taghrid Samak, Adel El-Atawy, E. Al-Shear, and Mohamed Ismail. A
novel visualization approach for efficient network-wide traffic monitoring.
pages 1 – 7, 05 2007.

[56] Lei Shi, Qi Liao, Yuan He, Rui Li, Aaron Striegel, and Zhong Su. Save:
Sensor anomaly visualization engine. pages 201–210, 10 2011.

[57] Arjun Srinivasan, Matthew Brehmer, Bongshin Lee, and Steven Drucker.
What’s the difference?: Evaluating variations of multi-series bar charts
for visual comparison tasks. pages 1–12, 04 2018.

[58] I. Stančin and A. Jović. An overview and comparison of free python
libraries for data mining and big data analysis. In 2019 42nd International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 977–982, 2019.

74

[59] N. Tsitsiroudi, P. Sarigiannidis, E. Karapistoli, and A. A. Economides.
Eyesim: A mobile application for visual-assisted wormhole attack detec-
tion in iot-enabled wsns. In 2016 9th IFIP Wireless and Mobile Network-
ing Conference (WMNC), pages 103–109, 2016.

[60] Stéfan van der Walt, S. Colbert, and Gael Varoquaux. The numpy array:
A structure for efficient numerical computation. Computing in Science
Engineering, 13:22 – 30, 05 2011.

[61] Weichao Wang and Bharat Bhargava. Visualization of wormholes in sen-
sor networks. In Proceedings of the 3rd ACM Workshop on Wireless Se-
curity, WiSe ’04, page 51–60, New York, NY, USA, 2004. Association for
Computing Machinery.

[62] Weichao Wang and Aidong Lu. Visualization assisted detection of sybil
attacks in wireless networks. pages 51–60, 01 2006.

[63] Weitz, Daŕıo. Parallel Coordinates Plots - Why & How,
Storytelling with Parallels. https://towardsdatascience.com/

parallel-coordinates-plots-6fcfa066dcb3. [Online; accessed Jan-
2021].

[64] Chunyuan Wu, Shiying Sheng, and Xiaoju Dong. Research on visual-
ization systems for ddos attack detection. In 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 2986–2991.
IEEE, 2018.

[65] B. Xiao, Z. Wang, Q. Liu, and X. Liu. Smk-means: An improved mini
batch k-means algorithm based on mapreduce with big data. Computers,
Materials and Continua, 56:365–379, 01 2018.

[66] Y. Yang and Y. Liu. A dos attack situation visualization method based
on parallel coordinates. In 2012 IEEE 12th International Conference on
Computer and Information Technology, pages 340–344, 2012.

[67] Jiawan Zhang, Yang Peng, Liangfu Lu, and Chen Lei. Netviewer: A
visualization tool for network security events. Networks Security, Wireless
Communications and Trusted Computing, International Conference on,
1:434–437, 04 2009.

[68] Jiawan Zhang, Guoqiang Yang, Liangfu Lu, MaoLin Huang, and Ming
Che. A Novel Visualization Method for Detecting DDoS Network Attacks,
pages 185–194. 01 1970.

[69] Jinson Zhang and Mao Lin Huang. Visual analytics model for intrusion
detection in flood attack. In 2013 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, pages
277–284. IEEE, 2013.

