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Abstract

In real-world applications, the environment in which a machine learning system is

deployed tends to change due to many factors, such as sample selection bias, prior prob-

ability mismatch, and domain shift. This makes it difficult to reliably generalize deep

learning models from the training set to real-world scenarios. In addition, data scarcity

frequently arises from a large number of applications where annotating data is expensive

or requires specialized expertise. As machine learning applications progress into more

complex tasks that require models with magnitudes higher Vapnik–Chervonenkis dimen-

sions, more labeled training data are necessary to maintain the same upper bound for

the test error. To this end, there is an ever-increasing need for sample efficient learning

systems that can adapt to changing environments. This thesis aims to study the general-

ization of deep learningmodels in the presence of distributionmismatch and data scarcity.

We first study unsupervised domain adaptation, an emerging field of semi-supervised

learning that aims to address domain shift with labeled data in the source domain and

unlabeled data in the target domain. We propose implicit class-conditioned domain

alignment to address between-domain class distribution shift. A theoretical analysis

is provided to justify the proposed method by decomposing the empirical domain

divergence into class-aligned and class-misaligned divergence, and we show that class-

misaligned divergence is detrimental to domain adaptation. We show that our method

offers consistent improvements for different adversarial adaptation algorithms.

We also propose two meta-learning methods to bridge the gap between gradient and

metric-based methods. The first proposal is Conditional class-Aware Meta-Learning

where we introduce a metric space to modulate the image representation of a model,

resulting in better separated feature representations. Motivated by the discrepancy of

the number of training examples between few-shot and real-world medical datasets, the

second proposal is to extend few-shot learning to few-to-medium-shot learning. The pro-

posed Task Adaptive Metric Space uses gradient-based fine-tuning to adjust parameters

of the metric space to provide more flexibility to metric-based methods. The method

adjusts the metric space to better reflect examples of a new medical classification task.
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Chapter 1

Introduction

Machine learning is a sub-field of artificial intelligence that aims to teach computers to

perform specific tasks without programming the knowledge into the computer explicitly.

More formally, Mitchell et al. [1997] defined a well-posed machine learning problem

where “a computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T , as measured

by P , improves with experience E.” Machine learning typically comprises of two steps:

(i) learning : a model learns from the training data in amaximum likelihood [Aldrich et al.,

1997] or maximum a posteriori [Murphy, 2012] manner where the learned parameters

represent patterns uncovered from the training data, and (ii) inference: the learned

model is deployed on unseen data to infer statements of interest such as how to make

decisions for the new data.

In a traditional machine learning setup, there exists a task D, such as classifying

handwritten digits into different categories, identifying outliers from data or playing

the game Go. The examples of this task are typically divided into a training set Dtrain,

a validation set Dvalid and a test set Dtest. A model is trained on Dtrain to optimize for

parameters θ that minimize some loss L,

θ∗=argminθL(Dtrain;θ). (1.1)

The validation set Dvalid is used for hyperparameter selection and the generalization

error of the model is estimated on the test set Dtest.

Machine learning has evolved into an exciting field where the learning task D can

take many different forms that are tailored to different types of problems.

1. In supervised learning, the model is trained on labeled data Dtrain ={(xi,yi)}Ni=1

where each example xi is associatedwith a target label yi. Supervised learning is the

most widely used form of machine learning with applications to image classification

1
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and machine translation. Representative methods include Support Vector Ma-

chine (SVM) [Cortes and Vapnik, 1995], random forest [Ho, 1995], gradient boost-

ing [Breiman, 1997; Friedman, 2001], and neural networks [Goodfellow et al., 2016].

2. In unsupervised learning, themodel only has access to unlabeled dataD={(xi)}Ni=1

and the goal is to uncover patterns of the data to further the understanding. Clus-

tering and image reconstruction are typical examples of unsupervised learning.

Representative methods include K-means [MacQueen et al., 1967], t-distributed

stochastic neighbor embedding (t-SNE) [Maaten and Hinton, 2008], autoen-

coders [Kingma andWelling, 2013; Vincent et al., 2010] and generative adversarial

networks [Goodfellow et al., 2014].

3. In semi-supervised learning, the model has access to labeled data together with

some unlabeled data. Assumptions about the relationship between labeled and

unlabeled data, or assumptions on the underlying distribution of the data are

necessary to make use of the unlabeled data [Chapelle et al., 2009]. Represen-

tative methods include self-training [Fralick, 1967; Scudder, 1965], transductive

inference [Vapnik, 2006] and expectation-maximization [Dempster et al., 1977].

4. In reinforcement learning, the model learns the best sequence of actions to maxi-

mize the expected cumulative reward in the future [Kaelbling et al., 1996]. Different

from supervised learning where the model learns from labeled data directly, rein-

forcement learning explores the world through a sequence of actions and uses the

reward signal from the environment at the end of the action sequence to learn to

maximize the award. In March 2016, an reinforcement learning program AlphaGo

beat a 9-dan professional in the game GO using deep reinforcement learning with

monte-carlo tree search [Silver et al., 2016].

The objective of this thesis is on the generalization of deep learning models in the

presence of data scarcity and distribution mismatch. The scope of this thesis is to study

supervised learning and semi-supervised learning approaches of deep learning based

image classification tasks where a computer program is tasked to not only learn from

experience but also adapt to environments. This is motivated by the fact that a human

can learn and adapt to new concepts efficiently from a small number of examples by

making use of their past learning experience.
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1.1 Data Scarcity and Distribution Mismatch in Deep Learning

Learning from data is an inductive process where the learning system aims to derive

general principles from the observed data. However, inductive reasoning is susceptible

to data scarcity and distribution mismatch, which are crucial to the reliability of the

evidential inference.

1.1.1 Data Scarcity

Data scarcity frequently arises from a large number of real-world applications where

labeling data is expensive or requires specialized training and expertise, such as anno-

tating medical images. Besides, as the machine learning research community progresses

into more complex tasks that require models with higher Vapnik–Chervonenkis dimen-

sions (VC-dimension) [Blumer et al., 1989], more labeled training data are necessary to

maintain the same upper bound for the test error. As a result, there is an ever-increasing

need for sample efficient learning systems. This is especially the case for deep learning.

Although deep learning models have proven to be highly effective when trained on vast

amounts of data, they fail to generalize from very few examples.

Transfer learning has become one of the most popular approach when faced with

data scarcity [Pan and Yang, 2009; Silver et al., 2008; Zhuang et al., 2020]. Transfer

learning usually involves a set of tasks that can facilitate learning in a unidirectional

or bidirectional manner. The ubiquitous transfer learning approach in deep learning is

parameter transfer, where we train a model on one task from large amounts of data and

use the learned parameters to initialize another task with fewer data. Open-source deep

learning frameworks have accelerated the adoption of transfer learning by providing

pre-trained models on largescale datasets in the form of model checkpoints, thereby

removing the need to pre-train models on computationally expensive datasets. Ima-

geNet [Russakovsky et al., 2015] and BERT [Devlin et al., 2018] are prominent examples

of the success of transfer learning, where a pre-trained image classification model or

language model can be transferred to a wide range of downstream tasks, such as detec-

tion, segmentation, and natural language inference. In contrast to conventional transfer
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learning methods that aim to fine-tune a pre-trained model, meta-learning∗ systems are

trained by being exposed to a large number of tasks and evaluated in their ability to learn

new tasks effectively. In meta-training, learning happens at two levels: a meta-learner

that learns across many tasks and a base-learner that optimizes for each individual task.

In recent years, meta-learning [Bengio et al., 1992; Branco et al., 2018; Mitchell and

Thrun, 1993; Schmidhuber, 1987; Vilalta and Drissi, 2002] has evolved into a promis-

ing research direction to address data scarcity. Instead of learning individual tasks

independently, meta-learning integrates the learning of many tasks in a hierarchical

manner so as to acquire meta-knowledge across many tasks. This is akin to a Gaussian

process [Kac and Siegert, 1947] that learns a distribution of functional predictors but

only a finite set of functions. In contrast to a standard supervised learning setup where

the goal is to learn a single model from a task D, a meta-learner aims to learn from a

set of tasks {D1,D2,...,DS} to get better at learning new tasks. At the meta-level, each

task Di is treated as a training example.

Meta-learning has become an important approach for few-shot learning. Previous

work on deep learning based meta-learning can be summarized as: learning represen-

tations that encourage fast adaptation on new tasks [Finn et al., 2017a,b], learning

universal learning procedure approximators [Hochreiter et al., 2001; Mishra et al., 2017;

Santoro et al., 2016; Vinyals et al., 2016], learning to generate model parameters condi-

tioned on training examples [Gomez and Schmidhuber, 2005; Ha et al., 2016; Munkhdalai

and Yu, 2017], learning optimization algorithms [Andrychowicz et al., 2016; Bengio

et al., 1992; Li and Malik, 2017; Ravi and Larochelle, 2016], and learning a metric space

for distance-based inference [Oreshkin et al., 2018; Ren et al., 2018; Snell et al., 2017b].

In this thesis, two meta-learning approaches are proposed to bridge the gap between

gradient-based methods and metric-based methods. The first proposal is Conditional

class-Aware Meta-Learning (CAML) motivated by a core challenge in gradient-based

meta-learning, wherein the quality of gradient information is key to fast generalization:

it is known that gradient-based optimization fails to converge adequately when trained

∗Meta-learning [Bengio et al., 1992; Branco et al., 2018; Ling and Sheng, 2010; Mitchell and Thrun,
1993; Schmidhuber, 1987; Vilalta and Drissi, 2002] has been studied extensively in the machine learning
literature. Although “different researchers hold different views of what the term meta-learning exactly
means”, the common goal of meta-learning is to “exploit the knowledge of learning (meta-knowledge)
to improve the performance of learning algorithms” [Vilalta and Drissi, 2002]. In this thesis, the term
“meta-learning” is restricted to deep learning based approaches for learning across different tasks.
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from only a few examples [Ravi and Larochelle, 2016], hampering the effectiveness of

gradient-basedmeta-learning techniques. We hypothesize that under such circumstances,

introducing ametric space trained to encode regularities of the label structure can impose

global class dependencies on the model. This class structure can then provide a high-level

view of the input examples, in turn leading to learning more disentangled representations.

The second proposal is to extend few-shot learning to few-to-medium-shot learning

for more realistic evaluations of real-world datasets. This is motivated by the discrep-

ancy of the number of training examples between few-shot tasks and real-world medical

datasets. While in the literature meta-learning mostly deals with tasks with only a

few training examples, i.e., five or fewer, datasets in the medical domain tend to have

tens to a few hundred labeled examples. With this in mind, we propose to evaluate

representative meta-learning methods under different amounts of data per class, so

as to better understand their generalization properties. We choose key advances in

meta-learning—gradient-based [Finn et al., 2017a] and metric-based [Snell et al., 2017b]

methods—to establish the baseline performances. We empirically evaluate and analyze

the baseline meta-learning methods through the lens of bias-variance tradeoff. Our

analysis suggests gradient-based methods tend to overfit few-shot datasets while metric-

based methods tend to underfit medium-shot datasets. To get the best of both worlds

for the bias-variance equilibrium, we propose Task Adaptive Metric Space (TAMS)

that uses gradient-based fine-tuning to adjust parameters of the metric space so that

distances between examples in the medical dataset can better reflect their semantics.

1.1.2 Distribution Mismatch

In real-world applications, the environment in which a machine learning system is

deployed tends to change due to a large number of factors. As an example, magnetic

resonance () scanners are built with different strength of the magnet such as 1.5 Tesla

and 3 Tesla. The strength of the magnet has a direct impact on the appearance of

MR images: the higher the strength, the more signals can be captured from the body

which might also create artifacts in the image. If we trained an accurate machine

learning model from a large number of annotated MRI scans on a 3-Tesla machine, the

same model will not be directly applicable to images acquired with a 1.5-Tesla machine

due to the distribution mismatch of the images acquired from different machines. To
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disease image

scanner

predict

predict

(a): Example of domain shift.

disease image

scanner

predict

predict

(b): Domain shift.

Figure 1.1: Domain shift [Quionero-Candela et al., 2009]: The observation X is jointly
determined by the label Y and domain variable D. The predictive distribution p(y|x) of the
labels given the observations is unchanged, but the marginal distribution of the observed data
p(x) varies as we change the domain variable D.

this end, it is desirable to enable learning systems to adapt to changing environments.

The mismatch between training and test data can manifest in many different ways,

such as sample selection bias [Heckman, 1979; Torralba et al., 2011], class distribution

mismatch (class imbalance) [Chawla, 2009; Japkowicz and Stephen, 2002; Webb and

Ting, 2005], and covariate shift [Shimodaira, 2000].

Unsupervised Domain Adaptation (UDA) is an emerging field of semi-supervised

learning that aims to address a specific type of distribution mismatch named “domain

shift” which is intuitively defined as “changes in the measurement system”.

In the aforementioned example shown in Figure 1.1 (a), observationsX from different

MR scanners are jointly determined by the disease label Y together with the scanner

label D. We assume the causal mechanism from disease labels to scans are the same,

but the marginal distribution of the scans are different on different scanners due to

domain shift. The goal of domain adaptation is to uncover the predictive function to

predict disease from images that is independent of the measurement system. More

formally, as shown in Figure 1.1 (b), we use X to denote the observed variable. The

observation X is jointly determined by the class label Y and the domain variable D.

We assume both domains share the same labeling function fS =fT that is independent

of the domain variable D, where Y =f(X). In other words, the predictive distribution

of the labels given the observations is unchanged p(y|x) under domain shift, but the

marginal distribution of the observed data p(x) varies as we change values of the domain

variable D, i.e., a change of measurement system.
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More concretely, in unsupervised domain adaptation, the model is trained on labeled

samples {(xi,fS(xi))}ni=1 from the source domain where xi∼DS, together with unlabeled

samples {xj}mj=1 from the target distribution where xj ∼ DT . The goal is to obtain

a model h ∈ H which learns domain-invariant representations while simultaneously

minimizing the classification error on DS.

Considerable progress has been made in domain adaptation since 2006. Early ap-

proaches include Kernel Maximum Mean Discrepancy (MMD) [Borgwardt et al., 2006]

which uses a kernel-based approach to measure the distribution mismatch based on the

mean discrepancy of two distributions. MMD has been extended to deep learning by

means of a loss function that aims to minimize the distribution mismatch between the

source and target domains at the feature level [Tzeng et al., 2014]. The main limitation

for MMD-based approaches is that they only match a single mode, i.e., the mean, of

source and target distributions and is ineffective in dealing with data with multimodal

distributions. Another early approach to domain adaptation is sample re-weighting

such that reweighted source and target data are close in reproducing kernel Hilbert

space [Huang et al., 2007; Jiang and Zhai, 2007]. The main challenge is that it is difficult

to estimate the density ratio of distributions in high dimensional input space, such as

images, to provide a proper re-weighting scheme.

Generative adversarial networks (GAN) [Goodfellow et al., 2014] revolutionized

unsupervised domain adaptation. The minimax method has emerged as the prevalent

approach with the goal to learn domain-invariant representations such that the domain

discriminator can not distinguish whether the marginal feature distribution is from the

source or the target domain [Ganin et al., 2016]. While substantial progress has been

made in adversarial approaches for domain adaptation, they tend to focus on marginal

distribution alignment in the feature space, and less emphasis is made on discovering the

label distributions of the source and target domains. However, in real-world applications,

it is very common to have class imbalance within each domain. It is also common to

have class distribution shift between different domains where the marginal distribution

of classes varies between domains. This necessitates the incorporation of label space

distribution into domain adaptation models.

In this thesis, we propose Implicit Class-Conditioned Domain Alignment that re-

moves the assumptions of identical distributions in the label space. The proposed
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approach uses model’s predictions on the target domain as pseudo-labels implicitly to

sample class-conditioned data in a way that maximally aligns the joint distribution

between features and labels. The primary advantage of the sampling-based implicit

domain alignment is the ability to address between-domain class distribution shift.

1.2 Contributions

The outcome of this research is a set of deep learning methods for dealing with data

scarcity and distribution mismatch. The contributions of this thesis are †:

1. We propose implicit class-conditioned domain alignment to address between-

domain class distribution shift, which also overcomes the limitations of explicit

domain alignment. We show that our method offers consistent improvements for

different adversarial adaptation algorithms: both DANN and MDD.

2. We provide a theoretical analysis by decomposing the empirical domain divergence

into class-aligned and class-misaligned divergence. We show that class-misaligned

divergence is detrimental to domain adaptation. We identify a domain discrim-

inator shortcut function that interferes with adversarial domain adaptation. The

shortcut could bypass the optimization for domain-invariant representations,

but rather optimize for a shortcut function that is independent of the covariate

contributing to the domain difference.

3. We design extensive experiments to further demonstrate the effectiveness of the

proposed method under different challenges. The class distributions of SVHN and

MNIST are synthetically manipulated to simulate various interactions between

within-domain class imbalance and between-domain class distribution shift. We

report state-of-the-art UDA performance under extreme within-domain class

imbalance and between-domain class distribution shift, as well as competitive

results on standard UDA tasks compared with state-of-the-art adversarial domain

adaptation approaches.

4. We propose a meta-learning framework that makes use of structured class infor-

mation in the form of a metric space to modulate representations in few-shot
†Parts of this thesis is published earlier in our research articles [Jiang et al., 2017, 2018, 2019, 2020].
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learning tasks. Model-Agnostic Meta-Learning (MAML) gives us a way to do

model-agnostic initialization of weights and prototypical networks gives a good way

to take into account similarity among classes. We show experimentally that our

proposed algorithm learns how to disentangle, or separate, representation between

different classes and achieves competitive results on theminiImageNet benchmark.

5. We propose medium-shot learning that aligns meta-learning with realistic situa-

tions of medical image classification. We establish baseline evaluation procedures

for meta-learners in various situations to better understand their generalization

properties.

6. Through bias-variance analysis, we propose a new meta-learning method—Task

Adaptive Metric Space—that takes advantage of both gradient-based and metric-

based methods. We show that TAMS outperforms the meta-learning baselines.

Below is a list of thesis-related papers published during my graduate work:

1. Xiang Jiang, Qicheng Lao, Stan Matwin, and Mohammad Havaei. “Implicit

Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation.” In

International Conference on Machine Learning (ICML), 2020.

2. Qicheng Lao, Xiang Jiang, Mohammad Havaei, and Yoshua Bengio. “Continuous

Domain Adaptation with Variational Domain-Agnostic Feature Replay.” IEEE

Transactions on Neural Networks and Learning Systems (TNNLS), 2021.

3. Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Cha-

pados, and Stan Matwin. “Learning to learn with conditional class dependencies.”

In International Conference on Learning Representations (ICLR), 2018.

4. Xiang Jiang, Mohammad Havaei, Gabriel Chartrand, Hassan Chouaib, Thomas

Vincent, Andrew Jesson, Nicolas Chapados, and Stan Matwin. “Attentive Task-

Agnostic Meta-Learning for Few-Shot Text Classification.” NeurIPS Workshop

on Meta-Learning, 2018.

5. Xiang Jiang, Liqiang Ding, Mohammad Havaei, Andrew Jesson, and Stan Matwin.

“Task Adaptive Metric Space for Medium-Shot Medical Image Classification.” In
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International Conference on Medical Image Computing and Computer Assisted

Intervention (MICCAI), pp. 147-155. Springer, 2019.

Below is a list of papers published during my graduate work that are not directly

related to this thesis:

1. Xiang Jiang, Erico N. de Souza, Ahmad Pesaranghader, Baifan Hu, Daniel L.

Silver, and Stan Matwin. “Trajectorynet: An embedded gps trajectory rep-

resentation for point-based classification using recurrent neural networks.” In

Annual International Conference on Computer Science and Software Engineering

(CASCON), pp. 192-200. IBM Corp., 2017 (Best Paper Award).

2. Xiang Jiang, Xuan Liu, Erico N. de Souza, Baifan Hu, Daniel L. Silver, and Stan

Matwin. “Improving point-based AIS trajectory classification with partition-wise

gated recurrent units.” In International Joint Conference on Neural Networks

(IJCNN), pp. 4044-4051. IEEE, 2017.

3. Xiang Jiang, Erico N de Souza, Xuan Liu, Behrouz Haji Soleimani, Xiaoguang

Wang, Daniel L Silver, StanMatwin, “Partition-wiseRecurrentNeuralNetworks for

Point-based AIS Trajectory Classification”, in European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning (ESANN),

2017.

4. Xiang Jiang, Daniel L Silver, Baifan Hu, Erico N de Souza, Stan Matwin, “Fishing

activity detection from AIS data using autoencoders”, in Canadian Conference

on Artificial Intelligence, 2016.

5. Baifan Hu, Xiang Jiang, Erico N de Souza, Ronald Pelot, Stan Matwin, “Identify-

ing fishing activities from AIS data with conditional random fields”, in Federated

Conference on Computer Science and Information Systems (FedCSIS), 2016.

6. Mei Jie, Xiang Jiang, Aminul Islam, Abidalrahman Moh’d, and Evangelos Milios.

“Integrating Global Attention for Pairwise Text Comparison.” In Proceedings of

the ACM Symposium on Document Engineering, 2018.



11

1.3 Thesis Organization

The overall structure and organization of the thesis is as follows.

Chapter 2 provides the background and related work for domain adaptation and

meta-learning.

Chapter 3 introduces an approach for unsupervised domain adaptation—with a

strong focus on practical considerations of between-domain class distribution shift—

from a class-conditioned domain alignment perspective. We show theoretically that

the proposed implicit alignment provides a more reliable measure of empirical do-

main divergence which facilitates adversarial domain-invariant representation learn-

ing, that would otherwise be hampered by the class-misaligned domain divergence.

We show that our proposed approach leads to superior UDA performance under ex-

treme within-domain class imbalance and between-domain class distribution shift, as

well as competitive results on standard UDA tasks. We further demonstrate that

implicit alignment overcomes the critical limitations of pseudo-label bias by remov-

ing the need for explicit optimization of model parameters from pseudo-labels. We

emphasize that the proposed method is robust to pseudo-label bias, simple to im-

plement, has a unified training objective, and does not require additional parameter

tuning.

Chapter 4 proposes Conditional class-Aware Meta-Learning (CAML) that incor-

porates class information by means of an embedding space to conditionally modulate

representations of the base-learner. By conditionally transforming the intermediate

representations of the base-learner, our goal is to reshape the representation with

a global sense of class structure. Experiments reveal that the proposed conditional

transformation can modulate the convolutional feature maps towards a more disen-

tangled representation. We also introduce class-aware grouping to address a lack of

statistical strength in few-shot learning. The proposed approach obtains comparable

results with the current state-of-the-art performance on 5-way 1-shot miniImageNet

benchmark.
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Chapter 5 introduces the medical imaging community to the rich field of meta-learning,

which offers feasible solutions to the problem of limited training examples that the field

is often faced with. To better evaluate realistic situations in the medical domain, we

extend few-shot learning to medium-shot and establish a baseline procedure that aims

to evaluate representative meta-learning algorithms on various amounts of training

data. This serves as a baseline for future explorations using meta-learning in the

medical domain. Through bias-variance analysis, we identify complementary roles of

gradient-based and metric-based meta-learning and propose to fuse the best of both

methods into Task Adaptive Metric Space. Our experiments reveal that the proposed

metric adaptation method can adjust the metric space to better reflect examples of a

new medical classification task.

Chapter 6 provides a summary of our findings and presents future research directions.



Chapter 2

Background and Related Work

2.1 Domain Adaptation

We follow the notations by Ben-David et al. [2010] and define a domain as an ordered pair

consisting of a distribution D on the input space X , and a labeling function f :X →Y
that maps X to the label space Y. The source and target domains are denoted by

〈DS,fS〉 and 〈DT ,fT 〉, respectively.

In unsupervised domain adaptation, the model is trained on labeled data from the

source domain, together with unlabeled data from the target domain. The goal is to ob-

tain a model h∈H which learns domain-invariant representations while simultaneously

minimizing the classification error on DS.

2.1.1 A Brief Theory of Domain Adaptation

The bound on target domain error can be decomposed into source error εS and the

divergence between the two distributions DS and DT.

f-divergence

A natural measure of domain divergence is the f -divergence, which measures the

difference between two probability distributions P and Q.

Df [P ‖Q]=

∫
Ω

f

(
dP

dQ

)
dQ (2.1)

The f -divergence can be understood as an average, weighted by some function f , of the

odds ratios given by P and Q.

The variation divergence, or total variation distance, is defined by the weight function

13
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f(u)= |u−1|, in which case

Df [P ‖Q]=

∫
Ω

f

(
dP

dQ
−1

)
dQ=

∫
Ω

(
dP−dQ

dQ

)
dQ (2.2)

=

∫
Ω

(dP−dQ) (2.3)

However, this cannot be measured accurately in the finite sample setting and it inflates

the bound as it considers the σ-algebra [Ash et al., 2000], i.e., all subsets Ω of the

input space, but we only care about a very small subset of all possible inputs spaces

that is meaningful to our application. Furthermore, in the distribution-free setting,

f -divergence can not give accurate estimates from finite samples. Instead, we use

classifier-induced divergence from a hypothesis space H.

H-divergence

The H-divergence [Ben-David et al., 2010] is defined as

dH(D,D′)=2sup
h∈H
|PD[I(h)]−PD′ [I(h)]| (2.4)

where I(h) is the characteristic (indicator) function of the set, i.e., x∈I(h) when h(x)=1.

The H-divergence measures the maximum variation of two distributions over a subset

on some function h∈H. It is related to a domain discriminator that aims to provide an

estimation of H-divergence when all examples in D are predicted as 1, and all examples

in D′ are predicted as 0.

H∆H divergence

To obtain errors bound of the target domain from the source domain, we need relative

measures of divergence, i.e., h vs. h′. This will be used in Theorem 3.2.2 as a proxy to

calculate the exact bound based on the optimal hypothesis h∗ for each domain.

The symmetric difference hypothesis space H∆H [Ben-David et al., 2010] is the set

of disagreements between the two hypothesis h and h′

g∈H∆H⇔g(x)=h(x)⊕h′(x) (2.5)

The symmetric difference hypothesis space H∆H has the following property:

εS(h,h′)−εT (h,h′)≤ 1

2
dH∆H(DS,DT ), (2.6)
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where εS(h,h′) denotes the disagreements between h(x) and h′(x) on data DS, and
εT (h,h′) denotes the disagreements between h(x) and h′(x) on data DT .

This is because

dH∆H(DS,DT ) (2.7)

=2 sup
h,h′∈H

|Px∼DS
[h(x) 6=h′(x)]−Px∼DT

[h(x) 6=h′(x)]| (2.8)

=2 sup
h,h′∈H

|εS(h,h′)−εT (h,h′)| (2.9)

≥|εS(h,h′)−εT (h,h′)| (2.10)

Theorem 2.1.1 (Bound of the target error [Ben-David et al., 2010]). Let H be a hy-

pothesis space of VC dimension d. US, UT are unlabeled samples of size m′ each, drawn

from DS, DT , respectively. For any δ ∈ (0,1), with probability at least 1−δ (over the
choice of samples), for every h∈H:

εT (h) (2.11)

≤εS(h)+
1

2
d̂H∆H(US,UT )+4

√
2dlog(2m′)+log(2

δ
)

m′
+λ (2.12)

where λ is the ideal joint expected loss, such that λ = εS(h∗) + εS(h∗) from the

hypothesis space H. λ is often assumed to be negligible when the hypothesis space H
is large enough. If λ is large, however, it means the hypothesis space does not contain a

good hypothesis h∈H with small errors on both domains in which domain adaptations

are not helpful.

2.1.2 Adversarial Learning for Domain Adaptation

Adversarial training is the prevailing approach for domain adaptation [Ganin et al.,

2016]. It formulates a minimax problem where the maximizer maximizes the estimation

of the domain divergence between the empirical samples, and the minimizer minimizes

the sum of the source error and the domain divergence estimation obtained from the

maximizer. The estimation of domain divergence can take many different forms, such

as using a domain discriminator that predicts binary outcomes about whether the data

is coming from the source or target distribution [Ganin et al., 2016], and estimating the

discrepancies of two classifiers [Saito et al., 2018; Zhang et al., 2019b].
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While matching the marginal distribution is a good step towards domain-invariant

learning, it is still susceptible to the problem of conditional distribution mismatching.

Prototype-based class-conditioned domain alignment [Chen et al., 2019a; Liang et al.,

2019a,b; Luo et al., 2017; Pan et al., 2019; Xie et al., 2018] is designed to address

this problem. We refer to this group of methods as explicit class-conditioned domain

alignment. The explicit alignment is achieved by incorporating an auxiliary loss that

minimizes the Euclidean distance of the class-conditioned prototypical representations

cj between the source and target domains. The class-conditioned prototype cj is the

average representation for all examples in a domain with class label j.

The main limitation of explicit class-conditioned domain alignment is in its reliance

on explicit optimization of model parameters based on model’s predictions on the target

domain as pseudo-labels. This learning procedure is vulnerable to error accumula-

tion [Chen et al., 2019a] as mistakes in the pseudo-label predictions can gradually

accumulate leading to poor local minima in EM-style training. Furthermore, the pseudo-

labels are likely to suffer from ill-calibrated probabilities [Guo et al., 2017], especially

for deep learning methods, which exacerbate the critical problem of error accumulation

with misleadingly confident mistakes.

2.1.3 Related Work for Domain Adaptation

We review relatedwork on unsupervised domain adaptation and discuss their relationship

to our proposed method.

Instance-based importance-weighting [Chawla et al., 2002; Kouw and Loog, 2019]

aims to minimize the target error directly from the source domain data, weighted

at the example level or class level. Example-level weighting is designed to address

covariate shift that uses important-weighting to train the classifier from the source

domain data. It first estimates of the probability of a source example belonging to the

target domain, then uses that probability as important-weighting to train the classifier

from the source domain data. Conversely, class-level weighting applies the weighting

on class labels and is designed to address cost-sensitive learning [Elkan, 2001] and class

imbalance. Oversampling methods [Chawla et al., 2002] have an equivalent effect with

importance-weighting. Unlike our approach, importance-weighting only uses the source

data to train the classifier without learning domain invariant representations.
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Feature-based distribution adaptation is the prevailing approach to domain adapta-

tion that aims to minimize the distribution discrepancy between the source and target

domains. The domain difference can be measured in various ways, such as Maximum

Mean Discrepancy (MMD) [Borgwardt et al., 2006], which is further minimized to

achieve domain invariance. The minimization of such discrepancy can be carried out

by directly minimizing the distance [Tzeng et al., 2014] or with the help of adversarial

learning [Ganin et al., 2016].

Classifier-based distribution adaptation is a strong competitor to feature-based adap-

tation. It aims to minimize the discrepancy between two classifiers so that the learned

representations respect the decision boundary of the classification task [Saito et al.,

2018; Zhang et al., 2019b]. We use classifier-based discrepancy MDD for adversarial

training because the probabilities predicted by two classifiers are more informative than

domain discriminator-based binary outcomes.

Feature-classifier joint distribution adaptation aims to align the joint distribution

between features and their corresponding predictions [Long et al., 2013; Tsai et al., 2018].

The joint distribution can be represented in a multilinear map between features and

classifier predictions [Long et al., 2018], or the Cartesian product between the domain

space and class space [Cicek and Soatto, 2019]. In our work, we implicitly align the

joint distribution with the factorization p(x,y)=p(x|y)p(y) from a sampling perspective

where p(y) is the pre-specified alignment distribution in the label space, and p(x|y)

represents class-conditioned sampling.

Explicit class-conditioned domain alignment, or class prototype alignment, intro-

duces a loss function that minimizes the distances of class-level prototypes between the

source and target domains [Deng et al., 2019; Pan et al., 2019; Pinheiro, 2018; Snell et al.,

2017a]. It is prone to error accumulation due to its reliance on explicit optimization

of model parameters from the pseudo-labels. A variety of recent methods have been

proposed to mitigate these limitations by estimating batch-level statistics [Xie et al.,

2018] and introducing an easy-to-hard curriculum that favors confident predictions [Chen

et al., 2019a]. Nevertheless, these algorithms suffer from ill-calibrated probabilities in

the form of confident mistakes, and more work is needed to improve model calibration

so as to better utilize explicit alignment.

Self-training [Nigam and Ghani, 2000] is a special form of co-training [Blum and
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Mitchell, 1998] where the model iteratively uses its predictions on the unlabeled exam-

ples, i.e., pseudo-labels, as explicit supervision to re-train itself. The use of pseudo-labels

has become an emerging trend in domain adaptation, because they provide estimations

of the target domain label distribution that can be exploited by training algorithms.

Apart from class prototype based methods [Chen et al., 2011; Deng et al., 2019; Saito

et al., 2017; Zhang et al., 2018] for explicit alignment, [Wen et al., 2019] proposed the

use of uncertainty estimates of the target domain predictions as second-order statistics

to promote feature-label joint adaptation. For semantic segmentation tasks, [Zou et al.,

2018] proposed to iteratively generate pseudo-labels in the target domain and re-train the

model on these labels; [Zhang et al., 2019a] proposed to use pseudo-labels to encourage

examples to cluster together if they belong to the same class; [Chen et al., 2019b]

applied entropy minimization [Grandvalet and Bengio, 2005] on the pseudo-labels to

encourage class overlap between domains. A main bottleneck for this approach is the

bias in pseudo-label predictions. Directly optimizing these labels is prone to “entropy

over-minimization” [Zou et al., 2019] and negative transfer [Lifshitz and Wolf, 2020]

where the model overfits to mistakes in the pseudo-labels. Moreover, the pseudo-labels

are likely to suffer from ill-calibrated probabilities [Guo et al., 2017], especially for deep

learning methods, where examples needs to be chosen such that they adhere to their

predictive uncertainties. The resulting misleadingly confident mistakes exacerbate the

critical problem of error accumulation in pseudo-label bias. In contrast, our proposed

method removes the need for direct supervision from pseudo-labels, and as a result is

more robust to bias in how these labels are produced.

Reinforced sample selection [Dong and Xing, 2018] is proposed in the one-shot

domain adaptation setup where the model actively selects labeled examples in the source

domain conditioned on the target domain examples for more accurate distance-based

metric learning.

2.2 Meta-learning

Meta-learning [Bengio et al., 1992; Branco et al., 2018; Ling and Sheng, 2010; Mitchell

and Thrun, 1993; Schmidhuber, 1987; Vilalta and Drissi, 2002] has been studied ex-

tensively in the machine learning literature. Although “different researchers hold

different views of what the term meta-learning exactly means”, the common goal of
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meta-learning is to “exploit the knowledge of learning (meta-knowledge) to improve the

performance of learning algorithms” [Vilalta and Drissi, 2002]∗. The meta-knowledge

can be manifested in many different ways, such as predictions of base-learners in stacked

generalization [Freund et al., 1996; Wolpert, 1992].

In deep learning, meta-learning has been studied as a means to acquire meta-

knowledge across many tasks. In contrast to standard supervised learning setup where

the goal is to learn a single model from a taskD, a meta-learner aims to learn from a set of

tasks {D1,D2,...,DS} to get better at learning new tasks. At the meta-level, each task Di
is treated as a training example. It is known as meta-learning so as to improve a model’s

learning ability when the meta-learner is exposed to more and more tasks over time.

In recent years, meta-learning has become an important approach for few-shot

learning. Previous work on deep learning based meta-learning approaches can be

summarized as: learning representations that encourage fast adaptation on new tasks

[Finn et al., 2017a,b], learning universal learning procedure approximators by supplying

training examples to the meta-learner that outputs predictions on the testing examples

[Hochreiter et al., 2001; Mishra et al., 2017; Santoro et al., 2016; Vinyals et al., 2016],

learning to generate model parameters conditioned on training examples [Gomez and

Schmidhuber, 2005; Ha et al., 2016; Munkhdalai and Yu, 2017], learning optimization

algorithms [Andrychowicz et al., 2016; Bengio et al., 1992; Li and Malik, 2017; Ravi and

Larochelle, 2016], and learning a metric space for distance-based inference [Oreshkin

et al., 2018; Ren et al., 2018; Snell et al., 2017b].

This section describes the meta-learning problem formulation [Ravi and Larochelle,

2016] and revisits the gradient-based and metric-based meta-learning methods.

2.2.1 Meta-learning Problem Formulation

In a traditional classification setup, there exists a classification task D which contains

M number of classes. The examples of this task are typically divided into a training

set Dtrain, a validation set Dvalid and a test set Dtest. AnM -way classifier is trained on

∗In this thesis, the term “meta-learning” is restricted to deep learning based approaches for learning
across different tasks.
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Dtrain to optimize for parameters θ that minimize some loss L,

θ∗=argminθL(Dtrain;θ). (2.13)

The validation set Dvalid is used for hyperparameter selection and the generalization

error of the model is estimated on test set Dtest.

In a meta-learning setup, however, the goal is to learn from a distribution of tasks.

The learning happens on two levels: (i) a meta-level model, or meta-learner, that learns

across many tasks, and (ii) a base-level model, or base-learner, that operates within each

specific task. Meta-learning happens in task space, where each task can be treated as one

meta-example. In themeta-learning formulation, we define a collection of regular tasks as

meta-setsD , and each taskD∈D has its ownDtrain andDtest split. Dtrain is often denoted

as the “support set” and Dtest the “query set”. The resulting meta-learner objective is

to choose parameters θ that minimize the expected loss L(·;θ) across all tasks in D ,

θ∗=argminθED∼D [L(D;θ)].

At the meta-level, the meta-sets D can be further split into disjoint meta-training set

Dmeta−train, meta-validation set Dmeta−valid and meta-test set Dmeta−test. The meta-

learner is trained on Dmeta−train, validated on Dmeta−valid and finally evaluated on

Dmeta−test. In each meta-training iteration, we sample a batch of tasks from Dmeta−train

and use gradient-based methods to optimize the meta-learner. This is akin to stochastic

gradient descent at the meta-level task space.

Relation with transfer learning and multitask learning

Transfer learning can be broadly understood as improving the performance of a learner

by transferring the knowledge from related tasks or learning systems. Inductive transfer

tends to be used interchangeably with transfer learning, where the notion of representa-

tion transfer in deep learning typically refers to training a model on a larger dataset, such

as ImageNet, and transfer it to a much smaller dataset. Meta-learning and multitask

learning [Caruana, 1997; Silver et al., 2008] are different approaches to achieve inductive

transfer by learning different tasks simultaneously. Multitask learning shares inductive

biases across tasks by learning all tasks in parallel while using a shared representation.

On the other hand, meta-learning shares inductive bias in a meta-learner that imposes
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dynamic bias to each task. As a consequence, multitask learning is preferable when

the task of interest is readily available together with many related tasks. In contrast,

meta-learning is preferable if the goal is to generalize to a future task with few examples

and the task is not currently available. However, it is possible to address a meta-learning

problem with multitask learning approaches, such as inferring task representation

and use it in context-sensitive multitask learning. Transductive transfer is a parallel

technique with inductive transfer pioneered by Gammerman et al. [1998]. The main

distinction with inductive transfer is that, instead of transferring a learned model to

another model on a new dataset, it might be easier to infer predictions on the new dataset

before obtaining a new model. Unsupervised domain adaptation can be considered a

type of transductive transfer.

2.2.2 Related Work for Deep Learning- Based Meta-learning

Gradient-Based Approaches

Model-Agnostic Meta-learning [Finn et al., 2017a] is a gradient-based meta-learning

algorithm that aims to learn representations that encourage fast adaptation across

different tasks. The meta-learner and base-learner share the same network structure,

and the parameters learned by the meta-learner are used to initialize the base-learner

on any given task.

To form an “episode” [Vinyals et al., 2016] to optimize the meta-learner, we first

sample a set of tasks {D1,D2, ... ,DS} from the meta-training set Dmeta−train, where

Di = {Dtrain
i ,Dtest

i }. For a meta-learner parameterized by θ, we compute its adapted

parameters θi for each sampled task Di:

θi←θ−βT∇θL(Dtrain
i ;θ), (2.14)

where βT is the step size of the gradient. The adapted parameters θi are task-specific

and tell us the effectiveness of θ as to whether it can achieve generalization through one

or a few additional gradient steps. The meta-learner’s objective is hence to minimize

the generalization error of θ across all tasks:

θ∗=argminθ
∑

Di∼Dmeta−train

L(Dtest
i ;θi). (2.15)
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Note that the meta-learner is not aimed at explicitly optimizing the task-specific pa-

rameters θi. Rather, the objective of the meta-learner is to optimize the representation

θ so that it can lead to good task-specific adaptations θi with a few gradient steps. In

other words, the goal of fast learning is integrated into the meta-learner’s objective.

The meta-learner is optimized by backpropagating the error through the task-specific

parameters θi to their common pre-update parameters θ. The gradient-based updating

rule is:

θ←θ−βM∇θ

∑
Di∼Dmeta−train

L(Dtest
i ;θi), (2.16)

where βM is the learning rate of the meta-learner. The meta-learner performs slow learn-

ing at themeta-level acrossmany tasks to support fast learning onnew tasks. Atmeta-test

time, we initialize the base-learner’s parameters from the meta-learned representation

θ∗ and fine-tune the base-learner using gradient descent on task Dtrain
i ∼Dmeta−test. The

meta learner is evaluated on Dtest
i ∼Dmeta−test.

MAML works with any differentiable neural network structure and has been applied

to various tasks including regression, image classification, reinforcement learning and

imitation learning. Extensions of MAML include learning the base-learner’s learning

rate [Li et al., 2017] and applying a bias transformation to concatenate a vector of

parameters to the hidden layer of the base-learner [Finn et al., 2017b]. It is also the-

orized that MAML has the same expressive power as other universal learning procedure

approximators and generalizes well to out-of-distribution tasks [Finn and Levine, 2017].

Metric-Based Approaches

Siamese networks [Koch et al., 2015] learn a similarity measure between inputs using

a shared network architecture that outputs high probability when paired examples

are from the same class. Matching networks [Vinyals et al., 2016] use full context

embeddings to encode examples to the metric space and use attention as a similarity

measure for predictions.

Prototypical networks [Snell et al., 2017b] compute a centroid, or prototype, for every

class that are later used for distance-based queries of new examples. Examples of the

input space are encoded through a learned function fφ in the form of anM -dimensional

metric space, where each input example is reduced to a point in the metric space. The
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centroid ct for each class t is defined as:

ct=
1

K

∑
(xi,yi)∈Dtrain

1{yi=t}fφ(xi),

whereK denotes the number of examples for class t, 1{yi=t} denotes an indicator function

of yi which takes value 1 when yi = t and 0 otherwise. The mapping function fφ is

optimized to minimize the negative log-probability defined in Eq. (2.17) by minimizing

the Euclidean distance d between an example and its corresponding class centroid ct

while maximizing its Euclidean distance to other class centroids ct′ :

argmin
φ

E

[
d(fφ(xi),ct))+log

∑
t′

exp(−d(fφ(xi),ct′))

]
. (2.17)

The goal of metric learning is to obtain the mapping function fφ so that examples can be

mapped from the input space to the metric space in a semanitcally meaningful way. The

learnedmetric space has broad applications including image classification [Mensink et al.,

2012], face recognition [Schroff et al., 2015], information retrieval and ranking [McFee

and Lanckriet, 2010].



Chapter 3

Implicit Class-Conditioned Domain Alignment

for Unsupervised Domain Adaptation

3.1 Introduction

Supervised learning aims to extract statistical patterns from data by learning to approx-

imate the conditional density p(y|x). However, the generalization of the approximation

is often sensitive to some dataset-specific factors. Dataset shift [Quionero-Candela et al.,

2009] frequently arises from real-world applications and can manifest in many different

ways, such as sample selection bias [Heckman, 1979; Torralba et al., 2011], class distribu-

tion shift [Webb and Ting, 2005], and covariate shift [Shimodaira, 2000]. Unsupervised

Domain Adaptation (UDA) aims to address domain shift with access to labeled data

in the source domain and unlabeled data in the target domain [Pan and Yang, 2009].

The fundamental algorithmic issue is to infer domain-invariant representations.

While considerable progress has been made in UDA [Ganin et al., 2016], they tend to

focus onmarginal distributionmatching in the feature space, and less emphasis ismade on

discovering label distributions. In real-world applications, it is very common to have class

imbalance [Chawla, 2009; Japkowicz and Stephen, 2002] within each domain and class

distribution shift [Tan et al., 2019] between different domains, necessitating the incorpora-

tion of label space distribution into adaptation. Explicit class-conditioned domain align-

ment [Deng et al., 2019; Liang et al., 2019a; Pan et al., 2019; Xie et al., 2018] has emerged

as a key approach to promoting class-conditioned invariance by aligning prototypical

representations of each class. While explicit alignment has the advantage of directly

minimizing class-conditioned misalignment, it presents critical vulnerabilities to error

accumulation [Chen et al., 2019a] and ill-calibrated probabilities [Guo et al., 2017] due to

its dependence on explicit supervision from pseudo-labels provided by model predictions.

We propose Implicit Class-Conditioned Domain Alignment that removes the need

for explicit pseudo-label based optimization. Instead, we use the pseudo-labels implicitly

24



25

to sample class-conditioned data in a way that maximally aligns the joint distribution

between features and labels. The primary advantage of the sampling-based implicit

domain alignment is the ability to address between-domain class distribution shift by

imposing an uniform class distribution between the source and target domains. The

proposed method is simple, effective, and is supported by theoretical analysis on the

empirical estimations of domain divergence measures. It also overcomes limitations

of explicit alignment by allowing the domain adaptation algorithm to discover class-

conditioned domain-invariance in an unsupervised way without explicit supervision

from pseudo-labels. Note that the proposed approach does not address class imbalance;

instead, it assumes the uniform cost for different misclassification errors.

The contributions of this chapter are as follows: (i) We propose implicit class-

conditioned domain alignment to address between-domain class distribution shift, which

also overcomes the limitations of explicit domain alignment; (ii) We provide a theoret-

ical analysis by decomposing the empirical domain divergence into class-aligned and

class-misaligned divergence, and show that class-misaligned divergence is detrimental

to domain adaptation; (iii) We report state-of-the-art UDA performance under extreme

between-domain class distribution shift, as well as competitive results on standard UDA

tasks; (iv) We show that method offers consistent improvements for different adversarial

adaptation algorithms: both DANN and .

3.2 Method

We begin with theoretical motivations of implicit alignment by decomposing the empir-

ical domain divergence measure into class-aligned and class-misaligned divergence, and

show that misaligned divergence is detrimental to domain adaptation. We then present

the proposed implicit domain alignment framework that addresses class-misalignment.

3.2.1 Theoretical Motivations

The H∆H divergence between two domains is defined as

dH∆H(DS,DT )=2 sup
h,h′∈H

|EDT
[h 6=h′]−EDS

[h 6=h′]|, (3.1)

where H denotes some hypothesis space, and h 6=h′ is the abbreviation for h(x) 6=h′(x).

[Ben-David et al., 2010] theorized that the target domain error εT (h) is bounded by the
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error of the source domain εS(h) and the empirical domain divergence d̂H∆H(US,UT )

where US, UT are unlabeled empirical samples drawn from DS, DT .
In deep learning, minibatch-based optimization limits the amount of data available

at each training step. This necessitates the analysis of the empirical estimations of dH∆H

at the minibatch level, so as to shed light on the learning dynamics. Implicit domain

alignment plays an important role in the empirical estimations of dH∆H(DS,DT ), where

only finite samples US, UT are available. Below we define the empiricalH∆H divergence

on mini-batches.

Definition 3.2.1. Let BS, BT be minibatches from US and UT , respectively, where
BS⊆US, BT ⊆UT , and |BS|= |BT |. The empirical estimation of dH∆H(BS,BT ) over the

minibatches BS, BT is defined as

d̂H∆H(BS,BT )= sup
h,h′∈H

∣∣∣∣∣∑
BT

[h 6=h′]−
∑
BS

[h 6=h′]

∣∣∣∣∣. (3.2)

Theorem 3.2.2 (The decomposition of d̂H∆H(BS,BT )). Let H be a hypothesis space

and Y be the label space of the classification task where BS, BT are minibatches drawn

from US, UT , respectively, and YS, YT are the label set of BS, BT . We define three disjoint

sets on the label space: the shared labels YC :=YS∩YT , and the domain-specific labels

YS := YS−YC, and YT := YT −YC. We also define the following disjoint sets on the

input space where BCS :={x∈BS |y∈YC}, BCS :={x∈BS |y /∈YC}, BCT :={x∈BT |y∈YC},
BCT :={x∈BT |y /∈YC}. The empirical d̂H∆H(BS,BT ) divergence can be decomposed into

class aligned divergence and class-misaligned divergence:

d̂H∆H(BS,BT )= sup
h,h′∈H

∣∣∣ξC(h,h′)+ξC(h,h′)
∣∣∣, (3.3)

where

ξC(h,h′)=
∑
BCT

1[h 6=h′]−
∑
BCS

1[h 6=h′], (3.4)

ξC(h,h′)=
∑
BCT

1[h 6=h′]−
∑
BCS

1[h 6=h′]. (3.5)

Proof. By definition, we have

d̂H∆H(BS,BT )= sup
h,h′∈H

∣∣∣∣∣∑
BT

1[h 6=h′]−
∑
BS

1[h 6=h′]

∣∣∣∣∣ (3.6)
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We rewrite the summation over all the samples B into the sum of disjoint subsets BC

and BC . ∑
BT

1[h 6=h′]−
∑
BS

1[h 6=h′] (3.7)

=

∑
BCT

1[h 6=h′]−
∑
BCS

1[h 6=h′]

 (3.8)

+

∑
BCT

1[h 6=h′]−
∑
BCS

1[h 6=h′]

 (3.9)

=ξC(h,h′)+ξC(h,h′). (3.10)

This completes the proof.

Remark 3.2.3 (The domain discriminator shortcut). Let the ordered triple (x,yc,yd)

denote data sample x, and its associating class label yc and domain label yd, respectively,

where x∈B, yc ∈ Y and yd ∈ {0,1}. Let fc be a classifier that maps x to a class label

yc. Let fd be a domain discriminator that maps x to a binary domain label yd. For the

empirical class-misaligned divergence ξC(h,h′) with sample x∈BCS ∪BCT , there exists a
domain discriminator shortcut function

fd(x)=

{
1 fc(x)∈YS
0 fc(x)∈YT ,

(3.11)

such that the domain label can be solely determined by the domain-specific class labels.

This shortcut interferes with adversarial domain adaptation because the model could

bypass the optimization for domain-invariant representations, but rather optimize for

a shortcut function that is independent of the covariate contributing to the domain

difference.

Figure 3.1 illustrates a toy example where the source and target domains are aligned

for class 4 but misaligned between classes 3 and 6 as a result of random sampling in the

minibatch construction. The domain discriminator aims to predict domain labels based

on their domain information, i.e., red and blue. However, due to the class shortcut for the

misaligned samples (3 and 6), the domain discriminator could infer domain labels based

on class information directly (digits 3 and 6), without the need to learn domain-specific
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Figure 3.1: Illustration of the domain discriminator shortcut. The domain discriminator
aims to distinguish between different domains (red and blue), where the decision boundary is
represented by dashed lines. But misaligned samples create a shortcut where the domain labels
can be directly determined by the misaligned class labels (3 and 6). The decision boundary
of the resulting shortcut is independent of the covariate that causes the domain difference,
which does not contribute to adversarial domain-invariant learning.

information. This problem of class-misalignment is especially pronounced under extreme

between-domain class distribution shift, where a simple random sample is more likely

to fail in providing good coverage of the label space.

3.2.2 Implicit Class-Conditioned Domain Alignment

Having identified the domain discriminator shortcut in class misaligned empirical sam-

ples, we now propose framework that aligns the two domains from a sampling perspective,

providing a unified adversarial training procedure without the use of additional losses

or hyper-parameters.

Figure 3.2 depicts the proposed implicit class-conditioned domain alignment frame-

work. We aim to align pS(x) and pT (x) at the input and label space jointly with the

factorization p(x,y) = p(x|y)p(y) while ensuring that the sampled classes are aligned

between the two domains. The alignment distribution p(y) is pre-specified, e.g., uniform

distribution, to ensure samples are aligned in the shared label space in spite of different

empirical label distributions of the two domains. This implicit alignment procedure

minimizes the class-misaligned divergence ξC(h,h′), providing a more reliable empirical

estimation of domain divergence. For the unlabeled target domain, we use the model

predictions to sample class-conditioned data from pT (x|ŷ) to approximate pT (x|y).



29

pseudo-labels

sampling

𝑝(𝑧|𝑥; 𝜙) 𝑝(𝑦*|𝑧*; 𝜃)

,𝑦*

𝑝-(𝑥) 𝑝- 𝑥 𝑦 𝑝(𝑦)

𝑝* 𝑥 ,𝑦 𝑝(𝑦)

data implicit
alignment

domain-invariant
representations classifier

(a) (b) (c) (d)

𝑝*(𝑥)

Figure 3.2: The proposed framework. (a) We aim to align the source domain pS(x), colored
by classes, with unlabeled target domain pT (x). (b) For pS(x), we sample x∼ pS(x|y)p(y)
based on the alignment distribution p(y). For pT (x), we sample a class aligned minibatch
x∼pT (x|ŷ)p(y) using identical p(y), with the help of pseudo-labels ŷT . (c) The adversarial
training aims to acquire domain-invariant representations z from the feature extractor
parameterized by φ. (d) The classifier predicts class labels from z.

3.2.3 Class-Aligned Sampling Strategy

Algorithm 1 presents the proposed sampling procedure that selects class-aligned ex-

amples for minibatch training. It is a type of stratified sampling where the dataset

is partitioned into mutually exclusive subgroups to reflect the label information in a

class-aligned manner.

First, we predict pseudo-labels of the target domain using the classifier fc(·;θ) pa-
rameterized by θ. The pseudo-labels will be later used in class-conditioned sampling.

Second, we sample a set Y from the label space Y where p(y) defines the probability

with which we pick the classes to align so as to ensure the empirical samples of the source

and target domains share the same Y . This in turn minimizes the class-misaligned

divergence ξC(h,h′). Third, for each class yi∈Y , we sample class-conditioned examples

for the source and target domains, respectively, and store them in (X ′S,Y
′
S) andX ′T . This

is equivalent to performing a table lookup to select a subset Bi where all examples belong

to class yi, followed by random sampling in Bi. We use pseudo-labels to sample the
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Algorithm 1 The proposed implicit alignment training
Input: dataset S={(xi,yi)}Ni=1, T ={xi}Mi=1,

label space Y , label alignment distribution p(y), classifier fc(·;θ)
while not converged do

# predict pseudo-labels for T

T̂←{(xi,fc(xi;θ))}Mi=1 where xi∈T
# sample N unique classes in the label space

Y ← draw N samples in Y from p(y)

# sample K examples conditioned on each yi∈Y
for yi in Y do

(X ′S,Y
′
S)←draw K samples in S from pS(x|yi)

X ′T←draw K samples in T̂ from pT (x|yi)
end for

# domain adaptation training on this minibatch

train minibatch (X ′S,Y ′S,X ′T )

end while

target domain due to the lack of ground-truth labels. Once we obtained the class-aligned

minibatch, we use it to train unsupervised domain adaptation algorithm and repeat

this process until the model converges.

This algorithm addresses class distribution shift between different domains by spec-

ifying the sampling strategy p(y) in the label space. We use uniform sampling p(y)

for all experiments in this chapter, and leave more advanced specifications and their

applications to cost-sensitive domain adaptation as future work.

For the worst-case analysis, given that models do not initially perform well when

training begins, for a random classifier, implicit alignment selects random samples that

is equivalent to the vanilla stochastic batch training strategy without any sampling.

Although errors could inevitably be present in pseudo-labels, the proposed approach suf-

fers from the pseudo-labels bias to a lesser degree than the explicit alignment approach—

the pseudo-labels are only used in sampling. Implicit alignment does not optimize the

model explicitly towards its predictions.
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3.2.4 Integrating Implicit

Alignment into Classifier-Based Domain Discrepancy Measure

Section 3.2.3 describes the implicit alignment algorithm from a sampling perspective,

where we sample minibatches in a way that maximizes class alignment implicitly. This

sampling strategy is independent of the choice of domain divergence measures. In

this section, we show how to integrate the sampling approach into Margin Disparity

Discrepancy (MDD) [Zhang et al., 2019b]—a state-of-the-art classifier-based domain

discrepancy measure—to further facilitate implicit alignment. MDD is defined as

df,F(S,T )= sup
f ′∈F

(
dispDT

(f ′,f)−dispDS
(f ′,f)

)
, (3.12)

where f and f ′ are two independent scoring functions that predict class probabilities,

and disp(f ′,f) is a disparity measure between the scores provided by the classifiers f ′

and f . The domain divergence is to estimate the discrepancy between the disparity

measures of the two domains.

Following notations in Theorem 3.2.2, we define the empirical MDD on class-

misaligned samples as

d̂f,F(BCS ,BCT )= sup
f ′∈F

(∑
BCT

disp(f ′,f)−
∑
BCS

disp(f ′,f)
)
. (3.13)

Because BCS and BCT are disjoint in the label space, there exists a shortcut solution

disp(f ′(x),f(x))=

{
0 fc(x)∈YS
1 fc(x)∈YT ,

(3.14)

which maximizes the divergence estimation of Eq. (3.13). Although class-aligned sam-

pling can mitigate this problem, it is difficult to fully eliminate the impact of misaligne-

ment due to imperfect pseudo-labels. To further eliminate the detrimental impact of class-

misalignment, we introduce amasking scheme on the scoring functions f and f ′ defined as

d̂f,F(BS,BT )

= sup
f ′∈F

(∑
BT

disp(f ′�ω,f�ω)−
∑
BS

disp(f ′�ω,f�ω)
)
,

(3.15)

where f�ω denotes element-wise multiplication between the output of f and ω. The

alignment mask ω is a binary vector that denotes whether the i-th class is present in
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the sampled classes Y (i.e., the classes that we intend to align in the current minibatch).

By doing so, we simultaneously align the source and target domains (i) in the input

space and (ii) in the functional approximations of the domain divergence by masking

the scoring functions f and f ′.

3.3 Experiments on Standard Domain Adaptation Datasets

3.3.1 Setup

Datasets. We evaluate on Office-31 and Office-Home. Office-31 [Saenko et al.,

2010] has three domains (Amazon, DSLR and Webcam) with 31 classes. Office-

Home [Venkateswara et al., 2017] contains four domains (Art, Clip Art, Prduct, and

Real-world) with 65 classes. We use three versions of Office-Home [Venkateswara et al.,

2017] that contains four domains (Art, Clip Art, Prduct, and Real-world) with 65

classes: (i) “standard”: the standard Office-Home dataset. (ii) “balanced” [Tan et al.,

2019]: a subset of the standard dataset where each class has the same number of ex-

amples. (iii) “RS-UT”: Reversely-unbalanced Source (RS) and Unbalanced-Target (UT)

distribution [Tan et al., 2019] where both domains are imbalanced, but the majority

class in the source domain is the minority class in the target domain. Further dataset

details are in the supplementary materials.

Model Details. We use ResNet-50 [He et al., 2016] pre-trained from ImageNet [Rus-

sakovsky et al., 2015] as the backbone, and use hyper-parameters from [Zhang et al.,

2019b] for MDD-based domain discrepancy measure. The batch size is 31 for Office-31

and 50 for Office-Home. We use PyTorch 1.2 as training environments. The backbone

is followed by a 1-1ayer bottleneck. The classifier f and auxiliary classifier f ′ are both 2-

layer networks. We use the SGD optimizer with learning rate 0.001, nesterov momentum

0.9, and weight decay 0.0005. We empirically find that SGD converges better than Adam

for adversarial optimization. We use a gradient reversal layer for minimax optimization,

and we use a training scheduler [Ganin et al., 2016] for gradient reversal layer defined as

λp=
0.2

1+exp(− i
1000

)
−0.1, (3.16)

where i denotes the step number. We used the same scheduler from [Zhang et al., 2019b]

for all experiments and have not tried hyperparameter search for λp. For Office-Home,
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the learning rate for the ResNet-50 backbone is 0.0001 and the learning rate for the

remaining parameters are 0.001. For Office-31, the learning rate for the ResNet-50

backbone is 0.001 and the learning rate for the remaining parameters are 0.01. The

batch size is 31 for Office-31 and 50 for Office-Home.

Baselines. Our main explicit alignment baselines are COAL [Tan et al., 2019],

PACET [Liang et al., 2019b] and MCS [Liang et al., 2019a], state-of-the-art explicit

alignment methods based on domain discriminator discrepancy. For the class distri-

bution shift experiments, our main baseline is COAL [Tan et al., 2019], an explicit

alignment method designed for class class distribution shift. For the experiments

with the standard datasets, our main baselines are PACET [Liang et al., 2019b] and

MCS [Liang et al., 2019a], state-of-the-art explicit alignment algorithms based on

domain discriminator-based discrepancy measures. As our domain discrepancy measure

is MDD, we re-implement various MDD-based explicit alignment for fair comparison.

Computational efficiency. Self-training requires the estimation of target domain

labels, which could be time-consuming depending on the size of the target domain. To

improve the computational efficiency of our algorithm, we only update pseudo-labels pe-

riodically, i.e., every 20 steps, instead of at every training step. We show in Section 3.5.4

that our method does not require more frequent pseudo-label updates as they exhibit

similar performance on the target domain. We leave the caching and updating strategies

of pseudo-labels as future work.

3.3.2 Results and Discussions

Extreme Class Distribution Shift

We use Office-Home (RS-UT), described in Figure 3.3 (a), to evaluate the performance

of different methods under extreme within-domain class imbalance and between-domain

class distribution shift where the majority classes in the source domain are minority

classes in the target domain. Table 3.1 presents the per-class average accuracy on Office-

Home (RS-UT). Our main baseline is the explicit alignment method “covariate and label

shift co-alignment” (COAL) designed to address class distribution shift. Our proposed im-

plicit domain alignment consistently outperforms previous state-of-the-art approaches.
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(a) (b)

Figure 3.3: (a) Source and target class distribution of Office-Home (RS-UT). (b) Accuracy
comparison between Office-Home (RS-UT) and Office-Home (balanced) for Rw→Pr.

Table 3.1: Per-class average accuracy on Office-Home dataset with RS-UT label shifts
(ResNet-50). Due to the computational complexity of the experiments, the reported results
are from a single random seed. The performance is not sensitive to different random seeds.

Methods Rw�Pr Rw�Cl Pr�Rw Pr�Cl Cl�Rw Cl�Pr Avg

Source Only† 69.77 38.35 67.31 35.84 53.31 52.27 52.81

BSP [Chen et al., 2019c]† 72.80 23.82 66.19 20.05 32.59 30.36 40.97
PADA [Cao et al., 2018]† 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE [Lipton et al., 2018]† 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD [Saito et al., 2018]† 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN [Long et al., 2015]† 69.35 40.84 66.93 34.66 53.55 52.09 52.90
F-DANN [Wu et al., 2019]† 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN [Long et al., 2017]† 67.20 43.60 68.87 39.21 57.98 48.57 54.24
DANN [Ganin et al., 2016]† 71.62 46.51 68.40 38.07 58.83 58.05 56.91
MDD (random sampler) 71.21 44.78 69.31 42.56 52.10 52.70 55.44
MDD (source-balanced sampler) 76.06 47.38 71.56 40.03 57.46 58.54 58.50
COAL [Tan et al., 2019]†,‡ 73.65 42.58 73.26 40.61 59.22 57.33 58.40
MDD+Explicit Alignment (basic)‡ 69.52 44.70 69.59 40.27 53.02 53.39 55.08
MDD+Explicit Alignment (moving avg.)‡ 71.37 45.26 69.69 40.28 52.92 52.69 55.37
MDD+Explicit Alignment (curriculum)‡ 70.02 45.48 69.71 40.86 53.26 52.99 55.39
MDD+Implicit Alignment 76.08 50.04 74.21 45.38 61.15 63.15 61.67
† Source: Data of these baseline methods are cited from [Tan et al., 2019].
‡ Methods using explicit class-conditioned domain alignment.

The impact of class distribution shift

Many baseline methods suffer from class distribution shift, and their performances

degrade to “Source Only” training because they do not take into account between-domain

class distribution shift. For MDD-based methods, after we apply balanced sampling

for the source domain, the per-class average accuracy improved from 55.44% to 58.50%,

which indicates balanced sampling is helpful for class distribution shift, despite only

in the source domain.
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The effectiveness of implicit alignment

The effectiveness of implicit alignment is demonstrated through the comparison between

“MDD+Implicit Alignment” with “MDD (source-balanced sampler)”. Both methods use

the same sampling procedure for the source domain. Their only difference is that implicit

alignment aligns the two domains by selectively sampling aligned classes in the target

domain, whereas “source-balanced sampler” only takes random samples from the target

domain. Table 3.1 shows that implicit alignment performs better than “source-balanced

sampler” because it is better-aligned. Besides, the proposed method also outperforms

MDD-based explicit alignment baselines, which further validates the effectiveness of

implicit alignment over the explicit alignment.

Robustness to class distribution shift

Figure 3.3 (b) compares the baseline, implicit and explicit alignments on Office-

Home (balanced) and Office-Home (RS-UT). We observe that implicit alignment per-

forms the best on both datasets. More importantly, implicit alignment is more robust to

class distribution shift which greatly out-performs other methods under RS-UT distribu-

tion shift and has a smaller performance drop from the balanced version of Office-Home.

Evaluation on Standard datasets

Table 3.2 and Table 3.3 summarize the results for the standard Office-31 and Office-Home

datasets which have a small degree of class imbalance. Our method outperforms the

baselines in 3 out of 6 domain pairs for Office-31, and 10 out of 12 domain pairs for

Office-Home (standard). The proposed implicit alignment exhibits larger performance

gains on the Office-Home dataset because the dataset is more difficult for domain

adaptation, and it has 65 classes compared with the 31 classes in Office-31. Our method

is especially useful for tasks with a large number of classes because not all classes can

fit in one batch, which necessitates sampling-based alignment for better training. We

show, in the supplementary materials, that our method not only converges better but

also converges faster than the baseline methods as well.
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Table 3.2: Accuracy with 95% confidence interval (%) on Office-31 (standard) for
unsupervised domain adaptation (ResNet-50). We repeated each experiment 5 times with
different random seeds and report the average and the standard error of the accuracy. Numbers
in bold represent statistical significant results.

Method A � W D � W W � D A � D D � A W � A Avg

Source only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DAN [Long et al., 2015] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN [Ganin et al., 2016] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA [Tzeng et al., 2017] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN [Long et al., 2017] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
MADA [Pei et al., 2018] 90.0 ± 0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
GTA [Sankaranarayanan et al., 2018] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD [Saito et al., 2018] 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN [Long et al., 2018] 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
MDD [Zhang et al., 2019b] 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
PACET [Liang et al., 2019b]‡ 90.8 97.6 99.8 90.8 73.5 73.6 87.4
CAT [Deng et al., 2019]‡ 94.4±0.1 98.0±0.2 100.0±0.0 90.8±1.8 72.2±0.2 70.2±0.1 87.6
MDD (source-balanced sampler) 90.4±0.4 98.7±0.1 99.9±0.1 90.4±0.2 75.0±0.5 73.7±0.9 88.0
MDD+Explicit Alignment‡ 92.3±0.1 98.2±0.1 99.8±.0 92.3±0.3 74.6±0.2 72.9±0.7 88.4
MDD+Implicit Alignment 90.3±0.2 98.7±0.1 99.8±.0 92.1±0.5 75.3±0.2 74.9±0.3 88.8
‡Methods using explicit class-conditioned domain alignment.

Table 3.3: Accuracy (%) on Office-Home (standard) for unsupervised domain adaptation
(ResNet-50). Due to the computational complexity of the experiments, the reported results
are from a single random seed. The performance is not sensitive to different random seeds.

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

Source only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [Long et al., 2015] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [Ganin et al., 2016] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [Long et al., 2017] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [Long et al., 2018] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [Chen et al., 2019c] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
MDD [Zhang et al., 2019b] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCS [Liang et al., 2019a]‡ 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3
MDD+Explicit Alignment‡ 54.3 74.6 77.6 60.7 71.9 71.4 62.1 52.4 76.9 71.1 57.6 81.3 67.7
MDD (source-balanced sampler) 55.3 75.0 79.1 62.3 70.1 73.2 63.5 53.2 78.7 70.4 56.2 82.0 68.3
MDD+Implicit Alignment 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
‡Methods using explicit class-conditioned domain alignment.

The impact of source-balanced sampling

Similar to findings in extreme class distribution shift (Section 3.3.2), we observe source-

balanced sampling is helpful when comparing “MDD (source-balanced sampler)” with

the MDD standard baseline, even without extreme class distribution shift.
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Figure 3.4: The impact of class diversity and alignment on domain adaptation for Ar→Cl,
Office-Home (standard). Due to the computational complexity of the experiments, the reported
results are from a single random seed. The performance is not sensitive to different random seeds.

Comparison with explicit alignment

The proposed method outperforms the state-of-the-art explicit alignment methods—

i.e., PACET and MCS—across all domain pairs. We find it ineffective to incorpo-

rate prototype-based explicit alignment into MDD. This is in contrast with domain-

discriminator-based adversarial learning, where explicit alignment is shown to improve

domain adaptation. We argue this is because the classifier-based discrepancy MDD

contains more abundant information than domain-discriminator-based discrepancy,

owing to the availability of predictive probabilities provided by the classifiers. The rich

information in domain discrepancy removes the need to augment the adversarial loss

with prototype-based distances in the Euclidean space. Moreover, we find that explicit

alignment is very sensitive to the weight λ of the alignment loss. We experimented

with different values of λ∈ [0.1,0.01,0.001,0.0001,0.00001] and chose 0.0001 as the best

performing one for “MDD+Explicit Alignment”.

Impact of class diversity and alignment

We analyze the impact of class diversity and alignment by designing experiments along

three dimensions: the number of unique labels in each minibatch, whether the classes
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are aligned, and whether we use pseudo-labels or ground-truth labels when sampling

the target domain. Note that all experiments in Figure 3.4 have the same batch size 50.

Setup. “Baseline (random)” randomly samples examples of both domains. “Base-

line (S-sampled, T-random)” uses N -way sampler for the source domain, and randomly

samples the target domain. “Aligned (pseudo-labels)” is the proposed implicit alignment

approach. “Aligned (Oracle)” is the oracle form of implicit alignment where the target

domain uses ground-truth labels for sampling.

The impact of class diversity. Minibatch-based class diversity determines the

sampling distribution of the label space, and a greater diversity corresponds to a more

stable measure of this sampling distribution. Figure 3.4 suggests a positive correlation

between the model performance and class diversity: domain adaptation methods do

not work well when the class diversity is very low—i.e., only sample 5 classes per batch

among the 65 classes—and the alignment-based methods outperform the baseline as

we increase class diversity.

The impact of alignment. Quantitative Results in Figure 3.4 confirms the im-

portance of the proposed implicit alignment algorithm from two perspectives. First,

“Aligned (oracle)” consistently performs the best, which suggests perfect alignment can

provide substantial benefits to unsupervised domain adaptation. Second, the compar-

ison between “Aligned (pseudo-labels)” and “Baseline (S-sampled, T-random)” validates

the effectiveness of pseudo-label based implicit alignment, although the pseudo-labels

are approximations of the oracle. As noted in previous experiments, aligning the source

and target domains is beneficial to domain adaptation.

Robustness to pseudo-label errors

We investigate whether implicit alignment is indeed more robust to pseudo-label errors

when compared with explicit alignment. Figure 3.5 illustrates the relationship between

pseudo-label accuracy at training step t and the corresponding subsequent target ac-

curacy at step t+1000, i.e., after 1000 domain adaptation training steps. This process

resembles a Markov chain that allows us to analyze the impact of pseudo-label accuracy

on the learning dynamics.
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Figure 3.5: The impact of pseudo-label errors on implicit and explicit alignment,
Office-Home (standard).

It is evident from Figure 3.5 that the drawbacks of explicit alignment are more severe

when the pseudo-labels are less accurate, e.g., 10∼40% on the x-aixs, where implicit align-

ment has more considerable performance improvements than explicit alignment. This

suggests that implicit alignment is more robust to erroneous pseudo-label predictions be-

cause it does not require explicit supervision from the pseudo-labels. Implicit and explicit

methods eventually converge at 76% and 74%, respectively. The results are significant

at the 95% confident interval with different random seeds. Note that the missing box for

“Explicit Alignment” at 76% is because “Explicit Alignment” never reaches 76% pseudo-

label accuracy. Because the use of pseudo-labels inevitably introduces bias to the learning

system, to further reduce the bias, one could use an unsupervised approach such as

conditional variational autoencoder to generate more accurate class-conditioned samples.

Although many recent techniques attempt to address pseudo-label bias in explicit

alignment, they depend on the assumption that probabilities of model predictions are

well-calibrated during training. They fail to address ill-calibrated probabilities [Guo

et al., 2017], where the model tends to make confident mistakes on the target domain.

Moreover, given that models do not initially perform well when training begins, for

a random classifier, implicit alignment selects random samples that is equivalent to

training without sampling. In contrast, explicit alignment optimizes model parameters

from these random labels explicitly.
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Alignment options

Domains masking sampling Accuracy

Rw�Cl

× × 44.8√
× 44.8

×
√

47.4√ √
50.0

Pr�Rw

× × 69.3√
× 72.7

×
√

72.0√ √
74.2

Table 3.4: The impact of different implicit alignment options, i.e., masking in the MDD
estimation and sampling class-aligned minibatches, on Office-Home (RS-UT). Evaluated on
average accuracy per-class.

Ablation Study on Implicit Alignment

Table 3.4 presents the ablation study on Office-Home (RS-UT) that aims to assess the

impact of different implicit alignment options: alignment in the domain divergence

estimations in Section 3.2.3 (i.e., masking in MDD) and alignment in the input space

in Section 3.2.3 (i.e., sampling class-conditioned examples). We observe that both

alignment techniques are essential for domain adaptation because alignment should be

enforced consistently across all aspects of the domain adaptation training. We report

similar findings in the supplementary materials for the standard Office-Home dataset.

3.4 Synthetic Experiments on MNIST and SVHN

We design extensive experiments to further demonstrate the effectiveness of the proposed

method. The class distributions of SVHN [Netzer et al., 2011] and MNIST [LeCun

et al., 2010] are synthetically manipulated to simulate various interactions between

within-domain class imbalance and between-domain class distribution shift. The four

scenarios are depicted in Figure 3.6. We choose the domain pair MNIST and SVHN

as they are the most challenging domain pairs in the digits domain adaptation dataset.
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(a)	matched	class	distribution (b)	mismatched	class	distribution,
both	domains	are	imbalanced	but	in	different	ways

Source	domain Target	domain

balanced balanced

imbalanced imbalanced

(c)	mismatched	class	distribution,
source-balanced	and	target-imbalanced

Source	domain Target	domain

balanced balanced

imbalanced imbalanced

(d)	mismatched	class	distribution,
source-imbalanced	and	target-balanced

Figure 3.6: Interactions between within-domain class imbalance and between-domain class
distribution shift.

3.4.1 Setup

We use DANN as the adversarial training algorithm instead of MDD for generality.

When the source and target domains have match priors where pS(y)=pT (y), the class

distributions can be either balanced or imbalanced. For mismatched class distribution

shift where pS(y) 6=pT (y), we simulate three types of between-domain distribution shift:

• source-balanced, target-imbalanced;

• source-imbalanced, target-balanced;

• both-imbalanced.

We also simulate different degrees of within-domain class imbalance:

• light: light-tailed class imbalance from a triangular-like distribution;

• heavy: heavy-tailed class imbalance from a Pareto distribution.

3.4.2 Results on Matched Class Distribution

Table 3.5 presents the per-class accuracy of the target domain when pS(y)=pT (y). The

proposed “DANN+implicit” is has similar performance with the baseline “DANN” on the
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doomain pair SVHN→MNIST, but outperforms the “DANN” on the SVHN→MNIST

domain pair. It is worthwhile to note that SVHN→MNIST is a particularly difficult

domain pair where domain adaptation methods, including DANN, tend to perform

worse than the “source only” baseline. In other words, conventional domain adaptation

methods are detrimental to the domain pair SVHN→MNIST while the proposed implicit

alignment overcomes this limitation and greatly improves the performance of DANN.

Table 3.5: Per-class average accuracy (%) with matched prior where pS(y)=pT (y). Numbers
in bold represent statistical significant results.

SVHN→MNIST MNIST→SVHN
method balanced light imbalance heavy imbalance balanced light imbalance heavy imbalance

source only 72.0±2.5 57.3±3.5 47.6±8.3 31.4±1.6 31.2±0.6 28.8±0.6
DANN 89.3±1.2 87.5±0.9 69.1±4.4 23.2±1.0 22.0±2.9 22.0±2.7

DANN+implicit 92.3±2.1 87.3±1.3 66.8±6.9 33.2±4.7 36.3±1.8 33.9±6.1

3.4.3 Results on Mismatched Class Distribution

Table 3.6, 3.7 and 3.8 present the per-class average classification accuracy with 95%

confidence interval (%) for mismatched class distributions in Figure 3.6 (b) (C), and (d),

respectively. Numbers in bold represent statistical significant results. We find that the

proposed method significantly improves (10-30%) the domain adaptation performance

of DANN regardless of the degree of class imbalance or the type of distribution shift.

We also find that implicit alignment provides greater improvements as the degree of

class imbalance becomes more severe, i.e., comparison between “light imbalance” and

“heavy imbalance”. Furthermore, similar to findings in Section 3.4.2, implicit alignment

overcomes this limitation of DANN greatly improves the performance for the challenging

task SVHN→MNIST.

Table 3.6: Per-class average accuracy (%) with mismatched prior where pS(y) 6=pT (y) and
both domains are imbalanced. Numbers in bold represent statistical significant results.

SVHN→MNIST MNIST→SVHN
method light imbalance heavy imbalance light imbalance heavy imbalance

source only 60.9±5.2 51.2±5.9 30.6±1.3 27.1±1.7
DANN 67.6±0.8 40.5±5.5 23.4±1.6 18.8±2.9

DANN+implicit 88.6±0.6 70.5±3.6 36.3±2.5 27.9±2.4
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Table 3.7: Per-class average accuracy (%) with mismatched prior where pS(y) 6=pT (y). The
source domain is balanced while the target domain is imbalanced. Numbers in bold represent
statistical significant results.

SVHN→MNIST MNIST→SVHN
method light imbalance heavy imbalance light imbalance heavy imbalance

source only 67.4±7.3 66.3±3.3 32.5±2.9 28.2±2.3
DANN 78.2±2.8 59.1±0.8 20.9±6.0 20.5±3.1

DANN+implicit 88.6±0.7 82.2±2.1 32.4±2.1 28.9±3.3

Table 3.8: Per-class average accuracy (%) with mismatched prior where pS(y) 6=pT (y). The
source domain is imbalanced while the target domain is balanced. Numbers in bold represent
statistical significant results.

SVHN→MNIST MNIST→SVHN
method light imbalance heavy imbalance light imbalance heavy imbalance

source only 65.2±2.1 53.3±1.3 31.6±3.3 32.8±0.9
DANN 82.0±0.7 52.3±2.3 23.4±3.6 25.9±0.5

DANN+implicit 91.0±1.9 87.1±2.6 34.9±0.5 31.1±2.9

3.5 Supplementary Empirical Results

3.5.1 Additional Evaluation Measures on Office-Home

Table 3.9: Additional evaluation measures on Office-Home (%) with ResNet-50.

Ar�Cl Pr�Rw
MDD ours MDD ours

accuracy 54.91 56.17 77.46 79.94
macro F1 score 53.66 55.29 75.86 78.42
weighted F1 score 53.97 55.81 77.24 79.79
macro precision 57.02 57.72 78.21 79.56
weighted precision 58.85 60.30 79.60 80.97
macro recall 56.41 57.76 76.30 78.61
weighted recall 54.91 56.17 77.65 79.94

Table 3.9 presents additional evaluation onOffice-Home (standard). We re-implement

MDD using identical batch sizes (50) and random seeds for fair comparison. The results
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show that our proposed method has consistent improvements across all evaluation

measures, and the improvements are not a result of batch sizes or random seeds.

3.5.2 Ablation on Alignment Options

Table 3.10: The impact of different implicit alignment options, i.e., masking the classifier-
based domain discrepancy measure and sampling examples from the source and target
domains, on Ar→Cl and Cl→Pr, Office-Home (standard).

Alignment options

Domains masking sampling Accuracy

Ar�Cl

× × 55.3
√

× 55.5
×

√
54.6

√ √
56.2

Cl�Pr

× × 71.4
√

× 70.1
×

√
70.5

√ √
73.1

Table 3.10 presents the ablation study on Office-Home (standard) that aims to assess

the impact of different implicit alignment options: alignment in the domain divergence

estimations (i.e., masking in MDD) and alignment in the input space (i.e., sampling

class-conditioned examples). We observe that both alignment techniques are essential for

domain adaptation because alignment should be enforced consistently across all aspects

of the domain adaptation training. This is consistent to findings in the main chapter.

3.5.3 Learning Curve

Figure 3.7 shows the learning curve of the target domain accuracy for different methods.

We find that explicit alignment has similar performances with the baseline, while implicit

alignment performs the best.
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Figure 3.7: Learning curve of the target domain accuracy for Pr→Rw, Office-Home (RS-UT).

Table 3.11: The impact of pseudo-label update frequency on Ar→Cl, Office-Home (standard).

pseudo-labels
updated every N steps accuracy

5 56.0
10 56.7
20 56.2
50 55.2
100 56.3
500 55.7

3.5.4 Computational Efficiency

Self-training requires estimating the target domain labels, which could be time-consuming

depending on the size of the dataset. To improve the computational efficiency of our

algorithm, we only update pseudo-labels periodically, i.e., every 20 steps, instead of

at every training step. We show in Table 3.11 that different pseudo-label update fre-

quencies exhibit similar performance on the target domain. Notably, implicit alignment

outperforms the baseline method in spite of only updating the pseudo-labels every 500

training steps. This validates the robustness of implicit alignment.

For the experiments described in Section 3.5.3, training the baseline methods take
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31 hours (wall clock time), whereas implicit alignment takes 34 hours under the same

training condition when the pseudo-labels are updated every 20 steps. The 10% com-

putational overhead is rather restricted. Moreover, from an engineering perspective,

partially updating and caching the pseudo-labels could further improve the computa-

tional efficiency, and we leave them as future work. Sweep rehearsal [Robins, 1995; Silver

et al., 2015] is a promising direction that keeps a small dynamic buffer of examples to

improve the efficiency of pseudo-labeled examples.

3.5.5 The Impact of Batch Size

Table 3.12: The impact of batch size on target domain accuracy (%), Ar→Cl, Office-
Home (standard). The MDD results are based on our re-implementation.

batch size baseline implicit

8 48.9 49.7
16 52.7 52.8
32 54.9 56.2
50 55.3 56.2

Table 3.12 presents the impact of batch size on the target domain accuracy. We find

that implicit alignment consistently improves the model performance over the MDD

baseline across different batch sizes, and both methods work better with larger batch

sizes. This is consistent with our findings on empirical class diversity where a greater

diversity corresponds to a more stable measure of this sampling distribution, which in

turn leads to better domain adaptation performances.

There is a positive correlation between the batch size and model performance, which

is consistent with the probably approximately correct (PAC) framework [Valiant, 1984].

Due to the GPU’s memory constraints, we were not able to experiment with larger

batch sizes on this dataset to verify whether the two approaches would converge to the

same performance. It is worth noting that the proposed approach is shown to improve

the domain adaptation performance when evaluated on various datasets where each

dataset uses a different batch size—especially for the digits experiments in Table 3.6,

3.7 and 3.8 where the batch size is relatively large, for example, 100.
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3.5.6 Empirical Class Diversity
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Figure 3.8: Empirical class diversity while training A→W (Office-31) with batch size 31.

Figure 3.8 shows the empirical class diversity comparing implicit alignment with

the baseline. In both experiments, the batch size is identical with the total number of

classes (i.e., 31). For the baselinemethod, random sampling only obtains about 19 unique

classes per-batch, which is much smaller than the batch size, in spite of the batch sizes

being the same with the total number of classes. This is because random sampling can be

viewed as sampling with replacement in the label space, whereas the implicit alignment

can be viewed as sampling without replacement in the label space, which naturally

increases the empirical class diversity. The expected class diversity of the baseline is

E[|Y |]=n

[
1−
(
n−1

n

)k]
, (3.17)

where n is the number of unique classes and k is the size of the minibatch. The expected

class diversity is 19.78 if n=31 and k=31, which is consistent with the empirical class

diversity shown in Figure 3.8.

For the implicit alignment method shown in Figure 3.8, although it has low class

diversity at training step 0 due to the random pseudo-labels, it has a sharp increase

in class diversity for the first few hundred training steps, and eventually being able to

sample 28 classes from the total of 31 classes. This confirms that implicit alignment

is effective in improving empirical class diversity beyond random sampling.
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3.5.7 VisDA2017 Dataset

We also report the results for VisDA [Peng et al., 2017], a synthetic to real domain

adaptation task with 12 classes, in Table 3.13. The proposed implicit alignment has

a 4.7% improvement over our re-implementation of the MDD baseline. Note that we

did not perform any hyper-parameter tuning for this dataset and we use the same

hyper-parameters with our Office-Home experiments.

Table 3.13: Target domain accuracy (%) on VisDA2017 (synthetic→real)

method accuracy

JAN [Long et al., 2017] 61.6
GTA[Sankaranarayanan et al., 2018] 69.5

MCD [Saito et al., 2018] 69.8
CDAN [Long et al., 2018] 70.0
MDD [Zhang et al., 2019b] 74.6

MDD (our re-implementation) 65.0
MDD+implicit 69.7

3.6 Limitations

Although the proposed approach can provide class-conditioned domain alignment be-

tween the source and target domains, it is not able to deal with intra-class subtype

distribution mismatch where the distribution of subtypes differs between the source

and target domains. This problem is also known as “hidden stratification” and has

been shown to “Causes Clinically Meaningful Failures in Machine Learning for Medical

Imaging” [Oakden-Rayner et al., 2020]. As an example, for X-ray images classification

tasks, if we only have access to “healthy” and “unhealthy” labels, but do not have access

to the underlying distribution of different subtypes of the “unhealthy” category, the

adaptation might cause risks for some subclasses. More work needs to be done in

unsupervised domain adaptation to ensure its reliability in safety critical applications.
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3.7 Conclusion

We introduce an approach for unsupervised domain adaptation—with a strong focus

on practical considerations of between-domain class distribution shift—from a class-

conditioned domain alignment perspective. We show theoretically that the proposed

implicit alignment provides a more reliable measure of empirical domain divergence

which facilitates adversarial domain-invariant representation learning, that would oth-

erwise be hampered by the class-misaligned domain divergence. We extend our theory

on implicit alignment into the classifier-based domain divergence measure and provide

extensive experiments to show that our proposed approach leads to superior UDA

performance under extreme within-domain class imbalance and between-domain class

distribution shift, as well as competitive results on standard UDA tasks. We emphasize

that the proposed method is robust to pseudo-label bias, simple to implement, has a

unified training objective, and does not require additional parameter tuning.



Chapter 4

Learning to Learn with Conditional Class Dependencies

4.1 Introduction

In machine learning, the objective of classification is to train a model to categorize

inputs into various classes. We usually assume a categorical distribution over the label

space, and thus effectively ignore dependencies among them. However, class structure

does exist in real world and is also present in most datasets. Although class structure

can be implicitly obtained as a by-product during learning, it is not commonly exploited

in an explicit manner to develop better learning systems. The use of label structure

might not be of prime importance when having access to huge amounts of data, such

the full ImageNet dataset. However, in the case of few-shot learning where little data

is available, meta-information such as dependencies in the label space can be crucial.

In recent years, few-shot learning—learning from few examples across many tasks—

has received considerable attention [Finn et al., 2017a; Ravi and Larochelle, 2016; Snell

et al., 2017b; Vinyals et al., 2016]. In particular, the concept of meta-learning has been

shown to provide effective tools for few-shot learning tasks. In contrast to common

transfer learning methods that aim to fine-tune a pre-trained model, meta-learning

systems are trained by being exposed to a large number of tasks and evaluated in their

ability to learn new tasks effectively. In meta-training, learning happens at two levels:

a meta-learner that learns across many tasks, and a base-learner that optimizes for

each task. Model-Agnostic Meta-Learning (MAML) is a gradient-based meta-learning

algorithm that provides a mechanism for rapid adaptation by optimizing only for the

initial parameters of the base-learner [Finn et al., 2017a].

Our motivation stems from a core challenge in gradient-based meta-learning, wherein

the quality of gradient information is key to fast generalization: it is known that

gradient-based optimization fails to converge adequately when trained from only a few

examples [Ravi and Larochelle, 2016], hampering the effectiveness of gradient-based

meta-learning techniques. We hypothesize that under such circumstances, introducing

50
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a metric space trained to encode regularities of the label structure can impose global

class dependencies on the model. This class structure can then provide a high-level view

of the input examples, in turn leading to learning more disentangled representations.

We propose a meta-learning framework taking advantage of this class structure

information, which is available in a number of applications. The Conditional class-Aware

Meta-Learning (CAML) model is tasked with producing activations in a manner similar

to a standard neural network, but with the additional flexibility to shift and scale

those activations conditioned on some auxiliary meta-information. While there are

no restrictions on the nature of the conditioning factor, in this work we model class

dependencies by means of a metric space. We aim to learn a function mapping inputs

to a metric space where semantic distances between instances follow an Euclidean

geometry—classes that are semantically close lie in close proximity in an `p sense. The

goal of the conditional class-aware transformation is to make explicit use of the label

structure to inform the model to reshape the representation landscape in a manner that

incorporates a global sense of class structure.

The contributions of this work are threefold: (i) We provide a meta-learning frame-

work that makes use of structured class information in the form of a metric space

to modulate representations in few-shot learning tasks; (ii) We introduce class-aware

grouping to improve the statistical strength of few-shot learning tasks; (iii) We show

experimentally that our proposed algorithm learns more disentangled representation

and achieves competitive results on the miniImageNet benchmark.

4.2 Method

As shown in Figure 4.1, the proposed Conditional class-Aware Meta-Learning (CAML)

is composed of four components: an embedding function fφ that maps inputs to a metric

space, a base-learner fθ that learns each individual task, an adaptation function fc that

conditionally modulates the representations of the base-learner, and a meta-learner

that learns across different tasks. Figure 4.1 depicts a toy illustration of the task

inference procedure where examples from three classes are mapped onto a metric space

using fφ, which are further used to modulate the base-learner fθ through a conditional

transformation function fc.

The main contribution of this chapter is to incorporate metric-based conditional
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Figure 4.1: Overview of Conditional class-Aware Meta-Learning. Inputs to the model are
mapped onto an embedding space using fφ which are then used to modulate the base-learner
fθ through a conditional transformation fc. We use MAML (not shown) to meta-learn fc,
fθ, and a metric loss to pretrain fφ

transformations (fc) into the meta-learning framework at the instance level. A notable

feature of the proposed method is that the model has a global sense of the label space

through the embedding function fφ by mapping examples onto the semantically mean-

ingful metric space. The embeddings on the metric space inform the base-learner fθ
about the label structure which in turn helps disentangle representations from different

classes. This structured information can also provide a global view of the input examples

to improve gradient-based meta-learning.

In a simplistic form, our proposed model makes predictions using

ŷ=fθ

(
x;fc

(
fφ(x)

))
,

where the base-learner fθ is conditioned on the embedding space fφ(x) through the

conditional transformation fc. This is in contrast with a regular base-learner where

ŷ=fθ(x). In our framework, we use MAML to meta-learn fc and fθ. The metric space is

pretrained using distance-based loss function. The setup is similar to multitask learning

in that all model parameters are learned jointly. They differ in that, in multitask

learning, the model parameters are shared across tasks. In contrast, in meta-learning,

the meta-parameters are shared through initialization, but each model has its own set

of task-specific parameters.
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4.2.1 Metric Space as Conditional Information

We encode information of the label structure through fφ in the form of anM -dimensional

metric space, where each input example is reduced to a point in the metric space. To

learn a semantically meaningful metric space, we first define a centroid ct for each class t,

ct=
1

K

∑
(xi,yi)∈Dtrain

1{yi=t}fφ(xi),

whereK denotes the number of examples for class t, 1{yi=t} denotes an indicator function

of yi which takes value 1 when yi = t and 0 otherwise. The mapping function fφ is

optimized to minimize the negative log-probability defined in Eq. (4.1) by minimizing

the Euclidean distance d between an example and its corresponding class centroid ct

while maximizing its Euclidean distance to other class centroids ct′ :

argmin
φ

E

[
d(fφ(xi),ct))+log

∑
t′

exp(−d(fφ(xi),ct′))

]
. (4.1)

In relation to prototypical networks [Snell et al., 2017b], we use the same loss function for

metric learning. However, these frameworks differ in the test mode: we are not interested

in example-centroid distances for label assignment, but rather in the projection fφ(xi)

from the input space to the metric space that encapsulates inferred class regularities

given the input example xi.

4.2.2 Conditionally Transformed Convolutional Block

Conditional transformations have previously been explored in style transfer and visual

reasoning. Instead of learning different styles with separate networks, conditional

instance normalization allows different styles to share the same conditional style transfer

network so that different styles are characterized by different scale and shift parameters

of the feature maps. In visual question answering, De Vries et al. [2017] have shown

that it is beneficial to modulate early visual signals of a pre-trained residual network

by language in the form of conditional batch normalization. It was further shown that

feature-wise linear modulation [Dumoulin et al., 2018; Perez et al., 2017] can efficiently

select meaningful representations for visual reasoning.

The notion that is common to all these methods is the use of an additional input

source, e.g., style or language, to conditionally transform intermediate representations
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Figure 4.2: Conditionally transformed convolutional block. The convolutional feature maps
are conditionally scaled and shifted based on the input image’s representation in themetric space.

of a network. In few-shot learning, Zhou et al. [2018] suggested that it is easier to

operate in the concept space in the form of a lower dimensional representation. This

is compatible with our proposed approach that uses the metric space as concept-level

representation to modulate intermediate features of the base-learner.

We now turn to describing the conditionally transformed convolutional block, shown

in Figure 4.2, which uses the metric space described in Section 4.2.1 to inform the

base-learner about the label structure of a task. The conditional transformation fc
receives embeddings from the metric space and produces transformation operations to

modulate convolutional representations of the base-learner fθ.

Our conditional transformation has close relation to Batch Normalization (BN) [Ioffe

and Szegedy, 2015] that normalizes the input to every layer of a neural network. In

order to conditionally modulate feature representations, we use Conditional Batch

Normalization (CBN) [Dumoulin et al., 2017] to predict scale and shift operators from

conditional input si:

γ̂c=fc,γ(si), β̂c=fc,β(si), (4.2)

where fc,γ and fc,β can be any differentiable function. This gives our model the flexibility

to shift or scale the intermediate representations based on some source information in

si. Since examples belonging to the same class are conceptually close, we exploit this

inherent relationship in the metric space to modulate the feature maps at the example

level in a way that encodes the label structure.

Once we obtained the embedding function fφ, we use two auxiliary networks, learned

end-to-end together with the meta-learner, to predict the shift and scale factors of the
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Figure 4.3: CBN shared architecture

convolutional feature map:

γ̂i,c=fc,γ(fφ(xi)), β̂i,c=fc,β(fφ(xi)). (4.3)

Having computed γ̂i,c and β̂i,c, Conditional Batch Normalization (CBN) is applied as

follows:

CBN(Ri,c|γ̂i,c,β̂i,c)= γ̂i,c
Ri,c−E[Rc]√
Var[Rc]+ε

+β̂i,c, (4.4)

where Ri,c refers to the cth feature map from the ith example, ε is a small constant, βc
and γc are learnable parameters shared within a task. E[Rc] and Var[Rc] are batch

mean and variance of Rc.

It is worthwhile to note the effect of conditional transformation. The conditional bias

transformation with β̂i,c is analogous to concatenation-based conditioning where the

conditional information is concatenated to the feature maps [Dumoulin et al., 2018]. The

conditional scaling factor provides multiplicative interactions between the metric space

and the feature maps to aggregate information. Furthermore, the conditional batch nor-

malization operation is always followed by a rectified linear unit, which dynamically turns

on or off the feature representation depending onwhether the conditional output is greater

than zero or not. The conditional transformation can be understood as a gating mech-

anism where the metric space’s label information controls the feature representations.
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4.2.3 Multitask learning of CBN

Although one can predict γ̂c and β̂c using two separate functions, we find it beneficial

to use shared parameters as shown in Figure 4.3. The shared representations are more

efficient at producing conditional transformations which also provide a strong inductive

bias to help learning [Caruana, 1997].

4.2.4 Training Details

The base-learner (fθ) is composed of 4 layers of 3×3 convolutions with a 4×4 skip

connections from the input to the final convolutional layer. Each convolutional layer

has 30 channels and is followed by CBN, ReLU and 2×2 max-pooling operations. The

output of the final convolution is flattened and fed to a 1-layer dense classifier. For

learning the embedding space (fφ), we use the same residual network as Oreshkin et al.

[2018]. For CBN functions (fc), we use 3 dense layers with 30 hidden units each. Every

layer is followed by a ReLU except for the last layer where no activation is used. For

the meta-learner, we use MAML with 1 gradient step for 1-shot learning and 5 gradient

steps for 5-shot learning. We use the Adam [Kingma and Ba, 2014] optimizer and clip

the L2 norm of gradients with an upper bound of 5.

4.3 Experiments

We use miniImageNet to evaluate the proposed Conditional class-Aware Meta-Learning

algorithm. miniImageNet [Vinyals et al., 2016] is composed of 84×84 colored images

from 100 classes, with 600 examples in each class. We adopt the class split by Ravi and

Larochelle [2016] that uses 64 classes for training, 16 for validation, and 20 for test. For

N -wayK-shot training, we randomly sample N classes from the meta-train classes each

containing K examples for training and 20 examples for testing. At meta-testing time,

we randomly sample 600 N -way K-shot tasks from the test classes.

4.3.1 Results

The results presented in Table 4.1 show that our proposed algorithm has comparable

performance on the state-of-the-art miniImageNet 5-way 1-shot classification task, and

competitive results on the 5-way 5-shot task.
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((a)): Randomly selected 30 training
labels

((b)): Randomly selected 10 validation
labels

Figure 4.4: t-SNE visualization of the learned metric space colored by category.

Table 4.1: miniImageNet classification accuracy with 95% confidence intervals.

Model 5-way 1-shot 5-way 5-shot

Meta-Learner LSTM [Ravi and Larochelle, 2016] 43.44% ± 0.77% 60.60% ± 0.71%
Matching Networks [Vinyals et al., 2016] 46.6% 60.0%
Prototypical Network with Soft k-Means [Ren et al., 2018] 50.41% ± 0.31% 69.88% ± 0.20%
MetaNet [Munkhdalai and Yu, 2017] 49.21% ± 0.96% −
TCML [Mishra et al., 2018] 55.71% ± 0.99% 68.88% ± 0.92%
adaResNet [Munkhdalai et al., 2018] 56.88% ± 0.62% 71.94 ± 0.57%
Cosine Classifier [Gidaris and Komodakis, 2018] 56.20% ± 0.86% 73.00% ± 0.64%
TADAM [Oreshkin et al., 2018] 58.5% 76.7%
LEO [Rusu et al., 2018] 60.06% ± 0.05% 75.72% ± 0.18%

MAML [Finn et al., 2017a] 48.7% ± 1.84% 63.11% ± 0.92%
MAML on our architecture 48.26% ± 1.04% 64.25% ± 0.78%
Prototypical Network [Snell et al., 2017b] 49.42% ± 0.78% 68.2% ± 0.66%
Prototypical Network on our metric space 55.96% ± 0.91% 71.64% ± 0.70%

CAML (with multitask learning alone) 52.56% ± 0.83% 71.35% ± 1.13%
CAML (with class-aware grouping alone) 55.28% ± 0.90% 71.14% ± 0.81%
CAML (full model) 59.23% ± 0.99% 72.35% ± 0.71%
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Figure 4.4 shows the t-SNE plot of the learned metric space for both meta-train

and meta-validation classes. As seen in Figure 4.4, examples from the meta-validation

set tend to form clusters consistent with their class membership, even though the

metric space is not trained on these classes. For example, “mierkat", “tundrarum" and

“podenco" are all animals and they are clustered close together.

The first main baseline we report is MAML. CAML improves upon MAML by about

10% on both 1-shot and 5-shot tasks. This means incorporating class dependencies

in the form of a metric space can greatly facilitate gradient-based meta-learning. We

also compare with MAML using our base-learner architecture equipped with skip

connections from the input to the last convolutional layer. MAML trained with our

base-learner’s architecture yields similar performance as the original MAML, suggesting

the improvement is resulted from the proposed CAML framework, rather than changes

in the base-learner’s architecture.

The second baseline we use is the prototypical network. Wemeasure the classification

ability of our metric space using prototypical network as a classifier, shown in Table 4.1

(Prototypical Network in our metric space). These results suggest that making predic-

tions on the metric space alone is inferior to CAML.This can be explained by CAML’s

ability to fast-adapt representations even when the metric space does not provide good

separations. We also find that CAMLhas larger improvements in 1-shot tasks than 5-shot

ones. This is because, in 1-shot learning, metric-based methods estimate class represen-

tations from a single example, making it difficult to provide a robust class estimation.

Better ways to learn the dynamic bias could lead to improved generalization.

TADAM [Oreshkin et al., 2018] and LEO [Rusu et al., 2018] outperform the pro-

posed CAML approach. Like CAML, TADAM also uses conditional information, but

TADAM modulates the representation of a metric space instead of the feature space.

LEO learns a data-dependent mapping to latent representation.

Recent research on task normalization [Bronskill et al., 2020] highlights the limita-

tions of transductive batch normalization. Extending conditional batch normalization

to conditional task normalization is a promising direction of future work.
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((a)): Before conditional transformation ((b)): After conditional transformation

Figure 4.5: PCA visualization of feature maps from the last convolutional layer colored by
category.

4.3.2 The effect of conditional transformation

We compare activations before and after the conditional transformation to better under-

stand how conditional transformation modulates the feature representations. Figure 4.5

shows the PCA projections of the last convolutional layer in the base-learner. We

observe in Figure 4.4(a) that, before conditional transformation, examples from three

classes (“parallel bars”, “tile roof” and “reel”) are mixed together. In Figure 4.4(b), after

the conditional transformation is applied, one of the previously cluttered classes (“tile

roof”) become separated from the rest classes. This confirms that metric space can

alleviate the difficulty in few-shot learning by means of conditional transformations.

We undertake ablation studies to show the impact of multitask learning and class-

aware grouping. Empirical results in Table 4.1 suggest that, while 1-shot learning is

sensitive to multitask learning and class-aware grouping, 5-shot learning is not affected

by those techniques. This is owing to a lack of statistical strength in 1-shot learning,

which requires more explicit guidance in the training procedure. This means exploiting

metric-based channel mean and variance can provide valuable information to improve

meta-learning.
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4.4 Limitations

One limitation of the proposed approach is in its inability to quantify uncertainties in the

metric space. Themetric space is deterministic and is not able to distinguish different lev-

els of hierarchies in the label space. Note that themetric space is not performing hierarchi-

cal classification [Silla andFreitas, 2011] on a tree or direct acyclic graph in the label space;

instead, the metric space intends to indicate differences in the representational structures

between classes to inform the learning of various tasks. It would bemore informative if the

conditional transformation is also guided by the degree of uncertainty in the metric space.

Another limitation is in the lack of evaluation on “meta-overfitting.” Triantafillou

et al. [2019] discovered that the episodic boostrapping-style training strategy could

overfit on one dataset and does not generalize well to another dataset. This arises from

generalizing to tasks within the same dataset to generalizing to tasks between different

datasets. More thorough evaluation is needed to further examine the generalization of

the proposed approach.

4.5 Conclusions

In this chapter, we propose Conditional class-Aware Meta-Learning (CAML) that incor-

porates class information by means of an embedding space to conditionally modulate

representations of the base-learner. By conditionally transforming the intermediate

representations of the base-learner, our goal is to reshape the representation with a

global sense of class structure. Experiments reveal that the proposed conditional trans-

formation can modulate the convolutional feature maps towards a more disentangled

representation. We also introduce class-aware grouping to address a lack of statistical

strength in few-shot learning. The proposed approach obtains competitive performance

on 5-way 1-shot miniImageNet benchmark.



Chapter 5

Task Adaptive Metric Space

for Medium-Shot Medical Image Classification

5.1 Introduction

Learning new concepts from a small number of examples is an essential ability of human

cognition. While deep learning models typically require a large number of labeled

examples, datasets in the medical imaging domain tend to have a limited number of

training examples. Efforts towards more sample-efficient training procedures address

this data hindrance, thereby enabling the wider use of deep learning techniques for

medical applications.

Meta-learning [Bengio et al., 1992; Mitchell and Thrun, 1993; Schmidhuber, 1987;

Vilalta and Drissi, 2002], or “learning to learn”, is an important approach to few-shot

classification. The meta-learner is trained across many tasks to acquire meta-knowledge

with the goal of learning a new task with few labeled examples. Despite the recent

popularity of meta-learning, we find two main limitations in applying meta-learning

to medical image classification tasks.

The first limitation is the discrepancy of the number of training examples between

few-shot tasks and medical datasets. While in the literature meta-learning mostly

deals with tasks with only a few training examples, i.e., five or fewer, datasets in the

medical domain tend to have tens to a few hundred labeled examples. This discrepancy

necessitates the extension from few-shot learning to medium-shot for more realistic

evaluations on the medical domain.

The second limitation is the lack of meta-learning evaluation procedures on med-

ical datasets. We propose to evaluate representative meta-learning methods under

different amounts of data per class, to better understand their generalization proper-

ties. We choose key advances in meta-learning—gradient-based [Finn et al., 2017a] and

metric-based [Snell et al., 2017b] methods—to establish the baseline performances.

61
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We empirically evaluate and analyze the baseline meta-learning methods through the

lens of bias-variance tradeoff. Our analysis suggests gradient-basedmethods tend to over-

fit few-shot datasets while metric-based methods tend to underfit medium-shot datasets.

To get the best of both worlds for bias-variance equilibrium, we propose Task Adaptive

Metric Space (TAMS) that uses gradient-based fine-tuning to adjust parameters of the

metric space so that distances between examples in the medical dataset can better reflect

their semantics. We show that our proposed model outperforms gradient-based and

metric-based meta-learning models on a medical image classification task. We report

visualizations on the metric space that validates the impacts of metric adaptation.

Our main contributions are three-fold: (1) We propose medium-shot learning that

aligns meta-learning with realistic situations of medical image classification. (2) We

establish baseline evaluation procedures to evaluate meta-learners on various situations

to better understand their generalization properties. (3) Through bias-variance analysis,

we propose a new meta-learning method—Task Adaptive Metric Space—that takes

advantage of both gradient-based and metric-based methods. We show that TAMS

outperforms the meta-learning baselines.

5.2 Background and Motivation

Medium-shot Learning for Medical Data. Medical datasets raise many practical

challenges especially because they tend to have tens to a few hundred labeled exam-

ples [Litjens et al., 2017]. The size of medical datasets does not align with the prevalent

approaches in few-shot learning that only focus on five or fewer training examples per

class. For this reason, we propose medium-shot learning with the intention of more

realistic assessments in the medical domain. We define “medium-shot” as classification

tasks with tens to a few hundred labeled examples each class.

OverviewofMeta-learning. The goal ofmeta-learning is to acquiremeta-knowledge

from many tasks to help better learn a new task. In recent years, meta-learning has

become an important approach for few-shot learning [Vinyals et al., 2016]. A meta-

learning system first aims to meta-train the meta-learner from Dmeta−train, which is

composed of many classification tasks Di ∈Dmeta−train and each task can be further

split into a training and test set (Dtrain,Dtest)∈D. Once the meta-learner is trained,
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we meta-test a new task Dmeta−test using the meta-learned inductive bias in the form

of weight initializations or a metric space. We discuss two representative meta-learning

methods through the lens of bias-variance tradeoff [Friedman et al., 2001].

Gradient-basedMeta-learning. Gradient-basedmethods, such asModel-Agnostic

Meta-Learning (MAML) [Finn et al., 2017a], aim to optimize representations for fast

adaptation across many tasks. The meta-learned knowledge is encoded through pa-

rameter initializations to support fast adaptation when fine-tuned on Dmeta−test. In

the medical domain, MAML has been explored in breast screening classification to

meta-learn initializations with curriculum learning [Maicas et al., 2018]. Gradient-based

methods tend to have a low bias and high variance. They can take advantage of more

data to better adapt model representations towards a new task. However, gradient-based

methods are more complex and may overfit because the fine-tuning procedure updates

all parameters to adapt to Dmeta−test. Recent work on proximal regularization [Ra-

jeswaran et al., 2019] aims to reduce over-fitting by increasing the strength of the prior

over the data via the regularization on meta-parameters. However, due to the large

meta-hypothesis space, stronger regularization is needed to further reduce the variance

of MAML-based approaches.

Metric-based Meta-learning. Metric-based methods, such as Prototypical Net-

works [Snell et al., 2017b], learn a metric space across many tasks such that distances

between examples are semantically meaningful. The metric space is parameterized

with a neural network meta-trained on Dmeta−train. At meta-test time, each class is

represented by a prototype in the metric space, and classification labels are assigned

with distance-based inference. Metric-based methods tend to have high bias and low

variance. An advantage of metric-based methods is their non-parametric classification

procedure that prevents overfitting on a few examples, but their static metric space

may result in underfiting when more data is available.

The Best of Both Worlds. The bias-variance tradeoff [Friedman et al., 2001] tells

us that the gradient-based and metric-based methods complement each other with

different amounts of training data. In TAMS, we fuse these methods and demonstrate

the improved generalization under several setups, which is congruent with out intuition.
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5.3 Task Adaptive Metric Space

for Improved Medium-shot Generalization

We propose Task Adaptive Metric Space (TAMS) to exploit the inherent expressiveness

of gradient-based methods and the non-parametric property of metric-based methods.

We note that TAMS is built upon a metric space that is meta-trained using Prototypical

Networks [Snell et al., 2017b] on Dmeta−train, and we focus on how to adapt the meta-

learned metric space to better fit the medical classification task (Dtrain,Dtest)∈Dmeta−test.

The metric space fφ is initialized with meta-learned parameters from Dmeta−train prior

to task adaptive fine-tuning on Dmeta−test.

Partition the Training Set Dtrain. Prototypical networks use all training data to

construct prototypes and the training examples are never evaluated against their labels,

hence cannot provide a loss function to estimate the quality of the metric space. However,

for metric fine-tuning, we need to quantify the extent to which the metric space fits

Dtrain to penalize errors and to improve the metric space. To address this, we propose

to randomly partition the training examples into disjoint sets: Dprototype
train for computing

a prototype for each class and Dpredict
train for assessing the quality of the prototypes. The

metric space is adapted to a new task by maximizing the likelihood that the data are

generated by the prototypes. This provides an evaluation measure that estimates how

suitable the metric is for the training data, which further allows us to fine-tune the

metric space to better represent the medical dataset.

Construct Prototypes from Dprototype
train . Prototypical networks reduce the training

data into points ct on the metric space as prototypical representations of class t. We

only use Dprototype
train to construct ct= 1

K

∑
(xi,yi)∈Dprototype

train
1{yi=t}fφ(xi), where K denotes

the number of examples for class t, 1{yi=t} denotes an indicator function of yi which

takes value 1 when yi= t and 0 otherwise. The metric space is parameterized by φ in

the form of a convolutional or a residual network.

Make Predictions on Dpredict
train . We evaluate the prototypes ct on Dpredict

train to estimate

the quality of the metric space for the medical image classification task. To obtain the

prediction labels, each example x∈Dpredict
train is first mapped to fφ(x) on the metric space,
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then being classified based on its relative distances with each prototype ct, according

to the distance function d:

p(y= t|x)=
exp(−d(fφ(x),ct)))∑
t′exp(−d(fφ(x),ct′))

. (5.1)

Loss for Metric Fine-tuning. We use the cross-entropy loss to evaluate the pre-

dictions on the medical dataset Dpredict
train . The loss can be reinterpreted as a maximum-

likelihood objective that aims at minimizing the distance between an example and its

corresponding class centroid while maximizing its distance to other class centroids [Snell

et al., 2017b].

Make Predictions on Dtest. With the task-adapted metric space on Dtrain, we can

make predictions on the testing data Dtest. Unlike the metric fine-tuning step that

constructs prototypes fromDprototype
train , in this prediction step, we use all training examples

in Dtrain to represent the prototypes. Note that two types of prototypes are constructed:

(i) the first set of prototypes are derived from Dprototype
train to measure how well the metric

space represents data from the new task. (ii) the final prototypes for inferring new

examples are calculated on the full training set Dtrain after the metric space has been

adapted to the new task. We use the same distance-based classifier as Eq. (5.1) on Dtest

as final predictions on the test data. The prototype-based classifier differs from the

k-nearest neighbor approach in that the prototypes are learned in a supervised fashion by

adjusting the parameters of the metric space based on all training examples. In contrast,

in the k-nearest neighbor approach, classes are determined by amemory-based procedure

where only a subset of the training data contributes to each example’s predictions.

To summarize, TAMS adapts a meta-learned metric space to better represent med-

ical data. This improves medium-shot generalization in spite of domain difference

between Dmeta−train and Dmeta−test which would otherwise be challenging for current

meta-learning methods. TAMS constitutes a natural bridge between gradient-based

and metric-based methods. In few-shot situations, the non-parametric classification

procedure prevents our model from overfitting. In medium-shot situations, fine-tuning

the metric space exploits the expressive richness of gradient-based methods to fit the

target medical classification task better.
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5.4 Empirical Results

5.4.1 Data and Evaluation Setup

The experiments first pre-train a model with meta-learning or transfer learning on

Dmeta−train, then evaluate the generalization properties on the target meta-test dataset

Dmeta−test, i.e., the target medical classification task.

Meta-train Dataset. We use miniImageNet [Ravi and Larochelle, 2016; Vinyals

et al., 2016]—a standard meta-learning dataset—as Dmeta−train. Because the goal of

this chapter is to propose TAMS and evaluate it against other meta-learning baselines

in unseen domains, we do not incorporate other medical datasets in meta-training.

Meta-test Dataset. We use Optical Coherence Tomography (OCT) [Kermany et al.,

2018] as Dmeta−test. OCT aims to classify each image into one of the four classes: NOR-

MAL, CNV, DME, DRUSEN. We created our train-test split that consists of up to

250 examples per class as Dtrain, and 250 examples per class as Dtest. We include more

details about data statistics and preprocessing in the supplementary material.

Evaluation Setup. To examine the impact of training data onmodel performance, we

vary the number of training examples and use 1 to 250 examples per class as training data

Dtrain. All experiments are repeated ten times with controlled random seeds. In terms of

model architectures, we first evaluate different methods with a standard meta-learning

architecture: “conv4”—a 4-layer convolutional network. We then experiment with

“resnet12”, a 12-layer residual network, to assess the impact of added model capacity.

Baselines. We use the following transfer learning and meta-learning baselines:

1. “Scratch”: a basic model that trains Dtrain from random initialization.

2. “Transfer”: a transfer learning baselinewhere themodel is pre-trained onminiImageNet,

and then fine-tuned on Dtrain.

3. “MAML”: a gradient-based meta-learning baseline that meta-trains MAML pa-

rameters on miniImageNet, and fine-tunes on Dtrain.

4. “Proto”: a metric-based prototypical network meta-trained on miniImageNet.
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Table 5.1: OCT test accuracy with “conv4” architecture (%)

shots
16 gradient steps 32 gradient steps

Proto Scratch Transfer MAML TAMS Scratch Transfer MAML TAMS

1 28.18 25.72 26.97 27.80 — 25.88 26.93 27.84 —
2 33.14 27.58 28.93 33.63 32.13 27.78 29.05 34.04 32.02
4 35.51 26.84 30.31 33.12 37.34 27.62 31.20 33.93 37.80
8 40.93 29.37 34.52 38.00 42.73 30.11 36.27 38.50 42.49
16 41.53 32.83 40.27 42.29 47.55 34.75 41.98 44.27 48.07
32 46.38 35.72 41.97 43.23 53.71 38.25 45.32 45.45 53.74
64 48.20 38.84 44.49 44.91 56.30 42.45 48.48 48.59 57.51
128 49.17 43.45 47.95 48.68 57.53 48.62 52.84 54.35 60.55
250 49.80 46.89 50.28 50.00 60.83 53.72 57.34 57.65 63.57

Figure 5.1: t-SNE visualization of
sampled test data before adaptation

Figure 5.2: t-SNE visualization of
sampled test data after adaptation

5.4.2 Results and Discussions

Table 5.1 summarizes the test accuracies on OCT with various shots per class. All

models use “conv4” architecture, and the accuracy is averaged over ten runs.

Transfer Learning andGradient-basedMeta-learning. We first investigate the

impact of transfer learning and gradient-based meta-learning by comparing “Scratch”

with “Transfer” and “MAML”. The three methods only differ in parameter initialization:

“Scratch” is randomly initialized, “Transfer” is initialized from a pre-trained classifier,

and “MAML” is initialized from meta-learned parameters. In Table 5.1, under the same

number of gradient steps, we find “Transfer” and “MAML” perform better than “Scratch”
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because of better parameter initializations. We also find “MAML” works better than

“Scratch” and “Transfer” when shots are less than 32 because “MAML” is optimized for

few-shot learning.

The Bias-variance Tradeoff. As a critical motivation to TAMS, we highlight the

bias-variance tradeoff by comparing “MAML” with “Transfer” and “Proto”. In few-shot

scenarios, as shown in Table 5.1, “Proto” outperforms ‘Transfer” and “MAML” under

1, 4 and 8 shots, even after “Transfer” and “MAML” are fine-tuned with more gradient

steps. This suggests gradient-based methods tend to overfit in few-shot. However, as we

increase the number of training examples, we find that “MAML” with 32 gradient steps

outperforms “Proto” at 16, 64, 128 and 250 shots, suggesting metric-based methods

tend to underfit in medium-shot.

The Effect of Metric Adaptation. To validate the effectiveness of our proposed

method, we compare TAMSwith all baseline methods under the same number of gradient

steps. Table 5.1 shows that TAMS achieves the best test accuracy in most cases. Take

128-shot classification as an example, under 32 gradient steps, TAMS outperforms

MAML by 6% and outperforms Proto by 10%. This suggests TAMS achieves better

bias-variance equilibrium, alleviating the overfitting of gradient-basedmethods while pre-

venting underfitting of metric-based methods. Figure 5.1 and 5.2 shows testing examples

projected on the metric space before and after metric adaptation. While examples from

different classes are mixed before metric adaptation, TAMS results in well-separated

clusters that reflect their labels. This confirms that TAMS is capable of adjusting param-

eters of the metric space to better represent examples in semantically meaningful ways.

Furthermore, TAMS is efficient to train as it requires a small number of gradient steps.

The Impact of Metric Adaptation Steps. Figure 5.3 shows the impact of metric

adaptation steps on the test accuracy. We find that a few adaptations steps are sufficient

in few-shot, but more adaptations steps are needed in medium-shot.

The Impact of Model Capacity. As an ablation study, we investigate the impact

of model capacity on different meta-learners. We have the following findings from

Figure 5.4: (i) With respect to metric adaptation, TAMS improves dramatically as the
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Figure 5.4: Impact of model architecture.

model capacity increases from “conv4“ to “resnet12“. We also highlight the improved

performance over “Proto” and “MAML” brought by our proposed TAMS. (ii) Concerning

different transfer learning approaches, we find transfer learning without updating the

features on the new task—“Transfer-features”—does not work well. This difference can

be attributed to the domain difference between Dmeta−train and Dmeta−test and the need

for the model to adjust its feature representations to better fit Dmeta−test. (iii) We find

the transfer learning method “Transfer-all”, that fine-tunes both feature representations

and the classifier, performs best with “resnet12”. Despite this, we highlight that the

proposedTAMSgreatly outperforms othermeta-learningmethods indicating the exciting

potential of metric-adaptive meta-learning. We believe better metric loss functions, such

as contrastive loss [Koch et al., 2015] and triplet loss [Schroff et al., 2015], could further

improve the performance of TAMS for better medium-shot medical image classification.

Due to page limits, we include more empirical results in supplementary materials.

5.5 Limitations

The main limitation of the empirical study is that the proposed model is not evaluated

on large-scale meta-learned representations, such as ImageNet, due to computational

limitations. This makes it difficult to fully evaluate the effectiveness between weight

transfer and learning-to-learn in real-world applications.

The main limitation of the proposed approach is in the definitions of the task space.

It is sometimes difficult to gather a large number of class labels to sample tasks from. Self-

supervised learning-to-learn approaches are promising directions to resolve this problem.
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5.6 Conclusions

With this chapter, we hope to draw the attention of the medical imaging community to

the rich field of meta-learning, which offers feasible solutions to situations of the limited

training examples that the field is often faced with. To better evaluate realistic situations

in the medical domain, we extend few-shot learning to medium-shot and establish a

baseline procedure that aims to evaluate representative meta-learning algorithms on

various amounts of training data. This serves as a baseline for future explorations

using meta-learning in the medical domain. Through bias-variance analysis, we identify

complementary roles of gradient-based and metric-based meta-learning and propose

to fuse the best of both methods into Task Adaptive Metric Space. Our experiments

reveal that the proposed metric adaptation method can adjust the metric space to better

reflect examples of a new medical classification task.



Chapter 6

Conclusion and Future Research

6.1 Conclusion

In this thesis, we first study unsupervised domain adaptation, an emerging field of

semi-supervised learning that aims to address domain shift based on labeled data in the

source domain together with unlabeled data in the target domain. We propose implicit

class-conditioned domain alignment to address between-domain class distribution shift.

We provide a theoretical analysis to justify the proposed method by decomposing the

empirical domain divergence into class-aligned and class-misaligned divergence, and

we show that class-misaligned divergence is detrimental to domain adaptation. We

identify a domain discriminator shortcut function that interferes with adversarial do-

main adaptation because the model could bypass the optimization for domain-invariant

representations, but rather optimize for a shortcut function that is independent of

the covariate contributing to the domain difference. We show that our method offers

consistent improvements for different adversarial adaptation algorithms: both DANN

and MDD. We also design extensive experiments to demonstrate the effectiveness of the

proposed method by simulating various degrees of between-domain class distribution

shift. The empirical results reveal that the proposed method improves other domain

adaptation algorithms regardless of the degree or the type of distribution shift.

We also propose two meta-learning methods to bridge the gap between gradient-and-

metric-based methods. The first proposal is Conditional class-Aware Meta-Learning

where we introduce a metric space trained to encode regularities of the label structure

so as to impose global class dependencies to the model. The second proposal is to

extend few-shot learning to few-to-medium-shot learning. This is motivated by the

discrepancy of the number of training examples between few-shot tasks and real-world

medical datasets. While in the literature meta-learning mostly deals with tasks with

only a few training examples, i.e., five or fewer, datasets in the medical domain tend to

have tens to a few hundred labeled examples. We empirically evaluate and analyze the

71
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baseline meta-learning methods through the lens of bias-variance tradeoff on medical

datasets. Our analysis suggests gradient-based methods tend to overfit few-shot datasets

while metric-based methods tend to underfit medium-shot datasets. We propose Task

Adaptive Metric Space that uses gradient-based fine-tuning to adjust parameters of

the metric space to provide more flexibility to metric-based methods. Our experiments

reveal that the proposed metric adaptation method can adjust the metric space to better

reflect examples of a new medical classification task. Regarding the difference between

the two proposed approaches, CAML learns to impose a dynamic bias on a family of

tasks. In contrast, TAMS learns to adapt a metric space to a different task. For this

reason, if a new task is more closely related to the family of meta-training tasks, CAML

should be preferred to TAMS. On the other hand, if the new task has low relation with

the meta-training tasks, the meta-learned dynamic bias might not be generalizable;

therefore, TAMS should be preferred over CAML.

6.2 Future Research

6.2.1 Meta-learning Domain Adaptation
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Figure 6.1: meta-learning domain adaptation: each row represents an unsupervised domain
adaptation task where both the classification task (distinguishing different characters) and
domains (colors) are different. The goal is to generalize from Dmeta−train to Dmeta−test.
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Although much of the work in domain adaptation is on the same task space, it is

appealing to be able to also generalize to new domains together with new tasks. This

is a more general form of meta-learning where Dtrain and Dtest are the same task but in

different domains, i.e., each inner task itself is a domain adaptation task, where Dtrain is

labeled andDtest is unlabeled. The goal for this setup is to generalize to a new task as well

as an unseen domain, i.e., domain-adaptive cross-task generalization. This is depicted in

Figure 6.1 where Dmeta−train comprises a set of different domain adaptation tasks on both

different label space and different domain pairs. The assumption is that the underlying

factors that contribute to the domain difference, such as different colors, can be learned

and decomposed into different factors through Dmeta−train and generalize to Dmeta−train.

As a concrete example, the same MRI scanner can be configured differently for differ-

ent hospitals or patients, where each configuration can be treated as a different domain.

Although it is feasible to adapt from one configuration to another directly, the knowledge

between various adaptation procedures, while adapting between many configurations,

are not shared to facilitate better adaptation to new configurations. meta-learning

domain adaptation enables the model to reuse previous domain adaptation experiences

to better adapt to new domains. In addition, meta-learning domain adaptation makes

domain adaptation more efficient by re-using the domain knowledge across different

tasks: adapting a liver segmentation model from domain A to domain B should make

adapting a lung segmentation model easier.

One potential approach is to use Reptile [Nichol et al., 2018]—a first-order MAML

style approach—that randomly samples domain adaptation pairs and uses the loss

from target domain to update the meta parameters until the model converges. For

meta-testing on a new task with a different domain pair, we can use the meta-learned

parameters as initialization. However, preliminary exploratory efforts suggest first-order

approaches like Reptile does not converge well with adversarial domain adaptation

approaches. The main challenge is that the task-specific gradient information is highly

sensitive to meta-aggregation in the form of simple averaging, and more efforts need

to be put in developing adversarial friendly approaches to meta-learning.
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6.2.2 Privacy-Preserving Domain Adaptation

Privacy has become a major concern for both individuals and institutions when it comes

to data sharing to develop effective applied machine learning models. This makes it

difficult to make use of collaborative learning where data are stored in isolated “islands”

and it is prohibitive to transfer data to a central server for joint training due to privacy

concerns. This is especially relevant for domain adaptation because the data of different

domains typically reside in different physical environments.

Three types of approaches can be used to address the privacy concern for collaborative

domain adaptation: differential privacy [Dwork et al., 2006], federated learning [Konečnỳ

et al., 2015], and hypothesis transfer [Kuzborskij and Orabona, 2013]. The differential

privacy approach protects sensitive informaton by sharing randomized aggregated infor-

mation, as opposed to individual data samples. In deep learning, training methods that

respect differential privacy have been proposed with the ability to control the influence

of the training data through stochastic optimiazation [Abadi et al., 2016]. The second

approach is federated learning where models are trained in parallel without exchanging

data between different clients. Instead, the models only exchange parameters and use

some aggregation algorithms to aggregation the knowledge of distributed clients into

a centralized server. The third approach is hypothesis transfer where transfer learning

happens at the hypothesis level in the form of parameters, rather than instance-level

transfer learning. The goal is to adapt the hypothesis trained on the source domain to

a set of unlabeled target domain data without access to the source domain data.

The proposed implicit class-conditional domain alignment in Chapter 3 can be in-

tegrated into federated learning and hypothesis transfer by employing the class-aligned

sampling strategy protect against membership inference attacks from the marginal class

distribution. Furthermore, implicit alignment can be reformulated as class-conditioned

parametric bootstrap where adversarial examples are sampled to learn domain invariance

while minimizing the risk of adversarial attacks by learning smooth decision boundaries.

6.3 Grounded meta-learning

The dominant paradigm in current natural language understanding and computer vision

is to learning statistical patterns from data, such as language models and self-supervised
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image representation learning. These approaches typically require large amounts of

training data and suffer from spurious correlations in the dataset due to the lack of

high-level semantic understanding.

Visually-grounded language learning has emerged into a new research direction that

aims to learn language representations in multimodal and interactive environments

where the language is grounded by its interactions with the environments. This is similar

to how children acquires vocabulary through interactions with concepts in the real

world [Gopnik and Meltzoff, 1984]. It is therefore promising to bridge computer vision,

natural language understanding, and interactions with the real world environments under

the framework of meta-learning. Pioneering work in this direction [Co-Reyes et al., 2018]

shows that language-guided policy learning in the form of iterative language corrections

can improve the efficiency of simulated navigation and manipulation tasks. Another

example in this direction is to use simulation engines to help learn the intuitive physics of

the world [Battaglia et al., 2013]. Intuitive physics links perception with higher cognition

for abstract concepts understanding and can be used as an informative prior for visual un-

derstanding. Grounded meta-learning can help resolve the long-term problems faced by

current natural language understanding and computer vision tasks [Hermann et al., 2017].

The proposed class-aware meta-learning in Chapter 4 can be generalized to context-

aware [Silver et al., 2008] meta-learning where the grounded language information can

be used as an conditional input to facilitate visual reasoning. In a similar way, visual

information can be used as conditional input while training word embeddings through

languagemodels. The conditional embedding are context dependent and less ambiguous.
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