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ABSTRACT 
 

Effective fisheries management requires an awareness of population demography and 

the spatial scale of population structuring, yet traditional approaches to quantifying both 

can be labour intensive and expensive. Here I explore the utility of large genomic 

datasets to characterize population structure, estimate effective population size, and 

monitor population status in Atlantic Salmon (Salmo salar) in Placentia Bay 

Newfoundland, Canada using a 220K SNP array. Population structure was linked to a 

temperature associated chromosomal polymorphism. Populations were small (N"! < 350) 

and currently declining. Simulations suggested that large genomic datasets (≥ 100 

microsatellites or ≥ 1000 SNPs) enabled accurate detection of population declines >30%. 

As such, I demonstrate that large genomic datasets allow the identification of fine-scale 

spatial structuring, the structuring forces involved, and provide a cost effective and 

accurate approach to monitor population status in the wild.   
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CHAPTER 1 – Introduction 

 

1.1 Introduction 

Effective fisheries management requires an awareness of the spatial scale of structuring and 

population demographic change to ensure sustainable harvest (Hutchings & Reynolds, 2004; 

Ovenden et al., 2016), forecast future vulnerability (Hare et al., 2011; Fordham, Brook, Moritz, & 

Nogués‐Bravo, 2014; Lehnert et al., 2019a), and inform conservation management actions 

(Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010; Leroy et al., 2018). Traditional 

monitoring approaches (e.g., angling surveys and counting fences) are often logistically 

challenging, and there is considerable interest in genetic monitoring that promises to reduce cost 

and increase the scope and scale of monitoring efforts (Schwartz, Luikart, & Waples, 2007; 

Palstra & Ruzzante, 2008; Hare et al., 2011; Frankham, Bradshaw, & Brook, 2014). Genome-

scale data, now readily available for many non-model organisms, have the potential to improve 

accuracy of population genetic parameters, such as effective population size (Ne) (Waples, 

Larson, & Waples, 2016; Allendorf, 2017). Genome-scale data also highlight the role of genomic 

architecture in adaptive divergence (Campbell, Poelstra, & Yoder, 2018; Wellenreuther, Mérot, 

Berdan, & Bernatchez, 2019). Thus, parameters based on genome-scale data increase the 

sensitivity and reliability of genetic monitoring approaches.  

Atlantic Salmon (Salmo salar), an ecologically, culturally and economically important 

species, whose range spans the North Atlantic Ocean, has declined in abundance range-wide over 

the last half century (Chaput, 2012; Lehnert et al., 2019b). Due to management and conservation 

concern, Atlantic Salmon have been the subject of extensive population genetic (e.g., Nielsen, 
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1998; Verspoor, 2005) and genomic studies (e.g., Aykanat et al., 2016; Jeffery et al., 2018). As 

such, the scale of available data and resources (e.g., chromosome level assembly; see Lien et al., 

2016) make Atlantic Salmon a prime candidate to examine the utility of large genomic datasets 

for genetic monitoring.  

Atlantic Salmon, an iteroparous species characterized by large-scale ocean migrations 

(Reddin, 1988) and fine-scale homing behaviour (Stabell, 1984), exhibits hierarchical population 

structure across its range with genetically, phenotypically, and adaptively differentiated 

populations (King et al., 2007). Genomic differentiation has been found to be greatest between 

continents with eastern (European) and western (North American) Atlantic Salmon having 

diverged more than 600,000 years before present (bp) (Nilsson et al., 2001; King et al., 2007; 

Rougemont & Bernatchez, 2018). Within Atlantic Canada, regions such as southern 

Newfoundland have been found to exhibit complex structuring. However, the contributions of 

neutral (i.e., genetic drift) and adaptive divergence have yet to be resolved (Bradbury et al., 

2014).  

Southern Newfoundland, in particular the Avalon Peninsula, is unique in that evidence 

suggests it is an area of trans-Atlantic secondary contact (Bradbury et al., 2015; E. Verspoor and 

D. Knox, in preparation). Recent research suggests that such trans-Atlantic secondary contact 

with European salmon near the end of the last glacial maximum approximately 18,000 bp 

resulted in karyotypic variation and polymorphism of genomic architecture (Brenna-Hansen et 

al., 2012; Rougemont & Bernatchez, 2018; Lehnert et al., 2019a). However, the extent that 

chromosomal structural variation associated with trans-Atlantic secondary contact has influenced 

population structure and adaptive variation in the region remains unknown.  
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Placentia Bay, a large (145 km wide at the mouth by 125 km long) and deep (240 m) 

embayment bounded by the Avalon Peninsula to the east and the Burin Peninsula to the west 

remains a relatively understudied region in south Newfoundland. Demographic estimates 

obtained using traditional monitoring approaches (i.e., counts of returning mature salmon) 

suggest declines in this region have ranged from 33 – 96% from the previous three generations 

(DFO, 2020). Declines have been attributed to a high rate of exploitation (Dempson et al. 2001), 

and hybridization with aquaculture escapees (Wringe et al., 2018).   

The overall objective of this thesis is to generate a multi-year genomic dataset which will 

serve as a baseline against which future change will be assessed through continued genetic 

monitoring. The baseline is used here to demonstrate the utility of large genomic datasets to 

resolve the forces structuring populations regionally and monitor spatial and temporal change in 

population structure and abundance.  

1.2 Thesis structure 

 Chapter two provides baseline estimates of population size of salmon populations in 

Placentia Bay, and additionally explores the utility of large genetic marker panels when used in 

combination with the single-sample linkage disequilibrium (LD) method (Hill, 1981) for genetic 

monitoring. Chapter three characterizes current spatial structure among Atlantic Salmon 

populations in Placentia Bay and explores the role of secondary contact in structuring. In each 

chapter, the implications for conservation and management are addressed both in terms of 

Atlantic Salmon in the region and more broadly.  

 Datasets with tens of loci are commonly used to study population demography, describe 

population structure, and inform conservation and management. Large datasets, with orders of 
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magnitude more loci, are now readily available for non-model species due to technological 

advances (Waples et al., 2016). These datasets, with genome-wide coverage, have been shown to 

possess more power to infer subtle spatial genetic structure and the potential to enable detection 

of less severe population declines (Wang, 2016; Allendorf, 2017).  

 Chapter two uses simulations to assess the utility of large panels (L = 100 microsatellites 

and 1000 or 10,000 SNPs) used in combination with the single-sample linkage disequilibrium 

(LD) method (Hill, 1981) for genetic monitoring. Simulations, performed with newly developed 

AGESTRUCNb (Antao et al., 2020), investigate how number of loci, marker type, initial population 

size, and sample size impact detection and approximation of declines in population abundance, as 

well as the precision and bias of estimates of the effective number of breeders (!""). Simulations 

inform interpretation of accuracy and reliability of empirical !"" generated to provide baseline 

estimates of population size for 26 rivers, sampled over three discrete years (2016 – 2018), in 

Placentia Bay, Newfoundland, Canada (Figure 1). The ability to detect trends in wild population 

abundance with large panels (L = 101 microsatellites and 1000 or 10,000 SNPs) was evaluated 

both within the previous generation, using the LD method in NeESTIMATOR v2.1 (Do et al., 2014), 

and over the recent past, using LINKNe (Hollenbeck, Portnoy, & Gold, 2016).  

 Chapter three uses the 220K SNP array to examine both neutral and adaptive population 

genetic structure of Atlantic Salmon in Placentia Bay, Newfoundland, Canada. Multivariate 

analysis, across two independent years of samples was used to resolve the scale of structuring. 

Redundancy analysis was used to identify environmental correlates and a generalized linear 

model was used to examine the temporal stability in the patterns observed. 
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 Lastly, Chapter four discusses the implications of the results presented in Chapters two 

and three for the conservation and management of Atlantic Salmon in Placentia Bay, 

Newfoundland, Canada and highlight potential directions for future research.  
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Figure 1 Sampling locations (n = 26, red circles) of juvenile Atlantic Salmon (Salmo salar) in 
Placentia Bay, Newfoundland, Canada. Samples collected in 2016, 2017 and 2018.  
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CHAPTER 2 – Genetic monitoring in the era of large genomic datasets: early 
and accurate detection of population decline using effective population size 
 

2.1 Abstract  

Early and accurate detection of population declines is essential to inform conservation and 

management of wild populations. Large genomic panels, containing thousands of genome-wide 

loci have the potential to improve accuracy and enable detection of population declines. 

However, gains in power and precision have yet to be quantified. Here I compared the 

performance of large and small panels of microsatellites and SNPs to detect population decline 

using repeated sampling and the single-sample linkage disequilibrium (LD) method of effective 

population size (Ne) estimation. I used simulated data, based on Atlantic Salmon (Salmo salar) 

life history, and varied both population size and per generation rate of decline. Simulation results 

were compared to empirical Nb estimates for Atlantic Salmon from 26 rivers in Newfoundland, 

Canada. My results suggest large panels of loci have greater power to both detect declines and 

resolve the magnitude of decline relative to small panels. Large panels detected minimum 

declines of 27% when population size was small (N = 100) and sample size was large (S = 50). In 

addition to panel size, both population size and sample size significantly influenced detection of 

decline. Power to detect declines decreased as population size increased and large panels were 

found to outperform large microsatellite panels when sample size was small (S = 30). My results 

suggest that large panels improve the utility of genetic monitoring as a conservation and 

management tool by enabling accurate detection of population decline. 
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2.2 Introduction  

Early and accurate detection and quantification of population decline is crucial to fisheries 

and wildlife conservation and management. Population declines are often associated with a loss 

of genetic diversity which decreases evolutionary potential and increases risk of extinction 

(Shaffer, 1981; Frankham, 1995). Over the last few decades, many species have experienced 

declines in both number and size of populations (Ceballos, Ehrlich, & Dirzo, 2017) with more 

species anticipated to be affected and greater population declines expected in the coming decades 

due to continued climatic change and anthropogenic impacts (Hoffman, Sgrò, & Kristensen, 

2017). Effective management requires an awareness of population demographic changes to 

ensure sustainable harvest (Ovenden et al., 2016), forecast future vulnerability (Fordham et al., 

2014; Lehnert et al., 2019a), and inform conservation management actions (Luikart et al., 2010; 

Leroy et al., 2018). However, obtaining demographic data using traditional monitoring 

approaches is challenging, particularly for populations that are often not directly observable or 

accessible such as those in marine or freshwater environments, or that are cryptic, elusive, or 

remote (Luikart et al., 2010). As such, there is considerable interest in genetic monitoring for the 

detection and identification of population declines on a timescale relevant to population 

management and conservation (Schwartz et al., 2007; Palstra & Ruzzante, 2008; Hare et al., 

2011; Frankham et al., 2014). 

 Population genetic parameters are commonly used to make inferences regarding 

population demography (e.g., Bernos & Fraser, 2016; Perrier, April, Cote, Bernatchez, & Dionne, 

2016) and to inform conservation and management actions (Palstra & Fraser, 2012; Ferchaud et 

al., 2016) yet our understanding of how these metrics perform in scenarios of population decline 
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is limited. Simulations suggest population genetic parameters such as effective population size 

(Ne) could be used to reflect trends in abundance (Tallmon et al., 2010; Antao, Pérez-Figueroa, & 

Luikart, 2011; Wang, 2016). Empirically, a positive correlation between Ne and adult census size 

(Nc) has been detected in some studies (Bernos & Fraser, 2016; Ferchaud et al., 2016; Kuparinen, 

Hutchings, & Waples, 2016), although it has been lacking in others (Palstra, O’Connell, & 

Ruzzante, 2009; Serebzov, Jorde, Bernatchez, Olsen, & Vøllestad, 2012; Whiteley et al., 2015; 

Mueller, Chakarov, Krüger, & Hoffman, 2016). While the reason for disagreement among studies 

remains uncertain, previous studies have shown that the ability to detect a demographic decline 

with genetic data is likely strongly affected by population genetic parameter of interest and 

method of analysis, population size, sample size, and number of loci (Tallmon et al., 2010; Antao 

et al., 2011; Wang, 2016).  

Large panels, with orders of magnitude more loci than commonly used panels, have the 

potential to improve accuracy of population genetic parameters, potentially enabling detection of 

less severe population declines (Waples et al., 2016; Allendorf, 2017). Although large panels 

with genome-wide coverage are becoming increasingly available for non-model species and are 

commonly used in the genetic monitoring of natural populations, their utility for inferring 

population size and trend has not been evaluated (Ellegren, 2014; Garner et al., 2015; Pierson, 

Luikart, & Schwartz, 2015). As such, there is a need to assess the power, precision, and bias of 

large panels in the context of estimation of contemporary effective population size.  

Here, I evaluated the power and accuracy of large panels when used to estimate the 

effective number of breeders (Nb), the number of parents contributing to a single cohort, for 

detection and quantification of population declines. I focus on the most commonly used estimator 

(Jones et al., 2016; Wang, 2016), the single-sample linkage disequilibrium (LD) method (Hill, 
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1981; Waples, & Do, 2010). I used AGESTRUCNb (Antao et al., 2020), parameterized for Atlantic 

Salmon, a species that has experienced range wide population declines over the last half century 

(Chaput, 2012; Lehnert et al., 2019b), to determine how number of loci, marker type, initial 

population size, and sample size affect ability to: (i) detect population decline, and (ii) 

approximate the magnitude of decline. I compare simulation results using empirical data for three 

discrete cohorts of Atlantic Salmon (Salmo salar) for 26 rivers in Placentia Bay, Newfoundland, 

Canada. Estimates of Nb and Ne will serve as a baseline for genetic monitoring. Atlantic Salmon 

have experienced range-wide population declines over recent decades (Chaput, 2012). Traditional 

monitoring approaches such as angling surveys and counting fences are often used to inform 

conservation and management actions. In Newfoundland, these monitoring approaches are 

implemented in a small number of salmon rivers. Genetic monitoring provides an opportunity to 

track population abundance on a broad scale. I discuss both the simulation and empirical results 

in the context of practical applications of large genomic datasets in combination with the LD 

method of Ne estimation as a tool for conservation and management.  

 

2.3 Methods  

2.3.1 Simulations  

I used simulated genetic data to evaluate the utility of a large genomic panel (≥ 1000 

SNPs or 100 microsatellites) to detect and approximate population decline with the single-sample 

linkage disequilibrium (LD) method, the most commonly used estimator of contemporary 

effective population size (Ne). I created simulation scenarios, based on Atlantic Salmon life 

history, that varied in population size (number of mature anadromous individuals; N = 100, 500, 
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1000), number of loci (L = 25 or 100 microsatellites and 100, 1000 or 10,000 SNPs), sample size 

(S = 30, 50), and rate of decline (0 – 60% per generation) in a fully factorial design (Table S1; 

see Appendix E for total decline for each generation). Each scenario was replicated 10 times.  

 

Generation of simulated data 

I simulated the evolution of populations with controlled per generation rates of decline 

using the two-step procedure implemented in AGESTRUCNb (Antao et al., 2020) which integrates 

the individual-based forward-time simulation environment of SIMUPOP (Peng & Kimmel, 2005) 

with the estimation of effective number of breeders (Nb) using LDNe v2 (Do et al., 2014). First, 

simulations were initialized using population demographic parameters of wild Atlantic Salmon 

from southern Newfoundland, Canada (Table S2). Simulated datasets were generated for bi-

allelic SNPs, initialized with a heterozygosity of 0.5, and microsatellites initialized with 10 

alleles, frequencies drawn from a Dirichlet distribution, and a heterozygosity of 0.8. Following 

eight cycles of burn-in, populations were run for up to 20 generations (4 years per generation) 

forward in time, or until extirpated, without mutation for SNPs and with a mutation rate of 0.01 

for microsatellite markers.  

 

Estimation of effective population size  

I then used LDNe v2 (Do et al., 2014) to estimate Nb and calculate upper and lower bounds 

of confidence intervals (CI), using the jackknife method (Jones et al., 2016), from a subsample (S 

= 30 or 50) of age 1 individuals for each year simulated. Due to computational limitations of the 

LDNe v2 (Do et al., 2014) as implemented in AGESTRUCNb (Antao et al., 2020), age 1 individuals 
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were extracted from the simulated GENEPOP (Rousset, 2008) files for the largest panels (L = 

10,000 SNPs and N ≥ 500) using a custom R script prior to Nb estimation. A minimum allele 

frequency (MAF) threshold of 0.05 was used. A true Nb variance allowed, which determines the 

allowable threshold of Nb, of 5.0 was chosen to mimic a real-world scenario in which no limiting 

constraint can be placed on the estimate of Nb generated. Data collection began at generation t0 

(pre-decline) and continued for x generations up to a maximum of 20 generations or until 

extirpation as determined by the per generation rate of decline (Figure 2 and Figure S1). 

Populations became functionally extinct prior to 20 generations (80 years) when per generation 

rate of decline was high. For example, a population with a 5% per generation rate of decline was 

monitored for 20 generations, at which point total decline was approximately 65%, while a 

population with a 30% per generation rate of decline was monitored for 12 generations, at which 

point total decline was approximately 98% and the population was considered functionally 

extinct.  

 

Rate of false positives and false negatives 

I investigated the rate of false positives (type I error) and false negatives (type II error; 

failure to detect a decline) across panels of varying size using stable (0% decline) populations. 

Infinite !"" and CI estimates were set to 10,000. Frequency of false positive and negatives was 

assessed using the distribution of total change in !""; positive values indicated an increase, 

representative of false negatives, and negative values indicated a decrease, indicating a false 

positive.  
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Detection of declines 

I evaluated the performance of each panel, varying by marker type and number of loci, 

from two perspectives: power, and accuracy. I first assessed the likelihood of detecting a decline 

for each simulated scenario. A decline was detected if !"" (naïve point estimate) at tx, sampled the 

last year of each generation, was below !""	at t0. Power, the probability of detection was regressed 

against the modeled decline for each scenario. Mean detectable decline per scenario was 

calculated as the average decline detected with 80% probability (Antao et al., 2011).  

Mean !"" was calculated across replicates for each scenario to assess precision. Infinite !"" 

and CI estimates were set to 10,000. Visual inspection of the range of !"" was used to assess bias. 

Panels were considered unbiased if the range of !"" was small, and precise if mean !"" fell within 

the expected range of true Nb; due to the parameterization of Atlantic Salmon life history with 

precocial male maturation, true Nb ranges from the number of anadromous adults to the total 

number of mature individuals.      

 

Approximation of declines 

I next examined the ability of panels of varying size to accurately recover the modeled 

decline. Offset, the difference in the modeled and observed decline in !"" between t0 and tx, was 

calculated once per generation for each scenario. For example, a simulated population with an N0 

= 100 at t0 and a 20% decline per generation would have an Nb = 21 at t7 (79% decline); if !"" at 

t7 was 79% lower than !"" at t0 then offset = 0 indicating the magnitude of decline was accurately 

estimated. Infinite !"" were excluded from analysis. Declines were rounded to the nearest 10 (i.e., 

the 79% decline at t7, 20% decline per generation, was rounded up to 80% for data visualization).  
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2.3.2 Empirical data 

Genotyping and selection of neutral loci 

Juvenile Atlantic Salmon, aged 0 to 2+, were sampled by electrofishing during the period 

of July to September in 2016 – 2018 from 26 rivers in Placentia Bay, Newfoundland, Canada 

(Figure 1 and Table 1). Age of individuals was inferred based on length-age relationships 

(Sylvester et al., 2019). Fin clips were collected and stored in 95% ethanol. Samples collected in 

2016 (n = 1470) were genotyped using a panel of 101 microsatellite loci as previously described 

in Bradbury et al. (2018) (see Appendix F for microsatellite primers). Briefly, microsatellite loci 

were identified using the ICSASG v2 genome for Atlantic Salmon (Lien et al., 2016). Locus 

amplification and scoring of genotypes using MEGASAT followed the protocol previously 

described in Zhan et al. (2017). After filtering individuals for missing genotypes (missingness < 

0.05), 1433 remained; of these, a maximum of 30 individuals per river were retained for 

downstream analysis. Summary statistics, including number of alleles, observed (Ho) and 

expected heterozygosity (He), and global and pairwise population FST (Weir & Cockerham, 1984) 

were calculated using GENALEX v 6.5 (Peakall & Smouse, 2006, 2012) (see Appendix G). 

Samples collected in 2017 (n = 745) and 2018 (n = 684) were genotyped using a 220K bi-allelic 

SNP Affymetrix Axiom array developed for Atlantic Salmon by the Centre for Integrative 

Genetics (CIGENE, Ås, Norway) as previously described in Sylvester et al. (2018a). Briefly, 

these SNPs were a subset of those in the 930K XHD Ssal array (dbSNP accession numbers 

ss1867919552–ss1868858426) (Barson et al., 2015). Sample preparation and genotyping 

followed the protocol outlined in Sylvester et al. (2018a). Genotyped data were filtered for a 
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minor allele frequency (MAF) cut-off of 0.01 across all rivers and years and a missingness 

threshold of < 0.05 using PLINK v 1.9 (Chang et al., 2015). This resulted in a total of 138,853 

SNPs and 677 individuals in 2017 and 684 individuals in 2018.  

 The LD method of effective population size estimation assumes loci are neutral and 

unlinked. Following convention, microsatellite loci were assumed to be selectively neutral 

(Holleley et al., 2014) and unlinked as only one locus per genomic scaffold was selected 

(Bradbury et al., 2018). A panel of neutral and unlinked SNPs was generated by first removing 

chromosomes with known structural variants (Ssa01, Ssa08, Ssa23, and Ssa29) (Brenna-Hansen 

et al., 2012; Lehnert et al., 2019a) and then removing global FST outlier loci (> 95th percentile) 

using PLINK v 1.9 (Chang et al., 2015). This putatively neutral dataset was further thinned by 

count using PLINK v 1.9 (Chang et al., 2015); variants were removed at random, to generate 

panels of 100, 1000 and 10,000 SNPs.  

 

Estimation of effective population size and detecting population declines 

 To investigate the applicability of the simulated results to real world populations, Nb was 

estimated for the 26 rivers in Placentia Bay, Newfoundland, Canada for which juvenile Atlantic 

Salmon were sampled over three discrete years. To quantify trend in population size within the 

current generation, I estimated Nb for each year sampled (2016 – 2018) using the LD method in 

NeESTIMATOR v2.1 (Do et al., 2014). Rivers with a sample size < 20 were excluded from analysis. 

Precision was assessed using independent replicates (n = 5) of a sub-set of populations (North 

Harbour River; NHR, Nonsuch River; NON, and Big Salmonier Brook; BSA) selected based on 

!"" to represent the range of simulated population sizes. Replicate estimates of Nb were generated 
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by subsampling the putatively neutral dataset for 2017 using PLINK v 1.9 (Chang et al., 2015) to 

generate independent replicate panels of varying size (L = 100, 1000 and 10,000 SNPs).  

 LINKNe (Hollenbeck et al., 2016), which bins pairs of loci with similar recombination 

rates to reconstruct Ne over time was used to detect trend in !"# over the recent past to 

characterize expected trend in population size using the panel of 1238 SNPs and following the 

protocol outlined in Lehnert et al. (2019b). Estimates of Ne were generated for a range of time 

points over a 100-year period in the past using samples collected in 2017. Briefly, default 

parameters for bin size (5 cM), MAF (< 0.05), and sample-size bias correction were used. Since 

the time period to which an LD-based estimate of Ne applies is a function of recombination rate 

(c), mean recombination rate (c) per bin was used to estimate the number of generations (t) in the 

past (t = 1/2c) to which each !"# applied. Recombination rates for pairs of loci were calculated 

using the average length of male (2153 cM) and female (968 cM) linkage maps for North 

America Atlantic Salmon (Brenna-Hansen et al., 2012). A generation time of 4 years was used, 

consistent with Atlantic Salmon populations in south Newfoundland (COSEWIC, 2010). A 

significant decline was detected if CIs for the period 1989 – 2013 (~ 6 generations) were non-

overlapping.   

 

2.4 Results  

2.4.1 Simulations 

Genetic diversity (mean expected heterozygosity; He) and gametic disequilibrium (r2) 

were estimated across time in simulations by AGESTRUCNb (Cosart & Hand, 2017). Initial 

population size affected the initial level of genetic diversity; mean He was greatest at large initial 
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population sizes whereas, r2 was greatest when initial population size was small and increased as 

population size declined. Following theoretical expectation, small populations (N = 100) lost 

genetic variation more rapidly than large populations (N ≥ 500) regardless of whether they were 

stable or in decline, consistent with theoretical expectation. Mean He was unchanged by sample 

or panel size across time, whereas, r2 was unchanged by panel size or marker type, but decreased 

with increased sample size. In simulations with large stable (0% decline) populations, mean He 

increased over time because alleles were not lost via genetic drift as in small populations.    

 

Rate of false positives and false negatives 

For the stable population scenario (0% decline), the distribution of false positives and 

false negatives varied considerably with panel size and initial population size (Figure S2). Large 

panels more frequently inferred a decline in !""  (false positives) than small panels whereas, small 

panels were more likely than large panels to infer a large increase in !"" (false negatives). 

Notably, the distribution of total change was narrower (closer to expected 0% change) when Nb 

was estimated with large panels relative to small panels. With larger initial population size, the 

rate of false positives increased when using large panels (L = 100 microsatellites or ≥ 1000 

SNPs). In contrast, a relatively uniform distribution was observed at moderate to large population 

sizes when using small panels (L = 25 microsatellites or 100 SNPs). 

 

Detection of declines  

Large panels had greater power to detect smaller declines in !""  than small panels (Figure 

3 and Figure S3). Large SNP panels had greater power to detect declines relative to the large 
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microsatellite panel when sample size was small (S = 30) (Figure 3). With a large SNP panel and 

a small initial population size, declines ≥ 30% were detected more than 80% of the time with a 

small sample size. The difference in mean detectable decline between marker types with large 

panels was not apparent when sample size was large (S = 50), as a decline of similar magnitude 

(≥ 30%) was detected with the large microsatellite panel only when sample size was large (Figure 

S3). Mean detectable decline decreased with increased initial population size (Table S3). Large 

panels detected mean declines of approximately 27%, 35%, and 46% in small (N = 100), 

moderate (N = 500), and large (N = 1000) populations with a large sample size, respectively. 

While per generation rate of decline appeared to have a slight effect on the severity of decline 

detected, whereby smaller total declines were detected with 80% probability when per generation 

rate of decline was low (< 20%) relative to high (>30%), this finding was not explicitly tested. 

Overall, power to detect a decline was largely dependent on initial population size, and panel 

size, with effect of sample size on power to detect a decline appearing to be correlated with both 

marker type and panel size.  

 

Bias and precision of !""  

Large panels accurately (+/- 10% of modeled Nb) estimated Nb more frequently than small 

panels (Table 2). When sample size was large, and initial population size was small, !"" was 

accurate approximately 23% of the time when using a large panel compared to 15% of the time 

when using a small panel. The interquartile range of !"" was consistently narrower with large 

panels relative to small panels indicating replicate estimates were more similar and large panels 

more precise than small panels regardless of sample size or initial population size (Figure 4). 
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Notably, few outliers fell outside the expected range of true Nb when population size was small 

and panel size was large suggesting that when population size was small, large panels exhibited 

little bias. Interestingly, no negative or infinite !"" were observed when initial population size was 

moderate (N = 500) and the interquartile range remained within the expected range of true Nb 

when population size was large. This finding suggests the 10,000 SNP panel remained relatively 

unbiased as population size increased. 

 

Accuracy of estimated declines 

Large panels approximated the magnitude of decline with greater accuracy than small 

panels (Figure 5 and Figure S4). Accuracy of estimated decline increased with increased sample 

size (Figure 5), decreased as population size increased (Figure S4), and increased with severity of 

decline. Distribution of offset, the difference between the modeled and observed decline in !"", 

was greatest in the no decline scenarios and decreased as decline increased indicating the 

likelihood of accurately inferring the decline increased as magnitude of decline increased.  

 Median offset was generally found to be positive but small when using large panels 

indicating the decline estimated from genetic data was greater than the modeled decline (Table 

S4). Median offset inferred using small panels was found to be negative (i.e., declines were 

underestimated) regardless of sample or initial population size. Large SNP panels approximated 

declines with greater accuracy than the large microsatellite panel when sample size was small; 

however, when sample size was large, large panels were comparable regardless of marker type 

(Table S4). Notably, range of offset was consistently narrower with the 10,000 SNP panel 

relative to both the 100 microsatellite and 1000 SNP panels indicating the probability of 
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accurately inferring the decline was highest with the 10,000 SNP panel (Table S4). These results 

suggest that large panels provide the highest accuracy. Small panels are likely to underestimate 

the magnitude of decline. 

 

2.4.2 Empirical data 

Estimation of Nb and detection of decline within a generation 

 Using an empirical Atlantic Salmon dataset spanning three discrete years I found large 

panels had greater precision than small panels. Within year, !"" was found to be relatively 

consistent across panel size; however, both !"" and the upper bound of CIs were less often infinite 

when using large panels (Figure 6). The upper bound of CIs was found to be infinite three times 

more often when using a small rather than large panel. When comparing independent replicates 

within river, I found large panels were surprisingly precise; !"" was consistent across all 

replicates using the 10,000 SNP panel despite populations ranging from small (!"" ~ 75) to 

moderately small in size (!"" ~ 230) (Figure S5). Estimated !"" was generally greater and CIs 

narrower when sample size was large (S = 50 – 60) relative to small (S = 20 – 30) when using a 

large microsatellite panel (Figure S6). No significant change in !"" was observed within 

generation when using the criteria of non-overlapping CIs (Figure S7). However, I note that the 

wide CIs observed with small panels are more likely to impede ability to detect decline.   

 

Estimation of Ne and detection of decline over the recent past 

 I also used LINKNe (Hollenbeck et al., 2016), which reconstructs Ne over the recent past, to 

set expectations and contextualize observed trends in !""within the current generation. Using a 
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large panel (L = 1238 SNPs; see Lehnert et al., 2019b), I observed a similar pattern of decline 

across all rivers, with starting !"# dependent on river (Figure S8). Over approximately 6 

generations (1989 – 2013; 4 years/generation), !"# significantly declined in all but one of the 

rivers sampled. While the exception (Piper’s Hole River; PHR) was found to decline, the decline 

was not significant using the criteria of non-overlapping CIs (Figure S9).  

 

2.5 Discussion 

Populations can change rapidly in size, particularly in response to climatic or 

anthropogenic threats (Waples, 2002). Obtaining demographic data with traditional monitoring 

approaches may be challenging for some species, and detection of decline may be difficult due to 

limitations imposed by survey methods (Luikart et al., 1998, 2010). As such, there is 

considerable interest in genetic monitoring, using population genetic parameters such as effective 

population size (Ne) for the conservation and management of wild populations (Frankham, 2010; 

Hare et al., 2011; Ovenden et al., 2016). Previous work has shown the linkage disequilibrium 

(LD) method of Ne estimation can detect population bottlenecks using datasets of a few dozen 

loci (England et al., 2010; Antao et al., 2011; Wang, 2016). Large genomic datasets, now readily 

available, have the potential to enable detection of less severe decline and to accurately quantify 

declines in population size. Here, I examined the utility of large genomic panels for genetic 

monitoring and addressed implications for precision and bias within a management framework. 

Using the single-sample LD method to estimate effective number of breeders (Nb), I found that 

large panels have greater power and more accuracy than panels commonly used today. Here, I 
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show that large genomic panels improve sensitivity and reliability of genetic monitoring 

approaches. 

 

2.5.1 Detection and accuracy of population decline  

 I found r2 (mean gametic disequilibrium) was unchanged by panel size, and my results 

support the finding of Waples et al. (2016) that while large panels, with orders of magnitude 

more loci, increase the number of pairwise comparisons between loci, they do not increase the 

magnitude of linkage. As the number of loci is increased, the fraction of pairs of loci that are 

linked is expected to converge on the true fraction, which increases statistical power (Waples et 

al., 2016). However, not all pairwise comparisons among loci are independent. Confidence 

intervals estimated with the LD method are expected to be unrealistically precise; a problem that 

has been shown to be exacerbated as the number of loci is increased (Waples et al., 2016). Jones 

et al. (2016) found CIs estimated with the LD method and as few as 200 SNPs may only contain 

true Ne 80% of the time. Here, I found that CIs narrowed with increased panel size. Additionally, 

the range of !""	across replicates narrowed, with empirical !"" surprisingly consistent across 

replicates using large SNP panels. 

My results suggested that large panels consistently outperformed small panels by being 

able to detect less severe population declines. Declines detectable by large panels were 

approximately half as severe as those detectable with small panels comparable to those used in 

most current empirical studies. Although severity of decline detected was dependent on panel 

size, large declines were inferred with less bias and greater precision than small declines in all 

scenarios. Here, I found small panels (L = 25 microsatellites or 100 SNPs) detected minimum 
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declines of approximately 33 - 40% in small populations (N = 100) and 58 - 65% in moderately 

large populations (N = 500) with a sample size of 50. Using a small microsatellite panel (L = 20) 

and the LD method, Wang (2016) similarly detected declines of 40% in small populations (N = 

50) with a sample size of 100, and Antao et al. (2011) declines of roughly 67% in moderately 

large populations (N = 600) with a sample size of 50. In contrast, large panels (L = 100 

microsatellites or ≥ 1000 SNPs) simulated here, detected minimum declines of 25 - 29% in small 

populations (N = 100) and 33 - 40% in moderately large populations (N = 500) with a sample 

size of 50. Interestingly, when rate of decline was slow (low per generation rate of decline) I 

observed greater power to detect less severe declines (i.e., the minimum decline detected with 

80% probability is lower when per generation rate of decline was 5% relative to 40%).  

Large panels also outperformed small panels by inferring the magnitude of decline with 

greater accuracy. Large panels enabled reasonably accurate quantification of decline likely due to 

improved accuracy of Nb point estimates. Although false positives (type I error) were observed in 

all no-decline scenarios regardless of panel size, inferred magnitude of decline was often smaller 

with large panels relative to small panels. Inference of large population increase in no-decline 

scenarios were more common with small panels than with large panels. Accurate identification of 

stable and declining populations has been suggested to be dependent on the number of 

generations between samples (Tallmon et al., 2010). Here, I find likelihood of detecting a decline 

using the LD method dependent on panel, sample, and population size only. My results support 

previous work suggesting declines can be detected within a single generation using the LD 

method (e.g., England et al., 2010; Wang, 2016). Overall, large panels enabled detection of less 

severe declines with greater accuracy than small panels. I therefore expect less noise when 
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monitoring a population over time with a large panel, making trends in abundance easier to 

detect. 

 

2.5.2 Population and sample size 

Population and sample size affected detection and quantification of decline; power and 

precision increased with larger sample size and decreased with larger initial population sizes, a 

finding previously noted by Waples & Do (2010). Gains in power with larger sample size were 

largely dependent on the number of independent pairwise comparisons between loci; larger gains 

in power with increased sample size were observed when the number of independent 

comparisons was small and decreased as the number of independent comparisons increased. Due 

to the smaller number of independent pairwise comparisons, larger sample size improved power 

of the large microsatellite panel more than the large SNP panels. A similar increase in power was 

reported by Antao et al. (2011) who noted an increase in sample size was more beneficial than an 

increase in panel size when using small microsatellite panels. An increase in sample size from 30 

to 50 did little to improve power of large SNP panels; mean detectable decline was relatively 

unchanged. Interestingly, range of offset decreased when sample size was increased from 30 to 

50 while using a large SNP panel indicating that although power was not affected, precision 

increased with increased sample size. While an increase in sample size may improve power and 

precision more than a proportional increase in the number of loci, I note that technological 

advances have made increasing panel size using SNPs ten-fold easier than increasing sample size 

(England et al., 2010; Luikart et al., 2010; Antao et al., 2011). This result has implications for 



 25 

genetic monitoring, particularly for species of conservation concern for which sample size is 

often small.  

I found !""	was more frequently within the expected range of true Nb, when using large 

panels relative to small panels indicating large panels estimate Nb with less bias (i.e., more 

closely approximate true Nb) than small panels. Although I expected bias to be lower with SNPs 

relative to microsatellites due to rare alleles effects as found by Antao et al. (2011), I found little 

difference between marker type when panel size was large.  

Using genetic monitoring to infer trend in abundance in large populations is challenging 

because the signal of drift is expected to diminish as Ne increases (Waples & Do, 2010). As 

expected, I found relatively low accuracy in in populations with large initial size (N = 1000) 

using a panel of 25 microsatellites and a sample size of 50. While large panels increased power to 

detect decline in moderately large populations, frequency of false positives increased as 

population size increased, a finding also reported by Antao et al. (2011). I note that although it 

has been suggested that the LD method estimates Ne with reasonable accuracy in very large 

populations (Ne ~ 30,000), using simulations with a panel of 20 microsatellites and a sample size 

of 100 (Wang, 2016) in practice, the LD method has been found to lack power and precision 

unless a sufficient number of individuals (~1%) are sampled (Marandel et al., 2019).  

 

2.5.3 Limitations and biases 

It is worth noting here that I estimate Nb rather than Ne. It is often easier to estimate Nb 

than Ne, and while the two quantities are related, they differ in that Nb is important for 

understanding eco-evolutionary dynamics and mating systems, whereas Ne influences long-term 
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evolutionary process (Perrier et al. 2014; Waples et al., 2014; Ferchaud et al., 2016). While much 

remains to be understood about how Nb relates to Ne and N, Nb has been shown to approximate Ne 

when sampling a single cohort with overlapping generations and declines in Ne have been shown 

to track declines in N (Waples et al., 2013; Ferchaud et al., 2016; Kuparinen et al., 2016; 

Ovenden et al., 2016). Genetic monitoring should therefore target sampling designs of 

consecutive cohorts to estimate Nb using single-sample approaches, with consecutive cohorts 

being analyzed jointly to estimate Ne to provide a more comprehensive overview of the system 

over time.  

I also average over replicates and acknowledge that accuracy may be lower in practice. 

However, I provide distribution of !"" to better inform range of estimates possible under each 

scenario. Detection of decline can be defined many ways, here a decline was detected if a 

decrease in !"" was observed between t0 and tx and a significant decline was detected when 

confidence intervals between !"" at t0 and tx were non-overlapping as in Lehnert et al. (2019b). 

Lastly, I acknowledge that the conversion of negative and infinite !"" to 10,000 may reduce 

accuracy in scenarios with small panel or sample size and large population size for which infinite 

!"" were common. However, conversion of negative and infinite estimates to a finite value of 

10,000 is commonly used and as such was the approach taken here unless otherwise stated.   

 

2.5.4 Empirical observations 

My results support the finding that large panels are more precise and that larger sample 

size increases accuracy of large microsatellite panels. Demographic estimates obtained using 

traditional monitoring approaches (i.e., counts of returning mature salmon) suggest regional 
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declines in abundance of mature salmon have ranged from 33 – 96% from the previous three 

generations (DFO, 2020). However, demographic estimates fail to account for precocial (mature) 

male parr, which have been found to significantly increase !"# and !"" (Johnstone, O’Connell, 

Palstra & Ruzzante, 2013; Perrier, Normandeau, Dionne, Richard & Bernatchez, 2014). Southern 

Newfoundland has a high incidence of precocial male maturation (Dalley, Andrews & Green, 

1983). As such, trend in demographic and genetic estimates of population abundance may be de-

coupled. While no significant change in !"" was observed within a generation, using LINKNe, 

which detects trend in !"# over the recent past, I found that all rivers sampled had declined in 

population size over the last six generations. This result provides a baseline expectation for 

regional trend in !"# and further emphasizes the importance of quantifying decline on a 

management timeline. Further research is needed to determine the sampling frequency and 

temporal period of sampling required to detect trend in !"" .  

 

2.5.5 Practical considerations 

Some useful guidelines on the use of large panels to infer population abundance and trend 

emerge from my simulations. Under certain sampling and demographic conditions !"" can 

provide useful insights into population size and trends in abundance. In general, Nb estimated 

using large panels outperformed small panels by enabling earlier and more accurate detection of 

less severe population declines. However, limitations to the use of genetic monitoring with Nb 

remain despite the increase in power and precision with large panels. My results indicate that 

detection and quantification of decline with reasonable accuracy can be achieved with a large 

SNP panel and a sample size of 30 when population size is small, suggesting large SNP panels 
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may be better than microsatellites for species of conservation concern or for which it’s difficult to 

obtain a large sample of a single cohort. Large panels have greater power at moderate to large 

population sizes than small panels; however, accuracy decreases as population size increases and 

frequency of false positives increases as population size increases. This finding has implications 

for the feasibility of genetic monitoring studies; although false positives are generally a greater 

concern than false negatives, conservation resources are limited and as such future work should 

explore the relationship between power and precision working to maintain power while 

improving precision. 

Large panels also increased the likelihood of successfully identifying trend in population 

size and were better able to quantify magnitude of decline with reasonable accuracy than small, 

commonly used panels. The COSEWIC assessment process in Canada is based on decline in total 

number of mature adults, as such, accurate quantification of decline is essential. My results 

suggest large panels accurately recover population declines as small as 30% within a single 

generation using the LD method to estimate Nb; the larger the decline the greater the accuracy. 

Further research is needed to characterize how natural fluctuations in population size influence 

the ability to detect decline using !"" and large panels and to characterize how demographic 

history may influence precision and bias, since heterozygosity, mutation rate, and population size 

are all strongly influenced by past demographic events such as bottlenecks, and the LD method 

has been shown to be slow to track recovery (Hare et al., 2011). 

Several important considerations should be addressed when designing a real-world study 

informed by these simulations. First, I used sample sizes typical of population genetic studies (S 

= 30 – 50); however, Marandel et al. (2019) found the most common sample size for fisheries 
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stock assessment was 100, as such, I note that some conclusions, particularly those regarding 

large population sizes, might not hold if sample size were increased to 100 for both marker types. 

Second, I used a pcrit (minor allele frequency cut-off) of 0.05 for all scenarios regardless of 

sample or population size. The importance of selecting this parameter and its effect on precision 

has been noted elsewhere (Waples & Do, 2010; Jones et al., 2016; Marandel et al., 2019). Future 

work should examine how this parameter is affected by the use of large panels and potential 

differences in !"" when using polymorphic microsatellite or bi-allelic SNP panels. Additionally, 

since microsatellites are multi-allelic whereas SNPs are bi-allelic, they provide different types of 

information. I expect microsatellites would have greater power if used to calculate variance Ne 

(temporal method), which utilizes changes in allele frequency over time. Third, although a wide 

range of per generation rates of decline were modelled, in real populations abundance is likely to 

fluctuate stochastically. Future work should examine the frequency of sampling needed to detect 

trend in population size in a stochastic population.  

 

2.5.6 Conclusions 

Over the last few decades, many species have experienced declines in both number and 

size of populations (Ceballos, Ehrlich, & Dirzo, 2017), with more species anticipated to be 

affected and greater population declines expected in the coming decades due to continued 

climatic change and anthropogenic impacts (Hoffman, Sgrò, & Kristensen, 2017). My results 

suggest using large genomic panels enables more accurate detection of less severe population 

declines than panels of tens of microsatellites commonly used. Traditionally, genetic monitoring 

has aimed to discern small from large populations (Waples & Do, 2010), and detect decline 
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(Tallmon et al., 2010; Antao et al., 2011; Wang, 2016). Large panels with thousands of SNPs, 

now commonly available, have greater power to detect less severe declines and more accurately 

quantify magnitude of decline making genetic monitoring using Nb an increasingly informative 

tool for management and conservation. Detection of less severe declines enables rapid 

management action and as such avoids irreversible loss of genetic variation, reducing the risk of 

extirpation or extinction. If sample size is sufficiently high, large panels may enable genetic 

monitoring of moderate to large populations with reasonable accuracy; early warning would be 

useful in planning conservation actions and assessing genetic risk by allowing less costly 

management actions (i.e., quotas and fisheries closures) to be taken and minimizing the need for 

costly conservation action (i.e., transplantation). The increasing ease with which large panels can 

be genotyped makes genetic monitoring using Nb more feasible enabling a better understanding 

of the causes, consequences and severity of population declines. 
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Table 1 Sampling location, in decimal degrees, of Atlantic Salmon (Salmo salar) in Placentia 
Bay, Newfoundland. Sample sites organized east to west. Axial river length (km) and number of 

samples (n) genotyped per year (2016 – 2018).  

 

River Name River ID Longitude Latitude 

Axial 
River 
Length 
(km) 

n 

2016 2017 2018 

Branch River BRA -53.97 46.89 22.5 60 30 32 

Lance River LAN -54.07 46.82 12.9 31 9 - 

Cuslett Brook CUS -54.16 46.96 8.0 61 30 30 

Great Barasway Brook GBW -54.06 47.12 14.3 60 30 41 

Little Barasway Brook LBB -54.04 47.18 11.4 10 16 - 

Southeast Placentia River SPR -53.88 47.23 21.7 60 30 49 

Northeast Placentia River NPR -53.84 47.27 23.5 60 30 31 

Ship Harbour Brook SHI -53.87 47.35 13.2 60 30 32 

Fair Haven Brook FHB -53.89 47.54 1.6 60 30 30 

Come by Chance River CBC -53.98 47.86 17.2 61 30 31 

North Harbour River NHR -54.03 47.92 14.5 60 30 32 

Black River BLA -54.16 47.89 22.4 60 30 30 

Piper's Hole PHR -54.27 47.93 40.2 61 30 33 

Sandy Harbour River SHA -54.36 47.71 43.4 61 36 9 

Nonsuch River NON -54.65 47.44 11.8 60 30 36 

Cape Roger Brook CRB -54.69 47.44 20.3 60 30 32 

Bay de l'Eau BDL -54.73 47.51 27.4 61 30 32 

Rushoon River RUS -54.92 47.37 14.8 60 30 37 

Red Harbour River East RHA -54.99 47.32 8.7 60 30 34 

Red Harbour River West RHW -55.01 47.29 6.9 61 30 30 

Northwest Brook NWB -55.31 47.17 27.7 60 30 32 

Tides Brook TDS -55.26 47.13 20.3 60 30 28 

Big Salmonier Brook BSA -55.22 47.06 12.2 61 30 31 

Lawn River LWN -55.54 46.95 11.7 60 30 30 

Taylor Bay Brook TBR -55.71 46.88 15.4 43 30 32 

Piercey's Brook PBR -55.86 46.88 15.8 60 30 28 
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Table 2 Accuracy of effective number of breeders (!"!) across marker type (microsatellites and SNPs), 
panel size (L = 25 or 100 microsatellites, or 100, 1000 or 10,000 SNPs), population size (N = 100, 500 
and 1000), and sample size (S = 30 or 50). Estimate of Nb was accurate if +/- 10% of simulated Nb; 
overestimated if >10% lower and underestimated if >10% higher. Proportion of accurate, overestimated, 
and underestimated !"! shown per scenario.   

Marker Type Panel Size 
Initial 

Population 
Size 

Sample 
Size 

> 10% 
lower < 10% > 10% 

higher 

Microsatellites 

25 

100 
30 43.4 12.0 49.7 

50 41.5 13.1 45.4 

500 
30 24.8 6.0 69.8 

50 36.6 10.2 55.0 

1000 
30 24.8 5.6 70.2 

50 24.3 5.9 72.5 

100 

100 
30 38.6 15.8 50.6 

50 45.9 21.0 33.1 

500 
30 48.9 11.5 39.5 

50 48.9 12.0 39.1 

1000 
30 30.3 7.7 61.9 

50 53.4 9.1 38.3 

SNPs 

100 

100 
30 48.2 8.7 47.5 

50 45.9 17.5 36.6 

500 
30 27.8 8.4 64.6 

50 37.0 7.4 56.2 

1000 
30 24.4 4.5 72.3 

50 31.4 7.1 61.5 

1000 

100 
30 36.8 20.8 47.7 

50 38.5 24.6 36.9 

500 
30 49.7 11.5 38.9 

50 48.0 13.4 39.8 

1000 
30 40.3 11.3 48.4 

50 45.9 13.6 40.5 

10,000 

100 
30 44.5 15.5 45.5 

50 36.8 22.1 41.1 

500 
30 44.1 11.9 44.0 

50 53.5 12.4 34.1 

1000 
30 53.0 7.5 39.6 

50 50.4 10.1 39.5 
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Figure 2 Linear regression of mean !"" per scenario shown with infinite estimates, coloured by 
per generation rate of decline (%). !"" generated using LDNe v2 as implemented in AGESTRUCNb 
(Antao et al., 2020), S = 30. Mean !"" calculated across ten replicates for each rate of decline and 
scenario. Two marker types (microsatellites and SNPs) and five panel sizes (columns: L = 25 or 

100 microsatellites, and 100, 1000 or 10,000 SNPs) were modelled using three initial population 

sizes (N = small (100), medium (500), or large (1000)). Eight per generation rates of decline (%) 

were simulated per scenario, indicated by colour. Monitoring began in the year pre-decline and 

continued up to 20 generations. Raw data shows both variance of Nb point estimates and the 
number of infinite estimates decreased as panel size increased.  
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Figure 3 Power to detect a decline in !"" between t0 and tx with S = 30 for all simulated scenarios. 
Point estimates generated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 2020). 
Two marker types (microsatellites and SNPs) and 4 panel sizes (columns: L = 25 or 100 

microsatellites, and 100, 1000 or 10,000 SNPs) compared across three population sizes (rows: N 

= small, medium and large). Coloured by per generation rates of decline (%). Loess curves are 

used for visualization of trends in the data. The vertical solid black line is the mean total decline 

(%) detectable for each scenario. The horizontal grey dashed line is the 80% power threshold. 

Mean detectable decline decreased as panel size increased.  
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Figure 4 Precision and bias across stable (0% decline) scenarios. Effective number of breeders 

(!"") and confidence intervals (CI), estimated using the jackknife method, calculated with LDNe 
v2 as implemented in AGESTRUCNb (Antao et al., 2020). Five panels (L = 25 or 100 
microsatellites, and 100, 1000 or 10,000 SNPs) were compared across three initial population 

sizes (rows: N = small, medium, or large), two sample sizes (columns: S = 30 or 50). Boxplots 

show range of !"" (point estimates) for each scenario. True Nb of Atlantic Salmon is expected to 
fall between the horizontal dashed line which represents the number of mature individuals 

(including precocious male parr) and the solid line which represents the number of anadromous 

individuals (N). Mean !"" for each scenario shown; microsatellites (circles) and SNPs (triangles). 
Infinite !"" (10,000) represented as ∞. Bias decreased as panel size increased. 
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Figure 5 Accuracy of decline in !"" between t0 and tx. Offset, the difference between modeled and 
observed decline in !"", estimated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 
2020) shown across marker type and panel size (columns: L = 25 or 100 microsatellites, and 100, 

1000 or 10,000 SNPs) for small (S = 30) and large (S = 50) sample sizes when initial population 

size was small (N = 100). Modeled declines in !"" span a broad range of generations (up to 20) 
and per generation rates of decline (0 – 60%). The vertical dashed line at 0% offset indicates the 

observed decline accurately approximates the simulated decline. Negative offset indicates the 

modeled decline was underestimated and positive offset that the modeled decline was 

overestimated. Variability in offset indicated by width of the scaled density curve. Plots have 

been constrained to offset within the range -100 to 100%. See Table S4 for median, minimum 

and maximum offset per scenario. Precision increased as panel size increased. 
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Figure 6 Empirical !"" (point) and confidence intervals (line), jackknifed, for 24 rivers in 
Placentia Bay, Newfoundland sampled over three discrete years (2016 – 2018). Estimates of Nb 
generated with small (L = 100; black) and large (L = 1000; purple and 10,000; red) single 

nucleotide polymorphism (SNPs) panels, subset from a 220K SNP array, and a panel of 101 

microsatellites (yellow) using the linkage disequilibrium (LD) method in NeESTIMATOR v2.1 (Do 
et al., 2014) with a small sample size (S = 20 – 30 individuals). Individuals sampled ranged in 

age from young of the year (YoY) to 2+; if < 90% individuals were from a single age-class, 

estimates were considered Ne (*) rather than Nb. Large genomic panels are more accurate than 
small commonly used panels of ten to a hundred loci.  
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CHAPTER 3 – Environmentally associated chromosomal structural variation 
influences fine-scale population structure of Atlantic Salmon (Salmo salar) 
 

3.1 Abstract 

  

Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long 

been associated with environmental variation in wild populations. New genomic tools provide the 

opportunity to examine the role of these structural variants in shaping adaptive differences within 

and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), 

variation in chromosomal rearrangements exist across the species natural range, yet the role and 

importance of these structural variants in maintaining adaptive differences among wild 

populations remains poorly understood. I genotyped Atlantic Salmon (n = 1429) from 26 

populations within a highly genetically structured region of southern Newfoundland, Canada with 

a 220K SNP array. Multivariate analysis, across two independent years, consistently identified 

variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), 

previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor 

influencing population structure in the region. Redundancy analysis suggested that variation in 

the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. My analyses 

suggest environmentally mediated selection acting on standing genetic variation in genomic 

architecture introduced through secondary contact may underpin fine-scale local adaptation in 

Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance 

of chromosomal structural variation as a driver of contemporary adaptive divergence. 
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3.2 Introduction 

  

Elucidating the genetic basis of adaptation is central to the understanding of evolutionary 

biology (Schluter, 2009). Adaptive differences, accumulated through selection imposed by 

spatially and temporally heterogenous environments, enable persistence (Felsenstein, 1976; 

Savolainen, Lascoux, & Merilä, 2013) and drive the diversification of life (Dobzhansky, 1951). 

Genome-scale data, now available for many non-model organisms, are highlighting the potential 

of genomic architecture to facilitate adaptive divergence (Campbell et al., 2018; Wellenreuther et 

al., 2019) with chromosomal structural variants (e.g., inversions, fusions, and translocations) 

increasingly being identified and associated with environmental and life history variation (see 

Wellenreuther & Bernatchez, 2018). However, understanding of (i) the origins of chromosomal 

structural variants (Rougemont & Bernatchez, 2018; Fuller, Koury, Phadnis, & Schaeffer, 2019; 

Marques, Meier, & SeeHausen, 2019), (ii) associations between structural variants and complex 

phenotypes (Lee et al., 2017; Fuller et al., 2019; Jay et al., 2019), and (iii) the effectiveness of 

different types of structural variants as drivers of adaptive divergence (Rieseberg, 2001; Guerrero 

& Kirkpatrick, 2014) remains limited.  

Chromosomal structural variants can be caused by changes in copy number (insertion, 

deletion and duplication), orientation (inversion) or position of chromosomes within the genome 

(translocation and fusion). To date, most work has focused on inversion polymorphisms 

(Dobigny, Britton-Davidian, & Robinson, 2017) due to the potential for strong suppression of 

recombination and reduced fertility in heterozygous individuals (Sturtevant, 1917; White, 1978; 

King, 1993). Inversions are taxonomically widespread (Kirkpatrick & Barton, 2006; 

Wellenreuther & Bernatchez, 2018), frequently polymorphic within and between species and 
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populations (Sturtevant, 1938; Dobzhansky, 1951; White, 1978), and commonly align with 

environmental gradients (Balanyà, Huey, Gilchrist, & Serra, 2009; Kennington & Hoffmann, 

2013; Kapun, Fabian, Goudet, & Flatt, 2016) or complex morphological and behavioural 

phenotypes (Huang, Andrew, Owens, Ostevik, & Rieseberg, 2019; Sinclair-Waters et al., 2018). 

Unlike inversions that change gene order (Fuller et al., 2019), translocations and fusions 

physically unlink and/or link genes and reduce recombination within each newly linked 

chromosome arm (Dumas & Britton-Davidian, 2002) reducing recombination in both 

heterozygotes and rearranged homozygotes (Bidau, Giménez, Palmer, & Searle, 2001; Castiglia 

& Capanna, 2002). The potential of translocations and fusions to facilitate adaptation 

(Charlesworth, 1985) is supported by recent theoretical modeling work (Guerrero & Kirkpatrick, 

2014), and empirical evidence of environmental correlations with fusions and translocations 

(Drosophilia americana, McAllister, 2003; Dichroplus sp., Bidau, Miño, Castillo, & Martí, 2012; 

Atlantic Salmon, Wellband et al., 2019). However, translocations and fusions remain 

understudied with little reporting of the distribution or frequency of polymorphisms, and 

associated phenotypic and environmental variation (Dobigny et al., 2017).  

Atlantic Salmon (Salmo salar) span the North Atlantic Ocean and exhibit hierarchical 

spatial structure across their range (King et al., 2007). Genomic differentiation is greatest 

between continents with eastern (European) and western (North American) populations having 

diverged more than 600,000 years before present (bp) (Nilsson et al., 2001; King et al., 2007; 

Rougemont & Bernatchez, 2018). Over the intervening period numerous differences have 

accumulated including large chromosomal rearrangements, two fusions (Ssa08/Ssa29 and 

Ssa26/Ssa28) and a translocation (Ssa01/Ssa23) (Brenna-Hansen et al., 2012; Wellband et al., 

2019; Lehnert et al., 2019a), which have reduced the number of chromosome pairs from 29 in 
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Europe to 27 in North America (Hartley, 1988; Phillips & Ráb, 2001). Recent findings suggest 

that variation in the Ssa01/Ssa23 chromosomal translocation exists in North America, and that 

this variation was likely introduced through trans-Atlantic secondary contact from European 

Atlantic Salmon near the end of the last glacial maximum (LGM) approximately 18,000 bp 

(Bradbury et al., 2015; Rougemont & Bernatchez, 2018). Lehnert et al. (2019a) found that the 

frequency of the Ssa01/Ssa23 translocation changed with latitude across Atlantic Canada with 

more northern locations, such as sites in Newfoundland and Labrador, exhibiting the highest 

frequency of the European karyotype (no Ssa01/Ssa23 translocation) relative to southern 

populations which were primarily fixed for the North American karyotype (Ssa01/Ssa23 

translocation). The importance of this structural variation resulting from secondary contact, and 

the mechanisms acting to maintain high levels of polymorphism within and across Atlantic 

Salmon populations in Atlantic Canada remain unknown. 

Here I explore fine-scale spatial variation in southern Newfoundland, Canada, an area 

with pronounced regional spatial structure (Bradbury et al., 2014), and evidence of trans-Atlantic 

secondary contact (King et al., 2007; Bradbury et al., 2015). I first examine genomic variation 

within Atlantic Salmon populations among 26 rivers using two discrete years of sampling and 

identify variation in the Ssa01/Ssa23 translocation as a major driver of population structure. I 

examine temporal stability of population structure as well as the frequency of this structural 

variation within and among rivers. Next, I identify environmental associations with population 

structure and consequently the Ssa01/Ssa23 translocation. I build directly on previous work that 

identified range-wide polymorphism of a translocation between chromosomes Ssa01 and Ssa23 

across Atlantic Canada (Lehnert et al., 2019a) and mitochondrial DNA evidence of trans-Atlantic 

secondary contact along southeastern Newfoundland (King et al., 2007; Bradbury et al., 2015) 



 42 

and highlight the potential role of chromosomal structural variation in fine-scale local adaptation 

and the importance of secondary contact in generating standing genetic variation and driving 

contemporary adaptive divergence.  

 

3.3 Methods  

3.3.1 Sampling and genotyping 

Juvenile Atlantic Salmon, young-of-the-year (YOY) and parr (ages 0 to 2+), were 

collected by electrofishing during the period July to September of 2017 and 2018 from 26 rivers 

around Placentia Bay, a large (145 km wide at the mouth by 125 km long), deep bay (240 m) 

separating the Avalon and Burin Peninsulas on the south coast of Newfoundland, Canada (Figure 

1 and Table 3). Two rivers, Lance (LAN) and Little Barasway (LBB), were excluded from 

sampling in 2018 due to small sample size in 2017. Cohorts were assigned based on age-length 

relationships validated by scale ageing (Sylvester et al., 2019). Fin clips were collected and 

preserved in 95% ethanol. DNA was extracted using DNeasy Blood and Tissue or DNeasy 96 

Blood and Tissue kits (Qiagen, Toronto, ON, Canada) following manufacturer’s protocols. 

Concentration of extracted DNA was assessed using a Nanodrop spectrophotometer and by 

agarose gel visualization. DNA was standardized to a concentration of 15 ng/µl. A total of 1429 

(2017: 745 and 2018: 684) individuals were genotyped by Centre for Integrative Genetics 

(CIGENE, Ås, Norway) using a 220K bi-allelic single nucleotide polymorphism (SNP) 

Affymetrix Axiom array developed for Atlantic Salmon as described in Barson et al. (2015). 

These SNPs were a subset of those in the 930K XHD Ssal array (dbSNP accession numbers 

ss1867919552–ss1868858426) designed using Norwegian aquaculture salmon. Genotype data 

were filtered for high quality SNPs based on their clustering patterns and subsequent filtering was 
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performed using PLINK v 1.9 (Purcell et al., 2007; Chang et al., 2015). SNPs were filtered for a 

minor allele frequency (MAF) cut-off of 0.01, a missingness threshold of 0.05 across samples, 

and non-biallelic loci within each year sampled. SNPs were retained only if they passed filtering 

in both years resulting in a total of 139,038 SNPs. In addition, samples were filtered to retain 

only individuals with <5% missing genotypes, resulting in a total of 662 and 611 individuals in 

2017 and 2018, respectively. 

 

3.3.2 Detection of population structure 

For population genetic analyses that require a panel of neutral and unlinked loci I first 

used PLINK version 1.9 (Chang et al., 2015) to identify outlier loci (FST > 95th percentile) among 

sample sites. Loci identified as outliers in both 2017 and 2018 were removed. I then removed 

SNPs with high physical linkage using a sliding-window approach in PLINK version 1.9. SNPs 

with a variance inflation factor (VIF) greater than 2 were removed from 50 SNP windows shifted 

by five SNPs each iteration as in Wellband et al. (2019). This neutral, unlinked dataset was then 

thinned, keeping one SNP per 200,000 bases, using PLINK version 1.9 (Chang et al., 2015).  

Indices of genetic diversity including observed and expected heterozygosity (Ho and He) 

and FIS (Nei, 1987), were calculated per river and year to assess deviation from Hardy-Weinberg 

equilibrium. Indices were calculated using the basic.stats function in the R package hierfstat 

(Goudet, 2005) with the neutral, unlinked dataset (n = 6,302 SNPs). Confidence intervals for 

river-specific FIS were calculated using the boot.ppfis function in hierfstat (Goudet, 2005) with 

1,000 bootstrap replicates. Genetic differentiation was assessed by calculating pairwise FST (Weir 

and Cockerham, 1984) between rivers using the stamp.fst function, with 100 bootstrap replicates, 
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in the R package StAMPP (Pembleton, Cogan, & Forster, 2013) and visualized using gplots 

(Warnes et al., 2016).  

To estimate the number of distinct genetic clusters in each year, ADMIXTURE version 1.3 

(Alexander, Novembre & Lange, 2009), which calculates individual ancestry proportions using 

maximum likelihood estimates in a parametric model, was run for K (genetic clusters) 1 to 27 

with three different random number seeds with the neutral, unlinked dataset (n = 6,302 SNPs). 

From ADMIXTURE runs, standard deviation of cross-validation (CV) error was used to select a 

reasonable range of K as in McCartney-Melstad, Vu & Shaffer (2018). Bar plots of estimated 

individual ancestry proportions given by the Q-values were generated using R version 3.6.1 (R 

Core Team, 2019). 

The R package pcadapt (Luu et al., 2017) was then used to detect genomic regions 

associated with population-based differences in genomic architecture across all 26 rivers in each 

year. Multiple values of K (number of principal components; PCs), ranging from 1 to 100, were 

explored. The R package qvalue (Storey et al., 2015) was used to correct for false-discovery rate 

by transforming p-values for all SNPs into q-values which were plotted using the Manhattan plot 

function in the R package qqman (Turner, 2014). The final number of PC axes retained was K = 

2, as I was primarily interested in large scale patterns of population differentiation. The inclusion 

of additional values of K highlighted inter-individual differences rather than population level 

differences. Further, upon visual inspection of the Manhattan plots, I found that two strongly 

divergent genomic regions localized on chromosomes Ssa01 and Ssa23, a known chromosomal 

translocation (Brenna-Hansen et al., 2012; Lehnert et al., 2019a), were the dominant source of 

variation across multiple values of K (see Results). These regions associated with the 
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chromosomal translocation were important drivers of differentiation along the first PC axis and 

were thus a primary focus of my study.  

 

3.3.3 Environmental association analysis 

Spatial patterns of association between genomic variation and climatic (i.e., temperature 

and precipitation) and habitat (i.e., axial river length, basin relief, number of obstructions, and 

human population density) variables were investigated using partial redundancy analysis (RDA) 

as implemented in the R package vegan (Oksanen et al., 2017). Environmental variables were 

collected from publicly available sources (see Table S5). GPS coordinates of sample sites were 

used to extract 19 BIOCLIM variables, interpolated monthly climate data at a spatial resolution of 

30 arc-seconds averaged for the years 1970 – 2000, from the WorldClim 2.0 database (Fick & 

Hijmans, 2017). Human population density, a proxy for habitat disturbance, was calculated as in 

Lehnert et al. (2019b); briefly, human population density in 2000, accessed from NASA NEO, 

was averaged across a grid (0.5° latitude x 0.5° longitude) around the site. Axial river length, 

number of obstructions (e.g., dams and waterfalls), and basin relief were obtained from Porter et 

al. (1974). Axial river length and number of obstructions were approximated using GOOGLE 

EARTH and maximum elevation from HydroSHEDS digital elevation model (Lehner, Verdin, & 

Jarvis, 2008) was substituted for basin relief for missing sites (Fair Haven Brook, Red Harbour 

East, and Piercey’s Brook). All climatic and habitat data were standardized using the scale 

function in R (R Core Team, 2019). 

Given that many of the climatic variables were highly correlated (r > 0.8), I first 

performed a variable reduction step using PCA to summarize climatic variation for temperature 
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and precipitation as in Sylvester et al. (2019). The first two PCs of each PCA were retained to 

reduce dimensionality and covariance of loadings. Next, latitude and longitude of each river 

mouth were determined using GOOGLE EARTH. Geographic distance between each river mouth 

was calculated using the least-cost distance function, constrained to a maximum depth of 100 m 

below sea-level, in the R package marmap (Pante & Simon-Bouhet, 2013). Multivariate 

associations between genomic and environmental data were tested using redundancy analysis 

(RDA), conditioned on geographic distance from the most easterly site (Branch River), with four 

climatic summary variables (i.e., PC1 and PC2 temperature, and PC1 and PC2 precipitation) and 

four habitat variables (i.e., basin relief, number of obstructions, axial river length, and human 

population density) as predictors and individual genotypes as dependent variables. Variance 

inflation factors were below 2 for all variables indicating no multicollinearity between predictors. 

The RDA was visualized using the plot function in R version 3.6.1 (R Core Team, 2019). The 

final number of RDA axes retained (n = 3) was determined by visual inspection of the scree plot. 

To identify SNPs influenced by climatic and habitat variation, I scaled and centred the raw scores 

on each constrained RDA axis. I then identified outlier SNPs based on the loadings on each RDA 

axes, defined here as SNPs more than three standard deviations from the mean. The Manhattan 

plot function in the R package ggman (Rajagopal, 2020) was used to visualize each of the three 

retained RDA axes. Visual inspection of the first RDA axis identified outlier SNPs localized on 

chromosomes Ssa01 and Ssa23, a known chromosomal translocation (Brenna-Hansen et al., 

2012; Lehnert et al., 2019a). The correlation between frequency of the Ssa01/Ssa23 chromosomal 

translocation and environmental variation was further explored in subsequent analyses. 
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3.3.4 Assignment of translocation karyotype  

Variation in the Ssa01/Ssa23 chromosomal translocation was a major source of 

population level differentiation and associated with environmental variation. Therefore, I next 

examined variation in translocation frequency. Using the results of pcadapt, outlier SNPs (q-

value < 0.05 in both 2017 and 2018, n = 887) in the outlier block regions, Ssa01 (44,000,000 - 

53,000,000 bp) and Ssa23 (0 - 9,500,000 bp), were combined as in Lehnert et al. (2019a). Spatial 

genetic structure of the Ssa01/Ssa23 chromosomal translocation was explored with principal 

component analyses (PCA) performed using the R package pcadapt (Luu et al., 2017) with K = 3. 

Based on clustering patterns on the first PC axis, on which individuals were separated into three 

clusters consistent with Lehnert et al. (2019a), individuals were assigned a karyotype using the 

kmeans function in R version 3.6.1 (R Core Team, 2019). The three clusters corresponded to 

three karyotypes: 1) standard North American (homozygous translocated; Ssa01p/Ssa23 and 

Ssa01q); 2) standard European (homozygous non-translocated; Ssa01p/q and Ssa23); and 3) 

heterozygous (carrying a translocated and non-translocated copy of the chromosomes). 

Karyotype assignment followed Lehnert et al. (2019a), which incorporated European samples; 

greater genetic variation was observed on PC1 and PC2 for the standard European karyotype 

relative to the standard North American karyotype. This pattern of variation in genetic diversity 

was consistent in my analysis (see Results). 

Neighbor-joining (NJ) trees based on Nei’s D (Nei, 1972) were generated using outlier 

loci (q-value < 0.05) within the outlier block regions on Ssa01 and Ssa23 and the R package 

StAMPP (Pembleton et al., 2013). Trees were visualized using FIGTREE v1.4 (Rambaut, 2012). 

Genetic differentiation between karyotypes was assessed by calculating pairwise FST (Weir and 

Cockerham, 1984) using the R package StAMPP (Pembleton et al., 2013). Linkage 
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disequilibrium (LD) was calculated among outlier SNPs (q < 0.05) on chromosomes Ssa01 and 

Ssa23 between karyotypes. Pairwise LD (R2) values were calculated using PLINK v 1.9 (Chang et 

al., 2015) and visualized using the R package gplots (Warnes et al., 2016).   

 

3.3.5 Frequency of translocation karyotype  

Population variation and temporal stability 

Heterogeneity in translocation and karyotype frequencies between rivers was tested for 

each year sampled (2017 and 2018) using an analysis of deviance in a generalized linear model 

(GLM) with a binomial logistic transformation, followed by a comparison of contrasts as in 

Mérot et al. (2018), and a pairwise Fisher’s exact test adjusted for multiple comparisons. 

Temporal stability of translocation and karyotype frequency within each river between years was 

then tested using a pairwise Fisher’s exact test. Two rivers, Lance (LAN), and Little Barasway 

(LBB), were excluded from analysis due to limited sample size. To calculate translocation 

frequency, I used the equation: 

((# homozygous translocated x 2) + (# heterozygotes)) / (# total individuals x 2) 

which provides the frequency of the standard North American allele per river.  

    

Environmental associations 

Given the association between the Ssa01/Ssa23 chromosomal translocation and 

environmental variables (see RDA above), I next tested for significant relationships between the 

identified climatic variables (temperature and precipitation) and translocation frequency using 

linear regression. In the model, the response variable was the frequency of the North American 
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allele (Ssa01p/Ssa23) or the standard North American karyotype (homozygous translocated) and 

the explanatory variable was the climatic summary variables (see Results).  

 

3.3.6 Gene ontology 

I examined functional enrichment of genes associated with the Ssa01/Ssa23 chromosomal 

translocation and identified as significant environmental outliers (q < 0.05) on RDA1. I 

conducted gene ontology (GO) enrichment analysis using GO annotations in the Atlantic Salmon 

genome from SalmoBase (Samy et al., 2020). A reference set of genes, genes within 10 kb of all 

138,038 SNPs from the array, was identified and extracted using BEDTOOLS (Quinlan & Hall, 

2010). Outlier sets of genes, genes within 10 Kb of outlier SNPs on RDA1 and located within the 

translocation were then extracted for 2017 (n = 914) and 2018 (n = 700). The R package topGO 

version 2.38.1 (Alexa, Rahnenführer, & Lengauer, 2006) was then used to test for over-

representation of GO biological processes using a node size of 5 and the ‘weight01’ algorithm to 

account for structural relationships among GO terms. Using the same outlier sets of genes I then 

tested for enrichment of gene profiles using the R package CLUSTERPROFILER (Yu, Wang, Han, & 

He, 2012). NCBI gene ID numbers were used as search criteria in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2012). An alpha 

level of 0.01 was used to determine significance in both topGO and CLUSTERPROFILER analyses. 
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3.4 Results  

3.4.1 Sampling and genotyping  

In total, 662 individuals sampled in 2017 and 611 individuals sampled in 2018 were 

genotyped and passed quality control thresholds. Exploratory analysis using principal component 

analysis (PCA) found genetic variation separated Red Harbour East (RHA) from all other rivers 

along the first two principal component (PC) axes in both 2017 and 2018 (Figure S10). Due to 

the prevalence of non-anadromous Atlantic Salmon along the south coast of Newfoundland 

(Verspoor, McGinnity, Bradbury, & Glebe, 2015) and the verification of a significant waterfall at 

the mouth of RHA, this river was excluded following analyses of neutral genetic structure as 

these individuals most likely represent a highly divergent landlocked population. A total of 

138,451 SNPs, with a high overall genotyping rate (> 99%), and 632 individuals in 2017 and 585 

individuals in 2018 were used in downstream analyses.  

 

3.4.2 Detection of population structure 

All populations exhibited significant genetic differentiation (p < 0; see Figure S11) from 

each other. Patterns of pairwise FST clearly indicated strong regional structure within Placentia 

Bay consistent across both discrete years sampled (Figure S11). Pairwise FST, which ranged from 

0.0062 to 0.11 in 2017 and 0.0077 to 0.083 in 2018, was greatest between rivers along the Burin 

(Bay de l’Eau (BDL) – Piercey’s Brook (PBR)) and Avalon (Branch (BRA) – Ship Harbour 

(SHI)) Peninsulas indicative of an east-west divide. Rivers along the Avalon Peninsula exhibited 

a higher degree of genetic differentiation relative to each other as compared to rivers along the 

Burin Peninsula or head of the bay where neighboring rivers exhibited little genetic 
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differentiation. Interestingly, Cuslett River (CUS) was found to be genetically similar to more 

geographically distant rivers along the Burin Peninsula than neighboring rivers on the Avalon 

Peninsula. Observed (Ho) and expected (He) heterozygosity ranged from 0.16 to 0.20 (mean = 

0.19) in both 2017 and 2018. Inbreeding coefficient (FIS) ranged from -0.067 to -0.018 (mean = -

0.026) in 2017 and -0.036 to 0.00 (mean = -0.023) in 2018 (Table 4).  

Fine-scale population structure was observed using a panel of putatively neutral loci 

(6,302 SNPs with FST < 0.05 globally in both 2017 and 2018; known chromosomal 

rearrangements excluded). The value of K with the lowest mean CV error in ADMIXTURE was K = 

11 in 2017, and K = 9 in 2018. The reasonable range of K, values that had standard deviations 

that overlapped with the lowest mean CV error were K = 10 and 12 – 14 in 2017, and K = 10 – 

11 in 2018 (Figure S12). Red Harbour East (RHA) appeared distinct across all values of K in 

both years sampled. Although the majority of rivers formed river-specific clusters in both years 

sampled, the head of the bay (CBC – SHA) appeared to form an admixed cluster, most similar to 

rivers along southern Burin Peninsula, across all values of K in both 2017 and 2018 (Figure S13).  

I also explored spatial structure within Placentia Bay by performing a principal 

component analysis (PCA) on the full dataset (n = 138,038 SNPs) to detect genomic regions 

associated with population-based differences in genomic architecture. This analysis similarly 

found genetic variation separated populations by geographic region along the first two PC axes, 

with PC1 (variance explained in 2017: 1.8% and 2018: 2.4%) highlighting an east-west divide 

within Placentia Bay and PC2 (variance explained in 2017: 1.2% and 2018: 1.6%) a north-south 

divide along the Avalon Peninsula (Figure 7a, b). This pattern of spatial structure was found to be 

temporally stable with the exception of Northwest Mortier Bay (NMB), which in 2017 clustered 

more closely with the Avalon Peninsula than the Burin Peninsula on which it is located. 
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Divergence among clusters identified by PC1 was found to be driven by large outlier block 

regions (> 8 Mbp; Table S6) on both chromosomes Ssa01 and Ssa23 (Figure 7c, d). Each peak of 

genetic differentiation (Ssa01 and Ssa23) contained > 400 SNPs that were statistical outliers (q < 

0.05) in both years. An increasing number of PC axes tested (K = 2 – 100; see Supplementary 

Information Figure S14) supported Ssa01 and Ssa23 as the dominant factor driving genomic 

divergence among Atlantic Salmon within Placentia Bay.  In a range-wide study, Lehnert et al. 

(2019a) found genomic divergence driven by Ssa01 and Ssa23 indicative of polymorphism in a 

known chromosomal translocation that differentiates European and North American salmon 

(Brenna-Hansen et al., 2012). As in Lehnert et al., (2019a), outlier block regions on Ssa01 and 

Ssa23 were combined and analyzed together in downstream analyses (see below). I note that 

physical genomic positions presented in both my study, and that of Lehnert et al., (2019a), are 

based on the European Atlantic Salmon genome, where Ssa01 and Ssa23 are separate 

chromosomes (Lien et al., 2016), which differs from the standard North American karyotype 

where the p arm of Ssa01 has fused to Ssa23 (Brenna-Hansen et al., 2012). 

 

3.4.3 Environmental association analysis 

PCA-based reduction of climatic variables was used to construct summary variables for 

temperature and precipitation. For the PCA of temperature variables, the first PC axis explained 

47.1% of site environmental variation and was positively associated with temperature seasonality 

(BIO4) and temperature annual range (BIO7) but negatively associated with minimum 

temperature of the coldest month (BIO 6), while the second PC axis explained 2.0% of site 

environmental variation was most strongly negatively associated with annual mean temperature 
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(BIO1) (Table S7). For the PCA of precipitation variables, the first PC axis of the summary 

variable for precipitation explained 65.1% of site environmental variation and was most strongly 

negatively associated with annual precipitation (BIO12), while the second PC axis explained 

2.3% of site environmental variation and was strongly positively associated with precipitation 

seasonality (BIO15). 

 In the RDA, total proportion of genetic variance explained by the constraining 

(environmental) variables was 4.3% and 4.4% with 0.85% and 1.3% of the total proportion of 

variance explained by the conditioning variable (distance from the most easterly site; BRA) in 

2017 and 2018 respectively. I found temperature and precipitation explained the greatest 

proportion of genetic variance on RDA1 based on vector length and number of significant SNPs. 

A total of 422 and 222 SNPs were significantly associated with temperature PC1 and 114 and 

440 SNPs were significantly associated with precipitation PC1 on RDA1 in 2017 and 2018 

respectively. In both discrete years sampled, SNP loadings on RDA1 indicated a strong 

association with the Ssa01/Ssa23 outlier block regions previously identified (Figure 8c, d), 

suggesting an association between the translocation and environmental variation. Genetic 

variance associated with temperature was most strongly driven by rivers at the head of Placentia 

Bay and along the Burin Peninsula (Figure 8a, b), a pattern that was consistent across years. 

Whereas, genetic variance associated with precipitation was most strongly driven by rivers along 

southern Burin and Avalon Peninsulas (Figure 8a, b).  
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3.4.4 Assignment of translocation karyotype 

 Given that variation in the Ssa01/Ssa23 chromosomal translocation was identified as a 

major source of genetic structure, and found to be associated with environmental variation, I next 

examined translocation and karyotype frequency. Analysis of outlier SNPs (n = 887) within the 

outlier block regions on Ssa01/Ssa23 found three distinct clusters on PC1 (variance explained in 

2017: 54.3% and 2018: 53.6%) (Figure 9a, b), consistent with a chromosomal rearrangement. 

Similar clustering patterns were found using neighbor-joining (NJ) trees (Figure 9c, d). 

Karyotype was assigned to each of the three clusters (based on PCA) with individuals assigned as 

either: 1) standard North American (homozygous translocated; Ssa01p/Ssa23 and Ssa01q), 2) 

standard European (homozygous non-translocated; Ssa01p/q and Ssa23), and 3) heterozygous 

(carrying a translocated and non-translocated copy of the chromosomes). The heterokaryotype 

was found to be intermediate to the homokaryotypes along PC1 (Figure 9). Individuals from 

throughout Placentia Bay were found in each of the three clusters suggesting karyotype clusters 

were not completely driven by the geography of the bay. Interestingly, the cluster of individuals 

found to have the standard European karyotype (homozygous non-translocated; Ssa01p/q and 

Ssa23) exhibited greater genetic variation along the first two PC axes than the clusters of 

heterozygous or standard North American karyotype (homozygous translocated; (Ssa01p/Ssa23 

and Ssa01q) individuals which exhibited the least amount of genetic variation along the first two 

PC axes (Figure 9a, b). This was consistent with patterns found by Lehnert et al. (2019a). 

Genetic differentiation (FST) between homokaryotypes was significantly greater (p < 

0.001) within the Ssa01/Ssa23 outlier block regions (Ssa01: FST = 0.55 and FST = 0.52, and Ssa23: 

FST = 0.71 and FST = 0.70 in 2017 and 2018 respectively) relative to that observed genome wide 

(FST = 0. 0094 and FST = 0. 0096 in 2017 and 2018 respectively). Heatmaps of linkage 
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disequilibrium (LD) between outlier SNPs (q < 0.05) on chromosomes Ssa01 and Ssa23 revealed 

regions of high LD, in all pairwise comparisons of translocation karyotype (Figure S16). As 

expected, linkage disequilibrium (R2) was highest between homokaryotypes. Interestingly, LD 

between the heterokaryotype and standard European karyotype was found to be lower than that 

observed between the heterokaryotype and standard North American karyotype. Heterozygosity 

was found to be four times higher for the standard European karyotype relative to the standard 

North American karyotype within the outlier block regions (Figure S15). 

 

3.4.5 Frequency of translocation karyotype  

Population variation and temporal stability 

All rivers were polymorphic for the Ssa01 and Ssa23 chromosomal translocation (Figure 

S17). Frequency of the translocation did not significantly differ between years (p = 0.263) but did 

differ significantly between rivers within years (p < 0.01) (Figure S18). Average translocation 

frequency (standard North American ‘allele’) was 61.3% (range: 5.5 – 86.0%) in 2017 and 59.6% 

(range: 6.7 – 94.5%) in 2018. Frequency of the standard North American karyotype (homozygous 

translocated; Ssa01p/Ssa23 and Ssa01q) was 41.9% (range: 0 – 72.0%) in 2017 and 41.0% 

(range: 0 – 89.9%) in 2018 (Table S8). Frequency of the translocation was temporally stable 

within rivers across the two discrete years sampled with the exception of Northwest Mortier Bay 

(NMB), Cuslett (CUS), and Big Salmonier (BSA) which differed significantly in both karyotype 

and translocation frequency between 2017 and 2018 (Table S9). Translocation frequency 

significantly increased in NMB and significantly decreased in CUS and BSA from 2017 to 2018 

(Figure S19).  



 56 

   

Environmental associations 

 The translocation appeared spatially distributed along a longitudinal gradient with the 

highest frequency of the standard North American karyotype found along central Burin Peninsula 

and the head of Placentia Bay, and absent or occurring at low frequency along the Avalon 

Peninsula (Figure 10). A pronounced transition in frequency of the translocation homokaryotype, 

consistent across both years sampled, was observed between Ship Harbour Brook (SHI) and Fair 

Haven Brook (FHB). SHI and FHB had an average of 2.3% and 42.7% standard North American 

karyotype (homozygous translocated) individuals across years, respectively, suggesting an 

increase in European ancestry (in this genomic region) between sites. Interestingly, variation in 

translocation frequency between rivers was significantly correlated with temperature PC1 (2017: 

p = 0.067 and 2018: p = 0.0087) (Figure 11) but not precipitation PC1 (Figure S20). The 

translocation (standard North American allele) was found to occur more frequently in rivers that 

were found to have a lower minimum temperature in the coldest month and exhibited greater 

variability in temperature both seasonally and annually.  

 

3.4.6 Gene Ontology 

I searched the Salmo salar genome for annotated genes within 10kb on either side of each 

SNP within the outlier block regions on Ssa01 and Ssa23 identified as an environmentally 

associated outlier on RDA1. I identified 260 and 241 unique genes in proximity to the 914 and 

700 SNPs identified as RDA1 outliers within the Ssa01/Ssa23 chromosomal translocation in 

2017 and 2018 respectively. These genes represent putative targets of selection. I found 
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functional enrichment of 26 and 35 gene ontology (GO) biological processes (p < 0.01, Table 

S10; see Appendix H for gene annotations) in 2017 and 2018 respectively. Of these, 21 GO 

biological processes were significantly enriched (p < 0.01) in both 2017 and 2018. Of particular 

interest were processes related to immunity, growth, and oxidative stress. Further, using the 

outlier SNPs identified above, enrichment tests in KEGG indicated over-representation of the 

insulin signaling pathway in both 2017 (p = 0.00763) and 2018 (p = 0.00439).  

 

3.5 Discussion 

Chromosomal structural variation is a significant, yet poorly understood source of genetic 

variation (Wellenreuther et al., 2019) which may underpin complex phenotype and life history 

variation across a wide range of taxa (Dobigny et al., 2017). In contrast with chromosomal 

inversions, which have been increasingly associated with adaptive variation (Lamichhaney et al., 

2016; Jay et al., 2018; Huang et al., 2019), few well-documented occurrences of fusion or 

translocation polymorphisms in wild populations have been reported (see Bidau & Martí, 2002; 

Dobigny et al., 2017; Wellband et al., 2019; Cayuela et al., 2020). My study is among the first to 

report evidence of an adaptive chromosomal translocation influencing spatial structure in the 

wild. I find the Ssa01/Ssa23 chromosomal translocation, previously found to reflect trans-

Atlantic differences and secondary contact (Brenna-Hansen et al., 2012; Lehnert et al., 2019a), to 

be polymorphic and associated with fine-scale spatial structure of Atlantic Salmon in Placentia 

Bay, Newfoundland, Canada. Moreover, I find translocation frequency is significantly correlated 

with environmental variation in the region. This work extends previous analyses (Bradbury et al., 

2015; Lehnert et al., 2019a) providing a high-resolution examination of trans-Atlantic secondary 

contact in Atlantic Salmon in southern Newfoundland, and highlights the importance of 
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secondary contact, introgression, and chromosomal structural variation as drivers of adaptive 

divergence. 

 

3.5.1 Chromosomal translocation drives fine-scale spatial structure  

In my study, Atlantic Salmon populations exhibited hierarchical spatial genetic structure 

within Placentia Bay, with the greatest genetic differentiation occurring between the Avalon and 

Burin Peninsulas. This is consistent with previous work by Bradbury et al. (2015) which 

identified two discrete genetic clusters along southern Newfoundland, east and west, with a 

boundary near the Burin Peninsula. Trans-Atlantic secondary contact has been suggested to be a 

significant factor structuring this region. Gene flow following secondary contact has been 

documented for many temperate species that experienced periods of range expansion and 

contraction throughout the Quaternary (Hewitt, 2000; Tigano & Friesen, 2016). In Atlantic 

Salmon, secondary contact between European and North American salmon occurred, most 

recently, during the Pleistocene at the end of the last glacial maximum (King et al., 2007; 

Rougemont & Bernatchez, 2018) and is supported by evidence of European mitochondrial DNA 

(King et al., 2007; Bradbury et al., 2015), and recently the identification of a chromosomal 

polymorphism associated with European ancestry in northern Canada (Lehnert et al., 2019a).  

The Ssa01/Ssa23 chromosomal translocation, previously associated with introgression 

from European Atlantic Salmon into northern Canada (Lehnert et al. 2019a), was found to be 

polymorphic within Placentia Bay and appeared to be a significant factor contributing to genetic 

structuring in this region. While whole genome sequencing is required to confirm the presence of 

a translocation in these populations, this finding strongly supports a hypothesis of trans-Atlantic 

secondary contact in Placentia Bay. Genetic variation of outlier loci within the outlier block 
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regions identified on chromosomes Ssa01 and Ssa23 showed three distinct clusters, a pattern 

observed by Lehnert et al. (2019a) and consistent with a chromosomal rearrangement. Karyotype 

frequencies showed a longitudinal clinal pattern. Populations on the Avalon Peninsula were 

predominately composed of individuals with the standard European karyotype (homozygous non-

translocated; Ssa01p/q and Ssa23) whereas populations at the head of the bay and on the Burin 

Peninsula were predominately composed of individuals with the standard North American 

karyotype (homozygous translocated; Ssa01q and Ssa01p/Ssa23). Interestingly, Lehnert et al. 

(2019a) found no individuals with the standard European karyotype south of Labrador, although 

sampling was limited to only four populations in Newfoundland located west of the Burin 

Peninsula.  

Observed patterns of genetic diversity indicate the standard North American karyotype 

has reduced genetic diversity relative to the standard European karyotype. Furthermore, pairwise 

comparisons of linkage disequilibrium between karyotypes suggests greater suppression of 

recombination between the standard North American karyotype and heterokaryotype than 

between the standard European karyotype and heterokaryotype. This finding is consistent with 

reports of reduced frequency of recombination and a shift in the distribution of recombination 

towards the distal ends of chromosomes in fused homokaryotypes and, to a lesser extent, 

heterokaryotypes (Bidau et al., 2001; Castiglia & Capanna, 2002; Dumas & Britton‐Davidian, 

2002; Guerrero, & Kirkpatrick, 2014). While North American salmon generally have low levels 

of European ancestry (~ 3% genome-wide), individuals with the standard European karyotype 

have been reported to have high levels of European ancestry (> 50%), particularly near the 

centromeres, within the outlier block regions on Ssa01 and Ssa23 (Lehnert et al., 2019a). Given 

that the SNP array was developed using European Atlantic Salmon (Barson et al., 2015), it is 



 60 

possible inferences about diversity may be influenced by ascertainment bias. However, the 

dataset used here was based on a subset of polymorphic loci and using a similar array and 

methodology Bradbury et al. (2015) concluded the observed pattern in genetic diversity along 

southern Newfoundland was the result of historical processes with minimal influence of 

ascertainment bias. 

Interestingly, the outlier block region identified on chromosome Ssa23 (0 – 9.5 Mbp) was 

larger in size than that reported by Lehnert et al. (2019a) suggesting multiple secondary contact 

events may have occurred during the colonization of North America following the last glacial 

maximum, a hypothesis for which Rougemont & Bernatchez (2018) found some support. 

Moreover, the larger outlier blocks found here may suggest a more recent secondary contact 

event in Newfoundland compared to northern regions (Labrador). This highlights the need for 

future studies on the demographic and evolutionary history of Atlantic Salmon in Canada. While 

other studies have identified evidence that secondary contact influences differentiation range-

wide (Lehnert et al., 2019a), I find variation in the Ssa01/Ssa23 chromosomal translocation is 

significantly associated with genome-wide population structure demonstrating the importance of 

the Ssa01/Ssa23 chromosomal translocation to fine-scale structuring within Placentia Bay and 

suggesting the translocation may influence gene flow through incompatibilities or adaptive 

differences between karyotypes. 

 

3.5.2 Environment correlated with chromosomal translocation  

Geographic regions of post-glacial secondary contact can provide opportunities to 

investigate the evolution and maintenance of chromosomal structural variation and its role in 

adaptive divergence (Tigano & Friesen, 2016; Lee et al., 2017). Secondary contact events can 
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generate polymorphism in standing variation, which can then be selected upon in a heterogenous 

environment (Alcala & Vuilleumier, 2014; Marques et al., 2019). Genomic architecture is an 

underappreciated source of variation on which selection can act (Wellenreuther et al., 2019). 

Chromosomal structural variants may be adaptive due to spatially and/or temporally varying 

selection on i) breakpoints or position effects which cause gene disruption or alter expression 

(Corbett-Detig, 2016; Puerma, Orengo, & Aguadé, 2016); ii) recombination rate (McDonald, 

Rice, & Desai, 2016); or iii) alleles captured or accumulated (Wright, 1931; Coyne & Orr, 2004; 

Fuller et al., 2019). As such, chromosomal structural variants are expected to clearly delineate the 

genetic boundaries between parapatric populations that straddle an ecotone (Slatkin, 1975; 

Kirkpatrick & Barton, 2006). Using a fine-spatial scale approach I identified a cline in 

translocation karyotype that aligned with an environmental gradient consistent with a hypothesis 

of adaptive significance.  

Placentia Bay, a long (125 km) and deep (240 m) embayment in southeastern 

Newfoundland, spans 145 km at the mouth and narrows towards the head of the bay where 

summer temperatures are warmer relative to the mouth of the bay (Fisheries and Oceans Canada, 

2007). Genotype-environment analysis (redundancy analysis; RDA) indicated temperature range 

and seasonality best explained the observed spatial genetic structure and highlighted a strong 

association with the Ssa01/Ssa23 chromosomal translocation. Although the use of air temperature 

as a proxy for freshwater temperature may not be accurate, particularly across small spatial scales 

(Hansen, Read, Hansen, & Winslow, 2016), previous work in the region has reported a strong 

correspondence between air and water temperatures (Bradbury et al., 2014). Furthermore, a 

significant correlation between translocation frequency and temperature was found, indicating 

that like inversions, translocations have the potential to be adaptive, a finding supported by 
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evidence of signatures of positive selection acting on both the standard North American and 

standard European karyotypes (Lehnert et al., 2019a). Taken together, these findings suggest the 

standard North American karyotype is adaptive in North America, however, within secondary 

contact zone(s) where introgression has occurred, the standard European karyotype also confers a 

locally adaptive advantage, presumably by adding to standing variation on which selection is acts 

within a heterogenous landscape over a fine-spatial scale. Alternatively, temperature-aligned 

population structure could be the result of demographic history. Chromosomal structural variants 

may have been pre-adapted to differing temperature regimes and aligned themselves along the 

currently observed cline in temperature during post-glacial colonization; consistent with a 

hypothesis of niche coupling (Knowles, Carstens, & Keat, 2007). Regardless of the influence of 

colonization history, a significant correlation between contemporary fine-scale population 

structure and temperature was observed.  

Local adaptation has been recognized as an important evolutionary process in salmonids 

(reviewed in Taylor, 1991; Garcia de Leaniz et al., 2007) with temperature often identified as the 

dominant factor structuring populations (Larson, Lisi, Seeb, Seeb, & Schindler, 2016). 

Temperature has been shown to directly influence metabolic and growth rate (Burgerhout et al., 

2017; Stehfest et al., 2017; Vikeså, Nankervis, & Hevrøy, 2017), age at smoltification and 

maturation (Mangel, 1994; Minns et al., 1995; Friedland, 1998), proportion of precocial parr in 

Atlantic Salmon populations (Valiente et al., 2005; Yates et al. 2015), and migration timing 

(Jonsson & Jonsson, 2018). While some evidence suggests a difference in proportion of precocial 

males (Dalley, Andrew, & Green, 1983) between the mouth and head of Placentia Bay, little is 

known about the life history and ecology of salmon at this spatial scale in this region.  
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While my results suggest an association between translocation frequency and temperature, 

I acknowledge that other unmeasured variables that covary with temperature may contribute to 

the genetic structure observed (Storfer et al., 2006). Inclusion of additional environmental 

parameters, such as pH and/or geological characteristics (Bourret et al., 2013; Bradbury et al., 

2014), and pathogen or parasite diversity (Dionne, Miller, Dodson, & Bernatchez, 2009), may 

provide further insight into the mechanisms influencing spatial structure in the region. Notably, 

in regions such as Labrador, previous work has found a higher frequency of the standard 

European karyotype within populations within a large marine embayment (Lake Meville) where 

temperatures are warmer compared to coastal populations with a lower frequency of the standard 

European karyotype (Sylvester et al., 2018a; Lehnert et al., 2019a). While this association has not 

been formally tested, it highlights another region in North America where polymorphism of the 

Ssa01/Ssa23 chromosomal translocation may align with clinal variation in temperature. Although 

these relationships appear to operate in different directions, this may further support the role of 

multiple secondary contact events in parts of Canada from different regions of Europe.  

 

3.5.3 Chromosomal translocation exhibits temporal stability across ecotone 

Translocation frequency was found to be temporally stable across the two discrete years 

sampled. A pronounced transition in translocation frequency was observed between Ship Harbour 

(SHI) and Fair Haven Brook (FHB) on the Avalon Peninsula, however, this transition was less 

apparent on the Burin Peninsula, where Northwest Mortier (NMB) and Big Salmonier (BSA), 

rivers located in an intermediary zone of clinal variation, were found to significantly differ in 

translocation frequency between 2017 and 2018. While maintenance of polymorphism and 

temporal stability suggest the Ssa01/Ssa23 chromosomal translocation is adaptive, it is plausible 
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that the Ssa01/Ssa23 chromosomal translocation is neutral or near-neutral and polymorphism 

persists due to demographic factors such as low gene flow and low effective population size in 

region (Palstra et al., 2007; Bradbury et al., 2015) and drift. Alternatively, polymorphism of the 

Ssa01/Ssa23 chromosomal translocation may be maintained, not because the variants represent 

adaptations to divergent habitats, but because the homozygous translocated karyotype carries 

harmful recessive mutations as suggested by Jay et al. (2019) in Heliconious numata. Future 

work should examine transposable element (TE) dynamics and the rate of non-synonymous to 

synonymous substitution (dN/dS) within the translocated region.   

 

3.5.4 Functional significance and gene annotations 

I identified biological processes which were over-represented using genes within the 

outlier block regions on Ssa01 and Ssa23 that were located near environmentally associated 

SNPs. KEGG pathway analysis found enrichment of the insulin signalling pathway in both 2017 

and 2018. In addition, analysis of gene ontology found over-representation of biological 

processes primarily related to regulation of metabolic processes, and immune response. The 

insulin signalling pathway may relate to both metabolic processes (Babbitt, Warner, Fedrigo, 

Wall, & Wray, 2010; Zhang et al. 2018) and immunity (Yada & Tort, 2016; Cheng et al., 2017; 

Wang et al., 2019).  

In salmon, genes and/or biological processes related to metabolic processes and immunity 

can be influenced by environmental factors, such as temperature (Dionne, Miller, Dodson, Caron, 

& Bernatchez, 2007; Beauregard et al., 2013). Metabolic differences in salmon populations under 

different temperature regimes have been reported; salmon in warmer conditions grow faster and 

migrate to sea at a younger age (Power, 1981; Metcalfe & Thorpe, 1990) while salmon in cooler 
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environments exhibit higher growth rate and more efficient metabolic processes (Nicieza et al., 

1994). In Atlantic Salmon, precocial male parr are common in Newfoundland (Dalley et al. 

1983), and their occurrence can be influenced by temperature (Valiente et al., 2005; Yates et al. 

2015). 

Temperature regime has also been correlated with bacterial diversity and as such genetic 

diversity for immune-related genes (Dionne et al., 2007, 2008) and is thought to be involved in 

local adaptation to different pathogen communities (Bourret et al., 2013). Parasites have played a 

major role in mortality of wild fish in Newfoundland (Khan, 2009) with outbreaks and mortality 

of proliferative kidney disease (PKD) being seasonal and temperature dependent in salmonids 

(Sterud et al., 2007). Overall these processes point to potential adaptive associations with 

temperature but remain speculative, and experimental work is needed to better understand these 

relationships. 

 

3.5.5 Conservation and management implications   

 Atlantic Salmon in southern Newfoundland have undergone significant declines in 

abundance over the last few decades (Chaput et al., 2012; Lehnert et al., 2019b) and are currently 

managed as a single designatable or evolutionarily significant unit (COSEWIC, 2010). My results 

clearly demonstrate two genetic clusters and provide strong evidence that an adaptive 

chromosomal translocation associated with trans-Atlantic secondary contact drives fine-scale 

population structure in the region. Placentia Bay is of particular interest in that it is a geographic 

region of post-glacial secondary contact and as such provides an opportunity to investigate the 

evolution and maintenance of chromosomal structural variation and its role in adaptive 

divergence because evolutionary dynamics of chromosomal structural variants differ from other 
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parts of the genome, (Tigano & Friesen, 2016; Lee et al., 2017; Wellenreuther & Bernatchez, 

2018; Mérot, Oomen, Tigano, & Wellenreuther, 2020). While polymorphism in chromosomal 

structural variation, such as the Ssa01/Ssa23 chromosomal translocation characterized here, may 

complicate the process of delineating evolutionarily significant units, particularly when the 

relative fitness consequences are unclear, I must consider genomic architecture underlying 

adaptive phenotype or life history variation when predicting the consequences of environmental 

disturbance and climatic change (Oomen, Kuparinen, & Hutchings, 2020). 

 

3.5.6 Conclusions 

Species and populations adapt through selection imposed by spatially and temporally 

heterogenous environments on new mutation or standing genetic variation (Wright, 1931; Coyne 

& Orr, 2004). Gene flow is an important source of standing genetic variation (Tigano & Friesen, 

2016) promoting adaptation through the re-introduction of previously lost variation (Rieseberg, 

2009) and the introgression of novel genetic variants and allelic combinations among meta-

populations (Poelstra, Richards, & Martin, 2018). The Ssa01/Ssa23 chromosomal translocation 

(Brenna-Hansen et al., 2012) has recently been found to be polymorphic within secondary contact 

zones in North America (Lehnert et al., 2019a). This study further supports secondary contact 

with European introgression into Atlantic Salmon populations along southeastern Newfoundland 

and highlights the importance of secondary contact in shaping population genetic structure. 

Effects of chromosomal structural variants are expected to be most pronounced when fixed in 

populations prior to secondary contact, with subsequent reproductive isolation maintained by 

adaptive change involving many genes with small fitness effects (Feder, Nosil, & Flaxman, 

2014). Here, I find evidence of an adaptive chromosomal rearrangement and a cline in 
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translocation frequency aligned with a cline in temperature. These findings suggest the standard 

North American karyotype is broadly adaptive in North America, however, within secondary 

contact zone(s) where introgression of the standard European karyotype has occurred, the 

standard European karyotype also confers an adaptive advantage in local populations. Future 

work should explore the roles of demography and drift, monitor clinal stability of translocation 

frequency over an extended period of time to investigate the evolution and maintenance of 

putatively adaptive translocation in the wild, and use direct temperature measurements and 

common-garden experiments to investigate differential gene expression between 

homokaryotypes. This study highlights the importance of chromosomal structural variation as a 

source of standing variation on which selection can act.  
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Table 3 Sampling locations of Atlantic Salmon (Salmo salar) in Placentia Bay, Newfoundland, 
Canada. Rivers ordered geographically, east to west around the bay. Samples were collected in 

2017 and 2018. Number of samples genotyped (N) per site per year. 

River RiverID Longitude 
(∘W) 

Latitude 
(∘N) N2017 N2018 

Branch River BRA -53.97 46.89 30 32 

Lance River LAN -54.07 46.82 9 - 

Cuslett Brook CUS -54.16 46.96 30 30 

Great Barasway Brook GBW -54.06 47.13 30 41 

Little Barasway Brook LBB -54.04 47.18 16 - 

Southeast Placentia River SPR -53.88 47.23 30 31 

Northeast Placentia River NPR -53.84 47.27 30 24 

Ship Harbour Brook SHI -53.87 47.35 30 32 

Fair Haven Brook FHB -53.89 47.54 30 30 

Come By Chance River CBC -53.98 47.86 30 31 

North Harbour River NHR -54.03 47.92 30 32 

Black River BLA -54.16 47.89 30 30 

Pipers Hole Brook PHR -54.27 47.93 30 33 

Sandy Harbour River SHA -54.36 47.71 30 9 

Nonsuch River NON -54.65 47.45 30 20 

Cape Roger Brook CRB -54.69 47.44 30 32 

Bay de l'Eau River BDL -54.73 47.51 30 32 

Rushoon River RUS -54.92 47.37 30 37 

Red Harbour East River RHA -54.99 47.33 30 26 

Red Harbour West River RHW -55.01 47.29 30 30 

Northwest Mortier Bay Brook NMB -55.31 47.17 30 32 

Tides Brook TDS -55.26 47.13 30 28 

Big Salmonier Brook BSA -55.22 47.06 30 31 

Lawn River LWN -55.54 46.95 30 30 

Taylor Bay Brook TBR -55.71 46.88 30 10 

Piercey's Brook PBR -55.86 46.88 30 21 
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Table 4 Summary of genetic diversity for Atlantic Salmon from 26 rivers in Placentia Bay, 

Newfoundland, Canada. Rivers are ordered geographically, east to west around the bay. Number 

of samples (N), mean observed (Ho) and expected (He) heterozygosity and median FIS calculated 
across putatively neutral single nucleotide polymorphism (SNP) loci (n = 6,302) using hierfstat.  

RiverID 
2017   2018 

N Ho He FIS   N Ho He FIS 
BRA 30 0.184 0.182 -0.025  32 0.187 0.183 -0.025 

LAN 9 0.181 0.170 -0.067  - - - - 

CUS 30 0.184 0.185 -0.018  30 0.189 0.185 -0.036 

GBW 18 0.188 0.186 -0.030  41 0.189 0.186 -0.026 

LBB 15 0.191 0.184 -0.037  - - - - 

SPR 27 0.192 0.185 -0.040  30 0.194 0.188 -0.036 

NPR 29 0.193 0.192 -0.018  17 0.192 0.191 -0.032 

SHI 22 0.202 0.200 -0.024  32 0.204 0.201 -0.018 

FHB 30 0.188 0.185 -0.036  25 0.193 0.188 -0.029 

CBC 30 0.192 0.194 -0.018  19 0.194 0.192 -0.029 

NHR 24 0.188 0.188 -0.022  29 0.192 0.189 -0.018 

BLA 24 0.196 0.195 -0.022  29 0.198 0.198 -0.018 

PHR 29 0.193 0.193 -0.018  30 0.196 0.194 -0.018 

SHA 30 0.198 0.196 -0.018  9 0.197 0.198 0.000 

NON 27 0.181 0.177 -0.020  20 0.181 0.180 -0.027 

CRB 29 0.190 0.190 -0.018  27 0.183 0.182 -0.020 

BDL 30 0.181 0.181 -0.018  32 0.188 0.187 -0.016 

RUS 25 0.182 0.183 -0.021  31 0.182 0.182 -0.017 

RHA 30 0.158 0.158 -0.018  26 0.159 0.158 -0.020 

RHW 27 0.196 0.196 -0.020  24 0.196 0.194 -0.022 

NMB 27 0.185 0.181 -0.040  31 0.193 0.189 -0.035 

TDS 15 0.179 0.177 -0.037  24 0.186 0.185 -0.022 

BSA 30 0.188 0.187 -0.018  24 0.187 0.184 -0.022 

LWN 27 0.193 0.190 -0.020  22 0.195 0.194 -0.024 

TBR 18 0.193 0.194 -0.030  10 0.192 0.199 0.000 

PBR 30 0.194 0.194 -0.018   17 0.194 0.192 -0.032 
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Figure 7 Genomic outlier blocks drive spatial structure of Atlantic Salmon. (a, b) Genetic 

structure across Placentia Bay, Newfoundland, Canada based on the first two principal 

component (PC) axes from pcadapt (Luu et al., 2017) using 138,451 SNPs. (c, d) Manhattan plots 

showing genomic regions of variation based on PC1. Samples collected in (a, c) 2017 (b, d) 2018. 

Rivers coloured east (yellow-red) to west (green-blue) with head of the bay (purple). Red line 

represents a genome-wide significance threshold of 5.0e-8.   
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Figure 8 Redundancy analysis (RDA) of (a) 2017 and (b) 2018 based on PCs 1 and 2 of BIOCLIM 
(WorldClim) temperature and precipitation variables, and habitat variables. Manhattan plots, 

showing absolute loadings, of the distribution of outlier SNPs (blue) associated with the first 

RDA axis of (c) 2017 and (d) 2018. 
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Figure 9 Genetic relationships between individual Atlantic Salmon based on outlier SNPs (q < 

0.05) within the Ssa01p/Ssa23 chromosomal translocation. Samples collected in (a) 2017 and (b) 

2018. Neighbor-joining (NJ) tree for (c) 2017 and (d) 2018. Homozygous European non-

translocated (Ssa01p/q and Ssa23) karyotype (yellow), heterozygous (red), and homozygous 

North American translocated (Ssa01q and Ssa01p/23) karyotype (blue-green).  
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Figure 10 Frequency of Ssa01 and Ssa23 chromosomal translocation exhibits fine-scale spatial 

variability in Placentia Bay, Newfoundland, Canada. (a, b) Karyotype frequency within river in 

(a) 2017 and (b) 2018. Asterisk (*) indicates karyotype frequency differed significantly between 

years. (c) Translocation frequency between rivers across years. Homozygous European non-

translocated (Ssa01p/q and Ssa23) karyotype (yellow), heterozygous (red), and homozygous 

North American translocated (Ssa01q and Ssa01p/23) karyotype (blue-green).  
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Figure 11 Correlation between temperature and the Ssa01/Ssa23 chromosomal translocation in 

Atlantic Salmon within Placentia Bay, Newfoundland, Canada. (a, c) Linear regression of the 

first principal component (PC) of a PCA based on 11 temperature variables (BIOCLIM) and 
proportion of non-translocated Ssa01p/q sampled in (a) 2017 and (c) 2018. (b, d) Temperature 

annual range (BIO7), the highest loading variable on temperature PC1. Size of point indicates 

frequency of non-translocated Ssa01p/q in (b) 2017 and (d) 2018.  
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CHAPTER 4 – Conclusion  
 

4. 1 Summary 

Atlantic Salmon have been assessed as threatened in southern Newfoundland (COSEWIC, 

2010). Threats include poor marine survival (Friedland et al., 1998) and direct genetic interaction 

(i.e., hybridization), genetic change due to interbreeding, with escaped farm salmon (Wringe et 

al., 2018). In Newfoundland, traditional monitoring methods (i.e., angling surveys and counting 

fences) are implemented in a small number of all salmon rivers; there is currently a seasonal 

counting fence in one river (Northeast Placentia; monitored 1984 – 2002 and 2015 – present) in 

Placentia Bay. There is therefore considerable interest in genetic monitoring to complement 

traditional demographic monitoring and provide unique insights into population spatial structure, 

species life history and genetic diversity, and to detect future change in distribution and 

abundance of populations. Here, I generate a pre-impact genomic baseline against which future 

change will be assessed. Furthermore, I demonstrate the utility of such a large genomic dataset to 

resolve both the nature of adaptive diversity and demographic changes in wild populations.  

The findings presented in this thesis are the result of analyzing two genomic datasets 

consisting of 101 polymorphic microsatellite loci and 220K bi-allelic SNPs distributed across the 

North American Atlantic Salmon genome. These large genomic datasets are used to describe both 

neutral and adaptive population genetic structure and provide estimates of effective population 

size for 26 rivers in Placentia Bay, Newfoundland, Canada sampled across three discrete years 

(2016 – 2018). I additionally examined the utility of genome-scale data for the timely detection 
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and quantification of contemporary population declines using the single-sample linkage 

disequilibrium (LD) method.  

In Chapter 2, I examined the power of large genomic datasets in combination with the 

most commonly used method of Ne estimation, the LD method, as a tool for genetic monitoring. I 

find large panels enable detection of less severe population declines with greater accuracy than 

small, commonly used panels of tens of microsatellite loci or hundreds of SNPs. In the past, 

genetic monitoring has aimed to detect population bottlenecks, large declines in population size. 

Here, large panels not only detected smaller declines but recovered the magnitude of decline with 

reasonable accuracy; large panels (L = 100 microsatellites or ≥ 1000 SNPs) detected declines in 

!"" as small as 30% within as little as a single generation when initial population size was small 

(N = 100). Diminishing returns in power and accuracy were observed when panel size was 

increased from 1000 to 10,000 SNPs and when sample size was increased from 30 to 50 

individuals dependent on marker type and initial population size. Although false positives (type I 

error) were more frequently observed with large relative to small panels, large panels were less 

prone to false negatives (type II error; failure to detect decline) than small panels. As such, large 

panels are highly recommended for genetic monitoring of species of conservation concern (i.e., 

small population size) for which extinction or extirpation is a risk.  

In Chapter 3, I built on recent research which found range-wide polymorphism of the 

Ssa01/Ssa23 chromosomal translocation in North America was likely introduced through trans-

Atlantic secondary contact with European Atlantic Salmon (Lehnert et al., 2019a). I find the 

Ssa01/Ssa23 chromosomal translocation to be the dominant factor influencing population 

structure of Atlantic Salmon in Placentia Bay, Newfoundland, Canada. Frequency of the 
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translocation was temporally stable across the two discrete years sampled (2017 – 2018) and was 

found to be strongly positively correlated with temperature seasonality and temperature annual 

range and negatively correlated with minimum temperature of the coldest month.  

 

4. 2 Applications to conservation and management 

Despite a full moratorium on the commercial fishery since 2000 and reduced daily and 

season retention bag limits in the recreational fishery over recent years (Fisheries and Oceans 

Canada, 2009), populations in Placentia Bay have remained small. Current population 

productivity, measured as Nb, was low over the three discrete years sampled (mean !"" < 100). No 

trend in !"" was observed suggesting future research is needed to quantify natural fluctuations in 

the effective number of breeders annually to determine the sampling frequency and temporal 

period of sampling required to detect trend in !"" with reasonable accuracy for Atlantic Salmon 

within this region. However, evidence of continued declines in Ne over the recent past (LINKNe) 

may be cause for immediate conservation concern. Low Ne increases the potential for inbreeding 

(Palstra & Ruzzante, 2008) and may constrain a populations ability to adapt over evolutionary 

timescales elevating the risk of extirpation or extinction (Shaffer, 1981; Frankham, 1995). 

Interestingly, precocial male parr, common in Newfoundland (Dalley et al. 1983), may reduce 

inbreeding and significantly increase Ne and Nb (Johnstone et al. 2013; Perrier et al., 2014). 

Future work should estimate river specific abundance of precocial male parr and calculate the 

inbreeding coefficient of each population Here, preliminary analysis found at least one full- or 

half-sib pair in the majority of rivers sampled with small clusters of full-sibs more likely in rivers 

on the Avalon Peninsula (see Appendix I).  
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Strong genetic differentiation at neutral loci was observed between the Avalon (east) and 

Burin (west) Peninsulas corroborating previous evidence of an east-west divide within southern 

Newfoundland (Bradbury et al., 2015) and suggesting multiple discrete units of Atlantic Salmon 

are present in Placentia Bay, Newfoundland. Here, I find evidence of an adaptive chromosomal 

polymorphism which aligned with a cline in temperature seasonality. The standard North 

American (translocated; Ssa01p/Ssa23 and Ssa01q) karyotype appears adaptive as does the 

standard European (non-translocated; Ssa01p/q and Ssa23) karyotype within this secondary 

contact zone.  

Interestingly, the outlier block region on chromosome Ssa23 was found to be larger than 

reported in a range-wide study of the Ssa01/Ssa23 chromosomal polymorphism in North America 

(Lehnert et al., 2019a). Furthermore, the relationship between karyotype and temperature appears 

to operate in different directions across secondary contact zones (i.e. Lake Melville, Labrador and 

Placentia Bay, Newfoundland) within the North American range (Sylvester et al., 2018a; Lehnert 

et al., 2019a). This finding may support a hypothesis of multiple secondary contact events in 

Atlantic Canada from different regions of Europe as suggested by Rougemont & Bernatchez 

(2018). Future work should explore the demographic and evolutionary history of these regions 

with particular focus on timing of colonization and potential source populations. Despite the 

relationship between translocation frequency and temperature seasonality appearing to operate in 

opposing directions, rivers in both locations (Lake Melville, Labrador and Placentia Bay, 

Newfoundland) with a high frequency of the standard European (non-translocated) karyotype 

generally had lower !"# than rivers in the same embayment with a high frequency of the standard 



 79 

North American (translocated) karyotype. Overall, these results support a finding of multiple 

evolutionarily significant units within Placentia Bay, Newfoundland.  

Asymmetry in the degree of introgression with evidence of gene flow towards the Avalon 

Peninsula (east) was reported by Bradbury et al. (2015). As such, it is highly recommended that 

future contributions to the pre-impact genomic baseline screen wild populations in Placentia Bay 

for introgression with farm fish. Here, both spatial genetic structure and karyotype frequency 

were found to be temporally stable over the two discrete years sampled. Future work should 

continue to monitor clinal stability; a pronounced transition in karyotype frequency was observed 

between Ship Harbour Brook (SHI) and Fair Haven Brook (FHB) on the Avalon Peninsula and a 

transition zone was observed south of Northwest Mortier Bay Brook (NMB) on the Burin 

Peninsula. Long-term maintenance of chromosomal structural polymorphisms is unusual 

(Charlesworth, 2006), yet polymorphism of the Ssa01/Ssa23 chromosomal translocation is likely 

to have persisted in south Newfoundland since the end of the last glacial maximum (~ 14,000 bp) 

(Shaw & Potter, 2016). To investigate the evolution and maintenance of this putatively adaptive 

chromosomal polymorphism in the wild, future research should utilize common-garden 

experiments to investigate differential gene expression between homokaryotypes under varying 

thermal regimes. 

Future research should additionally build on the work of Dalley et al. (1983) and 

Hutchings & Jones (1998) and describe and monitor river specific rates of precocial maturation, 

growth rate, smolt age, and sea-age at maturity. Temperature regime (seasonal and annual) is 

expected to influence growth, smolt age, and the frequency of precocial male maturation (Minns 

et al., 1995; Friedland, 1998; Valiente et al., 2005; Yates et al. 2015). While some evidence 

suggests a higher rate of precocial male maturation on the Avalon Peninsula relative to the head 
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of the bay and Burin Peninsula and that smolts from coastal rivers in Labrador are significantly 

older than those from Lake Melville, little is known about the life history and ecology of Atlantic 

Salmon at this spatial scale in these regions (Dalley et al., 1983; ICES, 2018). While my results 

suggest a strong correlation between the Ssa01/Ssa23 chromosomal polymorphism and 

temperature, future work should characterize other unmeasured regional differences that may 

covary with temperature such as water chemistry (i.e. pH) (Bourret et al., 2013; Bradbury et al., 

2014), and pathogen or parasite diversity (Dionne et al., 2009). South Newfoundland has been 

found to have unusual phenotypic (i.e., precocial male parr) and genetic diversity (i.e. European 

mtDNA) with some of the first evidence of an adaptive chromosomal translocation in wild 

populations. As such, the impact of indirect genetic interactions or changing climate may be 

greater than elsewhere within the species range making preservation of these discrete and 

evolutionarily significant populations a key conservation concern (Verspoor et al., 2015). 

 

 

4. 3 Implications for genetic monitoring 

 Genetic monitoring is a time-efficient, cost-effective, and often non-lethal method of 

inferring change in adaptive spatial structure and population size (Blower, 2020). The LD method 

of Ne estimation has been shown to reliably detect population bottlenecks and track changes in 

demography (Tallmon et al., 2010; Antao et al., 2011). However, the utility of genetic monitoring 

is reliant on power achieved through sample size and number of loci. Inadequate power can bias 

estimates of Ne resulting in incalculable (infinite) upper CIs (Waples & Do, 2010; Blower, 2020). 

Samples from natural populations are limited by accessibility and rarity, particularly for species 

of conservation concern. To achieve accurate Ne, sample sizes of >1% of the total population size 
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have been suggested (Marandel et al., 2019). While an increase in sample size may improve 

power and accuracy more than a proportional increase in the number of loci, technological 

advances have made increasing panel size using SNPs ten-fold easier than increasing sample size 

(England et al., 2010; Luikart et al., 2010; Antao et al., 2011).  As such, large genomic panels, 

with orders of magnitude more loci than commonly used, have the potential to significantly 

improve power and accuracy of population genetic parameters, particularly when used to monitor 

species of conservation concern for which population sizes are small and rarity of samples can be 

problematic (Waples et al., 2016; Allendorf, 2017).  

Large panels increased precision and decreased bias of !""  which is expected to reduce noise 

and improve ability to detect trend in population size relative to small commonly used panels. 

Diminishing returns in power and accuracy between panels of 1000 and 10,000 SNPs when 

initial population size is small (Nb < 100) were observed; Marandel et al. (2019) reported 

improvements in accuracy plateaued at panel sizes of 200 – 500 bi-allelic loci. However, the 

distribution of false negatives (type II error; failure to detect declines) and false positives (type I 

error) was narrower with the 10,000 SNP panel which was also found to be surprisingly precise 

in both simulated and empirical datasets. It is therefore recommended that genetic monitoring of 

Atlantic Salmon rivers in Placentia Bay, Newfoundland, with mean !""  < 100 (range: 18 – 336), 

continue using a large (10,000 SNP) panel with a sample size of 30 (i.e. the number of 1+ 

individuals that could be consistently sampled across most rivers and years); the use of a large 

microsatellite panel is not recommended as a large sample size (S = 50) was required to achieve 

the same power. It is additionally recommended that sampling design continue using consecutive 
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cohorts of 1+ individuals enabling assessment of both Nb and, when analyzed jointly Ne, to 

provide a comprehensive overview of the region over time.  

 

4. 5 Final thoughts 

The on-going expansion of Atlantic Salmon aquaculture into Placentia Bay, 

Newfoundland will more than double current production in the region with 30,000 – 45,000 

tonnes expected to be harvested annually from 11 sites located near the head of Placentia Bay 

(Grieg Newfoundland Salmon Ltd., 2016). The genomic baseline, both estimates of population 

size and adaptive spatial structure, presented in this thesis will serve as the pre-impact baseline 

against which future change will be assessed. Continued genetic monitoring should aim to i) 

quantify the degree of introgression between farm and wild individuals, ii) track position of the 

cline; and iii) quantify differences in magnitude of population decline across karyotypes 

assessing the contribution of precocial male parr which may buffer against inbreeding depression 

(Johnstone et al. 2013; Perrier et al., 2014). Use of a large genomic dataset for genetic monitoring 

is expected to enable detection of change in fine-scale adaptive structure and population declines, 

as small as 30% with reasonable accuracy, on a timescale relevant to population management and 

conservation. 
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Appendix A – Supplementary Tables: Chapter 2 
 

Table S1 Simulation parameters for datasets generated with AGESTRUCNb (Antao et al., 2020). 
Ten independent replicates were performed for each scenario. 

 

Marker type Loci  
(L) 

Population size 
(N) 

Sample size 
(S) 

Microsatellites 25, 100 100, 500, 1000 30, 50 

SNPs 100, 1000, 10000 100, 500, 1000 30, 50 
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Table S2 Life history parameters of Atlantic Salmon (Salmo salar) of southern Newfoundland 
used in AGESTRUCNb (Antao et al., 2020) to simulate populations of varying size. 
 

    Age 
    YoY 1 2 3 4 5 6 
Survival 0.10 0.25 0.40 0.098 0.46 0.11 0.00 

Proportion of  
Fecund Individuals 

Male 0.00 0.59 0.68 0.80 0.50 0.75 1.00 

Female 0.00 0.00 0.00 0.50 0.75 1.00 1.00 
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Table S3 Mean detectable decline in !"" between t0 and tx all simulated scenarios; estimates of Nb 
generated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 2020). Mean detectable 
decline, averaged across per generation rates of decline, at which power to detect decline 

surpasses 80% shown for scenarios varying in marker type (microsatellites and SNPs), panel size 

(L = 25 or 100 microsatellites, and 100, 1000 or 10,000 SNPs), population size (N = 100, 500 and 

1000), and sample size (S = 30 or 50).  

 

Sample 
size 

Population 
size 

Microsatellites     SNPs 
25 100     100  1000 10000 

30 

100 46.7 39.3     54.1  29.5 28.4 

500 64.2 49.5     66.6  47.4 42.6 

1000 82.1 65.3     87.5  49.1 48.2 

50 

100 40.3 24.6     32.5  26.2 28.6 

500 57.8 39.6     65.3  33.9 32.9 

1000 76.8 44.5     73.9  48.8 44.7 
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Table S4 Median and range (minimum and maximum) offset, the difference between modeled 

and observed decline in !"" between t0 and tx, for all simulated scenarios. Point estimates 
generated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 2020). Two marker types 
(microsatellites and SNPs) and 4 panel sizes (L = 25 or 100 microsatellites, and 100, 1000 or 

10,000 SNPs) compared across three population sizes (N = 100, 500 and 1000) and two sample 

sizes (S = 30 or 50). 

 

Marker 
type 

Panel 
size 

Pop. 
size 

S = 30 S = 50 
Min. Median Max   Min. Median Max. 

Micros 

25 
100 -756.1 -0.7 46.0  -164.8 -1.6 46.3 
500 -1314.6 -16.9 36.9  -422.1 -3.5 44.2 

1000 -906.9 -17.5 41.3  -895.0 -14.7 39.4 

100 
100 -109.0 0.4 37.0  -48.9 3.1 34.1 

500 -403.4 0.8 44.6  -232.1 0.9 42.3 

1000 -594.2 -3.8 38.1   -330.1 0.9 43.7 

SNPs 

100 
100 -684.2 0.1 49.0  -211.5 1.0 41.3 

500 -1460.5 -13.0 36.6  -744.2 -3.8 44.9 

1000 -919.9 -24.9 34.6  -733.0 -8.8 43.3 

1000 
100 -100.9 -0.4 44.0  -84.2 1.1 28.6 

500 -422.1 1.0 44.9  -181.7 0.4 35.5 

1000 -412.9 -1.2 41.8  -206.5 0.6 41.8 

10000 
100 -76.3 0.2 37.5  -56.9 0.5 27.1 

500 -320.1 0.2 47.9  -118.3 2.2 36.7 

1000 -419.3 1.6 45.6   -207.6 1.9 41.9 
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Appendix B – Supplementary Figures: Chapter 2 
 

 

Figure S1 Linear regression of mean !"" per scenario shown with infinite estimates, coloured by 
per generation rate of decline (%). !"! generated using LDNe v2 as implemented in AGESTRUCNb 
(Antao et al., 2020), S = 50. Mean !"! calculated across ten replicates for each rate of decline and 
scenario. Two marker types (microsatellites and SNPs) and five panel sizes (columns: L = 25 or 

100 microsatellites, and 100, 1000 or 10,000 SNPs) were modelled using three initial population 

sizes (N = small (100), medium (500), or large (1000)). Eight per generation rates of decline (%) 

were simulated per scenario, indicated by colour. Monitoring began in the year pre-decline and 

continued up to 20 generations.  
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Figure S2 Distribution of total change (%) in !"! (point estimates) between t0 and tx for stable 
populations when sample size was small (S = 30) or large (S = 50). Positive values indicate an 

increase in population size (!"!$ < !"!%) and negative values indicate a decrease in population size 
(!"!$ > !"!%) was inferred. Dashed vertical lines represent the simulated total change (i.e. 0%). 
Values in the bottom right of each scenario are the greatest total change (%) observed; shown if 

beyond the limit of the x-axis. Columns: panel size (L = 25 or 100 microsatellites, and 100, 1000 

or 10,000 SNPs) and marker type. Rows: initial population size (N = 100, 500 or 1000). 

Estimates of Nb generated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 2020). 
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Figure S3 Power to detect a decline in !"! between t0 and tx with S = 50 for all simulated 
scenarios. Point estimates generated using LDNe v2 as implemented in AGESTRUCNb (Antao et al., 
2020). Two marker types (microsatellites and SNPs) and 4 panel sizes (columns: L = 25 or 100 

microsatellites, and 100, 1000 or 10,000 SNPs) compared across three population sizes (rows: N 

= small, medium and large). Coloured by per generation rates of decline (%). Loess curves are 

used for visualization of trends in the data. The vertical solid black line is the mean total decline 

(%) detectable for each scenario. The horizontal grey dashed line is the 80% power threshold.  
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Figure S4 Accuracy of decline in !"! between t0 and tx. Offset, the difference between modeled 
and observed decline in !"!, estimated using LDNe v2 as implemented in AGESTRUCNb (Antao et 
al., 2020) shown across marker type and panel size (columns: L = 25 or 100 microsatellites, and 

100, 1000 or 10,000 SNPs) for small (S = 30) and large (S = 50) sample sizes and moderate (N = 

500) and large (N = 1000) populations. The vertical dashed line at 0% offset indicates the 

observed decline accurately approximates the simulated decline. Negative offset indicates the 

simulated decline was underestimated and positive offset that the simulated decline was 

overestimated. Variability in offset indicated by width of the scaled density curve. Plots have 

been constrained to offset within the range -500 to 150%. See Table 4 for mean minimum and 

maximum offset per scenario. 
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Figure S5 Bias and precision of empirical !"! (point) and upper and lower bounds of CI (line) for 
three rivers (Rows: Big Salmonier River (BSA), Nonsuch River (NON), and Red Harbour West 

(RHW)) sampled in Placentia Bay, Newfoundland in 2017 (S = 25 – 30). Five replicate estimates 

of Ne generated using 100, 1000 or 10,000 SNP panels (columns) in NeESTIMATOR v2.1 (Do et al., 
2014) with locus pairing across chromosomes. Rivers arranged according to inferred population 

size; NON (small, !"! < 100), BSA (small-moderate, !"! = 100 – 200), and RHW (moderate, !"! > 
200).  
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Figure S6 Comparison of empirical !"! generated with a small sample size (orange: S = 20 – 30) 
or large sample size (red: S = 50 – 60). Estimates of !"! generated using a large genomic panel (L 
= 101 microsatellites) and the linkage disequilibrium method in NeESTIMATOR v2.1 (Do et al., 
2014). Individuals sampled from 23 rivers in Placentia Bay, Newfoundland, Canada in 2016. 
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Figure S7 Trend in effective number of breeders over three discrete years in 24 rivers within 

Placentia Bay, Newfoundland, Canada. Empirical !"! calculated using the linkage disequilibrium 
(LD) method in NeESTIMATOR v2.1 (Do et al., 2014) and large panels of 101 microsatellites with a 
sample size of 50 – 60 in 2016, and 10,000 single nucleotide polymorphisms (SNPs) with a 

sample size of 20 – 30 in 2017 and 2018. When ≤ 90% individuals sampled were from the same 

age class, estimates were considered Ne (*) rather than Nb. 



 111 

 

 

Figure S8 Recent effective population size (!"&) relative to maximum !"& for Atlantic Salmon 
sampled from 25 rivers in Placentia Bay, Newfoundland, Canada in 2017 calculated using LINKNe 
(Hollenbeck et al., 2016). 
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Figure S9 Change in effective population size (!"&), calculated using LINKNe (Hollenbeck et al., 
2016), over the last ~ 6 generations for Atlantic Salmon sampled from 25 rivers in Placentia Bay, 

Newfoundland, Canada in 2017. Significant change (red), non-overlapping confidence intervals, 

and non-significant change (blue). 
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Appendix C – Supplementary Tables: Chapter 3 

 

Table S5 Climatic and habitat variables used to identify potential drivers of translocation 

frequency using a partial redundancy analysis (RDA). Description of each measure is provided 

with the years measured, unit, and data source.  

Variable Description Unit Year Source 

BIO1 Annual mean temperature ∘C 1970-2000 WorldClim 

BIO2 Mean diurnal range ∘C 1970-2000 WorldClim 

BIO3 Isothermality ∘C 1970-2000 WorldClim  

BIO4 Temperature seasonality ∘C 1970-2000 WorldClim 

BIO5 
Max temperature of warmest 

month 
∘C 1970-2000 WorldClim 

BIO6 Min temperature of coldest month ∘C 1970-2000 WorldClim 

BIO7 Temperature annual range ∘C 1970-2000 WorldClim 

BIO8 Mean temperature wettest quarter ∘C 1970-2000 WorldClim 

BIO9 
Mean temperature of driest 

quarter 
∘C 1970-2000 WorldClim  

BIO10 
Mean temperature warmest 

quarter 
∘C 1970-2000 WorldClim 

BIO11 Mean temperature coldest quarter ∘C 1970-2000 WorldClim 

BIO12 Annual precipitation mm 1970-2000 WorldClim 

BIO13 Precipitation of wettest month mm 1970-2000 WorldClim 

BIO14 Precipitation of driest month mm 1970-2000 WorldClim 

BIO15 Precipitation seasonality mm 1970-2000 WorldClim 

BIO16 Precipitation of wettest quarter mm 1970-2000 WorldClim 

BIO17 Precipitation of driest quarter mm 1970-2000 WorldClim 

BIO18 Precipitation of warmest quarter mm 1970-2000 WorldClim 

BIO19 Precipitation of coldest quarter mm 1970-2000 WorldClim 

Human density Human population density   2000 NASA NEO 

Axial length 

Length of river along down-valley 

axis km 1985 Inventory 

Obstructions Number of obstructions   1985 Inventory 

Relief 

Difference in elevation between 

the highest and lowest point of the 

basin  m 1985 Inventory 

FW_dem_max Maximum elevation  m 2000 HydroSHEDS 

 



 114 

 

Table S6 Outlier block regions associated with a known chromosomal translocation 

(Ssa01p/Ssa23) in Atlantic Salmon identified here using pcadapt across rivers in Placentia Bay, 

Newfoundland, Canada. Outlier block regions were approximated by visual inspection of q-

values. Boundaries of and number of significant (q-value < 0.05) single nucleotide 

polymorphisms (SNPs) in each region reported.  

Chromosome Approximate boundaries of outlier blocks Number of 
outlier SNPs Start (bp) End (bp) 

Ssa01 44,000,000 53,000,000 480 

Ssa23 0 9,500,000 407 
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Table S7 Principal component, PC1 and PC2, loadings for each categorical PCA used in 

redundancy analyses (RDA) with code of climatic variable.  

Climatic variable 
Loading 

PC1 PC2 

Temperature   
BIO1 -0.19 -0.62 

BIO2 0.34 -0.11 

BIO3 0.20 -0.26 

BIO4 0.36 -0.013 

BIO5 0.34 -0.078 

BIO6 -0.36 -0.036 

BIO7 0.36 0.001 

BIO8 -0.17 -0.54 

BIO9 0.25 -0.23 

BIO10 0.30 -0.38 

BIO11 -0.35 -0.2 

Precipitation   
BIO12 -0.39 0.048 

BIO13 -0.38 0.18 

BIO14 -0.37 -0.20 

BIO15 -0.17 0.81 

BIO16 -0.38 0.19 

BIO17 -0.35 -0.42 

BIO18 -0.37 -0.24 

BIO19 -0.37 0.01 
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Table S8 Proportion of karyotypes for the Ssa01p/Ssa23 chromosomal translocation in Placentia 

Bay, Newfoundland, Canada. Karyotype assigned based on outlier SNPs (n = 887) from the 

outlier block regions on Ssa01p and Ssa23. Rivers are ordered geographically, east to west 

around the bay. 

RiverID 

2017   2018 

Homo NA 
(Trans) Hetero Homo EU 

(No Trans)   
Homo NA 
(Trans) Hetero Homo EU 

(No Trans) 

BRA 0.000 0.233 0.767  0.000 0.250 0.750 

CUS 0.667 0.267 0.067  0.267 0.533 0.200 

GBW 0.111 0.556 0.333  0.073 0.341 0.585 

SPR 0.000 0.111 0.889  0.000 0.133 0.867 

NPR 0.138 0.517 0.345  0.118 0.294 0.588 

SHI 0.045 0.409 0.545  0.000 0.438 0.563 

FHB 0.533 0.400 0.067  0.320 0.600 0.080 

CBC 0.533 0.400 0.067  0.421 0.526 0.053 

NHR 0.667 0.292 0.042  0.310 0.552 0.138 

BLA 0.542 0.458 0.000  0.655 0.276 0.069 

PHR 0.310 0.655 0.034  0.567 0.367 0.067 

SHA 0.667 0.333 0.000  0.889 0.111 0.000 

NON 0.704 0.222 0.074  0.700 0.300 0.000 

CRB 0.517 0.414 0.069  0.778 0.222 0.000 

BDL 0.433 0.467 0.100  0.313 0.500 0.188 

RUS 0.720 0.280 0.000  0.742 0.258 0.000 

RHW 0.630 0.333 0.037  0.625 0.250 0.125 

NMB 0.222 0.444 0.333  0.645 0.355 0.000 

TDS 0.200 0.533 0.267  0.375 0.333 0.292 

BSA 0.633 0.367 0.000  0.250 0.625 0.125 

LWN 0.667 0.333 0.000  0.591 0.318 0.091 

TBR 0.556 0.333 0.111  0.500 0.400 0.100 

PBR 0.133 0.600 0.267   0.294 0.588 0.118 
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Table S9 Pairwise comparison of translocation and karyotype frequencies within river between 

years (2017 and 2018) sampled. Bold p-values indicate significantly different frequencies, 

calculated using a Fisher Exact Test. Rivers ordered geographically, east to west, around 

Placentia Bay, Newfoundland.  

RiverID 
Translocation frequency   Karyotype frequency 

Estimate lower CI  upper CI p   Estimate lower CI  upper CI p 
BRA 1.08 0.32 3.77 1.00  0.00 0.00 Inf 1.00 

CUS 0.29 0.12 0.69 0.00  7.04 0.99 85.86 0.04 
GBW 0.51 0.20 1.29 0.13  2.58 0.18 28.50 0.57 

SPR 1.21 0.19 8.68 1.00  0.00 0.00 Inf 1.00 

NPR 0.55 0.19 1.50 0.26  1.95 0.22 26.24 0.65 

SHI 0.84 0.31 2.32 0.82  Inf 0.04 Inf 0.42 

FHB 0.60 0.24 1.44 0.22  1.95 0.12 31.65 0.60 

CBC 0.79 0.30 2.14 0.65  1.00 0.02 22.06 1.00 

NHR 0.33 0.12 0.86 0.02  6.66 0.55 370.64 0.14 

BLA 1.14 0.40 3.18 0.82  Inf 0.12 Inf 0.51 

PHR 1.69 0.72 4.08 0.23  1.06 0.05 69.29 1.00 

SHA 3.36 0.42 156.00 0.44  0.00 0.00 Inf 1.00 

BDL 0.65 0.29 1.42 0.27  2.52 0.41 19.57 0.43 

NON 1.28 0.38 4.75 0.78  0.00 0.00 8.01 0.51 

CRB 3.02 1.01 10.31 0.03  0.00 0.00 4.25 0.19 

RUS 1.10 0.31 3.78 1.00  0.00 0.00 Inf 1.00 

RHW 0.77 0.27 2.16 0.64  3.29 0.24 188.57 0.60 

NMB 5.70 2.32 14.89 0.00  0.00 0.00 0.22 0.00 
TDS 1.35 0.49 3.73 0.64  0.60 0.06 4.89 0.67 

BSA 0.29 0.11 0.74 0.01  Inf 0.99 Inf 0.03 
LWN 0.60 0.20 1.81 0.33  Inf 0.23 Inf 0.20 

TBR 0.90 0.23 3.68 1.00  1.00 0.01 23.98 1.00 

PBR 1.86 0.73 4.80 0.20   0.22 0.01 2.11 0.17 
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Table S10 Gene ontology (GO) enrichment, using topGO, for single nucleotide polymorphisms 

(SNPs) identified as outliers in a genotype-environment analysis (redundancy analysis; RDA) 

and located within the outlier block regions on chromosomes Ssa01 and Ssa23. GO IDs in bold 

indicate the term was significant (p-value < 0.01) in both discrete years sampled.  

GO ID Description 
2017 2018 

Nanno Nsig Nexp p-value Nanno Nsig Nexp p-value 
GO:0045887 positive regulation of 

synaptic growth at 
neuromuscular junction 

19 3 0.13 0.0003 19 3 0.12 0.00 

GO:2000541 positive regulation of 
protein 
geranylgeranylation 

6 2 0.040 0.0007 6 2 0.04 0.00 

GO:0008380 RNA splicing 747 9 5.05 0.0016 747 9 4.8 0.0013 

GO:0006729 tetrahydrobiopterin 
biosynthetic process 

9 2 0.060 0.0016 9 2 0.06 0.0014 

GO:0045075 regulation of interleukin-
12 biosynthetic process 

28 4 0.19 0.0002 28 3 0.18 0.0046 

GO:0007346 regulation of mitotic cell 
cycle 

1292 18 8.74 0.0028 1292 18 8.31 0.0023 

GO:0031622 positive regulation of fever 
generation 

12 2 0.080 0.0029 12 2 0.08 0.0026 

GO:0031394 positive regulation of 
prostaglandin biosynthetic 
process 

12 2 0.080 0.0029 12 2 0.08 0.0026 

GO:0021912 regulation of transcription 
from RNA polymerase II 
promoter involved in 
spinal cord motor neuron 
fate specification 

13 2 0.090 0.0034 13 2 0.08 0.0031 

GO:0006979 response to oxidative 
stress 

1072 13 7.25 0.0043 1072 13 6.89 0.0032 

GO:0002091 negative regulation of 
receptor internalization 

15 2 0.10 0.0045 15 2 0.1 0.0041 

GO:1900025 negative regulation of 
substrate adhesion-
dependent cell spreading 

16 2 0.11 0.0051 16 2 0.1 0.0047 
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GO ID Description 
2017 2018 

Nanno Nsig Nexp p-value Nanno Nsig Nexp p-value 
GO:0021913 regulation of transcription 

from RNA polymerase II 
promoter involved in 
ventral spinal cord 
interneuron specification 

19 2 0.13 0.0072 13 2 0.08 0.0031 

GO:0008152 metabolic process 19535 141 132.10 0.0022 19535 134 125.64 0.0084 

GO:0014850 response to muscle activity 53 3 0.36 0.0056 53 3 0.34 0.0048 

GO:0048515 spermatid differentiation 330 4 2.23 0.0007 330 3 2.12 0.0122 

GO:0090076 relaxation of skeletal 
muscle 

18 2 0.12 0.0065 18 2 0.12 0.0059 

GO:0034612 response to tumor necrosis 
factor 

321 7 2.17 0.0079 321 7 2.06 0.0069 

GO:0071603 endothelial cell-cell 
adhesion 

20 2 0.14 0.0080 20 2 0.13 0.0072 

GO:0046326 positive regulation of 
glucose import 

140 5 0.95 0.0027 140 4 0.9 0.0129 

GO:0043201 response to leucine 20 2 0.14 0.0080 20 2 0.13 0.0072 
GO:1900028 negative regulation of 

ruffle assembly 
21 2 0.14 0.0088 21 2 0.14 0.008 

GO:0010629 negative regulation of 
gene expression 

4286 35 28.98 0.0104 4286 35 27.57 0.0079 

GO:0032496 response to 
lipopolysaccharide 

727 10 4.92 0.0053 727 9 4.68 0.0135 

GO:0048535 lymph node development 65 3 0.44 0.0098 65 3 0.42 0.0085 

GO:0071340 skeletal muscle 
acetylcholine-gated 
channel clustering 

23 2 0.16 0.0105 23 2 0.15 0.0095 

GO:0021918 regulation of transcription 
from RNA polymerase II 
promoter involved in 
somatic motor neuron fate 
commitment 

7 1 0.050 0.0464 13 2 0.08 0.0031 

GO:0048378 regulation of lateral 
mesodermal cell fate 
specification 

12 2 0.080 0.0029 12 1 0.08 0.0745 

GO:0003256 regulation of transcription 
from RNA polymerase II 
promoter involved in 
myocardial precursor cell 
differentiation 

39 1 0.26 1.0000 13 2 0.08 0.0031 
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GO ID Description 
2017 2018 

Nanno Nsig Nexp p-value Nanno Nsig Nexp p-value 
GO:1901213 regulation of transcription 

from RNA polymerase II 
promoter involved in heart 
development 

62 1 0.42 1.0000 13 2 0.08 0.0031 

GO:0000430 regulation of transcription 
from RNA polymerase II 
promoter by glucose 

8 0 0.050 1.0000 13 2 0.08 0.0031 

GO:0000431 regulation of transcription 
from RNA polymerase II 
promoter by galactose 

8 0 0.050 1.0000 13 2 0.08 0.0031 

GO:0010767 regulation of transcription 
from RNA polymerase II 
promoter in response to 
UV-induced DNA damage 

5 0 0.030 1.0000 13 2 0.08 0.0031 

GO:0021882 regulation of transcription 
from RNA polymerase II 
promoter involved in 
forebrain neuron fate 
commitment 

9 0 0.060 1.0000 13 2 0.08 0.0031 

GO:0021920 regulation of transcription 
from RNA polymerase II 
promoter involved in 
spinal cord association 
neuron specification 

5 0 0.030 1.0000 13 2 0.08 0.0031 

GO:0043618 regulation of transcription 
from RNA polymerase II 
promoter in response to 
stress 

115 0 0.78 1.0000 13 2 0.08 0.0031 

GO:0043619 regulation of transcription 
from RNA polymerase II 
promoter in response to 
oxidative stress 

36 0 0.24 1.0000 13 2 0.08 0.0031 

GO:0061418 regulation of transcription 
from RNA polymerase II 
promoter in response to 
hypoxia 

74 0 0.50 1.0000 13 2 0.08 0.0031 

GO:1900094 regulation of transcription 
from RNA polymerase II 
promoter involved in 
determination of left/right 
symmetry 

38 0 0.26 1.0000 13 2 0.08 0.0031 

GO:0046060 dATP metabolic process 19 2 0.13 0.0072 19 0 0.12 1 
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Appendix D – Supplementary Figures: Chapter 3 
 

 

Figure S10 Population structure of Atlantic Salmon in Placentia Bay, Newfoundland in (a) 2017 

and (b) 2018. Red Harbour East (RHA) was found to be genetically differentiated from all other 

rivers sampled based on the first two principal component (PC) axes from pcadapt (Luu et al., 

2017) using 139,038 SNPs. Rivers coloured east (yellow-red) to west (green-blue) with head of 

the bay (purple).  
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Figure S11 Heatmap of pairwise FST for Atlantic Salmon rivers (n = 25) in Placentia Bay, 
Newfoundland, Canada. The upper matrix represents 2017 and the lower matrix 2018. Rivers are 

ordered geographically from east to west. Lance (LAN) and Little Barasway (LBB) were not 

sampled in 2018. 
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Figure S12 Cross-validation (CV) error means and standard deviations from three ADMIXTURE 
runs using different random number seeds. Standard deviations which overlap the dashed red 

line, indicating lowest mean CV error represent a reasonable range of K. (a) 2017, K = 10 

through K = 14 and (b) 2018, K = 9 through K = 11. 
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Figure S13 ADMIXTURE (K = 9 – 11) results for Atlantic Salmon (Salmo salar) sampled in 
Placentia Bay, Newfoundland, Canada in (a) 2017 (n = 662) and (b) 2018 (n = 611). Rivers 

ordered geographically, east to west, around the bay. Lance (LAN) and Little Barasway (LBB) 

were not sampled in 2018 due to limited sample size in 2017. 
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Figure S14 Scree plots generated in pcadapt showing proportion of variance explained as 

increasing principal component (K) axes are retained for a) 2017 and b) 2018. Results represent 

genetic variation in Atlantic Salmon (Salmo salar) across Placentia Bay, Newfoundland, Canada. 
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Figure S15 Observed heterozygosity (Ho) for each karyotype. Karyotypes assigned using 

kmeans for three clusters; standard European (homozygous non-translocated; Ssa01p/q and 

Ssa23), standard North American (homozygous translocated; Ssa01p/Ssa23 and Ssa01q), and 

heterozygous. All values calculated in plink v1.9. Lines represent smoothed values for a span of 

0.1 using ggplot2.  
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Figure S16 Heatmaps of linkage disequilibrium (LD) between outlier SNPs (n = 1913) within 

outlier block regions on chromosomes (Ssa01p and Ssa23). Pairwise LD (R2) for (a) 

homozygous non-translocated vs. heterozygous, (b) homozygous translocated vs. heterozygous, 

and (c) homozygous non-translocated vs. homozygous translocated in 2017. 
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Figure S17 Heterogeneity of (a, b) translocation (c - h) and karyotype frequencies between rivers 

within year, (a, c, e, and g) 2017 and (b, d, f, and h) 2018 sampled. Bars represent confidence 

intervals. Rivers ordered geographically, east to west, around Placentia Bay, Newfoundland. 

Colours indicate karyotype; homozygous non-translocated (yellow), heterozygous (red), and 

homozygous translocated (blue-green). 
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Figure S18 Pairwise comparison of (a, b) translocation (c, d) and karyotype frequencies between 

rivers within year, (a, c) 2017 (b, d) and 2018 sampled. Stars indicate significantly different 

frequencies, calculated using a Fisher Exact Test adjusted for multiple comparisons. Rivers 

ordered geographically, east to west, around Placentia Bay, Newfoundland.  
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Figure S19 Temporal stability of (a) translocation (b) and karyotype frequencies within river 

between years sampled (2017 and 2018). Rivers that exhibited a significant change in 

translocation or karyotype frequency between 2017 and 2018 highlighted.  
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Figure S20 Correlation between precipitation and the Ssa01p/Ssa23 chromosomal translocation 

in Atlantic Salmon within Placentia Bay, Newfoundland, Canada. Linear regression of the first 

principal component (PC) of a PCA based on 9 precipitation variables (BIOCLIM) and proportion 
of non-translocated Ssa01p/q sampled in (a) 2017 and (b) 2018.  
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Appendix E – Matrix of Total Decline per Generation 
 
Table S11 Total decline at each generation (up to a maximum of 20 generations as determined by the per generation rate of decline; 4 
years per generation) across all modeled per generation rates of decline (0 – 60%).  

Generation 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
-5.0 -9.8 -14.3 -18.5 -22.6 -26.5 -30.2 -33.7 -37.0 -40.1 -43.1 -46.0 -48.7 -51.2 -53.7 -56.0 -58.2 -60.3 -62.3 -64.2 
-10.0 -19.0 -27.1 -34.4 -41.0 -46.9 -52.2 -57.0 -61.3 -65.1 -68.6 -71.8 -74.6 -77.1 -79.4 -81.5 -83.3 -85.0 -86.5 -87.8 
-20.0 -36.0 -48.8 -59.0 -67.2 -73.8 -79.0 -83.2 -86.6 -89.3 -91.4 -93.1         
-30.0 -51.0 -65.7 -76.0 -83.2 -88.2 -91.8 -94.2 -96.0 -97.2 -98.0 -98.6         
-40.0 -64.0 -78.4 -87.0 -92.2 -95.3 -97.2 -98.3             
-50.0 -75.0 -87.5 -93.8                 
-60.0 -84.0 -93.6 -97.4                                 
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Appendix F – Microsatellite Primers 
 
Table S12 Primers with repeat motif, motif type, and linkage group for 101 microsatellite loci used to genotype Atlantic Salmon 
(Salmo salar) from Placentia Bay, Newfoundland, Canada.  
Locus LG Accession Number Left Oligo Right Oligo Repeat 

Motif 
NGS-SSsp2210 12 AY081808.1 CACATTCACTGCAAAATAAAGCT TGGGATTCAATAAAGGTAAGTAAGT AGTT 
NGS-SsaD486 16 AF525208.1 TGCAGTCCAATAATATCCCCGT CCCTGCATGACTCGGATAAC AGAT 

Ssa-1.10 1 gi|925169083|ref|NW_012332498.1| TGGATGACAACCTCCGTTAAAC CGGGAAGCCTGGTGAAGATC AAG 

Ssa-1.11 1 gi|925169075|ref|NW_012332506.1| CTCATCAACGCTATCCTCTTCC GTCTTTCATCTGTCCGCGTG ATC 

Ssa-1.14 1 gi|925168868|ref|NW_012332713.1| TCGTATTTGTCAAGGATGTGCC AGATGCCCATTGTATTGCCC AGT 
Ssa-1.5 1 gi|925168832|ref|NW_012332749.1| GCGTTATGTGCTTGCATGC ACCACCGTACTCAGCTTATCC ATT 

Ssa-1.7 1 gi|925169069|ref|NW_012332512.1| AGAACACAACAGAACCAGGTAC CTCGAACACACTTCCAACCC GAT 

Ssa-1.8 1 gi|925168775|ref|NW_012332806.1| AGGCCAAAGAAATCCTGCAC ACTGACCCAAACACGCAAATAG ATC 

Ssa-1.9 1 gi|925169130|ref|NW_012332451.1| CTGAGGAGCACAAAGGACAG GTGTTGCTGGCTGTGTTCTC AGG 

Ssa-10.1 10 gi|925165007|ref|NW_012336574.1| GGTCCTCCAGTACCTCCAAC AATCTGGTGAGTTCGTCCGG GTT 

Ssa-10.2 10 gi|925164993|ref|NW_012336588.1| TGATCCTCTTCACCACCCTG CTGAAGACTCCTCCCTCACC AAT 
Ssa-10.4 10 gi|925164986|ref|NW_012336595.1| GGTGAAATGTAGCCTGCATG ACACACTGCTATATGTGTGG AAT 

Ssa-11.11 11 gi|925164498|ref|NW_012337083.1| CGGCATATACCTTTAACGTTGG GAAGAAGCGATGCGAGAGG AAG 

Ssa-11.12 11 gi|925164426|ref|NW_012337155.1| CGTTAGCACACATGGCAAATC GGTGCTGTTTGGGATGCATC ACT 

Ssa-11.2 11 gi|925164888|ref|NW_012336693.1| AAAGTTTGTTTGTGGACCGC CGGACAGTTTCTTGGACTTC AAG 

Ssa-11.3 11 gi|925164793|ref|NW_012336788.1| AGCGTGTGTGTCGTTCAATAC ATGTTTCACCTCTGCGTCAC AAC 

Ssa-11.5 11 gi|925164446|ref|NW_012337135.1| GTGTGCCGTTCTATCGCTG CCTAAAGAAATGCCAGAGTCCG GAT 
Ssa-11.6 11 gi|925164433|ref|NW_012337148.1| TTAACCTGCTCTACCTCTCG ACATCACCACACCTATCTTC TGA 

Ssa-11.8 11 gi|925164901|ref|NW_012336680.1| AAAGGACCCAGAACGTACAG ACCACACAGTACCCTCAATG ATA 

Ssa-12.12 12 gi|925164059|ref|NW_012337522.1| TTGCTGCTGGTTTGTGCTC GGGACAGTGAAGTGGTATTGC GAT 

Ssa-12.13 12 gi|925164020|ref|NW_012337561.1| ATCAGGCTCAGAGGTGGAAC ACACAGTGGAGGTAGAGATAGC CCT 

Ssa-12.5 12 gi|925164069|ref|NW_012337512.1| TCTCCTTCCTCGATCAGCTC AATGTGTCGCCTTCCCACC ATC 
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Locus LG Accession Number Left Oligo Right Oligo Repeat 
Motif 

Ssa-13.10 13 gi|925163859|ref|NW_012337722.1| TGAAAGTTGGCTGCAATCCG GGAACCTGTCTGCCCACAC AAG 
Ssa-13.12 13 gi|925163769|ref|NW_012337812.1| AGTTTGGCGTAGTCTGGGAC TCCCATCATCCTCCTCTGGG AGG 

Ssa-13.2 13 gi|925163922|ref|NW_012337659.1| CTACACCAAGAGTCCAGTGTC ACAATTTGTCTCCCTGTTGTTG AAT 

Ssa-13.8 13 gi|925163870|ref|NW_012337711.1| TGACGAGACAAGATTCAGGTTG GACCTATGCAACCACCAACG GTT 

Ssa-14.10 14 gi|925163717|ref|NW_012337864.1| GGGAACGTGTGGAAGATTCAC AAGGTATGGAGGGTGATGCC ATC 

Ssa-14.2 14 gi|925163728|ref|NW_012337853.1| GGGCATGATCTCGACACC AGGAATGAGTAAGCTGGCTAAG ATC 

Ssa-14.3 14 gi|925163708|ref|NW_012337873.1| TCAACCTAAACCCTCTGCCC AATCATCACATTCCACAGCAAC AAT 
Ssa-14.5 14 gi|925163651|ref|NW_012337930.1| CCAGGAGGCCTTCACATG CCTCCTGGCAATGCTGTATAG AAT 

Ssa-14.6 14 gi|925163718|ref|NW_012337863.1| AGTCAAGAAAGTCACTGCCC GGAATGGCAAACAGAAAGGG ATT 

Ssa-14.8 14 gi|925163650|ref|NW_012337931.1| AAACATTGATTTGGCTCTGTC TATTGCACCATCCCGTTCTC TAT 

Ssa-14.9 14 gi|925163731|ref|NW_012337850.1| CCATAATGGCACTGCTTCTTC GTGTTGCTTCATTACACTCCG AAT 

Ssa-15.1 15 gi|925163276|ref|NW_012338305.1| TTTCTTTGTGTGTTGTGCCC CAGCTGTGGTTCCTCTGGG CCT 

Ssa-15.3 15 gi|925163318|ref|NW_012338263.1| GCTAACGAATGACAGCTTGC CATTAGTAAGACTGGCAGCAG TTG 
Ssa-15.7 15 gi|925163309|ref|NW_012338272.1| GATGTGATGGCAGTGCTATG CAGCAACAAGGTCAATCTCC TGA 

Ssa-16.5 16 gi|925163075|ref|NW_012338506.1| CCGCTGGATTCCTCATTATGTC GGACTGACAGGAAGAGAGACC TTA 

Ssa-17.1 17 gi|925162405|ref|NW_012339176.1| CATCTTCCGGTTCGCTCAAC GTCATGACCTGTGCAACCAG ATT 

Ssa-17.2 17 gi|925162379|ref|NW_012339202.1| ACCCATAGAATTACTGCACTGG GTCGTACTGGCATAATGTCAAC ATT 

Ssa-18.7 18 gi|925161808|ref|NW_012339773.1| TGCAGGTTGTGGTCATGTTG CACATTCTGTCCATTCGGCC TTA 

Ssa-19.1 19 gi|925161618|ref|NW_012339963.1| TGTGCAAACGCCATGATACC CCATGACAGCTCCATCCGG GTA 
Ssa-19.2 19 gi|925161617|ref|NW_012339964.1| GTGACCCAAAGTGCTGCTG CTCCAGACACCAGCACCTC GCT 

Ssa-19.3 19 gi|925161703|ref|NW_012339878.1| ACGTCCTGACAGTTATCCTTG GTCTTGTCATGGCTGTGCTC TTC 

Ssa-19.7 19 gi|925161695|ref|NW_012339886.1| CTCCTTCACACAACCACC AAGTGCAGACCTACCTTGTG AGC 

Ssa-19.9 19 gi|925161703|ref|NW_012339878.1| TCTGGTGCTGACGATGAGAG GAAATCAGAGGTCATTGGCCC GAT 

Ssa-2.1 2 gi|925168396|ref|NW_012333185.1| AGACTCCACCTGCCTTGTTC CTCACTGTCAGAGCATGCG ATT 

Ssa-2.12 2 gi|925168396|ref|NW_012333185.1| CAGTACAGAAGCAGTCATCGC ATTGTTTGCGGACGGTCATG CTT 
Ssa-2.13 2 gi|925168345|ref|NW_012333236.1| GCTCAGATCGCAACCTTGAC TCTAAACCGACCAGACCGAG CCT 
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Ssa-2.2 2 gi|925168422|ref|NW_012333159.1| TGGCCATTCTCCAGAGCTAG CCACCAAAGGAGAGTACGTG CTT 
Ssa-2.7 2 gi|925168409|ref|NW_012333172.1| CCCAGACTTCCCACTCTCTATG GGACACAGAACCTTGAACGG CTG 

Ssa-20.2 20 gi|925161392|ref|NW_012340189.1| TCTTCCCTCTTCTGCAGCAG AGCTCTGGACACCACACTG GTG 

Ssa-20.d56 20 gi|925161350|ref|NW_012340231.1| GAGGTCAAGGTTTCCACTGG TAGCTGCTCTCTGTTCTGGG AG 

Ssa-21.10 21 gi|925161196|ref|NW_012340385.1| ACTGCTTAGCTAGATTTGGCC TCTACAGACAGGTGAACATGC ATT 

Ssa-21.2 21 gi|925161196|ref|NW_012340385.1| CTGTCCAAATTGCAGGCTTG GCCTAATTTGCCTACTCCTGTC TAT 

Ssa-21.3 21 gi|925161206|ref|NW_012340375.1| TTGAACCTGAACTGGAATCCC ACCGGCCAGTCTGAAACAG ATC 
Ssa-21.5 21 gi|925161233|ref|NW_012340348.1| CACTCCCTAACTCCATGGTC TCATGGATGTCGTCACTGTG ATG 

Ssa-22.2 22 gi|925161105|ref|NW_012340476.1| AGTGGTTGCTTTGGTTCTCC GGATAAAGCGGACCAAGACG AAT 

Ssa-22.5 22 gi|925161127|ref|NW_012340454.1| GTGACGTCTGGAATTGTGAC GATCCAATCAACACCGGTAG AAT 

Ssa-22.9 22 gi|925161127|ref|NW_012340454.1| CAAATGCCACACGACCTGAC GGTCAACCGCTCTGCATATAG ATT 

Ssa-22.d31 22 gi|925161077|ref|NW_012340504.1| AGTTTAGTAGGGCCTGCGTG ACATTCTTCTGTCACAGCCTG GT 

Ssa-22.d40 22 gi|925161053|ref|NW_012340528.1| GCACAGAGGTAAGAGTTCAGC CTCTGCTGCTGTGGGTGG AC 
Ssa-22.d41 22 gi|925161051|ref|NW_012340530.1| CTCTGTGGTCTGGGTCCTC ACCTCGTACCCATGCACATC CT 

Ssa-22.d44 22 gi|925161034|ref|NW_012340547.1| GTACCTTTGAACATGCACACG CATCTCCACATGATAACGTTGC AC 

Ssa-23.10 23 gi|925161012|ref|NW_012340569.1| TGATTGTGAACGGCTTTGGG ACAAGCAAGCACCCTTTGTC GAT 

Ssa-23.2 23 gi|925161018|ref|NW_012340563.1| GGTGGTTGTTTCTAGTGAGGG GCACCTCTAAAGCACCATGG CTT 

Ssa-23.3 23 gi|925160997|ref|NW_012340584.1| GGAGAAGTGATTATGGTTGTGC GGACAACGGGTTCTACATGG AAC 

Ssa-23.9 23 gi|925161018|ref|NW_012340563.1| ACGGATACAGAGAGACGCAC ACAGCGAGGAGGACAAAGTC ATC 
Ssa-24.9 24 gi|925160923|ref|NW_012340658.1| CACTCCATCTATCATCTGTGCC GATGAGGAGCAGAAGAGGCC CTT 

Ssa-24.d09 24 gi|925160918|ref|NW_012340663.1| ACCGTAAGCAGCATCACTTTAG GTTTGGGCTGTCTGGTACTG AC 

Ssa-24.d24 24 gi|925160864|ref|NW_012340717.1| CTGCCAACACACACTGCC TTTGACTCTTCCTGTATGTCGG CT 

Ssa-25.11 25 gi|925160727|ref|NW_012340854.1| GGGTCCATGAGAAAGGCAAC TGGGATCCACACCTGACAAC ATT 

Ssa-25.2 25 gi|925160771|ref|NW_012340810.1| TGCAGGAAGACTCTGAAAGG AGGTGGGTGTTGTACATCAG GAT 

Ssa-25.3 25 gi|925160672|ref|NW_012340909.1| TTCCCACTGGCCAAGAACTG GACATTCCCTTGTGTTGATGAC AAC 
Ssa-26.1 26 gi|925160353|ref|NW_012341228.1| TCACGCATAACCTTAGACAACC AATGCCAACCCTGTTACAGC ATT 
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Ssa-26.d06 26 gi|925160645|ref|NW_012340936.1| CATAATCACCTTGCATGACACC CCTGCTGCACCGCTAAATAC AC 
Ssa-27.7 27 gi|925160107|ref|NW_012341474.1| TCATCAGTGTGGAGGGAATC TCTATCTTCCTCTGGCCTGG TTG 

Ssa-27.d46 27 gi|925160006|ref|NW_012341575.1| TGGCTGGTGGTTATAGGAGC ACCATGCCAAGACAGTGATG AC 

Ssa-28.d01 28 gi|925159997|ref|NW_012341584.1| ATTACTGCCCTATCGCCATG TCACCTTCTTCACACACGATG AC 

Ssa-29.d18 29 gi|925159852|ref|NW_012341729.1| AGCTACCTATTCCTGGAGCG AGAGATGTTAGCGGGTCAGG GT 

Ssa-29.d33 29 gi|925159809|ref|NW_012341772.1| TAACTGCTGAGCCGTGTGTC GCAGTGAATTCTATCTTCGTCG AG 

Ssa-3.10 3 gi|925168028|ref|NW_012333553.1| GACTGCAACTAACTGAATGACG TCCATCATCCCTTTCAGCTG ATC 
Ssa-3.2 3 gi|925168028|ref|NW_012333553.1| GTCACCAATACCACGTCACC TCGTCAAGGGATGTGGTCAC ATC 

Ssa-3.9 3 gi|925168037|ref|NW_012333544.1| CACCTCCAACTGCTCAATTAGG GAGGCCCGTGTTTCTCAAC AGT 

Ssa-4.d44 4 gi|925167334|ref|NW_012334247.1| TTGGGTCTTAATGGCACCTG GCTTTGGTTCCCTGAGAGTG AC 

Ssa-5.11 5 gi|925167048|ref|NW_012334533.1| CAACCGCCGTTAAACATCATC CATCATTGTGAATTGGAAGGCC AAG 

Ssa-5.2 5 gi|925167062|ref|NW_012334519.1| AACTTGCGTGATGATGTGGC GCTGGCCATGTTCTTCTGTG CTT 

Ssa-5.6 5 gi|925167074|ref|NW_012334507.1| GTGCAGCTGTTCCTCACTTC GGGACAGGCGTAGAAATCG TAT 
Ssa-5.8 5 gi|925167158|ref|NW_012334423.1| ACACAGCTCTTATTTAACCGTC GAAGGAATCTCACTCGTCTAAG AAC 

Ssa-6.11 6 gi|925166307|ref|NW_012335274.1| CCGTGGAAAGCACTTAACATG GAACGCATGTCATGGCCTC ATT 

Ssa-6.2 6 gi|925166267|ref|NW_012335314.1| GGAGAAGAGGAGATGGAACTTG ACACCTGACAATACCACACC TGA 

Ssa-6.7 6 gi|925166258|ref|NW_012335323.1| GCAAATCAGCATTCAGGGC CAGCTGATCGAACTGAATGGG TAA 

Ssa-7.1 7 gi|925166059|ref|NW_012335522.1| CCACTCCCACGAATGATGTTC GGAGGCCACATTGCAGTC AAC 

Ssa-7.12 7 gi|925166045|ref|NW_012335536.1| CACTCCCTGACACGTTAACAC CACTTCCTGACAAACATGCAC ACT 
Ssa-7.d33 7 gi|925166053|ref|NW_012335528.1| AGCATAGCATAGGAACAGACAC AGCACATCCTGACCTCATCG AC 

Ssa-7.d47 7 gi|925166033|ref|NW_012335548.1| TGGAATTGGGTCAGCAGTTC AGGACAGGGTTGAGATCAGC GT 

Ssa-8.d04 8 gi|925165795|ref|NW_012335786.1| ACTGTGTGGACTGGGAGATC CAGCAGCGTTGTCTTGTACC GT 

Ssa-8.d07 8 gi|925165792|ref|NW_012335789.1| GGGTGTGAGGGAGGACTTAAC TGCTAGCTACACTCCTGTCC AC 

Ssa-9.10 9 gi|925165582|ref|NW_012335999.1| TCCATTGTTCCCTCAGACCC GGTAACATGAAGGAGAGCTGG ATT 

Ssa-9.13 9 gi|925165161|ref|NW_012336420.1| ATCCACACCTCTCTTGCCAC GATCACCATCGTTACCATCCC AGG 
Ssa-9.3 9 gi|925165300|ref|NW_012336281.1| GCCAACCACCGTTAAACCTC TCAGCAGTTCCCAATATTTCCC AAG 
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Ssa-9.8 9 gi|925165505|ref|NW_012336076.1| GCGTCGACTGCCATTCAAC TGTCCTTGCTTTCTCCGTGG AAG 
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Appendix G – Summary Statistics: Microsatellites 
 
Table 13 Summary of genetic diversity for Atlantic Salmon (Salmo salar) from 26 rivers in 
Placentia Bay, Newfoundland, Canada. Rivers are ordered geographically, east to west around 
the bay. Number of samples (N), mean observed (Ho) and expected (He) heterozygosity, and 
fixation index (F) calculated across 101 microsatellite loci using GENALEX. 

RiverID N Ho He F 

BRA 52.6 0.47 0.48 0.01 
LAN 30.6 0.51 0.48 -0.06 
CUS 54.8 0.48 0.48 0.00 
GBW 57.8 0.52 0.51 -0.01 
LBB 9.7 0.53 0.54 0.01 
SPR 55.8 0.54 0.54 0.00 
NPR 55.8 0.49 0.49 0.01 
SHI 51.4 0.54 0.53 0.01 
FHB 54.4 0.55 0.52 -0.05 
CBC 56.5 0.53 0.52 -0.01 
NHR 55.5 0.52 0.57 0.11 
BLA 57.5 0.51 0.50 -0.01 
PHR 52.1 0.54 0.57 0.07 
SHA 47.9 0.52 0.52 0.01 
NON 56.5 0.54 0.53 -0.02 
CRB 56.2 0.53 0.54 0.04 
BDL 55.9 0.53 0.52 -0.02 
RUS 56.1 0.51 0.50 -0.01 
RHA 54.9 0.47 0.45 -0.04 
RHW 57.5 0.54 0.54 0.00 
NMB 57.4 0.52 0.51 -0.02 
TDS 56.4 0.50 0.50 0.02 
BSA 56.7 0.55 0.55 0.00 
LWN 53.6 0.54 0.53 -0.01 
TBR 39.6 0.52 0.51 -0.02 
PBR 53.8 0.54 0.53 -0.02 
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Appendix H – Gene Annotations 
 
Table S14 Gene annotations with gene IDs, position, and description for single nucleotide 
polymorphisms (SNPs) identified as outliers within the outlier block regions on chromosomes 
Ssa01 and Ssa23 in both 2017 and 2018.  
SNP Chr Pos GeneID Symbol Description 

AX-87301894 1 44027302 100196073 sptlc2 serine palmitoyltransferase long chain base 
subunit 2 

AX-87031939 1 44047970 100196073 sptlc2 serine palmitoyltransferase long chain base 
subunit 2 

AX-87000133 1 44073867 106603015 LOC106603015 isthmin-2-like 

AX-87112657 1 44094342 106603015 LOC106603015 isthmin-2-like 

AX-87525318 1 44102747 106603015 LOC106603015 isthmin-2-like 

AX-86978638 1 44127633 unknown unknown unknown 

AX-87198976 1 44137333 106603014 LOC106603014 zinc finger protein 585A-like 

AX-87669190 1 44140594 106603014 LOC106603014 zinc finger protein 585A-like 

AX-87585106 1 44168773 106603014 LOC106603014 zinc finger protein 585A-like 

AX-87827704 1 44202646 unknown unknown unknown 

AX-86920941 1 44267246 unknown unknown unknown 

AX-87109218 1 44278327 unknown unknown unknown 

AX-87077941 1 44338122 unknown unknown unknown 

AX-87163493 1 44338423 unknown unknown unknown 

AX-87828321 1 44338572 unknown unknown unknown 

AX-87014637 1 44341000 unknown unknown unknown 

AX-87540882 1 44359836 unknown unknown unknown 

AX-87484087 1 44371924 unknown unknown unknown 

AX-87828481 1 44376516 unknown unknown unknown 

AX-87851697 1 44378204 unknown unknown unknown 

AX-87854532 1 44520582 106602991 LOC106602991 prostaglandin E2 receptor EP2 subtype-
like 

AX-87248197 1 44532294 106602991 LOC106602991 prostaglandin E2 receptor EP2 subtype-
like 

AX-87366989 1 44553756 unknown unknown unknown 

AX-87093431 1 44555170 unknown unknown unknown 

AX-87814747 1 44572331 unknown unknown unknown 

AX-87246674 1 44621966 106602988 txndc16 thioredoxin domain containing 16 

AX-86923463 1 44714935 106602981 LOC106602981 integral membrane protein GPR137B-like 
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AX-87485893 1 44717972 106602981 LOC106602981 integral membrane protein GPR137B-like 

AX-87056913 1 44718557 106602981 LOC106602981 integral membrane protein GPR137B-like 

AX-87232987 1 44766025 106602955 LOC106602955 protein Smaug homolog 1-like 

AX-87082190 1 44766956 106602955 LOC106602955 protein Smaug homolog 1-like 

AX-87061268 1 44813027 106602955 LOC106602955 protein Smaug homolog 1-like 

AX-87703405 1 44818603 106602955 LOC106602955 protein Smaug homolog 1-like 

AX-87321322 1 44861657 106602955 LOC106602955 protein Smaug homolog 1-like 

AX-87460740 1 44892893 106602973 LOC106602973 GTP cyclohydrolase 1-like 

AX-87066482 1 44892947 106602973 LOC106602973 GTP cyclohydrolase 1-like 

AX-87577138 1 44895199 106602973 LOC106602973 GTP cyclohydrolase 1-like 

AX-87207137 1 44900574 106602944 wdhd1 WD repeat and HMG-box Dunknown 
binding protein 1 

AX-87439414 1 44905362 106602944 wdhd1 WD repeat and HMG-box Dunknown 
binding protein 1 

AX-87035765 1 44907561 106602944 wdhd1 WD repeat and HMG-box Dunknown 
binding protein 1 

AX-87024496 1 44951346 106602944 wdhd1 WD repeat and HMG-box Dunknown 
binding protein 1 

AX-87798888 1 44953032 106602944 wdhd1 WD repeat and HMG-box Dunknown 
binding protein 1 

AX-87685882 1 44988595 unknown unknown unknown 

AX-87402125 1 45001057 106602923 LOC106602923 serine/threonine/tyrosine-interacting 
protein A-like 

AX-87383404 1 45010395 106602923 LOC106602923 serine/threonine/tyrosine-interacting 
protein A-like 

AX-87337216 1 45029241 106602923 LOC106602923 serine/threonine/tyrosine-interacting 
protein A-like 

AX-86960675 1 45043263 106602906 LOC106602906 fos-related antigen 2-like 

AX-87382934 1 45063862 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 

AX-87366360 1 45127391 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 

AX-87507040 1 45140746 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 

AX-87211747 1 45173535 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 

AX-87314541 1 45224612 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 

AX-87724078 1 45227079 106602899 LOC106602899 BRCA1-A complex subunit BRE-like 
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AX-87518572 1 45383995 106602852 LOC106602852 ribokiunknownse-like 

AX-87780483 1 45386529 106602852 LOC106602852 ribokiunknownse-like 

AX-87129687 1 45488112 106602886 LOC106602886 uncharacterized LOC106602886 

AX-87538852 1 45794290 100196602 ap3m1 adaptor-related protein complex 3, mu 1 
subunit 

AX-87665933 1 45856239 106604120 LOC106604120 iunknownctive tyrosine-protein 
kiunknownse 7-like 

AX-87633031 1 45858524 106604120 LOC106604120 iunknownctive tyrosine-protein 
kiunknownse 7-like 

AX-87181742 1 45875647 106604182 LOC106604182 serum response factor-like 

AX-87862056 1 45881901 106604182 LOC106604182 serum response factor-like 

AX-87766838 1 45887730 106604182 LOC106604182 serum response factor-like 

AX-87566215 1 45948175 106604182 LOC106604182 serum response factor-like 

AX-87706082 1 45992431 106604219 LOC106604219 protein FAM160B1-like 

AX-87197550 1 46021016 100196372 znf511 zinc finger protein 511 

AX-87697616 1 46021057 100196372 znf511 zinc finger protein 511 

AX-87606718 1 46021856 100196372 znf511 zinc finger protein 511 

AX-87018974 1 46326660 106604129 LOC106604129 uncharacterized protein K02A2.6-like 

AX-87588916 1 46462826 unknown unknown unknown 

AX-86998955 1 46493383 106604231 LOC106604231 V-set and transmembrane domain-
containing protein 4-like 

AX-87742227 1 46512467 106604231 LOC106604231 V-set and transmembrane domain-
containing protein 4-like 

AX-87577764 1 46546646 106604247 wdfy4 WDFY family member 4 

AX-86958517 1 46730283 106604247 wdfy4 WDFY family member 4 

AX-87611269 1 46783740 106604271 LOC106604271 palmitoyltransferase akr1-like 

AX-87051061 1 46949714 106604144 frmpd2 FERM and PDZ domain containing 2 

AX-87249213 1 47048340 106604144 frmpd2 FERM and PDZ domain containing 2 

AX-87666161 1 47116978 106605247 LOC106605247 uncharacterized LOC106605247 

AX-87792105 1 47195293 106605253 LOC106605253 uncharacterized LOC106605253 

AX-87378411 1 47220624 106605260 LOC106605260 ubiquitin domain-containing protein 1-like 

AX-87072994 1 47267601 106604325 LOC106604325 probable palmitoyltransferase ZDHHC16 

AX-87489849 1 47442649 106604352 oga O-Glcunknowncase 
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AX-87131548 1 47496073 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87235059 1 47501122 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87411350 1 47503136 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87711620 1 47504102 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87409540 1 47505746 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87190186 1 47506173 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87862191 1 47513277 106604361 pprc1 peroxisome proliferator-activated receptor 
gamma, coactivator-related 1 

AX-87002972 1 47829953 unknown unknown unknown 

AX-87852407 1 47921484 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87141381 1 47945880 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-86992511 1 48035929 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87270787 1 48066560 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87191078 1 48075882 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87044398 1 48077805 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87660926 1 48111481 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87466867 1 48181298 106604421 kcnip2 potassium voltage-gated channel 
interacting protein 2 

AX-87566793 1 48220496 106604458 LOC106604458 cytochrome c oxidase assembly protein 
COX15 homolog 

AX-87630277 1 48295154 106604156 LOC106604156 leucine-rich repeat flightless-interacting 
protein 2-like 

AX-87311187 1 48300318 106604156 LOC106604156 leucine-rich repeat flightless-interacting 
protein 2-like 

AX-87538130 1 48307858 unknown unknown unknown 
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AX-87841790 1 48312017 106604487 LOC106604487 protein FAM83H-like 

AX-87859879 1 48313032 106604487 LOC106604487 protein FAM83H-like 

AX-86955577 1 48313321 106604487 LOC106604487 protein FAM83H-like 

AX-87780910 1 48313559 106604487 LOC106604487 protein FAM83H-like 

AX-87277662 1 48352848 106604487 LOC106604487 protein FAM83H-like 

AX-87482156 1 48352912 106604487 LOC106604487 protein FAM83H-like 

AX-87742618 1 48353378 106604487 LOC106604487 protein FAM83H-like 

AX-87383255 1 48356688 106604487 LOC106604487 protein FAM83H-like 

AX-87454829 1 48370707 106604506 LOC106604506 uncharacterized LOC106604506 

AX-87383494 1 48370715 106604506 LOC106604506 uncharacterized LOC106604506 

AX-87708945 1 48372430 106604506 LOC106604506 uncharacterized LOC106604506 

AX-86970997 1 48372885 106604506 LOC106604506 uncharacterized LOC106604506 

AX-87399290 1 48373522 106604506 LOC106604506 uncharacterized LOC106604506 

AX-86930986 1 48375502 106604506 LOC106604506 uncharacterized LOC106604506 

AX-87105803 1 48423083 106604510 LOC106604510 unknownD-dependent protein deacetylase 
sirtuin-1-like 

AX-87192184 1 48441244 106604523 LOC106604523 CDK2-associated and cullin domain-
containing protein 1-like 

AX-87073730 1 48442760 106604523 LOC106604523 CDK2-associated and cullin domain-
containing protein 1-like 

AX-86913002 1 48444035 106604523 LOC106604523 CDK2-associated and cullin domain-
containing protein 1-like 

AX-87155100 1 48457529 106604523 LOC106604523 CDK2-associated and cullin domain-
containing protein 1-like 

AX-87672259 1 48460607 106604523 LOC106604523 CDK2-associated and cullin domain-
containing protein 1-like 

AX-87734876 1 48498689 106604517 LOC106604517 myopalladin-like 

AX-87791526 1 48505736 106604517 LOC106604517 myopalladin-like 

AX-87179595 1 48512316 106604517 LOC106604517 myopalladin-like 

AX-87323592 1 48527551 100195378 tiar Nucleolysin TIAR 

AX-87292389 1 48560282 106604528 LOC106604528 BAG family molecular chaperone 
regulator 3-like 

AX-87136071 1 48578249 106604534 LOC106604534 phosphatidylinositide phosphatase SAC2-
like 

AX-87793695 1 48592565 106604534 LOC106604534 phosphatidylinositide phosphatase SAC2-
like 
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AX-87846116 1 48593271 106604534 LOC106604534 phosphatidylinositide phosphatase SAC2-
like 

AX-87753209 1 48608175 106604174 LOC106604174 mini-chromosome mainteunknownnce 
complex-binding protein-like 

AX-87502413 1 48627411 106604541 LOC106604541 SEC23-interacting protein-like 

AX-87591888 1 48628085 106604541 LOC106604541 SEC23-interacting protein-like 

AX-87336933 1 48628601 106604541 LOC106604541 SEC23-interacting protein-like 

AX-87041072 1 48628682 106604541 LOC106604541 SEC23-interacting protein-like 

AX-87484496 1 48641373 106604550 LOC106604550 chondroitin sulfate N-
acetylgalactosaminyltransferase 2-like 

AX-87382269 1 48644092 106604550 LOC106604550 chondroitin sulfate N-
acetylgalactosaminyltransferase 2-like 

AX-87710406 1 48649283 106604550 LOC106604550 chondroitin sulfate N-
acetylgalactosaminyltransferase 2-like 

AX-87190225 1 48649784 106604550 LOC106604550 chondroitin sulfate N-
acetylgalactosaminyltransferase 2-like 

AX-87504051 1 48654386 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-87715625 1 48655822 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-87437394 1 48657171 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-87216261 1 48666917 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-87137509 1 48668258 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-87354044 1 48668964 106604566 LOC106604566 proto-oncogene tyrosine-protein 
kiunknownse receptor Ret-like 

AX-86935330 1 48687968 106605279 LOC106605279 centromere protein O-like 

AX-87520867 1 48704988 106605279 LOC106605279 centromere protein O-like 

AX-87019853 1 48706665 106605279 LOC106605279 centromere protein O-like 

AX-87695934 1 48706810 106605279 LOC106605279 centromere protein O-like 

AX-86999786 1 48727169 106604574 LOC106604574 uncharacterized LOC106604574 

AX-87356844 1 48731829 106604574 LOC106604574 uncharacterized LOC106604574 

AX-87256823 1 48739735 106604574 LOC106604574 uncharacterized LOC106604574 

AX-87191737 1 48740644 106604574 LOC106604574 uncharacterized LOC106604574 

AX-87079514 1 48748596 100286615 phs Pterin-4-alpha-carbinolamine dehydratase 
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AX-87508384 1 48757030 106604578 LOC106604578 sphingosine-1-phosphate lyase 1-like 

AX-87010609 1 48759452 106604578 LOC106604578 sphingosine-1-phosphate lyase 1-like 

AX-87047572 1 48759681 106604578 LOC106604578 sphingosine-1-phosphate lyase 1-like 

AX-87720904 1 48789079 unknown unknown unknown 

AX-87045154 1 48823294 106604587 LOC106604587 PDZ and LIM domain protein 1-like 

AX-87070309 1 48829331 106604587 LOC106604587 PDZ and LIM domain protein 1-like 

AX-87731886 1 48829980 106604587 LOC106604587 PDZ and LIM domain protein 1-like 

AX-87732698 1 48864579 106604599 LOC106604599 sorbin and SH3 domain-containing protein 
1-like 

AX-87391063 1 48877890 106604599 LOC106604599 sorbin and SH3 domain-containing protein 
1-like 

AX-87621055 1 48882168 106604599 LOC106604599 sorbin and SH3 domain-containing protein 
1-like 

AX-87010253 1 48887213 106604599 LOC106604599 sorbin and SH3 domain-containing protein 
1-like 

AX-87479232 1 48887450 106604599 LOC106604599 sorbin and SH3 domain-containing protein 
1-like 

AX-87323552 1 48942442 106604619 LOC106604619 phosphoinositide 3-kiunknownse adapter 
protein 1-like 

AX-87285681 1 48990407 106604631 fam204a family with sequence similarity 204 
member A 

AX-86959643 1 48997853 106604631 fam204a family with sequence similarity 204 
member A 

AX-87462801 1 49030704 unknown unknown unknown 

AX-87403012 1 49037588 unknown unknown unknown 

AX-86967883 1 49039114 unknown unknown unknown 

AX-87747643 1 49040483 unknown unknown unknown 

AX-87458069 1 49066162 unknown unknown unknown 

AX-87672638 1 49118128 106604674 rab11fip2 RAB11 family interacting protein 2 

AX-86918576 1 49118152 106604674 rab11fip2 RAB11 family interacting protein 2 

AX-87341401 1 49120419 106604674 rab11fip2 RAB11 family interacting protein 2 

AX-87833129 1 49122217 106604674 rab11fip2 RAB11 family interacting protein 2 

AX-87510648 1 49158402 unknown unknown unknown 

AX-86948426 1 49210162 unknown unknown unknown 

AX-87723237 1 49217410 unknown unknown unknown 

AX-87239262 1 49254649 unknown unknown unknown 
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AX-87618258 1 49254955 unknown unknown unknown 

AX-87131034 1 49256562 unknown unknown unknown 

AX-86978019 1 49256763 unknown unknown unknown 

AX-86929664 1 49288584 unknown unknown unknown 

AX-87276333 1 49291893 unknown unknown unknown 

AX-87556671 1 49309982 unknown unknown unknown 

AX-87269284 1 49317397 100196704 emx2 empty spiracles homeobox 2 

AX-87027805 1 49318851 100196704 emx2 empty spiracles homeobox 2 

AX-87079676 1 49319181 100196704 emx2 empty spiracles homeobox 2 

AX-87826315 1 49321592 100196704 emx2 empty spiracles homeobox 2 

AX-87691363 1 49324976 100196704 emx2 empty spiracles homeobox 2 

AX-87528991 1 49326117 100196704 emx2 empty spiracles homeobox 2 

AX-87505311 1 49330788 100196704 emx2 empty spiracles homeobox 2 

AX-87418125 1 49358964 106604689 eif3a eukaryotic translation initiation factor 3 
subunit A 

AX-87262905 1 49365075 106604689 eif3a eukaryotic translation initiation factor 3 
subunit A 

AX-87231287 1 49404244 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87564325 1 49405828 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87511068 1 49407304 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87853604 1 49408532 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87137786 1 49410273 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87503746 1 49410301 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87805964 1 49412476 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87417936 1 49416518 100196706 tm9s3 Transmembrane 9 superfamily member 3 

AX-87264266 1 49438177 106605283 LOC106605283 uncharacterized LOC106605283 

AX-87503203 1 49455689 106604730 LOC106604730 molybdenum cofactor sulfurase-like 

AX-87625202 1 49546635 106605298 spata48 spermatogenesis associated 48 

AX-87452395 1 49556786 106605298 spata48 spermatogenesis associated 48 

AX-87720407 1 49564295 unknown unknown unknown 

AX-87293248 1 49575898 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87313757 1 49593818 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87335532 1 49596163 100380614 ikzf1 IKAROS family zinc finger 1 
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AX-87273504 1 49596329 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87369499 1 49599989 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87255413 1 49600225 100380614 ikzf1 IKAROS family zinc finger 1 

AX-86957335 1 49600305 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87671772 1 49600643 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87395630 1 49602974 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87577862 1 49603548 100380614 ikzf1 IKAROS family zinc finger 1 

AX-87818304 1 49618181 106604764 fignl1 fidgetin like 1 

AX-87100472 1 49637857 106604770 LOC106604770 tubulin--tyrosine ligase-like 

AX-87550522 1 49664275 106604770 LOC106604770 tubulin--tyrosine ligase-like 
AX-87431404 1 49679304 106604799 unknown N-acetylneuraminic acid phosphatase 
AX-87462400 1 49683479 unknown unknown unknown 

AX-87362966 1 49683485 unknown unknown unknown 

AX-87709697 1 49683814 unknown unknown unknown 

AX-87313561 1 49690768 unknown unknown unknown 

AX-87728385 1 49690870 unknown unknown unknown 

AX-87317995 1 49691301 unknown unknown unknown 

AX-87637743 1 49696309 unknown unknown unknown 

AX-87771759 1 49697680 unknown unknown unknown 

AX-87857866 1 49698014 unknown unknown unknown 

AX-86955176 1 49698029 unknown unknown unknown 

AX-87188235 1 49702074 106604807 LOC106604807 cytochrome P450 1B1-like 

AX-87601000 1 49703954 106604807 LOC106604807 cytochrome P450 1B1-like 

AX-87426384 1 49733099 106604807 LOC106604807 cytochrome P450 1B1-like 

AX-87334866 1 49736375 106604807 LOC106604807 cytochrome P450 1B1-like 

AX-87853126 1 49737044 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 

AX-87730551 1 49737945 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 

AX-87576202 1 49753100 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 

AX-87042393 1 49753626 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 

AX-86915328 1 49753808 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 

AX-87595785 1 49754498 106604820 LOC106604820 regulator of microtubule dyunknownmics 
protein 2-like 
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AX-87083660 1 49871938 unknown unknown unknown 

AX-87589665 1 49873312 unknown unknown unknown 

AX-87811957 1 49906012 106604835 LOC106604835 cdc42 effector protein 3-like 

AX-87861562 1 49907745 106604835 LOC106604835 cdc42 effector protein 3-like 

AX-86985188 1 49909537 106604835 LOC106604835 cdc42 effector protein 3-like 

AX-87764739 1 49925476 unknown unknown unknown 

AX-86972623 1 49943773 unknown unknown unknown 

AX-86946779 1 49949891 unknown unknown unknown 

AX-87516840 1 49962520 unknown unknown unknown 

AX-86952759 1 49966134 unknown unknown unknown 

AX-87506376 1 49990007 unknown unknown unknown 

AX-87479837 1 49990755 unknown unknown unknown 

AX-87481281 1 49991361 unknown unknown unknown 

AX-86965447 1 49991624 unknown unknown unknown 

AX-87495673 1 50044944 106604861 LOC106604861 kynurenine 3-monooxygeunknownse-like 

AX-87754508 1 50052340 106604861 LOC106604861 kynurenine 3-monooxygeunknownse-like 

AX-87117428 1 50066517 106604861 LOC106604861 kynurenine 3-monooxygeunknownse-like 

AX-87429031 1 50066850 106604861 LOC106604861 kynurenine 3-monooxygeunknownse-like 
AX-87617726 1 50071517 106604847 LOC106604847 insulin-degrading enzyme-like 

AX-87764200 1 50072413 106604847 LOC106604847 insulin-degrading enzyme-like 

AX-87198100 1 50093203 106604847 LOC106604847 insulin-degrading enzyme-like 

AX-87240289 1 50109846 106604847 LOC106604847 insulin-degrading enzyme-like 

AX-87129395 1 50125662 100195005 marh5 E3 ubiquitin-protein ligase MARCH5 

AX-87238139 1 50141828 100195005 marh5 E3 ubiquitin-protein ligase MARCH5 

AX-87586818 1 50144250 100195005 marh5 E3 ubiquitin-protein ligase MARCH5 

AX-87600824 1 50151573 100195005 marh5 E3 ubiquitin-protein ligase MARCH5 

AX-87609167 1 50156043 100195005 marh5 E3 ubiquitin-protein ligase MARCH5 

AX-87141329 1 50193615 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 

AX-86998876 1 50206231 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 

AX-87014301 1 50207120 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 

AX-87627830 1 50207319 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 

AX-87690898 1 50211489 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 
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AX-87858389 1 50239695 106604870 LOC106604870 cytoplasmic polyadenylation element-
binding protein 3-like 

AX-87075595 1 50266319 106604898 LOC106604898 TATA-binding protein-associated factor 
172-like 

AX-87179048 1 50293398 106604898 LOC106604898 TATA-binding protein-associated factor 
172-like 

AX-87400020 1 50311348 106604898 LOC106604898 TATA-binding protein-associated factor 
172-like 

AX-87571052 1 50388677 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87623562 1 50403133 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87229463 1 50433933 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87435707 1 50435234 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87643919 1 50446982 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87159923 1 50470122 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87581092 1 50481682 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87003641 1 50482152 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87479374 1 50505977 106605322 LOC106605322 unknown nucleotidylexotransferase 

AX-87009219 1 50535255 106605322 LOC106605322 unknown nucleotidylexotransferase 
AX-87866920 1 50600243 unknown unknown unknown 

AX-87306066 1 50600253 unknown unknown unknown 

AX-87011129 1 50612057 unknown unknown unknown 

AX-86997915 1 50623127 unknown unknown unknown 

AX-87204831 1 50660143 106604920 LOC106604920 heparan sulfate glucosamine 3-O-
sulfotransferase 1-like 

AX-87011816 1 50661390 106604920 LOC106604920 heparan sulfate glucosamine 3-O-
sulfotransferase 1-like 

AX-87195337 1 50703791 106604920 LOC106604920 heparan sulfate glucosamine 3-O-
sulfotransferase 1-like 

AX-87633850 1 50704617 106604920 LOC106604920 heparan sulfate glucosamine 3-O-
sulfotransferase 1-like 

AX-87679429 1 50733671 106605336 LOC106605336 uncharacterized LOC106605336 

AX-87329264 1 50741326 106605336 LOC106605336 uncharacterized LOC106605336 

AX-87544662 1 50781778 106604928 kndc1 kiunknownse non-catalytic C-lobe domain 
containing 1 
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AX-87734970 1 50785388 106604928 kndc1 kiunknownse non-catalytic C-lobe domain 
containing 1 

AX-87663325 1 50787973 106604928 kndc1 kiunknownse non-catalytic C-lobe domain 
containing 1 

AX-87179029 1 50864461 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87543264 1 50899430 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87233148 1 50901058 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87271720 1 50903366 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87344424 1 50918589 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87058951 1 50923922 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87629790 1 50969514 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-86977119 1 50993963 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87119374 1 50994313 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87072505 1 51062615 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87540230 1 51072941 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87477161 1 51073938 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87082091 1 51088646 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87345641 1 51145694 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87727357 1 51146064 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87367709 1 51146474 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 
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AX-87786884 1 51146683 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87682162 1 51151496 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87479277 1 51154704 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87355720 1 51154743 106604940 LOC106604940 adhesion G protein-coupled receptor A3-
like 

AX-87866183 1 51173533 unknown unknown unknown 

AX-86962616 1 51191372 unknown unknown unknown 

AX-87023609 1 51215190 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-86960332 1 51215708 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87640192 1 51216013 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87682443 1 51216249 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87011370 1 51217017 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87323723 1 51221719 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87794276 1 51235513 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87268697 1 51235692 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87821798 1 51235697 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87433791 1 51247144 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87476454 1 51256550 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87284797 1 51300442 106604947 LOC106604947 gamma-aminobutyric acid receptor subunit 
pi-like 

AX-87339774 1 51338863 unknown unknown unknown 

AX-87330607 1 51364044 unknown unknown unknown 
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AX-87310681 1 51379224 unknown unknown unknown 

AX-86976975 1 51389895 106604960 cfap46 cilia and flagella associated protein 46 

AX-87449071 1 51402261 106604960 cfap46 cilia and flagella associated protein 46 

AX-87871177 1 51410757 106604960 cfap46 cilia and flagella associated protein 46 

AX-87107583 1 51435389 106604960 cfap46 cilia and flagella associated protein 46 

AX-87033624 1 51435526 106604960 cfap46 cilia and flagella associated protein 46 

AX-87141449 1 51490070 106604960 cfap46 cilia and flagella associated protein 46 

AX-87372258 1 51508754 unknown unknown unknown 

AX-87564525 1 51569087 106604996 LOC106604996 vertebrate ancient opsin-like 

AX-87544721 1 51594613 106604996 LOC106604996 vertebrate ancient opsin-like 

AX-87183870 1 51642763 106605004 LOC106605004 homeobox protein Nkx-6.2-like 

AX-87018674 1 51681338 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87366364 1 51710786 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87136475 1 51715845 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87093619 1 51720606 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87786996 1 51721116 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87319611 1 51732998 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87869588 1 51736852 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87810466 1 51737789 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87472926 1 51743778 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like  
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AX-86986868 1 51807705 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87153723 1 51807958 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87536984 1 51829193 106605012 LOC106605012 type I inositol 1,4,5-trisphosphate 5-
phosphatase-like 

AX-87591616 1 51880378 unknown unknown unknown 

AX-87499735 1 51906720 106605019 LOC106605019 cysteine sulfinic acid decarboxylase-like 

AX-87205442 1 51907801 106605019 LOC106605019 cysteine sulfinic acid decarboxylase-like 

AX-86965298 1 51924392 106605019 LOC106605019 cysteine sulfinic acid decarboxylase-like 

AX-87710990 1 51948575 106605046 pwwp2b PWWP domain containing 2B 

AX-87307914 1 51951939 106605046 pwwp2b PWWP domain containing 2B 

AX-87382255 1 51953625 106605046 pwwp2b PWWP domain containing 2B 

AX-87423299 1 51957640 106605046 pwwp2b PWWP domain containing 2B 

AX-87617649 1 51959376 106605046 pwwp2b PWWP domain containing 2B 

AX-87561026 1 51959423 106605046 pwwp2b PWWP domain containing 2B 

AX-87461582 1 51965164 106605046 pwwp2b PWWP domain containing 2B 

AX-87385710 1 51965724 106605046 pwwp2b PWWP domain containing 2B 

AX-87507045 1 51975596 106605343 LOC106605343 uncharacterized LOC106605343 

AX-87052619 1 51976030 106605343 LOC106605343 uncharacterized LOC106605343 

AX-87207362 1 51976625 106605343 LOC106605343 uncharacterized LOC106605343 

AX-86930251 1 51986091 106605062 LOC106605062 serine/threonine-protein kiunknownse 
32C-like 

AX-87371428 1 52038843 106605062 LOC106605062 serine/threonine-protein kiunknownse 
32C-like 

AX-87335763 1 52063857 106605062 LOC106605062 serine/threonine-protein kiunknownse 
32C-like 

AX-87169031 1 52068317 106605062 LOC106605062 serine/threonine-protein kiunknownse 
32C-like 

AX-87290215 1 52107301 106605075 LOC106605075 serine racemase-like 

AX-86935107 1 52128743 100286448 cj057 CJ057 protein 

AX-87128145 1 52129282 100286448 cj057 CJ057 protein 

AX-87313264 1 52130046 100286448 cj057 CJ057 protein 
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AX-87429422 1 52137559 100286448 cj057 CJ057 protein 

AX-87073732 1 52137934 100286448 cj057 CJ057 protein 

AX-87809928 1 52138536 100286448 cj057 CJ057 protein 

AX-87269122 1 52141621 106605349 LOC106605349 homeobox protein OTX2-A-like 

AX-87809620 1 52142891 106605349 LOC106605349 homeobox protein OTX2-A-like 

AX-87313838 1 52142896 106605349 LOC106605349 homeobox protein OTX2-A-like 

AX-87024309 1 52150240 100306744 rhoq ras homolog gene family, member Q 

AX-87148783 1 52243526 unknown unknown unknown 

AX-87269320 1 52272605 106605358 LOC106605358 homeobox protein prophet of Pit-1-like 

AX-87355995 1 52287450 106605097 LOC106605097 tetratricopeptide repeat protein 7A-like 

AX-87272450 1 52308693 106605097 LOC106605097 tetratricopeptide repeat protein 7A-like 

AX-87607257 1 52313026 106605097 LOC106605097 tetratricopeptide repeat protein 7A-like 

AX-87674317 1 52335036 106605143 LOC106605143 calmodulin 

AX-87315972 1 52335664 106605143 LOC106605143 calmodulin 

AX-87041957 1 52344535 106605143 LOC106605143 calmodulin 

AX-87296269 1 52365775 106605150 LOC106605150 uncharacterized LOC106605150 

AX-87787930 1 52384363 106605174 LOC106605174 adhesion G protein-coupled receptor E2-
like 

AX-86941285 1 52429633 106604177 thada THADA, armadillo repeat containing 

AX-87724717 1 52437489 106604177 thada THADA, armadillo repeat containing 

AX-87259478 1 52450843 106604177 thada THADA, armadillo repeat containing 

AX-87285835 1 52451599 106604177 thada THADA, armadillo repeat containing 

AX-87713056 1 52458994 106604177 thada THADA, armadillo repeat containing 

AX-87560483 1 52459302 106604177 thada THADA, armadillo repeat containing 
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AX-86908740 1 52459396 106604177 thada THADA, armadillo repeat containing 

AX-87051785 1 52468702 106604177 thada THADA, armadillo repeat containing 

AX-87268019 1 52474219 106604177 thada THADA, armadillo repeat containing 

AX-87550278 1 52513445 unknown unknown unknown 

AX-87227772 1 52516610 unknown unknown unknown 

AX-87296126 1 52523760 unknown unknown unknown 

AX-87069245 1 52529963 106605192 LOC106605192 zinc finger protein 36, C3H1 type-like 2-A 

AX-87457406 1 52535262 106605192 LOC106605192 zinc finger protein 36, C3H1 type-like 2-A 

AX-87215184 1 52535841 106605192 LOC106605192 zinc finger protein 36, C3H1 type-like 2-A 

AX-87648379 1 52553290 unknown unknown unknown 

AX-86924049 1 52604105 unknown unknown unknown 

AX-87857208 1 52605990 unknown unknown unknown 

AX-86975092 1 52665258 unknown unknown unknown 

AX-87487372 1 52704138 unknown unknown unknown 

AX-87295048 1 52704649 unknown unknown unknown 

AX-87561168 1 52704715 unknown unknown unknown 

AX-87620160 1 52718537 unknown unknown unknown 

AX-87296127 1 52719121 unknown unknown unknown 

AX-87394149 1 52720499 unknown unknown unknown 

AX-87221833 1 52734696 unknown unknown unknown 

AX-87269286 1 52760676 unknown unknown unknown 

AX-87830893 1 52807120 unknown unknown unknown 

AX-87290063 1 52881702 106605202 oxer1 oxoeicosanoid receptor 1 

AX-87390158 1 52920219 unknown unknown unknown 

AX-87322772 1 53017952 106605225 LOC106605225 cytochrome c oxidase subunit 7A-related 
protein, mitochondrial 

AX-87200462 1 53017999 106605225 LOC106605225 cytochrome c oxidase subunit 7A-related 
protein, mitochondrial 

AX-87465920 1 53026347 unknown unknown unknown 

AX-87589210 1 53026652 unknown unknown unknown 
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AX-87164338 1 53032262 unknown unknown unknown 

AX-86961211 1 53032853 unknown unknown unknown 

AX-87693435 1 53033873 unknown unknown unknown 

AX-87049326 1 53045991 unknown unknown unknown 

AX-87350307 1 53050709 unknown unknown unknown 

AX-87397804 1 53051022 unknown unknown unknown 

AX-87425653 1 53051484 unknown unknown unknown 

AX-87433537 1 53052383 unknown unknown unknown 

AX-87250539 1 53063130 unknown unknown unknown 

AX-87379010 1 53063542 unknown unknown unknown 

AX-87426543 1 53063954 unknown unknown unknown 

AX-87016163 1 53064737 unknown unknown unknown 

AX-87263698 1 53068660 unknown unknown unknown 

AX-87652608 1 53078100 unknown unknown unknown 

AX-87136459 1 53085295 unknown unknown unknown 

AX-87094720 1 53096484 unknown unknown unknown 

AX-87135844 1 53165221 106605363 LOC106605363 nuclear factor 7, brain-like 

AX-87102017 1 53166730 106605363 LOC106605363 nuclear factor 7, brain-like 

AX-87002442 1 53173961 106605363 LOC106605363 nuclear factor 7, brain-like 

AX-87715527 1 53198965 106605369 LOC106605369 uncharacterized LOC106605369 

AX-87047896 1 53214973 106605231 eml4 echinoderm microtubule associated protein 
like 4 

AX-87141554 1 53220670 106605231 eml4 echinoderm microtubule associated protein 
like 4 

AX-87222267 1 53221602 106605231 eml4 echinoderm microtubule associated protein 
like 4 

AX-87122091 1 53240797 106605231 eml4 echinoderm microtubule associated protein 
like 4 

AX-87708703 1 53313434 unknown unknown unknown 

AX-87812594 1 53336864 106608628 LOC106608628 uncharacterized LOC106608628 

AX-87333357 1 53342700 106608628 LOC106608628 uncharacterized LOC106608628 

AX-87089197 1 53361295 106608624 LOC106608624 uncharacterized LOC106608624 

AX-87004842 1 53435951 unknown unknown unknown 

AX-87101006 1 53477854 106605748 pkdcc protein kiunknownse domain containing, 
cytoplasmic 
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AX-87860651 1 53478495 106605748 pkdcc protein kiunknownse domain containing, 
cytoplasmic 

AX-87719143 1 53479687 106605748 pkdcc protein kiunknownse domain containing, 
cytoplasmic 

AX-87009135 1 53484180 106605748 pkdcc protein kiunknownse domain containing, 
cytoplasmic 

AX-86965814 1 53488451 106605748 pkdcc protein kiunknownse domain containing, 
cytoplasmic 

AX-87169277 1 53522676 unknown unknown unknown 

AX-87088607 1 53549467 unknown unknown unknown 

AX-87436571 1 53646460 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-86952454 1 53659042 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-87106564 1 53659437 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-87600286 1 53663872 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-87202749 1 53667186 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-87412094 1 53678638 106605759 LOC106605759 E3 ubiquitin-protein ligase UBR2-like 

AX-87333774 1 53688552 unknown unknown unknown 

AX-87305275 1 53690253 unknown unknown unknown 

AX-87799539 1 53691921 unknown unknown unknown 

AX-87155720 1 53721259 unknown unknown unknown 

AX-87630316 1 53750917 unknown unknown unknown 

AX-87692156 1 53751369 unknown unknown unknown 

AX-87584272 1 53756166 unknown unknown unknown 

AX-87017100 1 53756217 unknown unknown unknown 

AX-87015925 1 53794610 unknown unknown unknown 

AX-87410434 1 53836578 106605778 LOC106605778 uncharacterized LOC106605778 

AX-87409400 1 53839703 106605778 LOC106605778 uncharacterized LOC106605778 

AX-86982104 1 53843537 106605778 LOC106605778 uncharacterized LOC106605778 

AX-86980072 1 53869878 unknown unknown unknown 

AX-87072445 1 53872013 unknown unknown unknown 
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AX-87848750 1 53872121 unknown unknown unknown 

AX-87239730 1 53879658 unknown unknown unknown 

AX-87640864 1 53880834 unknown unknown unknown 

AX-87749388 1 53885696 unknown unknown unknown 

AX-87248852 1 53885853 unknown unknown unknown 

AX-87849003 1 53885913 unknown unknown unknown 

AX-87578525 1 53885977 unknown unknown unknown 

AX-86960945 1 53886950 unknown unknown unknown 

AX-87590797 1 54413652 106605925 LOC106605925 uncharacterized LOC106605925 

AX-87043685 1 54697058 106605994 LOC106605994 ninein-like protein 

AX-87585898 1 54698409 106605994 LOC106605994 ninein-like protein 

AX-87247215 1 54740857 106605568 LOC106605568 apoptosis-inducing factor 2-like 

AX-87710564 1 54743253 106605568 LOC106605568 apoptosis-inducing factor 2-like 

AX-87359293 1 54764000 106606050 LOC106606050 PH and SEC7 domain-containing protein 
1-like 

AX-87428840 1 54804095 106606050 LOC106606050 PH and SEC7 domain-containing protein 
1-like 

AX-87367919 1 54805483 106606050 LOC106606050 PH and SEC7 domain-containing protein 
1-like 

AX-87407468 1 54807217 106606050 LOC106606050 PH and SEC7 domain-containing protein 
1-like 

AX-87677526 1 54808286 106606050 LOC106606050 PH and SEC7 domain-containing protein 
1-like 

AX-86916127 1 54846725 106606070 LOC106606070 nuclear factor NF-kappa-B p100 subunit-
like 

AX-87606722 1 54969438 106606107 LOC106606107 multimerin-2-like 

AX-87256974 1 54970216 106606107 LOC106606107 multimerin-2-like 

AX-87204574 1 54977686 106606107 LOC106606107 multimerin-2-like 

AX-87867918 1 54982368 106606107 LOC106606107 multimerin-2-like 

AX-87539788 23 135206 106583870 LOC106583870 thyroid hormone receptor alpha 

AX-87219041 23 542514 106583880 LOC106583880 vesicle-fusing ATPase-like 

AX-87168852 23 585089 106583882 LOC106583882 26S proteasome non-ATPase regulatory 
subunit 11-like 

AX-87678387 23 673290 unknown unknown unknown 

AX-87402415 23 708176 unknown unknown unknown 

AX-87707887 23 746105 106583889 LOC106583889 heme-binding protein 2-like 
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AX-87649060 23 1059399 106583883 LOC106583883 exportin-6-like 

AX-87728904 23 1123112 106583886 LOC106583886 V-type proton ATPase 16 kDa proteolipid 
subunit 

AX-87619830 23 1196542 106583929 LOC106583929 C-Jun-amino-termiunknownl 
kiunknownse-interacting protein 3-like 

AX-87035916 23 1226976 106583929 LOC106583929 C-Jun-amino-termiunknownl 
kiunknownse-interacting protein 3-like 

AX-87165759 23 1292593 100136929 hn1l hematological and neurological expressed 
1-like 

AX-87279488 23 1292713 100136929 hn1l hematological and neurological expressed 
1-like 

AX-87405554 23 1332471 106583928 LOC106583928 protein cramped-like 

AX-87477347 23 1342474 106583928 LOC106583928 protein cramped-like 

AX-87392189 23 1364105 106583928 LOC106583928 protein cramped-like 

AX-87540092 23 1366373 106583928 LOC106583928 protein cramped-like 

AX-87580282 23 1368432 106583928 LOC106583928 protein cramped-like 

AX-87128349 23 1368750 106583928 LOC106583928 protein cramped-like 

AX-87363946 23 1400897 106583926 LOC106583926 transmembrane protein 11, mitochondrial-
like 

AX-87003597 23 1402364 106583926 LOC106583926 transmembrane protein 11, mitochondrial-
like 

AX-87661903 23 1404244 106583926 LOC106583926 transmembrane protein 11, mitochondrial-
like 

AX-87426966 23 1406100 106583926 LOC106583926 transmembrane protein 11, mitochondrial-
like 

AX-87621978 23 1411446 106583926 LOC106583926 transmembrane protein 11, mitochondrial-
like 

AX-86963217 23 1425481 106583899 LOC106583899 uncharacterized LOC106583899 

AX-87675354 23 1470237 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87282336 23 1470602 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87449636 23 1471573 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 
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AX-87196115 23 1471673 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87396853 23 1475496 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87843876 23 1476063 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87662799 23 1476922 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87149676 23 1477351 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87167834 23 1477420 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87315947 23 1481283 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87667920 23 1481364 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87690031 23 1481775 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87357712 23 1510834 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87167267 23 1510963 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-86971256 23 1512544 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87745867 23 1512805 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87660855 23 1513271 106583924 LOC106583924 ATP-sensitive inward rectifier potassium 
channel 12-like 

AX-87674983 23 1524047 unknown unknown unknown 

AX-87243846 23 1526853 unknown unknown unknown 

AX-87172839 23 1545947 unknown unknown unknown 

AX-87141856 23 1563339 unknown unknown unknown 

AX-87024889 23 1599119 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 

AX-87564765 23 1599455 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 
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AX-87524433 23 1600185 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 

AX-87141910 23 1609880 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 

AX-87267858 23 1615028 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 

AX-87573377 23 1616646 106583923 LOC106583923 U1 small nuclear ribonucleoprotein 70 
kDa-like 

AX-86946958 23 1666131 106583922 LOC106583922 protein arginine N-methyltransferase 1-
like 

AX-87630158 23 1667278 106583922 LOC106583922 protein arginine N-methyltransferase 1-
like 

AX-87858946 23 1700815 106583920 LOC106583920 AP-2 complex subunit alpha-2-like 

AX-87265651 23 1722292 106583920 LOC106583920 AP-2 complex subunit alpha-2-like 

AX-87257484 23 1722633 106583920 LOC106583920 AP-2 complex subunit alpha-2-like 

AX-87021802 23 1766429 106583920 LOC106583920 AP-2 complex subunit alpha-2-like 

AX-87250774 23 1794908 106583918 LOC106583918 ras-related protein R-Ras-like 

AX-87803273 23 1818796 106583898 LOC106583898 transmembrane gamma-carboxyglutamic 
acid protein 2-like 

AX-87791752 23 1871276 106583894 LOC106583894 glutamine and serine-rich protein 1-like 

AX-87082790 23 1872756 106583894 LOC106583894 glutamine and serine-rich protein 1-like 

AX-87854671 23 1924492 106583916 LOC106583916 splicing factor, arginine/serine-rich 19-like 

AX-87810107 23 1937279 106583917 LOC106583917 uncharacterized LOC106583917 

AX-87434124 23 1962796 106583893 LOC106583893 reticulocalbin-1-like 

AX-87743413 23 1963291 106583913 LOC106583913 paired box protein Pax-6-like 

AX-87232377 23 1977908 106583913 LOC106583913 paired box protein Pax-6-like 

AX-87761720 23 1982031 unknown unknown unknown 

AX-87094060 23 1998134 106583914 LOC106583914 tetraspanin-4-like 

AX-87547695 23 2010085 106583914 LOC106583914 tetraspanin-4-like 

AX-87657903 23 2010936 106583914 LOC106583914 tetraspanin-4-like 

AX-87183862 23 2012936 106583914 LOC106583914 tetraspanin-4-like 

AX-87247549 23 2014808 106583914 LOC106583914 tetraspanin-4-like 

AX-87058348 23 2022223 106583912 LOC106583912 mucin-2-like 



 162 

SNP Chr Pos GeneID Symbol Description 

AX-87530118 23 2045671 106583911 LOC106583911 serine/threonine-protein phosphatase 4 
catalytic subunit B 

AX-87236129 23 2088897 106583908 LOC106583908 fructose-bisphosphate aldolase A-like 

AX-87109089 23 2141917 106583907 LOC106583907 histone acetyltransferase KAT8-like 

AX-87788904 23 2159507 106583907 LOC106583907 histone acetyltransferase KAT8-like 

AX-87826390 23 2184177 100196413 thoc6 THO complex 6 homolog (Drosophila) 

AX-87871624 23 2242030 106583905 LOC106583905 protein yippee-like 3 

AX-87103270 23 2255827 106583905 LOC106583905 protein yippee-like 3 

AX-87561113 23 2284630 106583904 LOC106583904 glycerophosphodiester phosphodiesterase 
domain-containing protein 3-like 

AX-86983773 23 2284898 106583904 LOC106583904 glycerophosphodiester phosphodiesterase 
domain-containing protein 3-like 

AX-87291109 23 2286570 106583904 LOC106583904 glycerophosphodiester phosphodiesterase 
domain-containing protein 3-like 

AX-87421127 23 2295447 100380511 mk03 Mitogen-activated protein kiunknownse 3 

AX-87197291 23 2337139 106583903 LOC106583903 uncharacterized LOC106583903 

AX-86963524 23 2387584 106583902 LOC106583902 sarcoplasmic/endoplasmic reticulum 
calcium ATPase 1-like 

AX-86956770 23 2401123 106583902 LOC106583902 sarcoplasmic/endoplasmic reticulum 
calcium ATPase 1-like 

AX-87171179 23 2402515 106583902 LOC106583902 sarcoplasmic/endoplasmic reticulum 
calcium ATPase 1-like 

AX-87852082 23 2403113 106583902 LOC106583902 sarcoplasmic/endoplasmic reticulum 
calcium ATPase 1-like 

AX-87707929 23 2403800 106583902 LOC106583902 sarcoplasmic/endoplasmic reticulum 
calcium ATPase 1-like 

AX-86963560 23 2423148 106583892 LOC106583892 uncharacterized LOC106583892 

AX-87873005 23 2528489 106583936 LOC106583936 ataxin-2-like protein 

AX-87394917 23 2562791 106583937 LOC106583937 protein spinster homolog 1-like 

AX-87162229 23 2585819 106583937 LOC106583937 protein spinster homolog 1-like 
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AX-86936045 23 2597934 106583937 LOC106583937 protein spinster homolog 1-like 

AX-86988739 23 2600250 106583937 LOC106583937 protein spinster homolog 1-like 

AX-87235620 23 2609764 106583937 LOC106583937 protein spinster homolog 1-like 

AX-87840770 23 2616856 106583938 LOC106583938 SAGA-associated factor 29 homolog 

AX-87856359 23 2623875 106583938 LOC106583938 SAGA-associated factor 29 homolog 

AX-87681765 23 2695942 106583942 LOC106583942 tumor suppressor candidate 5 homolog 

AX-86997998 23 2696235 106583942 LOC106583942 tumor suppressor candidate 5 homolog 

AX-87734331 23 2696318 106583942 LOC106583942 tumor suppressor candidate 5 homolog 

AX-87730744 23 2702164 106583942 LOC106583942 tumor suppressor candidate 5 homolog 

AX-86983703 23 2735201 106600750 mvp major vault protein 

AX-87588621 23 2840885 106583946 LOC106583946 serine/threonine-protein kiunknownse 
TAO2-like 

AX-87424133 23 2842289 106583946 LOC106583946 serine/threonine-protein kiunknownse 
TAO2-like 

AX-86929741 23 2858347 106583946 LOC106583946 serine/threonine-protein kiunknownse 
TAO2-like 

AX-87715672 23 2971259 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87829317 23 2971764 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-86938612 23 2973012 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87565281 23 2973121 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87345844 23 2981584 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87687901 23 3047638 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87453570 23 3056396 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 
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AX-86979919 23 3086157 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87832206 23 3091438 106583948 LOC106583948 potassium voltage-gated channel 
subfamily C member 1-like 

AX-87448518 23 3127337 106583950 LOC106583950 insulin receptor-like 

AX-87303014 23 3147015 106583950 LOC106583950 insulin receptor-like 

AX-87747144 23 3165792 106583950 LOC106583950 insulin receptor-like 

AX-87482527 23 3271539 106583950 LOC106583950 insulin receptor-like 

AX-87203511 23 3274942 106583950 LOC106583950 insulin receptor-like 

AX-86980819 23 3307239 unknown unknown unknown 

AX-87291944 23 3319262 unknown unknown unknown 

AX-87699261 23 3323010 unknown unknown unknown 

AX-87253127 23 3338754 unknown unknown unknown 

AX-86954291 23 3417691 100136426 LOC100136426 vitellogenin 

AX-86943695 23 3459425 106583931 LOC106583931 vitellogenin-like 

AX-87709750 23 3498142 100380288 adgrl4 adhesion G protein-coupled receptor L4 

AX-87139791 23 3517717 unknown unknown unknown 

AX-86944514 23 3529429 100194783 zranb2 zinc finger RANBP2-type containing 2 

AX-87668471 23 3529451 100194783 zranb2 zinc finger RANBP2-type containing 2 

AX-87391909 23 3532197 100194783 zranb2 zinc finger RANBP2-type containing 2 

AX-87620961 23 3576121 106583932 LOC106583932 rho guanine nucleotide exchange factor 
18-like 

AX-87563417 23 3706719 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87172133 23 3723113 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87292409 23 3723463 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 
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AX-87774963 23 3738783 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87421317 23 3746372 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-86948981 23 3769460 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87385859 23 3775926 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87528941 23 3779240 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87622440 23 3779339 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87311526 23 3779383 106583953 LOC106583953 WW domain-containing transcription 
regulator protein 1-like 

AX-87032514 23 3820164 106583956 LOC106583956 putative gamma-glutamyltransferase 
YwrD 

AX-87816187 23 3869003 106583958 LOC106583958 Hermansky-Pudlak syndrome 3 protein-
like 

AX-86934746 23 3878694 106583958 LOC106583958 Hermansky-Pudlak syndrome 3 protein-
like 

AX-87837058 23 3904497 106583959 LOC106583959 uncharacterized LOC106583959 

AX-86906539 23 3961281 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87122104 23 3977274 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87734218 23 3982646 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87363159 23 3985738 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87692213 23 4014110 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87059097 23 4025505 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87133712 23 4031417 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87332387 23 4041871 106583961 LOC106583961 discs large homolog 1-like protein 
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AX-87575850 23 4050966 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87077911 23 4063772 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87843923 23 4080589 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87296787 23 4128208 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87180073 23 4132841 106583961 LOC106583961 discs large homolog 1-like protein 

AX-86963912 23 4135460 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87626935 23 4148421 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87143526 23 4148734 106583961 LOC106583961 discs large homolog 1-like protein 

AX-87586368 23 4199558 unknown unknown unknown 

AX-86915111 23 4258938 106583965 LOC106583965 uncharacterized LOC106583965 

AX-87707383 23 4320638 unknown unknown unknown 

AX-86948789 23 4332754 100196375 phb2 prohibitin 2 

AX-87486464 23 4340045 100196375 phb2 prohibitin 2 

AX-87276963 23 4355130 100196375 phb2 prohibitin 2 

AX-87721185 23 4424987 106583966 LOC106583966 anoctamin-8-like 

AX-87219159 23 4425069 106583966 LOC106583966 anoctamin-8-like 

AX-87099596 23 4425100 106583966 LOC106583966 anoctamin-8-like 

AX-87194948 23 4427969 106583966 LOC106583966 anoctamin-8-like 

AX-86950404 23 4429075 106583966 LOC106583966 anoctamin-8-like 

AX-87650128 23 4464961 106583966 LOC106583966 anoctamin-8-like 

AX-87500873 23 4465619 106583966 LOC106583966 anoctamin-8-like 

AX-87144373 23 4474106 106583966 LOC106583966 anoctamin-8-like 

AX-87269535 23 4575398 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87292208 23 4577937 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87715906 23 4581015 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87672630 23 4613644 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87000708 23 4619794 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87831158 23 4646200 106583933 LOC106583933 DENN domain-containing protein 1A-like 

AX-87841264 23 4692269 106583972 LOC106583972 cytosolic phospholipase A2-like 

AX-86991035 23 4716702 106583972 LOC106583972 cytosolic phospholipase A2-like 
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SNP Chr Pos GeneID Symbol Description 

AX-87046911 23 4741442 106583972 LOC106583972 cytosolic phospholipase A2-like 

AX-87098467 23 4895587 unknown unknown unknown 

AX-86904160 23 4976214 unknown unknown unknown 

AX-87024138 23 5012051 unknown unknown unknown 

AX-87512347 23 5021262 unknown unknown unknown 

AX-87761868 23 5030740 unknown unknown unknown 

AX-86936885 23 5067365 unknown unknown unknown 

AX-87640402 23 5135402 unknown unknown unknown 

AX-87342180 23 5135592 unknown unknown unknown 

AX-87475301 23 5210426 unknown unknown unknown 

AX-87378078 23 5274947 unknown unknown unknown 

AX-87688496 23 5275719 unknown unknown unknown 

AX-87860488 23 5276938 unknown unknown unknown 

AX-87722525 23 5311117 unknown unknown unknown 

AX-87098328 23 5339200 unknown unknown unknown 

AX-87711662 23 5339257 unknown unknown unknown 

AX-87043005 23 5361181 unknown unknown unknown 

AX-86979596 23 5363795 unknown unknown unknown 

AX-87735530 23 5373671 unknown unknown unknown 

AX-87698333 23 5423378 unknown unknown unknown 

AX-87514931 23 5467615 unknown unknown unknown 

AX-87641924 23 5482049 unknown unknown unknown 

AX-87322481 23 5593417 106583979 LOC106583979 protein crumbs homolog 1-like 

AX-87061095 23 5593714 106583979 LOC106583979 protein crumbs homolog 1-like 

AX-87255609 23 5606420 106583979 LOC106583979 protein crumbs homolog 1-like 

AX-87569255 23 5614228 106583979 LOC106583979 protein crumbs homolog 1-like 

AX-87754027 23 5637563 unknown unknown unknown 

AX-87859525 23 5645115 unknown unknown unknown 

AX-87317696 23 5659372 unknown unknown unknown 

AX-86950577 23 5667430 100196385 nek7 NIMA related kiunknownse 7 

AX-87405186 23 5668111 100196385 nek7 NIMA related kiunknownse 7 

AX-87030070 23 5701999 100196385 nek7 NIMA related kiunknownse 7 

AX-87033678 23 5771537 100196385 nek7 NIMA related kiunknownse 7 

AX-87180902 23 5788310 100196385 nek7 NIMA related kiunknownse 7 

AX-87640000 23 5843612 106583981 LOC106583981 LIM/homeobox protein Lhx9 

AX-87228764 23 5848711 106583981 LOC106583981 LIM/homeobox protein Lhx9 
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AX-87781097 23 5849480 106583981 LOC106583981 LIM/homeobox protein Lhx9 

AX-87420938 23 5849999 106583981 LOC106583981 LIM/homeobox protein Lhx9 

AX-87181719 23 5869180 unknown unknown unknown 

AX-87058306 23 5904813 unknown unknown unknown 

AX-87775154 23 6016501 106583984 LOC106583984 beta-crystallin B1-like 

AX-87229426 23 6025414 unknown unknown unknown 

AX-87815151 23 6025979 unknown unknown unknown 

AX-87510291 23 6026231 unknown unknown unknown 

AX-87060100 23 6082057 unknown unknown unknown 

AX-87577142 23 6084376 unknown unknown unknown 

AX-87378314 23 6128507 106584002 LOC106584002 influenza virus NS1A-binding protein 
homolog A-like 

AX-87355526 23 6188162 106584004 LOC106584004 uncharacterized LOC106584004 

AX-87563205 23 6192303 106584004 LOC106584004 uncharacterized LOC106584004 

AX-87382035 23 6268909 106584005 LOC106584005 protein Niban-like 

AX-87358530 23 6290012 106584005 LOC106584005 protein Niban-like 

AX-86992860 23 6292832 106584005 LOC106584005 protein Niban-like 

AX-87257842 23 6294224 106584005 LOC106584005 protein Niban-like 

AX-87046754 23 6296066 106584006 LOC106584006 kinesin-associated protein 3-like 

AX-87020095 23 6308385 106584006 LOC106584006 kinesin-associated protein 3-like 

AX-87355589 23 6361999 unknown unknown unknown 

AX-87351005 23 6403286 unknown unknown unknown 

AX-87275938 23 6430215 106583996 LOC106583996 uncharacterized LOC106583996 

AX-86935810 23 6432811 106583996 LOC106583996 uncharacterized LOC106583996 

AX-87020735 23 6439226 106583996 LOC106583996 uncharacterized LOC106583996 

AX-87031221 23 6443787 106583996 LOC106583996 uncharacterized LOC106583996 

AX-87823385 23 6449921 106584008 LOC106584008 paired mesoderm homeobox protein 1-like 

AX-87202934 23 6476532 106584009 LOC106584009 myomegalin-like 

AX-87133177 23 6481617 106584009 LOC106584009 myomegalin-like 

AX-87835135 23 6482160 106584009 LOC106584009 myomegalin-like 

AX-87718688 23 6482620 106584009 LOC106584009 myomegalin-like 

AX-87372314 23 6487936 106584009 LOC106584009 myomegalin-like 

AX-87095055 23 6488050 106584009 LOC106584009 myomegalin-like 

AX-87773440 23 6488420 106584009 LOC106584009 myomegalin-like 

AX-87322355 23 6541919 106584009 LOC106584009 myomegalin-like 
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AX-87067066 23 6569594 106584009 LOC106584009 myomegalin-like 

AX-87499911 23 6578184 106584009 LOC106584009 myomegalin-like 

AX-87764909 23 6624028 106583985 LOC106583985 uncharacterized LOC106583985 

AX-87167429 23 6627387 106583985 LOC106583985 uncharacterized LOC106583985 

AX-87321979 23 6673076 106583985 LOC106583985 uncharacterized LOC106583985 

AX-87258995 23 6723863 106583985 LOC106583985 uncharacterized LOC106583985 

AX-87341158 23 6845526 106583986 LOC106583986 microtubule-associated serine/threonine-
protein kiunknownse 2-like 

AX-87121416 23 6871572 106584010 LOC106584010 microtubule-associated serine/threonine-
protein kiunknownse 2-like 

AX-87858967 23 6881307 106584010 LOC106584010 microtubule-associated serine/threonine-
protein kiunknownse 2-like 

AX-87065267 23 6979396 unknown unknown unknown 

AX-86919962 23 7022501 unknown unknown unknown 

AX-87446529 23 7097593 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87290518 23 7097638 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87382864 23 7097771 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87567044 23 7140240 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-86946566 23 7200700 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87081392 23 7212631 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87660694 23 7275291 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87610776 23 7276303 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87466266 23 7325209 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 
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AX-87001250 23 7347807 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87542166 23 7355302 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87099584 23 7355967 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87102736 23 7373853 106584012 LOC106584012 phosphatidylinositol 3-kiunknownse 
regulatory subunit gamma 

AX-87080789 23 7532221 unknown unknown unknown 

AX-87275779 23 7565841 unknown unknown unknown 

AX-87205031 23 7592209 106584015 pomgnt1 protein O-linked mannose N-
acetylglucosaminyltransferase 1 (beta 1,2-) 

AX-86994688 23 7618583 106584015 pomgnt1 protein O-linked mannose N-
acetylglucosaminyltransferase 1 (beta 1,2-) 

AX-87479239 23 7626251 106584015 pomgnt1 protein O-linked mannose N-
acetylglucosaminyltransferase 1 (beta 1,2-) 

AX-87216830 23 7647999 100196736 pr38a Pre-mRunknown-splicing factor 38A 

AX-86952354 23 7651548 100196736 pr38a Pre-mRunknown-splicing factor 38A 

AX-87768363 23 7692319 106584018 LOC106584018 tyrosine-protein kiunknownse receptor 
Tie-1-like 

AX-87634372 23 7708732 106584020 LOC106584020 leucine-rich repeat-containing protein 19-
like 

AX-87588997 23 7717330 106584020 LOC106584020 leucine-rich repeat-containing protein 19-
like 

AX-87303229 23 7718306 106584020 LOC106584020 leucine-rich repeat-containing protein 19-
like 

AX-87647406 23 7769735 106584021 LOC106584021 transmembrane protein 125-like 

AX-87380720 23 7770501 106584021 LOC106584021 transmembrane protein 125-like 

AX-87014585 23 7772607 106584021 LOC106584021 transmembrane protein 125-like 

AX-87267205 23 7786900 106584022 LOC106584022 cilia- and flagella-associated protein 57-
like 
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AX-87857558 23 7811908 100196728 ebp2 Probable rRunknown-processing protein 
EBP2 

AX-87822321 23 7819275 100196728 ebp2 Probable rRunknown-processing protein 
EBP2 

AX-87426009 23 7820606 106583998 fam183a family with sequence similarity 183 
member A 

AX-86939073 23 7887557 unknown unknown unknown 

AX-87155373 23 7896594 unknown unknown unknown 

AX-86952061 23 7896930 unknown unknown unknown 

AX-86983043 23 7900670 unknown unknown unknown 

AX-87717911 23 7924840 unknown unknown unknown 

AX-86976037 23 7925329 unknown unknown unknown 

AX-87851810 23 7943113 unknown unknown unknown 

AX-87176721 23 7958963 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87370700 23 7959363 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87246249 23 7961853 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87096043 23 7961883 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87686971 23 8011286 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87138861 23 8011329 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87654961 23 8022415 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87720497 23 8025569 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87834589 23 8028870 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87257464 23 8030941 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87373134 23 8031592 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 
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AX-86905343 23 8071752 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87646081 23 8073598 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87520918 23 8075879 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87655916 23 8076158 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87497659 23 8117115 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87450172 23 8155612 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87496994 23 8206898 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87649580 23 8209668 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87291870 23 8210055 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-86938787 23 8216750 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87193372 23 8234131 106584023 LOC106584023 low-density lipoprotein receptor-related 
protein 8-like 

AX-87134632 23 8244601 106584025 LOC106584025 KN motif and ankyrin repeat domain-
containing protein 4-like 

AX-87159858 23 8249242 106584025 LOC106584025 KN motif and ankyrin repeat domain-
containing protein 4-like 

AX-87077958 23 8302809 106584025 LOC106584025 KN motif and ankyrin repeat domain-
containing protein 4-like 

AX-87472417 23 8335671 106584025 LOC106584025 KN motif and ankyrin repeat domain-
containing protein 4-like 

AX-87465907 23 8362243 unknown unknown unknown 

AX-87672154 23 8400201 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87537431 23 8416415 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87785210 23 8417289 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87138762 23 8456810 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87855450 23 8457144 106584026 LOC106584026 dedicator of cytokinesis protein 7 
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AX-87160816 23 8457615 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87326614 23 8459414 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-86946835 23 8475884 106584026 LOC106584026 dedicator of cytokinesis protein 7 

AX-87729540 23 8529397 unknown unknown unknown 

AX-87020967 23 8540281 106583988 LOC106583988 cysteine protease ATG4C-like 

AX-87741605 23 8546429 106583988 LOC106583988 cysteine protease ATG4C-like 

AX-87075500 23 8589775 unknown unknown unknown 

AX-87568664 23 8590688 unknown unknown unknown 

AX-87279660 23 8594831 unknown unknown unknown 

AX-86996867 23 8595305 unknown unknown unknown 

AX-87478923 23 8596703 unknown unknown unknown 

AX-87601259 23 8605786 unknown unknown unknown 

AX-87820411 23 8607433 unknown unknown unknown 

AX-87746782 23 8608167 unknown unknown unknown 

AX-87562938 23 8651628 unknown unknown unknown 

AX-87289236 23 8673446 unknown unknown unknown 

AX-87578649 23 8676078 unknown unknown unknown 

AX-87828605 23 8692466 unknown unknown unknown 

AX-87623786 23 8728332 unknown unknown unknown 

AX-87669098 23 8734942 unknown unknown unknown 

AX-87350342 23 8745200 unknown unknown unknown 

AX-87722151 23 8788481 106584029 LOC106584029 forkhead box protein D3-B-like 

AX-87159931 23 8796386 106584029 LOC106584029 forkhead box protein D3-B-like 

AX-87423357 23 8803104 106584029 LOC106584029 forkhead box protein D3-B-like 

AX-87364900 23 8803121 106584029 LOC106584029 forkhead box protein D3-B-like 

AX-87104073 23 8808338 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 

AX-87048770 23 8815863 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 

AX-87674457 23 8815923 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 
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AX-87380133 23 8864955 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 

AX-87765392 23 8865101 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 

AX-87084327 23 8892813 106583989 LOC106583989 
dolichyl pyrophosphate 
Man9Glcunknownc2 alpha-1,3-
glucosyltransferase-like 

AX-87452258 23 8897344 100194572 pgm1 phosphoglucomutase 1 

AX-87821095 23 8897500 100194572 pgm1 phosphoglucomutase 1 

AX-87442701 23 8897912 100194572 pgm1 phosphoglucomutase 1 

AX-87203583 23 8903091 100194572 pgm1 phosphoglucomutase 1 

AX-86965558 23 8904057 100194572 pgm1 phosphoglucomutase 1 

AX-87460091 23 8925831 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-86932938 23 8942915 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-87640991 23 8954328 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-87132031 23 8992797 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-87157553 23 9061272 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-86964847 23 9067562 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-87222244 23 9118667 106584030 LOC106584030 tyrosine-protein kiunknownse 
transmembrane receptor ROR1-like 

AX-87052583 23 9150250 unknown unknown unknown 

AX-87611731 23 9181175 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87601958 23 9181641 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-86985295 23 9182360 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 
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AX-87141919 23 9186127 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87720742 23 9237683 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87429173 23 9240944 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87238836 23 9244174 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87526284 23 9252352 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-86917011 23 9260192 106584031 LOC106584031 VWFA and cache domain-containing 
protein 1 

AX-87406555 23 9289476 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-87076476 23 9289501 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-86969316 23 9290852 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-87026869 23 9324965 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-87695297 23 9331327 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-87500541 23 9334293 106584032 LOC106584032 ribonucleoprotein PTB-binding 2-like 

AX-87846743 23 9420549 106584035 LOC106584035 putative tyrosine-protein phosphatase 
auxilin 

AX-87322747 23 9420844 106584035 LOC106584035 putative tyrosine-protein phosphatase 
auxilin 

AX-87344479 23 9422569 106584035 LOC106584035 putative tyrosine-protein phosphatase 
auxilin 

AX-87568882 23 9432443 106584035 LOC106584035 putative tyrosine-protein phosphatase 
auxilin 

AX-87782899 23 9434644 106584035 LOC106584035 putative tyrosine-protein phosphatase 
auxilin 
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Appendix I – Identity by Descent 
 

Table S15 Preliminary analysis of within river relatedness among Atlantic Salmon (Salmo salar) in 26 rivers in Placentia Bay, 
Newfoundland, Canada. Identity by descent (IBD) calculated using PLINK v 1.9 (Chang et al., 2015). Family ID (FID), individual ID 
(IID), relationship type (RT), IBD sharing value (EZ), proportion of IBD (PI_HAT) for each year (2017 and 2018) sampled.  
FID1 IID1 FID2 IID2 RT EZ Z0 Z1 Z2 PI_HAT YEAR 
BDL BDL_1_1_14 BDL BDL_1_1_26 OT 0 0.2495 0.3572 0.3933 0.5719 2017 
BRA BRA_2_1_18 BRA BRA_2_1_27 OT 0 0.2908 0.4198 0.2895 0.4993 2017 
CBC CBC_1_1_29 CBC CBC_1_1_8 OT 0 0.4128 0.1975 0.3898 0.4885 2017 
CUS CUS_1_1_10 CUS CUS_1_1_22 OT 0 0.3258 0.2407 0.4335 0.5539 2017 
FHB FHB_1_1_13 FHB FHB_1_1_20 OT 0 0.137 0.4369 0.4262 0.6446 2017 
FHB FHB_1_1_13 FHB FHB_1_1_3 OT 0 0.1737 0.5483 0.278 0.5521 2017 
FHB FHB_1_1_13 FHB FHB_1_1_6 OT 0 0.216 0.4585 0.3255 0.5547 2017 
FHB FHB_1_1_15 FHB FHB_1_1_17 OT 0 0.2907 0.3207 0.3887 0.549 2017 
FHB FHB_1_1_20 FHB FHB_1_1_3 OT 0 0.3163 0.3601 0.3236 0.5036 2017 
FHB FHB_1_1_20 FHB FHB_1_1_6 OT 0 0.1837 0.4818 0.3345 0.5754 2017 
FHB FHB_1_1_3 FHB FHB_1_1_6 OT 0 0.2105 0.58 0.2095 0.4995 2017 
FHB FHB_1_1_4 FHB FHB_1_1_8 OT 0 0.2696 0.536 0.1943 0.4624 2017 
GBW GBW_1_YOY_14 GBW GBW_1_YOY_6 OT 0 0.2558 0.4609 0.2833 0.5138 2017 
LBB LBB_1_2_1 LBB LBB_1_2_8 OT 0 0.2618 0.3769 0.3613 0.5497 2017 
LWN LWN_1_1_10 LWN LWN_1_1_4 OT 0 0.1762 0.5126 0.3113 0.5675 2017 
LWN LWN_1_1_11 LWN LWN_1_1_12 OT 0 0.3056 0.3621 0.3323 0.5133 2017 
LWN LWN_1_1_16 LWN LWN_1_1_6 OT 0 0.2411 0.4735 0.2853 0.5221 2017 
LWN LWN_1_1_3 LWN LWN_1_1_32 OT 0 0.1551 0.431 0.4139 0.6294 2017 
NMB NMB_11_3 NMB NMB_11_9 OT 0 0.2719 0.4739 0.2542 0.4912 2017 
NON NON_1_1_11 NON NON_1_1_25 OT 0 0.2927 0.3573 0.35 0.5287 2017 
NPR NPR_1_1_13 NPR NPR_1_1_16 OT 0 0.3198 0.3998 0.2805 0.4803 2017 
PBR PBR_1_1_29 PBR PBR_1_1_9 OT 0 0.2418 0.4018 0.3564 0.5573 2017 



 177 

FID1 IID1 FID2 IID2 RT EZ Z0 Z1 Z2 PI_HAT YEAR 
RHW RHW_1_1_15 RHW RHW_1_1_3 OT 0 0.2402 0.5123 0.2475 0.5037 2017 
SHI SHI_1_1_10 SHI SHI_1_1_12 OT 0 0.2273 0.5602 0.2126 0.4926 2017 
SHI SHI_1_1_25 SHI SHI_1_1_26 OT 0 0.1906 0.5336 0.2758 0.5426 2017 
SPR SPR_1_1_1 SPR SPR_1_1_20 OT 0 0.1873 0.473 0.3397 0.5762 2017 
SPR SPR_1_1_15 SPR SPR_1_1_18 OT 0 0.2418 0.493 0.2652 0.5117 2017 
SPR SPR_1_1_15 SPR SPR_1_1_25 OT 0 0.244 0.4721 0.2839 0.5199 2017 
SPR SPR_1_1_18 SPR SPR_1_1_25 OT 0 0.2541 0.4616 0.2843 0.5151 2017 
SPR SPR_1_1_21 SPR SPR_1_1_26 OT 0 0.1883 0.538 0.2737 0.5427 2017 
SPR SPR_1_1_21 SPR SPR_1_1_28 OT 0 0.232 0.5125 0.2554 0.5117 2017 
SPR SPR_1_1_21 SPR SPR_1_1_4 OT 0 0.2195 0.506 0.2745 0.5275 2017 
SPR SPR_1_1_26 SPR SPR_1_1_28 OT 0 0.2454 0.4305 0.3241 0.5394 2017 
SPR SPR_1_1_26 SPR SPR_1_1_4 OT 0 0.2729 0.544 0.183 0.455 2017 
SPR SPR_1_1_28 SPR SPR_1_1_4 OT 0 0.2979 0.4858 0.2164 0.4593 2017 
BDL BDL_1_1_9 BDL BDL_1_1_30 OT 0 0.2134 0.4805 0.3061 0.5463 2018 
BLA BLA_1_1_8 BLA BLA_1_1_25 OT 0 0.2972 0.4207 0.2821 0.4925 2018 
BRA BRA_2_1_14 BRA BRA_2_1_32 OT 0 0.2576 0.4572 0.2851 0.5138 2018 
BRA BRA_2_1_16 BRA BRA_2_1_34 OT 0 0.2489 0.5426 0.2085 0.4798 2018 
CUS CUS_1_2_11 CUS CUS_1_2_17 OT 0 0.2419 0.4129 0.3452 0.5517 2018 
FHB FHB_1_2_20 FHB FHB_1_2_25 OT 0 0.2577 0.4605 0.2818 0.512 2018 
GBW GBW_1_1_4 GBW GBW_1_1_12 OT 0 0.3011 0.3362 0.3627 0.5308 2018 
GBW GBW_1_1_5 GBW GBW_1_1_7 OT 0 0.2489 0.451 0.3001 0.5256 2018 
GBW GBW_1_1_8 GBW GBW_1_1_13 OT 0 0.1943 0.5295 0.2761 0.5409 2018 
GBW GBW_1_1_8 GBW GBW_1_1_24 OT 0 0.0944 0.5386 0.367 0.6363 2018 
GBW GBW_1_1_8 GBW GBW_1_1_26 OT 0 0.3486 0.366 0.2854 0.4684 2018 
GBW GBW_1_1_13 GBW GBW_1_1_24 OT 0 0.2209 0.3804 0.3987 0.5889 2018 
GBW GBW_1_1_13 GBW GBW_1_1_26 OT 0 0.1431 0.6176 0.2393 0.5481 2018 
GBW GBW_1_1_13 GBW GBW_1_1_28 OT 0 0.3207 0.3842 0.295 0.4872 2018 
GBW GBW_1_1_24 GBW GBW_1_1_26 OT 0 0.1709 0.5005 0.3286 0.5789 2018 
GBW GBW_1_1_26 GBW GBW_1_1_28 OT 0 0.2874 0.4419 0.2708 0.4917 2018 
GBW GBW_1_2_5 GBW GBW_1_2_16 OT 0 0.3716 0.2778 0.3506 0.4895 2018 
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FID1 IID1 FID2 IID2 RT EZ Z0 Z1 Z2 PI_HAT YEAR 
LWN LWN_1_1_7 LWN LWN_1_2_4 OT 0 0.2443 0.4404 0.3153 0.5355 2018 
NHR NHR_1_2_9 NHR NHR_1_2_14 OT 0 0.1384 0.476 0.3855 0.6235 2018 
NMB NMB_1_1_10 NMB NMB_1_1_20 OT 0 0.2496 0.4506 0.2998 0.5251 2018 
NON NON_1_1_6 NON NON_1_1_17 OT 0 0.1458 0.612 0.2422 0.5482 2018 
NPR NPR_1_1_23 NPR NPR_1_2_1 OT 0 0.2751 0.4574 0.2675 0.4962 2018 
SPR SPR_1_1_4 SPR SPR_1_2_11 OT 0 0.2939 0.4979 0.2082 0.4571 2018 
SPR SPR_1_1_4 SPR SPR_2_2_1 OT 0 0.2585 0.4771 0.2644 0.503 2018 
SPR SPR_1_1_4 SPR SPR_2_2_7 OT 0 0.243 0.3603 0.3968 0.5769 2018 
SPR SPR_1_2_11 SPR SPR_2_1_9 OT 0 0.1531 0.4998 0.3471 0.597 2018 
SPR SPR_1_2_11 SPR SPR_2_2_2 OT 0 0.1808 0.4864 0.3328 0.576 2018 
SPR SPR_2_1_4 SPR SPR_2_2_2 OT 0 0.2918 0.4816 0.2266 0.4674 2018 
SPR SPR_2_1_4 SPR SPR_2_2_7 OT 0 0.2397 0.5301 0.2303 0.4953 2018 
SPR SPR_2_1_9 SPR SPR_2_2_2 OT 0 0.1764 0.5248 0.2988 0.5612 2018 
SPR SPR_2_1_12 SPR SPR_2_2_3 OT 0 0.1598 0.4856 0.3545 0.5973 2018 
SPR SPR_2_1_14 SPR SPR_2_2_4 OT 0 0.303 0.3999 0.2971 0.4971 2018 
SPR SPR_2_2_1 SPR SPR_2_2_7 OT 0 0.2042 0.5364 0.2595 0.5277 2018 
 


