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Abstract

This thesis developed two sophisticated statistical methods for edge detection in X-ray

images. Both of the two methods are developed on the basis of the Hessian matrices

of brightness. The first method evaluates the possibility of each pair of pixels in the

X-ray images being on the intended edges by assigning a calculated goodness score to

each pair. A comparison shows that this method outperforms the state-of-the-art edge

detection methods for X-ray images. To further improve the quality of edge detection,

another method was developed to obtain higher accuracy and precision by getting

thinner and more continuous edges. The second method carries out edge detection

by tracing the progression of edges from certain starting points, in this way, the edges

detected are clearer, thinner, and more continuous curves. For edge detection for the

hip joint part that we mostly focused on, the second method generates better results

than the first method. Although the methods are mainly applied to X-ray images in

this thesis, the methods are generally applicable to all other images as well.
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Chapter 1

Introduction

1.1 Research Background

Medical imaging is becoming a powerful tool for diagnosis and treatment of numer-

ous medical conditions. Common medical images include computed tomography,

fluoroscopy, and radiography. As one type of radiography, X-ray imaging has been

utilized for more than 100 years and remains valuable. X-ray image analysis is con-

ventionally carried out by specialists and thus requires great human resources. To

improve the precision and efficiency of X-ray image analysis, a lot of effort has been

made to automate the image processing.

There is a trend to introduce general image analysis techniques, such as edge de-

tection and image segmentation, into X-ray image analysis. Figure 1.1 shows two

state-of-the-art X-ray image analysis algorithms. The first algorithm [24] aims to de-

tect fractures from X-ray images. An important step of this method is edge detection

and it uses the Canny edge detector. The second algorithm [22] is designed to detect

defects and the Sobel edge detection method plays a crucial role.

1
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Figure 1.1: The general algorithms of X-ray image analysis

The X-ray images of this work are for osteoarthritis diagnosis. Osteoarthritis can

cause severe joint pain and stiffness and often begins to affect people in middle age

or older. Early treatment and detection of osteoarthritis is important because os-

teoarthritis worsens over time and early diagnosis may have the potential to slow

its progression. This research will begin with a study on osteoarthritis of the hip.

Osteoarthritis of the hip can be classified into grade 0 to 4 based on severity. Clas-

sification based on X-ray imaging prior to surgical intervention is important as it

leads to better treatment decisions. Currently, classification is based on physicians

judgement. Physicians classify the grades by measuring the distances between joint

spaces and defining how clear the boundaries of the bones are. Unfortunately, it is

time consuming and arbitrary since different physicians have different opinions on

how clear or vague the boundaries are. So, we aim to develop a carefully designed

method which can offer an accurate edge detector for X-Ray images.
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1.2 Edge Detection

Edge detection is a traditional topic in image processing, used for identifying the

contours of objects in images. Edges include the most crucial structures in the im-

ages [14]. Edge detection is very useful for problems such as image segmentation,

reconstruction, interpretation, tracking [10] and data extraction. For numerous fields

of study, edge detection is an important step to unveil the features underneath the

original images. An accurate and robust edge detection methodology can be applied

in many interdisciplinary scenarios. For example, in medicine, edge detection is use-

ful for medical condition diagnosis. The applications shown in this work are mainly

medical.

Edge detection has an extremely rich history. There are many algorithms for edge

detection such as the Canny [2], the Sobel operator [20], the Marr-Hildreth Algo-

rithm [23], and some deep learning methods. These methods can be classified into

two groups as traditional statistical algorithms and deep learning based algorithms.

Chapter 2 of this thesis is a relatively comprehensive review on edge detection meth-

ods.

It is difficult to find a general edge detection method that suits well for many con-

texts or different requirements. We initially tried the state-of-the-art computer vision

method - the Canny edge detector on our X-ray images. But it could not catch

the edges very well. In order to make an accurate edge detection with less noise,
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we develop two edge detection algorithms. More specifically, we use eigenvalues and

eigenvectors of the Hessian matrix as an important indicator of the change of bright-

ness. The first algorithm considers the second derivatives of the brightness with two

more elements, angle and distance. The second algorithm, on the other hand, aims

to trace the edge using an objective function based on the Hessian matrix. Both of

them show a better result than Canny [2] and HED [25] on the images we have tested.

1.3 Thesis Structure

We review the existing edge detection algorithms in Chapter 2. Then, the first edge

detection algorithm is proposed and tested in Chapter 3. Chapter 4 discusses the

second edge detector and shows a comparison between the state-of-the-art methods

and our method. Finally, Chapter 5 concludes the work and discusses the implications

of the edge detection methods in other interdisciplinary fields and suggests future

works.



Chapter 2

A Review of Edge Detection Methods

2.1 Edge Detection Problem

The raw data of our edge detection problem is the brightness of the pixels on X-Ray

images, here b(x, y) is used as the notation of the brightness at the corresponding

coordinates (x, y) of each pixel. An edge detector is intrinsically designed to find the

sharp change of the brightness. Derivative is a suitable tool to depict the change.

Figure 2.1 is an example of how brightness and derivatives change at the edge area

(the area between the dotted lines) in one dimension. The brightness changes from

dark to bright, the first-order derivative forms a bell shape and reaches a peak in

the middle. The second-order derivative has two bumps within the edge area. These

features of derivatives are good clues to detect the edge. The Canny edge detector is

based on the first-order derivative of the brightness. The edges detected are not clear

enough for X-ray images. The methods we develop are based on the second derivative.

5
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Figure 2.1: Illustration of changes of brightness, derivatives of brightness at the edge
area in one dimension.

This figure is a simplified one dimensional example with a known direction of bright-

ness change. However, for our two dimensional image, the brightness change could

be in any direction. So, we need a vector to capture the direction of the brightness

change. Here, we introduce the eigenvectors and eigenvalues of the Hessian matrix,

which is a matrix of second-order derivatives, of brightness to detect the sharp change.

The Hessian matrix can be written as

H(x, y) =

 ∂2b
∂x2

∂2b
∂x∂y

∂2b
∂y∂x

∂2b
∂y2


Since our X-Ray images are converted to greyscale images, b of each pixel ranges from

0 to 255. And the coordinates of the pixels on an image vary from 0 to a positive

integer, so the brightness is a function b : Z× Z→ Z0.
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2.2 Algorithms for Edge Detection

Since edge detection can be used in many different fields for different purposes, it is

hard to design a general method that works well in multiple contexts and define a fixed

set of parameters needed for the detector. As a result, there are lots of variations of

edge detectors. We group them into two categories: traditional statistical algorithms

and deep learning based algorithms.

2.2.1 Traditional Statistical Algorithms

The methods of traditional statistical algorithms can be separated into first-order

derivative based and second-order derivative based algorithms. The most popular

first-order derivative based algorithm is the Canny edge detector which was developed

by John F. Canny in 1986 [2]. First of all, the Canny edge detector smooths the images

to reduce noise by applying a Gaussian filter kernel with size (2k+1)×(2k+1) namely:

Fij =
1

2πσ2
exp

(
−(i− (k + 1))2 + (j − (k + 1))2

2σ2

)
; 1 ≤ i, j ≤ (2k + 1)

Then, it detects the directions and gradients on the edge using edge detection oper-

ators such as Roberts [17], Sobel [21], or Prewitt [16] as shown below.

G =
√
G2

x +G2
y

Θ = atan

(
Gy

Gx

)
where Gx, Gy are the first derivatives of the brightness on the horizontal and vertical

directions respectively. The following steps are thinning the edge using non-maximum
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suppression, filtering out points with weak gradients, and tracking the edge by hys-

teresis.

Although the Canny edge detector was created more than forty years ago, it is widely

used nowadays since it is a simple and accurate method. And in order to fulfill more

requirements of edge detection, there are some variations of Canny edge detectors.

For example, replacing the Gaussian filter by an adaptive filter can improve the ac-

curacy [7], Otsu’s method can help to calculate a more robust high threshold [18],

Mallat and Zhong improved the edge thinning step through a reconstruction algo-

rithm [11], and the Curvelet technology was used to reduce the noise in the first two

steps of the Canny algorithm [4].

The Marr-Hildreth algorithm [12] is the first use of second-order derivatives for edge

detection. The accuracy of this method is not competitive on overall quality of results,

but a number of refinements added since the original method was introduced have

made it competitive. In 1998, Lindeberg developed an edge detector [9] using scale

selection [8] and using a Gaussian filter for smoothing. For any pixel (x0, y0), they

set a local coordinate (u, v) where v is parallel to the gradient direction. Then, they

introduce a scale t to form a scale space representation:

L(x, y; t) = g(x, y; t)× b(x, y)

where g(x, y; t) is a Gaussian kernel, b(x, y) is the brightness of the pixel, and the scale

parameter t is selected from local maxima over scales of γ-normalized derivatives [9].



9

The points on the edge are where the gradient magnitudes are the maximum in the

gradient direction. That is, the second-order directional derivative in the v-direction

is zero and the third-order derivative is negative:

Lvv = 0,

Lvvv < 0.

Next, they restated the above two conditions under the location coordinates (x, y) as

L̃vv = L2
vLvv = L2

xLxx + 2LxL− yLxy + L2
yLyy = 0,

L̃vvv = L3
vLvvv = L3

xLxxx + 3L2
xLyLxxy + 3LxL

2
yLxyy + L3

yLyyy < 0.

These two conditions define the edge at scale t. Along with the Gaussian filter, the

edges can be detected automatically. Following this work, several more second-order

derivative based algorithms, also based on the Gaussian filter, have been developed,

such as Statistical Edge Detection [6] and Pb [13].

2.2.2 Deep Learning Based Algorithms

In recent years, there is a wave of developing deep learning models for edge detection.

For instance N4-Fields [3], Deepedge [1], and Holistically-Nested Edge Detection

(HED) [25]. Some of them use carefully learned features [13] and others rely on

automatic feature learning, in other words, unsupervised learning. Compared to

the supervised learning methods, the automatic feature learning methods have lower

prediction efficiency [5].



10

Among these deep learning based algorithms, HED is the most popular algorithm in

the application field. HED is a supervised learning model combination of a single-

stream network with multiple side outputs. The input of the training set is structured

as (Xn, Yn), n = 1, ..., N . Here, Xn are the original images and Yn are the manually

annotated ground truth binary edge maps of the corresponding images. The HED

model aims to learn the features that are helpful for predicting the edge maps. Instead

of supervised learning on one output image, HED uses the deep supervision method,

which makes learning the features more transparent. As shown in Figure 2.2, the

model produces side outputs for each layer and performs supervised learning on them

all for feature extraction for edge detection. Each side-output layer is associate with

a classifier based on a loss function:

lside(W ,w) =
M∑

m=1

αml
(m)
side(W ,w(m))

where W are parameters of all standard network layer, w are the weights of the

classifier of the side-output layer, M is the number of side-output layers, and l
(m)
side is

the image-level loss function for side output m. This method improves the prediction

efficiency and gets better results. The average precision (AP) of HED is 0.833 on

BSDS500 dataset, which outperforms thirteen popular edge detection methods [25].

We also compare our method with HED results.
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Figure 2.2: The structure of HED supervised deep learning network



Chapter 3

Edge Detection by Linking Points

The edges that are of interest are typically the boundaries between different bulks,

such as the gap between bones in a joint, and have relative sharp contrast in brightness

with respect to the bulk areas due to imaging mechanisms. Our first method is based

on identifying pairs of points that are likely to be on an edge, based on the second

derivative of brightness. We base the decision about whether pairs of points are likely

to be on an edge on three factors: the points should be near to each other; the second

derivative of brightness at the points should have a large negative eigenvalue; and the

line between the points should be close to orthogonal to the eigenvector corresponding

to the large negative eigenvalue. Since we only use a one-dimensional brightness value

for each pixel, our method is designed for greyscale images.

3.1 Algorithm for Detecting Pairs of Points on Edges

Sections 3.1.1 and 3.1.2 present our method for the calculation of change of the bright-

ness for each pixel. Then, Section 3.1.3 traverses all the pixels to find pairs of points

that are most likely to be on the edge and links them.

12
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3.1.1 Hessian Matrices

With the brightness of each pixel digitized to greyscale, using the derivatives of

greyscale to capture the brightness change and in turn detect edges is a reasonable

approach as discussed in Chapter 2. The second derivatives are expressed using the

Hessian matrix H(x, y), which has entries given by the second-order partial deriva-

tives of b(x, y).

Since the brightness is only observed at discrete points and is subject to measurement

error, we develop a robust method to estimate the second-order partial derivatives.

The brightness as a function of (x, y) can be approximated near a point (x, y) by its

second order Taylor expansion, which can be written as a binary quadratic function:

b(x+ δ, y+ ε) ≈ α(x, y)δ2 + β(x, y)δε+ γ(x, y)ε2 + d(x, y)δ+ e(x, y)ε+ f(x, y) (3.1)

The parameters α(x, y), β(x, y), and γ(x, y) are the elements of the Hessian matrix

H(x,y).

H(x, y) =

2α(x, y) β(x, y)

β(x, y) 2γ(x, y)

 (3.2)

We want to estimate α(x, y), β(x, y) and γ(x, y) from the observed values of b(x +

δ, y + ε). However, since the observed b(x + δ, y + ε) values are subject to noise, we

base our estimates on regression. Equation (3.1) is only a good approximation for

small values of δ and ε, so we perform the regression on a k × k grid centred at (0,
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0). To illustrate the calculation clearly, we use the following equation instead.

B(x, y) = α(x, y) ˜(X2) + β(x, y) ˜(XY ) + γ(x, y) ˜(Y 2)

+d(x, y)X̃ + e(x, y)Ỹ + f(x, y)

where B(x, y) is a vector of brightness for a local area where pixel (x, y) is the centre

of a k × k grid with k an odd number. We use X and Y to denote the matrices of

the horizontal and vertical coordinates of the k×k pixels. Without loss of generality,

the matrix of X and Y coordinates is centralized. For instance, based on a five by

five pixel block,

X =



−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2


,

and

Y =



−2 −2 −2 −2 −2

−1 −1 −1 −1 −1

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2


.

˜(X2) is used to represent a vector generated from X coordinate matrix with each

element squared. For example, using the five by five X above, ˜(X2) is a 25×1 vector

[4, ..., 4, 1, ..., 1, 0, ..., 0, 1, ...1, 4, ..., 4]T . Similarly,

˜(Y 2) = [4, 1, 0, 1, 4, ..., 4, 1, 0, 1, 4]T ,
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X̃ = [−2, ...,−2,−1, ...,−1, 0, ..., 0, 1, ...1, 2, ..., 2]T ,

Ỹ = [−2,−1, 0, 1, 2, ...,−2,−1, 0, 1, 2]T ,

and ˜(XY ) is the multiplication of X̃ and Ỹ element wise. All of the vectors are of

dimension 25× 1.

In essence, the problem here is a linear regression problem. To simplify the formula, we

use Z as a matrix of [ ˜(X2), ˜(XY ), ˜(Y 2), X̃, Ỹ ,1]. Then, the parameters θ, which

is the vector of parameters {α, β, γ, d, e, f}, can be calculated using the following

formula.

θ = (ZTZ)−1ZTB

where B(x, y) = b(x+ X̃, y + Ỹ ).

For each pixel (x, y), for a chosen odd number k, the Hessian H(x, y) is calculated

using the following kernel:

kernel = (ZTZ)−1ZT

This kernel only changes with kernel size k - the dimension of the original coordinate

matrices X and Y . For a fixed kernel size, the kernel is applied to every pixel.

3.1.2 Eigenvectors and Eigenvalues of Hessian Matrices

For a quadratic surface, the eigenvector which corresponds to the largest absolute

eigenvalue points to the direction that the brightness function has the sharpest change

in its value. The other eigenvector is orthogonal to the direction of sharpest change
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of the brightness.

Figure 3.1 shows an example of a pair of eigenvectors and eigenvalues of a Hessian

matrix of one point on the edge. Eigenvector 1 follows the edge and with a small

eigenvalue. Eigenvector 2 is orthogonal to the edge with a large eigenvalue. The

visualization of the eigenvectors and eigenvalues of all pixels is shown in Figure 3.7.

Figure 3.1: An example of eigenvectors weighted by eigenvalues of the Hessian matrix
at a single pixel on the edge. The two eigenvectors are orthogonal and one of them
is on the direction of the edge’s path.

The points on the edges typically have a feature of strong contrast compared to other

points that are not on the edges. Thus, the absolute value of one of the eigenvalues

of the points on the edge is expected to be higher than other points. As illustrated

in Figure 2.1, there are two sides of the edges - dark side and bright side. The point

with large positive second-order derivative is the point on the dark side of the edge.

Similarly, in our two dimensional image, the point with large positive eigenvalue of

Hessian matrix is the point on the dark side of the edge, and the point with large



17

negative eigenvalue of Hessian matrix is the point on the bright side of the edge, as

shown in Figure 3.2.

Figure 3.2: Illustration of the dark sides and the bright sides of the edges. The points
on the green curves are the points on the dark sides, and the points on the yellow
curves are the points on the bright sides. At the green points, the Hessian matrix
has a large positive eigenvector orthogonal to the edge, while at yellow points, the
Hessian matrix has a large negative eigenvalue orthogonal to the edge.

The points on the dark side of the edge will have the first eigenvectors v1 pointing

to the bright side and with positive eigenvalues λ1. And the points on the bright

side will be opposite to the points on the dark side. The Hessian matrices have large

(in absolute value) negative eigenvalues λ2 associated to the direction pointing to the

bright side of v2. Since we only want one edge, we choose the points on the edge on

the bright side. We will therefore look for points with large negative eigenvalues.
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3.1.3 Function for Linking The Points

Since the edge is a continuous line, identifying points where sharp brightness contrast

exists is the first step. The following step is to find the pairs of points on the edge

and connect them correctly to carve out the continuous curve. In this step, three

factors are included in the algorithm to detect and connect points: (1) the change

of brightness along the eigenvector; (2) the angle between the eigenvector and the

line between the two points (near orthogonality implies greater likelihood of this pair

being on the edge); (3) The distance between the two points (shorter distance implies

greater likelihood of this pair being on the edge). The idea here is that we only want

to join close points, and only if both have an eigenvector where brightness rapidly

changes, and if the line between those points is perpendicular to these eigenvectors.

As described above, a function that incorporates the above-mentioned three factors

is used to assign a goodness score to each pair of pixels to evaluate the chance of

each pair being part of the edges. With the goodness score, most of the noise can be

filtered out.

In the context of greyscale image processing, a positive eigenvalue represents the dark

side of the edge and a negative eigenvalue represents the bright side of the edge. The

pair of points of interest on the edge are on the same side of the edge, and thus

their corresponding eigenvalues should have the same signs, either positive or neg-

ative. With this property, the product of eigenvalues is introduced as one term in



19

the goodness score calculation. A segment between two points needs to satisfy three

conditions to be on the edge:

(1) The eigenvalues of two nearby points on the edge have large absolute values with

the same sign, we evaluate

contrast = λ2,p1λ2,p2

where p1, p2 are the coordinates of the pair of points and λ2,· is the second eigenvalue

of the Hessian matrix of point ·.

(2) The line segment between the two points is almost orthogonal to the corresponding

eigenvectors of the Hessian matrices, so we want to minimize the cosine of the angle:

cos(angle) = [|(p2 − p1)v2,p1|+ |(p1 − p2)v2,p2|]‖p2 − p1‖−
1
2

where v2,· is the second eigenvector of the Hessian matrix of point ·.

(3) The points are near each other, so we want to minimize:

distance = ‖p2 − p1‖

So, the score of each pair of points which measures the likelihood of whether it’s on

the edge or not is defined by

S = λ2,p1λ2,p2−w1[|(p2 − p1)v2,p1|+ |(p1 − p2)v2,p2|]‖p2 − p1‖−
1
2−w2‖p2 − p1‖

where w1, w2 are the tuning parameters used to control the weights of the angle and

the distance part. Based on some empirical experiments, we found that w1 = 2 and
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w2 = 0.2 gave good results for the images studied. This makes the three parts of the

formula similar in magnitude, so represents a balance between the terms. Then, we

link the pairs of points that can reach a high score.

3.2 Edge Detection for X-Ray Images and Other Pictures

In this section we apply the above method to a number of X-ray images, and to a

photograph, and we compare the results with state-of-the-art methods.

3.2.1 X-Ray Image Data

X-Ray images are widely used for diseases such as bone fractures, tumors, abnormal

masses, calcifications, dental problems, and osteoarthritis. In almost all cases, early

diagnosis and timely treatment are important and have a large impact on patients’

life quality.

However, diagnosing these conditions from X-Ray images is often challenging and

subjective. It would be useful to develop machine-learning techniques that would

take in all the data and learn the features needed for diagnosis. This is extremely

challenging because of low image quality.

Often the most crucial information in the image is the bone shape; allowing relevant

measurements to be taken from it. Therefore, the first stage of this project is to

identify the edges of the bones in the image. There are already methods for detecting
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edges in images: for example, the widely used Canny method. However, these meth-

ods are designed for use on photographs, which tend to show better image quality

and clearer edges.

In this section, the method from Section 3.1.3 is applied to hip joint X-ray images

shown in Figure 3.3. Extracting clear edges accurately from the X-ray images could

improve the measurement of the joint space size, and further brings about an im-

proved classification of the pre-operative X-Ray data.

Figure 3.3: Illustration of the extracted part of the X-Ray image. The part extracted
are the hip bone joints of the patients. Here we focus on the side with the risk of
osteoarthritis.

The default X-ray images we use are formatted as RGB color images although the

images shown are black and white. Prior to edge detection, a pre-processing step is

needed to convert the original RGB color images to greyscale images. We use the

default method from the OpenCV python library: [15]:

Y = 0.299×R + 0.587×G+ 0.114×B
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To show how the eigenvalues and eigenvectors reflect the curve of the edges clearly,

we visualize the data using heatmaps and vector plots in Figures 3.4 – 3.6.

Figure 3.4: Heatmaps for (a) the first eigenvalue λ1; (b)the second eigenvalue λ2;
and (c)the difference between the first and second eigenvalues λ1 − λ2. Larger values
correspond to brighter pixels.

Figure 3.4 shows a set of heatmaps that help to visualize the distribution of eigenval-

ues. The edges in the original X-ray images are the boundaries between bright areas

and dark areas, as discussed in the previous section. The use of these eigenvalues

captures the edge by detecting steep grey scale changes. Large positive eigenvalues

represent the dark side of the edge, shown as a bright pixel on the heatmap, while

large (in absolute value) negative eigenvalues represent the bright side of the edge,

shown as a dark pixel on the heat map.

Figure 3.4(a) is the heatmap of the first eigenvalue λ1, where eigenvalues are ordered

in decreasing order, from large positive eigenvalues to large negative eigenvalues. The

white curve marks a clear contour of the dark side of one edge with relatively large

positive eigenvalues. Figure 3.4(b), the heatmap of the second eigenvalue λ2, shows
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clear and continuous contours of the edges with large (far from 0) negative eigenval-

ues. Consistent with the discussion above, each detected edge shown on the heatmap

is made up with a black curve and a white curve representing the bright side and

the dark side of the edge, respectively. Figure 3.4(c) is a heatmap of the difference

between the first and the second eigenvalues λ1 − λ2. The edges are intermittent

because of the noise in the X-ray image. The bright side of the edge shows a clearer

pattern than the dark side because the noise is additive for X-ray images. The noise is

generated because something, other than bones, stops the X-ray occasionally. So, the

noise area is brighter than it should be and it influences the dark side of the edge but

not the bright side. Since the size of the joint space of the hip bones is an important

measurement to diagnose osteoarthritis, we consider the second eigenvalue λ2, which

shows clear patterns of the bright side of edges, as an appropriate statistic for edge

detection of the X-ray images.

As discussed in Section 2.2.1, some edge detection methods are based on the first

derivative. So, we also draw a heatmap for the gradient using first derivatives as a

comparison. The calculation of the gradient is the same as the Canny method. As

shown in Figure 3.5, the bright and dark curves at the edge areas are thicker than

the curves for second derivatives shown in Figure 3.4. Some parts of the curves are

darker than other parts. If we use the first derivative and apply a threshold on the

gradient as Canny does, it might lose the darker parts on the curves.
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Figure 3.5: Heatmap for the gradient using first derivative of brightness. Larger
values correspond to brighter pixels.

On the other hand, eigenvectors show the directions of the change of brightness. It

is another metric that can be used to detect the edges. We visualize the eigenvectors

in Figure 3.6.

Figure 3.6: Arrow plots for (a) the first eigenvectors v1 and (b) the second eigenvectors
v2. To observe them clearly, all of the eigenvectors are five times the original unit
length.
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From the vector plots in Figure 3.6, it can be observed that the vectors falling on the

edges follow a more aligned direction, while other vectors are more randomly oriented.

Figure 3.6(a) is the arrow plot of the first eigenvectors v1. As shown in the red inset

of Figure 3.6(a), there are consecutive eigenvectors, that are almost vertical, follow

a clear path along the edge. These features together indicate an edge. Similarly, in

Figure 3.6(b), which is the arrow plot of the second eigenvectors v2, the eigenvectors

along the edge are also almost vertical. These are also consistent with the theory

discussed in Section 3.1.2.

From the discussion above, eigenvalues and eigenvectors are both important for edge

detection. By integrating them together, we gain a visualization on both eigenvectors

and eigenvalues. By drawing arrow plots of weighted eigenvetors by the corresponding

eigenvalues, a synergy of both eigenvectors and eigenvalues can be observed in Figure

3.7.

Figure 3.7: Plots of the eigenvectors weighted by the corresponding eigenvalues. Part
(a) is for the first eigenvalue λ1 and eigenvectors v1; (b) is for the second eigenvalue
λ2 and eigenvectors v2.
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Figure 3.7 shows the arrow plots of weighted eigenvectors. Figure 3.7(a) is the vector

plot of the first eigenvectors weighted by the absolute value of the corresponding

eigenvalues. There are two curves with clear paths and they are the dark sides of the

edges of the original image. Similarly, Figure 3.7(b) is the vector plot of the second

eigenvectors weighted by the absolute value of the corresponding eigenvalues. The

curves in Figure 3.7(b) are the boundaries of the bright sides of the edges in the

original image.

Same as the heatmap, we also draw the vector plot for the first derivatives as a

comparison. As shown in Figure 3.8, we plot the vectors using the first derivatives

on x and y directions
[
db
dx
, db
dy

]
. The long vector means a strong contrast around that

pixel. Though the long vertical vectors form clear patterns of the edges, there are

some vectors pointing to random directions around the edge area. And some long

vectors are not on the edges. So, using these vectors to detect the edge may keep

more noise than using eigenvectors of Hessian matrices.

Figure 3.8: Plots of the vectors formed by first derivatives on x and y directions.
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Since the eigenvectors on the edges are on the directions of sharp birghtness changes,

that are orthogonal to the direction of the edge, we draw arrow plots using the or-

thogonal directions v·orthogonal = Jv· of eigenvectors to further illustrate the edges,

where J =

 0 1

−1 0

 is used to rotate a vector to its orthogonal direction.

Figure 3.9(a) is the vector plot of the orthogonal vectors of the first eigenvectors

weighted by the absolute value of the first eigenvalues. The vectors are following

clear paths of the dark sides of the edges of the original image. Similarly, Figure

3.9(b) is the vector plot of the orthogonal vectors of the second eigenvectors weighted

by the absolute value of the second eigenvalues. The curves in Figure 3.9(b) show the

boundaries of the bright sides of the edges.

Figure 3.9: Plots of the orthogonal vectors of eigenvectors weighted by the corre-
sponding eigenvalues. Part (a) is for the first eigenvalues λ1 and eigenvectors v1; (b)
is for the second eigenvalues λ2 and eigenvectors v2.
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Compared with the first eigenvalue/eigenvector, the second eigenvalue/eigenvetor is

more capable of capturing the joint space. Thus, we use the second eigenvalues to

calculate the goodness scores in this chapter and use both the second eigenvectors

and eigenvalues to trace the path of the edge in Chapter 4.

3.2.2 Results of Edge Detection for X-Ray Images

The X-ray images used in this study are 128 pixels × 128 pixels in size. The kernel

sizes of 5 × 5, 7 × 7, 9 × 9, and 11 × 11 are reasonable sizes. Figure 3.10 shows a

comparison of the results using these kernel sizes.

Figure 3.10: Edge detection results with kernel sizes of 5× 5, 7× 7, 9× 9, and 11× 11
from the top to the bottom and de-noised by the numbers above each column.
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This figure is a set of results with kernel sizes of 5 × 5, 7 × 7, 9 × 9, and 11 × 11.

Each column uses the same threshold of the goodness score S by assigning value 1 to

the points with S larger than the threshold and 0 otherwise. All of them detect clear

edges as expected .

As shown in Figure 3.10, smaller kernel size keeps more pairs of points that are con-

sidered to be on an edge, so it connects the points better and forms more continuous

edges. Take the first column of Figure 3.10 as an example, the larger the kernel

size, the less likely two points are detected as a pair of points that form the edge.

So, the edges detected under kernel size of 11 × 11 have less noise compared to ker-

nel size 5 × 5. Larger kernel size helps remove the noise well, but larger kernel size

also causes the discreteness of the edges, which affects the precise measurement of

joint space. There is a trade-off between edge continuity and the noise level. For

instance, the above figure shows that the kernel size of 9 × 9 plots the edges more

continuously, and maintains the clearness of the edges for the 128 by 128 pixels X-

ray image. Kernel size 11×11 removes too many points and makes the edges discrete.

The threshold of goodness score is another important metric of edge detection. Lower

threshold keeps more pairs of points and noise. Higher threshold filters more points

forming a less continuous edge. For example, for kernel size 9× 9 in Figure 3.10, the

results using threshold -0.25 and -0.20 have more noise than using -0.10. Threshold

value is another trade-off between edge continuity and noise level.
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For this set of 128 by 128 pixels X-ray images, the results with kernel size 9× 9 and

threshold value -0.10 outperform others, and is considered to be a sweet spot. So, we

compare our method under this setting with two popular methods, Canny and HED,

in Figure 3.11.
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Figure 3.11: A comparison between the method of this chapter and two current state-
of-the-art methods: Canny and HED. The first column shows the original images,
and the middle two columns are results using Canny and HED respectively. The last
column shows the edge detection results using our method.
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We test our method on different grades of osteoarthritis from Grade 0 to Grade 4. The

first column of Figure 3.11 shows the original X-ray images. The corresponding results

using Canny 1 and HED2 are shown in the second and third columns, respectively.

The results obtained with our method discussed in this chapter are shown in the last

column. The method developed by this work removes more noise and keeps more

complete edges than the Canny. When compared with HED, this new method keeps

more information about the edges and is less time-consuming. It doesn’t need a

pre-trained deep learning model.

1The Canny method is based on Canny Edge Detection Tutorial by Bill Green, 2002.
The source code is from the Python package - OpenCV https : //opencv − python −
tutroals.readthedocs.io/en/latest/pytutorials/pyimgproc/pycanny/pycanny.html.

2The source code of HED is from https : //github.com/tensorpack/tensorpack/tree/master/examples/HED.
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3.2.3 Edge Detection for Other Images

For Whole X-Ray Images

Though doctors need to focus on only one part of the X-ray image to diagnose the

diseases, it is worthwhile to try this method on the whole X-ray images. Figure 3.12

is a comparison of the results on a complete X-ray image. The top left of Figure 3.12

is the original image, top right is the result using Canny edge detector, bottom left is

the result under HED, and bottom right is the result of our method under the same

setting - kernel size 9 × 9 and threshold number -0.10. All of these three methods

show most of the edges clearly. Canny keeps more information but the edges are

not connected well. HED removes the noise perfectly and draws the shape of the

big bones clearly. But HED also removes some important parts of the bones, such

as the relatively small joint part. HED generates several side outputs of the hidden

layers and fuses them. Some of the side output misses the small joint parts, and that

influences the fused output. In contrast, our method keeps the edges of the small

part completely and most of the edges are continuous.
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Figure 3.12: Illustration of an application of our method on a whole X-ray image.
Top-left is the original X-ray image, and top-right is the result using Canny edge
detector. Bottom-left is the result under HED, and bottom-right is our result.

For RGB Pictures

In addition to the above X-ray image analysis, we also try our method on some reg-

ular colour photographs. As illustrated in Figure 3.13, an image of a leaf is used

as an example for edge detection in regular colour photographs. The leaf veins can
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be detected clearly under the same tuning parameters as used for the X-ray images,

as shown in part (b). In the case that main veins are of more interest, simply by

changing the threshold numbers we get the result as shown in part (c) which mostly

identifies just the main veins of the leaf. And this result shows that our method works

well when two edges cross.

Figure 3.13: An application of our method on a photograph of a leaf. (b) Result using
a relatively lower threshold number. (c) Result using a higher threshold number.

It is quite straight-forward to further develop our method to three channel RGB

images by either adding the goodness scores from three channels or detecting edges

using each channel and then overlaying the pictures afterwards. Such development

will be left as possible future work.



Chapter 4

Edge Detection by Tracing Paths

As shown in the previous chapter, graphical data, especially medical X-ray images,

contains a large amount of intrinsic noise. From the work shown in Chapter 3, it

is clear that the quality of edge detection was greatly compromised by noise. By

detecting points that are of interest and linking them to generate edges, most of the

noise could be excluded, however the detected edges consist of intermittent segments,

between points with integer coordinates, rather than smooth and consecutive lines.

Figure 4.1 is a zoomed-in plot from the method in Chapter 3.

Figure 4.1: A zoomed in plot from the method in Chapter 3. The edges are formed
by lines connecting pair of points. The edges detected are not smooth and discrete
at some points.

36
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In this chapter, we want to solve the problem of discreteness and generate smooth

curves of the edges under the real coordinates (non-integer coordinates) in our X-ray

images. As discussed in Section 3.2.1, the orthogonal vector of the second eigenvector

of the Hessian matrix follows the direction of the edge perfectly. And the corre-

sponding eigenvalue has a relatively large absolute value. Based on these features,

we develop a method that generates a continuous and smooth curve of the edge by

tracing points along the orthogonal vector of the second eigenvectors progressively

from a starting point.

4.1 A Rotation of the Hessian Matrix

Figure 3.9 visualized a set of vector plots using the orthogonal vectors of the eigen-

vectores and weighted by the absolute value of corresponding eigenvalues. Figure

3.9(b) shows a clear pattern on the bright side of the edges. The weighted orthogonal

vector of the second eigenvector v2orthogonal = Jv2 traces the edge perfectly. So, the

idea of this method is to trace the bright side of the edge along the direction of the

orthogonal vector v2orthogonal on the edge. Since the two eigenvectors are orthogonal,

v2orthogonal is v1, so, in order to generalize our method, we create a new matrix with

the eigenvectors reversed - K matrix.
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K(x, y) = −JH(x, y)J

= −

0 −1

1 0


 ∂2b

∂x2
∂2b
∂x∂y

∂2b
∂y∂x

∂2b
∂y2


 0 1

−1 0



= −

− ∂2b
∂y∂x

− ∂2b
∂y2

∂2b
∂x2

∂2b
∂x∂y


 0 1

−1 0



=

− ∂2b
∂y2

∂2b
∂y∂x

∂2b
∂x∂y

− ∂2b
∂x2



Suppose Hessian matrix H has spectral decomposition: H = v1λ1v1
T + v2λ2v2

T ,

then

K(x, y) = −JH(x, y)J

= −Jv1λ1v1TJ − Jv2λ2v2TJ

= −v1orthogonalλ1v1orthogonal
T − v2orthogonalλ2v2orthogonal

T

= −(v2λ1v2
T + v1λ2v1

T )

It is proved above that matrices K and H have the same pair of eigenvectors, but

the eigenvalues are negated and switched. The eigenvector of the K matrix which

is parallel to the tangent vector of the edge curve is associated with a large positive

eigenvalue (thus will be termed as the first eigenvector vK1 from now on) and the

other eigenvector vK2 is associated with a smaller eigenvalue λK2.
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4.2 Tracing Edges by Local Greedy Search

As discussed in Section 4.1, the first eigenvalues and eigenvectors of K are more

favorable to our edge detector. To identify the edges accurately, this edge detector

takes both of the eigenvalues and eigenvectors into account. The following steps were

taken progressively.

1. Define a starting point S0 of the edge.

2. Set a window size w and step size n.

3. From the starting point, perform a local greedy search through all the points within

the window at left side and identify the point (xd, yd) maximizing the first eigenvalue

λK1 of K.

4. Move along the direction of the corresponding first eigenvector vK1, which has

positive inner product with the previous direction, by step size n to reach the new

starting point S0.

5. Repeat steps 3 and 4 till it comes to the boundary of the image or back to the

initial point on the edge.

6. Repeat steps 3 to 5 for the right side window of the original starting point. Here,

we need to change the first direction to the opposite of the first eigenvector −vK1.

7. Link the points found in steps 3 to 6.
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Figure 4.2: Illustration of how we trace the edge by maximizing the first eigenvalue
within an window with size w.

As shown in Figure 4.2, this method has a window size w and a step size n. Within

a w × w window at the left (or right) side of the starting point, this method selects

the point with the largest first eigenvalue λK1, then moves in the direction that has

positive inner product with the previous direction, vK1, or −vK1, by step size n to

locate the new starting point. By iterating steps 3 to 6, the points on the edge will

be detected. Then, link the points together to trace the edge out. Different from

the method in Chapter 3, we now allow our edge tracing to pass through points with

non-integer coordinates.

4.3 Identify Starting Points Automatically

In this edge detection algorithm, a critical part is setting the starting points. Instead

of selecting it manually, we want to develop a method to detect the starting points

automatically.
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4.3.1 Algorithm for Starting Points Selection

First of all, we need a range of candidate starting points. As shown in Figure 4.3,

we use the points on the vertical dotted line in the middle of the zoomed in X-ray

image as the candidate starting points. We use the method from Section 4.2 to trace

a small segment of the edge path from each candidate starting point, and assess all

the edge segments based on the extent to which the direction of the edge segment at

point (x,y) aligns with the largest eigenvector of K(x,y), and the magnitude of the

corresponding eigenvalue. We demonstrate this method in Figure 4.3.

Figure 4.3: The candidate starting points of the zoomed-in hip joint part of the X-ray
image. And the windows to calculate the objective function.

We use the function:

L(x, y, t) = v(t)TK(x(t), y(t))v(t)

where v is the vector [∆x,∆y]T from the starting point (x0, y0) to the selected point

(xs, ys) within the window and t is the coordinate of the point projected on vector
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[∆x,∆y]. So, (x, y) is a function of t and

v(t) = [∆x,∆y]T = [x′(t), y′(t)]T .

If v(t) follows the edge, the contrast along v(t) will be large and L(x(t), y(t), t) of

each point on the edge will be large. So, we maximize the objective function

Z =

∫ u2

u1

L(x(t), y(t), t)dt

over all the candidates of starting points. Here, u1 and u2 are the coordinates of

(xs, ys) on the vector [∆x,∆y] of the left side and right side windows of the starting

point. The objective function Z(xs, ys) measures how well the curve follows an edge.

We select starting points (xs, ys) which are local maxima of Z, and which correspond

to large values of Z. As there may be multiple edges in the image, we may select

multiple starting points.

To calculate the integral in the objective function:

vTK(x, y)v =

[
∆x ∆y

]− ∂2b
∂y2

∂2b
∂y∂x

∂2b
∂x∂y

− ∂2b
∂x2


∆x

∆y



=

[
−∆x ∂2b

∂y2
+ ∆y ∂2b

∂x∂y
∆x ∂2b

∂y∂x
−∆y ∂2b

∂x2

]∆x

∆y


= −∆x2

∂2b

∂y2
+ 2∆x∆y

∂2b

∂y∂x
−∆y2

∂2b

∂x2



43

Since H(x, y) =

 ∂2b
∂x2

∂2b
∂x∂y

∂2b
∂y∂x

∂2b
∂y2

 =

2α(x, y) β(x, y)

β(x, y) 2γ(x, y)

, the above equation can be

written as

vTK(x, y)v = −2γ(x, y)∆x2 + 2β(x, y)∆x∆y − 2α(x, y)∆y2.

We evaluate the integral numerically as a sum using 20 internal points (10 for each

side). Because we are only comparing the integral at different points, this is suffi-

ciently accurate for our purposes.

4.3.2 Interpolation of K Matrix

To calculate the integral, we need K matrices with real coordinates, but the K ma-

trices calculated in Section 4.1 are only for the points with integer coordinates. So,

we interpolate the K matrix.

Since K(x, y) = −JH(x, y)J , we can interpolate the Hessian matrix first and then

left multiply −J and right multiply J . As illustrated in Figure 4.4, we extract one

grid of the image with four known Hessian matrices, H1, H2, H3 and H4, at four cor-

ners. And the Hessian matrix of point (x, y) in the square is the Hessian matrix we

want to calculate.
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Figure 4.4: Illustration for interpolating the Hessian matrix.

We use the following function to interpolate the Hessian matrix:

H(x,y) = (1− x)(1− y)H1 + x(1− y)H2 + (1− x)yH3 + xyH4

The closer the point to one of the corners, the higher the weight of the Hessian matrix

of that corner. So, we use the multiplication of the distances between the point and

the corner on the opposite direction on the vertical and horizontal coordinates as the

weight to interpolate the Hessian matrix. For example, if the point (x, y) is close to

corner (0, 0), (1−x) and (1− y) will be relatively large, H1 will have a larger weight.

This way, we calculate the Hessian matrix and K matrix for every point on the image

and the objective function in Section 4.3.1.

4.4 Tracing The Edge Curve on Hip Joint X-Ray Images

Figure 4.5 demonstrates our automatic method for identifying starting points. The

left side of Figure 4.5 is an X-ray image which shows the candidate starting points.

The line chart on the right side of Figure 4.5 shows the corresponding values of the

objective function Z for the candidate starting points. Since this method aims to find
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the points that maximize the objective function Z, Figure 4.5 shows the peaks of the

line chart to illustrate the points that meet the requirement. For this specific X-ray

image, there are three peaks and their corresponding pixel positions in matrix style

coordinates, where the first coordinate is the row (starting at the top) and the second

is the column (starting at the left), are (38, 60), (66, 60), and (87, 60) on the image,

as indicated by the three horizontal lines in Figure 4.5. Two of the candidate starting

points, namely (38,60) and (66,60), have sharp peaks of Z. These two starting points

are the points we want to detect. The other peak is more broad and corresponds to

a weak edge. For this research, where only the strong edges of the joint bones are

needed, the broad peak will be ruled out. But in other cases, we may be interested

in finding these weak edges.

Figure 4.5: Illustration of detecting the starting points using our algorithm. The hor-
izontal coordinate of the line chart is the value of Z and the vertical coordinate is the
position of the pixel. The three local peaks of Z are connected to the corresponding
candidate starting points. The sharp peaks (green lines) are the ones we are looking
for. The broader peak (orange line) is not of interest in this image.
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The results of applying our method from Section 4.2 with these starting points and

window size w=1 and step sizes n=5 and n=7 are shown in Figure 4.6.

Figure 4.6: Results with window size 1 for starting points (38, 60) (left) and (66,
60) (right). Edges detected are shown as green and red curves in the superimposed
images.

When step size is 5, both the upper edge and the lower edge detected form loops

along the curve. Step size 7 makes the upper edge detected clear and smooth. But

the lower edge with step size 7 also forms loops.

If the window size is too small, it might not include the area with sharp brightness

change. To continue the tracing process, the detector will find a point not exactly on

the edge and deviate using the eigenvector of that point which will point in a ran-

dom direction. After this, it may be further from the edge and will move in random

directions until it returns to the edge, finds another edge, or reaches the boundary of

the image. To prevent this problem, we increase the window size to include enough
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pixels in our window. Reducing the step size also reduces the risk of leaving the edge.

Figure 4.7 shows the results with step size n=1 and window size w=9 and w=11,

using the same starting points, (38,60) and (66,60).

Figure 4.7: Results for step size n = 1 for starting points (38, 60) (left) and (66,
60) (right). Edges detected are shown as green and red curves in the superimposed
images.

The edges shown in Figure 4.7 are slightly jagged, but follow the true edge much more

closely. The edges detected under window size 11 are slightly smoother than window

size 9. Increasing the step size makes the detected edges less jagged. Figures 4.8 and

4.9 show results using larger step sizes.
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Figure 4.8: Results of upper edges with window sizes 9 and 11, and step sizes 5, 7
and 9.

Figure 4.8 illustrates the results from starting point (38, 60). The differences between

these results are tiny, but results with window size 11 are slightly smoother.

Figure 4.9: Results of lower edges with window sizes 9 and 11, and step sizes 5, 7 and
9.
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Figure 4.9 illustrates the results from starting point (66, 60). The edge detected using

window size 11 and step size 7 slightly outperforms other settings. All of the edges

detected in Figures 4.8 and 4.9 are smooth and continuous. Since window size 11

with step size 7 generates slightly smoother edge curves, we use this setting for other

X-ray images.
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Figure 4.10: Illustration of our results compared with Canny and HED algorithms.
The first column are the original X-ray images. The second column are the results
of the Canny edge detector. The third to fifth columns are three different outputs of
HED. The final column is our method.
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Figure 4.10 is a comparison between our method and the state-of-the-art methods,

Canny [2] and HED [25]. We compare the methods on two images for each grade of

osteoarthritis, from 0 to 4. For most of the images, Canny could not detect the whole

edge and also included some noise. HED generates five side outputs with the hidden

layers and one fused output of its deep learning network. We compare the three clear-

est outputs from the six HED results. HED successfully detected the whole edge, but

also included a lot of noise. Additionally, HED is computationally expensive. Our

method clearly detects the real edges as a thin curve and removes the noise of the

original X-ray images. It outperforms Canny and HED.



Chapter 5

Conclusion And Future Work

Conclusion

For osteoarthritis diagnosis, joint space is one of the most critical metrics, typically

examined by X-ray imaging. To accelerate and automate the joint space measurement

in X-ray imaging analysis, a precise and accurate joint edge detection is imperative.

Motivated by this need, we developed two statistical methods for edge detection in

X-ray images. Both of the methods are based on the Hessian matrices of the bright-

ness function, and their eigenvectors and eigenvalues.

The first method traverses all pairs of pixels in the X-ray images to calculate the good-

ness scores, which reflects the possibility of this pair of pixels falling on the edges.

As shown in Chapter 3, the first method outperforms the state-of-the-art edge de-

tection approach on X-ray images. To further improve the quality of edge detection,

the second method presented in Chapter 4 showed improved accuracy and precision

with thinner and more continuous edges detected. The second method performs edge

detection by tracing the progression of edges from certain starting points, in this

way, the edges detected are clearer, thinner, and more continuous curves. For edge

detection for the hip joint, the second method generates better results than the first

52
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method.

Future Work

On the basis of this thesis, there are three aspects of future works that would be of

great value to explore. The first is to develop an algorithm to detect the edges for more

complex images using the second method. As discussed above, the second method is

capable of generating thinner, clearer, and more continuous contour in edge detection

when it is performed on images containing limited distracting features, e.g. cropped

images containing only the hip joint without other bones or organs. However, for the

full X-ray images of the whole abdomen, the fitted edges deviate from the long real

edges which generates some noise as shown in Figure 5.1. This is because our method

works by locally tracing the curve, which means that when the current point is not

near an edge, it still proceeds in some direction, producing a noisy path. With more

edges or edge like features in the image, the edge detection quality is compromised.

Therefore, future work aimed at tackling this challenge will be of interest. A natural

approach to this is to remove detected edge segments which do not correspond to

smooth edges with large eigenvalues of the Hessian in the orthogonal direction.
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Figure 5.1: Illustration of directly using the algorithm in Chapter 4 to a whole X-ray
image. The image on the left is the original image and the image on the right is the
superimposed edge detection result.

Besides, developing some metrics for comparing methods for edge detectors especially

for edges on medical images is an important future direction. For edge detection

results, the accuracy is hard to judge. Subjectivity is not avoidable. Currently, the

most widely used method to compare the accuracy of edge detectors is to use the

standard database BSDS500, which has 500 images with manually annotated ground

truth contours, and three standard measures ODS, OIS, and AP [1] [19] [25]. However,

the manually annotated ground truth itself is subjective. An optimization on a loss

function regarding the brightness on the edge is a reasonable start. Once we develop

a robust method to calculate the accuracy, we can automate the tuning process using

a statistical framework, including the kernel size, window size, step size and other

tuning parameters, based on the accuracy index. Then, we can pack the computer

code and apply our method on new classes of images easily. This is a big project that

is worth a lot of efforts.
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Another future direction is to apply our edge-detection method to automate os-

teoarthritis diagnosis. This requires an interdisciplinary effort from both orthopaedics

for professional medical input as well as training data, and a fine-tuned supervised

learning model to carry out the automatic diagnosis based on the edges detected using

this method.
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