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Abstract

The longline halibut survey is a joint project between the Atlantic Halibut Council

(AHC) and Fisheries and Oceans Canada (DFO). This annual survey is used to

monitor the status of Atlantic Halibut (Hippoglossus hippoglossus) on the Scotian

Shelf and southern Grand Banks (NAFO Divisions 3NOPs4VWX5Zc). The purpose

of this thesis is to develop novel statistical analyses of Atlantic Halibut longline survey

data for more accurate and precise indices of relative abundance. Reproduction of the

survey indices has been completed using hook occupancy data collected between 2017

and 2019 and current hook competition model. In order to reflect spatial patterns

in these data, a spatial random field is introduced into the model. Covariates for

depth, temperature and area strata (along with their potential interactions) are also

introduced as these may affect the survey indices. Model selection has been performed

and the selected spatial model is then used to estimate the relative abundance indices

for target and non-target species at each survey station for 2017 to 2019. Finally,

the estimated indices are aggregated over space using three different approaches to

compare the estimated changes in survey indices with those obtained with the non-

spatial model currently being used by DFO. The results indicate that the relative

abundance indices for halibut are higher on shallow banks in southwest Nova Scotia

(NAFO 4X and 4W) and along the shelf edge throughout the management unit.
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Chapter 1

Introduction

We introduce the annual Atlantic Halibut longline survey and describe the survey

data in the first two sections of this chapter. We then discuss the models and R

packages that are currently used to obtain the survey indices.

1.1 Background

Figure 1.1: Photograph of an Atlantic Halibut [2].

Atlantic Halibut is an economically important demersal flatfish species that is dis-

tributed widely throughout the North Atlantic Ocean, as well as being found in parts

of the Arctic Ocean. It is commonly found in deep-water channels running between

banks and along the edge of the continental shelf. The depth distribution of Atlantic

1
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Halibut ranges from less than 50 m to over 1000 m but they are most abundant in

waters from 200 m to 500 m deep [1]. There are two Atlantic Halibut management

units in Canadian waters, namely the Scotian Shelf and southern Grand Banks (North

Atlantic Fisheries Organization [NAFO] Divisions 3NOPs4VWX5Zc), and the Gulf of

St. Lawrence (4RST). This analysis will focus on the 3NOPs4VWX5Zc stock (Figure

1.2).

Together, the AHC and DFO have used an annual longline survey to monitor

Atlantic Halibut exploitable biomass since 1998. Longline fishing is a commercial

fishing technique that enables massive fish yields and the lenght of the longline for

halibut survey is approximately 5 km. Longlines can be placed at the sea surface

(pelagic longlines) or at the seafloor (demersal longlines) and consist of a very long

mainline. Baited hooks, used to lure and capture target species, are attached to

the mainline by branchlines. The survey is completed by commercial fishermen with

at-sea on board observers collecting data. The survey was originally stratified into

areas of Low, Medium and High catch based on data from commercial fishing logs

(1995-1997) [11][29]. Stratified estimates were used until the assessment by Trzcinski

et al.[26]. In 2009, a standardized catch rate, calculated from a negative binomial

(NB) generalized linear model (GLM), replaced the stratified estimate of mean weight

per standard longline set [11][26]. Stratified random design reduces the variance in

the mean of the estimate, therefore it was decided to transition to a stratified random

survey design with more standardized protocols and expanded geographic coverage

in 2016.

The simple stratified mean adjusted catch rate and the NB GLM both assume that

halibut are the only species being caught by the longline hooks without accounting

for other species competing for hooks. In addition, these methods implicitly assume

that all hooks that do not have halibut would still have been able to catch halibut

had there been more of these fish in the area. However, some number of hooks will be

occupied by species other than halibut and other hooks will be empty with bait still

attached or missing. Catch Per Unit Effort (CPUE) ignores the effects of competition
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for baited hooks within and between species and the problem of gear saturation [13].

Competition between target and non-target fish for the same hooks may result in

gear saturation when the local population density of the target or non-target species

exceeds the number of hooks which results in decreased efficiency of fishing effort [5].

It will also lead to bias in the abundance trends estimated using CPUE.

Target and non-target species will respond differently to temperature and depth

and this may impact the catchability of longline gear. Over the scale of this large

management unit (app 2000km long) temperature and depth will be associated with

changes in fish assemblages thereby influencing hook competition. Temperature is

also linked to the activity and feeding of ectotherms - which includes fish, amphibians

and reptiles whose regulation of body temperature depends on external sources. In

summary, there can be spatial and temporal variability in the abundance of target

and non-target species and their catchability that could bias an index of abundance

that ignores these sources of variability.

Stephen Smith [24] recommended using a multinomial model to account for the

number of halibut caught, the number of hooks occupied by other species as well as

empty-baited and empty-unbaited hooks and developed a package (llsurv) using the

software R [21][23]. The llsurv package uses explicit formulae to compute maximum

likelihood estimates of the multinomial model parameters in order to estimate relative

abundance.

Here, we reproduce llsurv survey indices using a general purpose optimizer, so that

the estimation method will be easier to modify later on. We then propose a novel

model framework using Template Model Builder (TMB) [19] for model implementa-

tion, and ggplot2 [28] for data visualization from within the R statistical environment

[21]. In this new framework, we can include covariates such as depth and temperature.

We also include a spatial random field in the model, evaluate the effectiveness of the

stratification scheme, and test an alternative and more flexible method for reducing

variance in estimates of abundance.
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1.2 Data Description

The stratified random survey area is divided into 5 (4X5YZ, 4W, 4V, 3P, 3NO) area

strata each with 3 (30-130 m, 131-250 m, 251-750 m) depth zones. Depth strata are

selected based on exploratory analyses of catch rates by depth using fixed-stations

and commercial index sets from the Atlantic Halibut survey. The depth stratum

boundaries (30 - 750 m) were chosen because they contained most of the fishing

sets and inferred Atlantic Halibut habitat. The depth stratification can also provide

a proxy for temperature and some bottom habitat information [10]. For example,

Smith [24] found that there is a strong correlation between depth and temperature

for depths deeper than 280 m for sets in NAFO areas 4VWX. It is worthwhile to

mention that the temperature for each longline set is reasonably constant during the

fishing but depth can be variable for sets along a slope. In total there are 15 area-

depth strata. Stations are randomly assigned to strata with the number of stations

allocated proportionally by the size of each stratum. A total of 150 stations were

allocated in 2017 and 153 stations were allocated in 2018, while in 2019 additional

stations were added to strata with only 2 stations in an effort to reduce the probability

of unfished strata or strata with only one station fished.

Figure 1.2: The survey area for the 3NOPs4VWX5Zc Atlantic Halibut stock (with
five area strata: 4X5YZ, 4W, 4V, 3P and 3NO).
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The Atlantic Halibut longline survey with a stratified random design generated

the dataset considered here. Trained observers monitored the longline and recorded

the conditions of a subset 300 hooks as they were retrieved. Specifically, each long-

line placed at the seafloor contained 1000 baited hooks and the hook conditions

of 10 samples of 30 hooks were recorded for estimating hook occupancy. In addi-

tion, there exists a protocol to refish a station if the corresponding set is hauled

back with no baited hooks. For each set we obtain counts of empty-unbaited hooks,

empty-baited hooks, broken hooks, hooks with target catch and hooks with non-target

catch. The corresponding strata information and soak time for each set were also in-

cluded along with other essential information (Table 1.1 and Figures 1.3 to 1.5). For

2017 and 2018, model estimates of bottom temperature at time and location were

obtained from http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_

001_030 [14] by Dr. Zeliang Wang at BIO. The 2019 model estimates were not avail-

able for inclusion in this thesis. Issues that arose during the 2019 survey resulted in

fewer stations being successfully completed (Table 1.2 and Figure 1.5).
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STATION STRATUM ID SOAKMINP3P1 P1LONG
501 H11 584 -65.00200
502 H11 727 -64.71117
503 H11 628 -65.07950
504 H11 370 -64.78967
505 H11 360 -65.17850

P1LAT P1DEPTH EMPTY UNBAITED EMPTY BAITED
45.45167 38 229 32
45.22783 46 245 15
45.14717 72 159 103
43.77800 32 37 257
43.34200 148 93 202

MISS BROKEN HALIBUT OTHER SPECIES HOOKS SAMPLED
1 0 38 300
3 0 37 300
1 6 31 300
0 1 5 300
0 5 0 300

STRATUM ID ALT MED TEMP GLORYS TEMP
1 11.37 7.18
1 6.72 6.72
1 10.13 NaN
1 3.25 4.34
1 6.24 6.24

Table 1.1: Partial longline survey data for 2017. STATION indicates the survey
station number. STRATUM ID and STRATUM ID ALT both indicate the corre-
sponding stratum id (H11: area strata 4X5YZ and depth strata 30-130 m) for the
survey station. SOAKMINP3P1, P1LONG and P1LAT represent the soak time and
recorded latitude and longitude coordinate for the starting point of each longline set.
Columns EMPTY UNBAITED, EMPTY BAITED, MISS BROKEN, HALIBUT and
OTHER SPECIES are the count of hooks without bait, with bait, missing or broken,
with halibut and other species at retrieval. HOOKS SAMPLED is the number of
hooks sampled from the longline set. MED TEMP is the average winter bottom tem-
perature and GLORYS TEMP contains temperature data obtained from Copernicus
Marine Environment Monitoring Service (CMEMS) of the European Union (EU).
NaN indicates a missing temperature.
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Figure 1.3: Locations of the 150 survey stations in 2017. Yellow points are stations
523 and 525 where only 30 hooks were sampled.

Figure 1.4: Locations of the 153 survey stations in 2018.
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Figure 1.5: Locations of the 153 survey stations in 2019. Red points are the success-
fully completed stations and yellow points are the uncompleted stations due to issues
that arose during the 2019 survey.

Stratum ID
Allocation of

Survey Stations
for 2017

Allocation of
Survey Stations

for 2018

Allocation of
Survey Stations

for 2019
H11 16 (16) 16 (16) 16 (16)
H12 11 (11) 11 (11) 11 (11)
H13 2 (2) 3 (3) 3 (3)
H21 15 (15) 15 (15) 15 (15)
H22 7 (7) 7 (7) 7 (7)
H23 2 (2) 3 (3) 3 (3)
H31 11 (11) 11 (11) 11 (11)
H32 5 (5) 5 (5) 5 (5)
H33 8 (8) 8 (8) 8 (8)
H41 13 (13) 13 (13) 10 (13)
H42 8 (8) 8 (8) 5 (8)
H43 8 (8) 8 (8) 4 (8)
H51 39 (39) 39 (39) 25 (39)
H52 2 (2) 3 (3) 2 (3)
H53 3 (3) 3 (3) 2 (3)

Total Number of
Survey Stations

150 (150) 153 (153) 127 (153)

Table 1.2: The planned (in brackets) and completed allocation of survey stations per
stratum and the total number of survey stations.
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For stations 523 and 525 (with stratum id H12) in 2017 (Figure 1.3), the observer

only recorded data for 30 hooks which was against observer protocol. Since there are

1000 hooks deployed per line and 10 samples of 30 hooks (300 hooks per station) need

to be used to estimate hook occupancy, these two stations were data deficient. There

are 11 stations in strata H12 (area 4X5YZ with depth 131-250 m) which suggests

that removing these two incompletely observed stations will not have a great effect

on subsequent analyses (Table 1.2). Therefore, stations 523 and 525 will be dropped

from the 2017 analyses.

The missing depths for stations 570, 572 and 573 in 2018 and stations 570, 571,

572, 573 and 574 in 2019 were replaced by the depth estimated using publicly available

bathymetric data from the United States National Atmospheric and Oceanographic

Administration (NOAA). Depths were extracted from the bathymetric layer using the

function getNOAA.bathy from the R package marmap [20] and the coordinate bounds

of the survey area were used to import bathymetric data from the NOAA server. Then

the depth of the area of interest was obtained from the imported bathymetric data

using the get.depth function from the R package marmap. The bathymetric method

is used because it is accepted as the best available measurement when depth is not

directly measured or recorded during setting of the longline by the onboard observer.

62% of the absolute differences between survey depth and estimated depth are within

10 meters (Figure 1.6 through Figure 1.8). Stations with large depth variation (> |10|

m) are in areas where there are substantial depth slopes and these rapid depth changes

are not well described by the bathymetric models (Figure 1.9 through Figure 1.11).



10

Figure 1.6: Absolute differences (m) between survey depth and depth obtained using
the bathymetric method for 2017.

Figure 1.7: Absolute differences (m) between survey depth and depth obtained using
the bathymetric method for 2018 without stations 570, 572 and 573.
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Figure 1.8: Absolute differences (m) between survey depth and depth obtained using
the bathymetric method for 2019 without stations 570, 571, 572, 573 and 574.

Figure 1.9: Locations of the survey stations with indication of absolute difference
between survey depth and bathymetric depth for 2017. Red points are stations with
absolute difference greater than 10 m.
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Figure 1.10: Locations of the survey stations with indication of absolute difference
between survey depth and bathymetric depth for 2018. Red points are stations with
absolute difference greater than 10 m.

Figure 1.11: Locations of the survey stations with indication of absolute difference
between survey depth and bathymetric depth for 2019. Red points are stations with
absolute difference greater than 10 m.
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From 2017 to 2019, 70% to 90% of the sets in the longline survey have tempera-

ture data derived from attached VEMCO minilogs (Table 1.3). The model generated

bottom temperature data (GLORYS12V1) at time and location were used for survey

stations which did not have temperature data from the minilogs. The GLORYS12V1

from Copernicus Marine Environment Monitoring Service (CMEMS) of the European

Union (EU) is an eddy-resolving global ocean product, which assimilates observational

data (e.g. satellite sea surface temperature data, satellite altimeter data, tempera-

ture and salinity data from ARGO profilers and ship surveys). The GLORYS12V1

reanalysis product has a horizontal resolution of 1/12°, and 50 vertical levels [14]. The

model estimated bottom temperature is used because the observed temperature and

generated temperature are well correlated (Figure 1.12). Though the model tends

to overestimate or underestimate the temperatures near Shelf edges, the residuals

between the observed and estimated temperatures are small (Figures 1.13 to 1.15).

Year
Number of Stations
with Temperature

Number of Stations
without Temperature

Percentage of Stations
with Temperature

2017 134 14 90.54%
2018 125 28 81.70%
2019 101 16 79.53%

Table 1.3: Summary of the number of stations with and without observed temperature
data and the percentage of stations with observed temperature.
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Figure 1.12: Observed temperature and model estimated temperature for 2017 and
2018.

Figure 1.13: The residuals between observed temperature and model estimated tem-
perature for 2017 and 2018.
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Figure 1.14: The residuals between observed temperature and model estimated tem-
perature for 2017. The small black points are the stations with missing temperature.

Figure 1.15: The residuals between observed temperature and model estimated tem-
perature for 2018. The small black points are the stations with missing temperature.
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It can be noticed from Table 1.1 that soak times in the survey have varied over

survey stations. However from Figure 1.16 we can observe that the distribution of

soak time does not vary over years. Comparing to the other depth strata, there are

more longline sets with soak time below 450 min in depth strata 30-130 m (Figure

1.17). The distribution of soak time in different area strata varies but there is no

obvious pattern for soak time in different area strata (Figure 1.18).

Figure 1.16: Histograms of the soak time by year for 2017 to 2019.
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1.3 Survey Index Reproduction

1.3.1 Multinomial Exponential Model

The multinomial exponential model (MEM) originally proposed by Rothschild [22]

and modified by Etienne et al. [13] is currently used by DFO for the Atlantic Halibut

longline survey.

Let TT be the time of catching a target species (halibut) on a hook and assume TT

follows an exponential distribution with rate λT . Then the probability of catching a

halibut before time u is

P (TT ≤ u) = 1− e−λTu.

Let TNT be the time it takes for a non-target species to be caught and assume TNT

follows an exponential distribution with rate λNT . The probability distribution of the

time it takes for either a target or non-target species to be caught, T = min{TT , TNT}

is also exponential with rate λ = λT + λNT .

The possible states for a hook after soak time S upon retrieval onboard are,

• {I = 0} = {The hook is still baited} with probability

P (I = 0) = P (T > S) = e−λS,

• {I = Target} = {The hook has a target species} with probability

P (I = Target) = P (TT < TNT |T < S)P (T < S) =
λT
λ

(1− e−λS),

• {I = NTarget} = {The hook has a non-target species} with probability

P (I = NTarget) = P (TNT < TT |T < S)P (T < S) =
λNT
λ

(1− e−λS),

where I is an indicator variable.

Assuming that all the hooks on a longline are independent, the likelihood for

hooks being baited or not baited and if not baited containing a halibut or another
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species is given by

L (λT , λNT ) =

 N

NB

 NT +NNT

NT

(e−λS)NB

×
(
1− e−λS

)NT+NNT

(
λT
λ

)NT
(
λNT
λ

)NNT

,

where

• N is the number of hooks on the longline,

• NB is the number of baited hooks at the end of the soak time,

• NT is the number of the target species caught,

• NNT is the number of the non-target species caught.

This model is called the Multinomial Exponential Model (MEM) [22]. The expected

numbers of the halibut caught by a longline with N hooks is N times the probability

P (I = Target) for a halibut being caught when there is competition from other

species. Therefore the number of the halibut that were observed reflects an index

of the abundance of that species modified by the relative abundance of other species

competing for the same hooks. Parameters λT and λNT reflect the relative abundance

of target and non-target species respectively.

It is common for some hooks to return with no bait and no fish at the end of soak

time in longline fishing. The MEM was modified by Etienne et al. [13] to account

for these empty-unbaited hooks so that more precise estimates of annual indices of

relative abundance could be obtained. It’s assumed that all empty-unbaited hooks

are caused by the escape of fish. That is,

• The number NB of baited hooks out of N total hooks at the end of the soak

time is binoamially distributed with probability of success e−λS :

NB ∼ B
(
N, e−λS

)
.

• Given the number of empty-unbaited hooks (N −NB), the number of halibut

caught is NT +N
(T )
E and also has a binomial distribution:

NT +N
(T )
E |N −NB ∼ B

(
N −NB,

λ1
λ

)
,
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where N
(T )
E is the number of caught halibut escaping.

• Given NT + N
(T )
E , the total number of halibut on the longline is NT and is

binomially distributed:

NT |NT +N
(T )
E ∼ B

(
NT +N

(T )
E , (1− pT )

)
,

where pT is the escapement rate of caught target fish.

• Given NNT + N
(NT )
E , the total number of non-target species on the longline is

NNT and also follows a binomial distribution:

NNT |NNT +N
(NT )
E ∼ B

(
NNT +N

(NT )
E , (1− pNT )

)
,

where N
(NT )
E is the number of caught non-target species escaping and pNT is the

escaping rate of caught non-target fish.

N
(NT )
E and N

(T )
E are missing quantities but the sum NE of these two quantities is

observed. Therefore the likelihood function of the model is:

L(λT , λNT , pT , pNT ) =
N !

NB!NT !NNT !NE!
(e−λS)NB(1− e−λS)N−NB

× (
λT
λ

(1− pT ))NT (
λNT
λ

(1− pNT ))NNT (
λTpT + λNTpNT

λ
)NE .

This is a multinomial distribution with parameters N and α:

(NB, NT , NNT , NE) ∼M(N,α)

where N is the number of hooks on a longline set and α = (e−λS, (1 − e−λS)λT
λ

(1 −

pT ), (1− e−λS)λNT

λ
(1− pNT ), (1− e−λS)λT pT+λNT pNT

λ
).

There were two models proposed by Etienne et al. [13] based on two different situ-

ations. The first model (MEM1) assumed that empty-unbaited hooks were caused by

non-target species taking the bait and escaping with the corollary that the probability

of escape for target species would be 0 (pT = 0). The second model (MEM2) assumed

that empty-unbaited hooks came from either target or non-target species. In other

words, the escaping rate is the same for target and non-target catch (pT = pNT ).

However, those authors who have investigated the impact of bait loss on longline
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estimates have generally assumed that missing baits were caused by non-target fish

[7][17][27]. Since the longline survey is designed for catching and retaining the target

species in terms of bait, hook type and size, depth, and timing, non-capture would

be more likely for other species in the area. In addition, the target species would also

have lower abundance than all other possibly caught species. Moreover, assigning the

empty-unbaited hooks to species other than halibut will at worst lead to an underes-

timation of the halibut count [13]. Therefore, MEM1 was selected and the likelihood

function was re-written as follows:

L(λT , λNT , pNT ) =
N !

NB!NT !NNT !NE!
(e−λS)NB(1− e−λS)N−NB

× (
λT
λ

)NT (
λNT
λ

(1− pNT ))NNT (
λNTpNT

λ
)NE .

The maximum likelihood estimators of MEM1 with a constant soak time are given

by:

λ̂T =
NT+

N+ −NB+

1

S
log(

N+

NB+

) (1.1)

λ̂NT =
NNT+ +NE+

N+ −NB+

1

S
log(

N+

NB+

) (1.2)

p̂NT =
NE+

NE+ +NNT+

(1.3)

where NB+ =
∑L

l=1NBl
, NT+ =

∑L
l=1NTl , NNT+ =

∑L
l=1NNTl , NE+ =

∑L
l=1NEl

and

l is the number of longline sets. Additionally, empty-unbaited hooks also include

broken and missing hooks.

1.3.2 Template Model Builder (TMB)

We coded the MEM1 proposed by Etienne et al. [13] in TMB by first constructing the

negative log-likelihood function in R. After ensuring that the negative log-likelihood

function in R was working appropriately, the function was converted into C++ code

and the TMB package was used for estimation so that the MEM1 could be efficiently

implemented using simple C++ templates. The model was formulated in C++ and
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the data were manipulated in R. The function MakeADFun from the R package TMB

was used to construct objective functions and pass the objective function value to the

optimizer in R for the final estimation. This package is used because it combines

external libraries CppAD, Eigen and CHOLMOD to obtain an efficient implemen-

tation of the applied Laplace approximation with exact derivatives and can speed

up a process significantly when the number of iterations is high. For more details

about the TMB package please refer to the TMB reference manual by Kristensen et

al. [18]. In addition, R codes used for analysis and data visualization are provided in

the Appendices.

1.3.3 Comparison of Results

The R package llsurv [24] uses explicit formulae for maximum likelihood estimates.

These only allow one value for soak time therefore the mean of the soak time for

the survey was used to reproduce results. The identical results obtained using two

different methods and packages (Table 1.4) indicate that survey indices estimated

using the explicit method can be successfully reproduced using a general purpose

optimizer. For the year 2017, the estimated relative abundance indices with soak

time fixed at 500.5068 minutes for the target (λ̂T ) and non-target species (λ̂NT )

are 1.843592e-05 and 0.001904881 respectively. The estimated survey indices with

constant soak time (478.1895 minutes) for the target (λ̂T ) and non-target species

(λ̂NT ) are 2.661856e-05 and 0.002068632 respectively in 2018. The probability of

escape for the non-target species (p̂NT ) is 0.8908173. For 2019, the estimated relative

abundance indices with fixed soak time (463.2283 minutes) for the target (λ̂T ) and

non-target species (λ̂NT ) are 2.324046e-05 and 0.002227046 respectively.

The TMB generated indices of abundance can also be estimated with set-specific

soak time (Table 1.5). The survey indices estimated using the set-specific soak time

will be more accurate as the Multinomial model assumes that catch increases linearly

with soak time. However error rates between the results obtained using fixed soak

time and set-specific time are small. The error rate is obtained using the difference



24

between the survey indices estimated with fixed soak time and set-specific soak time

and divided by the survey index estimated with set-specific soak time. Specifically,

error rates between the estimated survey indices for target species with mean of soak

time and set-specific soak time are approximately 1.90% in 2017, 0.37% in 2018 and

0.23% in 2019. A comparison of the proportion of hooks with halibut from the survey

with soak time indicates that soak time does not appear to have any effect on the

proportion of halibut caught. A similar conclusion can be drawn from the proportion

of hooks with catches of the other non-target species as well (Figure 1.19).

Year
Mean of the

Soak Time (mins)
λ̂T (llsurv) λ̂NT (llsurv) λ̂T (TMB) λ̂NT (TMB)

2017 500.5068 1.843592e-05 0.001904881 1.843592e-05 0.001904881
2018 478.1895 2.661856e-05 0.002068632 2.661856e-05 0.002068632
2019 463.2283 2.324046e-05 0.002227046 2.324046e-05 0.002227046

Table 1.4: The estimated relative abundance indices across the entire survey area
with mean of the soak time for the survey for target and non-target species using R
packages TMB and llsurv for hook occupancy data from the halibut longline survey
for the years 2017, 2018 and 2019.

Year λ̂T λ̂NT p̂NT
2017 1.878635e-05 0.001941087 0.8795759
2018 2.671808e-05 0.002076371 0.8908173
2019 2.329181e-05 0.002232086 0.8963697

Table 1.5: The estimated relative abundance indices across the entire survey area with
set-specific soak time for target and non-target species and the escaping probability
of caught non-target species using the TMB package for hook occupancy data from
the halibut longline survey for the years 2017, 2018 and 2019.
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Chapter 2

Spatial Models and Variable Selection

Here we start with a discussion of the spatial patterns found in the survey data. The

following two sections then focus on the application of spatial statistics to the current

survey indices estimation model and culminate with the proposal of a novel model

formulation. Variable selection for this model is conducted in the final section.

2.1 Spatial Patterns

Typically when a region exhibits spatial structure, the points closer to each other

are more strongly correlated than the distant points. The maps of the proportion of

baited and unbaited hooks in each set show obvious spatial patterns (Figures 2.1 to

2.3). Here unbaited hooks include missing and broken hooks as well as hooks that

came back with halibut, other species or without bait. There are more unbaited

hooks in the depth zone 251-750 m and more baited hooks in the depth zone 30-130

m. With regard to the area strata, there are more unbaited hooks in areas 4X5XY,

4W and 3P. This result is further supported by ANOVA tests of the proportion of

unbaited hooks by strata (Tables 2.1 to 2.3). The p-values (9.4e-08 and 9.81e-07)

for these tests are very small indicating that there are significant differences in the

proportion of unbaited hooks by strata. To attempt to deal with this spatial structure

a spatial random field is considered. A spatial random field is a random function over

an arbitrary domain meaning that it is a function f(x) that takes on a random value

at each point x ∈ Rn. It is also defined as a generalization of a stochastic process

taking values in a Euclidean space, and defined over a parameter space of at least one

dimension [3]. Abundance estimates obtained with inclusion of a spatial random field

will be compared to those previously obtained based on the stratification scheme.

26
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Figure 2.1: The distribution of unbaited hooks in 2017. Here unbaited hooks include
missing and broken hooks as well as hooks that came back with halibut, other species
or without bait.

Figure 2.2: The distribution of unbaited hooks in 2018. See caption for Figure 2.1.
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Figure 2.3: The distribution of unbaited hooks in 2019. See caption for Figure 2.1.

DF sum Sq Mean Sq F value Pr(>F)
STRATUM ID 14 4.452 0.3180 4.323 2.77e-06

Residuals 133 9.783 0.0736

Table 2.1: Summary of the ANOVA test of proportion of unbaited hooks by strata
for 2017.

DF sum Sq Mean Sq F value Pr(>F)
STRATUM ID 14 4.850 0.3465 6.693 2.98e-10

Residuals 138 7.143 0.0518

Table 2.2: Summary of the ANOVA test of proportion of unbaited hooks by strata
for 2018.

DF sum Sq Mean Sq F value Pr(>F)
STRATUM ID 14 2.986 0.21328 2.92 0.000834

Residuals 112 8.180 0.07304

Table 2.3: Summary of the ANOVA test of proportion of unbaited hooks by strata
for 2019.
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2.2 Models with a Gaussian Random Field

2.2.1 Binomial Model with Gaussian Random Field (glmmTMB)

The number of unbaited hooks (NUNB,i), which includes missing and broken hooks

as well as hooks that came back with halibut, other species and without bait, on a

longline set at the end of the soak time is binomially distributed

NUNB,i ∼ B(Ni, πi).

The logit of the probability πi of obtaining unbaited hooks on a longline set can be

modelled as a linear function of soak time (xi soak), depth (xi depth) and temperature

(xi temp) at each survey location. That is

logit(πi) = β0 + β1 × xsoak i + β2 × xdepth i + β3 × xtemp i, (2.1)

and the binomial model with Gaussian random field is defined as

logit(πi) = β0 + β1 × xsoak i + β2 × xdepth i + β3 × xtemp i + ωi (2.2)

where ωi is a Gaussian random field with Matérn covariance function C(h). A

Matérn covariance is generally used to define the statistical covariance between mea-

surements made at two locations that are h units distant from each other. The

covariance is stationary as it only depends on distances between locations. It is also

isotropic when distance is Euclidean distance. A Matérn covariance function is used

because it is flexible and includes both the exponential and Gaussian covariance func-

tions as special cases, moving between them via a smoothness parameter. The Matérn

covariance function [16] is defined as

C(h) =
σ2

Γ(ν)2ν−1

(
h

φ

)ν
Kν

(
h

φ

)
,

where

• Kν : modified Bessel function of the second kind,

• σ2: variance/sill parameter,
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• φ > 0: range parameter ⇒ effective/practical range (the distance at which the

correlation decreases to 0.05),

• ν > 0: smoothness parameter ⇒ mean square differentiability of the process

(Hausdorff/fractal dimension of Gaussian sample paths).

• h: standardized distance matrix of the longline survey location,

Special cases:

ν = 0.5⇒ Exponential covariance function: C(h) = σ2 exp
(
−h
φ

)
ν =∞⇒ Gaussian covariance function: C(h) = σ2 exp

(
−h2

φ2

)
The estimation of πi can be performed using package Generalized Linear Mixed

Models using Template Model Builder (glmmTMB) [9] as it fits linear and gener-

alized linear mixed models with TMB and has built-in spatial covariance options.

glmmTMB fits models using maximum likelihood estimation via TMB and random

effects are integrated out using the Laplace approximation.

The probability of getting unbaited hooks was predicted at 1000 randomly selected

locations from the block id which is the unique identifier for each grid cell of the entire

survey area. The grid is made up of 2 km × 2 km blocks, with the point indicated

being the center of the block. The same 1000 points were used for all three predictions.

The predictions were obtained using mean of the soak time for the survey and without

taking temperature into account as the soak time and temperature data for the block

id are not easily available.

Similar to spatial patterns displayed by observed data (Figures 2.1 through 2.3),

the probability of getting unbaited hooks is higher in areas 4X5YZ, 4W and 3P (Fig-

ures 2.4 through 2.6). Though glmmTMB has bulit-in spatial covariance options, the

family object in function glmmTMB does not contain the multinomial model which

allows for estimating the relative abundance indices for halibut directly. The binomial

model can only estimate the probability of getting unbaited hooks but the goal is to

estimate the survey indices for halibut. Therefore instead of using glmmTMB, the

multinomial exponential model (MEM1) with a Gaussian random field will be coded

in C++ and used for analysis.
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Figure 2.4: The predicted probabilities of getting unbaited hooks at 1000 randomly
selected locations for 2017.

Figure 2.5: The predicted probabilities of getting unbaited hooks at 1000 randomly
selected locations for 2018.
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Figure 2.6: The predicted probabilities of getting unbaited hooks at 1000 randomly
selected locations for 2019.

2.2.2 Multinomial Exponential Model (MEM1) with Gaussian Random

Field (TMB)

The relative abundance index λi at each survey station is affected by the Gaussian

random field ωi with Matérn covariance function, therefore we will modify the MEM1

described in the previous section by adding a random field to both target and non-

target species. The smoothness parameter ν of the Matérn covariance function is

typically fixed at 1 since it is difficult to estimate. The initial value of the range

parameter φ is the area of the standardized coordinates of the survey stations. The

relative abundance indices for target and non-target species at each survey station

are defined as

λ̂T i = exp(βT 0 + ωT i) (2.3)

λ̂NT i = exp(βNT 0 + ωNT i) (2.4)

There are two scenarios for ωT i and ωNT i, the first one is that they are from the

same random field (Figure 2.7). This means that ωT i and ωNT i share one covariance

function, so one choice of parameters φ, σ and ν evaluated for two different sets of ω.

The other one is that ωT i and ωNT i are from different random fields meaning that
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ωT i and ωNT i each has a covariance function, so two sets of parameters φ, σ and ν

evaluated for two different sets of ω (Figures 2.8 and 2.9). By comparing the plots of

correlation matrices for target and non-target species under the second situation for

2017 (Figures 2.8 and 2.9), it can be observed that patterns of correlation matrices

for target and non-target species are quite different. Therefore, the model with ωT i

and ωNT i from different random fields is used.

Figure 2.7: The correlation matrix for both target and non-target species for 2017.
ωT i and ωNT i are from same random field.
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Figure 2.8: The correlation matrix for target species for 2017. ωT i and ωNT i are
from different random fields.

Figure 2.9: The correlation matrix for non-target species for 2017. ωT i and ωNT i are
from different random fields.



35

2.2.3 Variable Selection

Covariates for depth, temperature and area strata (along with their potential inter-

actions) are also introduced into the model (Equations 2.5 and 2.6). Since these may

affect the relative abundance indices of target and non-target species

λ̂T i = exp(βT 0 + ωT i + βT 1 × x1 i + βT 2 × x2 i + βT 3 × x1 i × x2 i + ...) (2.5)

λ̂NT i = exp(βNT 0+ωNT i+βNT 1×x1 i+βNT 2×x2 i+βNT 3×x1 i×x2 i+ ...). (2.6)

From the simplest model (the model without covariates) to the most complex model

(the model with temperature, area strata, depth strata and interactions between area

and depth strata), there are 14 models to be compared (Tables 2.4 through 2.6).

Both Bayesian information criterion (BIC) and Akaike information criterion (AIC)

are used and the model is selected based on BIC scores where

BIC = k ln(n)− 2 ln(L(θ̂))

and

AIC = 2k − 2 ln(L(θ̂)),

where

• n is the sample size,

• k is the number of parameters in the model plus the intercept,

• θ is the set of all parameters,

• L(θ̂) represents the maximized likelihood of the model under consideration.

AIC and BIC are criteria for model selection, the optimal model is selected based on

the minimum AIC or BIC. BIC is used as the criteria for model selection because

AIC penalizes the number of parameters less strongly than the BIC meaning that

AIC tends to choose model with more parameters which may cause overfitting.
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Model
Minimized Negative

Log-likelihood
K AIC BIC

With Temperature 3692.523 4 7393.046 7405.035
With Depth + Temp 3692.381 6 7396.762 7414.745

With Temp +
Depth Strata (3)

3692.088 8 7400.177 7424.155

Without Covariates 3712.183 2 7428.366 7434.361

With Area Strata (5) +
Depth + Temp

3683.438 14 7394.875 7436.836

With Depth 3709.150 4 7426.300 7438.289
With Depth Strata (3) 3710.374 4 7428.748 7440.737

With Area Strata (5) +
Depth

3692.886 12 7409.771 7445.738

With Area Strata (5) +
Depth Strata (3) + Temp

3683.370 16 7398.740 7446.696

With Area Strata (5) +
Depth Strata (3)

3693.860 14 7415.719 7457.680

With Area Strata (5) *
Depth Strata (3) + Temp

3667.764 32 7399.527 7495.438

With Area Strata (5) *
Depth

3704.438 20 7448.877 7508.821

With Area Strata (5) *
Depth Strata (3)

3679.827 30 7419.653 7509.570

With Area Strata (5) *
Depth + Temp

3786.990 22 7617.980 7683.919

Table 2.4: AIC and BIC for different models for 2017. The models are ranked ac-
cording to their BIC scores in increasing order. Parameter for random field is not
included when calculating AIC and BIC. K contains the parameters for both target
and non-target species. There are 5 area strata and 3 depth strata. The symbol “*”
represents the interactions between the covariates.
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Model
Minimized Negative

Log-likelihood
K AIC BIC

With Temperature 3597.365 4 7202.729 7214.851
With Depth + Temp 3597.191 6 7206.382 7224.565

With Temp +
Depth Strata (3)

3595.191 8 7206.383 7230.626

With Area Strata (5) +
Depth + Temp

3585.981 14 7199.961 7242.387

With Area Strata (5) +
Depth Strata (3) + Temp

3584.606 16 7201.211 7249.698

With Depth Strata (3) 3616.249 4 7240.497 7252.619
Without Covariates 3621.410 2 7246.820 7252.881

With Depth 3619.843 4 7247.685 7259.807

With Area Strata (5) +
Depth

3604.551 12 7233.103 7269.468

With Area Strata (5) +
Depth Strata (3)

3600.357 14 7228.714 7271.140

With Area Strata (5) *
Depth Strata (3) + Temp

3575.792 32 7215.584 7312.558

With Area Strata (5) *
Depth Strata (3)

3594.379 30 7248.758 7339.671

With Area Strata (5) *
Depth

3637.866 20 7315.733 7376.341

With Area Strata (5) *
Depth + Temp

3656.634 22 7357.267 7423.937

Table 2.5: AIC and BIC for different models for 2018. See caption for Table 2.4.
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Model
Minimized Negative

Log-likelihood
K AIC BIC

Without Covariates 3447.512 2 6899.023 6904.712
With Depth Strata (3) 3447.203 4 6900.565 6911.942

With Depth 3446.283 4 6902.407 6913.784

With Area Strata (5) +
Depth

3437.861 12 6899.723 6933.853

With Area Strata (5) +
Depth Strata (3)

3436.680 14 6901.360 6941.178

With Area Strata (5) *
Depth

3439.862 20 6919.724 6976.607

With Area Strata (5) *
Depth Strata (3)

3422.570 30 6905.139 6990.465

Table 2.6: AIC and BIC for different models for 2019. See caption for Table 2.4.

We can observe from Tables 2.4 through 2.6 that the model to be selected is the

model with only temperature which is defined as

λ̂T i = exp(βT 0 + βT 1 × xtemp i + ωT i) (2.7)

λ̂NT i = exp(βNT 0 + βNT 1 × xtemp i + ωNT i). (2.8)

However, temperature will not be included in the model used to provide an index of

abundance because it is not possible to estimate the temperature data for sets that

did not have temperature collected in 2019 at this time (Table 1.3). Additionally,

the differences between the survey indices for halibut estimated by models with and

without temperature are small. This indicates that while temperature is statistically

significant it does not have a great impact on the predictions (Figures 2.10 and 2.11).

By comparing the BIC scores of the models in Tables 2.4 to 2.6 the model with the

lowest BIC and without temperature is the model without covariate. The model is

then reduced to

λ̂T i = exp(βT 0 + ωT i) (2.9)

λ̂NT i = exp(βNT 0 + ωNT i). (2.10)

It also can be observed from Tables 2.4 to 2.6 that strata are not statistically impor-

tant in the spatial model.
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Figure 2.10: Relative abundance indices for halibut and corresponding standard errors
estimated by models with and without temperature for 2017.

Figure 2.11: Relative abundance indices for halibut and corresponding standard errors
estimated by models with and without temperature for 2018.



Chapter 3

Estimated Survey Indices

Here we discuss the relative abundance indices for halibut estimated using our spatial

model and how these may be aggregated to obtain annual survey indices.

3.1 Estimated Survey Indices with Corresponding Standard Errors

It can be observed from Figures 3.1 and 3.2 that the estimated survey indices for

halibut are higher in the shallow areas. There are also more halibut in the survey

area 4X5YZ with depth ranges from 30 to 130 m for 2017, 2018, and 2019. In

comparison to 2017, both 2018 and 2019 have more halibut in survey area 4W with

depth ranges from 30 to 130 m. Additionally, compared to 2018, both 2017 and 2019

have less halibut in survey area 3P. The highest estimated relative abundance indices

of the target species appear in survey areas 4V, 4X5YZ and 4W for 2017, 2018 and

2019 respectively. From Figures 3.3 to 3.5, we can observe that the error bars for

larger estimated survey indices are wider.

40
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Figure 3.1: Estimated relative abundance indices for halibut for 2017 (top), 2018
(middle) and 2019 (bottom) based on the multinomial exponential model with Gaus-
sian random field.
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Figure 3.3: Estimated relative abundance indices and corresponding standard er-
rors for halibut for 2017 based on the multinomial exponential model with Gaussian
random field.

Figure 3.4: Estimated relative abundance indices and corresponding standard er-
rors for halibut for 2018 based on the multinomial exponential model with Gaussian
random field.
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Figure 3.5: Estimated relative abundance indices and corresponding standard er-
rors for halibut for 2019 based on the multinomial exponential model with Gaussian
random field.

3.2 Interpolation of Estimated Relative Abundance Indices and

Random Field

The spatial model can be used to estimate the survey indices for target and non-target

species at the specific survey stations but we would also like to predict the relative

abundance indices over the entire survey area, therefore kriging is used. Kriging

[16] is a method of interpolation by which the interpolated values are modeled by a

Gaussian process governed by prior covariances. The relative abundance indices are

interpolated over the block id as the survey locations are selected from the block id.

The Gaussian random field ω is interpolated using the formula

Ẑ (s∗) = E {Z (s∗) | Z} = B>Z,

where

• Ẑ (s∗) are the interpolated Gaussian random field ω at location s∗ which is the

location of the block id,

• B is the cross-covariance matrix between the block id and survey stations,
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• Z = Σ−1Z × Z̄. Σ−1Z is the inverse of the covariance matrix of the model with

estimated spatial parameters (Tables 3.1 and 3.2) for ω based on the location of

survey stations. Z̄ is the estimated ω at each survey station.

Then the interpolation of the survey indices for target and non-target species can be

done using

λ̂T (s∗) = exp(βT 0 + ẐT (s∗)) (3.1)

λ̂NT (s∗) = exp(βNT 0 + ẐNT (s∗)). (3.2)

Figure 3.6 is the interpolated random field and from this interpolation results we

can obtain the interpolated survey indices for halibut (Figure 3.7). It can be observed

from Figure 3.7 that there more halibut in the survey area 4X5YZ, 4W and 4V.

Year
Variance parameter σ2

for Target Species
Range Parameter φ
for Target Species

Smoothness Parameter ν
for Target Species

2017 3.528151 0.031142 1
2018 3.162326 0.063860 1
2019 4.399422 0.062808 1

Table 3.1: Estimated parameters of Matérn covariance function for target species for
2017, 2018 and 2019. Smoothness parameter ν is fixed at one.

Year
Variance parameter σ2

for Target Species
Range Parameter φ
for Target Species

Smoothness Parameter ν
for Target Species

2017 1.538283 0.086193 1
2018 1.033545 0.06819973 1
2019 1.495082 0.05448649 1

Table 3.2: Estimated parameters of Matérn covariance function for non-target species
for 2017, 2018 and 2019. Smoothness parameter ν is fixed at one.
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Figure 3.6: Interpolated Gaussian random fields for halibut for 2017 (top), 2018
(middle) and 2019 (bottom). The black points are locations of the survey stations
for each year.
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Figure 3.7: The heatmaps of the interpolated relative abundance indices of halibut
for 2017 (top), 2018 (middle) and 2019 (bottom).
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3.3 Weighted Average of the Survey Indices

The aggregation of survey indices and the corresponding standard errors have been

estimated using three different approaches so as to compare the changes in relative

abundance indices of halibut over the past three years.

3.3.1 Explicit Method and corresponding Standard Error

The explicit method uses Equations 1.1 and 1.2 of the previous section to calculate

the relative abundance indices for target and non-target species within each stratum.

Then the weighted average for the entire survey area is obtained using the sum of the

indices weighted by the corresponding stratum area and divided by the sum of the

stratum area (Equation 3.1). In total, there are 15 strata with 3 depth strata and

5 area strata. However, stratum H13 is excluded from this analysis as the number

of target species caught in 2017 for stratum H13 was 0 which would cause errors

when calculating the survey indices. Bootstrapping is used to estimate the standard

error of the estimated area weighted average of the survey indices [12]. Specifically,

function bootstrap from R package bootstrap [25] is used to generate 15000 leave-

one-out bootstrap replicates of Equations 1.1 and 1.2 applied to survey data. Then

we calculate the standard error of observed value of Equations 1.1 and 1.2 applied to

survey data.

Area Weighted Average =

∑n
i=1Aiλi∑n
i=1Ai

(3.3)

where

• Ai is the ith area of interest,

• λi is the corresponding estimated relative abundance index for the ith area,

• n is the total number of area of interest.

3.3.2 Mean of the Interpolated Survey Indices and the Corresponding

Standard Error

The aggregation of the survey indices via the interpolation method is over 1000 ran-

domly selected locations from the block id. We use the built-in kriging function from
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R package TMB to interpolate relative abundance indices over the 1000 randomly se-

lected locations and then calculate the mean of the interpolated results. The standard

error for this method is approximated using the delta method [6]:

let θ̂n be a sequence of K × 1 random vectors such that

√
n
(
θ̂n − θ

)
d→ N(0,Σ)

where N(0,Σ) is a multivariate normal distribution with mean 0 and covariance

matrix Σ, θ is a constant Kx1 vector, and
d→ indicates convergence in distribution.

Let g : RK → RL. If all the L entries of g have continuous partial derivatives with

respect to θ, then

√
n
(
g
(
θ̂n

)
− g (θ)

)
d→ N(0,∇g(θ)Σ∇g(θ)>)

where ∇g(θ) is the L×K matrix of partial derivatives of the entries of g with respect

to the entries of θ.

3.3.3 Dirichlet Method and the Corresponding Standard Error

The Dirichlet tessellation method aggregates the survey indices at the level of the

longline set. The Dirichlet tessellation of the survey stations is computed using the

functions from the R package spatstat [4]. To be more specific, we use the function

ppp from the R package spatstat and the locations of survey stations to form the

spatial point pattern and specify the enclosing polygon with the boundary points of

survey area. The Dirichlet tile associated with a particular point i is the region of

space that is closer to point i than to any other point in the spatial point pattern.

Then we use function dirichlet from the R package spatstat to divide the survey area

with Dirichlet tiles into disjoint regions, forming the tessellation (Figure 3.8). Finally

we use the area of the Dirichlet tessellation and the corresponding estimated survey

indices to calculate the weighted average (Equation 3.1). The delta method is used

to estimate the standard error [6].



50

Figure 3.8: The Dirichlet tessellation and the survey stations for 2017 (top), 2018
(middle) and 2019 (bottom).

It can be observed from Figure 3.9 that the weighted relative abundance indices for

halibut obtained using these three methods show a similar trend. The weighted survey

indices increase from 2017 to 2018 and decrease from 2018 to 2019. The weighted

survey indices obtained using the Dirichlet tessellation method are the largest when

compared to the other two methods. Standard errors of Dirichlet tessellation method

are the smallest among these three methods.
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Figure 3.9: The weighted survey indices and corresponding standard errors for halibut
obtained using three different weighting methods (all strata except H13) for 2017, 2018
and 2019.



Chapter 4

Discussion

Our results demonstrate (see Figures 3.1, 3.2 and 3.7) that catch rates for halibut are

higher in shallow areas in southwest Nova Scotia (relative to shallow areas on Southern

Grand Banks) and along shelf edges throughout the management unit. These con-

clusions are consistent with previous studies of Atlantic Halibut distribution. More

recent presentations of commercial landings [11][15] also show similar patterns. Fur-

thermore halibut catch rates in the DFO research vessel trawl surveys [8][15] showed

juvenile hotspots and preferred habitat for halibut on shallow banks in southwest

Nova Scotia (NAFO 4X and 4W, Strata 1) and along the shelf edge throughout the

management unit.

We have shown that the differences between estimated survey indices for halibut

obtained using fixed soak time and set-specific soak time are quite small when the

explicit model is used. However, these differences are larger when the indices are

estimated at the level of the longline set with our spatial model. It can be observed

from Figures 4.1 through 4.3 that at a few survey stations, where the largest indices

occur, the indices estimated using constant soak time are much smaller than the

indices obtained using actual soak time. It also can be observed from these three

plots that the estimates with actual soak time and mean soak time differ more when

the estimated survey indices are large. Further investigation could be conducted to

examine the causing of these large differences.

Although there are 1000 hooks sampled on a longline set, hook conditions are

only observed for 300 of these hooks. This information is then used to estimate the

effort of a longline set. For the remaining 700 hooks, the total number of halibut and

non-target species caught are recorded. Earlier simulation analyses [24] suggest that

300 hooks are representative but the relative abundance indices for halibut estimated

52
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using only this information are low. This suggests that the additional information

from the remaining 700 hooks could be included in future analyses to obtain more

precise estimates.

Figure 4.1: Relative abundance indices for halibut and corresponding standard errors
estimated by models with set-specific soak time and mean soak time for 2017.

Figure 4.2: Relative abundance indices for halibut and corresponding standard errors
estimated by models with set-specific soak time and mean soak time for 2018.
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Figure 4.3: Relative abundance indices for halibut and corresponding standard errors
estimated by models with set-specific soak time and mean soak time for 2019.
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Appendix

A.1 Survey Indices Reproduction

The following codes are for reproducing the llsurv survey indices with the multinomial

exponential model (MEM1) and R package TMB. The model is formulated in C++

and the data are manipulated in R.

• C++ Code for Model Formulation:

1 #include <TMB.hpp > // Links in the TMB libraries

2 template <class Type >

3 Type objective_function <Type >:: operator () ()

4 {

5 DATA_MATRIX(x); // The halibut data

6 PARAMETER_VECTOR(theta); // Parameters

7 DATA_VECTOR(s); // Soak time

8 int n = x.col(0).size(); // Length of the column of matrix x

9 int n_k = x.row(0).size(); // Length of the row of matrix x (4)

10

11 // ldat - the relative abundance index for target species (halibut

)

12 vector <Type > ldat(n);

13 for(int i=0; i<n; ++i){

14 ldat(i)=exp(theta (0));

15 }

16 ADREPORT(ldat);

17

18 // ldant - the relative abundance index for non -target species

19 vector <Type > ldant(n);

20 for(int i=0; i<n; ++i){

21 ldant(i)=exp(theta (1));

22 }

23 ADREPORT(ldant);

24

25 // pnt - the escaping rate for non -target species

26 vector <Type > pnt(n);
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27 for(int i=0; i<n; ++i){

28 pnt(i)=invlogit(theta (2));

29 }

30 ADREPORT(pnt);

31

32 matrix <Type > p(n, n_k);

33 for(int i=0;i<n;i++){

34 p(i,0) = exp(-(ldat(i)+ldant(i))*s(i));

35 p(i,1)=(Type (1)-exp(-(ldat(i)+ldant(i))*s(i)))*(ldat(i)/(ldat(i)

+ldant(i)));

36 p(i,2)=(Type (1)-exp(-(ldat(i)+ldant(i))*s(i)))*(ldant(i)/(ldat(i

)+ldant(i)))*(Type (1)-pnt(i));

37 p(i,3)=1-p(i,0)-p(i,1)-p(i,2);

38 }

39

40 Type nll;

41 for(int i=0; i < n; i++){

42 vector <Type > p_row=p.row(i);

43 vector <Type > x_row=x.row(i);

44 nll -= dmultinom(x_row ,p_row ,true);

45 }

46

47 REPORT(ldat);

48 REPORT(ldant);

49 REPORT(pnt);

50 return nll;

51 }

• R Code for Data Manipulation:

1 ##For 2017

2 # Clear memory

3 rm(list=ls())

4 # The halibut data for 2017

5 data_2017 = read.csv("hdata2017.csv", header = T, stringsAsFactors =

F)

6 head(data_2017)
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7 dim(data_2017)

8 # Corrected Strata ID

9 st_id = read.csv("HS_STATION_STRATA_2017_18_19. csv", header = F,

stringsAsFactors = F)

10 names(st_id) = c("YEAR", "STATION", "STRATA")

11 st_id_17 = st_id[which(st_id$YEAR ==2017) , ]

12 # Merge the data

13 data2017 = merge(data_2017, st_id_17, by = "STATION")

14

15 # Drop the stations (523 and 525) with hook = 30

16 not30 = which(data2017$hooks_sampled == 30)

17 data2017[not30 ,]

18 data2017 = data2017[-c(not30), ]

19 which(data2017$hooks_sampled == 30)

20

21 ## Data

22 # st is the soak time

23 # nb is the number of baited hooks at the end of the soak time

24 # nt is the number of individuals of the target species caught

25 # nnt is the number of individuals of the non -target species caught

26 # ne is the number of empty hooks at the end of the soak time

27 nb_17= data2017$empty_baited

28 nt_17= data2017$halibut

29 nnt_17= data2017$other_species

30 ne_17= data2017$empty_unbaited+data2017$broken_hook

31 st_17= data2017$SOAKMINP3P1

32 # The mean of the soak time (fix at the mean of the soak time)

33 st_17 fixed=rep(mean(st_17),length(st_17))

34

35 ## Calculate the initial values for TMB estimation

36 # Using the explicit equation to calculate the estimators (MEM1 with

pt=0 from Etienne 2010)

37 soak_17= mean(st_17)

38 # lambda for target species
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39 ldathat_17=( sum(nt_17)/(sum(nt_17+ nnt_17+ne_17+nb_17)-sum(nb_17)))*

(1/soak_17)*log(sum(nt_17+ nnt_17+ne_17+nb_17)/sum(nb_17))

40 ldathat_17

41 # lambda non -target species

42 ldanthat_17=(( sum(nnt_17)+sum(ne_17))/(sum(nt_17+nnt_17+ne_17+nb_17)

-sum(nb_17)))*(1/soak_17)*log(sum(nt_17+ nnt_17+ne_17+nb_17)/sum(

nb_17))

43 ldanthat_17

44 # Escaping probabililty for target species

45 pthat_17=0

46 pthat_17

47 # Escaping probability for non -target species

48 pnthat_17= sum(ne_17)/(sum(ne_17)+sum(nnt_17))

49 pnthat_17

50

51 # Logit function

52 logitp=function(p){log(p/(1-p))}

53 # Inverse logist function

54 logitpi=function(t){exp(t)/(1+ exp(t))}

55

56 ## Use TMB to reproduce the results

57 library(TMB)

58 # Call TMB function value

59 compile("rep_code.cpp")

60 # Dynamically link the C++ code

61 dyn.load(dynlib("rep_code"))

62

63 data2017$empty = data2017$empty_unbaited+data2017$broken_hook

64 # Put the required data into a matrix

65 x_17 = with(data2017 , cbind(empty_baited , halibut , other_species ,

empty))

66 # Soak time

67 st_17 = as.vector(st_17)

68 st_17 fixed = as.vector(st_17 fixed)

69
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70 # Data list

71 data_17 = list(x=x_17,s=st_17)

72 data_17 fixed = list(x=x_17,s=st_17 fixed)

73

74 # Parameter list

75 param_17 = list()

76 param_17 fixed = list()

77 # Initial values for lambda.t, lambda.nt and pnt

78 # Use the values calculated previously as the starting points

79 param_17$theta = c(log(ldathat_17),log(ldanthat_17),logitp(pnthat_

17))

80 param_17 fixed$theta = c(log(ldathat_17),log(ldanthat_17),logitp(

pnthat_17))

81

82 # Construct an R object (f) that represents our C++ function

83 # MakeADFun calls C++

84 f_17 = MakeADFun(data_17, param_17, DLL="rep_code")

85 f_17fixed = MakeADFun(data_17fixed , param_17fixed , DLL="rep_code")

86

87 # Call TMB function value

88 fit_17 = nlminb(f_17$par ,f_17$fn ,f_17$gr)

89 fit_17 fixed = nlminb(f_17 fixed$par ,f_17fixed$fn,f_17fixed$gr)

90 # Calculate standard deviations of all model parameters

91 sdr_17 = sdreport(f_17)

92 # Estimated results for model with actual soak time

93 summary(sdr_17)

94 sdr_17 fixed = sdreport(f_17 fixed)

95 # Estimated results for model with actual soak time

96 summary(sdr_17 fixed)

A.2 Binomial Model with Gaussian Random Field (glmmTMB)

The following codes are used for estimating the probability of getting unbaited hooks

over 1000 randomly selected survey stations from block id. R package glmmTMB

and binomial model with Gaussian random field are used.
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1 ## For 2017

2 # Clear memory

3 rm(list=ls())

4 library(ggplot2)

5 library(dplyr)

6 library(marmap)

7

8 # The halibut data for 2017

9 data_2017 = read.csv("hdata2017.csv", header = T, stringsAsFactors =

F)

10 head(data_2017)

11 dim(data_2017)

12

13 # Corrected Strata ID

14 st_id = read.csv("HS_STATION_STRATA_2017_18_19. csv", header = F,

stringsAsFactors = F)

15 names(st_id) = c("YEAR", "STATION", "STRATA")

16 st_id_17 = st_id[which(st_id$YEAR ==2017) , ]

17 # Merge the data

18 data2017 = merge(data_2017, st_id_17, by = "STATION")

19 head(data2017)

20 dim(data2017)

21

22 # Drop the stations (523 and 525) with hook = 30

23 data2017 = data2017[-c(not30), ]

24 which(data2017$hooks_sampled == 30)

25 # Read in the block id for the prediction

26 blockid = read.csv("blockIDkey.csv", header = T)

27 blockid [1:4, ]

28

29 # For binomial , we have baited and unbaited hooks (unbaited hooks +

halibut + other species

30 # + broken hooks)

31 # Calulate the proportion unbaited hooks



64

32 data2017$biprop_unbaited = (data2017$hooks_sampled -data2017$empty_

baited)/data2017$hooks_sampled

33 data2017$biprop_unbaited [1:10]

34

35 data17 = data2017 %>% dplyr:: select(P1LONG.x, P1LAT.x, P1DEPTH ,

empty_baited , hooks_sampled , SOAKMINP3P1 , MED_TEMP)

36 data17$biunbaited=data17$hooks_sampled -data17$empty_baited

37 d17 = data.frame(x = as.vector(data17$P1LAT.x),

38 y = as.vector(data17$P1LONG.x))

39

40 library(glmmTMB)

41 # To fit the model , a numFactor and a dummy grouping variable must

be added to the dataset:

42 d17$pos <- numFactor(d17$x, d17$y)

43 d17$group <- factor(rep(1, nrow(d17)))

44 d17$soak = data2017$SOAKMINP3P1

45 d17$unbaited = data17$biunbaited

46 d17$baited = data17$empty_baited

47 d17$depth = data17$P1DEPTH

48

49 # With covariate temperature

50 mat_17 <- glmmTMB(cbind(unbaited ,baited) ~ 1 + soak + depth + mat(

pos + 0 | group),

51 family=binomial(link="logit"), data=d17)

52 summary(mat_17)

53

54 # Random sample 1000 points from the the block id without

replacement for prediction

55 samp = blockid[sample(nrow(blockid),size =1000, replace=FALSE),]

56 idpos = numFactor(samp$lat.DecDeg , samp$lon.DecDeg)

57 # Format the newdata which will be used for prediction

58 newdata_17 <- data.frame(pos=idpos , soak = mean(data2017$SOAKMINP3P1

), depth = samp$depth_m)

59 newdata_17$group <- factor(rep(1, nrow(newdata_17)))

60 head(newdata_17)
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61

62 # Predict the proportion of unbaited hooks

63 p_17= predict(mat_17, newdata_17, type="response", allow.new.levels=

TRUE)

64 head(p_17)

65

66 # Reshape the predicted proportion and corresponding lat and lon to

a data.frame

67 matn_17= data.frame(lati=samp$lat.DecDeg ,

68 long=samp$lon.DecDeg ,

69 p=p_17)

70 write.csv(matn_17,file="matn_17.csv")

71

72 # Plot the predicted proportion of unbaited hooks

73 ggplot(matn_17, aes(x = long , y = lati , colour = p)) + geom_point()

+

74 scale_colour_gradient(low = "yellow", high = "red")

A.3 Multinomial Exponential Model (MEM1) with Gaussian Random

Field without Covariate (TMB)

The following codes are used for estimating the relative abundance indices for target

and non-target species at each survey station with spatial model without covariates

and stratum H13.

• C++ Code for Model Formulation:

1 #include <TMB.hpp > // Links in the TMB libraries

2 template <class Type >

3 Type objective_function <Type >:: operator () ()

4 {

5 DATA_MATRIX(H); // The halibut data

6 DATA_MATRIX(X); // Covariates matrix

7 PARAMETER_VECTOR(betat); // Parameters for lambda t (target

species)
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8 PARAMETER_VECTOR(betant); // Parameters for lambda nt (non -target

species)

9 PARAMETER(theta); // Parameters for pnt (probability of caught non

-target fish escaping)

10 DATA_VECTOR(s); // Soak time

11 int n = H.col(0).size(); // Length of the column of matrix H

12 int n_k = H.row(0).size(); // Length of the row of matrix H (4)

13 PARAMETER_VECTOR(omegat); // The random field for lambda t

14 PARAMETER_VECTOR(omegant); // The random field for lambda nt

15

16 // ldat - the relative abundance indices for target species (

halibut)

17 vector <Type > ldat(n);

18 for(int i=0; i<n; ++i){

19 // Adding random field and covariates to lambda t

20 ldat(i)=exp((vector <Type >(X.row(i))*betat).sum()+omegat(i));

21 }

22 ADREPORT(ldat);

23

24 // ldant - the relative abundance indices for non -target species

25 vector <Type > ldant(n);

26 for(int i=0; i<n; ++i){

27 // Adding omega (random field) and covariates to lambda nt

28 ldant(i)=exp((vector <Type >(X.row(i))*betant).sum()+omegant(i));

29 }

30 ADREPORT(ldant);

31

32 // pnt - the probability of caught non -target species escaping

33 vector <Type > pnt(n);

34 for(int i=0; i<n; ++i){

35 pnt(i)=invlogit(theta);

36 }

37 ADREPORT(pnt);

38

39 DATA_MATRIX(D); // Distance matrix
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40 PARAMETER(lognut);

41 PARAMETER(lognunt);

42 PARAMETER(logPhit);

43 PARAMETER(logPhint);

44 PARAMETER(logSigmat);

45 PARAMETER(logSigmant);

46 // spatial parameters

47 Type nut=exp(lognut); // smoothness parameter

48 Type nunt=exp(lognunt);

49 Type phit=exp(logPhit); // range parameter

50 Type phint=exp(logPhint);

51 Type sigt=exp(logSigmat); // variance

52 Type signt=exp(logSigmant);

53

54 // Covaraince matirx for random field for lambda t

55 matrix <Type > St(n,n);

56 St.setZero ();

57 for(int i=0; i<n; ++i){

58 St(i,i) = sigt*sigt;

59 }

60 for(int i=0; i<n; ++i){

61 for(int j=i+1; j<n; ++j){

62 St(i,j) = sigt*sigt*matern(D(i,j), phit , nut); // Matern

Covariance Function

63 St(j,i) = St(i,j);

64 }

65 }

66

67 // Covaraince matirx for random field for lambda nt

68 matrix <Type > Snt(n,n);

69 Snt.setZero ();

70 for(int i=0; i<n; ++i){

71 Snt(i,i) = signt*signt;

72 }

73 for(int i=0; i<n; ++i){
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74 for(int j=i+1; j<n; ++j){

75 Snt(i,j) = signt*signt*matern(D(i,j), phint , nunt); // Matern

Covariance Function

76 Snt(j,i) = Snt(i,j);

77 }

78 }

79

80 Type a = density :: MVNORM(St)(omegat);

81 Type b = density :: MVNORM(Snt)(omegant);

82 REPORT(St);

83 REPORT(Snt)

84

85 // Corresponding probabilities for N_b , N_t , N_nt and N_e

86 // N_b is the nmuber of baited hooks

87 // N_t is the number of target species caught

88 // N_nt is the number of non -target species caught

89 // N_e is the number of empty hooks

90 matrix <Type > p(n, n_k);

91 for(int i=0;i<n;i++){

92 p(i,0) = exp(-(ldat(i)+ldant(i))*s(i));

93 p(i,1)=(Type (1)-exp(-(ldat(i)+ldant(i))*s(i)))*(ldat(i)/(ldat(i)

+ldant(i)));

94 p(i,2)=(Type (1)-exp(-(ldat(i)+ldant(i))*s(i)))*(ldant(i)/(ldat(i

)+ldant(i)))*(Type (1)-pnt(i));

95 p(i,3)=1-p(i,0)-p(i,1)-p(i,2);

96 }

97

98 // The likelihood function for multinomial distribution

99 Type nll = 0;

100 for(int i=0; i < n; i++){

101 vector <Type > p_row=p.row(i);

102 vector <Type > H_row=H.row(i);

103 nll -= dmultinom(H_row ,p_row ,true);

104 }

105 nll=nll+a+b;
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106 REPORT(a);

107 REPORT(b);

108

109 REPORT(ldat);

110 REPORT(ldant);

111 REPORT(pnt);

112 REPORT(p);

113 REPORT(betat);

114 REPORT(betant);

115 REPORT(omegat);

116 REPORT(omegant);

117 return nll;

118 }

• R Code for Data Manipulation:

1 ## For 2017

2 # Clear memory

3 rm(list=ls())

4

5 library(TMB)

6 library(fields)

7 library(dplyr)

8 library(ggplot2)

9 library(marmap)

10 library(RandomFields)

11 # Call TMB function value

12 compile("dmulticovariate_Oct.cpp")

13 # Dynamically link the C++ code

14 dyn.load(dynlib("dmulticovariate_Oct"))

15

16 # The halibut data for 2017

17 data_2017 = read.csv("hdata2017.csv", header = T, stringsAsFactors =

F)

18 head(data_2017)

19 dim(data_2017)

20
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21 st_id = read.csv("HS_STATION_STRATA_2017_18_19. csv", header = F,

stringsAsFactors = F)

22 names(st_id) = c("YEAR", "STATION", "STRATA")

23 st_id_17 = st_id[which(st_id$YEAR ==2017) , ]

24 # Merge the data

25 data2017 = merge(data_2017, st_id_17, by = "STATION")

26 head(data_2017)

27 dim(data2017)

28

29 # Drop the stations (523 and 525) with hook = 30

30 not30 = which(data2017$hooks_sampled == 30)

31 data2017[not30 ,]

32 data2017 = data2017[-c(not30), ]

33 which(data2017$hooks_sampled == 30)

34

35 # Drop the Stratum H13

36 h13_17 = which(data2017$STRATA == "H13")

37 data2017[h13_17,]

38 data2017 = data2017[-c(h13_17), ]

39 which(data2017$STRATA == "H13")

40 dim(data2017)

41

42 # Read in the block id for the prediction

43 blockid = read.csv("blockIDkey.csv", header = T)

44 blockid [1:4, ]

45 dim(blockid)

46 # Drop the Stratum H13

47 h13_id = which(blockid$s.id == 1.3)

48 blockid[h13_id ,]

49 blockid = blockid[-c(h13_id), ]

50 which(blockid$s.id == 1.3)

51 dim(blockid)

52

53 library(sp)

54 library(rgdal)
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55 library(INLA)

56 #To switch for lat -long and project it on a flat surface since the

earth is a global

57 prj4s=CRS("+init=epsg :4326")

58 utm.prj4s=CRS("+init=epsg :32619")

59 loc_2017= cbind(data2017$P1LONG ,data2017$P1LAT)

60 loc_17= cbind(data2017$P1LONG ,data2017$P1LAT)

61 loc_17= SpatialPoints(loc_17, proj4string = prj4s)

62 loc_17= spTransform(loc_17,utm.prj4s)

63 data2017$P1LONG_proj=loc_17 @coords [,1]

64 data2017$P1LAT_proj=loc_17 @coords [,2]

65

66 # Standardize loc for choosing a starting value for phi

67 spool_17 = sqrt ((( length(loc_2017[ ,1]) -1)*var(loc_17 @coords [,1])+(

length(loc_2017[ ,2]) -1)*var(loc_17 @coords [,2]))/(length(loc_

2017[ ,1])+length(loc_2017[ ,2])))

68 data2017$loc1=(loc_17 @coords [,1]-median(loc_17 @coords [,1]))/spool_17

69 data2017$loc2=(loc_17 @coords [,2]-median(loc_17 @coords [,2]))/spool_17

70 dismat_17= cbind(data2017$loc1 ,data2017$loc2)

71 # Distance matrix

72 Dist_17= as.matrix(dist(dismat_17))

73

74 # Put the required data into a matrix

75 data2017$empty=data2017$empty_unbaited+data2017$broken_hook

76 H_17= with(data2017 , cbind(empty_baited , halibut , other_species ,

empty))

77 # Soak time

78 s_17= data2017$SOAKMINP3P1

79 s_17=as.vector(s_17)

80

81 # Logit function

82 logitp=function(p){log(p/(1-p))}

83 # Inverse logist function

84 logitpi=function(t){exp(t)/(1+ exp(t))}

85
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86 # The intercept (column of ones)

87 colone_17= rep(1,nrow(data2017))

88 X_170=as.matrix(colone_17)

89 data_170= list(H=H_17,s=s_17,X=X_170,D=Dist_17)

90

91 param_17tnt0 = list()

92 # Initial values for lambda.t, lambda.nt and pnt

93 # Use the estimated values as the starting points

94 param_17tnt0$betat = log (1.878483e-05)

95 param_17tnt0$betant = log (0.001941084)

96 param_17tnt0$theta = logitp (0.8795768)

97 # Random field

98 param_17tnt0$omegat = rep(0,nrow(H_17))

99 param_17tnt0$omegant = rep(0,nrow(H_17))

100 # Smoothness parameter

101 param_17tnt0$lognut = 0

102 param_17tnt0$lognunt = 0

103 # Range parameter

104 param_17tnt0$logPhit = log(diff(range(dismat_17[ ,1]))*diff(range(

dismat_17[ ,2])))

105 param_17tnt0$logPhint = log(diff(range(dismat_17[ ,1]))*diff(range(

dismat_17[ ,2])))

106 # Variance

107 param_17tnt0$logSigmat = 0

108 param_17tnt0$logSigmant = 0

109

110 newlist_170= list(lognut=factor(NA),lognunt=factor(NA))

111 # Construct an R object (f) that represents our C++ function

112 # use map and newlist debug

113 # Fix lognu at 0

114 f_17tnt0 = MakeADFun(data_170,param_17tnt0 ,random=c("omegat","

omegant"), DLL="dmulticovariate_Oct",map=newlist_170, silent=TRUE)

115 fit_17tnt0 = nlminb(f_17tnt0$par ,f_17tnt0$fn,f_17tnt0$gr)

116 # Calculate standard deviations of all model parameters

117 sdr_17tnt0 = sdreport(f_17tnt0)
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118 # The estimated parameters and corresponding standard deviations

119 sum_sdr170 = summary(sdr_17tnt0)

120

121 # C++ file which defines the objective function (usually the

negative log likelihood)

122 # R file which sets up data , calls the C++ function , and minimizes

the objective function.

123 # Minimized negative log likelihood

124 fit_17tnt0$objective

125

126 # Estimated Relative Abundance Indices

127 # 2017 without covariate

128 # For target species

129 head(sum_sdr170[row.names(sum_sdr170) %in% "ldat", ])

130 dim(sum_sdr170[row.names(sum_sdr170) %in% "ldat", ])

131 lamt_est_170 = data.frame(sum_sdr170[row.names(sum_sdr170) %in% "

ldat", ])

132 head(lamt_est_170)

133 data2017$lamt_se_170 = lamt_est_170$Std.. Error

134 data2017$lamt_170 = lamt_est_170$Estimate

135 # For non -target species

136 head(sum_sdr170[row.names(sum_sdr170) %in% "ldant", ])

137 dim(sum_sdr170[row.names(sum_sdr170) %in% "ldant", ])

138 lamnt_est_170 = data.frame(sum_sdr170[row.names(sum_sdr170) %in% "

ldant", ])

139 head(lamnt_est_170)

140 data2017$lamnt_se_170 = lamnt_est_170$Std.. Error

141 data2017$lamnt_170 = lamnt_est_170$Estimate

142

143 ### Plot the Relative Abundance Indices

144 n_17 = c(1: nrow(data2017))

145 indices_17t = data2017$lamt_170

146 se_17t = data2017$lamt_se_170

147

148 # For target species
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149 data_17t = data.frame(n=n_17, indices_t=indices_17t,se=se_17t)

150 p_17t = ggplot(data_17t, aes(x=n, y=indices_t)) + geom_point () +

geom_errorbar(aes(ymin=indices_t-se , ymax=indices_t+se), width

=0.5) + labs(x = "Survey Station", y = "Relative Abundance

Indices for Target Species")

151 p_17t

152

153 # For non -target species

154 indices_17nt = data2017$lamnt_170

155 se_17nt = data2017$lamnt_se_170

156 data_17nt = data.frame(n=n_17, indices_nt=indices_17nt ,se2=se_17nt)

157 p_17nt = ggplot(data_17nt, aes(x=n, y=indices_nt)) + geom_point ()+

geom_errorbar(aes(ymin=indices_nt -se2 , ymax=indices_nt+se2),

width =0.5) + labs(x = "Survey Station", y = "Relative Abundance

Indices for Non -target Species")

158 p_17nt

A.4 Interpolation of Estimated Relative Abundance Indices and

Random Field

The following codes are used for interpolating the random field and relative abundance

indices for target species over the entire block id without stratum H13.

1 # Continuing from the code of MEM1 section

2 ## For 2017

3 #### With R function

4 # For lambda t

5 # Range parameter for lambda t

6 logphit_170 = sum_sdr170[row.names(sum_sdr170) %in% "logPhit", ][1]

7 logphit_170

8 phit_170 = exp(as.numeric(logphit_170))

9 # Variance for lambda t

10 logsigmat_170 = sum_sdr170[row.names(sum_sdr170) %in% "logSigmat",

][1]

11 logsigmat_170

12 vart_170 = (exp(as.numeric(logsigmat_170)))^2
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13 # Random field for lambda t

14 omt_170 = data.frame(sum_sdr170[row.names(sum_sdr170) %in% "omegat",

])

15 est_omt_170 = omt_170$Estimate

16

17 #To switch for lat -long and project it on a flat surface since the

earth is a global

18 loc_id=cbind(blockid$lon.DecDeg , blockid$lat.DecDeg)

19 loc_idtrans=NULL

20 loc_idtrans=SpatialPoints(loc_id ,proj4string = prj4s)

21 loc_idtrans=spTransform(loc_idtrans ,utm.prj4s)

22

23 # Standardize block id

24 loc_idtransnorm_17= NULL

25 loc_idtransnorm_17$lon=(loc_idtrans@coords [,1]-median(loc_17 @coords

[,1]))/spool_17

26 loc_idtransnorm_17$lat=(loc_idtrans@coords [,2]-median(loc_17 @coords

[,2]))/spool_17

27 mloc_idtransnorm_17=as.matrix(cbind(loc_idtransnorm_17$lon ,loc_

idtransnorm_17$lat))

28

29 # Whittle -Matern Covariance Model

30 modelt_170 = RMwhittle(nu=1,scale=phit_170,var=vart_170)

31 # Interpolate omega (random field)

32 predt_170 = RFinterpolate(modelt_170,x=mloc_idtransnorm_17,

33 data=data.frame(x=dismat_17,data=est_omt_170),spConform=

FALSE)

34 lambdat_170= exp(as.numeric(sum_sdr170[row.names(sum_sdr170) %in% "

betat", ][1])+predt_170)

35 blockid$intmega_17= predt_170

36 blockid$intldat_17= lambdat_170

37

38 # Plot the interpolated random field

39 col0=colorspace :: diverge_hsv (256)

40 col2=c(col0[c(seq(1,127,by=3) ,128 ,129:256)])
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41 # Random field

42 quilt.plot(loc_id, matrix(predt_170),xlab="long",ylab="lati",main=

expression(paste("Heat map of random field for ", lambda ,"_t for

2017")),nx=220,ny=220, col=col2 ,zlim=c( -1.4 ,4.2))

43 world(add=TRUE ,col="black",lwd=1)

44 points(loc_2017, type="p",pch=20,cex =0.6)

45

46 # Plot the interpolated relative abundance indices

47 col3=c(col0[c(128 ,129:256) ])

48 quilt.plot(loc_id,matrix(lambdat_170),main=expression(paste("

Estimated ", lambda , "_t for 2017")),xlab="long",ylab="lati",col=

col3 ,zlim=c(0,max(lambdat_170)))

49 world(add=TRUE ,col="black",lwd=1)

50 points(loc_2017, type="p",pch=20,cex =0.6)

51

52 #### With Theoretical Calculation

53 # Covariance matrix for Whittle -Matern model with 2017 survey

location

54 covy=RFcovmatrix(modelt_170,x=dismat_17)

55 # Covariance matrix for Whittle -Matern model with block id location

56 covy0=RFcovmatrix(modelt_170,x=mloc_idtransnorm_17)

57 # Distance between block id location and 2017 survey location

58 disy0y=rdist(mloc_idtransnorm_17,dismat_17)

59 # Computes the empirical cross -covariance function for given spatial

data.

60 # Covariance for Whittle -Matern model with block id location

61 # and Whittle -Matern model with 2017 survey location

62 covy0y=RFcov(modelt_170,dist=as.vector(disy0y),dim =2)

63 covy0y=matrix(covy0y ,ncol=nrow(covy))

64 # Interpolate omega (random field)

65 y0=covy0y%*%solve(covy ,est_omt_170)

66 # Check R function result and theoretical calculation results

67 plot(y0 ,predt_170)

68 sum((y0 -predt_170) ^2)
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A.5 Aggregation with Dirichlet Method

The following codes are used for calculating weighted average of relative abundance

indices for halibut using Dirichlet method without stratum H13.

1 # Continuing from the code of MEM1 section

2 ## For 2017

3 ## Dirichlet

4 library(gissr)

5 library(deldir)

6 library(spatstat)

7 library(alphahull)

8

9 # Read in block id

10 bid = read.csv("blockIDkey.csv", header = T)

11 loc_id = cbind(bid$lon.DecDeg , bid$lat.DecDeg)

12 # Plot block id

13 plot(loc_id , xlab="Long", ylab="Lat", main="blockIDkey", pch =20)

14

15 # With Alpha Hull

16 # Find the boundary points using ashape

17 # Alpha controls the detail of the boundary

18 bound_a = ashape(loc_id, alpha = 0.084)

19 bound_a_index = bound_a$alpha.extremes

20 plot(loc_id , xlab="Long", ylab="Lat", main="blockIDkey and boundary"

, pch =20)

21 points(loc_id[bound_a_index , ], col=2, pch =20)

22

23 ### alpha = 0.084

24 # Boundary points and survey stations

25 bound_a_pos = loc_id[bound_a_index , ]

26 plot(bound_a_pos , pch =20)

27 # Extracted block id boundary and imported boundary

28 plot(bound_a_pos , xlab="Long", ylab="Lat", main=" Survey Area

Boundary Coordinate", pch =20)

29 points(surveyPolyLL$X, surveyPolyLL$Y, col="red", pch =20)
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30

31 # To find the corresponding index

32 bound_a_pos = data.frame(long=bound_a_pos[,1], lat=bound_a_pos[,2])

33 bound_a_pos$num = 1: length(bound_a_pos$long)

34

35 # Fix the boundary

36 dim(bound_a_pos)

37 bound_a_pos = bound_a_pos[-c(12 ,15:21 ,57 ,58 ,579 ,581 ,588 ,594 ,

38 595 ,598 ,599 ,601 ,604 ,605 ,668 ,669 ,828 ,834 ,840 ,844 ,845 ,841 ,835 ,

39 773 ,751 ,755 ,320 ,311:313 ,326 ,340 ,357 ,361 ,364 ,365 ,360 ,356 ,353 ,

40 336 ,325 ,452 ,472 ,495 ,507 ,678 ,685 ,686 ,634 ,630 ,635 ,639 ,638 ,640 ,

41 323 ,316 ,306) ,]

42 dim(bound_a_pos)

43 plot(bound_a_pos$long , bound_a_pos$lat , pch =20)

44

45 # To switch for lat -long for block id

46 # and project it on a flat surface since the earth is a global

47 tf_bound_a_pos = SpatialPoints(bound_a_pos ,proj4string = prj4s)

48 tf_bound_a_pos = spTransform(tf_bound_a_pos ,utm.prj4s)

49 tf_bound_a_pos = data.frame(long = tf_bound_a_pos@coords [,1], lat =

tf_bound_a_pos@coords [,2])

50 plot(tf_bound_a_pos)

51

52 # List the boundary points in anit -clockwise order

53 tf_bound_a_pos2 = sort_points(tf_bound_a_pos , "lat", "long",

clockwise = FALSE)

54 tf_bound_a_pos2 = data.frame(long = tf_bound_a_pos2$long , lat = tf_

bound_a_pos2$lat , num =1: length(bound_a_pos$long))

55

56 # Creates an object of class "ppp" representing a point pattern

dataset in the two -dimensional plane

57 pp_17= ppp(data2017$P1LONG_proj , data2017$P1LAT_proj , window=owin(

poly=list(x=tf_bound_a_pos2$long , y=tf_bound_a_pos2$lat)))

58 dpp_17 = dirichlet(pp_17)

59
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60 ## Dirichlet plot

61 tf_bound_a_pos22 = tf_bound_a_pos2 [926, ]

62 tf_bound_a_pos22 [1:64, ] =

63 tf_bound_a_pos2[c(918 ,921 ,925 ,929 ,932 ,936 ,935 ,934 ,933 ,931 ,

64 930 ,927 ,926 ,924 ,923 ,922 ,920 ,919 ,928 ,937:953 ,955 ,954 ,956 ,

65 958 ,960 ,957 ,959 ,40 ,48 ,55 ,61 ,59 ,66 ,67 ,76 ,84 ,87 ,94 ,95 ,91 ,

66 97 ,99 ,101 ,102 ,105 ,106 ,110 ,124), ]

67 tf_bound_a_pos22 [65:160 , ] =

68 tf_bound_a_pos2[c(127 ,117 ,120 ,123 ,113 ,116 ,118 ,122 ,125 ,115 ,

69 129 ,134 ,138 ,142 ,148 ,144 ,140 ,136 ,131 ,111 ,119 ,128 ,141 ,146 ,

70 150 ,152 ,156 ,158 ,162 ,163 ,166 ,167 ,170 ,176 ,179 ,181 ,185 ,186 ,

71 189 ,190 ,194 ,195 ,191 ,196 ,199 ,201 ,202 ,205 ,215 ,214 ,213 ,212 ,

72 207 ,211 ,210 ,209 ,206 ,204 ,198 ,192 ,187 ,182 ,177 ,174 ,171 ,164 ,

73 161 ,154 ,151 ,145 ,135 ,133 ,130 ,112 ,108 ,107 ,104 ,96 ,92 ,90 ,89 ,

74 83,80,77,75,70,68,64,62,60,57,54,52,46,43,37), ]

75 tf_bound_a_pos22 [161:250 , ] =

76 tf_bound_a_pos2[c(36,27,29,28,23,17,14,12,10,13,15,19,22,

77 20,18,6,5,2,963,961,962,1,3,4,7:9,11,16,21,24,25,26,33,35,

78 32,30,31,34,38,39,42,45,49,41,44,47,50,51,53,56,58,63,65,

79 69 ,73 ,81 ,86 ,78 ,71 ,72 ,74 ,79 ,82 ,85 ,88 ,93 ,98 ,100 ,103 ,109 ,114 ,

80 121 ,126 ,132 ,137 ,139 ,143 ,147 ,149 ,153 ,155 ,157 ,159 ,160 ,165 ,

81 168 ,169 ,172 ,173), ]

82 tf_bound_a_pos22 [251:371 , ] =

83 tf_bound_a_pos2[c(175 ,178 ,180 ,183 ,184 ,188 ,193 ,197 ,200 ,203 ,

84 208 ,216:235 ,250 ,260 ,265 ,272 ,280 ,283 ,294 ,295 ,292 ,290 ,286 ,

85 285 ,288 ,287 ,281 ,278 ,277 ,276 ,274 ,271 ,270 ,269 ,266 ,261 ,254 ,

86 247 ,245 ,240 ,236 ,241 ,237 ,242 ,238 ,243 ,248 ,244 ,239 ,246 ,251 ,

87 255 ,252 ,256 ,253 ,249 ,257:259 ,262:264 ,267 ,268 ,273 ,275 ,279 ,

88 282 ,284 ,289 ,291 ,293 ,296:306 ,309 ,307 ,308 ,310:321 ,323 ,328 ,

89 332 ,331), ]

90 tf_bound_a_pos22 [372:444 , ] =

91 tf_bound_a_pos2[c

(327 ,325 ,322 ,324 ,330 ,326 ,329 ,333:349 ,352 ,351 ,350 ,353:398), ]

92 tf_bound_a_pos22 [445:545 , ] =

93 tf_bound_a_pos2[c(401 ,400 ,399 ,402:405 ,426 ,447 ,460 ,469 ,486 ,
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94 491 ,512 ,517 ,522 ,530 ,523 ,531 ,524 ,519 ,516 ,526 ,535 ,540 ,549 ,

95 557 ,559 ,555 ,563 ,571 ,576 ,577 ,574 ,560 ,562 ,570 ,572 ,567 ,564 ,

96 566 ,569 ,558 ,551 ,548 ,543 ,545 ,542 ,544 ,541 ,538 ,537 ,532 ,527 ,

97 533 ,528 ,525 ,521 ,518 ,508 ,514 ,510 ,506 ,511 ,507 ,504 ,499 ,505 ,

98 501 ,496 ,502 ,497 ,503 ,498 ,493 ,487 ,483 ,480 ,484 ,482 ,479 ,477 ,

99 476 ,474 ,473 ,470 ,466 ,461 ,458 ,457 ,463 ,459 ,455 ,453 ,445 ,444 ,

100 449 ,446 ,451 ,450 ,441), ]

101 tf_bound_a_pos22 [546:615 , ] =

102 tf_bound_a_pos2[c(439 ,437 ,443 ,440 ,438 ,436 ,427 ,409 ,406 ,407 ,

103 413 ,431 ,435 ,434 ,424 ,420 ,428 ,425 ,422 ,418 ,415 ,411 ,408 ,417 ,

104 414 ,410 ,421 ,416 ,412 ,423 ,419 ,432 ,430 ,429 ,433 ,442 ,448 ,452 ,

105 454 ,456 ,462 ,464 ,465 ,467 ,468 ,471 ,472 ,475 ,478 ,481 ,485 ,488 ,

106 489 ,490 ,492 ,494 ,495 ,500 ,509 ,513 ,515 ,520 ,539 ,534 ,536 ,539 ,

107 546 ,547 ,550 ,552), ]

108 tf_bound_a_pos22 [616:688 , ] =

109 tf_bound_a_pos2[c(553 ,554 ,556 ,561 ,565 ,568 ,573 ,575 ,578:612 ,

110 620 ,619 ,618 ,617 ,616 ,615 ,614 ,613 ,627 ,626 ,625 ,624 ,623 ,622 ,

111 621 ,633 ,632 ,631 ,630 ,629 ,628 ,639 ,638 ,637 ,636 ,635 ,634 ,645 ,

112 644 ,643), ]

113 tf_bound_a_pos22 [689:785 , ] =

114 tf_bound_a_pos2[c(642 ,641 ,640 ,650 ,649 ,648 ,647 ,646 ,656 ,655 ,

115 654 ,653 ,652 ,651 ,657:739), ]

116 tf_bound_a_pos22 [786:874 , ] =

117 tf_bound_a_pos2[c(750 ,756 ,764 ,769 ,780 ,777 ,776 ,773 ,770 ,779 ,

118 766 ,765 ,761 ,754 ,752 ,749 ,746 ,744 ,751 ,757 ,760 ,768 ,778 ,775 ,

119 772 ,767 ,763 ,759 ,758 ,747 ,745 ,742 ,741 ,740 ,743 ,753 ,748 ,755 ,

120 762 ,774 ,771 ,781 ,783 ,782 ,784:786 ,790 ,803 ,815:818 ,811 ,810 ,

121 806 ,808 ,798 ,800 ,802 ,792 ,794:796 ,799 ,804 ,805 ,807 ,797 ,791 ,

122 787:789 ,793 ,801 ,809 ,812 ,819 ,822 ,824 ,825 ,823 ,814 ,813 ,821 ,

123 820 ,826 ,828 ,827), ]

124 tf_bound_a_pos22 [875:963 , ] = tf_bound_a_pos2[c

(829:913 ,915 ,914 ,916:917) , ]

125

126 tf_bound_a_pos22 = data.frame(long = tf_bound_a_pos22$long , lat = tf

_bound_a_pos22$lat ,num =1: length(tf_bound_a_pos22$long))
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127

128 # Creates an object of class "ppp" representing a point pattern

dataset in the two -dimensional plane

129 pp_17= ppp(data2017$P1LONG_proj , data2017$P1LAT_proj , window=owin(

poly=list(x=tf_bound_a_pos22$long , y=tf_bound_a_pos22$lat)))

130 dpp_17 = dirichlet(pp_17)

131 plot(dpp_17,border="black",main="")

132 plot(pp_17,add=TRUE ,chars=20,col="red", main="Dirichlet Tiles Plot

for 2017")

133

134 ## Area

135 wts_17 = sapply(tiles(dpp_17),area.owin)

136 cat("Sum of weights :\n")

137 print(sum(wts_17)/1000000)

138 # Target

139 dweight_ave_17t = sum(( data2017$lamt_170)*wts_17)/sum(wts_17)

140 dweight_ave_17t

141 # Standard error calculation

142 wts_17 = as.matrix(wts_17)

143 # wi/sum(wi)

144 wts_172 = wts_17/(sum(wts_17))

145 # covariance matrix for estimated lambda t

146 cov_17 = sdr_17tnt0$cov

147 cov_17t = cov_17[1: nrow(data2017), 1:nrow(data2017)]

148 # plot(( data2017$lamt_se_170)^2,diag(cov_17t))

149 sum ((( data2017$lamt_se_170)^2-diag(cov_17t)))

150 # Standard error for Dirichlet method

151 se2_dir_17t = t(wts_172)%*%cov_17t%*%wts_172

152 sqrt(se2_dir_17t)


