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Abstract 

A total category is defined as a locally small category whose Yoneda embedding, 

Y, has a left adjoint , L. Totality implies cocompleteness (and completeness) .  The 

converse is not true. However, many familiar cocomplete categories are total. In 

fact , total categories enjoy good closure properties. 

In the total setting, arguments are more conceptual than for merely cocomplete 

categories; often expressed in terms of adjointness situations. For example, one may 

specialize total categories by considering lex total categories, total categories whose 

L is lex. Such categories are closely related to topoi. 

Two interesting conjectures are. introduced. Attempts to characterize set A 0" 

(for small A) and set , via adjoints left of Yoneda, are made. 
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Introduction 

One may think of a category, B, as a generalized poset , P:= (P, �), in the 

sense that a poset is a category with horn sets equal to 0 or 1. For a poset , P, it is 

well known that sup-completeness, existence of V iEI ai, for all families ( ai )iEI in 

P, generalizes to small cocompleteness for a category; existence of �F(i) for all 
iEI 

small diagrams F : I --+ B. 

In the poset case, we can phrase our discussion of sup-completeness in terms 

of sups of families, (ai)iE/, which form a downclosed subset of P. Generalizing this 

form of sup-completeness to categories gives a notion of cocompleteness which is, 

in general, strictly stronger than small cocompleteness. We make this more precise. 

Sup-completeness, as defined . by sups of families, may also be expressed by 

asserting the existence of left adjoints to the diagonals P --+ P1 for each (small) 

set /. In a similar manner, for small coconipleteness of a category, B, we may ask 

for left adjoin ts to the diagonals B --+ B 1 for each small category I. 

Now ( in the poset case ) , as suggested above, existence of left adjoints to the 

diagonals may be replaced by "existence of a single left adjoint to !: P --+ /)P" 

where /)P denotes the set of downclosed subsets of P ordered by inclusion and 

! (a) := {b E Plb � a} for a E P. /)P is equivalent to 2P0". Moreover, ! :  P --+ 

2P0" corresponds , via exponential adjointness , to the order relation, P0P x P --+ 2 ,  

on P. 

The "order relation" for a locally small category, 8, is the horn functor, 

1 
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S (- , -) : 8°" x S -+set, where S(A, B) denotes the set of "reasons" for A �  B. 

Indeed, a poset is just a category whose hom functor factors through the inclusion, 

2 -+ set. The transpose, through exponential adjointness, of the hom functor for 

B is called the Yoneda functor, Y : S -+ set8 0p, and posets are exactly those 

categories whose Yoneda functor factors through 2P0P -+ setP0P . 

Note that 2 -+ set has a left adjoint so ! :  P -+ 2P0P has a left adjoint iff 

P -+ setP0P does. Thus, sup-completeness in a poset is equivalent to the existence 

of a left adjoint to P -+ setP0P . This idea leads us to ask for the existence of a 

left adjoint to Yoneda for an arbitrary category, S. Following Street and Walters, 

we call such a category totally cocomplete or, simply, total. 

Total categories were first introduced, in published form, in "Yoneda Structures 

in 2-categories" [S&Wl] . Street and Walters defined the notions of total arrow and 

total object in a 2-category setting. Subsequent works, such as [RJWl] , [Th] and 

[Wal] , explored many properties o( total categories some of which are presented 

here. Later papers in the subject dealt with special types of total categories. One 

example is [St l ] , in which Street gives some relationships between topoi and lex 

total categories; total categories for which the left adjoint to Yoneda is left exact. 

· A total category is small complete and small cocomplete. The converse is not 

true. Despite the fact that not all cocomplete categories are total, a wealth of 

examples exists. Many familiar categories, such as set, grp, and top, are total. 

One motivation for studying total categories, apart from the unification of 
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certain properties of the examples, is the total adjoint functor theorem which elim­

inates, for total categories, the solution set condition of Freyd's adjoint functor 

theorem. 

Section 1 consists of some of the necessary set theoretic preliminaries such 

as the distinction between large and small sets. Large, small and locally small 

categories are defined. We also reproduce Street's interesting characterization of 

small categories. In sections 2 and 3, we make precise the ideas about posets 

discussed above. We said that many familiar categories are total. Section 4 is 

a listing of some "closure properties,, of total categories. That is, it gives some 

methods of determining whether a category is total. Other examples are discussed 

in section 7. 

The total adjoint functor theorem is proved in section 5. As well ,  a "homo­

morphism-like,, property of cocontinuous functors between total categories is proved 

as a consequence of the total adjoint functor theorem. Other consequences are 

introduced in later sections. 

The dual of total is cototal. A category is said to be cototally complete if it 

is locally small and its co-Yoneda embedding has a right adjoint. Totality and 

cototality are not equivalent as is shown in section 6. However, they may be re­

lated ( other than by dualization ). A category which is both total and cototal 

shares many of the properties of a sup-complete poset. set and, more generally, 

Grothendieck topoi are categories which are both total and cototal. 

In section 8, we prove another property of total categories; a relationship be-
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tween ca.rtesia.n closed a.nd total categories. Explicitly, if B is total, then B is 

cartesia.n closed iff the left adjoint ( to Yoneda) preserves binary products. We also 

define a. lex total category in section 8 .  

Some examples of lex totals a.re listed in section 9 a.nd some of their elementary 

properties a.re given. A lex total category has m�ny of the exactness properties of 

topoi.. In fact , lex totals a.re "very nearly" topoi a.nd in section 9, we state some of 

the results of Street's comparison of lex totals a.nd topoi. (Stl ]  

As a. special case of lex totals, one may consider n-tota.ls n E N . That is, 

locally small categories for which there is a. string of n a.djunctions left of Yoneda.. 

Examples a.nd elementary properties of such are discussed in section 10. 



I-Preliminaries 

One has an intuitive notion of SET, the category of sets and functions. Within 

SET, we distinguish certain sets which we call small (see, for example, [Mac] ) . 

Recall the notion of strongly inaccessible cardinal . That is, a cardinal )/, with 

the following two properties: 

I. For every set , I, with III < )/ and for every family of sets (Xi )ier with 

!Xii<)/, Vi E J; I UieI Xii<)/. 

2.  For every set , X, with IXI < )/, IP(X)I < )/ where P(X) denotes the set of 

subsets of X. 

We assume the existence of such a cardinal with )/ > !NI, the cardinality of 

the natural numbers. If U is such that IUI = )/, U is called a universe. Using these 

assumptions, {XI IXI < )/} provides a model for Zermelo-Frankel set theory. 

Definition 1-1: We say "X is a small set" to indicate IXI < )/. set denotes 

the category of all small sets and functions. We say "X is a large set" to indicate 

IXI �)I. D 

The small sets are the usual building blocks of mathematics. They include, for 

example, N ,  R, P(R). 

5 















2-Cocompleteness in a poset 

We would like a class of categories in which completeness and cocompleteness 

both hold. The motivation for such a notion comes from the case of a partially 

ordered set . This section is devoted to a study of cocompleteness in a poset . 

Theorem 2-1: Let P:= (P, �) be a poset. The following are equivalent : 

( 1 )- V S exists for all downclosed subsets, S, of P 

(2)- VT exists for all subsets, T, of P 

(3)- VX E CAT, VX ..!.+p (lim1p exists.) . 

Proof: ( 2)  � ( 1) is trivial. 

(1)�(2): Let L(T) = {z E Pl 3t ET such that x � t} denote the downclosure of a 

subset, T, of P. We claim that VT= V(L(T)), which exists by (i) . 

HT is empty, it is certainly downclosed, so V 0 exists. Now, 

V(L(T)) is an upper bound for T: 

x � V(L(T)) Vx E L(T) by definition of sup. Hence, x � V(L(T)) Vx E T since 

T � L(T). 

V(L(T)) is a least upper bound for T: 

Suppose w E Pis an upper bound for T. That is, x � w Vx ET. We wish to show 

that V(L(T)) � w. Now, x � w Vx E T implies t � w Vt E L(T) since t � x for 

some x ET, by definition. And so V(L(T)) � w. 

12 
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Conversely, suppose p � uq. Then fp $ fuq since f is order preserving. But 

/uq = f(V{xlfx $ q} = V{/xl/x $ q} since f preserves sups. 

Now, V{/xl/x $ q} $ q so /p $ q . I 



3-Totality 

Theorem 2-1 characterizes cocompleteness of a poset in terms of its sup com-

pleteness. One may also characterize cocompleteness in terms of a left adjoint to 

the Yoneda embedding. 

We first note that 2P0P � the set of down-closed subsets of P via 

pop 
il 

2 

and 

where xs denotes the characteristic function. 

Theorem 3-1:  The statements of theorem 2-1 are equivalent to: 

(4)- l has a left adjoint, l (x) = {w E Plw � x} for x E P. 

Proof: We show that (4) is equivalent to ( 1 )  (i.e. VS exists for down-closed 

subsets, S ,  of P.) 

Assume (1). We wish to show, for S down-closed and x E P: 

Now, 

vs x 

S l x 

.vs x 

16 



w � x 'Vw ES 

w E! x 'Vw ES 

S lx 

Conversely, suppose we have m -l ! . We proceed to show that m must be V: 

mS is an upper bound for S: 

P(mS, mS) � 2P0'(S, l mS). Thus, S �l mS. And so, mS is an upper bound. 

mS is the least upper bound: 

Suppose x � b for all x ES. Then S �Lb. Hence mS � b by adjointness. 

Hence, mS �VS. I 

The inclusion 2�set and its left adjoint, 2Lset, given by 

fX= {ol if X ;t: 0 
if x = 0 

induce an adjointness situation: 

.l set pop 

Adjoints compose, so we have 

v 

p .l 2P0' .l setP0P • 
___ ...,. 

, 

17 
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Remark 4-2: evat( l ) may be constructed as the left adjoint to Y .. e; via proposition 
i 

3-5 using the facts that set is small cocomplete and 1 --set is dense ( every 

small set is a small sum of one point sets ) .  0 

More generally, we have the following closure property for total categories. 

Theorem 4-3: ff S is total and A is small, then SA is total. 

Proof: [RJW3] : Recall, for each A EA , we have the evaluation map SA t:A 
S 

( H fo-+ H(A) ) which has left and right adjoints: 

S 
..L 

AR 

where (ALB)(X) = A(A, X) .B and (ARB)(X) = {A(X, A), B} for X E  A, B ES 

AL -l fA : Let HE SA, B ES. We wish to show, SA(ALB, H) � S(B, H(A) )  

sA(ALB,H) � r . s((ALB)x,ax) jXEA 
� r S (A(A, X).B, HX)) (definition AL) jXEA 
� { set(A(A, X), S (B, HX))  (universal property) jXEA 
� setA(A(A, - ), S (B, H-)) 

� S (B, HA) (Yoneda) 





BA(L<P, F) � f B(L<PA, FA) 
jAEA 

� r 8(Ls(<PAL0P), FA) (definition) 
jAEA 

� r B(<PAL0P,8(-, FA) (Ls� Ys) 
jAEA 

� r BA(<P, 8(-,FA)eA0P) (ALop I- fAop ) 
jAEA 

� ! r set(<PG, 8(-, FA)eA 0PG ) 
AEA laeB"" 

� f f set(<PG,B(-,FA)GA) (definition eA0P) 
jAEA GEB"" 

� ! f set(<PG, B(GA, FA)) 
AEA laeB"" 

� 1 f set(<PG, 8(GA, FA)) ( "Fubini" ) 
GEB"" j AEA 

� f set(<PG, f 8(GA, FA)) (take end in) 
1aes11. JAEA 

� r set(<PG, BA(G, F)) 
laes"" 

-

� (BA)(�,8A(-,F)). I 

Another closure property of total categories is the following: 

25 

Theorem 4-4: (Street and Walters) : If B is total and A is a full reflective subcat-
r 

egory of 8, i.e. A J. S with F fully faithful, then A is total. 
r 

Proof: Consider the diagram: 

A---Y---i 

T � F Fi -f F 

s J_ 
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with the Yoneda embeddings. A sup-complete poset is total and cototal. In fact, 

the diagra:m 

commutes; V( ) - = A and A( )+ = V by theorem 2-2; f V = ( )+  and l A = ( ) -

following immediately from their definitions. . 

This situation does not generalize to CAT . However, in the total category 

setting, it does . 

( ) -
Definition 6-'T: Let Ae cat . The Isbell conjugation functors : A A 

( ) +  
are defined pointwise by �+ (A) = A(� , A(-, A))  and w- (A) = set A(w, A(A, - ) ) 

for A E A, � E A, ,P E A. D 

For A E CAT , these functors do not necessarily exist .  We need YA to be 

c�admissible ( i.e. A(�, A(- ,  A)) E set VA E A, � E 1 }  in order to define ( )+ .  

Similarly, we need Z to be admissible in order to define ( ) - . H B is total, then 

B ( �, S ( -, B)) � S ( L�, B} E set since S is locally small and so ( )+ is defined. 

Similarly, if B is cototal, ( ) - exists. 
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( )+ and ( ) - commute with the appropriate Yoneda embeddings. In addition, they 

are adjoint : 

Proposition 6-8: ( )+ -I ( ) -

Proof: let 4>, w be as above. We want to show (setA )DP(4)+ ,  w) � setA0P(4>, w-) .  

(setA )0P(4)+ 1 W) � setA(W, 4)+ )  (op - ing) 

� f set(w A, 4)+ A) jAEA 

� { set('WA, setA0'(4>, A(-, A))) (definition ( )+ ) jAEA 

� f set('WA, f set(4>B, A(B, A))) lAeA lseA 

� f f set('WA, set(4>B, A(B, A))) (take end out) jAEA j BEA 

� r r set(•B, set('WA, A(B, A))) (set Cartesian closed) lAeA lseA 
� f f set(•B, set(wA, A(B, A))) ( "Fubini" ) lseA lAeA  

� f set(•B, f set('WA, A(B, A))) (take end in) lseA lAeA 

� f set(4>B, setA(w, A(B, -))) lseA 

· � f set(4>B, w- B) (definition ( ) - ) lseA 
Ao'( - ) I � set 4>, W . 

For B total and cototal, we have 

(6 - 9) 
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Theorem 6-11 :  If S is total and cototal, for () E B, ii' E S ,  

Proof: [RJWl ] :  (i) S (•+ ' ii') �  B(•, w- )  is the adjointness relation ( )+ ., ( ) - . 

(ii)- B(• , w- ) � •+ (Rw) : 

set B 0' (• , w-)  � f set(•X, q;- X) lxes 
� f set(•X, set8 (w, S (X, -) ) )  (definition ( )- ) lxes 
� f set(•X, (set 8 )°" (S (X, - ) ,  w)) (op - ing) 

lxes 
� f set(•X, S (X, Rw) )  ( Z -1 R ) lxes 
� set8 0' (•,  8(- ,  Rw)) . . . . . ( 1 )  

� ++ (Rw) (definition ( )+ ) 

(iii)- •+ (Rw) � B (L•, Rw) : 
� . 

S (L•, Rw) � S (•,  S (- , Rw)) which is (1) above, so the result is proved in (ii) . 

( iv)- S (•+ ,  w) � w-(L•) : 

(set8 )°" (•+ ,  W) � set8 ('t, •+ ) (op - ing) 

� f set(� X, •+ X) lxes 
� f set(w X, set 8 0' (() ,  S (- ,  X )) )  (definition ( )+ ) lxes 
� f set(wX, S (L•, X)) ( L -1 Y ) lxes 
� set8 (w, S (L•, -))  . . . . .  (2) 



41 

(v)- w- (L�) � B (L�,  Rw) :  

B (L�, Rw) � S(B (L�, - ) , w) since z -;  R .  But S (B (L�, - ) ,  '1') 

� set8 (w ,  8 (L�1 -) )  which is (2) above, so the result is proved in (iv) . I 

As a generalization of the poset case, we may relate R and L via the Isbell 

conjugation functors. 

Theorem 6-12:  H B is total and cototal, 

(i)- R � L( )-

(ii)- L � R( ) + 

Proof: [RJWl] : (i) We wish to show, for w E B, B E B , S (Rw,  B) � S (Lw- , B) . 

B (Rw, B) � set8 0p ( S (- , Rw) ,  S (- , B)) (Z is fully faithful) 

� f set(S (X, R'i') , B (X, B)) 
lxes 

� { set( (set8 )°"(S (X, -) , w) ,  B (X, B)) ( Z -; R ) 
lxes 

� { set(set8 (w,  S (X, -) ) , B (X, B)) (op - ing) 
lxes 

� f set(w-X, B (X, B))  (definition ( )- ) 
lxes 

(L -;  Y) 
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Theorem 8-3 provides an example of a total category which is total but not 

lex total. 

Example 8-o : grp is not lex total since grp is not cartesian closed. D 

It should be noted that B is not , in general, cartesian closed. However, it is 

well known that for small B, B is cartesian closed. 
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only one of Street 's results ,  the proof of which is straightforward. We first introduce 

a "size" (for sets) between small and large. 

Definition 9-11 :  Let JI be the strongly inaccessible cardinal used to define set. 

We say "X is a moderate set" to indicate IXI � )/ .  D 

Theorem 9-12: (Freyd and Street) :  Suppose t is a tofal category satisfying: 

(a) if a pushout of a mono is an iso, then the mono is an iso. 

(b) there is a moderate set M of objects of t such that , for each E E t ,  there is 

an extremal epi D --+ E with D in M. 

Then t has a strongly generating small set of objects. 

Remarks 9-13: 

1 .  If e is lex total and 
. 

I + l 
in e ,  then the square is also a pullback: 

. 

[ x l 
Hence, condition (a) holds for lex totals. 

2. If e has a moderate set of iso classes, then condition (b) is satisfied. D 

Proof: [STl ] : Suppose that t has no small strongly generating set of objects. We 

proceed to show a contradiction. 







10- n-total categories 

We may specialize total categories by considering a left adjoint to L. More 

generally, 

Definition 10-1 A locally small category, A ,  is said to be n-total (n E N) if there 

are functors F1 , F2 , • • •  , F,. in the adjointness situation: 

Remarks 10-2: 

F,. 

A---.L---A 
y 

1 .  Note that , in particular, a total category is I-total. We call a 2-total category 

"essential total" ; terminology derived from essential geometric morphism. 

2. One may define )/-total, for )/=N, by considering a countable string of adj unc­

tions. It is not clear, however, how to define a-total for an arbitrary cardinal 

)/. 

3. One may use a sequence of n adjunctions on the right of Z as a definition of 

n-cototal. Of course, B is n-cototal iff S0P is n-total. 

4. If B is n-total (n > 2) it is, in particular, lex total so it is cartesian closed. 

Now, if B is also n-cototal, then S0P is Cartesian closed . Examples of such 

seem to be rare. 0 

61  
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As we saw, there are many examples of total categories. For larger n, examples 

are rarer. Indeed, it is not known whether there are n-total categories for n � 

5 .  However, the following theorem shows that there are posets which have an 

arbitrarily long (finite) string of adjunctions left of ! .  

Theorem 10-3: For each n E N, there is  a poset which has a string of n adjoints 

left of ! .  

Proo(: We proceed to show that n= { O ,  1, . . . n - 1 }  i s  2n-total (in the poset 

context) .  

2n°" � n + 1 and we  have a sequence of adjunctions; "face" and "degeneracy" : 
• n - 1  

.1 

m n - 1  

, ,  .1 

.l 
D 

m
, .l 

n + l 

•o .l 

m o 

where mi : n - n + 1 acts as the identity on {O, 1 ,  . . .  , i - 1 }  and sends i i-+ 

i + 1 ,  i + 1 1-+ i + 2,  etc. and Si : n + 1 - n and sends i, i + 1 i-+ i and sends 

i + 2 1-+ i + 1 ,  i + 3 i-+ i + 2, etc. 

Finally, note that m0 is ! so ! has a string of 2n adjunctions on the left. I 

It should be noted that n is "2n-total" in the poset context only. There is not 

a string of 2n-adjoints left of 2 - set . 
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. � 
Our "chief" example of a lex total category was A for small A. We saw that 

it was an example of an essenti�l total category. Indeed, this particular category 

leads to an interesting conjecture. In [MB] , Bunge proved that a category, X ,  is 

equivalent to A iff X is complete, wellpowered, cowellpowered, coregular, and has 

a generating set of abstractly unary projectives. K, abstractly unary projective, in 

her context, means X(-,  K) is cocontinuous. 

Suppose B is essential total with a small generating set of objects. In particular, 

B is lex total so, by theorem 9-8, it is a Grothendieck topos and, as such, satisfies 

the first four hypotheses of Bunge's characterization. 

For an object, K, of S ,  S(- ,  K) : Bop ----+set. set is locally small so 

S (- ,  K) is admissible. Now, B is a Grothendieck topos, so Bop is total. By the 

total adjoint functor theorem, S (- ,  K) is cocontinuous iff it has a right adjoint . 

In particular, this is true for generating objects , K. Thus, K, abstractly unary 

proj ective, in our context , means S (- ,  K) has a right adjoint. The question remains 

whether an essential total category with a small generating set contains a generating 

set of objects, K, for which S (- ,  K) has a right adjoint . In other words, is an 

esseniial total "very close" to .A in the same sense as a lex total is almost a topos? 

Wood has suggested a way in which to attack this problem. Suppose we have: 

T 

.l 
B set8 0" 

.l 

y 
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