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Abstract

A total category is defined as a locally small category whose Yoneda embedding,
Y, has a left adjoint, L. Totality implies cocompleteness (and completeness). The
converse is not true. However, many familiar cocomplete categories are total. In

fact, total categories enjoy good closure properties.

In the total setting, arguments are more conceptual than for merely cocomplete
categories; often expressed in terms of adjointness situations. For example, one may
specialize total categories by considering lex total categories, total categories whose
L is lex. Such categories are closely related to topoi.

Two interesting conjectures are introduced. Attempts to characterize set A°”

(for small A) and set , via adjoints left of Yoneda, are made.

vi



Notation

Most of the notation we use is standard except where, for typographical reasons,
conventions are not followed.

Categories such as set, grp, and top are denoted by boldface lower case. Small
categories are denoted by bold face upper case ( A, B, C, ... ). Large categories
are denoted by upper case calligraphic letters ( 4, 8, C,...).

“——+” is used for morphism, functor, or natural transformation. Com-
position of morphisms is written in the “functional” way. Generally, arguments are
written on the right. However, in the name of a functor, the argument is sometimes
written as a blank space or a “-”. “—” denotes a monomorphism. An identity
arrow is denoted by “ A5 A7 or “ALA.”

Set theoretic notation is standard with the exception that C means inclusion
and C means strict inclusion.

Other notation is defined in the text.
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Introduction

One may think of a category, 8, as a generalized poset, P:= (P, <), in the
sense that a poset is a category with hom sets equal to 0 or 1. For a poset, P, it is
well known that sup—completeness, existence of \/,¢; as, for all families (a;)ier in
P, generalizes to small cocompleteness for a category; existence of lim F'(z) for all

el
small diagrams F : I — B. )

In the poset case, we can phrase our discussion of sup—completeness in terms
of sups of families, (a;)ier, which form a downclosed subset of P. Generalizing this
form of sup—completeness to categories gives a notion of cocompleteness which is,
in general, strictly stronger than small cocompleteness. We make this more precise.

Sup—-completeness, as defined by sups of families, may also be expressed by
asserting the existence of left adjoints to the diagonals P — P’ for each (small)
set I. In a similar manner, for small cocompleteness of a category, 8, we may ask
for left adjoints to the diagonals B — B! for each small category I.

Now ( in the poset case ), as suggested above, existence of left adjoints to the
diagonals may be replaced by “existence of a single left adjoint to |: P — DP”
where DP denotes the set of downclosed subsets of P ordered by inclusion and
| (a) := {b € P|b< a} for a € P. DP is equivalent to 2P°”. Moreover, |: P —
2P°? corresponds, via exponential adjointness, to the order relation, P°? x P — 2,
on P.

The “order relation” for a locally small category, B, is the hom functor,

1
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B(—,-) : B°? x B — set, where B(A, B) denotes the set of “reasons” for A < B.
Indeed, a poset is just a category whose hom functor factors through the inclusion,
2 — set. The transpose, through exponential adjointness, of the hom functor for
B is called the Yoneda functor, Y : 8 — set?””, and posets are exactly those

categories whose Yoneda functor factors through 2P”” — get?"”.

Note that 2 — set has a left adjoint so |: P — 2P°” has a left adjoint iff
P — setP’” does. Thus, sup—completeness in a poset is equivalent to the existence
of a left adjoint to P — set®’’. This idea leads us to ask for the existence of a
left adjoint to Yoneda for an arbitrary category, 8. Following Street and Walters,

we call such a category totally cocomplete or, simply, total.

Total categories were first introduced, in published form, in “Yoneda Structures
in 2—categories” [S&W1]. Street and Walters defined the notions of total arrow and
total object in a 2—catégory setting. Subsequent works, such as [RJW1], [Th] and
[Wal], explored many properties of total categories some of which are presented
here. Later papers in the subject dealt with special types of total ;ategories. One
example is [Stl], in which Street gives some relationships between topoi and lex

total categories; total categories for which the left adjoint to Yoneda is left exact.

A total category is small complete and small cocomplete. The converse is not
true. Despite the fact that not all cocomplete categories are total, a wealth of

examples exists. Many familiar categories, such as set, grp, and top, are total.

One motivation for studying total categories, apart from the unification of
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certain properties of the examples, is the total adjoint functor theorem which elim-
inates, for total categories, the solution set condition of Freyd’s adjoint functor
theorem.

Section 1 consists of some of the necessary set theoretic preliminaries such
as the distinction between large and small sets. Large, small and locally small
categories are defined. We also reproduce Street’s interesting characterization of
small categories. In sections 2 and 3, we make precise the ideas about posets
discussed above. We said that many familiar categories are total. Section 4 is
a listing of some “closure properties” of total categories. That is, it gives some
methods of determining whether a category is total. Other examples are discussed
in section 7.

The total adjoint functor theorem is proved in section 5. As well, a “homo-

morphism-like” property of cocontinuous functors between total categories is proved
as a consequence of the total adjoint functor theorem. Other consequences are
introduced in later sections.

The dual of total is cototal. A category is said to be cototally complete if it
is locally small and its co-Yoneda embedding has a right adjoint. Totality and
cototality are not equivalent as is shown in section 6. However, they may be re-
lated ( other than by dualization ). A category which is both total and cototal
shares many of the properties of a sup—complete poset. set and, more genera.ll).',

Grothendieck topoi are categories which are both total and cototal.

In section 8, we prove another property of total categories; a relationship be-
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tween cartesian closed and total categories. Explicitly, if B is total, then B is
cartesian closed iff the left adjoint ( to Yoneda ) preserves binary products. We also
define a lex total category in section 8.

Some examples of lex totals are listed in section 9 and some of their elementary
properties are given. A lex total category has many of the exactness properties of
topoi. In fact, lex totals are “very nearly” topoi and in section 9, we state some of
the results of Street’s comparison of lex totals and topoi. [Stl]

As a special case of lex totals, one may consider n-totals n € N . That is,
locally small categories for which there is a string of n adjunctions left of Yoneda.

Examples and elementary properties of such are discussed in section 10.



1-Preliminaries

One has an intuitive notion of SET, the category of sets and functions. Within
SET, we distinguish certain sets which we call small (see, for example, [Mac]).
Recall the notion of strongly snaccesssble cardinal . That is, a cardinal N, with

the following two properties:

1. For every set, I, with |I| < N and for every family of sets (X;);er with
| Xs| < N, Viel; |Uier Xil < N.

2. For every set, X, with |X| < N, |P(X)| < N where P(X) denotes the set of
subsets of X. |
We assume the existence of such a cardinal with N > |N|, the cardinality of

the natural numbers. If U is such that |U| = N, U is called a unsverse. Using these

assumptions, { X| |X| < N} provides a model for Zermelo-Frankel set theory.

Definition 1-1: We say “X is a small set” to indicate |X| < N. set denotes
the category of all small sets and functions. We say “X is a large set” to indicate

1X|> N. O

The small sets are the usual building blocks of mathematics. They include, for

example, N, R, P(R).
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We denote by cat := cat(set) the (2-)category of category objects in set. The

objects of cat are called small categories. Notice that among the objects of

CAYT := cat(SET) are small categories. A category which is not small is said to

be large. Note also that set¢ cat but sete CAT , the set of all small sets being

large.

Definition 1-2: C in CAT is said to be locally small ( or to have small

hom sets ) if C(A,B) €set VA,Be C.0

Certainly a small category is locally small. Street [St2] and Freyd have given

a characterization of small categories in terms of local smallness.

Proposition 1-3: (i)-If C is small, then C and C := setC”” are both locally
small.

(ii)- If C and C are locally small, then C is essentially small (i.e. equivalent to a

small category)

Proof: (i)- If C is small, it is locally small. Furthermore, for ®, ¥ € C,

C(3,7) ~ /; o set(®(C), ¥(C))

Now, set(®(C), ¥(C)) is small ( set is locally small ) so the above is a small end

of small sets. Hence C(®, ¥) € set andC is locally small.
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(ii)—(Street) Assume C is skeletal. We show that C is small and hence that in the
general case C is essentially small. It suffices to show that Ob(C) is small, for C is

locally small and

Mor(C)= )  C(A,B)
A,BEOH(C)

We proced to show 3T such that Ob(C) — a(T, T); whence C is small.
Define T: C°? — set by T(C) = {c:C — B|c is a split epi } + {0} and for

a:C - C'in C, T(a):T(C') — T(C) by

c'a, if c’ais a split epi;
T(a)(c') = {o, " tmot T

and T'(a)(0) = 0.
We must check that T is well defined. That is, that T(C) €set and T is functorial.
Consider T(C) := {(c, b)|C‘-=—z-+ B,c € T(c) and cb = B}
We have T(C) — T(C) ( (¢,b) = ¢ ) ; an onto function.
Define T(C)-L»C(C, C) by h(c,b) = be. Now, bc is an idempotent since (bc)(bc) =
b(cb)e = bc. Suppose h(c,b) = h(c’,b’) where B-2.c B Then (cb')(c'd) =
c(b'c’)b = c(bc)b = (cb)(cb) = BB = B and (c'b)(cb") = c'(be)b’ = c'(b'c")b =
(c't')(c'b’') = B'B' = B’ ; whence B ~ B'. But C is skeletal, so B = B'.

T(C) = 2ecC(C,C) h=1(e) ; a small sum. We proceed to show h~!(e) € set;
whence T(C) is small.

Now, h~1(e) = {(c, b)|bc = €}

_Jo, b e not idem
1 {(¢,b)|C== B such that bc = e for unique B} otherwise
c



So h—1(e) C C(C, B) x C(B, C) for a single B; and so h~!(e) € set.
We have T(C) — T'(C) onto so T(C) € set ( a quotient of a small set is a small
set ).
T is functorial:

: - c T(©)
Identity condition: For C—C, T(C)——T(C) is given by T(C)(c) = Cc = ¢
and T'(C)(0) = 0.

' T(aa’
Composition: Suppose C"”=»C'-25C are in C. Consider T(C)LT(C”)

T(a) T(a')
and T(C) —T(C") +»T(C"). We have T'(a’a)(0) = 0 = T'(a’)T(a)(0).

For C—5 B a split epi, we must consider cases:
1: ca split epi, caa’ split epi : T'(aa’) = caa’ and T(a’)T(a)(c) = T(a’)(ca) = caa’.
2: ca split epi, caa’ not a split epi: T'(aa’) = 0 and T'(a’')T(a)(c) = T(a’)(ca) = 0.
3: ca not a split epi: T'(aa’)(c) = 0, since if ca is not a split epi then neither is
caa’, and T'(a’)T(a)(c) = T(a')(0) = 0.
Thus, T € C as claimed.

Finally, define m : 0b(C) —» C(T, T). For X € Ob(C), mX is the natural trans-
formation T— = T whose C** component T(C)—'—nﬁ—»T(C) is given by

mXC(0) = 0 and for C—— B,

fB#X
if B=X

mXCk)={S
By considering cases, as with T above, we see that m is well defined.
We claim that m is one-to-one: Suppose X # Y and consider 1x € T(X) ( X LN ¢
being a split epi ). Now, mXX(1x) = 1x and mY X(1x) = 0 so mX # mY .

Thus, Ob(C) is small as required. This completes the proof. B



“small” is used as an adjective in appropriate situations. For example,

Definition 1-4: C in CAT is (small) complete (respectively (small) cocomplete)

if VD € cat and all functors F : D — (, lim F' ( respectively lim F ) exists. 0
For small categories, small completeness is trivial:

Proposition 1-5:(Freyd): A small category, C, which is small complete is simply
a preorder which has an inf for each small set of its elements.

Proof: <: categorical product in a preorder is inf and a preorder has equalizers:

< =< '

(S—=S ? T).

=>: [Mac] p.110: Suppose C is not a preorder. Then there are objects S, T €C and
arrows S ék T with f # g. Let I € set and form [] T. There are at least 2 arrows

g i€l
S — [] T since each arrow is a family (S — T');cr and each member of the family

can be either f or g. By taking |I| > |Mor(C)|, I C 2f C C(S,][]t) C Mor(C);

yields a contradiction. il

Note that lim and lim, considered as functors, occur in the adjointness
—_— —
lim

situation: 4m,

Al

L

lim
‘_

where A:C — CP,A(C)(D) =C for C e C, D € D.
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Familiar categories such as set, grp, and top are both small complete and small
cocomplete. A category that is small complete is not necessarily small cocomplete

(and vice-versa). Adidmek [Ad| gives an example.

Example 1-8: Let P,:set — set be given by P,(A) = {A¢ C A|A¢ # 0} and for
P.()=1()

A——-»B P, (A)————»P (B).

Consider the category (P,;set) whose objects are pairs (A, a) where P.(A);»A

J
and whose morphisms are functions A——— B such that

10)

P.(A) P.(B)
al lb
A B

commutes.
(P,;set) is complete. Indeed, U: (P,;set)——set ( (A4, a) — A) creates all limits.
We claim that (P,;set) is not cocomplete.
Let (A, a) and (B, b) be nonempty. We proceed to show that they have no coproduct.
Let X be any set containing A and B disjointly and define z: P,(X) — X by
aXo, if Xy C A;
bXo, if Xo C B;

2Xo = arbitrarily, if Xp = X
anyz ¢ Xo, otherwise.

Assume that (A4, a) and (B, b) have a coproduct (C,c). The inclusions A — X and

B — X induce morphisms (4,a) — (X, z) and (B,b) — (X, z).
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Since (C,¢c) is a coproduct, we have a morphism (C, c)—f—»(X, z):

(4,a)
\\\;4

(Cye) (X, 1)

(B, b)//

where 1 and j are the injections.

The image of f, P.(f (C))—d» f(C), where d is the restriction of z, is a subobject of
(X, z) which contains (4, a) and (B,b). Call it (D, d) — (X, z).
D ¢ A and D Z B since D contains both. Now, since (D, d) is a subobject, zD € D

so we must have D = X (by definition of z).

Thus, f is onto. But X was arbitrarily large giving an arbitrarily large coproduct;

a contradiction.

There are theorems relating completeness and cocompleteness. For example,

Grillet [Gri] has shown “ regular, complete and regularly cowellpowered ” implies

“ cocomplete .



2—Cocompleteness in a poset

We would like a class of categories in which completeness and cocompleteness
both hold. The motivation for such a notion comes from the case of a partially

ordered set. This section is devoted to a study of cocompleteness in a poset.

Theorem 2-1: Let P:= (P, <X) be a poset. The following are equivalent:

(1)- V S exists for all downclosed subsets, S, of P

(2)- VT exists for all subsets, T, of P

(3)- VX e CAT, vr-Z.p [limp exists.].

Proof: (2) = (1) is trivial.

(1)=(2): Let L(T) = {z € P| 3t € T such that z < ¢t} denote the downclosure of a
subset, T, of P. We claim that \/ T = \/(L(T')), which exists by (i).

If T is empty, it is certainly downclosed, so \/ @ exists. Now,

V(L(T)) is an upper bound for T':

z < V(L(T)) Vz € L(T) by definition of sup. Hence, z < \/(L(T)) Vz € T since
T C L(T).

V(L(T)) is a least upper bound for T:

Suppose w € P is an upper bound for T. That is, z < w Vz € T. We wish to show
that \/(L(T)) <X w. Now, z < w Vz € T implies t < w Vt € L(T) since ¢t X z for

some z € T, by definition. And so \/(L(T)) <X w.

12
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(2)= (3): For a poset, \/ is coproduct:

t<wVteT

t——uwVteT

Thus, if P has all sups, it has all coproducts (including the empty one which is \/ @)
< <

P has all coequalizers ( for z%& w, its coequalizer is the identity w——— w). Thus,

P has all colimits.

(3)=(2): We prove a slightly stronger result. lim 4 A so

limp < ¢

vz € X [p(z) < 4|

V p(z) ¢

zeX

Thus, by Yoneda, limp =~ \/,y p(z) and so limp exists iff /. p(z) exists. In
particular, we may consider, $: T — P, the inclusion. Given that 1_1111. 1 exists (T
considered as a discrete category and ¢ as a functor), V,cri(t) = Vet = VT

exists.

Remarks 2-2:

1. Note that, in particular, \/ @, if it exists, is the initial object of P.
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2. We may replace “poset” and “CAT ” by “small poset” and “cat ” in the above

theorem. [

Theorem 2-3: P has all sups iff it has all infs. More precisely, \/ S exists for all
S C Piff AT exists for all T C P.

Proof: We need only prove “=>”. Without loss of generality, assume S is upclosed.
Let S~ denote the set of lower bounds for S. We claim that AS =V S~.

\V/ S~ is a lower bound for S:

t < sVs €S Vt e S~ by definition of lower bound. Thus, \/ S~ <sVseS.

V S~ is the greatest lower bound:

Suppose t < sVs € S. Then t € S~ and hencet <\/S—. |

A poset has equalizers. Thus, an inf-complete (small) poset is (small) complete
in the categorical sense as defined in 1-4. Theorem 2-3 may be translated as “ P
is (small) complete iff P is (small) cocomplete.”

There is a “nice” adjoint functor theorem for posets. We will study the general

case in section 5.

Theorem 2-4: Let P;Q be an order preserving function between posets
P:= (P, <) and Q:= (Q, <). If f preserves all sups, then Ju I f.

Proof: Define u by ug = \/{z € P|fz < q}. Then u | f:

Let p € P, ¢ € Q and suppose fp < q. Then p € A = {z|fz < ¢} which implies

pXVA=> p=3uw.
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Conversely, suppose p < ug. Then fp < fugq since f is order preserving. But
fug = f(V{z|fz < q} = V{fz|fz < q} since f preserves sups.

Now, V{fz|fz<q} <gso fp<q.B



3-Totality

Theorem 2-1 characterizes cocompleteness of a poset in terms of its sup com-

pleteness. One may also characterize cocompleteness in terms of a left adjoint to

the Yoneda embedding.

We first note that 2P°” ~ the set of down-closed subsets of P via

Por
fl —_ 1)
2
and XS+ 1S

where xs denotes the characteristic function.

Theorem 3-1: The statements of theorem 2-1 are equivalent to:
(4)- | has a left adjoint, | (z) = {w € P|w X z} for z € P.

Proof: We show that (4) is equivalent to (1) (i.e. \/ S exists for down-closed

subsets, S, of P.)

Assume (1). We wish to show, for S down-closed and z € P:

VS—————»::

S—— |z

Now,

‘ VS————»:!:

16
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Conversely, suppose we have m - | . We proceed to show that m must be \/:
mS is an upper bound for S: |

P(mS,mS) ~ 2P°°(S, | mS). Thus, S C| mS. And so, mS is an upper bound.
mS is the least upper bound:

Suppose z < b for all z € S. Then S C| b. Hence mS < b by adjointness.

Hence, mS ~\/S. 1

The inclusion 2——set and its left adjoint, 24f—set, given by

_J1 ifX+#£0
fx_{o ifX=0

induce an adjointness situation:
i

por por
2 1 set
—_—

;Pop

Adjoints compose, so we have

v sPe?

P 1 _2P°’f L setP”;

14

! ;Pop
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V fB°" 4¢P | . In fact, +F°” | is the Yoneda enbedding for P:

P

set?” (z+— P(—,1))

Thus, we may characterize cocompleteness in a poset as follows:

Y o o o
Theorem 3-2: P is cocomplete iff P———»getP”” has a left adjoint, L.
Proof: \/ is L applied to functors ® € set®*” which factor through 2. By theorem

3-1, P is cocomplete. W

Theorem 3-2 motivates the definition of a total category.

Definition 3—-3: B8 in CAT is said to be totally cocomplete (or total) if it is locally

small and the Yoneda embedding

Y °
B——————setd”

(B+——8(-,B))

has a left adjoint. O

Remarks 3—4:

1. We reserve ‘Y’ for the Yoneda embedding and ‘L’ for its left adjoint when it
exists. When necessary, such functors are subscripted with the appropriate

category ( for example, Lg ).
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2. Wealwayshave 8 SET2°” which is not in CAT . If 8 is locally small,
then B——get3”.

3. In general, B:=set;” isa large category; in a sense, much larger than 8. It

is not necessarily locally small. [

If 8 is total, it is a full reflective subcategory of set?°”, a complete and co-
complete category. Thus, a total category is both complete and cocomplete. It is
not true, in general, that a cocomplete category is total for then every cocomplete
category would be complete, contradicting 1-6. In fact, as we shall see in example

6-3, a cocomplete and complete category need not be total. However, we have the

following result. Recall the definition of dense.

D
Definition 3—-5: Let 4 and B be locally small. A functor 4A———— 8 is said to

(D,-) op
be dense if B—————set4”” ( B+ B(D-, B) ) is fully faithful.

D
Proposition 3-6: If A is in cat , A——— 3 dense and 8 small cocomplete, then

B is total.

Proof: see corollary 2, theorem 4-4. il

We conclude this section with a characterization of total categories in terms of

discrete fibrations. Recall the category of elements.

Definition 3-7: Let & € 4. &, denotes the category whose objects are pairs,

(A,a), where A € 4 and o € ®(A), and a morphism, (A4, a)—lv(B,ﬂ), is
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AL B in A such that a = of(8). O

For ® € A, A total, we have L4 ~ liLn’(Qc;——p——»A) where p: (4,a) — A,
D
( see [S&W1] ). Recall, [S&W2], that any functor §———— 4 admits a factoriza-
tion:
E
£
lu
D
A
with E final and M a discrete fibration ( for a definition of discrete fibration, see,
for example [PTJ] ). It follows that, for A with small hom sets, 4 is total iff every
diagram in A4, whose associated discrete fibration has small fibres, has a colimit.
It is not easy to realize colimits in 8 as L® for & € B. However, we may
consider, as an easy example, A+ B € B and searchfora ® € B such that L& ~ A+
B. L(B(—,A)) ~ A and L(B(—, B) ~ B since Y is fully faithful. L is cocontinuous

so A+ B ~ L(8(—, A))+L(8(-, B)) ~ L(B(—,A)+8(—,B)). Thus,® ~ 8(—, A)+

B(-, B).



4— Examples and closure properties

In the previous section, we saw that a sup-complete poset is total. The results

in this section show that the class of total categories contains many familiar ones.

Theorem 4-1 (Street and Walters): For A € cat, setA”’ is total.
Proof: [S&W1]: Recall that A :=setA””, For f : A——B8, we have an induced

functor, f : B——A, namely set/°”; precomposition with for.

Y, - ~ Y2 2
In particular, A * A induces A A (YX makes sense since A is
small. ).
Explicitly, Ae=——=4: Y4(®) = A(~,®) for 8 € & and , for ¢ € A,
a

We claim that ¥ 4 Y5:
We wish to show, for ® € A, ¢ € A, A(Vay,®) ~ A(y, A(—, ).
X(ﬂ'ﬁ, P) ~ fAeAset(lagﬁA, DA) ~ [, 2 8et(Y(A(-, A)), 2A)) by definition of

}7;. Now, ¢y € A so, by the yoneda density lemma, we may write it as a coend:

rea
v [ TyrAn

21
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rex
In particular, Y(A(—, A) :/ YyI.A(A(—, A),T)
rea .
= [ erxR@A-4,0)

rea
~ / YI' x'A (by the Yoneda lemma)

o rea
Thus, A(Yay, ) ~ /:‘eAset(/ yI' x A, D A)

~ / / _set(yI' xT'4, $A) (coend out becomes end)
AeAJred

~ / / _set(yT,set(T4, 24)) -( — x TA - set(T 4, ) }
A€A JreA

z/ A/ set(yl',set(l'4, ®A)) (“Fubini”)
rei Jaea

z/ _set(yr, set('A,®A)) (take end in)
reaA A€EA

o~ / _set(yT,A(T, 9))
TeA

~ A%, 4(-,2)). §
In particular,

Corollary 1: set is total.

~

1°°p " set°? . evat(1) saet°?
Proof: set ~ set’ «——set is given by sete——set where

evat(1)(f) = f(1) since v
1 —— , get!™

M7
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Remark 4-2: evat(1) may be constructed as the left adjoint to Y,e¢ Via proposition
3-5 using the facts that set is small cocomplete and 1—' get is dense ( every

small set is a small sum of one point sets ). (0

More generally, we have the following closure property for total categories.

Theorem 4-3: If B is total and A is small, then 84 is total.
Proof: [RJW3]: Recall, for each A € A , we have the evaluation map BA-—"sB

( H— H(A) ) which has left and right adjoints:

Ar

€A L
BA » B
4

Agp

where (AL B)(X) = A(A, X).B and (ArB)(X) = {A(X,A),B} for X€ A,Bec B

AL €4 : Let H € BA, B e B. We wish to show, 84(A. B, H) ~ B(B, H(A))

BA(ALB, H) = / 8((ALB)X, HX)
XeA
z/ B(A(A,X).B,HX)) (definition Ayr)
XeA
~ f set(A(A, X),8(B,HX)) (universal property)
XeA
~ set*(A(4,-),8(B,H-))

~ B(B,HA) (Yoneda)



e Ag : Let B€ B, H € BA. We wish to show 8(HA, B) ~ BA(H, AgB).

BAH, AnB) = [ B(HX,(4xB)(X))
XEA
z/ B(HX,{A(X, A), B}) (definition Ag )
X€EA
o~ / set(A(X, A), B(HX, B)) (universal property)
XeEA
~ A(A(-,A),8(H-, B))

~ B(HA, B) (Yoneda)

SO, ALOP e erp_

Let ® € (ﬁ), then ®A.P € B :

AL°?

(84> gor

: L /

We claim that 84 (BA) is given by (L®)(A) ~ Ls(BALP).

We wish to show, for F € 84, BA(L®, F) ~ (BA)(®, BA(-, F)).

24
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BA(LY,F) ~ / B(L®A,FA)
AEA

Z

B(Lg(®AL?),FA) (definition)

L\.;\.;\%\.L\;_\.
»

m
>

B(®AL?, B(—, FA) (Ls - Yp)

1R

m
>

BA(D, B(—,FA)es®) (AL F €4 )

R

1R

/ set(BG, B(—, FA)e,°PG )
GEBA

/ set(®G, B(—, FA)GA) (definition €4%° )
GEBA

f set(3G, B(GA, F 4))
€EA JGeBA

/ set(®G, B(GA,FA))  (“Fubini”)
AEA

m
>

R

m
>

R

R

set(®G, B(GA,FA)) (take end in)
A€A

set(®G, BA(G, F))

R

R
>

R
3§
t 4

)(®,84(-,F))- 1

Another closure property of total categories is the following:

Theorem 4-4: (Street and Walters): If 8 is total and A is a full reflective subcat-
T

 N————

egory of B,i.e. A L B with F fully faithful, then 4 is total.

F
Proof: Consider the diagram:

A ;iAn
T\
T -—| F Fy —I ?
& L v
B st 5 & B

+

Yy
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where F is the fully faithful “inclusion”, T is the reflector and Fj is left Kan exten-

sion; for ® € f, For
AP — Bor
@ =5
Fg(‘l’)
set

Fi(®) = Lanpos(®). Recall, for T 4 F, we have T - F so F, is isomorphic to L.
We claim that TLgF} 1Y 4 : We wish to show A(TLgF1®, A) ~ /T(Q, A(—, A)) for

Ac A de].
A(TLgFy®, A) ~ B(Lg F,®, F A) (THF)

~ B(F®,8(-,FA)) (Ls-Ys)
~ 4(®,F(B(-,F4)) (FRAF)
Now, F(8(-,FA)) ~ B(F-,FA) and B(F—,FA) ~ A(—, A) since F is fully

faithful. Substituting, we have A(®, F(8(—, FA))) ~ A(®, A(—, A)). B

The above theorem tells us how to compute colimits in a full reflective subcat-
egory of a total category. To compute the colimit of a diagram in A, notation as
above, one first considers it as an object of A, then as an object of B by applying
Fy, calculates its colimit in B (8 is total) using Lg, and reflects the result into A
via T.

Recall that a theory, T , is said to have rank if the arrity of the operations is

bounded. More precisely,

Definition 4-5: [Man] p. 56: Let T = (T,n,o,x) be an algebraic theory in set.

We say that T has rank if there exists a cardinal N such that VX € set Vw € T'(X),
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arrity(w) < N.O

Recall also that the category of T-algebras for a theory, T, with rank is a full

reflective subcategory of A for some small A. Hence, from theorems 4-1 and 4-4,

we have:

Corollary 1: The category of T-algebras for a theory, T, with rank is total. il

This corollary provides a wealth of examples. grp, ab, rng and such are total

categories. As another corollary, we are able to prove proposition 3-6.

D
B dense and B8 small cocomplete, then

Corollary 2: If A isincat, A
B is total.

Proof: [RIJW1]: By definition ( D dense ), (D,-): 8 — A ( B— 8(D—,B))
is fully faithful.

We claim that F : A——8 (T — [*€ATA.DA) is left adjoint to (D, -).

We wish to show B(FT, B) ~ A(T, 8(D,B)) VB€e 8, T €A.
A€A.
B(FT, B) ~ B( / TA.DA, B)
o~ / B(TA.DA, B) " (coend out becomes end)
A€EA
~ / set(l'A, B(D—, B)) (universal property)
A€EA

~ A(T, 8(D-, B)).

Thus, 8 is a full reflective subcategory of A which is total by theorem 4-1. B



5— Total adjoint functor theorem

A simple application showing the power of the total category setting is the

total adjoint functor theorem. Recall Freyd’s adjoint functor theorem.

Theorem 5-1: (Freyd): Suppose A is (small) complete and locally small. A
functor AL»C has a left adjoint iff it preserves all small limits and satisfies the
solution set condition:

For each C € (, there is a small set I and an /-indexed family f;:C — UA; in C
such that every h:C — UA in C can be written as a composite h = Ua o f; for
some index 1+ and some a: A; — A.

Proof: see, for example, [Mac| p. 117. B

There is a “nice” adjoint functor theorem in the total category setting. We

first define admissible functor.

Definition 5-2: A functor F: B — X is said to be admisssble if X (F B, X) € set

VBeB, XeX. O
Note, in particular, if X is locally small, then any such F is admissible.

Theorem 5-3: (Street and Walters): If B is total and F: 8 — X is admissible,

then F has a right adjoint iff F' is cocontinuous, i.e. preserves colimits.

28
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Proof: =>: (well known): For F - R:

F(limW) T

lim W ———————— RT

W ———— RT cocones

FW —————T cocones

lim FW T

<«: For fixed X € X, X(F-,X) : B°?———sget since F is admissible. Let

G:X——B (X X(F-,X)) and consider the diagram:

L‘[—llY
G
B

Then F 4 LG. B

It is interesting to note that this theorem generalizes theorem 2-4 , the adjoint
functor theorem for posets. As an immediate consequence of the total adjoint

functor theorem, we have:

Corollary 1: If 8 is total, C locally small , then any cocontinuous F: 8 — C has

a right adjoint. W
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We conclude this section with an interesting property of cocontinuous functors

between total categories.

F . .
Theorem 5-4: Suppose 4 and 8 are total and /- ————— 8 is cocontinuous,

hence has a right adjoint, U, say. Suppose further that Fy (- f‘) exists. Then both

Fy

A B
”~ A
Ly Li-|y
Y v
A 8
F

commute.

Proof:[RJW3]: The “ Y - square ” always commutes.

Let ® € 4, B € B. Then B(FL4®, B) ~ A(L«®,UB), since F U,
o~ i(@,ﬂ(—,UB)) = (P), since ( Ly 1Yy ).

Now, A(—,UB)) ~ B(F-, B)), since ( F4U ). So,

(P) ~ A(®, B(F-, B))
~ A(®,F(8(-,B))) (by Yoneda)

~ A(®,F(8(-,B))) (definition of F)
~ B(R®,8(-,B) (FRAF)
~ B(Lg F\®, B) (Lg 1Ys )

Thus, FL4® ~ L F1®. B
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The “L - square” of the above theorem is reminiscent of the homomorphism
f
condition for a function between groups. Recall that a function G——— H between

groups G and H is said to be a homomorphism if

GxG Loid HxH
*g . Il;

commutes.

F
In this context, one may think of a cocontinuous functor 4 ———— 8, as

above, as a “homomorphism” between total categories in that it preserves the “sup

operation” L : i—— 4.



6—Duality

The dual notion of totality is cototalsty.

" Definition 6-1: B in CAT is said to be cototally complete ( or cototal ) if it is

locally small and

B—Z*B := (setB)°P

(B——8(8,-))

has a right adjoint. O

Remarks 6-2:
1. We denote this right adjoint, when it exists, by Rg
2. ( )°?: CAT*° — CAT ( That is, op-ing reverses the direction of natural
transformations and hence the sense of adjunctions ) so, since (8)°? = (ﬁ )18
is cototal iff BP is total.

3. Cototal categories are complete and cocomplete ( being full coreflective sub-

categories of (set?)or 7). [

The example below, due to Paré, shows that totality and cototality are not

equivalent.

32
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Example 6-3: [RJW1]: grp is total as was seen in section 4. We proceed to show
that it is not cototal.
For every infinite cardinal, a, let S, be a simple group of cardinality a. Note that
A = {a|a infinite cardinal in set} is in SET but not in set.
'

Let 1 denote the trivial group and write S ———1 for the unique homomorphism.

Consider the diagram in set8*P:

grp(say —)

() /ffﬁij/// '
grp(1,-) : Vae A

We claim that it has a colimit in set&TP.

Let G be any group and “evaluate” (%) at G:

grp(Sq, G)
grp(!m G) .
(*(@))

grp(1,6) . Vaed

which is a large diagram of sets.

The group, G, has cardinality, 3, say. Since G is a small group, § = {a € A|a < £}
is small.

If « € A—J, then grp(Sa, G) = 1 since a > 3.

Now,

lim *(G) ~ ) _ grp(Sa,G) /€ =(P)
a€A
where € is the equivalence relation generated by identification of all the 0 maps:

Sq———1———G. But, except for all but a small set, indexed by f§, the sets
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8rp(Sa, G) consist only of the 0 map. Thus,

(P)= (3 (8rP(5a,G) \{S.—>G})+1
a€p

which is in set.
Suppose we have L o Ygrpor (i.e. grp? total ). Then the lim of (x) is preserved
by L (since L is a left adjoint) inducing a lim diagram in grp. But LY = 1 since
Y is fully faithful. So, if L exists,
L(im (%) = [] Sa ;
acA
a contradiction since [] S, does not exist. [
acA v

The above example also illustrates a category which is complete and cocomplete

(grp?P; since grp is cocomplete and complete) but not total.

Totality and cototality may be related:

Theorem 6-4: If 8 is cocomplete and has a small set of cogenerators, then B8 is
total..

Proof: [RIJW1]: Z preserves all colimits so, by the total adjoint functor theorem,
we need only show that it is admissible.

Let C denote the small full subcategory of 8 determined by a small set of cogener-

ators. For all X € B there is a canonical morphism:

{8(x,C),C} :
cec

6-5) b'e
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We seek a § € B(X, [;c.{B(X,C),C}).

8x, [ (Bx0,C)=[ BX{B(X,0),C)) (take end ouy
cec cec
z/ _set(8(X,C), B(X,C)) (universal property)
Ccec
= setC(B(X, -),8(X,-)) = (P)

One element of (P) is the identity natural transformation 8(X, —)—8(X, —) which
induces a canonical morphism in (6-5).

By the definition of generators, the map in (6-5) is monic. VB € 8, ¢ € 8,
B(ZB, ) ~ set?(y, ZB) ~ set?(y, (B, -)) — set? (v, B(B, [;¢{8(-,C),C}))

= (Q) since (6-5) is mono and 8(B, —) and set®(y, —) preserve monos.

We h:—_we,
@ =set?(y, [ B(B,{B(-,C),C}) (take end out)
cec
~ get? (y, set(8(-,C), 8(B,(C))) (universal property)
cec
o~ / gset?(y,set(8(—,C), B(B,C))) (take end out)
cec

= [ [ set(wD,set(8(D,C), (B,0))
CceCJDesB

~ / / set(8(D;C),set(yD,B(B,C))) (set is cartesian closed)
ceCJDeB

= B(8(-,C),set(y—, 8(B,C)))

cec

~ [ set(yC, B(B, C)) = (R)
CecC

(R) is a small end of small sets so (R) € set. Thus 3(ZB,y) cset VBe 8,9y € 8

whence Z is admissible. B
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A Grothendieck topos has a small set of cogenerators ( if (G;);er generate, then

()% )ier cogenerate ). Furthermore, a Grothendieck topos, being a full reflective

subcategory of X, for small A, is total. Thus, Grothendieck topoi are both total
and cototal.

We continue our study of duality by first considering the case of a poset. Recall

that a poset has all sups iff it has all infs. We have

2P””  ~ {downclosed subs, C}

N

1-
+
P () 0)-
\J,
(2F)°r

where S~ denotes the set of all lower bounds for an upclosed subset, S, of P and

~ {upclosed subs, D}

T+ denotes the set of all upper bounds for a downclosed subset, T, of P.

Proposition 6-6: ( )* 4 ().

Proof: We wish toshow T+ D SiIf T C S—.

e

Vse SVt e T[t < s|

Vt e T[Vs € S[t < 's]]

VteT[te ST

TCS™

Note that (] z)* =t z and (f z)~ =| z for all z € P. So, ( )* and ( )~ commute
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with the Yoneda embeddings. A sup-complete poset is total and cototal. In fact,

HA0)

\ 2Py

commutes; \/( )~ = A and A()* =V by theorem 2-2; 1 \/=()* and | A = ()~

the diagram

following immediately from their definitions.
This situation does not generalize to CAT . However, in the total category

setting, it does.

()~

)+
are defined pointwise by ®+(A) = A(®, A(—, A)) and ¥—(A) = set2(¥,A(4,-))

Definition 6-7: Let A€ cat . The Isbell conjugation functors : A A

for AcA,de€A,yel.O

For A € CAT , these functors do not necessarily exist. We need Y4 to be
coadmissible ( i.e. A(®,A(—,A)) € set VA € A,® € A ) in order to define ( )*.
Similarly, we need Z to be admissible in order to define ( )~. If B is total, then

B(®, B(—, B)) ~ B(L®, B) € set since B is locally small and so ( )* is defined.

Similarly, if B is cototal, ( )~ exists.
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()* and ( )~ commute with the appropriate Yoneda embeddings. In addition, they

are adjoint:

Proposition 6-8: ( )+ 4 ()~

Proof: let &, ¥ be as above. We want to show (set#)°P(d+, ¥) ~ set4”” (®, ¥-).

(set#)°P(®+, ¥) ~ set4 (¥, 1) (op — ing)
'z/ set(¥ A4, +A)
A€A
z/ set(VA,set?”" (®, A(—, A))) (definition ( )*)
A€A

'z/ set(‘I’A,/ set(®B, A(B, A)))

A€4A BeA

:/ [ set(VA,set(®B, A(B, A))) (take end out)
A€A /BeA

:/ / set(®B,set(VA, A(B, A))) (set cartesian closed)
AcA/BeA

. / / set(DB, set(VA, A(B, A))) (“Fubini”)
BeA JAex

zj[ set(@B,/ set(VA, A(B, A))) (take end in)
BeA A€A

z/ set(®B,set4 (¥, A(B,-)))
Be4A

'z/ set(®B, Y~ B) (definition ()7)
Be4A ‘

~ get4”’ (3, ¥). B

For B8 total and cototal, we have

x
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We proceed to show that this diagram commutes. The adjointness situation of

proposition 6-8 is 8(®*, ¥) ~ B(®, ¥-). In addition, the following relations hold:

Theorem 6—10: Suppose( )}+ and ()~ exist. Then for ® € B,v e B,
(i)- If B is total, B(¥,d+) ~ ¥(LD)
(ii)- If B is cototal, B(¥—, ®) ~ (RV).
Proof: [RIW1]:
(1) — (set®)°P(¥, ®%) ~ et (®+, W) (op — ing)
'z/ set(®* X, VX)
Xes
z/ set(set?’’(®, B(—, X)), ¥X) (definition ( )* )
XeB
:/ set(8((L®, X), ¥X) (LAY)
XesB
~ get? (B(L®, ), ¥)
~ V(L®) (Yoneda)
(45) — set? (¥, @) ~ / set(¥~ X, dX)
XesB
:/ set(set?(¥, B(X,-)), ®X) (definition ( )™ )
XeB
= [ setl(set?)(8(X,-),),8X)  (op—ing)
Xes
~ f set(8(X, RV), 3X) (Z4R)
XesB
~ get?’’(8(—, RV), d)

~ &(RY). , (Yoneda) B
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Theorem 6-11: If 8 is total and cototal, for ® € E, v e 8,

Be+,v) ——— B(3,¥)
2 2
¥ (L®) o+ (RV¥)

> B(L®,RY) «Z
Proof: [RIW1]: (i) 8(®*,¥) ~ B(®, ¥~) is the adjointness relation ( )+ 4 ().
(ii)- B(®,¥~) ~ d+(RY¥):

set3”’(®,¥ ") ~ / set(®X, ¥~ X)
Xes8

~ / set(DX,set?(¥, B(X,~)))  (definition ()~ )
XeB

= [ set(8X, (set?)(8(X, -),¥)) (op - ing)
Xes8

z/ set(®X, B(X, RY)) (Z4R)

XeB

~ set?”’(®, B(—, RV¥)) S (1)

~ &+(RY) (definition ( )* )

(iii)- ®*+(RY) ~ B(L®, RY) :
B(L®, RY) ~ B(®, B(—, R¥)) which is (1) above, so the result is proved in (ii).

(iv)- B(®*,¥) ~ ¥—(LY):

(set?)oP(d+, ¥) ~ set? (¥, %) (op — ing)

~ f set(T X, &+ X)
Xes

z/ set(VX,set3°’(®, 8(—, X))) (definition ( )* )
Xes

= / set(V X, B(L®, X)) (LAY)
Xes

~ set?(¥,8(L®,-)) = .. (2)

~ U~ (L®).
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(v)- ¥=(L®) ~ B(LP,RY):
B(L®,RY) ~ B(B(L®,-), ¥) since Z 4 R . But 8(8(L®,-), ¥)

~ get? (¥, B(L®, —)) which is (2) above, so the result is proved in (iv). il

As a generalization of the poset case, we may relate R and L via the Isbell

conjugation functors.

Theorem 6-12: If B is total and cototal,
(i)- R~ L()~
(ii)- L~R()*

Proof: [RIW1]: (i) We wish to show, for ¥ € B,B¢c 8, B(RVY, B) ~ B(LY-, B).

B(RY, B) ~ set?”’(8(—, R¥), 8(—, B)) (Z is fully faithful)
~ / set(3(X, R¥), B(X, B))
XeB8
= [ set((set?)?(8(X,~), ¥),B(X, B)) (Z+4R)
XeB
= [ set(set?(¥,8(X,-)),B(X,B)  (op—ing)
XeB
g/ set(¥~ X, B(X, B)) (definition ( )~ )
XeB
~ set?”’ (¥, B(—, B))

~ B(LY~, B) (LAY)
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(ii) We wish to show, for & € B, B € B, B(B,L®) ~ B(B, R®*).
Now, B(B, L®) ~ (set?)(8(B, -), B(L®, -)) (Z is fully faithful)

~ set?(8(L®,-), 8(B,-)) (op — ing)

~ / set(8(Ld, X), B(B, X))
Xes8

= / set(set?*’ (3, B(~, X), B(B, X)) (LAY)
XesB

z/ set(®+ X, B(X, B)) (definition ()% )
XeB

~ get?(®+, B(B,-))

~ §(8(B,-),®*) (op — ing)

~ B(B, RD+) (Z4R)N

To see that diagram (6-9) commutes, it remains to be shown that ZL ~ ( )*:

Lemma 6-13: ZL ~ ( )*.
Proof: Let & € B, ¥ € 5. Then 8(ZL®,¥) ~ B(L®, RY), since (Z 4 R),

~ B(®+, ¥) ( by theorem 6-11).

Finally, we note that ( )™+ ~ ZL( )~ ~ ZR. Since Z is fully faithful, it is

cotripleable. And so, in this context, L is the canonical comparison functor:




7-Topological examples

We continue to construct examples of total categories. In this ection, we show

that top and like categories are total. First, recall how colimits are constructed in
M

top. Let £ ———— top . To form lim M, one composes with the forgetful

functor M
& ——— top

U
set
forms £&: UM — limUM as a colimit in set, and equips lim UM with the finest
topology for which all components of £ are morphisms of top ( i.e. continuous

functions). This situation is abstracted via the notion of total opfibration.
Definition 7-1: A functor U: T — B is said to be a total opfibration if T is

locally small, 7: B — T has a left adjoint, Uy, and U satisfies the lifting condition:

D: T — Uy/Y~ defined by

(7-2)

has a left adjoint over 8. O
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Remarks 7-3:

1. left kan extension commutes with Yoneda. So, explicitly, D is given by
D(T) =< T(=T), T (-, T)-SB(-,UT),UT > for T€T

2. Recall that ® € T corresponds to a discrete fibration M: £ — T with small
fibres. Uy® corresponds to the diagram, in 8, obtained by factoring UM.
Furthermore, an object < ®,7:U)® — B(—,B),B >€ U,/Y corresponds to
a cone from the diagram to B. If D has a left adjoint, then it and its unit
provide, for such an object of U}/Y, a T € T and a “cone” ® — T(—,T)

which is a best lifting of 4. O
U
The motivating example of a total opfibration is the forgetful functor top———set.

Example 7-4: U:top — set is a total opfibration: U : top———set has a left
adjoint ( discrete topology functor ) which induces a left adjoint to .

Now, let S € set. Uy® — set(—, S) effectively gives a cone to S. The left adjoint
to D sends < @, Ug<I>—"—>set(—,S ), S > to S equipped with the finest topology

for which the components of n are continuous. J

Theorem 7-5: If U: T — B is a total opfibration and 8 is total, then T is total

and U is cocontinuous.

Before we prove this theorem, we require a lemma from general category theory.
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Lemma 7-6: Given a comma category

G/U

VR
\/

and F - U then there exists T 4 P and W =G /U —5W is the identity. (i.e. T is
fully faithful ).

Proof: We have
)4
o e
w . A | vFc
G /

X
where G is the unit nA———UF (of F 4 U ) applied to G. define T by T(W) =
neW=nGw z
< W,GW +UFGW,FGW > . Now, let < W/,GW'——UA, A >

be an object of G/U. Then

w
T(W) =< W, GW ——UFGW, FGW >

<W' GW'——UAA>

W-W!, FGW —5 A such that -

new

GIV —_ UF
Guw & Ua

GW e UA
(%)
zGuw

But this says that FGW—=— A is the transpose (F' 41 U) of GW —— U A.
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Thus a map T'(W)—— < W', z, A > is the same as a map W w'.

Summarizing:

(+)

w w!

W-oP<W,z,A>

Hence T4 P. 1

Proof:(of theorem 7-5):[RJW2]: For reference recall diagram (7-2)

B is total so Yg has a left adjoint. Hence, by the lemma, P : Ug/Y—————»‘? has a
left adjoint. Explicitly, it sends & € P to < &, Uj®——B(—, LU,3), LU;® > .
By hypothesis, D has a left adjoint and adjoints compose so Y1 has a left adjoint.
The left adjoint of D is over 8 so U is cocontinuous. il

In the above proof, the construction of Lt , through U,/Y, is a generalization
of the construction of colimits in top mentioned at the beginning of this section.

The dual notion of total opfibration is cototal fibration.
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Definition 7-7: A functor V : T———8 is a cototal fibration if T is locally small,

V : B——T has a right adjoint V, and E defined by

E
\ 4 Z
A

1N
W

~

has a right adjoint over 8.
Dualizing lemma 7-6 gives a right adjoint to @ so the dual of theorem 7-5 is:

\ %
Theorem 7-8: If T———— 8 is a cototal fibration and 8 is cototal, then T is

also cototal. B

We may conclude that top is also cototal since the indiscrete topology functor
is right adjoint to the forgetful functor; which induces I  U. Another example is

the following:

Example 7-9: Comphaus, the category of com‘pa.ct Hausdorff spaces, is both
total and cototal: Comphaus is total since it is a full reflective subcategory of top
(S 4 I:Comphaus — top, where S is the Stone-Cech compactification of a
space). [0,1] is a cogenerator for Comphaus so, by theorem 6-4, Comphaus is

also cototal. [0



8— Cartesian Closedness

In this section, we give a simple application of theorem 5-3; a relationship between

total and cartesian closed categories. Recall the definition of a cartesian closed

category.

Definition 8-1: 8 in CAT is said to be cartesian closed if it has finite products

and fo.r each B € 8,
(8-2) Bx—-:8 — 3B

has a right adjoint. O

If 8 is total, then B has finite products and the functors in (8-2) are admissible.
To show that 8 is cartesian closed, we need only have B x — cocontinuous by the

total adjoint functor theorem. In fact, we have the following characterization:

Theorem 8-3: If 8 is total, then 8 is cartesian closed iff L preserves binary
products.
Proof: Consider the diagram
T
A direct calculation shows that (A x —), is given by 8(—,4) x —.

48



49
(A x =) is cocontinuous iff the diagram commutes up to isomrphism. That is, iff
L(B(—;,A) x ) ~ Ax L& Vd € B.
If L preserves binary products, then L(B(—, A) x ®) ~ L(8(—, A)) x L® ~ Ax LY.

Conversely, Suppose L(B(—, A) x ®) ~ A x L®. Then
A€B
L(¥ x ) ~ L((/ VA.B(—,A)) x ®) (Yoneda density lemma)
A€B
~ L(/ VA.(B(—,A) x®)) (- x ® cocontinuous)

A€B
~ / VA.L(B(—,A) x ®) (L cocontinuous)

A€B
o~ / VA.(A x LD) (by hypothesis)
A€B
~ ( / VA.A) x L® (= x L® cocontinuous)
~ L(¥) x L(®) (L as a coend). il

Definition 8-4: A total category, 8, is said to be lex total if L preserves finite

limits. O

Corollary 1: If 8 is lex total, then B8 is cartesian closed.

Proof: obvious. B

Corollary 2: Let B be total and suppose L preserves equalizers. Then 8 is lex
total iff B is cartesian closed.

Proof: limits by products and equalizers. B
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Theorem 8-3 provides an example of a total category which is total but not

lex total.

Example 8-5: grp is not lex total since grp is not cartesian closed. [

~

It should be noted that B is not, in general, cartesian closed. However, it is

well known that for small B, B is cartesian closed.



9— Lex total categories

In the previous section, we defined a lex total category as a total category
whose L is lex. As with total categories, it is useful to begin with lex total posets.
Recall that a locale is a sup complete, cartesian closed poset. If P is a lex total .
poset, \/ 4 (] —) and V/ is lex. Thus, by corollary 2, theorem 8-3, P is a lex total
poset iff it is a locale.

The primary example of a locale, and hence of a lex total poset, is the lattice
of opens of a topological space with \/ given by union and finite A given by finite
intersection. We now return to general, lex total categories. An important example

is the following:

Example 9-1: K, for A in cat , is lex total: In fact we have

-l- ~
A A

1

Ya

We saw, in section 4, that YA Y+. Now, VA has a left adjoint given by (Y4 )1; left

Kan extension. [

Many of the closure properties of section 4 hold in a lex total setting with

appropriate modifications. For example,

51
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Theorem 9-2: Let A be a lex reflective subcategory of a lex total category 8.
Then A is lex total.

Proof: Recall the diagram of theorem 4-4:

Ya -~
A » 4
» 'S
A
T|AH|F || F
4 Ly VL
~
B B B
Y

where F is the “inclusion”.
In theorem 4-4, it was proved that TLgFy 41 Y4. If T is lex ( i.e. A lex reflective
subcategory of B ) then each of the factors of Ly, as constructed above, is lex.

Indeed, Fy = Lsoit preserves limits and colimits. And so, Ly is lex. B

A grothendieck topos is a lex reflective subcategory of A, for small A and so
Grothendieck topoi are lex total. In fact, as we shall see later in this section, lex
totals are “very nearly” topoi. Lex totals share many properties with topoi. An

example is given by theorem 9-5 below.

Definition 9-3: ( [Ba] p.4 ): An epimorphism is said to be regular if it is the
coequalizer of its kernel pair. A category, B, is said to be regular if the pullback, in

B, of a regular epi is regular epi. 0



Remark 9-4: We denote a regular epi by ——— . [

Theorem 9-5: A lex total category is regular.

Proof: Given C—— B ! A in 4, form its pullback ( 4 is complete):

P » A
C >

B

f is a regular epi so suppose its kernel pair is h, k. Applying Y gives a diagram

YP
Yu X ll’]
YC » YB
Yg

53

The diagram is still a pullback since Y is continuous. However, Y is not cocon-

tinuous ( in fact, Y preserves only absolute colimits) so Y f is not (necessarily) a

regular epi.

We may factor Y f into a regular epi followed by a mono:
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Consider the diagram:

v .
i A—

¥ ® |Yf
2 j 9 :
YC » YB

Yg

By the pullback lemma, Y u = Sa. Furthermore, a is a regular epi since £ is regular.

Applying L gives a diagram:

P A
La X lL&

L¥ e |f
LB X JL‘,

¢ B

The two squares are pullbacks since L is lex. Also L(§) and L(a) are regular epis
since L is a left adjoint. Now, f and L(6) are coequalizers of h, k. But coequalizers
are unique up to isomrophism so L(7) is an iso. Hence L(f) is an iso.

And so, we have o

P » A
ul X lf
C » B

making A regular. B

Theorem 9-8: Let A be lex total. Equivalence relations in 4 are effective.
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a
Proof: Le¢ R——= X be an equivalence relation in 4. Applying Y gives:
b

Ya ~
Y R—=3Y X, an equivalence relation in 4.
Yb

Equivalence relations in A are effective so 3 F, such that

YR e . YX
Yd ‘l X }\
YX . B

L preserves pullbacks and hence kernel pairs, so

R » X
X » LF

and equivalence relations in A are effective. il

Corollary:(Walters): A lex total is exact. ll

Exactness may be regarded, in a sense, as a relationship between limits and
colimits. The proofs of the above two theorems suggest a method for discovering
such relationships in a lex total category:

1: send the diagram to A via Yoneda.
2: use the exactness properties of A
3: send the diagram back using the facts that L is lex and a left adjoint.

The corollary above provides another “proof” that grp is total but not lex
total, since grp is not exact ( see [He] p. 295 ).

We said above that lex totals are “very nearly” topoi. In the remainder of this

section, we make the term “very nearly” more precise.
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Theorem 9-8: (Street): Let £ be a locally small category with a small generating
set of objects. The following are equivalent:

1- € is a Grothendieck topos.

2- £ is lex total.

3- Every set-valued canonical sheaf on € is representable and £ has all small

colimits.
4- £ is an elementary topos with all small colimits.
5- £ is a pretopos with all small coproducts, and these are universal (i.e. preserved

by pullback).

Remarks 9-9:

1. Recall that the canonical topology on a category, £, is the largest topology
for which the representables are sheaves; canonical sheaves are sheaves for this
topology.

2. A category, £, is an elementary topos if £ has finite limits, is cartesian closed,
and has a subobject classifier.

3. Also, recall ( [PTJ] p. 238 ) that a category, £, is said to be a pretopos if
it has finite limits, has finite coproducts which are disjoint and universal, has
coequalizers of equivalence relations which are universal, and every equivalence

relation in € is effective and every epi in € is a coequalizer. (0

The proof of theorem 9-8 uses Giraud’s theorem.
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Theorem 9-10: (Giraud): The following are equivalent:
(i) € is a Grothendieck topos.
(if) € satisfies:
(a) € has finite limits.
(b) € has all set-indexed coproducts, and they are disjoint and universal.
(c) Equivalence relations in £ have universal coequalizers.
(d) Equivalence relations in £ are effective, and every epimorphism is a co-
equalizer.
(e) £ islocally small.
(f) € has a small set of generators.

Proof: see, for example, [PTJ] pp. 17-18. §

Proof:(of theorem 9-8): (1) <= (3) <= (4) <= (5) follow from Giraud’s

theorem.

(1) = (2): was noted above. Recall that a Grothendieck topos is a lex reflective

subcategory of A and, hence, is lex total.
(2) = (1): We proceed to verify (a)-(f) of theorem 9-10. (a) follows from the
fact that £ is total. The exactness conditions (b)—(d) are (partially) proved above

in theorems 9-5 and 9-6. Other exactness properties follow from the methods

described after those theorems. Finally, (e) and (f) are hypotheses. ll

In fact, relationships between some of the five conditions of theorem 9-8 may be

proved using fewer assumptions. An extensive list appears in [Stl]. We reproduce
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only one of Street’s results, the proof of which is straightforward. We first introduce

a “size” (for sets) between small and large.

Definition 9-11: Let N be the strongly inaccessible cardinal used to define set.

We say “X is a moderate set” to indicate |[X| < N. O

Theorem 9-12: (Freyd and Street): Suppose £ is a tofal category satisfying:

(a) if a pushout of a mono is an iso, then the mono is an iso.

(b) there is a moderate set M of objects of £ such that, for each E € £, there is
an extremal epi D — E with D in M.

Then £ has a strongly generating small set of objects.

Remarks 9-13:

1. If € is lex total and

N

in &, then the square is also a pullback:

- |

Hence, condition (a) holds for lex totals.

2. If £ has a moderate set of iso classes, then condition (b) is satisfied. (I

Proof: [ST1]: Suppose that £ has no small strongly generating set of objects. We

proceed to show a contradiction.
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Observe that M is not small. Assume € is skeletal and well-order M so that
{De M|D < E) =:| E is small VE € M.
For each E € M, the set | E cannot strongly generate £ so
(%) there are objects, Cg, Dg € £, and a monomorphism, mg : Cg—— Dg
which is not an isomorphism and yet £(B,mg) : £(B,Cg) — &(B,Dg) is
an isomorphism for all B < E.

In SET¢"", we may form the colimit:

YC; — "% ., ¥Dg
l lﬂz, EeM
1 P

P: £ — SET, at A€ £, is given by :he sum of 1 and, for each F' € M, the set
of arrows A — Dp which do not factor through mg.

For each A € £, (b) gives us an extremal epi D — A with D € M. Thus,
PA — PD is a monomorphism. Now, £(D, mg) is an isomorphism for all G > D.
Thus, PD is small. But, PA < PD so P factors through set and, considered as a
colimit, is in set€””.

Applying Lg, (note that LY = 1 since Y is fully faithful) yields a colimit (L is a

left adjoint) in €:

Cg ———% D

l ) lhﬂv EeM

1l —— LP
Lw

For each X € M, define kx : LP——— LP by:

kx(LF) = LF,
kx = kx(hg) = kg, when £ = X ;
kx(hg) = Dg — ITLP, when E # X.
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Now, M—!—vE(LP, LP) ( X — kx ) is a monomorphism for suppose kx = kx:
and X # X'. In particular, kxhx = kx'hx. So hx factors through Lw

Consider the following diagram:

Cx ——= . Dx

I |

!l —F 1
Since LP is a colimit, this diagram is a pushout and, by (a), mx must be an
isomorphism; contradicting (x) above. Thus, f, above is a monomorphism. But,

&(LP, LP) is small since € is locally small. And so, this contradicts the fact that

M is not small. B

The above theorem shows us that we may replace “small generating set” in
“lex total + small generating set = Grothendieck topos” by “moderate generating

set”; a slightly weaker hypotheses.



10— n—total categories

We may specialize total categories by considering a left adjoint to L. More

generally,

Definition 10-1 A locally small category, 4, is said to be n-total (n € N) if there

are functors Fy, F3,..., Fy, in the adjointness situation:

Fn

1,

Fsl
Fil
L
Y

»

Remarks 10-2:

1. Note that, in particular, a total category is 1-total. We call a 2-total category
“essential total”; terminology derived from essential geometric morphism.

2. One may define N-total, for N=N, by considering a countable string of adjunc-
tions. It is not clear, however, how to define a-total for an arbitrary cardinal
N.

3. One may use a sequence of n adjunctions on the right of Z as a definition of
n—cototal. Of course, B is n—cototal iff 8°P is n—total.

4. If B is n—total (n > 2) it is, in particular, lex total so it is cartesian closed.
Now, if B8 is also n—cototal, then B°P is cartesian closed. Examples of such

seem to be rare. [
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As we saw, there are many examples of total categories. For larger n, examplgs

are rarer. Indeed, it is not known whether there are n-total categories for n >
5. However, the following theorem shows that there are posets which have an

arbitrarily long (finite) string of adjunctions left of |.

Theorem 10-3: For each n € N, there is a poset which has a string of n adjoints
left of |.
Proof: We proceed to show that n= {0,1,...n — 1} is 2n-total (in the poset
context).

22" ~ n + 1 and we have a sequence of adjunctions; “face” and “degeneracy”:
Sn~1

1

Mnp-1

<

Y

‘ll
4t

N

m,_L

.ol

Mo

W

where m; : n — n + 1 acts as the identity on {0,1,...,5 — 1} and sends 1 —

t+1,1+1+—1+2,etc. and s; :n+1 — n and sends 3, 1 + 1 — ¢ and sends
t+2—1+1, 1+3— 1+ 2 etc.

Finally, note that mq is | so | has a string of 2n adjunctions on the left. il

It should be noted that n is “2n—total” in the poset context only. There is not

a string of 2n-adjoints left of 2 — set.
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Our “chief” example of a lex total category was A for small A. We saw that
it was an example of an essential total category. Indeed, this particular category
leads to an interesting conjecture. In [MB], Bunge proved that a category, X, is
equivalent to Aiff X is complete, wellpowered, cowellpowered, coregular, and has
a generating set of abstractly unary projectives. K, abstractly unary projective, in
her context, means X (—, K) is cocontinuous.

Suppose B8 is essential total with a small generating set of objects. In particular,
B is lex total so, by theorem 9-8, it is a Grothendieck topos and, as such, satisfies
the first four hypotheses of Bunge’s characterization.

For an object, K, of B, B(—, K) : B2 —————set. set is locally small so
B(—, K) is admissible. Now, 8 is a Grothendieck topos, so 8P is total. By the
total adjoint functor theorem, 8(—, K) is cocontinuous iff it has a right adjoint.
In particular, this is true for generating objects, K. Thus, K, abstractly unary
projective, in our context, means B8(—, K) has a right adjoint. The question remains
whether an essential total category with a small generating set contains a generating
set of objects, K, for which B8(—, K) has a right adjoint. In other words, is an

essential total “very close” to A in the same sense as a lex total is almost a topos?

Wood has suggested a way in which to attack this problem. Suppose we have:

set8°’

O T

b<
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Transpose Y and T (exponential adjunction) to H and S: B° x Bz—z—:t set.
Consider the full subcategory of 8 determined by those B € 8 for which S(B, B) ~
H(B, B) as sets. Let A denote the cauchy completion of this subcategory. If we
can show
(i)~ A is essentially small
(ii)- B8 ~set4””
then we have 4 ~ A as above.

In fact, item (ii) implies item (i). Indeed, 8 is assumed to be locally small, so
set#”” is locally small, assuming (ii). Furthermore, £ is locally small since it is a
subcategory of B (recall that B is complete). From theorem 1-3, it follows that 4
is essentially small. Thus, our question about essential totals is reduced to showing
(ii). Cauchy completeness of A is apparently needed to construct the equivalence
for (ii).

When A =1 (i.e. A =set ), the string of adjunctions is somewhat longer:

Theorem 10—4: set is 4-total.

Proof: In fact,

K
evat(@) L
z «
" a 1 —~
(10 -5) set 1 set —set
n > evat(l) L
) BE

Y
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where A is the diagonal and K(X) = X.set(—,0) for X € set.
(i)- set is cototal as a special case of the fact that Grothendieck topoi are cototal.
(ii)- evat(1) 1Y was shown in corollary 1 to theorem 4-1.
(iii)— evat(@) 4 A 4 evat(1) since @ is the terminal object and 1 is the initial object
of set”.

(iv)- K  evat(0) for X € set, ® € set,

X set(—, 0) ——————— O

X s?t(set(—,(b),@)

X . ®(0). 0

Remarks 10-6:

1. It is interesting to note that K acts as a “characteristic function”:

xoom = {3 {5 70

2. K does not have a left adjoint since it does not preserve the terminal object. It
is interesting to note, however, that K preserves products indexed by nonempty

sets and all equalizers.

3. set? is not cartesian closed so, by theorem 8-3, R does not have a right

adjoint. 0

It is not known whether the adjunctions of (10-5) characterize set. It appears

that the answer to this question swings on the discussion above about characterizing
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A. Another question is raised: Do the extra adjoints, K and evat(@), guarantee
that A =17

Finally, we may ( partially ) summarize section 10 via a series of nested inclu-

sions:

locally small categories
U
totals
U
cartesian closed totals
U
topoi D Grothendieck topoi C lex totals
U
A C essential totals
U
set C 4-totals
U

n—totals n > 4
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