
NOVEL ALGORITHMS FOR TRAJECTORY SEGMENTATION
BASED ON INTERPOLATION-BASED CHANGE DETECTION

STRATEGIES

by

Mohammad Etemad

Submitted in partial fulfillment of the requirements
for the degree of PhD of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

September 2020

c© Copyright by Mohammad Etemad, 2020

Table of Contents

List of Tables . vi

List of Figures . ix

Abstract . xiii

List of Abbreviations Used . xiv

Glossary . xvi

Chapter 1 Introduction . 1

1.1 Contributions . 5

1.2 Outcomes . 6

1.3 Outline . 8

Chapter 2 Background . 10

2.1 Definitions . 10

2.2 Interpolation and Extrapolation Methods 15
2.2.1 Linear Interpolation . 15
2.2.2 Linear Regression Extrapolation 16
2.2.3 Kinematic Extrapolation . 16
2.2.4 Random Walk . 17
2.2.5 Cubic Method . 18

2.3 Data Structure . 18
2.3.1 Spatial-temporal Data Structure VS. Trajectory Data Structure 20
2.3.2 Single Moving Object VS. Multiple Moving Objects 21
2.3.3 Synchronous VS. Asynchronous Data Collection 21
2.3.4 Trajectory Annotation or Trajectory Tagging 22

Chapter 3 Related Work . 23

3.1 Objectives of Trajectory Segmentation Algorithms 24

3.2 Aspects of Trajectory Segmentation Algorithms 25
3.2.1 Learning Aspects . 27
3.2.2 Feature Aspects . 31
3.2.3 Performance Aspects . 32

ii

3.2.4 Other Aspects . 36

3.3 Trajectory Segmentation Algorithms 38
3.3.1 Stay Point Detection (SPD) 40
3.3.2 Warped K-Means (WKMeans) 40
3.3.3 Clustering Based Stops and Moves of Trajectories (CB-SMoT) 40
3.3.4 Direction Based Stops and Moves of Trajectories (DB-SMoT) 41
3.3.5 SeqSCAN . 41
3.3.6 Time-based Approach . 42
3.3.7 Distance-based Approach . 42
3.3.8 Greedy Randomized Adaptive Search Procedure for Unsuper-

vised Trajectory Segmentation (GRASP-UTS) 43
3.3.9 Semantic-Aware Trajectory Construction over Streaming Move-

ment Data (SeTraStream) . 43
3.3.10 Reactive Greedy Randomized Adaptive Search Procedure for

semantic Semi-supervised Trajectory Segmentation (RGRASP-
SemTS) . 44

3.3.11 TRACLUS . 44
3.3.12 Robust Time-Referenced (RTR) Family 45
3.3.13 StopFinder . 45
3.3.14 TrajDBSCAN . 46
3.3.15 Stop and Proximity Episodes in Trajectories 46

3.4 Summary and Discussion . 46

Chapter 4 Mobility Data and Its Properties 48

4.1 Datasets . 48
4.1.1 Fishing Dataset . 48
4.1.2 Atlantic Hurricanes Dataset 50
4.1.3 Geolife Dataset . 50
4.1.4 Automatic Identification System (AIS) 53

4.2 Metrics . 54

Chapter 5 Sliding Window Segmentation 58

5.1 Preliminaries . 58
5.1.1 Extrapolation and Interpolation 60
5.1.2 The Sliding Window . 60

5.2 Generating the Error Signal . 61

5.3 The Segmentation Procedure . 65
5.3.1 Parameter Selection . 69

iii

5.4 Experimental Evaluation . 70
5.4.1 Experiment Setup . 71
5.4.2 Evaluation of SWS Kernel Method 73
5.4.3 Evaluation of SWS Window Size 78
5.4.4 Comparison With Other Algorithms 84
5.4.5 Purity, Coverage, and Harmonic Mean 86
5.4.6 Number of Segments . 92
5.4.7 Memory and CPU time . 93
5.4.8 V-measure . 94

5.5 Discussion . 95

5.6 Summary and Concluding Remarks 97

Chapter 6 Wise Sliding Window Segmentation 99

6.1 Wise Sliding Window Segmentation (WSII) 100
6.1.1 Generating the Error Signal 101
6.1.2 Creating Training Data . 102
6.1.3 Create Blind Samples . 104
6.1.4 Binary Classification Model 104
6.1.5 Majority Vote . 105

6.2 Experimental Evaluation . 107
6.2.1 Majority Vote Experiment . 107
6.2.2 Binary Classifier Experiment 108
6.2.3 Comparison With Other Segmentation Approaches 111

6.3 Discussion . 115

6.4 Summary and Concluding Remarks 117

6.5 Guideline . 117

Chapter 7 Conclusions and Future Work 120

7.1 Conclusions . 120

7.2 Limitations . 122

7.3 Future work . 123

Bibliography . 127

Appendix A Appendix A . 136

A.1 Stations . 136

iv

A.2 Central Server . 137

A.3 Data Processor . 137

A.4 Applications . 138
A.4.1 AISExplore . 138

Appendix B Appendix B . 139

B.1 Parameter Selection Tables . 139

B.2 Comparing Haversine and Euclidean distance 140

Appendix C Appendix C . 143

C.1 VISTA . 143

v

List of Tables

2.1 The symbols and notations used in this chapter 19

2.2 A sample trajectory data with a point feature (measured speed),
and two segment features (mode, SID) 20

2.3 A sample segment feature . 20

3.1 Comparing characteristics of trajectory segmentation approaches
in terms of Learning aspects 30

3.2 Comparing characteristics of trajectory segmentation approaches
in terms of Features aspects . 33

3.3 Comparing characteristics of trajectory segmentation approaches
in terms of Performance aspects 35

3.4 Comparing characteristics of trajectory segmentation approaches
in terms of the rest of the aspects. 39

4.1 Statistics of the fishing dataset 50

4.2 Statistics of the Atlantic hurricanes dataset 52

4.3 Statistics of the Geolife dataset 52

4.4 The symbols and notations used in this chapter 55

5.1 The p-value results of the Wilcoxson test to compare different
kernels for the SWS algorithm on the fishing dataset with win-
dow size seven for linear regression, random walk, cubic, and
kinematic kernel and window size three for the linear kernel.
The p-values with significant differences are highlighted in bold. 73

5.2 The p-value results of the Wilcoxson test to compare different
kernels for the SWS algorithm on the Atlantic hurricanes dataset
with window size seven for linear regression, random walk, cubic,
and kinematic kernel and window size three for the linear kernel.
The p-values with significant differences are highlighted in bold. 76

vi

5.3 The p-value results of the Wilcoxson test to compare different
kernels for the SWS algorithm on the Geolife dataset with win-
dow size seven for linear regression, random walk, cubic, and
kinematic kernel and window size three for the linear kernel.
The p-values with significant differences are highlighted in bold. 76

5.4 The Wilcoxson test’s p-value results to compare the harmonic
mean of different segmentation algorithms on the fishing dataset.
The p-values with significant differences are highlighted in bold. 88

5.5 The Wilcoxson test’s p-value results to compare the harmonic
mean of different segmentation algorithms on the Atlantic hur-
ricanes dataset. The p-values with significant differences are
highlighted in bold. 88

5.6 The Wilcoxson test’s p-value results to compare the harmonic
mean of different segmentation algorithms on the Geolife dataset.
The p-values with significant differences are highlighted in bold. 89

6.1 The Wilcoxson test’s p-value results to compare the harmonic
mean of WSII with different binary classifiers on the three datasets.
The p-values with significant differences are highlighted in bold. 110

6.2 The p-value results of the Wilcoxson test to compare the har-
monic mean of WSII with different binary classifiers on the fish-
ing dataset. The p-values with significant differences are high-
lighted in bold. 112

6.3 The Wilcoxson test’s p-value results to compare the harmonic
mean of WSII with different binary classifiers on the Atlantic
hurricanes dataset. The p-values with significant differences are
highlighted in bold. 113

6.4 The Wilcoxson test’s p-value results to compare the harmonic
mean of WSII with different binary classifiers on the Geolife
dataset. The p-values with significant differences are highlighted
in bold. 114

B.1 Parameters applied in experiments for on the fishing dataset for
SWS . 139

B.2 Parameters applied for CBSMoT 139

B.3 Parameters applied for GRASPUTS on the fishing dataset. . . 140

B.4 Parameters applied for SPD on the fishing dataset. 141

vii

B.5 Parameters applied for WKMeans on the fishing dataset. 141

viii

List of Figures

2.1 An example of calculating θ and lθ when a moving object travels
from point A to point B using random walk kernel. 18

3.1 Samples of semantic trajectories. 24

3.2 An overview of trajectory segmentation aspects studied in this
research . 26

3.3 A raw trajectory of 766,671 trajectory points generated by a
vessel voyaging in Halifax waters and its graph representation
after segmentation. 47

4.1 An overview of fishing dataset in which each colour represents
a voyage’s trajectory. Each colour symbolizes a segment that
can be a fishing activity or non-fishing activity. 49

4.2 An overview of the Atlantic hurricanes dataset 51

4.3 An overview of the Geolife dataset which is a subset of the
whole Geolife data . 53

4.4 An overview of the AIS dataset which is a subset of the AIS
messages captured near Halifax 54

5.1 An example of error calculation in Octal Window Segmentation
where seven trajectory points (l1, ..., l7) are selected as the cur-
rent octal window. Here, the midpoint, l4, assumed as a missing
point. lB and lF (triangle red and blue points) are generated
using extrapolation on first three (lF) and last three points (lB).
The lC , triangle orange point, is generated as a middle point of
lB and lF . The distance between midpoint and lC is called the
error value of this octal window. 62

5.2 This figure shows an error signal generated using 145 trajectory
points, which includes eight segments. There are few spikes
(e.g., in index 95 and 123) representing a considerable change
in error value. We consider them as boundaries of segments. . 65

ix

5.3 This figure shows how Algorithm 5.3 works. First, it detects
index 95 and generates two trajectories: (i) TS1 and (ii) TS2.
TS1’s error values are lower than our threshold; therefore, we
append it to our segments set. We continue processing TS2 by
detecting index 123. Then, we generate TS21 and TS22 and
append them to our segments set. 66

5.4 An example of error calculation when the moving object changes
its behaviour at l4. The speed changes from l4 to l5, l5 to l6,
and the length of time that moving object spends at the point
l4 influences the error value. 67

5.5 This figure compares different kernels of the SWS Algorithm on
the fishing dataset. The results suggest that linear regression
(SWS LR 7) and linear interpolation (SWS L WS3) ker-
nels are performing better than the random walk(SWS RW 7),
cubic (SWS C 7) and kinematic (SWS K 7) kernels on the fish-
ing dataset. 75

5.6 This figure compares different kernels of SWS algorithm on
the Atlantic hurricanes dataset. The results suggest that cu-
bic kernel (SWS C ws7) performs better than random walk
(SWS RW 7), linear interpolation (SWS L ws3), linear regres-
sion (SWS LR 7), and kinematic (SWS K WS7) kernels. . . . 77

5.7 This figure compares different kernels of the SWS algorithm on
the Geolife dataset. The results suggest that kinematic kernel
(SWS K WS7) performs better than a random walk (SWS RW 7),
linear interpolation (SWS L WS3), linear regression (SWS LR 7),
or cubic kernel (SWS C ws7). 78

5.8 This figure compares different sliding window sizes of SWS Al-
gorithm on the fishing dataset. The results suggest that the
performance of linear regression kernel increases by increasing
the window size. 80

5.9 This figure compares different sliding window sizes of SWS al-
gorithm on the Atlantic hurricanes dataset. The results suggest
that the performance of SWS decreases by increasing the win-
dow size. 81

5.10 This figure compares different sliding window sizes of the SWS
algorithm on the Geolife dataset. The results suggest that all
kernels benefit from increasing the window size to some extend. 82

x

5.11 When comparing the performance of SWS on three datasets
with a different period of capturing, the performance of SWS
increases by decreasing the sampling rate in each dataset. The
gray lines show the results of experiments on each dataset with
different parameters. The blue line shows the average harmonic
means on each dataset. The red area represents the variation
of period of capturing in each dataset. 83

5.12 Comparing the performance of SWS, CBSMoT, GRASP-UTS,
SPD, and WKMeans on three datasets. The green background
shows the best algorithms that there is no statistically signifi-
cance difference between them. 87

5.13 Comparing the performance of SWS, CBSMoT, GRASP-UTS,
SPD, and W-KMeans on three datasets in terms of purity. . . 90

5.14 Comparing the performance of SWS, CBSMoT, GRASP-UTS,
SPD, and W-KMeans on three datasets. 91

5.15 Comparing the number of discovered segments of SWS, CB-
SMoT, GRASP-UTS, SPD, and WKMeans on three datasets.
SWS discovered more segments than other algorithms and over-
segmentation in SPD discovered more low quality segments on
the fishing and Atlantic hurricanes datasets. 92

5.16 Comparing the performance of SWS, CBSMoT, GRASP-UTS,
SPD, and W-KMeans on fishing datasets. GRASP-UTS pro-
duced segments after 16 hours and used near 60MB memory.
WKMeans generated segments faster than all algorithms. SWS
with linear kernel (SWS L) gained the second rank after WK-
Means. 94

5.17 Comparing the performance of SWS, CBSMoT, GRASP-UTS,
SPD, and WKMeans on three datasets in terms of V-Measure. 96

5.18 Trajectory on the right shows a fishing activity labeled by sub-
ject matter expert. The left image shows the output of SWS
segmentation that identified three segment. This graph shows
a limitation of SWS when a course of movement includes more
than one behavior change. 97

6.1 An overview of the Wise Sliding Window Segmentation (WSII).
WSII benefits from using a binary classifier and a majority vote
mechanism to find potential partitioning positions. 101

6.2 Example of a training set generated by WSII. 103

xi

6.3 The blue line shows the error signal for a sample trajectory
with three segments. Using a sliding window of 7, we calculate
the standard deviation of the error signal of the sliding window
and we plot them in green. This graph shows that maximum
fluctuations in error value happen when we calculate error signal
for the boundaries of a segment. 103

6.4 Example of the majority vote mechanism. 105

6.5 Segmentation using WSII with different Majority Vote param-
eters using random forest as binary classifier. The results show
that the increase in majority vote value increases the harmonic
mean; however, this increase is not significant for all datasets. 108

6.6 WSII experiment for different binary classifiers. 109

6.7 Comparing the results of harmonic mean of WSII against five
other trajectory segmentation algorithms on three different datasets.
WSII in brown outperformed SWS in blue on the Atlantic hur-
ricanes dataset and the Geolife dataset. 111

6.8 Comparing the results of coverage of WSII against five other
trajectory segmentation algorithms on three different datasets. 114

6.9 Comparing the results of purity for WSII against five other
trajectory segmentation algorithms on three different datasets. 115

6.10 Comparing the number of discovered segments with ground
truth using six trajectory segmentation algorithms on three
datasets. 116

A.1 A high-level view of our application to capture and use the AIS
data. 136

B.1 Comparing the difference between haversine distance and Eu-
clidean distance. 142

C.1 The architecture and workflow of VISTA platform. 144

C.2 A screenshot of the annotator user dashboard with the vessels
trajectories dataset. 144

xii

Abstract

An enormous number of mobility datasets for tracking animals, vehicles, vessels,
individuals and moving objects are currently available, and this number continues to
grow. Mobility data has diverse applications, including for transportation, marine
navigation, tourism, and animal behaviour analysis. Processing such data requires
reasonable pre-processing and cleaning efforts, owing to its velocity. Splitting the
traces of mobility data movements into semantically related trajectory points is an
essential task for trajectory mining pre-processing, called Trajectory Segmentation.
Generating enriched graph representations, preserving the privacy of mobility data,
and facilitating trajectory-tagging tasks are three critical reasons for the importance
of this pre-processing task. Available solutions for trajectory segmentation utilize
background knowledge more than just the movement captured knowledge and are
specific to a particular domain. They do not provide a domain-independent solution
that uses only the movement tracks.

We propose two TS methods that apply to two different types of trajectory appli-
cations: 1) when we only have access to geolocation and timestamp, but its point or
segment feature is not accessible, and 2) when a dataset with at least a point feature
is available.

Sliding Window Segmentation (SWS) splits trajectories into segments using be-
haviour change detection. We evaluated SWS on three datasets (fishing, hurricanes,
and Geolife) by comparing it against four available solutions (SPD, GRASP-UTS,
CBSMoT, and WKMeans). SWS discovered statistically significant higher-quality
segments (higher Harmonic Mean) than SPD, GRASP-UTS, and WKMeans. The
number of identified segments, amount of memory, and CPU consumption of algo-
rithms, and v-measure indicated that SWS found more high-quality segments than
CBSMoT. SWS cannot produce segments for a dataset with a low frequency of cap-
turing.

Wise Sliding Window Segmentation (WSII) identifies the potential partitioning
position using labelled data, a binary classifier, and a majority vote decision-making
mechanism. It can be applied in a trajectory-tagging platform to assist in annotating
trajectories. It boosted harmonic means on hurricanes and Geolife datasets compared
to five other algorithms; however, WSII does not perform well on the fishing dataset.
The dataset attributes and the nature of the movement are two major contributing
factors (e.g. low frequency of sampling decreases the quality of segmentation).

xiii

List of Abbreviations Used

AIS Automatic Identification System

CB-SMoT Clustering Based Stops and Moves of Trajectories

DB-SCAN Density-Based Spatial Clustering of Applications with Noise

DB-SMoT Direction Based Stops and Moves of Trajectories

FDA Functional Data Analysis

GPS Global Positioning System

GRASP-UTS Greedy Randomized Adaptive Search Procedure for Unsupervised

Trajectory Segmentation

Harmonic Mean Harmonic mean of Purity and Coverage

I.I.D Independent and identically distributed

IoT Internet of Things

MDL Minimum Description Length

NOAA National Oceanic and Atmospheric Administration

OPTICS Ordering Points to Identify Clustering Structure

RGRASP-SemTS Reactive Greedy Randomized Adaptive Search Procedure for

semantic Semi-supervised Trajectory Segmentation

RTR Robust Time-Referenced

S-AIS Satellite Automatic Identification System

xiv

SeTraStream Semantic-Aware Trajectory Construction over Streaming Movement

Data

SID Segment Identifier

SPD Stay Point Detection

SWS Sliding Window Segmentation

T-OPTICS Trajectory Ordering Points to Identify Clustering Structure

TRACLUS Trajectory Clustering

TS Trajectory Segmentation

WKMeans Warped K-Means

WSII Wise Sliding Window Segmentation

xv

Glossary

AISHUB is a FREE AIS data-sharing service which provides access to real time

ship positions for vessel tracking systems. 122, 136, 137

Analytic is an active learning system for trajectory classification. 4

Atlantic hurricanes dataset (hurricanes dataset) is an asynchronous dataset with

unidentifiable multiple moving object data. It is published by the National

Oceanic and Atmospheric Administration (NOAA). 8, 43, 48, 61, 107, 121

Automatic Identification System (AIS) is a broadcast system utilized for vessels

navigation with 27 defined report message that updates as often as every two

seconds. 1, 18, 38, 48, 61, 137

Coverage is an evaluation metric for trajectory segmentation task. 37, 54, 68, 107

Cubic Method is a method that uses a third degree polynomial to interpolate or

extrapolate values. 18

Extrapolation is an approach in which we construct new trajectory points outside

of the range of a discrete set of known trajectory points. 15, 59

Fishing Dataset is a multi-object and asynchronous dataset that was compiled in

contribution to the project called “Programa Nacional de Rastreamento de Em-

barcações Pesqueiras por Satelite” (PRES) in Brazil as part of the federal gov-

ernment program to supervise fishing activities on the Brazilian coast. 41, 48,

73, 107, 121

Fully Labeled Dataset is an attribute of a trajectory dataset that contains the

behavior of a moving object. 37

Geolife Dataset is a frequently used benchmark dataset for mobility data research,

is a synchronous dataset with identifiable multi objects, Microsoft Research

Asia collected it from April 2007 to October 2011. 40, 48, 77, 107, 121

xvi

Geolocation is a tuple includes the latitude and longitude of the moving object. 2,

18, 59, 120

HURDAT2 processor is a Python script that performs the pre-processing neces-

sary for using the hurricanes datasets published by NOAA. 8

Identified Trajectories Dataset is a type of trajectory dataset that includes seg-

ment features that identify the segmentation from a subject matter expert view.

37

Interpolation is an approach in which we construct new trajectory points within

the range of a discrete set of known trajectory points. 5, 15, 31, 59, 100, 121

Interquartile range is the difference between 75th and 25th percentiles. 74

K-anonymity is a privacy model regularly employed to preserve data privacy in

data sharing scenarios. 3

Kinematic Extrapolation is an extrapolation technique based on the dynamics of

movement such as velocity and acceleration. 16

Label is a specific type of segment features. This may be called Segment Label. 4,

13, 19, 29, 48, 68, 99

Linear Interpolation is the simplest interpolation technique that using the average

value between two value for interpolation of mid value. 15, 70, 112

Linear Regression is a linear method to represent the relationship between a de-

pendent and an independent variable. 16, 70, 121

Non-overlapping segment is the situation where two consecutive segment in a tra-

jectory do NOT have any overlapping trajectory points with similar semantic.

11

Over-segmentation is a case in which a trajectory segmentation algorithm pro-

duces considerably too many short segments. 56

xvii

Overlapping segment is the situation where two consecutive segment in a trajec-

tory can have some overlapping trajectory points with similar semantic. 38

Partitioning Position is the index of a trajectory point that is positioned at the

boundary of two segments. 5, 11, 12, 49, 97, 99, 121

Point Feature is a measured value, assigned to a trajectory point. A formal defini-

tion of a point feature is provided in Section 2.1. 12, 84

Point-based View is an approach to handle and process mobility data where all

the points are stored in a media, and processing happens at the single point

level. 3

Purity is an evaluation metric for trajectory segmentation task. 37, 54, 68, 107

Random Walk is an extrapolation/interpolation method for cases in which the

moving object behaves randomly. it uses the recent distribution of distance

and bearing of the movement for its interpolation/ extrapolation. 17

Raw trajectory is used interchangeably to trajectory. 10

Segment is a set of consecutive trajectory points belonging to a raw trajectory. 11

Segment Feature is a calculated or semantically assigned value that is assigned to

a segment. 12

Segment Label is a specific type of segment features. 13

Segment Length is the number of trajectory points in a segment. 11

Segment-based View is an approaches to handle and process mobility data where

the summarized version of data is stored in the media to be processed. 3

Semantic Segment is a tuple that assigns a set of segment features to a segment.

A formal definition of a semantic segment is provided in Section 2.1. 15

xviii

Semantic Trajectory is a trajectory that all of its segments are semantic segments

and these semantic segments have the same set of segment features. 15, 23, 31

Sub-Trajectory or segment is a set of consecutive trajectory points belonging to a

raw trajectory. 11

Timestamp is the component that captures the temporal aspect of a trajectory

point. 18, 19

Trajectory is a time-ordered sequence of trajectory points of a moving object. A

formal definition of a raw trajectory is provided in Section 2.1. 10

Trajectory point is a data structure that contains the location of an object and

the time of capturing the location. A formal definition is provided in Section

2.1. 10

Trajectory segmentation is a process for dividing a trajectory into sub parts. 11

Trajlib is a public Python library that aims to facilitate trajectory mining by gen-

erating segment and point features for trajectory data. 8

TrajSeg is a public library that includes our proposed trajectory segmentation al-

gorithms. This library also includes all the other trajectory segmentation algo-

rithms that we applied in our experiments. 8

Under-Segmentation is a case where a trajectory segmentation algorithm is pro-

ducing a considerably lesser number of segments than expected. 56, 90

Unlabeled Dataset is a trajectory dataset devoid of any label data. 37

VISTA is a visual analytic platform for annotating trajectories. 4, 7, 22, 99, 115,

122, 143

xix

Chapter 1

Introduction

The number of mobility datasets available for research and the applications of mobil-

ity datasets increase every moment. Some instances of these datasets include tracking

animals, ships, cars, people, and moving IoT devices. Mobility data has all the char-

acteristics of big data. The volume of this type of data is immense. For example, an

Automatic Identification System (AIS) dataset for a year on Marine Traffic1 contains

188,000,000,000 records of positioning reports. The velocity of the production of this

type of data is very high so that a moving object can produce thousands of records in

less than a day. Depending on the frequency of capturing data, it can be even more.

A variety of data types can be merged to mine knowledge from such data stores. For

instance, we have geographic shapefiles, tabular data, and graph representations of

mobility data. The veracity of mobility data may sometimes be low because we have

different types of noise and errors in data, such as GPS jumps or gaps. Therefore, to

mine knowledge from this data requires the use of subject matter expert approaches.

Marine Traffic reported at almost 520,000,000 position reports per day. AIS mes-

sages2, are captured from close to 3,000 active AIS stations around the globe [50].

Movebank3, a free online database of animal tracking, reported 2.2 billion locations,

3.2 billion non-location events, with over 5,000 data owners that are participating in

7,320 studies [55]. According to the World Bank4 dataset in 2017 for each group of

100 individuals’, the number of mobile cellular subscriptions was 104.49. According

to Market and market (MnM) report in 2018, the Smart Transportation market size

is estimated near 75 Billion USD that is predicted to grow to 149.21 billion USD in

2023.

1Marine Traffic was a project started as an open, community-based project. This project formed
a company called Marine Traffic (Founded 2007) which provides real-time information on the
movements of ships and the current location of ships in harbours and ports. Their website is
https://www.marinetraffic.com

2https://en.wikipedia.org/wiki/Automatic identification system
3https://www.movebank.org
4https://data.worldbank.org/

1

2

Mobility data has three extra dimensions (object identifier, time and geoloca-

tion) compared to conventional data, and it has properties such as heterogeneity and

auto-correlation, making data mining tasks more challenging. The first property —

heterogeneity — means that a moving object experiences different circumstances,

such as low traffic or congestion: for example, when a vehicle moves from a rural area

with little traffic to a downtown area with traffic congestion. The second property

is auto-correlation, which means the location of a moving object is highly related to

its location in nearby time and space. This is also in line with the first law of geog-

raphy, which says that “everything is related to everything else, but near things are

more related than distant things.”[75]. The different types of correlation (e.g. tem-

poral or spatial) makes an underlying assumption (i.e., Independent and identically

distributed (I.I.D)) of most of the machine learning approaches invalid.

Processing mobility data, such as traces of individuals, vehicles, ships, and ani-

mals, has been the focus of researchers in science and industry. These traces of moving

objects are called trajectory data and can be informally described as a time-ordered

sequence of the geolocations of a moving object. Transportation mode detection [25],

fishing detection [16], crime prediction [6], tourism [27], environmental science [74],

and traffic dynamics [12, 17, 66] are a few examples of fields where trajectory mining

techniques can be employed.

Splitting a trajectory into smaller parts is a primary task, and it is called trajectory

segmentation. This partitioning is necessary because a mobility pattern, in general,

is not the same for the entire trajectory, but it could be for some of its sub-parts

(segments or sub-trajectories). Therefore, the segmentation process becomes one of

the most critical pre-processing steps for trajectory data mining. The major benefit

of trajectory segmentation is to decrease the effects of the presence of different types

of correlation in mobility data, which makes the I.I.D assumption invalid. After a

segmentation procedure, trajectory points in each segment are more related to each

other and could be relatively unrelated to their segment neighbors.

Data summarization and data privacy are other key reasons to perform trajectory

segmentation. For example, a navigation graph, including nodes (stop points) and

edges (trajectory segments) which represents the voyages of a vessel, can be extracted

from a trajectory dataset after a segmentation procedure. The segmentation identifies

3

the nodes, their properties, and properties of each edge. From a privacy perspective,

sharing the features of an edge disseminates less information than sharing the time

and location of moving object during its movement. Also, the object itself may

want to remain private: e.g. a fishing ship does not want the world to know where

it goes fishing. Therefore, it is desired that their identity stays private when the

data is analyzed. Since the periodic behavior of moving objects can represent some

patterns, a trajectory can act as a fingerprint for a moving object to reveal its identity.

A trajectory of a moving object can be attacked by a hacker to reveal its identity

and related information can be discovered by applying background datasets [52].

Utilizing a trajectory segmentation method can protect the privacy of a moving object

since the moving object only shares a summarized version of its data [1]. Many

individuals’ movements share the same patterns after segmentation, or they generate

similar trajectories. They are thereby providing a form of anonymization, similar to

K-anonymity [64].

There are two different approaches to handle and process mobility data. The first

approach is a point-based view in which all the points are stored in a medium, and

processing happens at the single point level. Usually, the number of points grows

limitlessly and feeding this kind of data into an algorithm, even an algorithm with

linear complexity can cause issues such as memory capacity limits and lengthy pro-

cessing requirements. The second approach is a segment-based view in which the

summarized version of data is stored in the media to be processed. This approach

enables many methods to work reasonably well on this kind of data because it over-

comes the complexity of storage and processing of a point-based view structure. A

segment-based view provides knowledge more clearly related to a segment of a tra-

jectory rather than a point-based view approach, which provides information about

every single point of a trajectory. The researchers in the trajectory mining field are

usually more interested in the behavior of a moving object through time rather than

knowing the location of a moving object at every moment. Therefore, providing an

aggregated representation of a moving object’s behavior can be more beneficial to

answer complex queries. For example, using this aggregated representation, the user

can build a graph representation, defined in Section 2.1, of mobility data.

The segment-based view can be facilitated by a trajectory segmentation task,

4

which is the process of splitting a given trajectory into several homogeneous seg-

ments according to some criteria. This task plays a pivotal role in trajectory mining

since it affects the features of each segment, as the features may depend on the size

of the trajectory segment, independently of the application domain, such as fishing

detection [69], animal behavior [39, 38], tourism [27], traffic dynamics [25, 38, 78, 67],

and vessel movement patterns [11]. There are several approaches to perform the tra-

jectory segmentation task such as Clustering Based Stops and Moves of Trajectories

(CB-SMoT) [58], Stay Point Detection (SPD) [85], Warped K-Means (WKMeans)

[43], Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory

Segmentation (GRASP-UTS) [69], and Trajectory Clustering (TRACLUS) [41].

While reviewing the related work, the following gaps were discovered: First, most

of the segmentation algorithms are domain or application specific. For example, some

of them are designed to process multi-sensor trajectory datasets. These methods are

not applicable to single trajectories. Some algorithms require knowledge more than

just the time and location of moving object to segment data. Finally, most of them

suffer from a high complexity for processing a huge volume of data. This work has the

main objective of searching for a segmentation algorithm that can segment trajectory

data with low complexity while using only location and time of the moving object.

As a requirement, such algorithm must not depend on the knowledge that can be

extracted from collective behaviour of multiple trajectories. The benefit of proposing

such an algorithm is that it can be executed on a moving object in which there is

limitation of memory, connectivity, and processing power. Second, most proposed

algorithms for trajectory segmentation are unsupervised or semi-supervised—no tra-

jectory segmentation algorithm fully benefits from labelled data. A supervised tra-

jectory segmentation may facilitate the process of trajectory annotation. Such an

algorithm can gradually learn from subject matter experts and tune its performance

based on the labelled data provided by users. A supervised approach can receive

training data and be adjusted to a specific domain and application. Although there

is a lack of training data with labels, trajectories can be annotated using platforms

such as VISTA [68] or Analytic [38]. Another benefit of a supervised approach is that

it can be tuned to a particular performance measure considered by an application or

domain. Therefore, this work was guided by the following research questions:

5

• How could positions be detected in trajectory data where there were abrupt

changes in its behavior the using minimum possible information (time and lo-

cation of a single moving object)?

• How can these abrupt changes be used to segment trajectory data? The abrupt

changes may be discovered using a predictor like an interpolation technique.

• In case of trajectory annotation, how could we detect partitioning positions

in trajectory data applying previously annotated data collected in a training

dataset in that domain?

• How would a new strategy based on those assumptions perform in well-known

trajectory datasets?

1.1 Contributions

The contributions of this thesis are a supervised trajectory segmentation algorithm

and an unsupervised trajectory segmentation algorithm using a sliding window to

process trajectories. The effectiveness and computational performance of the unsu-

pervised algorithm are evaluated against three data sets from three different domains

(the fishing dataset, Atlantic hurricanes dataset, and Geolife dataset), four competi-

tors segmentation algorithms (SPD, CBSMoT, GRASP-UTS, WKMeans), and under

seven metrics (purity, coverage, harmonic means, memory consumption, CPU usage,

number of segments, and v-measure). The results confirm that the algorithm outper-

forms competitor algorithms, even though GRASP-UTS and WKMeans had access

to extra information. GRASP-UTS benefits from the wind speed information, and

WKMeans is provided with an estimate of the number of segments. Moreover, the

number of parameters to tune the supervised method is lower than the number of

parameters for CBSMOT, GRASP-UTS and SPD. The results of parameter tuning

for each fold of our trajectories indicated that the competitors’ variation of parameter

values is high. The proposed method had a very low variation of parameter values

for each fold of trajectory data that shows the algorithm’s robustness. Further in-

vestigation of the results showed that the unsupervised algorithm has a weakness in

segment trajectories with multiple behaviour changes inside a movement course.

6

The effectiveness and computational performance of the supervised algorithm are

evaluated against three data sets from three different domains (the fishing dataset,

Atlantic hurricanes dataset, and Geolife dataset), five competitors segmentation al-

gorithms (SWS, SPD, CBSMoT, GRASP-UTS, WKMeans), and under seven metrics

(purity, coverage, harmonic means, memory consumption, CPU usage, number of

segments, and v-measure). The supervised trajectory segmentation algorithm results

demonstrate that the algorithm is at least competitive, and it outperforms competitor

algorithms in many cases. Despite this algorithm’s weakness in segmenting the fish-

ing dataset, it surpassed competitors in the Atlantic hurricanes and Geolife datasets.

The algorithm’s further evaluation identified that the quality of capturing trajectories

plays a vital role in the quality of segmentation.

Purity and Coverage are conventionally applied to measure the quality of trajec-

tory segmentation algorithms. A trajectory segmentation algorithm that encourages

short segments increases Purity, and a trajectory segmentation algorithm that pro-

motes long segments increases Coverage. We introduced harmonic means of Purity

and Coverage as a single measure representing the quality of segmentation tasks. At

the end of chapter 6, we provide a guideline for the end-user that guides which tra-

jectory segmentation algorithm is proper considering factors such as type of data,

availability of extra information, and the rate of capturing trajectory points. Here

we discussed the default values for our proposed approach and the best configuration

for each experimented domain.

1.2 Outcomes

The outcomes of this study are two sliding window approaches and software packages

to facilitate the trajectory segmentation of a moving object. The following are the

publications which are the direct outcome of this work:

• The idea of interpolation and calculating the divergence of a moving object from

an ordinary interpolation in that domain is explored in a conference paper titled

“A Trajectory Segmentation Algorithm Based on Interpolation-based Change

Detection Strategies.” [22]. The primary sliding window approach that is carried

out in this work is presented in a journal paper titled “SWS: An unsupervised

7

trajectory segmentation algorithm based on change detection with interpolation

kernels” [23].

• The supervised sliding window approach utilizes a binary classifier combined

with a majority vote mechanism in order to place the partitioning position in

the best position to generate high quality segments. We published the details

of this work in a conference paper called “Wise Sliding Window Segmentation:

A classification-aided approach for trajectory segmentation”[21].

During our study we explored some applications of trajectory segmentation and tra-

jectory mining that are indirectly related to our work. The following publications are

the works that are indirectly related to our study.

• “Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D

Environments” is a conference paper in which we explore the possibility of

generating a trajectory from moving object location to a target location [26].

• “A Network Abstraction of Multi-vessel Trajectory Data for Detecting Anoma-

lies.” is a conference paper with a focus on extracting a graph representation

from trajectory data [78].

• “VISTA: A visual analytics platform for semantic annotation of trajectories.” is

a demo conference paper about an application called VISTA (see Section C.1)

to segment and label trajectory data [68].

• “On feature selection and evaluation of transportation mode prediction strate-

gies” is a paper that reviews segment and point features of trajectory data in

transportation domain to select the most informative features [24].

• “Predicting transportation modes of GPS trajectories using feature engineering

and noise removal” is a conference paper in which we introduced our TrajLib

library. This paper received a positive attention from the research community

because of the availability of the Python library [25].

• “Uncovering vessel movement patterns from AIS data with graph evolution

analysis” is another conference paper that focuses on extracting a graph repre-

sentation from trajectory data [11].

8

• “Building navigation networks from multi-vessel trajectory data” is a journal

paper published in Geoinformatica that aims to extract graph representation

from trajectory data.

During this research, we implemented two public Python libraries, a pre-processing

script and a private Python repository as follows:

• Trajlib is a public Python library that aims to facilitate trajectory mining by

generating segment and point features for trajectory data.5

• TrajSeg is a public library that contains our proposed trajectory segmentation

algorithms. This library also contains all the other trajectory segmentation

algorithms that we applied in our experiments6.

• HURDAT2 processor is a Python script that does the preprocessing necessary

for using the Atlantic hurricanes dataset. This code is available on Github7.

• We developed a private repository to capture and collect AIS data. This private

repository, available at CS GitLab, contains all the code for capturing, decoding

and storing real-time AIS data 8.

Implementation of the last item resulted in creating the following datasets:

• A private AIS dataset which contains more than 10B AIS messages, accessible

on MongoDB on a dedicated server on Dalhousie Datacenter named Bigdata4.

• A small AIS dataset that was extracted from the above dataset and made

available to the general public for research. The details of this dataset are

available in Chapter 4.

1.3 Outline

The overall organization and structure of the thesis are as follows. Chapter 2 explores

the background, including definitions, models and interpolations. Chapter 3 reviews

5https://github.com/metemaad/TrajLib
6https://github.com/metemaad/TrajSeg
7https://github.com/metemaad/HURDAT2 processor
8https://git.cs.dal.ca/big-data-institute/ais-codebase

9

related work. It includes existing algorithms and methods for trajectory segmenta-

tion, plus some essential aspects of these algorithms. We provide details on data

structure and datasets applied in this research in Chapter 4. In Chapter 5, we pro-

pose the Sliding Window Segmentation (SWS) algorithm, which is our first approach

to solve the trajectory segmentation task and the preliminary concepts related to

it. Here we provide the experiments and evaluations of this algorithm. We propose

the Wise Sliding Window Segmentation (WSII), a classification-aided approach for

trajectory segmentation, in Chapter 6. Furthermore, this chapter presents the exper-

iments and evaluation of this algorithm. In Chapter 7, we provide a conclusion and

review of potential future work to explore the trajectory segmentation task.

Chapter 2

Background

In this chapter, we discuss the background necessary to understand all the concepts

related to the trajectory segmentation task, such as raw trajectories, trajectory point,

segments, features, and partitioning positions.

2.1 Definitions

In this section, we formally define some key concepts that are essential for the tra-

jectory segmentation task.

Trajectory Point

A trajectory point, loi , is the location of object o at time i, and is defined as,

loi = 〈xoi , yoi 〉 (2.1)

where xoi is the longitude of the location which varies from 0◦ to ±180◦, while yoi is

the latitude which varies from 0◦ to ±90◦.

Raw Trajectory

A raw trajectory, or simply trajectory, is a time-ordered sequence of trajectory points

of some moving object o,

τ o = 〈lo0, lo1, .., lon〉 (2.2)

Without loss of generality, when it is obvious from the context that we are referring

to data from the trajectory of a single object, we may drop the superscript denoting

the object ID to simplify our notation. So for instance, we may refer to a trajectory

point as li = 〈xi, yi〉 instead of loi = 〈xoi , yoi 〉; or to a trajectory as τ = 〈l0, l1, ..., ln〉.

10

11

Segment or Sub-trajectory

A segment or sub-trajectory is a set of consecutive trajectory points belonging

to a raw trajectory τ o = 〈lo0, lo1, .., lon〉,

so = 〈loj , · · · , lok〉, j ≥ 0, k ≤ n and so is a subsequence of τ o (2.3)

The process of generating segments from a trajectory is called Trajectory Segmen-

tation (TS). The most common way of defining TS involves splitting a raw trajectory

into a set of non-overlapping segments. More formally:

Trajectory Segmentation

Given a raw trajectory τ o = 〈lo0, lo1, .., lon〉, we define a sequence of segments So =

〈so0, · · · , sok〉, such that

∀soi ,soi+1∈S s
o
i = 〈lop, · · · , lop+t〉, soi+1 = 〈lop+t+1, · · · , lop+t+u〉 (2.4)

and

so0 = 〈lo0, · · · , loi 〉, sok = 〈loj , · · · , lon〉 (2.5)

The input and output of the trajectory segmentation process are shown in Equa-

tion 2.6, where τ is a raw trajectory which contains n trajectory points, and S is the

set of all segments generated from τ using TS.

TS : τ −→ S , |τ | = n+ 1, |S| = k + 1 (2.6)

In this notation, n+ 1 is the number of trajectory points and k + 1 is the number of

segments resulting from applying TS to the trajectory.

We designate a trajectory point at the end of each segment as partitioning position.

This means that the result of applying TS to a trajectory, S contains k partitioning

positions. We define segment length as the number of trajectory points in a segment.

For example, N o
k = |Sok| = n− j. To simplify for the case of single moving object we

write Nk = |Sk| = n− j.

12

Partitioning Position

Let q be a partitioning position index and τ1 be a raw trajectory generated by a single

object. Then, s1 = 〈l0, l1, ..., lq〉 and s2 = 〈lq+1, lq+2, ..., ln〉 are two segments derived

from τ1. The set S = {s1, s2} is the set of all generated segments and k = |S| = 2 is

the number of elements of this set, which is the number of segments.

Graph Representation

We define li as a boundary point of a segment if li is the first or last trajectory point

in that segment. Boundary points of a trajectory is a set of trajectory points that

contains boundary points of all segments (Bτn).

We define a graph representation for a raw trajectory as an example applica-

tion for a trajectory segmentation task. Each application can customize the graph

representation.

Using a raw trajectory τn, we extract a set of segments, So, by applying a trajec-

tory segmentation task. A graph representation of τn is a directed graph, G = (V,E),

where V is a set of clusters produced by clustering the boundary points of the raw

trajectory, Bτn , and E = V × V is a set of edges so that each edge ei = (vi, vj) is a

tuple that represents a segment in So starting from vi and ending in vj.

Point Features

A point feature is (i) a measured value, Pi, (ii) assigned to a trajectory point. The

set of measurement functions is M which contains all of the available measurements

and Mp ∈M .

PFp : L −→ R, Pi = Mp(li), li ∈ L (2.7)

For example, the instantaneous speed is considered a point feature since we can

measure the speed of a moving object at each trajectory point.

Segment Features

A segment feature is (i) a calculated or (ii) semantically assigned value, Qj ,

assigned to a segment. SFj ∈ SF is a function that computes the value of a segment

13

feature. Equation 2.8 shows the domain and range of segment feature function where

S is the set of all segments.

SFj : S −→ Qj, Qj ∈ R (2.8)

For example, the median, average, minimum or maximum value of any point

feature in a segment can be a segment feature. In some trajectory mining tasks, we

could have one or more segment features considered as a target value to be predicted

by a model. We call these specific types of segment features as Segment Labels. A

segment label , or label, λi ∈ ΛL is an annotation given to a segment assigned by an

expert user in the studied domain, where ΛL is the set of labels and L is the number

of unique labels in ΛL. We remark that any segment feature can be expanded as a

point feature and we use the expanded version of label for ground truth. Equation 2.9

shows an example set of trajectory labels in the transportation domain.

λi ∈ {Bus,Walk, Train,Bike}, L = 4 (2.9)

Similarly, we define a segment identifier as a special type of segment feature. A

segment identifier or SID, ψi ∈ Ψv is an annotation given to a segment by a subject

matter expert, where Ψv is the set of segment identifiers and v is the number of unique

segment identifiers in Ψv. We remark that any segment feature can be expanded as a

point feature and we use the expanded version of segment identifier for ground truth.

Equation 2.10 represents an example set of segment identifiers in the transportation

domain.

ψi ∈ {1001, 1002, 1003, 1004, 1005}, v = 5 (2.10)

Purity

Purity is the rate at which the discovered segments purely represent a semantic label

for each ground truth segment. It is computed using Equation 2.11.

P (S,ΛL) =
1

k
(
k∑
i=1

argmax
j∈[1,L]

(
Nij

Ni

)) (2.11)

where S is the set of segments discovered by segmentation algorithm,

14

ΛL is the set of labels (a point feature) provided by subject matter expert,

k is the number of discovered segments,

L is the number of expert labels,

Nij is the number of trajectory points inside segment si with label λj,

and Ni is the total number of points found for the segment si.

Coverage

Coverage is the rate at which the discovered segment covers the ground truth segment

suggested by a subject matter expert. It is calculated using Equation 2.12.

C(S,Ψv) =
1

v
(
v∑
i=1

argmax
j∈[1,k]

(
Nψi∩sj

Ni

)) (2.12)

where S is the set of segments discovered by segmentation algorithm,

Ψv is the set of segments by a subject matter expert,

Nψi∩sj is the number of trajectory points of the segment sj that belongs to the ψi

segment,

and Ni is the total number of points of the identified segment with segment iden-

tifier equals to ψi.

Harmonic Mean of Purity and Coverage

Harmonic mean is one of several kinds of average mostly applied for situations when

the average of rates is desired. The harmonic mean of two numbers a and b is equal

to (2 ∗ ab)/(a + b). An example of this measure in machine learning is F measure,

which is the harmonic mean of precision and recall.

The Harmonic mean of Purity and Coverage is derived from purity and coverage,

computed using Equation 2.13. Since we are interested in achieving both high average

purity and average coverage, we defined harmonic mean of them.

H(S,ΛL,Ψv) =
2 ∗ P (S,ΛL) ∗ C(S,Ψv)

P (S,ΛL) + C(S,Ψv)
(2.13)

where S is the set of segments discovered by segmentation algorithm,

ΛL is the set of labels provided by subject matter expert,

Ψv is the set of segments by subject matter expert,

15

P is the purity,

and C is the coverage.

Semantic Trajectory

A segment can be enriched by assigning a set of segment features to it. (Sj,Qj)

is a semantic segment , where Sj is a segment in S and Qj is a set of segment

features assigned to Sj. A semantic trajectory is a trajectory that all of its segments

are semantic segments and these semantic segments have the same set of segment

features.

2.2 Interpolation and Extrapolation Methods

Since the main focus of this thesis is to propose trajectory segmentation methods

based on interpolation / extrapolation methods, we review interpolation and extrap-

olation techniques. Interpolation is an approach in which we construct new trajectory

points within the range of a discrete set of known trajectory points. extrapolation is an

approach in which we construct new trajectory points outside of the range of a discrete

set of known trajectory points. In this work, we use interpolation for constructing a

point within the range of known trajectory points to measure the deviation from the

norm. Also, we use extrapolation to predict the next point outside of the range of

known trajectory points to use it as an auxiliary point to calculate interpolation.

In this section, we review one basic interpolation technique, Linear Interpola-

tion, and four basic extrapolation techniques, namely Linear Regression, Kinematic,

Random walk, and Cubic; however, there are many more techniques and enhanced

versions of them that can be used such as enhanced kinematic approach [35, 48], ad-

vanced random walk [72], and Functional Data Analysis (FDA) [36, 60, 28, 71, 87, 28].

We selected these four techniques because each of them is a representative of a cate-

gory of approaches.

2.2.1 Linear Interpolation

Linear interpolation is the simplest interpolation technique. Given two trajectory

points, lot1 = 〈xot1 , y
o
t1
〉 and lot3 = 〈xot3 , y

o
t3
〉, t1<t3, and an unknown value of lot2 =

16

〈xot2 , y
o
t2
〉, we use Equation 2.14 to calculate the value of lot2 .

t2 = t1 +
t3 − t1

2

xot2 = xot2 +
xt3 − xt1

2

yot2 = yot2 +
yot3 − y

o
t1

2
(2.14)

We apply this technique to compute the location of the moving object at t2 when

we have the location of the moving object, 〈xot1 , y
o
t1
〉 and 〈xot3 , y

o
t3
〉, at times t1 and t3.

The minimum number of points we need for Linear interpolation is two points.

2.2.2 Linear Regression Extrapolation

Linear regression is a linear method to represent the relationship between a dependent

variable (x and y for two models LRx and LRy) and one or more independent variables

(t). Given trajectory points of a single object lt1 , lt2 , ..., ltp , where t1 < t2 < ... < tp,

and the value of ltp+1 is unknown, we fit two linear regression models to the x(t) and

y(t) of the known points. LRx = x(t)βx + εx is a representation of yt and yt so that

βx and εx are defined in a way such that the LRx is the line with minimum distance

to all data points, (x, t). Similarly, LRy = y(t)βy + εy is a representation of yt and yt

so that βy and εy are defined in a way such that the LRy is the line with minimum

distance to all data points, (y, t). X(t) = LRx(t) and Y (t) = LRy(t) are two trained

linear regression models estimated using known trajectory points that can be used to

predict X(tp+1) and Y (tp+1).

2.2.3 Kinematic Extrapolation

Kinematic extrapolation method is based on the dynamics of movement. We need

to calculate the speed (vx, vy) and acceleration (ax, ay) of a moving object for each

trajectory point and use Equation 2.15. In order to calculate the extrapolated value

we need at least three trajectory points, lt1 , lt2 , lt3 to extrapolate lt4 .

17

vx(t+ 1) =
xt+1 − xt
tt+1 − tt

(2.15)

vy(t+ 1) =
yt+1 − yt
tt+1 − tt

ax(t+ 1) =
vx(t+ 1)− vx(t)

tt+1 − tt

ay(t+ 1) =
vy(t+ 1)− vy(t)

tt+1 − tt

x(t+ 1) =
1

2
ax(t+ 1)2 + vx(t+ 1) + xt

y(t+ 1) =
1

2
ay(t+ 1)2 + vy(t+ 1) + yt

2.2.4 Random Walk

Random Walk is an extrapolation/ interpolation method for cases in which the moving

object behaves randomly [72]. In this method, we calculate (i) the interval of direction

variations, θ̄ ± σθ, which is the mean of direction variations in each known point

calculated using Equation 2.16 where lot1 = 〈xot1 , y
o
t1
〉 is the first point, lot2 = 〈xot2 , y

o
t2
〉

is the second point (∆x is the difference in longitude), and (ii) the interval of the

step of a moving object, l̄ ± σl, which is the mean of the distance between known

points1 [72]. The number of points in this extrapolation is very important and the

frequency of capturing points can affect the determination of the number of points

needed for extrapolation. This method is useful to extrapolate animal movement [72].

Note that x and y are in radian. To convert xt and yt from degree to radian, we

multiply their value by π
180

.

θ = atan2(sin(∆x) cos(y2), cos(y1) sin(y2)− sin(y1) cos(y2) cos(∆x)) (2.16)

lθ = 2r arcsin

(√
sin2

(
y2 − y1

2

)
+ cos (y1) cos (y2) sin2

(
x2 − x1

2

))
(2.17)

where r is the radius of the earth.

For example, assume a moving object travels from point A = 〈0, 0〉 to point

1For calculating distance we used haversine distance [13]

18

Figure 2.1: An example of calculating θ and lθ when a moving object travels from
point A to point B using random walk kernel.

B = 〈90, 90〉, shown in Figure 2.1. We calculate θ and lθ as follows.

θ = atan2(sin(π
2
) cos(π

2
), cos(0) sin(π

2
) − sin(0) cos(π

2
) cos(π

2
)) = atan2(0, 0) = 0

which means the moving object headed to the north.

lθ = 2r arcsin
(√

sin2
(
π
4

)
+ cos (0) cos (π

2
) sin2

(
π
4

))
= πr

2

2.2.5 Cubic Method

Cubic method is a method that uses a third degree polynomial. It can be used as

both an interpolation method or extrapolation method because it fits a curve to the

known points and returns its function. Given n trajectory points, where there is no

duplicate time value, ti 6= tj, we can estimate two functions Sx(t) and Sy(t) to predict

the x(t) and y(t) values of unknown trajectory points. The details of calculation and

implementation are available in [45, 79]. Some Cubic interpolation variations, such

as Hermite and Spline, are confirmed to be useful for interpolating the Automatic

Identification System. (AIS) data [83]. The cubic spline is determined to reconstruct

AIS data better than Hermite interpolation [83]. However, considering the fact that

behaviour of a cargo vessel and a small fishing vessel are vastly different, we might

be interested to look into more general approaches such as the methods selected in

this research.

2.3 Data Structure

A trajectory point of a single moving object comprises two core components, namely

timestamp and geolocation. Moreover, it can be related to some optional domain-

related elements such as local and global features that we call point features. A

sample trajectory with one point-feature is shown in Table 2.2.

19

Symbol Description
ax Acceleration of moving object in direction x
ay Acceleration of moving object in direction y
k Number of segments in a trajectory (τ)
L The set of all trajectory points
lθ The distance step of movement in a random walk movement
n Number of trajectory points in a trajectory (τ)
N The set of all measurement functions for measuring segment feature
Nq Measurement q for measuring segment feature
Qj Measured value for segment feature using Nq

S Set of all segments in a trajectory (τ)
SFq Segment Feature
τ Raw trajectory
θ Direction variation in a random walk movement from the north.
vx Velocity of moving object in direction x
vy Velocity of moving object in direction y

Table 2.1: The symbols and notations used in this chapter

The geolocation includes the latitude and longitude of the moving object. In some

domains, altitude can be part of the geolocation.

The timestamp is the component that captures the temporal aspect of a trajectory

point. Although date-time is the most common example of a timestamp, using an

ordinal number or chain of events can be other representations. Whenever we talk

about timestamps, we use the conventional example — date-time — unless otherwise

stated.

The point features are the optional assignments to a trajectory point that measure

an attribute of a moving object at particular geolocation and timestamp, a formal

definition of point feature is presented in Section 2.1. Table 2.2 presents six samples

of trajectory points with one point-feature, speed, and two segment features, namely

mode and Segment Identifier (SID).

A label or a set of tags can be assigned to each trajectory point, which is a partic-

ular case of a segment feature. This feature is a categorical variable that can provide

semantic knowledge attached by a user to each segment. Since we will frequently uti-

lize this specific feature, we define it as an independent entity, and we call it Label.

An example of of trajectory label is displayed in Table 2.2 (column Mode).

Another remarkable point feature is Segment Identifier (SID). SID distinguishes

20

the parent segment of a trajectory point. All the trajectory points in a segment

have the same segment-id. Due to the particular role that this feature plays in the

segmentation task, we consider it as an independent entity, and we call it Segment

Identifier (SID). A raw trajectory with two segments (Walk, and Bus) is shown in

Table 2.2.

Timestamp Geolocation
Point

Features
Segment
Features

Time Longitude Latitude
Measured

Speed
Mode SID

2008-04-01 00:48:32 80.297195 41.144058 0.04
Walk 10002008-04-01 00:49:32 80.286858 41.14214 0.19

2008-04-01 00:50:32 80.282905 41.152378 0.18
2008-04-01 00:53:32 80.276862 41.167892 0.80

Bus 10012008-04-01 00:54:32 80.274478 41.17449 0.77
2008-04-01 00:56:32 80.269932 41.172747 0.42

Table 2.2: A sample trajectory data with a point feature (measured speed), and two
segment features (mode, SID)

After segmenting a raw trajectory, we can calculate some features related to that

segment; we call them segment features, detailed in Section 2.1. These features can

be calculated globally or locally with respect to a segment. An example of extracted

segment features (duration, minimum speed, day of week, average speed, mode, and

segment ID) is shown in Table 2.3.

Duration Min Speed Day of week Average speed Mode SID
3:00 0.04 Tue 0.136 Walk 1000
4:00 0.42 Tue 0.663 Bus 1001

Table 2.3: A sample segment feature

2.3.1 Spatial-temporal Data Structure VS. Trajectory Data Structure

In the literature on spatial-temporal data, we identified some research that considers

trajectory data structure as a particular case of spatial-temporal data. However,

there is a nuanced difference that makes trajectory data different and more complex

than spatial-temporal data. Spatial-temporal data describes an entity in a specific

time and location, such as the amount of precipitation in particular geolocation and

21

a specific time. Therefore spatial-temporal data describes a static object, while a

trajectory describes the behaviour of a moving entity. A moving object does not

have a static location. The action of a moving object changes according to many

factors, such as the environmental situation, or local circumstances. For instance, a

moving object starting the movement from a rural area and continuing the action in

a metropolitan area have different reactions to achieve the same objectives.

2.3.2 Single Moving Object VS. Multiple Moving Objects

A dataset of trajectories can be collected by a single moving object (single-sensor)

or multiple moving objects (multi-sensor). When the whole dataset is about the

movement of one moving object, we call it a single moving object, such as a vessel.

This attribute means the moving object cannot be in two different locations at the

same time. Multiple moving objects are the cases in which there are more than one

moving object in the dataset. This concept adds more complexity to our dataset. For

example, the AIS dataset contains a history of more than one vessel.

2.3.3 Synchronous VS. Asynchronous Data Collection

The data can be collected synchronously or asynchronously. When we receive data

using a device such as a smartphone or GPS device, all that data can be recorded

with a disciplined pattern, such as a fixed sampling frequency. However, when a

moving object broadcasts its data, and the terrestrial towers or satellites collect the

broadcast data, there is a chance of introducing some uncertainty to the data and

missing part of the data. This uncertainty is due to factors such as receiver coverage,

transmitter signal power, or the environment condition. An example of asynchronous

data is Satellite Automatic Identification System (S-AIS) data that is broadcasted

by the vessels and captured by satellites. Sometimes we combine the received data

to enrich the dataset. For example, the AIS data collected by terrestrial towers can

be merged by S-AIS data collected by the satellites. In such cases, finding duplicate

AIS messages can be a challenging task.

22

2.3.4 Trajectory Annotation or Trajectory Tagging

In some applications such as animal behaviour studies, a subject matter expert assigns

a label or SID to each trajectory point. This practice is called trajectory annotation or

trajectory tagging. This task is time-consuming and costly because a subject matter

expert is required to review trajectory points and decide on the features assigned to

each trajectory point. Some platforms, such as VISTA, are available for trajectory

tagging, which facilitate trajectory annotation using visual analytic and visualization

tools [68].

Chapter 3

Related Work

Trajectory segmentation has long received much attention in the mobility data mining

field because trajectory patterns may not hold during the entire trajectory but these

patterns might hold on trajectory parts. This process can summarize trajectories

and render a segment-based view of mobility data as a representation of a trajectory.

This perspective generates the field of semantic trajectory mining [59, 70]. Trajectory

segmentation is the sine qua non condition for the migration from trajectory mining

to semantic trajectory mining. More details on semantic trajectory are presented in

Section 2.1. In this chapter, we review the literature on the trajectory segmentation

topic. Then, the objectives and other aspects of existing approaches are discussed.

A semantic trajectory can be generated from two approaches. In the first ap-

proach, a trajectory is enriched with some background datasets such as maps and

geographical layers [51]. For example, a trajectory of an individual and a geographic

layer that shows shopping centers, schools, workplaces, and residential areas may

produce a semantic trajectory for a person which represents their daily activities like

domestic activities −→ shopping −→ work, as illustrated in Figure 3.1 (a).

In the second approach, a semantic trajectory is generated from a trajectory with

no help from other background datasets. For instance, processing marine naviga-

tion data to create a semantic trajectory for fishing activities like Docking −→
Sailing −→ Fishing −→ Sailing −→ Fishing −→ Sailing −→ Fishing −→
Sailing −→ Fishing −→ Sailing −→ Docking, illustrated in Figure 3.1 (b). The

second approach shows behavioural changes in movement devoid of the use of geo-

graphical semantic information and this is the focus of our review. There have been

some domain-specific approaches to behavioural changes in moving objects [15, 14].

Detecting stop and move behaviors in traffic management systems [8], discovering fish-

ing and non-fishing activities [16], analyzing the migratory pattern of animals [15],

and transportation mode prediction [25, 14, 18] are some examples of investigating

23

24

behavioral changes in different domains.

(a) The moving object here is an individual who commutes from work (domestic activities)
to home and stops by a shopping center on the way. The semantic trajectory is domestic
activities-shopping-home.

(b) The moving object here is a fishing boat starting a voyage from a harbour and go for
fishing. Then come back to the harbour.

Figure 3.1: Samples of semantic trajectories.

3.1 Objectives of Trajectory Segmentation Algorithms

Trajectory segmentation algorithms have one or more of the four following objectives,

as we discuss in the related work. First, some trajectory segmentation algorithms, like

the one in [14], only aim to make a uniform data structure. These types of algorithms

prepare trajectory data for a specific task, such as feeding a trajectory to a neural

network model with fixed input size [14]. The second objective of trajectory segmen-

tation is maximizing the homogeneity of points belonging to a segment. For example,

Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Seg-

mentation (GRASP-UTS) is a greedy algorithm that utilizes Minimum Description

25

Length (MDL) to discover segments with the highest possible homogeneity on specific

features [69]. The third objective of trajectory segmentation is to identify interest-

ing points or hot spots, such as SPD [85], DB-SMoT [61], and CB-SMoT [58], and

discover hot spots [56]. Forth, another approach that we observed in the reviewed

literature is finding patterns, including temporal patterns, in trajectory data. SeqS-

can is an example of discovering ordered clusters and temporal patterns in mobility

data [15].

3.2 Aspects of Trajectory Segmentation Algorithms

Having provided a general perspective about varieties of trajectory segmentation

methods, we are ready to compare significant aspects of them. The works were evalu-

ated regarding four main categories aspects named: Learning, Features, Performance,

and Others.

In the learning category, we explore the objectives of algorithm and how the al-

gorithms learn how to create trajectory segments. This includes what methodology

the algorithms uses, the algorithm’s capability of being executed in a parallel envi-

ronment, and how data is presented to the algorithm. This category includes the

following aspects: classes of segmentation algorithms, nature of algorithms, and type

of supervision. These aspects are summarized in Table 3.1 in page 30.

The feature aspects covers properties of algorithm to identify how the algorithms

apply features in the process of trajectory segmentation. This category includes the

type of extractable knowledge, the number of features, and type of features. Table 3.2

provides a compact version of this information.

The complexity of algorithm, amount of memory requirement for execution and

the algorithm robustness to noise are discussed in the performance aspects, and are

summarized in Table 3.3.

The rest of aspects for segmentation algorithms such as number of segments,

whether the algorithm benefits from collective behaviour, methods of evaluation and

whether the segments can overlap will be covered under the category of others aspects,

and are summarized in Table 3.4.

First, we detail each aspect, and after, we compare related work based on each of

them.

26

Trajectory
Segmentation
Algorithms

Learning

aspect

Class

Nature

Type of
Supervision

Features

Extractable
Knowledge

Number of
Features

Type of
Features

Performance

Robustness

Memory
Desire

Complexity

Others
Number of
Segments

Collective
Behaviour

Evaluation

Overlapping
Segments

Figure 3.2: An overview of trajectory segmentation aspects studied in this research

27

3.2.1 Learning Aspects

Classes of Segmentation Algorithms

Trajectory segmentation algorithms can be classified into four groups. The first group

consists of algorithms that generate a fixed uniform size of trajectories. These meth-

ods are useful for situations in which processing of a point-based view of trajectory

points is performed with a fixed size of input structure. For example, processing raw

trajectories needs a fixed size of inputs to train a deep neural network model. This

method has been applied in some research as a part of the pre-processing method [14].

Second, some methods focus on performing the trajectory segmentation task as a

solution to an optimization problem. There is usually a cost function in these methods

which they aim to minimize. For instance, GRASP-UTS falls into this category since

it uses the MDL concept to minimize the heterogeneity in each trajectory segment [69].

Another example of this method is the SeTraStream in which the RV-Coefficient has

been used in as optimization method [81].

Third, trajectory segmentation can been viewed as a clustering method. In these

approaches, clustering techniques have been employed to find clusters of trajectory

points. One subcategory of clustering methods is the K-Means family. A specific

version of K-Means which is called Warped K-Means was customized for trajectory

segmentation [44]. The problem with these methods is that the algorithms require

the number of clusters which usually is not available in the trajectory segmentation

task. Having iterations to find the number of optimal clusters is also very costly.

Another approach in clustering methods is the family of density-based clustering

algorithms [7, 58, 61, 19, 76, 47]. This is one of the preferred algorithms for trajectory

segmentation since there is no need to provide the number of segments; these algo-

rithms can find it automatically. Different versions of DB-SCAN such as CB-SMoT,

DB-SMoT, and SeqScan belong to this category and have been proposed to find inter-

esting points and patterns. There are a few caveats regarding the use of DB-SCAN.

First, the border points, see Definition 1 in [20], can belong to more than one cluster,

and the order of processing data plays an essential role in generating clusters with

slightly different borders. This characteristic makes DB-SCAN to some degree unfit

for this particular situation. There are some improvements on the basic DB-SCAN

28

to solve this issue; however, we did not find the application of these improvements

in the trajectory segmentation literature [10]. The second caveat, which is general

to clustering methods, is that the distance measure plays a vital role. Selecting an

inappropriate distance measure can profoundly affect the result of clustering. For ex-

ample, if trajectory data belongs to different geographical zones, applying Euclidean

distance decreases the quality of clustering. Third, DB-SCAN became less favorite in

situations that clusters have different density.

For example, using CB-SMoT, which is inspired by the DB-SCAN method and

is based on speed in the transportation mode domain, could not be the best choice

to find consecutive segments with the same transportation mode (for example, two

consecutive walk segments). This is because two consecutive segments with same

transportation mode maintain the same speed distribution.

Another approach in clustering methods is the TRACLUS algorithm [41]. This

method employs two sub-tasks: 1) partitioning and 2) clustering line segments. The

partitioning itself can be considered as a trajectory segmentation method which is

based on MDL. The second step does not segment trajectory points, while it extracts

the collective behaviour patterns to provide a semantic method of segmentation. The

algorithm performs this information extraction by clustering the lines generated in

the first step.

The last class of algorithms involves methods based on a sliding window. This

class of algorithms has a few advantages over the other methods. Since processing a

sliding window requires only a small amount of memory and computational power,

they can be used in embedded systems and real-time processing environment. More-

over, since processing each window can be independently performed, the likelihood

of taking advantage of parallel processing is very high. The first step of TRACLUS

(partitioning) is an example of a sliding window method.

Nature of Algorithms

The nature of an algorithm is a characteristic that shows to what degree we can im-

plement it on a parallel processing environment using methods such as map-reduce.

If a method has a sequential logic, with sequential nature, in which each steps re-

quires results of the previous step, it can not easily be implemented in the parallel

29

environment. On the other hand, if we have processes with independent steps we can

implement the method on a parallel platform, parallel nature, to achieve functionali-

ties such as real-time processing.

Types of Supervision

The type of supervision of trajectory segmentation is an important aspect representing

the high-level structure of the input of the methods. To be consistent with the machine

learning literature we define three major categories.

An unsupervised method is a method that does not have access to labeled data

and processes a raw trajectory. This type of segmentation method is a function

of a raw trajectory, i.e., f(τ). This type is more useful than supervised methods

because of the complexity of the trajectory tagging task. This task has a time and

complexity cost because an expert is required to label the data. An unsupervised

trajectory segmentation task may have some parameters which can be tuned by the

help of some labeled data. This type of algorithm can work without tuning with

lower performance. Therefore, they do not depend on the existence of labelled data.

Warped K-mean, CB-SMoT, DB-SMoT, and GRASP-UTS are a few examples of

unsupervised methods.

The second type of method is a semi-supervised method in which the algorithm

requires some labeled data to process unlabeled data to do the segmentation task.

The segmentation is a combination of a supervised and an unsupervised function, i.e.,

f1(τ1, l) and f2(τ2), where τ = τ1 ∪ τ2 where τ is the whole trajectory dataset, τ1 is

the labeled part of data and τ2 is the unlabeled part of data. This type of method is

useful when we have a small subset of labeled data to expand on the knowledge of the

subject matter expert. RGRASP-SemTS, and RB-SAT are two examples from this

family. RGRASP-SemTS is a semi-supervised method because it uses a supervised

method to extract semantic landmarks, f1, and an unsupervised approach to process

the similarity of trajectory points and calculate cost function, f2.

Third, supervised trajectory segmentation is a method that has trajectory data plus

a feature called label. This type formally defines a trajectory segmentation method

as a function f(τ, l) where τ is a raw trajectory and l is the label for each trajectory

30

point assigning each point to segment1, i.e., segment identifier.

These types of trajectory segmentation learn a pattern from labeled data and use

the extracted knowledge, known as a model, to segment unlabeled data in the future.

Despite the fact that we did not find a supervised example of trajectory segmentation,

we define this class to show the gap in the literature and possible future work.

Most of the related work is focused on trajectory segmentation task as an unsu-

pervised task, shown in Table 3.1. However, there are applications that benefit from

semi-supervised trajectory segmentation and supervised trajectory segmentation. A

tagging system that interacts with a subject matter expert in a specific domain to

label the trajectories benefits from semi and fully supervised trajectory segmentation

methods using active learning [38, 68].

Method Class Nature
Type of

supervision
SPD Clustering Sequential Unsupervised
Warped K-Means Clustering Sequential Unsupervised
CB-SMoT Clustering Sequential Unsupervised
DB-SMoT Clustering Sequential Unsupervised
SeqScan Clustering Sequential Unsupervised
Time-based Fixed window Parallel Unsupervised
Distance-based Fixed window Parallel Unsupervised

GRASP-UTS
Cost function
based

Sequential Unsupervised

SeTraStream
Cost function
based

Sequential Unsupervised

RGRASP-SemTS
Cost function
based

Sequential Semi-Supervised

TRACLUS Sliding Window Sequential Unsupervised
RTR Family Sliding Window Sequential Unsupervised
Global Voting Sliding Window Sequential Unsupervised
StopFinder Clustering Sequential Unsupervised
TrajDBSCAN Clustering Sequential Unsupervised
SPET Clustering Sequential Unsupervised

Table 3.1: Comparing characteristics of trajectory segmentation approaches in terms
of Learning aspects

1Note that this type of data can be utilized for evaluation of the trajectory segmentation algo-
rithms.

31

3.2.2 Feature Aspects

Extractable Knowledge

Depending on which methods are applied for trajectory segmentation, we can infer

different knowledge from data. The extractable knowledge from data can be cate-

gorized into five categories. First, trajectory segmentation can extract interesting

points. Methods such as CB-SMoT, DB-SMoT, and StopFinder that are interested

in finding stop points belong to this category. Second, it can obtain a uniform data

structure with a weak semantic [14]. These methods are interested in changing the

shape of mobility data to a uniform shape to be able to pass it to some existing

models such as neural networks [14]. Combining such methods with other approaches

can add a miscellaneous semantic to trajectory segments. Third, it can produce ho-

mogeneous segments. A cost function based segmentation methods aim to get the

most homogeneous segments possible. The way they define homogeneity varies since

they apply different features. Fourth, it can categorize segments based on a similar

pattern of movement. These methods require information from several trajectories

to find similar patterns between trajectories. Thus, this approach is computationally

expensive. Fifth, it can detect the behavior changes in moving object. This is ideal

that we segment trajectory data based on behaviour change since generating semantic

trajectory conveys the meaning of changing the behavior of a moving object.

We define behaviour change as a deviation from a norm in this research; and the

norm is defined differently in each domain. For example, in animal behaviour studies,

there is a method called random walk [72] that shows the normal behavior. Moreover,

the cubic spline interpolation method is a norm for marine traffic [83]. Furthermore,

movement of a fast moving object can be modeled by a kinematic interpolation as

a norm [48]. In case of absence of a norm, we define norm as a collective behaviour

that can be learned from the mobility data warehouse.

Number of Features

The number of features to be processed in a trajectory segmentation method differs.

Some methods use a fixed number of features to find the best segmentation while

others are able to employ a variable range of features. An algorithm with a variable

32

number of features can process any number of features provided by the user. In

contrast, an algorithm with a fixed number of features is not flexible to process any

information beyond its requirements. The techniques with a fixed number of features

such as CB-SMoT, DB-SMoT, and StopFinder have a fixed complexity and accuracy;

however, utilizing a variety of features can increase the complexity and accuracy of

the method.

Types of Features

We define two types of features: i) intrinsic and ii) semantic. An intrinsic feature

means feature is generated from movement dynamics. Therefore, a raw trajectory is

the only knowledge that is required to compute these features. Semantic means the

feature requires more information than a raw trajectory. For example, distance to

shore can be a feature that needs a geographical semantic layer in addition to a raw

trajectory in order to be computed.

If an algorithm is able to apply semantic features, it can be more specific to a

domain. On the other hand, if an algorithm requires intrinsic features, it can be used

in more general fields. Some algorithms are able to employ both types of feature

which make them more powerful and sophisticated. However, calculating semantic

features requires their algorithm to access some background knowledge and require

more processing power.

3.2.3 Performance Aspects

Complexity

The complexity of an algorithm has been one of the important metrics to compare

two algorithms. In this research, we have a focus on reporting the complexity of the

segmentation tasks and have a comparison between them. When we apply an algo-

rithm on a machine with limited capabilities of memory and processing power, the

algorithms with less complexity can feasibility produce their promised results; how-

ever, methods with high complexity can crash due to the lack of memory or timeout

error. Moreover, when running these algorithms on a machine that relies on a battery,

the higher complexity means higher energy consumption.

33

Method
Extractable
knowledge

Number of
Features

Type of
Features

SPD Interesting Points Fixed intrinsic
Warped K-Means Similar pattern Variable intrinsic
CB-SMoT Interesting Points Fixed intrinsic
DB-SMoT Interesting Points Fixed intrinsic
SeqScan Interesting Points Fixed intrinsic
Time-based Uniform dataset Fixed intrinsic
Distance-based Uniform dataset Fixed intrinsic

GRASP-UTS
Homogeneous
Segmentation

Variable knowledge

SeTraStream
Homogeneous
Segmentation

Variable knowledge

RGRASP-SemTS
Homogeneous
Segmentation

Variable knowledge

TRACLUS Similar pattern Fixed intrinsic

RTR Family
Homogeneous
Segmentation

Fixed intrinsic

Global Voting
Homogeneous
Segmentation

Fixed knowledge

StopFinder Interesting Points Fixed intrinsic
TrajDBSCAN Interesting Points Fixed intrinsic
SPET Interesting Points Fixed knowledge

Table 3.2: Comparing characteristics of trajectory segmentation approaches in terms
of Features aspects

The class of reviewed segmentation algorithms has two primary clustering meth-

ods. K-means is known to be of the complexity of O(ntk) where n is the total

number of objects, k is the number of clusters (unknown), and t is the number of

iterations [33]. However, imposing some criteria on the K-mean can reduce the com-

plexity to some extent [57]. By the way, we need to include the complexity of finding

k which is of O(n). The fact that we need to know the number of clusters makes this

method less interesting since this fact guarantees that the complexity can be greater

than O(n).

Another family of clustering class of trajectory segmentation methods is based on

the density-based clustering concepts and modifications of DB-SCAN. The complexity

of DB-SCAN without using any indexing methodology is O(n2) [33]. This complexity

can be reduced to O(n log(n)) by using indexing methods such as r-tree [33, 31, 7].

34

Obviously, we require to add the complexity of creating r-tree index as well. In very

optimistic circumstances with heuristic approaches, some of the variations of DB-

SCAN, like CB-SMoT and DB-SMoT, can get to the complexity of O(kn) which is still

high because n is a big number in mobility data, usually a data stream. We observed

some improvements on DB-SCAN, such as RT-DBSCAN, in which the clustering

algorithm benefits from parallel processing structures; however, these approaches were

not employed for trajectory segmentation tasks [29].

Fixed window methods are fast regarding complexity; however, they are not ap-

propriate methods to segment trajectories because the behavior changes can happen

in the middle of the fixed window and the algorithm is not capable of handling this

situation. These algorithms can be useful when we utilized them in combination with

other methods. They can be useful for data augmentation purposes.

The complexity of methods with cost function in the best scenario is O(tn) where

t is the number of iteration to converge [69]. The sliding window class of algorithms

is more favorite concerning complexity since they can do parallel processing on each

window. These methods may achieve a complexity of less than O(n) in case of utilizing

the parallel processing platform.

Robustness to Noise

Robustness to noise is another characteristic of a trajectory segmentation methods.

Some methods can handle noisy data while others are sensitive to noise. For example,

DB-SCAN is designed to handle noise while K-Means is sensitive to noise [33]. If the

algorithm is sensitive to noise, it needs a pre-processing noise removal step. For

cleaning the GPS data, there are different filtering methods including but not limited

to hampel filter [32], Kalman filter [37, 54], and Savitzky-Golay filter [65]. Although

an extension of a Kalman filter provides the best results for removing noise [37], it

consumes a lot of computational power since it has an iterative nature (expectation

- maximization). Moreover, most GPS devices perform a kind of embedded Kalman

filter as their pre-processing before capturing data [37]. The Savitzky-Golay filter fits

a polynomial function to a fixed window and the hampel filter is a simple method

works based on the median of a fixed window [14]. In most of the devices, there is

an embedded Kalman filter method to handle noise. This pre-processing step can be

35

necessary in some cases but assuming the device already performs a Kalman filter

makes us not to worry about this characteristic too much.

Memory Consumption Desire

Memory consumption desire is another aspect that shows which methods are capable

of running on a system with limited memory space. We define two levels. First, low

memory need is for algorithms that can release the memory they used in each step.

It is highly related to the nature of the algorithm in which memory can be released.

Second, high memory desire is for algorithms that do not have a mechanism to release

the memory in each step or need the memory until the end of processing.

Method Robustness Memory Desire Complexity
SPD Yes High O(n2)
Warped K-Means No High O(kn2)
CB-SMoT Not Applied High O(n log(n))
DB-SMoT Not Applied High O(n log(n))
SeqScan Yes High O(n log(n))
Time-based No Low O(n)
Distance-based No Low O(n)
GRASP-UTS No High O(in)
SeTraStream No High O(n)
RGRASP-SemTS No High O(kn)
TRACLUS No High O(n log(n))

RTR Family
RTR-DT,
RTR-BU,
RTR-SW

No, No, Yes High, High, Low
O(kn2),
O(kn log(n)),
O(kn)

Global Voting Yes High O(n log(n))
StopFinder Yes High O(n2)
TrajDBSCAN Yes High O(n log(n))
SPET No High O(kn)

Table 3.3: Comparing characteristics of trajectory segmentation approaches in terms
of Performance aspects

36

3.2.4 Other Aspects

Number of Segments

The number of segments is another aspect of a trajectory segmentation that needs

to be considered in an algorithm. Some techniques such as K-Means-based [44] al-

gorithms require the number of segments or in a more general way the number of

clusters. Some other methods do not need this information, like the DB-SCAN-based

algorithms. When the number of groups or segments is required, it imposes a limita-

tion on the algorithm and increases the complexity of an algorithm by adding a step

to estimate the best number of clusters. When a trajectory segmentation method

expects number of segments, we call it parametrized, and when an algorithm does not

require the number of segments, that is called automatic [69].

Collective Behavior

The collective behavior of a trajectory segmentation algorithm is a characteristic that

shows the capability of the method to infer the segmentation using the trajectory

of a moving object collected by a single sensor or multiple sensors. By the term

sensor we mean a device embedded in a moving object that collects trajectory points

information. When a technique processes single sensor trajectories, it can be run

on the client side due to the independency of processing from other moving objects.

When a method needs to extract knowledge from the patterns created by multiple

trajectories, the processing is not efficient to be run on a client side and needs to be on

a server side. This aspect of trajectory segmentation plays a vital role in the capability

of a method for executing on sensor devices that rely on a battery. The algorithms

with multi-sensor input cannot process single-sensor data because they rely on the

summarized information from multiple sensors. Whereas, the single sensor algorithms

can group the multi sensor data based on sensor identifiers and process each sensors’

information.

Evaluation

Although evaluation of an algorithm has nothing to do with its properties, some prop-

erties impose limitations on the evaluation approach. We discuss evaluation of each

37

method here to show what is most popular for evaluation of a trajectory segmen-

tation algorithm. The evaluation methods are very diverse since we have different

types of trajectory segmentation methods. For supervised methods, metrics such as

accuracy, F-score, and AUC are generally approved methods. For unsupervised meth-

ods, we have two parameters called purity and coverage. Purity of a segment shows

how much of a trajectory segment is divided correctly in comparison to the subject

matter expert segmentation. The coverage shows how much the algorithm can cover

the segments tagged by a subject matter expert. The Harmonic mean of Purity and

Coverage (Harmonic Mean) represent both metrics since they are orthogonal if we

assume there is no two consecutive segments belong to the same semantic. We have

seen some research that compares the number of clusters generated by their algo-

rithm with the number of clusters a subject matter expert proposed for that data.

For general clustering tasks we have metrics including homogeneity, completeness,

and v-score [62]. The purity, coverage, and harmonic mean are customized versions

of these metrics for trajectory segmentation task.

Type of Dataset

Selecting a dataset for testing an algorithm is not a feature of algorithm; however,

these features impose some limitation on capability of algorithms to perform a high

quality results. Therefore, we find it useful to highlight that selecting a dataset with

specific features can focus on limited aspects of a segmentation algorithm. Since

we are covering different types of trajectory segmentation, we have seen a few dif-

ferent datasets for evaluation. Each dataset can have different characteristics such

as whether it has labeled data or not. This characteristic can lead to three types of

datasets: first, datasets devoid of any label data, Unlabeled Dataset. Second, datasets

with features that identify the segmentation of a subject matter expert, Identified Tra-

jectories Dataset. Third, data sets that have an attribute that shows the behavior of

a moving object, e.g., transportation mode, Fully Labeled Dataset. Selecting a proper

dataset for evaluation is highly vital since some datasets can not produce some kinds

of evaluations. For example, unlabeled data cannot drive the purity and coverage.

Most of the datasets applied in the literature for evaluation were small datasets.

For example, the StopFinder algorithm has been evaluated on a dataset of fewer

38

than five hours of trajectory data in only two days [86]. The TRACLUS divided the

full animal datasets based on the type of animals and reported the experiment on

them [41]. This makes sense but the dataset is small for the collective behaviour. Also,

the SeqScan discovering less than ten clusters in trajectory data [15]. This does not

decrease the value of their work and shows that a segmentation method that can work

on these datasets can be an acceptable method from the academic perspective. Two

of the high quality datasets applied for evaluation are the dataset of fishing activities

and hurricane dataset for the following reasons. First, they are a fully labeled datasets

which means the trajectory id and activity type (fishing, sailing, level of hurricane)

are available from the subject matter perspective. Second, the datasets have some

level of uncertainty because of the noise in GPS devices. Third, both of them have

considerable amount of trajectories and segments; however, they are not big datasets

in comparison to Automatic Identification System (AIS) dataset.

Overlapping Segments

When we segment a trajectory, we divide it into consecutive segments. This means

that there is no overlapping between two consecutive segments. Although all of

the reviewed research make the assumption that segments do not have overlap, we

noticed it is possible to have overlapping segments in real world. For example, a

person who walks inside a train. This assumption can prevent an algorithm from

wrong segmentation. A situation in which a trajectory point belongs to more than

one segment with a membership function can be explored as a future work.

3.3 Trajectory Segmentation Algorithms

In this section, we present details on each algorithm related to our work and provide

a general understanding of the trajectory segmentation algorithms. Then we review

the aspects of trajectory segmentation algorithms. In order to perceive fully detailed

explanations about each algorithm, we encourage the reader to read the original

references.

39

Method
Number of
Segments

Collective
Behaviour

Evaluation
Overlapping

Segments
SPD Automatic Single # of Segments No
Warped K-Means Parametrized Single # of Segments No
CB-SMoT Automatic Single # of Segments No
DB-SMoT Automatic Single # of Segments No

SeqScan Automatic Single
of Segments,
Purity

* Yes

Time-based Automatic Single Not Applied No
Distance-based Automatic Single Not Applied No
GRASP-UTS Automatic Single Purity Coverage No
SeTraStream Automatic Single # of Segments No
RGRASP-SemTS Automatic Single AUC No
TRACLUS Automatic Multi # of Segments No

RTR Family Automatic Single
Homogeneity
(STHM)

No

Global Voting Automatic Multi # of Segments No
StopFinder Automatic Multi Ground Truth No
TrajDBSCAN Automatic Multi # of Segments No
SPET Automatic Multi Not Applied No
of Segments: Number of Segments
* SeqScan can be considered as an overlapping-segments algorithm if we assume the noise segment
detected between two clusters can belong to adjacent segments.

Table 3.4: Comparing characteristics of trajectory segmentation approaches in terms
of the rest of the aspects.

40

3.3.1 Stay Point Detection (SPD)

Stay Point Detection (SPD) is a useful and straightforward algorithm that is used to

segment the Geolife dataset [85]. This algorithm assumes that there is a stay point

between each two segments. The algorithm uses a distance threshold (θd) and a time

threshold θt. If a moving object spends more than θt time in the vicinity of θd the

segment is called a stay point. Therefore, each stay point indicates a new segment,

and the trajectory points between two stay points are also created as segments.

3.3.2 Warped K-Means (WKMeans)

WKMeans is a general purpose segmentation method that follows the idea of the

legendary K-Means algorithm proposed by Macqueen [49]. This algorithm minimizes

a cost function (e.g., quadratic error) and modifies the original K-means to deal with

temporal constraints. The value of k determines the number of segments to be found

by the algorithm which is an input for this algorithm. In this method, the initializa-

tion values were generated by employing a procedure called Trace Segmentation (TS)

boundary [40] to produce the initial partitions (i.e., first segments). The constraint

that points are allowed to move between adjacent clusters is practiced, and a cost

function decides whether the movement is beneficial or not [44, 42]. Three different

datasets have been evaluated in their experiments to make comparisons with five dif-

ferent algorithms in their literature. They reported that this algorithm could achieve

up to 97% accuracy in these domains, obtaining more than 66% accuracy concerning

the worst algorithm evaluated. This unsupervised algorithm uses intrinsic trajectory

as input with variable features. The main drawback of this algorithm is the need

for the number of segments. The algorithm processes single sensor trajectories, and

it has a sequential nature. This method is sensitive to noise, and it requires high

memory.

3.3.3 Clustering Based Stops and Moves of Trajectories (CB-SMoT)

CB-SMoT intends to discover stops and moves and segment a trajectory to these two

clusters. This algorithm is an extension of DB-SCAN [58]. The original definitions

of an ε-neighborhood and minimum points in DB-SCAN are modified so that the

41

algorithm can benefit from temporal aspects of data. This algorithm operates based

on the speed feature, and the stop points are trajectory points where the moving

object has a lower speed. This clustering method has a sequential nature and aims

to detect interesting points. The advantage of this algorithm in comparison to the

Warped K-Means is that the algorithm will determine the number of segments au-

tomatically. This algorithm was evaluated on educational game in Amsterdam with

487 trajectories. The reported results show a high quality of detecting stop points in

comparison to the first version of the Stop and Move (SMoT) algorithm [3]. Since the

CB-SMoT performance was meaningfully better than the SMoT with similar concept

we omitted the SMoT from the related work.

3.3.4 Direction Based Stops and Moves of Trajectories (DB-SMoT)

DB-SMoT aims to find stops and moves and creates two types of clusters: (i) stops,

(ii) moves [61]. The DB-SMoT, similar to CB-SMoT, is an extension of DB-SCAN

that considers the direction changes of a moving object to detect interesting points.

The definitions of a ε−neighborhood and minimum points are adjusted so that the

algorithm can benefit from temporal aspects of data. This algorithm runs based on

the direction feature. Similar to CB-SMoT, this clustering method has a sequential

nature and consumes high memory space. Since this method is based on the DB-

SCAN, it might handle some noise, but there is no discussion in this regard. This

algorithm was evaluated using the fishing dataset for 22 days. The results find 25

interesting points over the fishing regions (the ground truth in their experiment). The

comparison between this method and the CB-SMoT revealed that when the vessel was

very heavy in the way back to harbor, the CB-SMoT detected a stop point which was

not a correct segment. In reviewing this paper, we observed another method called

Intersection Based Stops and Moves of Trajectories (IB-SMoT) that was conceptually

similar to the CB-SMoT and DB-SMoT [4]. Therefore, we omitted this work from

our comparative analysis.

3.3.5 SeqSCAN

SeqSCAN is a framework for the trajectory segmentation based on spatial density and

temporal patterns [15]. This research reviewed the segmentation from the time series

42

perspective and improve it for trajectory segmentation [73]. The SeqSCAN generates

a collection of temporally separated clusters interleaved by segments of un-clustered

trajectory points. This model proposes a noise detection model based on the distinc-

tion between local noise and transition. The SeqSCAN is an expansion of DBSCAN.

This model is robust to noise and can distinguish two types of noise: (i) local noise,

and (ii) transition. An essential contribution of this paper is the consideration of

periodic patterns and transition part between segments. This algorithm is evaluated

on two datasets: (i) animal migration dataset, (ii) an artificial dataset. This clus-

tering sequential algorithm aims to extract interesting patterns and more specifically

periodic patterns. This algorithm requires a considerable amount of memory and uses

the intrinsic features of single sensor trajectories.

3.3.6 Time-based Approach

Some machine learning models have a fixed input data structure such as neural net-

work, and convolutional neural network. When we decide to use these types of models,

we need to do some pre-processing to convert our data into the models’ input data

structure, shape of input data. In the literature on trajectory mining, some papers

are applying these methods [18, 14]. If the timestamp between two consecutive points

is more than a threshold, they generate a new segment which is called a trip. Also,

each trip divided into segments based on the trajectory labels. Then, each segment

divided into a pre-defined number of trajectory points which is a fixed time or fixed

number of trajectory points. This method proposed as a pre-processing and since it

was not the focus of their paper, there is no evaluation for the segmentation part.

Although this method is very trivial and cannot produce a good coverage, it can be

very useful in data augmentation.

3.3.7 Distance-based Approach

In these methods, trajectories are split based on a fixed value that shows the trip

distance [46]. This approach segments trajectory data by grouping consecutive tra-

jectory points based on their spatial vicinity to identify activities and places. This

segmentation can be accomplished by combining all consecutive trajectory points that

are within a certain distance from each other (10m in this paper). They suggested

43

associating trajectory points to a street map. There is no formal evaluation of the

segmentation method since it was not the focus of their research. Another distance

based approach can be the idea of hexagonal grids or square grids. We have not found

any paper on trajectory segmentation using grids; however it can be considered as a

trajectory segmentation method.

3.3.8 Greedy Randomized Adaptive Search Procedure for Unsupervised

Trajectory Segmentation (GRASP-UTS)

GRASP-UTS is an unsupervised trajectory segmentation that applies the Minimum

Description Length (MDL) principle to generate the most homogeneous segments

considering a set of provided features. This algorithm generates random landmarks

at the first step. Then, it produces the most homogeneous segments by moving the

trajectory points and adjusting the landmarks based on a cost function value [69].

The advantage of this method is the ability to use knowledge more than just raw

trajectory by adding features to the segmentation task. This algorithm is evaluated

by two datasets: (i) the fishing dataset, and (ii) the Atlantic hurricanes dataset. The

average purity and coverage have been applied to assess the quality of segments. The

best configuration for this algorithm produces segments with the average purity and

coverage of 90.90%, 87.34% respectively on the hurricane dataset. For the fishing

dataset the average purity of 91.50% and average coverage of 87.18% for the best

configuration are reported [69].

3.3.9 Semantic-Aware Trajectory Construction over Streaming

Movement Data (SeTraStream)

SeTraStream is an unsupervised trajectory segmentation framework with a cost func-

tion method in the kernel that works based on the RV Coefficient of single sensor

trajectories [81]. This framework is responsible for four tasks: (i) trajectory cleans-

ing; (ii) compression; (iii) segmentation; and (iv) adding the labels to the segments

using classification. This method has a sliding window and uses the RV Coefficient

to decide on splitting a trajectory. This optimization approach divides trajectories to

segments so that produced segments are highly homogeneous. The authors evaluated

SeTraStream using Taxi dataset and Phone data provided by Nokia Research Center.

44

3.3.10 Reactive Greedy Randomized Adaptive Search Procedure for

semantic Semi-supervised Trajectory Segmentation

(RGRASP-SemTS)

RGRASP-SemTS is a semi-supervised method for trajectory segmentation using MDL

principle. This algorithm allows a user to provide a small labeled trajectory dataset

and this algorithm benefits from this small dataset to segment the rest of trajectories.

This approach has been evaluated on two real-world datasets, and the results are

competitive in comparison with the state-of-the-art methods.

3.3.11 TRACLUS

TRACLUS is a clustering approach for trajectory mining to detect dense regions with

the same line segment characteristics. This algorithm has two steps: (i) partitioning of

the trajectory in line segments; and (ii) clustering these lines into similar clusters. The

partitioning step utilizes a cost function based on the Minimum Description Length

(MDL) principle to split trajectory to line segments into three attributes related to

the trajectory segments: (i) parallel distance; (ii) perpendicular distance and (iii)

angular distance. In the second step, a density-based clustering method (DB-SCAN)

is applied to cluster line segments [41]. This unsupervised clustering-based algorithm

uses a fixed number of features and automatically calculates the number of segments.

The algorithm uses the collective behavior and similar patterns of trajectories as a

mined knowledge. Therefore it categorizes as a multi-sensor method. The nature of

the algorithm is sequential since it applies the cost function and aims to minimize

the value of the cost function. This algorithm is evaluated on deer and elk movement

dataset and hurricane dataset. Although the algorithm is claimed that is robust to

noises because of the DBSCAN core, the partitioning part which is the trajectory

segmentation does not have any evaluation on robustness to noise. Since DBSCAN

core performs clustering on extracted line instances, this algorithm is robast to noisy

lines.

45

3.3.12 Robust Time-Referenced (RTR) Family

The family of three unsupervised trajectory segmentation methods (RTR-TopDown,

RTR-BottomUp, and RTR-SlidingWindow) is presented to consider the spatial and

temporal structure of trajectory data. The process is robust against noise, and three

real-world datasets were applied to test the algorithm [82]. In this method a fixed

number of variables is used and the number of segments automatically generates from

trajectory. This method uses a sliding window and processes single sensor trajectories.

The Spatio-Temporal Homogeneity Measure (STHM) was proposed as a evaluation

method for this approach. The method is robust against noise. The complexity of

RTR-TopDows is O(kn2) that can be reduced to O(kn log(n)) using priority queues.

The complexity of RTR-BottomUp is O(kn) can be reduced to O(k log(n)) using

priority queues. And the complexity of RTR-SlidingWindow is O(kn) where k is the

length of sliding window. The authors of RTR conduct their experiments on three

datasets: i) bus dataset with 108 segments, ii) truck dataset with 273 segments, iii)

hand dataset with 660 segments. The experiments show the algorithm performs well

on creating homogeneous segments; however, there is no comparison against other

methods.

3.3.13 StopFinder

The StopFinder algorithm is a trajectory segmentation method based on finding stops

and moves [86]. This work is an extension of Ordering Points to Identify Clustering

Structure OPTICS [5] to deal with temporal proximity of trajectory points based

on elapsed time and speed and the authors called it T-OPTICS [86]. The algorithm

estimates the parameters for T-OPTICS in the first step. Then it runs the T-OPTICS

and extracts the stops. After that, it generates the visualization. StopFinder was

evaluated on a trajectory of a user using different transportation modes (e.g., walking,

car and bicycle) for two consecutive days. The results showed that, unlike CB-SMoT,

StopFinder could find stops with varying values of speed.

46

3.3.14 TrajDBSCAN

The TrajDBSCAN is a hierarchical trajectory segmentation that tackles three tasks:

i) finding stop and moves in trajectories. ii) detecting custom stops (generated by a

single user) and shared stops (created from collective behaviour), and iii) organizing

the stops and moves in a hierarchical manner. The algorithm first generates the

custom stops based on single user behaviour. Then if there is a minimum number

of custom stops in an area, a shared stop is created. Then the algorithm produces a

hierarchy for all the detected stops [80].

3.3.15 Stop and Proximity Episodes in Trajectories

The Stop and Proximity Episodes in Trajectories (SPET) is a trajectory segmentation

algorithm that detects stops and episodes that occur close to a particular geographic

area [53]. The SPET detects the stops based only on the time the moving object

intersects a region of interest. In contrast, CB-SMoT and DB-SMoT identify stops

using the speed and direction variation attributes during a specified time interval.

This algorithm requires background knowledge about the region of interest to be

able to find stops. There is no evaluation regarding the robustness to noise for this

algorithm. One strength of this research is finding the transition segments that a

moving object switches from one segment to another segment.

3.4 Summary and Discussion

A summary of the reviewed related work methods and their different characteristics is

provided in Tables 3.1, 3.2, 3.3. We observe the gap of an unsupervised single sensor

algorithm with low use of memory and low complexity. Moreover, we were not able

to find a supervised segmentation algorithm. A supervised segmentation method can

become domain-specific by using the labelled data in that domain.

The gaps in the literature motivate us to work on a specific situation that has not

been well-studied. All the segmentation algorithms are pre-processing data to create a

new representation for facilitating data mining approaches. Summarizing trajectories

brings benefits such as improving privacy protection and the effective and efficient

performance of sensor devices. Furthermore, a graph representation of mobility data

47

can be extracted from mobility data only after the segmentation graph structure is an

enriched representation that can provide high-level insights about data and answer

more complex queries [11]. AIS messages, 766,671 trajectory points, generated by

one vessel on Halifax waters are displayed in Figure 3.3.a. The graph representation

(with 13 nodes) of this trajectory is displayed in Figure 3.3.b. This graph is extracted

from the trajectory after segmentation. Each edge can carry segment features of the

trajectories. Using this graph, we can answer which ports are the most crowded ones

or where we have low traffic.

(a) Plotting 766,671 trajectory points
generated by a vessel voyaging in Hal-
ifax waters.

(b) Graph representation of tra-
jectory points in the left figure af-
ter segmentation.

Figure 3.3: A raw trajectory of 766,671 trajectory points generated by a vessel voy-
aging in Halifax waters and its graph representation after segmentation.

There is a considerable number of studies on interpolation to reconstruct missing

parts of mobility data in different domains, such as animal behaviour [15], transporta-

tion management [25], and marine traffic [16]. Utilizing this concept, we propose two

segmentation algorithms. First, we propose an unsupervised algorithm that segment

data using an interpolation kernel called octal window segmentation. We enhance

this algorithm by a few changes to have a flexible sliding window, and we called the

new version sliding window segmentation (SWS). Second, we introduce a supervised

algorithm to segment trajectory data utilizing octal window segmentation kernel, a

binary classifier and a majority vote, named WS-II. In the next chapter, details are

provided about the datasets used in this thesis.

Chapter 4

Mobility Data and Its Properties

4.1 Datasets

Four datasets were selected for our work: (i) the fishing dataset (5190 trajectory

points, 153 segments), (ii) the Atlantic hurricanes dataset (1990 trajectory points, 182

segments), (iii) a subset of the Geolife dataset (32046 trajectory points, 258 segments)

and (v) Automatic Identification System (AIS) dataset (507,354 trajectory points,

without ground truth). Our team collected the AIS dataset at the Institute for Big

Data Analytics, and we prepared a subset of this dataset for debugging our algorithms.

Therefore we have not used this dataset for comparing our algorithm with other

algorithms. These datasets represent mobility data in transportation, meteorology,

and marine navigation domains, which form the major part of the mobility data

domains. The moving objects in the fishing dataset and the AIS dataset are vessels

with segments representing their voyages. The Geolife dataset is the trajectory of

human movements while using different transportation modes and the segments are

the transportation modes. The Atlantic hurricane trajectories show the movement of

the hurricanes’ eye with the segments representing different levels of hurricanes.

4.1.1 Fishing Dataset

This dataset can be identified as a multi-object and asynchronous dataset. The fishing

dataset was compiled in contribution to the project called “Programa Nacional de

Rastreamento de Embarcações Pesqueiras por Satelite” (PRES) in Brazil as part of

the federal government program to supervise fishing activities on the Brazilian coast.

This dataset has 35 trajectories, 153 segments, 5190 trajectory points, and two labels

(Fishing, and Non-Fishing) annotated by subject matter experts. To use this dataset

in our study, which has the focus of a single sensor, we had to pre-process this dataset

and solve the time overlaps by sequencing trajectories of different vessels. The average

48

49

period of capturing in this dataset is about 105 minutes. This dataset is collected

using AIS messages, and we expected to see the rate of capturing near to 2 to 5

minutes; However, the dataset is sparse, and each trajectory point is captured nearly

105 minutes after the previous one. During this 105 minutes gap, the vessel could

make some behaviour changes, which makes the identification of partitioning positions

challenging. An overview of the fishing dataset on a map is shown in Figure 4.1. The

QGIS 3.4.2 were applied to generate this map. The dataset was originally divided

into ten folds to apply cross-validation. Since trajectory data points are related to

their adjacent trajectory points, we cannot randomly select a subset of this dataset

to create folds for cross-validation. These folds are provided by Soares et al. [69] and

we applied the same folds in our research. Each segment in these folds is shown with

a color in Figure 4.1. This dataset is a fully-labeled dataset (contains both segment

identifier and semantic label in its ground-truth).

Figure 4.1: An overview of fishing dataset in which each colour represents a voyage’s
trajectory. Each colour symbolizes a segment that can be a fishing activity or non-
fishing activity.

We provide some statistical information about this dataset in Table 4.1 because

this statistical information offers insight into each method’s performance. For exam-

ple, a technique that benefits from a sliding window of size k might have a hard time

detecting trajectories shorter than k.

50

Segment
length*

Fishing
Dataset

Trajectory
points

Number
of

segments mean minimum maximum

percentage of
segments

shorter than 7
Fold 0 630 19 33.15 2 96 19
Fold 1 634 18 35.22 4 139 20
Fold 2 560 22 25.45 2 69 22
Fold 3 605 20 30.25 3 90 11
Fold 4 535 10 53.5 3 154 8
Fold 5 437 16 27.31 4 77 20
Fold 6 432 14 30.93 4 114 20
Fold 7 607 16 37.93 2 105 22
Fold 8 317 8 39.62 2 108 5
Fold 9 433 10 43.3 5 104 11
Total 5190 153 33.92 2 154 158
* Segment length is the number of trajectory points in each segment.

Table 4.1: Statistics of the fishing dataset

4.1.2 Atlantic Hurricanes Dataset

Hurricanes Dataset is an asynchronous dataset with unidentifiable multiple object

data. This dataset is published by the National Oceanic and Atmospheric Admin-

istration (NOAA) 1, applied in the evaluation of GRASP-UTS, and it contains 52

trajectories, 1990 trajectory points, 182 segments, and two trajectory labels (hur-

ricane level one and two). An overview of this dataset is presented in Figure 4.2.

The dataset was divided into ten folds for applying cross-validation; each segment is

shown by different colours in Figure 4.2, which is provided by Soares et al. [69]. The

average period of capturing in this dataset is 498 minutes or about 8 hours. Atlantic

Hurricane dataset is a fully-labeled dataset because segment identifiers (SID) and tra-

jectory labels (label) are available. Statistical information related to the hurricanes

dataset is presented in Table 4.2.

4.1.3 Geolife Dataset

The Geolife dataset, a frequently used benchmark dataset for mobility data research,

is a synchronous dataset, a dataset that trajectory points are collected by moving

object, (See Section 2.3.3) with identifiable multi objects, Microsoft Research Asia

collected it from April 2007 to October 2011 [84]. The dataset has 5,504,363 records

1https://coast.noaa.gov/hurricanes/

51

Figure 4.2: An overview of the Atlantic hurricanes dataset

labeled with eleven transportation modes: taxi (4.41%); car (9.40%); train (10.19%);

subway (5.68%); walk (29.35%); airplane (0.16%); boat (0.06%); bike (17.34%); run

(0.03%); motorcycle (0.006%); and bus (23.33%). We conducted our experiments on

a subset of the Geolife dataset to see the effects of trajectory segmentation algorithms

on longer trajectories with a higher frequency of capturing in transportation domain.

Because all the algorithms received a trajectory of single sensor data, we create ten

folds; each includes trajectories of one user. We avoid selecting very short trajectories

because we have short trajectories in the fishing dataset and hurricanes dataset. We

also avoid very long trajectories because some of the available trajectory segmentation

could not provide their segmentation results for days. The average period of capturing

in this dataset is about 22 minutes.

An overview of this subsection of dataset is displayed in Figure 4.3. We inten-

tionally select some trajectories like the one in the red bounding box to see the effect

of our proposed method on a mountain road with a lot of behaviour changes. Some

statistics of this dataset are presented in Table 4.3. In this research, when we talk

about the Geolife dataset, we refer to this part of the whole the Geolife dataset unless

we explicitly refer to the entire of the Geolife dataset.

52

Segment
length*

Hurricanes
Dataset

Trajectory
points

Number
of

segments mean minimum maximum

percentage of
segments

shorter than 7
Fold 0 187 24 7.7 1 27 36
Fold 1 211 15 14.06 1 32 13
Fold 2 214 17 12.58 1 36 18
Fold 3 121 15 8.06 2 36 28
Fold 4 242 19 12.73 2 40 29
Fold 5 168 17 9.88 1 28 24
Fold 6 209 21 9.95 1 32 41
Fold 7 214 15 14.26 1 44 16
Fold 8 145 19 7.63 1 25 54
Fold 9 279 20 13.95 1 44 24
Total 1990 182 33.92 1 44 283
* Segment length is the number of trajectory points in each segment.

Table 4.2: Statistics of the Atlantic hurricanes dataset

Segment
length*

Geolife
Dataset*

Trajectory
points

Number
of

segments mean minimum maximum

percentage of
segments

shorter than 7
Fold 0 972 17 57.17 10 202 0
Fold 1 2587 45 57.48 4 158 4
Fold 2 5271 33 159.72 4 1329 4
Fold 3 1271 17 74.76 3 483 10
Fold 4 5390 52 103.65 4 928 16
Fold 5 2426 11 220.54 10 1123 0
Fold 6 6017 56 107.44 6 859 6
Fold 7 2587 45 57.48 4 158 4
Fold 8 1173 12 97.75 3 478 7
Fold 9 4352 15 290.13 1 771 1
Total 32046 258 124.20 1 1329 44
* Segment length is the number of trajectory points in each segment.

Table 4.3: Statistics of the Geolife dataset

53

Figure 4.3: An overview of the Geolife dataset which is a subset of the whole Geolife
data

4.1.4 Automatic Identification System (AIS)

This dataset is an asynchronous dataset with identifiable multi objects, including

507,354 trajectory points. An overview of this dataset is displayed in Figure 4.4. The

data was captured using a Shakespeare Galaxy Antenna, dAISy HAT board, and a

Raspberry Pi using a Python library called “aislib” with some modifications. Details

of data collection architecture is provided in Appendix A. The antenna was set up at

the Centre for Ocean Ventures & Entrepreneurship in Dartmouth, NS and the project

financially supported by Innovacorp. In this subset of AIS data, we selected ten folds;

each includes the movement of one vessel. This dataset was applied in our research for

the debugging purpose; therefore, we did not use it to compare our algorithm with

other trajectory segmentation algorithms. The average period of capturing in this

dataset is about three minutes which is a normal capturing rate for AIS messages.

54

Figure 4.4: An overview of the AIS dataset which is a subset of the AIS messages
captured near Halifax

4.2 Metrics

Although there are many metrics available for supervised and unsupervised machine

learning methods, there are only two metrics that consider two factors of trajectory

labels (label) and trajectory segment id (SID) annotated by subject matter expert

applied by Soares et al. [69]: i) purity [69], ii) coverage [69]. The Harmonic mean of

Purity and Coverage is derived from purity and coverage. Since we are interested in

achieving both high purity and coverage, we report harmonic mean of them. Therefore

we applied the definition of purity and coverage, provided by Soares et al. [69], to

evaluate our method. We utilized the harmonic mean to fine-tune all algorithms. In

this work, we have used two metrics. First, purity (P), as seen in Equation 4.1, where

S is the set of segments discovered by segmentation algorithm, ΛL is the set of labels

provided by subject matter expert, k is the number of discovered segments, L is the

number of expert labels, Nij is the number of trajectory points inside segment si

with label λj, and Ni is the total number of points found for the segment si. Second,

coverage (C), as seen in Equation 4.2, where S is the set of segments discovered by

55

Symbol Description

C Average Coverage
H Harmonic means of Purity and Coverage
P Average Purity

C(S,Ψv) Coverage of a segment according to ground truth.
H(S,ΛL,Ψv) Harmonic mean of Purity and Coverage

ΛL The set of labels by subject matter expert
L The number of expert labels
Nij Nij is the number of trajectory points inside segment si with label λj
Ni Ni is the total number of points found for the segment si

P (S,ΛL) Purity of a segment according to ground truth.
Ψv The set of segments by subject matter expert
v The number of segments in Ψv

S The set of segments discovered by segmentation algorithm
k The number of discovered segments.

Table 4.4: The symbols and notations used in this chapter

segmentation algorithm, Ψv is the set of segments by subject matter expert, Nψi∩sj is

the number of trajectory points of the segment sj that belongs to the segment with

ψi segment identifier, and Ni is the total number of points of the identified segment

with segment identifier equals to ψi. These concepts were applied in the context of

trajectory segmentation [69, 22, 23, 21] and we repeat it here to review the basis of our

comparisons. These two metrics were designed to be orthogonal under the assumption

that there are no adjacent segments with the same label; i.e., when one tends to

increase, the other tends to decrease. Therefore, we defined the harmonic mean, (H),

of purity (P) (shown in Equation 4.1), and coverage (C) (shown in Equation 4.2),

as shown in Equation 4.3, as the primary metrics for our experimental analysis. The

harmonic mean simplifies the plots and comparison of the segmentation algorithms

because it is a summarized version of both purity and coverage. However, we report

both purity and coverage as well.

P (S,ΛL) =
1

k
(
k∑
i=1

argmax
j∈[1,L]

(
Nij

Ni

)) (4.1)

C(S,Ψv) =
1

v
(
v∑
i=1

argmax
j∈[1,k]

(
Nψi∩sj

Ni

)) (4.2)

In addition to the base concepts of purity and coverage above, we provide more

56

details concerning the purity and coverage calculation. Purity of a segment (si ∈ S)

is defined as follows: Assuming the length of si is Ni. We count the number of

trajectory points in si annotated as λj for all λi ∈ ΛL. Now we select λj as the

label with maximum occurrence and assign its occurrence to Nij. Therefore, the

purity of segment Si is |Ni|
Nij

. The average of purity values for all segments generated

by a trajectory segmentation algorithm (si ∈ S) is called purity, P . In order to

calculate coverage for a segment in ground truth (SID), ψi ∈ Ψv, we identify all

segments discovered by algorithm (Si ∈ S) that overlap with ψi, where S is the set

of discovered segments by algorithm. We exclude trajectory points with segment

identifier ψi that do not belong to Si. Now, we find the longest discovered segment

Ŝi and calculate the coverage by |Ŝi|
|Si| .

H(S,ΛL,Ψv) =
2 ∗ P (S,ΛL) ∗ C(S,Ψv)

P (S,ΛL) + C(S,Ψv)
(4.3)

The average for coverage of all ground truth segments (segments with segment iden-

tifier ψi ∈ Ψv) is called C.

We define two concepts that identify two ends of an spectrum for evaluating a

trajectory segmentation algorithm, called over-segmentation and under-segmentation.

we note that both situation are undesired.

The more over-segmented a trajectory is, the lower the value of expected purity.

The worst case for over-segmentation is when each trajectory point is identified as

a segment when the ground truth has only one segment. For a trajectory with n

trajectory points, P = 1
n
, C =

n∗ 1
1

n
= 1, H = 2

(n+1)
.

The same conflicting result occurs if the trajectory is under-segmented, i.e.

coverage values tend to decrease, but purity tends to increase. The worst case for

under-segmentation is when only one segment is discovered by algorithm when the

ground truth indicates that each trajectory point is an independent segment. For a

trajectory with n trajectory points, P =
n∗ 1

1

n
= 1, C = 1

n
, H = 2

(n+1)
. We measure

the rate at which the produced segment covers the ground truth segment suggested

by the subject matter expert using coverage. This metric is important because a

trajectory segmentation algorithm should not make short segments while the subject

matter expert is expecting longer segments. We encourage the algorithm to generate

longer segments by selecting an algorithm with higher coverage. We measure the

57

rate in which the produced segments purely represent a semantic (label) using purity.

A trajectory segmentation algorithm should not mix two semantics in one segment

since trajectory segmentation aims to reduce the inter-dependency between segments

in the trajectory data. By selecting an algorithm with higher purity, we encourage

selecting the algorithm that generates shorter segments. Since we cannot generate

short segments and long segments simultaneously, we introduced a new measure called

harmonic mean that considers a balance between both purity and coverage. Therefore

harmonic mean is a single wise measure to measure the quality of segmentation.

Chapter 5

Sliding Window Segmentation

This chapter describes our unsupervised trajectory segmentation algorithm called

Sliding Window Segmentation (SWS), which uses an interpolation kernel and a flex-

ible size sliding window [23]. Our segmentation approach can be categorized as an

unsupervised trajectory segmentation method because of using just the geo-locations

and the time tags of a moving object. SWS is an enhancement of our segmentation

method with a fixed sliding window, called Octal Window Segmentation (OWS) [22].

The difference between SWS and OWS is that OWS was the initial idea with a fixed-

size sliding window. In SWS, we expanded OWS and change the algorithm to receive

the sliding window size as a parameter of the algorithm. In this chapter, first, we

explain the proposed method called SWS. We continue this chapter by providing a

running example of the proposed trajectory segmentation algorithm. After proposing

our method, we detail our algorithm’s parameter selection procedure (Section 5.3.1).

We present our experimental evaluation in Section 5.4. We discussed our experimen-

tal setup in Section 5.4.1. The interpolation methods analysis (kernels) obtained by

Sliding Window Segmentation (SWS) algorithm is detailed in Section 5.4.2. Evalu-

ation of SWS window size is presented in Section 5.4.3. We compared our approach

with other algorithms and provide the details in Section 5.4.4. Sections 5.4.5 to 5.4.7

compare our proposed method and some other segmentation algorithms in terms of

harmonic mean, number of discovered segments, memory and CPU requirements, and

v-measure. A discussion on the strengths and weaknesses of our approach is provided

in Section 5.5 and we conclude this chapter by a summary presented in Section 5.6.

5.1 Preliminaries

Trajectory segmentation can be performed on the moving object’s hardware or a

centralized distributed machine. In both situations, the memory and computational

power are of concern. The Sliding Window Segmentation (SWS) method is motivated

58

59

by using (i) limited knowledge (just time and geolocation of moving objects), (ii)

limited memory, and (iii) limited computational power (CPU time). The idea behind

this algorithm is that the behaviour of a single moving object in several domains has

been well-studied. There are interpolation/extrapolation methods available that can

represent and reconstruct the movement behaviour for those domains [48, 72, 83]. It

is possible to memorize the general behaviour of a moving object from available large

trajectory datasets using methods such Functional Data Analysis (FDA) [36, 60, 28,

71, 87, 28]. Any deviation from normal behaviour can be considered as a signal to

segment a trajectory (i.e., place a partitioning position). To detect this deviation from

the norm, we use a sliding window to calculate error values (distance between each

point and their interpolated midpoint) for each trajectory point by using forward and

backward extrapolation. We call these values error signal, E, presented in line one in

Algorithm 5.1. Then we process this error signal to detect abrupt changes in moving

an object’s behaviour, line two in Algorithm 5.1. We start with defining extrapolation

directions in the next section and Sliding Window in Section 5.1.2. Then, we explain

two important components of the Sliding Window Segmentation (SWS) in Sections

5.2 and 5.3.

Algorithm 5.1 Sliding Window Segmentation Algorithm

Require: τn {The raw trajectory}
Require: ws {Size of sliding window (an odd number)}
Require: kernel {Interpolation kernel}
Require: ε {Epsilon threshold}
Require: flag ←Ture { Choose the output to be the segment IDs (True) or error

signal (False)}
Ensure: output

1: E ← GenerateErrorSignal(τ, ws, kernel)
2: if flag is True then
3: SegmentIDs← SegmentationProcedure(E, ε)
4: output← SegmentIDs
5: else
6: output← E
7: end if
8: return output

60

5.1.1 Extrapolation and Interpolation

Our approach benefits from two types of methods: interpolations and extrapolations.

We applied the interpolation method to estimate a trajectory point inside a set of

trajectory points. The extrapolation is applied to generate the next trajectory point

that comes after a set of trajectory points. Figure 5.1 shows that lB and lF are

generated using extrapolation. The IC is calculated using interpolation between two

points of lB and lF , shown in Figure 5.1, in page 62.

We define two types of extrapolations based on the direction of movement: (i) For-

ward extrapolation, and (ii) Backward extrapolation. These two methods are very

similar so that they can be categorized as one extrapolation method with changing

the direction as a parameter; however, we define these two types to make the concept

more precise and more comprehensible for the reader. The marriage of these two

extrapolation methods forms an interpolation approach.

Assuming we have trajectory points from i to j, 〈li, .., lj〉, forward extrapolation

computes the location of moving object in lj+1 when the direction of movement goes

from i to j. Similarly, backward extrapolation calculates the location where the mov-

ing object should have been there at i− 1 if the moving object went from j to i. We

emphasize that we construct trajectory points within a defined range in the inter-

polation with the help of Forward and Backward extrapolation. Each extrapolation

method constructs a trajectory point outside of its provided range but inside of our

interpolation range. The use of Forward and Backward extrapolation together, to

interpolate the midpoint of a sliding window, facilitates the method to be neutral

regarding movement direction.

5.1.2 The Sliding Window

A Sliding Window of size seven, Sw,7 = 〈lw−3, lw−2, lw−1, lmid, lw+1, lw+2, lw+3〉, is a

segment, defined in Section 2.1 where li ∈ Sw,7 is a trajectory point defined in Section

2.1, with a minimum of seven trajectory points, by which three new trajectory points

are created using interpolation/extrapolation techniques: (i) forward extrapolated

point, lF , (ii) backward extrapolated point, lB, and (iii) interpolated midpoint, lC .

The indexes are relative for each window so that they can slide over a raw trajectory

and represent different windows. The decision to use seven trajectory points on a

61

window was motivated by the fact that it is necessary to use just three points to

forward/backward extrapolate in the kinematic extrapolation of a trajectory point

immediately before or after them. However, this limitation can be removed when we

apply other interpolation methods such as cubic or random walk. For example, since

we use forward and backward extrapolations here, we have used three points at the

beginning of the Sliding Window to predict forward the position of the fourth point

(lF) and three points at the end of the Sliding Window to predict backward another

fourth point (lB). We expect that this point is very close to the result of the forward

extrapolation. Therefore, we are dealing with eight points (three first points, one

interpolated midpoint, one actual midpoint, and three last points), hence the name

of the Octal Window Segmentation (OWS) method.

We deliberately applied two notations: i) a subscript, li, symbolizes the points

belong to the trajectory and ii) a superscript, li, indicates the points are calculated

and do not belong to the trajectory. We then use these two extrapolated trajectory

points to create an interpolated midpoint (lC) and calculate its geographical distance

from the actual midpoint, lmid. We use the term current sliding window to refer to the

sliding window under process by our procedure at a given moment. After processing

a sliding window, we move the current sliding window by one trajectory point and

process the next sliding window.

5.2 Generating the Error Signal

The distance between an interpolated point and the midpoint of the current sliding

window (the error of that window) can be calculated using any distance measure suit-

able for each specific application. Because we work with Automatic Identification Sys-

tem (AIS) and the Atlantic hurricanes dataset covering more than one geographical

zone, we choose to use Haversine distance, which is a very accurate way of computing

distances between two points on the surface of a sphere, also known as great-circle or

spherical distance which is the shortest distance between two points on the surface of

a sphere, using the latitude and longitude of the two points (haversine(x) = sin2(x
2
),

where x is the central angle 1 between two points on the earth [77]. We remark

1A central angle is an angle whose apex is the center of a circle and whose sides are intersecting
the circle in two distinct points.

62

Figure 5.1: An example of error calculation in Octal Window Segmentation where
seven trajectory points (l1, ..., l7) are selected as the current octal window. Here, the
midpoint, l4, assumed as a missing point. lB and lF (triangle red and blue points)
are generated using extrapolation on first three (lF) and last three points (lB). The
lC , triangle orange point, is generated as a middle point of lB and lF . The distance
between midpoint and lC is called the error value of this octal window.

that the use of haversine distance is a more appropriate measure for trajectory mo-

bility data on the earth since it gives more accurate short distance value between two

points on the earth. In cases of a smaller dataset, covering only a geographical zone,

the algorithm can be simplified by using the euclidean distance. We set the index of

each window equal to the index of the midpoint of that window. When we process

a trajectory with n trajectory points, we assume that the error for the [ws/2] points

at the start of trajectory and [ws/2] + 1 points at the end of trajectory are equal to

their calculated adjacent error value in SWS, where ws is the number of trajectory

points in the sliding window or window size. The rest of the error values are calcu-

lated based on the distance between actual midpoint (l4) and interpolated midpoint

(lC). Therefore, we generate an array with n elements of errors for a trajectory with

n trajectory points, and we call this array error signal.

As we discussed earlier, SWS has two major components. The first procedure that

composes the Sliding Window Segmentation algorithm is detailed in Algorithm 5.2.

63

This procedure creates an error signal by sliding a Sliding Window over a raw trajec-

tory of τn.

Algorithm 5.2 Generate Error Signal

Require: τn {the raw trajectory}
Require: n {number of trajectory points in τn}
Require: ws {Size of sliding window (an odd number)}
Ensure: E {Error signal for all trajectory points in τn}

1: mid←− int(ws/2)
2: ws←− mid ∗ 2 + 1
3: E ←− []
4: E.append([0] ∗mid) {A ∗ n, where A is an array and n is an integer, copies array
A for n times. For example, [0] ∗ 3 = [0, 0, 0]}

5: for (i←− mid; i < n−mid; i+ +) do
6: Create Sliding Window Sow = 〈li−mid, ..., li+mid〉
7: lF ←− extrapolate forward Sow
8: lB ←− extrapolate backward Sow
9: lC ←− extract midpoint from lF and lB, Equation 5.1

10: εi ←− Haversine(li, l
C)

11: E.append(εi)
12: end for
13: E.append([0] ∗mid)
14: E[0 : mid]←− E[mid] ∗mid {A[i : j] is a slice of array A from index i to index j.}

15: E[n−mid− 1 : n]←− E[n−mid− 2] ∗ (mid+ 1)
16: return E

The procedure of generating error signal starts with an empty array of error of

sliding window, E, in line three. In line four, this empty signal set to [0] ∗ [ws/2]

(which means an array of [ws/2] of zero elements, e.g. [0, 0, 0] for ws = 7) is appended

to this array and represents the error for the first [ws/2] trajectory points of the raw

trajectory (τn). The algorithm explores all the Sliding Windows from lines five to

eleven as follows: First, the Current Sliding Window(Sow) is created in line six.

The forward extrapolated point (lF) is calculated in line seven by performing forward

extrapolation. In this method, we assume that li in the current sliding window is

missing and will be extrapolated using points li−mid, .., li−2, and li−1. The forward

extrapolated point at time ti = tmid−1 + tmid+1−tmid−1

2
is called lF . After, the backward

extrapolation method calculates the backward extrapolated point lB in line eight. In

this method, it is also assumed that li, the midpoint of the sliding window, in the

64

current sliding window is missing. We reverse the order of points so that points

li+1, li+2, .., li+mid are used to extrapolate the point li at time ti = tmid+1− tmid+1−tmid−1

2

and the procedure calls it lB. In line nine, we use lF and lB geo-locations to calculate

the midpoint, lC , using Equation 5.1. 2

lC = lB +
lF − lB

2
(5.1)

We calculate the error value (εi) of the current sliding window (Sow) by measuring

the distance between lC and li. Then we append εi to error signal (E). The error

signal (E) is finally computed in line 13 by appending [0, ..., 0] with [ws/2] zeros,

where the error values are obtained by calculating the haversine distance between li

and lC .

In lines 14 and 15, we update the error values assigned to zero at the start and

end of the Error Signal (E) with adjacent value to smooth our Error Signal.

The lB (blue extrapolated trajectory point), lF (red extrapolated trajectory point),

l4 (green point) and lC (orange point) are shown in Figure 5.1.

The haversine distance from the estimated trajectory point lC to the real trajectory

point l4 is displayed by the orange line connecting lC and l4 in the example of Figure

5.1. This may indicate that the moving object behavior has changed at position l4.

An example of an error signal generated by Algorithm 5.2 is shown in Figure

5.2. A raw trajectory (τ145) with 145 trajectory points and eight segments is used in

this example. Here are several trajectory points (e.g., around trajectory point 95, or

around trajectory point 123) along the raw trajectory where the estimated trajectory

points are far from the reported actual trajectory points of the moving object as

shown in Figure 5.2.

The complexity of generating the error signal is O(n), where n is the number of

trajectory points because the line five of Algorithm 5.2 repeats n− ws times.

2Here, we applied Euclidean distance because the difference between using haversine and Eu-
clidean distance was not significant for our datasets. Using haversine increases the amount of calcu-
lation that is not in line with our objective. Moreover, the error in the calculating distance is in two
opposite directions where may neutralize this error. The average error of calculating distance using
the euclidean formula is 0.06%. If two points have 40◦ distance in their latitude on the longitude
of 0◦, this average error decreases to 0.002%. For example, the distance from (0,0) to (0,40), using
haversine, is 4449 KM. If we use the euclidean distance, this number changes to 4410 KM. Therefore,
the inaccuracy of euclidean distance is 39 KM in this example. However, there is no harm using
haversine here if you can maintain the computation cost.

65

Figure 5.2: This figure shows an error signal generated using 145 trajectory points,
which includes eight segments. There are few spikes (e.g., in index 95 and 123)
representing a considerable change in error value. We consider them as boundaries
of segments.

5.3 The Segmentation Procedure

The intuition behind our algorithm is that when a moving object changes from one

behaviour to another, it can be captured directly from its location. To compute an

estimated position — where the moving object is supposed to be if its behaviour

does not change — we use interpolation methods, which are the marriage of forward

and backward extrapolation methods. By evaluating the error signal, it is possible

to estimate if the moving object changed its behaviour in a region and use this

information to create segments.

The second component of the Sliding Window Segmentation (SWS) algorithm is

detailed in Algorithm 5.3, which receives a single ε threshold value as input. The

intuition behind our trajectory segmentation algorithm is that segments are created

by cutting the raw trajectory at partitioning positions, where the error values from

E are higher than the ε threshold value. These partitioning positions are created as

a list of tuples with the indexes of where segments start and end.

66

Figure 5.3: This figure shows how Algorithm 5.3 works. First, it detects index 95 and
generates two trajectories: (i) TS1 and (ii) TS2. TS1’s error values are lower than
our threshold; therefore, we append it to our segments set. We continue processing
TS2 by detecting index 123. Then, we generate TS21 and TS22 and append them to
our segments set.

The error signal E is the first processing step of Algorithm 5.3, and the output

of the procedure is computed in Algorithm 5.2. In lines two, the algorithm initializes

three variables (first, q, p). It set the first variable with a zero value, which rep-

resents the starting index of the trajectory and creates the first tuple (first, n) that

represents the entire trajectory and adds it to the array q. The third variable (p) with

all the partitioning positioning tuples is declared as an empty set. As long as the array

q is not empty, lines four to 23 are executed. The algorithm fetches the first item from

set q and assign it to tuple t. This tuple has the start and end index of the current

segment under process. line four. Using indexes in tuple t, the algorithm creates a

subset of error signal (curr) from index t0 to t1, line five. Then it finds its maximal

error value m (line six). If this maximal error value is greater than the threshold, ε

(a parameter that can be adjusted for each domain and changes the sensitivity of the

algorithm), the index of m is retrieved, and two new tuples are appended to q if there

is a single position with value m (lines 10 to 11). These new tuples are analyzed in the

next iteration of the algorithm, which will look for other error values higher than the

67

Figure 5.4: An example of error calculation when the moving object changes its
behaviour at l4. The speed changes from l4 to l5, l5 to l6, and the length of time that
moving object spends at the point l4 influences the error value.

ε threshold (ε threshold represents partitioning positions). If there is more than one

partitioning position with a value equal to m (lines 13 to 20), sub-segments on this

part will be added to the q for the subsequent iteration processing. Notice that when

length(idx) is more than one, we have an interval in which the error signal is higher

than ε. In this situation, we divide this interval into two or more segments by using

a function called find sub segments. This function assigns each half of the interval

to a segment after each slope sign changes. The minimum number of segments that

can be generated here is two segments. This procedure will run until all the tuples

with partitioning positions are created where error values are higher than the error

threshold of ε. In the worst case, ε is less than all error values; this process runs n

times. In the line 22, if m ≤ ε, tuple t is appended to the final list p. In line 25, the

p is converted to a point-feature.

A practical example of executing Algorithm 5.3 is shown in Figure 5.3. In the first

step, the full input trajectory is considered as one segment. By setting the threshold

at 1,600,000, the algorithm finds TS1 starting from zero to 95 as the first discovered

segment that cannot be divided into more segments. Therefore, TS1 appends to the

68

final list, p. Although the error value of 1,600,000 meters is considered a very long

distance for a moving object to travel, we remark that this is an abstract distance

and can happen in a situation similar to the following. First, the moving object has

a stop at the point it changes its behaviour. Then, the moving object behaviour

changes. After that, it continues the movement in a new direction. Figure 5.4 shows

this example that a moving object has a three-hour stop at point l4, followed by a

drastic change of its direction.

The algorithm repeats for the TS2. In this step, the algorithm can find TS2 1 as

an unbreakable segment and appends it to p. Then the algorithm repeats for the rest

of the trajectory, which is TS2 2. Since this is not a breakable segment, the TS2 2

is appended to the final list and algorithm finishes. Therefore, we segment T into

TS 1, TS2 1, TS2 2. Here our variable p is equal to [(0, 95), (96, 123), (124, 145)].

Assuming our ground truth are the following.

SID = [(0, 21), (22, 27), (28, 51), (52, 55), (56, 94), (95, 114), (115, 123), (124, 145)]

Label = [Stop,Move, Stop,Move, Stop,Move, Stop,Move]

We can evaluate the performance of algorithm by calculating purity, coverage, and

harmonic mean as explained in Section 4.2. For calculating C, we average the

coverage of discovered segments and we average the purity of ground truth segments

for P . Therefore,

C =
0.4 + 0.7 + 1

3
= 0.7

P =
1 + 1 + 1 + 1 + 0.97 + 1 + 1 + 1

8
= 0.99

H =
2 ∗ 0.7 ∗ 0.99

0.7 + 0.99
= 0.82

69

Algorithm 5.3 Segmentation Procedure

Require: ε {by default Percentile95(E)}
Ensure: segment id

1: E ←− Generate Error Signal (τn)
2: q ←− [(0, n)], p←− ∅
3: while q 6= ∅ do
4: t← q.pop() {get a tuple from q}
5: curr ← E[t[0] : t[1]] {get error signal of the current trajectory}
6: m← max(curr) {find max error of the current trajectory}
7: if m≥ε then
8: idx← index(curr == m) {return the index of ε where curr == m}
9: if length(idx) ≤ 1 then

10: q.append((t[0], t[0] + idx[0]))
11: q.append((t[0] + idx[0] + 1, t[1])) {break a trajectory to two segments}
12: else
13: mp,mq ← find sub segments(curr, ε)
14: for all i ∈ mp do
15: p.append(i)
16: end for
17: for all i ∈ mq do
18: q.append(i)
19: end for
20: end if
21: else
22: p.append(t) {t is a desired segment, appended to final set of segments}
23: end if
24: end while
25: segment id = generate segment id(p, τ) {generate segment is a function to con-

vert the p to a column of size n. for example, for p = [(0, 2), (2, 4)] it returns
[1, 1, 2, 2]}

26: return segment id

5.3.1 Parameter Selection

SWS algorithm (Algorithm 5.1) has four parameters: interpolation kernel (kernel),

size of the sliding window (ws), ε threshold value, and a flag (flag). In this chapter

we always set flag = True. This tells the algorithm to return the segment results.

The interpolation kernel can be chosen based on each domain. We have experi-

mented with five interpolation kernels in our experiments and suggest the best inter-

polation for each dataset in Section 5.4.2. We suggest a parameter tuning to find the

proper kernel for the domain if we have access to labelled data. We suspect random

70

walk performs well for domains with many variations of high and low speed. We

assume the kinematic extrapolation generates higher-quality segments for a dataset

that includes only high-speed moving objects. For the movement in the water, such

as vessel movement, we expect cubic interpolation performs well according to Zhang

et al. [83]. For unknown situations, we assume a linear interpolation as a default

kernel because of its simplicity and generality.

We conducted a few experiments on three datasets to find the best sliding window

size. Our experiments were repeated for a window size of 5, 7, 9, 11, and 13 for cubic,

random walk and linear regression kernels. The linear kernel has a limitation of

window size three by definition. Also, the kinematic interpolation has a restriction of

sliding window size seven by definition. The results of these experiments are reported

in Section 5.4.3. We assume the default value of seven for the sliding window when

we cannot tune this parameter.

Having a fixed ε threshold for a domain can be a difficult decision. We suggest a

parameter tuning step for calculating the best ε for each dataset. In this parameter

tuning approach, we calculate an array of candidate ε by calculating percentiles 90,

91, ..., 99 of the error signal and testing them on a labelled dataset to measure the

best performance.

A design choice is to select percentile 95 of the error signal as the epsilon threshold

for default value of this parameter. We suggest this configuration because percentile

95 of error signal produced reasonably good quality segments for most of our tests.

We should consider the fact that the quality of data and the number of GPS jumps

and gaps can affect the best ε value.

5.4 Experimental Evaluation

We define the structure of our experiments in next section. Then we experiment to

compare the five defined kernels for SWS, including linear interpolation, kinematic,

random walk, linear regression, and cubic kernels. The results of these experiments

are presented in Section 5.4.2. Then we conduct another experiment to analyze the

effect of window size using three kernels that can receive a variable sliding window:

linear regression, random walk, and cubic kernels. The results of these experiments

are discussed in Section 5.4.3. After that, we compare our SWS, with the best kernel

71

and window size, against CB-SMoT, GRASP-UTS, SPD, and WKMeans, discussed

in Section 5.4.4. We evaluate our method and compare it with other methods using

four metrics:

1. Purity, coverage and harmonic mean, discussed in Section 5.4.5

2. Number of segments generated, addressed in Section 5.4.6

3. Amount of memory and CPU time used by segmentation algorithm, discussed

in Section 5.4.7

4. V-measure which is a clustering metric, discussed in Section 5.4.8

5.4.1 Experiment Setup

We applied the same experimental protocol on all datasets and segmentation methods

to conduct our experiments. This experimental protocol defines the structure of all

of our experiments. Each experiment has four requirements: 1) Dataset, 2) Segmen-

tation algorithm, 3) Tuning parameters, 4) Metrics. Dataset for each experiment is

prepared in ten folds3, D = [τ1, ..., τ10], each of which, τi, includes a raw trajectory

which is called data and two ground truth, SegmentID and label, which are features

for that trajectory. In lines 3 and 4 of experimental protocol, presented in page 72,

we select one fold as TuningSet and the rest of folds together as TestSet. Here, we

make sure that combining the folds in TestSet does not generate time collision4.

Trajectory segmentation algorithms such as GRASP-UTS, SPD, CB-SMoT, WK-

Means, and SWS do not use a training dataset. These algorithms tune their param-

eters using a small dataset, which is called TuningSet. A default value can be set

for each parameter, and the algorithm will provide segments. However, the quality

of segments can be increased by tuning the parameters.

3The fishing and Atlantic hurricanes datasets are obtained from GRASP-UTS research, and they
come in ten folds. The evaluations in this thesis are based on these ten folds. We use the same folds
to be consistent with their work.

4When two objects move simultaneously, their trajectory cannot be processed by an algorithm
designed for a single moving object because when we sort based on time, the trajectory points of
two moving object mixes. Therefore, each object’s movement must not happen at the same time
that other object moves. The fishing dataset is an example of a dataset with multiple vessels moving
simultaneously. For processing such a dataset, we serialized multiple vessels’ movement over time
so that there is no time collision.

72

Regarding the question if SWS is a lazy algorithm because of not using training

data, a lazy algorithm has three characteristics: 1) defer processing inputs until they

receive a query, 2) they answer to the questions by combining their stored data 3)

they discard the constructed answer and any intermediate results [2]. SWS does not

defer the processing of its input to query time. Therefore, our proposed algorithm is

not a lazy algorithm.

Segmentation Algorithm, TS algorithm, is a function that has two methods:

1) tuning, 2) segment. The tuning method receives the TuningSet and the Tuning

Parameters, line five of the experimental protocol. This method returns the best

parameters, BestParam, that can generate the highest harmonic mean of purity

and coverage. The segment method receives the TestSet and the best parameters,

BestParam, and returns the generated segment ID for the TestSet, line 6 in exper-

imental protocol. The report function, in line 7 of experimental protocol, receives

the ground truth for TestSet, the generated segment identifier, SegmentId, and a

metric, Metric, to measure the metric and returning the value of the metric. We have

some milestones in the experimental protocol that we capture the amount of memory

and CPU time used in each experiment, lines 1, 8, 10. Therefore, each experiment is

a call of experimental protocol with the experiment parameters.

Experimental protocol Structure of our experiments

Require: D = [τ1, ..., τ10] {The raw trajectory in ten folds}
Require: TS algorithm {Segmentation algorithm under experiment}
Require: TuningParameters {All parameters required by the algorithm}
Require: Metric { Performance metric for trajectory segmentation}
Ensure: Results

1: Record(CPUTime,Memory)
2: for ti ∈ D do
3: TuningSet←− ti
4: TestSet←− D − ti
5: BestParam←− TS algorithm.tuning(TuningSet, TuningParameters)
6: SegmentId←− TS algorithm.segment(TestSet.data, BestParam)
7: Results←− Report(TestSet.GroundTruth, SegmentId,Metric)
8: Record(CPUTime,Memory)
9: end for

10: Record(CPUTime,Memory)
11: return Results

73

SWS kernel Median
Linear

Regression
Linear

Random
Walk

Cubic
Kinematic

Kernel
Linear
Regression

91.36 1.0 0.496 0.364 0.005 0.150

Linear 91.05 0.496 1.0 0.198 0.002 0.082
Random
Walk

84.65 0.364 0.198 1.0 0.096 0.364

Cubic 80.59 0.005 0.002 0.096 1.0 0.705
Kinematic
Kernel

81.94 0.150 0.082 0.364 0.705 1.0

* ws=window size

Table 5.1: The p-value results of the Wilcoxson test to compare different kernels for
the SWS algorithm on the fishing dataset with window size seven for linear regression,
random walk, cubic, and kinematic kernel and window size three for the linear kernel.
The p-values with significant differences are highlighted in bold.

5.4.2 Evaluation of SWS Kernel Method

In this experiment, we aim to find the best kernels of the SWS algorithm for each

dataset. The performance of SWS using cubic, linear, kinematic, random walk, and

linear regression kernels on the fishing dataset is compared in Figure 5.5. As we

noted that cubic interpolation is expected to produce higher-quality segments for the

movement in the water, according to Zhang et al. in [83], we expected high performing

results for the cubic kernel on the fishing dataset. However, this kernel did not produce

the best harmonic mean. The reason is that the fishing dataset includes two activities:

1) Fishing 2) Non-Fishing. The Non-Fishing part is a movement or stop in the water;

however, the fishing activity is a movement controlled by some external variables

such as the movement of fish. The linear regression kernel gained the highest median

harmonic mean, 91.3%. Linear interpolation gained the second-best performance by

91.0% median of harmonic mean. Random walk kernel produced reasonable results

for harmonic mean. The random walk kernel can simulate a kinematic interpolation

when the speed of the moving object is high, by decreasing the variation of direction.

This helps random walk to provide high-quality results in cases that the dataset

includes slow movements and fast movements.

The results of Wilcoxon tests5comparing different kernels on the fishing dataset is

5We are interested in comparing the results of our experiments for each trajectory segmentation
algorithm when using the same datasets. Each measurement is repeated for ten folds. Thus we have

74

shown in Table 5.1. The median harmonic mean in SWS with linear regression kernel

and a window size of seven was 91.36% (IQR6 = 2.18), whereas the median in the

cubic kernel with a window size of seven was 80.59% (IQR = 7.53). The Wilcoxon test

showed that the difference between SWS with linear regression kernel and cubic kernel

was significant (p = 0.005, statistic = −2.79). Moreover, the Wilcoxon test indicated

that the difference between SWS with linear kernel and cubic kernel was significant

(p = 0.002, statistic = −3.02). The Wilcoxon test showed no significant difference

between linear regression kernel and linear kernel (p = 0.496, statistic = 0.68).

The experiment results, shown in Figure 5.5 and Table 5.1, suggest that linear

interpolation and linear regression kernels provided more robust results with less

variance on the fishing dataset. Although we expected to see the best performance

on the fishing dataset using the cubic kernel for in water movements [83], but the cubic

kernel did not surpass the linear regression. We think this is because the behaviours

of moving objects in this dataset are a mixture of fishing and non-fishing (anchoring

or voyaging), not purely in water movement.

The results of Wilcoxon tests to compare SWS kernels on the Atlantic hurricanes

dataset is displayed in Table 5.2. The median harmonic mean in SWS with the cubic

kernel and window size of seven was 87.90% (IQR = 0.91), whereas the median in

the kinematic core with a window size of seven was 82.83% (IQR = 1.36). The

Wilcoxon test showed that the difference between SWS with cubic kernel and linear

regression kernel was significant (p = 0.004, statistic = 2.87). This test indicates that

the kinematic kernel generates statistically significant lower harmonic mean results

in comparison to all other methods on the Atlantic hurricanes dataset.

The performance of SWS using cubic, linear, kinematic, random walk, and lin-

ear regression kernels on the Atlantic hurricanes dataset is compared in Figure 5.6.

ten values for each measurement. To compare two distributions of these measurements, we can use
a parametric test such as T-Test or a nonparametric test such as Mann-Withney’s or Wilcoxon’s
test. Nonparametric tests are distribution-free tests because they don’t assume that the data follow
a specific distribution. We choose a nonparametric test because we do not have a piece of evidence
that our measured values follow a specific distribution. Additionally, we must identify whether our
samples are independent or paired. When each value in one set of measurements is uniquely matched
to a data point in another set of measures, we have paired sample data. In our study, each measured
value can be uniquely paired with another measured value, because we reported the measurement
for the same tuning set and test set. Consequently, We select a nonparametric paired sample test
to compare our results, which is the Wilcoxon rank-sum test.

6interquartile range: the difference between 75th and 25th percentiles. IQR = Q3 −Q1

75

Figure 5.5: This figure compares different kernels of the SWS Algorithm on the
fishing dataset. The results suggest that linear regression (SWS LR 7) and lin-
ear interpolation (SWS L WS3) kernels are performing better than the random
walk(SWS RW 7), cubic (SWS C 7) and kinematic (SWS K 7) kernels on the fishing
dataset.

The experiment results, shown in Figure 5.6 and Table 5.2, suggest that kinematic

interpolation gained the lowest performance among all experimented kernels. The

experiments suggest that the cubic kernel gained the highest harmonic mean (87.8%)

in comparison to linear interpolation (86.6%), random walk (86.3%), linear regression

(86.4%), and kinematic kernel (82.8%).

The performance gain using cubic kernel is because the level of hurricanes does

not follow the kinematic rules of moving objects. We observed that the cubic inter-

polation could be a better representation of hurricanes’ movement than kinematic

interpolation. We think this is because the behaviours of hurricanes follow more

curve patterns. Also, the sampling rate in this dataset is every 8 hours on average.

As future work, we think changing the sampling rate can improve the performance of

the trajectory segmentation task.

76

SWS kernels Median
Linear

regression
Linear

Random
walk

Cubic
Kinematic

Kernel
Linear
regression

86.42 1.000 0.820 0.545 0.004 0.001

Linear 86.67 0.820 1.000 0.762 0.015 0.082
Random
walk

86.39 0.545 0.762 1.000 0.001 0.000

Cubic 87.90 0.004 0.015 0.001 1.000 0.000
Kinematic
kernel

82.83 0.001 0.082 0.000 0.000 1.000

Table 5.2: The p-value results of the Wilcoxson test to compare different kernels for
the SWS algorithm on the Atlantic hurricanes dataset with window size seven for
linear regression, random walk, cubic, and kinematic kernel and window size three
for the linear kernel. The p-values with significant differences are highlighted in bold.

SWS kernels Median
Linear

Regression
Linear

Random
Walk

Cubic
Kinematic

Kernel
Linear
Regression

91.20 1.000 0.939 1.000 0.879 0.028

Linear 89.69 0.939 1.000 0.762 0.596 0.028
Random
Walk

89.56 1.000 0.762 1.000 0.596 0.049

Cubic 91.98 0.879 0.596 0.596 1.000 0.049
Kinematic
Kernel

93.86 0.028 0.028 0.049 0.049 1.000

Table 5.3: The p-value results of the Wilcoxson test to compare different kernels for
the SWS algorithm on the Geolife dataset with window size seven for linear regression,
random walk, cubic, and kinematic kernel and window size three for the linear kernel.
The p-values with significant differences are highlighted in bold.

77

Figure 5.6: This figure compares different kernels of SWS algorithm on the Atlantic
hurricanes dataset. The results suggest that cubic kernel (SWS C ws7) performs
better than random walk (SWS RW 7), linear interpolation (SWS L ws3), linear re-
gression (SWS LR 7), and kinematic (SWS K WS7) kernels.

The results of Wilcoxon tests on the Geollife dataset to compare different kernels

is presented in Table 5.3. The median harmonic mean in SWS with a kinematic

kernel with window size seven was 93.86% (IQR = 2.17), whereas the median in

random walk kernel and a window size of seven was 89.56% (IQR = 4.18). The

Wilcoxon tests showed that the difference between SWS with kinematic kernel and

random walk kernel was significant (p = 0.049, statistic = −1.96). These tests

indicate that there is no statistically significant difference between the use of random

walk kernel compared to linear regression, as well as linear and cubic kernels on the

Geolife dataset.

The performance of SWS using cubic, linear, kinematic, random walk, and linear

regression kernels on the Geolife dataset is compared in Figure 5.7. The experiment

results, shown in Figure 5.7 and Table 5.3, indicate that kinematic kernel gained

the highest performance by the harmonic mean median of 93.8%. Kinematic kernel,

78

along with the cubic kernel (91.9%) provides the lowest variation in the result of this

experiment. Linear (89.6%), random walk (89.5%) and Linear regression (91.1%) had

more volatile results. We think the kinematic kernel’s superiority is because of the

properties of this dataset, which is labelled by transportation modes. In this dataset,

most of the moving objects follow the kinematic extrapolation.

The kinematic kernel generated the highest harmonic mean of purity and coverage

on the Geolife dataset because the moving objects in the Geolife dataset follow the

kinematic rule of movement, and this makes a considerable difference between this

kernel and other kernels.

Figure 5.7: This figure compares different kernels of the SWS algorithm on the Geo-
life dataset. The results suggest that kinematic kernel (SWS K WS7) performs better
than a random walk (SWS RW 7), linear interpolation (SWS L WS3), linear regres-
sion (SWS LR 7), or cubic kernel (SWS C ws7).

5.4.3 Evaluation of SWS Window Size

Among our five defined kernels, three of them have the capability of having sliding

windows with different sizes. The kinematic core has to apply only window sizes of

79

seven (three points on each side to calculate acceleration and one mid point), accord-

ing to definition in Section 2.2.3. Linear interpolation has to use sliding windows of

size minimum three, according to definition in Section 2.2.1. More points in linear

interpolation does not add value. We compared cubic, random walk and linear re-

gression with sizes of 5, 7, 9, 11, and 13 on the fishing dataset, Atlantic hurricanes

dataset and Geolife dataset. Figure 5.8 shows the results of this experiment on the

fishing dataset. We observed by increasing the window size from 5 to 13 in the cu-

bic kernel, the performance of the algorithm on the fishing dataset, the median of

harmonic mean, increases from 77.7% to 85.9%.

The random walk kernel results indicated that window size five gained the best

performance, median of harmonic mean, by 93.6% on the fishing dataset. Increasing

the window size for this kernel did not improve the performance.

The performance of SWS with Linear regression kernel increased from 91.3% to

93.4% when we increased the window size from 7 to 13 on the fishing dataset.

Although we identify some performance-boosting by changing the size of the slid-

ing window, there is no linear correlation between the sliding window size and the

performance of SWS on the fishing dataset, RC,ws = 0.23, RLR,ws = 0.13, RRW,−0.26

where R is the Pearson correlation.

Fine-tuning plays an important role in getting the best results since there is no lin-

ear correlation between window size and the performance of trajectory segmentation.

Despite no linear correlation, the results of distance correlations [30] suggest some

non-linear correlation for cubic and random walk kernels, dcorC,ws = 0.76, dcorLR,w =

0.39, dcorRW,ws = 0.86 on the fishing dataset. This evidence supports that a fine-

tuning on window size can identify the best window size for this dataset. The best

window size may vary since the rate of sampling in each dataset can vary.

The results of our experiment for different window sizes on the Atlantic hurricanes

dataset is displayed in Figure 5.9. These results suggest that by increasing the window

size, the performance of this algorithm decreases. We think this decrease is because

the window size of five covers 41.55 hours of a hurricane on average, and window size

13 covers 108.03 hours of a hurricane. Changes in the behaviour of hurricanes do not

stay for that long. Therefore, the performance of the algorithm decreases.

80

Figure 5.8: This figure compares different sliding window sizes of SWS Algorithm
on the fishing dataset. The results suggest that the performance of linear regression
kernel increases by increasing the window size.

Pearson correlation test indicates that there is a negative linear correlation be-

tween performance and window size using random walk kernel on the Atlantic hur-

ricanes dataset, RRW,ws = −0.71. There is no linear correlation between the window

size and the performance of SWS on the Atlantic hurricanes dataset using cubic and

linear regression kernels, RC,ws = −0.24, RLR,ws = 0.12.

Similar to the fishing dataset, sliding window size adjustment on the Atlantic

hurricanes dataset is highly related to the attributes of the dataset, such as the

sampling rate, and percentages of gaps. We should prudently select a window size so

that we expect all the trajectory points inside the sliding window are roughly related.

Our experiments on different window sizes on the Geolife dataset show that all ker-

nels benefit from increasing the window size to some extent. By increasing the sliding

window size from 5 to 13, our cubic kernel performance improved from 91.6% to 93.1%,

and its standard deviation decreased from 5.8 to 3.9 on the Geolife dataset. This de-

crease in standard deviation suggests more robustness for the method. Increasing the

81

Figure 5.9: This figure compares different sliding window sizes of SWS algorithm on
the Atlantic hurricanes dataset. The results suggest that the performance of SWS
decreases by increasing the window size.

window size from 5 to 13 using the random walk kernel, improved the performance

from 89.8% to 90.9% and decreased standard deviation from 4.8 to 3. Moreover, in-

creasing the window size from 5 to 11 for linear regression kernel leads to boosting the

performance from 92.7% to 93.5%. By increasing the window size to 13 in linear re-

gression, we observed a drop in performance from 93.5% to 91.5%. Pearson correlation

test indicated that there is no strong linear correlation between performance of SWS

and window size on the Geolife dataset, RRW,ws = 0.16, RC,ws = 0.16, RLR,ws = 0.10.

Every 22.73 minutes on average, we capture a new trajectory point on the Geolife

dataset, while this rate is 105.72 minutes on the fishing dataset and 498.72 minutes on

the Atlantic hurricanes dataset. Increasing window size on the Geolife dataset showed

some improvements because by increasing the sliding window size, we add more rel-

evant knowledge to our trajectory segmentation algorithm. If we expand the sliding

window size more than a threshold, the performance of the trajectory segmentation

task decreases because of participating more irrelevant points in segmentation.

82

Figure 5.10: This figure compares different sliding window sizes of the SWS algorithm
on the Geolife dataset. The results suggest that all kernels benefit from increasing
the window size to some extend.

To evaluate the effect of the sampling rate on the performance of the trajectory

segmentation task, we conducted the following experiment. Using the results of lin-

ear regression, cubic and random walk for five window sizes of 5, 7, 9, 11, and 13,

kinematic and linear kernels (17 median harmonic mean, shown in gray lines in Fig-

ure 5.11), we calculated the average performance of SWS for each dataset, the fishing

dataset 86.8%, the Atlantic hurricanes dataset 85.3%, the Geolife dataset 90.0%,

shown in blue lines in Figure 5.11. Figure 5.11 shows the performance of the trajec-

tory segmentation algorithm on each dataset and the average period of capturing data

in each dataset. Atlantic hurricanes dataset has the most prolonged period of captur-

ing data, on average, about 8 hours with the highest variance among experimented

datasets shown in red areas in Figure 5.11. The blue line shows the calculated average

performance in terms of harmonic mean of purity and coverage. The red colour area

gives an idea of the variation of the period of capturing for each dataset, 0.001 ∗ std.

We applied Pearson product-moment correlation between the performance of SWS

83

(median harmonic mean) on each dataset and the average period of capturing data

on each dataset.

The results, RPerformance,PeriodOfCapturing = −0.84 (A strong negative correlation),

indicated that an increase in the period of capturing results in a decrease in trajec-

tory segmentation and a reduction in the period of obtaining new trajectory points

increases the performance of SWS. This is because by increasing the time between

capturing a new point, the moving object behaviour can be more unrelated to the

previous point.

Figure 5.11: When comparing the performance of SWS on three datasets with a
different period of capturing, the performance of SWS increases by decreasing the
sampling rate in each dataset. The gray lines show the results of experiments on each
dataset with different parameters. The blue line shows the average harmonic means
on each dataset. The red area represents the variation of period of capturing in each
dataset.

Comparing the results of experiments on window size and the period of capturing

showed that by decreasing the period of capturing new trajectory points, the increase

of sliding window size has a more positive effect on harmonic mean measure.

84

5.4.4 Comparison With Other Algorithms

In this section, we compare the SWS algorithm with four other trajectory segmen-

tation algorithms. We selected GRASP-UTS [69], CB-SMoT [58], SPD [85], and

WKMeans [44] for the following reasons. First, SWS is working on a single sensor

trajectory. Therefore, we did not include multi moving object trajectory segmentation

algorithms such as TRACLUS. Based on extractable knowledge for trajectory seg-

mentation algorithms, we select SPD and CB-SMoT from the category of algorithms

searching for interesting points, detailed in Table 3.2 in page 33. GRASP-UTS were

chosen from the group of Homogeneous Segmentation and WKMeans from the class

of algorithms searching for similar pattern. Another reason that we include GRASP-

UTS was that the type of features applied in this algorithm is Semantic, details in

Section 3.2.2. WKMeans requires the number of segments. These two algorithms

receive more information from their environment to work, and we expect using more

information provides more robust results and makes competition for SWS harder.

We choose SPD because it is designed for a transportation mode domain. We as-

sume SPD beats other algorithms on the Geolife dataset. CB-SMoT also requires the

calculation of speed as a point feature. This algorithm benefits from the sequential

order of trajectories, and we expect it to produce high-quality segments quickly and

efficiently. GRASP-UTS was excluded from the experiment on the Geolife dataset

because it did not generate segments after waiting three days while other algorithms

produced their segments in the magnitude of seconds or minutes. First, we explain

the details of parameter tuning for each algorithm. Then we use statistical analysis

to compare their performance in terms of harmonic mean.

SWS has three parameters to adjust: 1) kernel, 2) window size, and 3) ε-threshold.

The flag parameter (forth parameter of SWS) is set to True in this chapter. We

selected the best kernel for SWS among Linear (L), Kinematic (K), Random Walk

(RW), Linear Regression (LR), and Cubic (C) kernels, detailed in Section 5.4.2. Lin-

ear regression gained the best performance for the fishing dataset and the Geolife

dataset. The best core for the Atlantic hurricanes dataset was the cubic kernel. We

fixed this parameter for testing all folds. We did not tune this parameter for each

fold and applied the same setting for all folds, τi in experimental protocol.

For adjusting the size of the sliding window parameter, we explored window sizes

85

of 5, 7, 9, 11, and 13 for linear regression, cubic and random walk kernels, addressed

in Section 5.4.3. For the linear interpolation kernel, we used only a sliding window

size of three, and for the kinematic kernel, we used a window size of seven. The best

window size for the fishing dataset was window size of 13, and the best window size

for the Atlantic hurricanes dataset was window size of seven. The best window size

for the Geolife dataset was 11. We fixed this parameter (window size) for testing all

folds. We adjusted the ε threshold using the tuning set by percentiles of 90, ..., 99

of the tuning set error signal. This parameter was tuned for testing each fold. Table

B.1 shows the parameters applied on the fishing dataset for each fold. This table

shows that the only variable parameter of SWS, ε-threshold, is in a minimal range

of [97,99].

In order to adjust parameters for the CB-SMoT, we tuned the best values for

AreaParam of 0.1, 0.3, 0.5, 0.7, 0.9, and MinTimeParam of 60, 360, and 3600 sec-

onds. We defined TimeToleranceParam to zero, and we set MergeToleranceParam

to Zero. Since we tuned AreaParam we set MaxDistParam to None. We gave the

algorithm freedom of changing all the parameters for each tuning fold, and we did not

limit the algorithm to fix any of these parameters. This is to make sure we compare

our method with the best possible results of CB-SMoT. The parameters of CB-SMoT

were selected from a wide range of [0.01, 0.9] for Area and [360, 3600] for min time.

Discovering the best parameters for this algorithm in an unknown setting can be

challenging because of the high variance of parameters on the same dataset.

GRASP-UTS was tuned for PartitioningFactor, MaxIterations, MinTime, and

JCS. We provided distance and speed as two extra features for this algorithm. We

provided wind speed as a piece of extra information for testing the Atlantic hurricanes

dataset using GRASP-UTS. This algorithm execution time was very long that it did

not produce results for the Geolife dataset after working for three days. This long

processing time is not acceptable for a pre-processing task. Similar to CB-SMoT,

the best parameters of GRASP-UTS on the same dataset (fishing) came from wide

ranges of [0.3, 0.7] for alpha, [6, 360] for min time, [0.3, 0.7] for JCS, and [10, 30]

for MaxIterations. This can imply the possibility of over-fitting or limitation in

generalization.

The SPD algorithm was tuned for ThetaDistancePara and ThetaT imeParam.

86

ThetaDistancePara was adjusted using 100, 200, 500, 1000, 6000, and the ThetaT ime

Param was tuned using 60, 300, 600, and 2000. We gave the algorithm the freedom

to choose the best parameter for each fold. The best parameters of SPD selected for

each fold showing a high variance in tuning the parameters, [60, 2000] for ThetaT ime

Param and [100, 6000] for ThetaDistanceParam.

The WKMeans algorithm for parameter delta tested for 0, 0.2, 0.4, 0.6, 0.8, and

1 and we provided the number of segments equals the number of folds in test times

the number of segments in tuning set. We assume each fold on average has the same

number of segments. This is the only way to prepare a fair comparison environ-

ment while other algorithms do not know the number of segments in the test set.

Tables B.5, B.4, B.3, and B.2, presented in page 139 - 141, show the parameters ap-

plied for each fold on the fishing dataset for all WKMeans, SPD, GRASP-UTS, and

CB-SMoT.

We report the best results for each algorithm on three datasets using four metrics:

harmonic mean, number of segments, memory and CPU time, and v-measure. We

present the results of the harmonic mean of purity and coverage, purity, and coverage

in Section 5.4.5. In Section 5.4.6, we report the results of the number of discovered

segments. We discuss the performance of algorithms in terms of memory and CPU

time in Section 5.4.7. Finally, we provide results of experiments for v-measure on all

three datasets in Section 5.4.8.

5.4.5 Purity, Coverage, and Harmonic Mean

In this section, we report the performance of trajectory segmentation algorithms using

a measure called harmonic mean, which is the harmonic mean of purity and coverage,

detailed in section 4.2. We report two components of purity and coverage for debug-

ging purposes and finding instances of over-segmentation and under-segmentation.

The results of a Wilcoxon test on the fishing dataset, the Atlantic hurricanes dataset

and the Geolife dataset are presented in Tables 5.4, 5.5, 5.6. In the following we

review these results.

The results of Wilcoxon tests to compare harmonic mean of purity and coverage

for trajectory segmentation algorithms on the fishing dataset is presented in Table

5.4. The median harmonic mean for the SWS algorithm on the fishing dataset was

87

Figure 5.12: Comparing the performance of SWS, CBSMoT, GRASP-UTS, SPD, and
WKMeans on three datasets. The green background shows the best algorithms that
there is no statistically significance difference between them.

92.86 % (IQR = 2.37), whereas the median for the SPD algorithm was 37.50 %

(IQR = 3.83). The Wilcoxon test showed that the difference between SWS and

GRASP-UTS was significant (p = 0.019, statistic = −2.34). Furthermore, SWS

gained significant higher harmonic mean in comparison to WKMeans (p = 0.000,

statistic = −3.70). There was no significant difference between CB-SMoT and SWS

according to Wilcoxon test results (p = 0.226, statistic = −1.20); however, the results

of SWS had lower variations (IQR = 2.37) in comparison to CB-SMoT (IQR = 3.10).

The results of Wilcoxon tests to compare harmonic mean of purity and coverage

for trajectory segmentation algorithms on the Atlantic hurricanes dataset are pre-

sented in Table 5.5. The median harmonic mean for SWS algorithm on the Atlantic

hurricanes dataset was 87.92% (IQR = 0.91), whereas the SPD algorithm gained

the lowest median for harmonic mean, 37.00% (IQR = 1.06). The Wilcoxon test

showed that the difference between SWS and GRASP-UTS was significant (p = 0.003,

88

Trajectory
Segmentation
Algorithms

Median CBSMoT GRASP-UTS SPD SWS WKMeans

CBSMoT 91.90 1.000 0.173 0.000 0.226 0.000
GRASP-UTS 89.96 0.173 1.000 0.000 0.019 0.000
SPD 37.50 0.000 0.000 1.000 0.000 0.000
SWS 92.86 0.226 0.019 0.000 1.000 0.000
WKMeans 77.74 0.000 0.000 0.000 0.000 1.000

Table 5.4: The Wilcoxson test’s p-value results to compare the harmonic mean of
different segmentation algorithms on the fishing dataset. The p-values with significant
differences are highlighted in bold.

Trajectory
Segmentation
Algorithms

Median CBSMoT GRASP-UTS SPD SWS WKMeans

CBSMoT 87.92 1.000 0.049 0.000 1.000 0.058
GRASP-UTS 86.01 0.049 1.000 0.000 0.003 0.449
SPD 37.00 0.000 0.000 1.000 0.000 0.000
SWS 87.90 1.000 0.003 0.000 1.000 0.000
WKMeans 86.02 0.058 0.449 0.000 0.000 1.000

Table 5.5: The Wilcoxson test’s p-value results to compare the harmonic mean of
different segmentation algorithms on the Atlantic hurricanes dataset. The p-values
with significant differences are highlighted in bold.

89

Trajectory
Segmentation
Algorithms

Median CBSMoT SPD SWS WKMeans

CBSMoT 91.58 1.000 0.596 0.289 0.058
SPD 91.74 0.596 1.000 0.405 0.000
SWS 93.55 0.289 0.405 1.000 0.041
WKMeans 86.84 0.058 0.000 0.041 1.000

Table 5.6: The Wilcoxson test’s p-value results to compare the harmonic mean of dif-
ferent segmentation algorithms on the Geolife dataset. The p-values with significant
differences are highlighted in bold.

statistic = −2.94). Moreover, SWS gained significant higher harmonic mean in com-

parison to WKMeans (p = 0.000, statistic = −3.55). There was no significant dif-

ference between CB-SMoT and SWS according to Wilcoxon test results (p = 1.000,

statistic = 0.00); however, the results of SWS had lower variations (IQR = 0.91) in

comparison to CB-SMoT (IQR = 3.34).

The results of Wilcoxon tests to compare harmonic mean of purity and coverage for

trajectory segmentation algorithms on the Geolife dataset is shown in Table 5.6. The

median harmonic mean for SWS algorithm on the Geolife dataset was 93.55% (IQR =

6.29), whereas the median for SPD algorithm boosted to 91.74% (IQR = 1.34).

GRASP-UTS did not generate segmentation results after working for three days,

while other algorithms provided their findings in the range of seconds or minutes. The

Wilcoxon test showed that the difference between SWS and WKMeans was significant

(p = 0.041, statistic = −2.04). There was no significant difference between CB-

SMoT, SPD and SWS, according to Wilcoxon test results.

The results of these algorithms for all three experimented datasets is presented

in Figure 5.12. While SPD gained a reasonably good performance on the Geolife

dataset, there was no statistically significant difference between SPD, SWS and CB-

SMoT on the Geolife dataset; SPD did not perform well on the fishing dataset and

Atlantic hurricanes dataset. We present the results for purity and coverage to dis-

cuss the reason for its failure. Considering that WKMeans had a privilege to be

aware of an estimated number of segments, it did not produce outstanding results

for harmonic mean. The results of GRASP-UTS for the fishing dataset and Atlantic

hurricanes datasets were statistically significantly lower than SWS and CB-SMoT for

90

all experimented datasets. The experiment results of a Wilcoxon between SWS and

CB-SMoT indicated that there was no statistically significant difference between the

performance of them on all datasets. We show the results of algorithms with no

statistical difference using a green background in Figure 5.12.

Figure 5.13: Comparing the performance of SWS, CBSMoT, GRASP-UTS, SPD, and
W-KMeans on three datasets in terms of purity.

We provide the results of comparing purity and coverage for all experimented

algorithms on all three datasets in Figure 5.13 and 5.14. The results of SPD for

purity indicated that this algorithm suffered from under-segmentation on the fishing

dataset and Atlantic hurricanes dataset, even though we perform an exhaustive search

for adjusting its best parameters.

We say an algorithm performs Under-Segmentation when it is producing a

considerably lesser number of segments than expected. The worst-case for under-

segmentation is when the algorithm does not discover any segment; in that, we have

a coverage of 100%. GRASP-UTS on hurricanes dataset and WSII (detailed in Chap-

ter 6) on fishing dataset are examples of under-segmentation. We say an algorithm

over-segments when algorithm produces considerably too many short segments. The

91

worst-case for over-segmentation is when the algorithm generates one segment for

each trajectory point in which the purity is 100% which we observed in the case of

SPD on fishing and hurricanes dataset.

Figure 5.14: Comparing the performance of SWS, CBSMoT, GRASP-UTS, SPD, and
W-KMeans on three datasets.

To provide a more precise understanding of over-segmentation and under-segmentation,

we experimented with measuring these two parameters in an over-segmented case and

an under-segmented example for all three datasets. When we provided the worst pos-

sible under-segmented results for the fishing dataset on each fold, the average purity

was 21.2%, and the average coverage was 100%. The same experiment on the Atlantic

hurricanes dataset produced the average purity of 17.8%, and the average coverage

was 100%. For the Geolife dataset, the average purity under these circumstances was

23.2%, and the average coverage was 100%.

When we provide the worst possible over-segmented results for the fishing dataset,

the average purity was 100%, and the average coverage was 9.2%. For the Atlantic

hurricanes dataset, the average purity was 100%, and the average coverage was 21.7%.

And for the Geolife dataset, the average purity was 100%, and the average coverage

92

was 4.9%. This experiment also shows that purity and coverage are more reliable

when we have a data set with a higher frequency of capturing new data such as the

Geolife dataset.

5.4.6 Number of Segments

One of the metrics that frequently used to evaluate trajectory segmentation algo-

rithms is the number of segments. To find the number of discovered segments, we

post-process our data to find the most extended segment generated for each segment

identified in our ground truth. The number of discovered segments and the Base,

which is the number of segments in our ground truth (shown in blue), is compared

in Figure 5.15.

Figure 5.15: Comparing the number of discovered segments of SWS, CBSMoT,
GRASP-UTS, SPD, and WKMeans on three datasets. SWS discovered more seg-
ments than other algorithms and over-segmentation in SPD discovered more low
quality segments on the fishing and Atlantic hurricanes datasets.

The average number of segments on the fishing dataset, Base, is 135 segments.

SPD discovered 129 segments on average, which is the result of over-segmentation,

93

and most of the discovered segments contain a few trajectory points. Among other

methods, GRASP-UTS found 12 segments on average, which was lower than CB-

SMoT (20), WKMeans (91), and SWS (20) on the fishing dataset. The number

of discovered segments of WKMeans is not a surprise, near to the Base, because

an estimate of the parameter k, number of segments, is provided to this trajectory

segmentation algorithm.

The ground truth on the Atlantic hurricanes dataset indicates that there are 132

segments on average for this dataset, Base. SPD discovered in 133 segments on

average as a result of over-segmentation. SWS found the highest number of segments

(49) on average in comparison to GRASP-UTS (27), CB-SMoT (34), WKMeans (98)

on the Atlantic hurricanes dataset.

In the Geolife dataset, the number of segments in ground truth was 235 on av-

erage. SPD was able to discover 160 segments on average this time without over-

segmentation. After that, SWS discovered the second-highest number of segments,

149, in comparison to WKMeans (125), CB-SMoT (65).

The results of this experiment show that SWS was a successful algorithm on all

three datasets, while algorithms such as SPD was just gained success in a specific

domain. Comparing SWS and CB-SMoT shows that SWS able to discover more

segments while they both at the same level in terms of harmonic mean, discussed in

Section 5.4.5.

5.4.7 Memory and CPU time

In this section, we compare trajectory segmentation algorithms from the perspective

of memory consumption and processing demands. We measure the amount of memory

used by each algorithm and the CPU time each algorithm used in milestones such

as the start of execution, after loading data, after each fold tuning, after each fold

testing, and end of the experiment. We used the same code template to execute all

tests.

The amount of memory used by each algorithm during the execution is presented

in Figure 5.16. The GRASP-UTS graph shows many ups and downs that are the

result of swap memory and consumed way more than other algorithms memory and

CPU time. As we can see, SWS with a linear interpolation kernel (SWS L) was

94

Figure 5.16: Comparing the performance of SWS, CBSMoT, GRASP-UTS, SPD, and
W-KMeans on fishing datasets. GRASP-UTS produced segments after 16 hours and
used near 60MB memory. WKMeans generated segments faster than all algorithms.
SWS with linear kernel (SWS L) gained the second rank after WKMeans.

the fastest algorithm after WKMeans. The GRASP-UTS was the slowest trajectory

segmentation algorithm among experimented algorithms. Comparing CB-SMoT and

SWS with a linear kernel (SWS L), the SWS algorithm was executed using almost half

of the amount of memory and much less of the CPU time. Because we provide just

geo-location to WKMeans, and the algorithm was aware of the number of segments,

the complexity of the time dimension and discovering the number of segments was

removed from this algorithm. This made WKMeans executes faster than all other

experimented algorithm.

5.4.8 V-measure

The segmentation task has some similarities to clustering tasks. From one perspective,

we are making clusters of trajectory points and call them segments. However, we

have a limitation that two consecutive segments could not belong to the same cluster

95

and elements of same cluster can appear in more than one segment. We decided to

compare trajectory segmentation algorithms from the perspective of clustering. One

of the frequently used metrics for clustering is V-measure, which is the harmonic mean

of homogeneity and completeness. V-measure is one of the metrics frequently used

for evaluating the quality of a clustering tasks [63]. We measure this metric for all of

our experiments to compare segmentation algorithms from this view point. SWS was

able to obtain the best V-measure among all algorithms on the Geolife dataset and

the Atlantic hurricanes dataset, shown in Figure 5.17. However, it did not gain the

highest V-measure for the fishing dataset, but it gained a competitive V-measure.

A Wilcoxon test indicated a significant difference between SWS and CB-SMoT

on the fishing dataset (p=0.049, s=−1.96). A Wilcoxon test showed that SWS re-

sults of v-measure on the Atlantic hurricanes dataset are significantly higher than

all other experimented algorithms (mdn = 92.39, IQR = 9.60). GRASP-UTS gener-

ated unfortunate results with high variations for v-measure on the fishing dataset and

the Atlantic hurricanes dataset. CB-SMoT performed poorly on the Geolife dataset

in terms of v-measure. SPD still did not gain a good result of V-measure while

it achieved the best results similar to SWS on the Geolife dataset (pvalue = 0.096,

statistic = 1.66). SPD was designed for the Geolife dataset by researchers in the

mobility domain, whereas SWS is more generic and achieves competitive results in

all datasets.

5.5 Discussion

We compared our proposed method, SWS, against four well-known approaches in

trajectory segmentation, including CB-SMoT, GRASP-UTS, SPD, and WKMeans

on three datasets from three different domains (the fishing dataset, the Atlantic hur-

ricanes dataset, and the Geolife dataset). We compared these trajectory segmen-

tation algorithms from four perspectives: 1) harmonic mean of purity and coverage,

2) number of discovered segments, 3) memory consumption and computing desire and

4) V-measure. Comparing from the harmonic mean perspective showed that SWS

and CB-SMoT gained the highest performance. The results of comparing algorithms

concerning the number of discovered segments showed that SWS found more segments

96

Figure 5.17: Comparing the performance of SWS, CBSMoT, GRASP-UTS, SPD, and
WKMeans on three datasets in terms of V-Measure.

on average compared to that of the CB-SMoT. The memory and computing require-

ments for SWS remained low, and GRASP-UTS consumed the highest amount of

memory and CPU time to generate its results. From the clustering perspective, CB-

SMoT execution on the fishing dataset gained second high v-measure after WKMeans

and SWS went into the third rank; however, SWS gained the most elevated status

among all algorithms on the Atlantic hurricanes dataset and the Geolife dataset in

terms of v-measure.

Debugging the segmentation results for SWS revealed some of the weaknesses of

this algorithm that we discuss here. Figure 5.18 shows one of the frequent errors

that SWS made during the segmentation task. This graph applied SWS algorithm

with a random walk with a window size of seven, which is tuned on fold one of the

fishing dataset. The figure on the right side shows that this trajectory is one segment.

Our algorithm discovered three segments in this trajectory, which are indicated by

black, yellow, and magenta. Our interpretation is that there might be more than

one behaviour change in the course of fishing. SWS aims to discover the behavioural

97

changes in a trajectory, and it seems that it identified these behaviour changes. We

register this issue as one of the weaknesses of SWS that resulted in low v-measure.

Figure 5.18: Trajectory on the right shows a fishing activity labeled by subject matter
expert. The left image shows the output of SWS segmentation that identified three
segment. This graph shows a limitation of SWS when a course of movement includes
more than one behavior change.

The second weakness of SWS is when the rate of capturing new samples are low

in a dataset. The performance of SWS increases when the period of data capturing

in average decreases, detailed in Section 5.4.3 and presented in Figure 5.11.

5.6 Summary and Concluding Remarks

In this chapter, we proposed our Sliding Window Segmentation (SWS) algorithm to

segment trajectories. This algorithm works based on the idea that any deviation

from the normal behaviour of moving objects is a sign of changing moving object’s

behaviour. The regular routine is modelled using different kernels for different do-

mains. For each trajectory point, we generate error value that shows the deviation

of that point from the interpolated point. Then using these values, we create an

error signal and process this signal to discover the partitioning positions . Our ex-

periments show that SWS and CB-SMoT, with no statistically significant difference,

provide the best performance on all three datasets in terms of harmonic mean. SPD

provides similar performance only on the Geolife dataset while it was not performing

98

well on the fishing dataset and the Atlantic hurricanes dataset. The performance of

WKMeans and GRASP-UTS was statistically significantly lower than other methods.

Our experiments showed that there is a linear correlation between the frequency of

capturing new trajectory points in a dataset and the performance of SWS. Further-

more, by decreasing the period of capturing new trajectory points, the performance

of SWS increases, detailed in Section 5.4.3. Moreover, purity and coverage metrics

become more reliable by increasing the frequency of capturing new points in a dataset,

detailed in Section 5.4.5.

SWS was able to discover more segments than CB-SMoT on the Geolife dataset.

Also, SWS provides the result of segmentation faster than CB-SMoT, GRASP-UTS,

and SPD with less memory usage.

We discussed two weaknesses of SWS in Section 5.5. First, SWS may discover

shorter segments because of the nature of the movement. For example, in the course

of fishing shown in Figure 5.18, SWS generated three segments where the ground truth

registered one segment. The second weakness was when SWS is trying to segment

a dataset with more extended periods of capturing new points. Lower frequency of

capturing new point includes more unrelated trajectory points to the sliding window.

Increasing this gap gives the moving object possibility of hiding the behaviour change

from the trajectory segmentation sights.

Chapter 6

Wise Sliding Window Segmentation

A limited number of trajectory datasets contain labelled data, annotated segments

by a subject matter expert. This kind of data is processed by a subject matter ex-

pert and segmented using some tools such as VISTA [68], which facilitates access

to some labelled trajectories segmented by a subject matter expert. A supervised

trajectory segmentation algorithm is beneficial when we have access to such labelled

data. The labelled data helps the trajectory segmentation algorithm to be adjusted to

a domain or customized to the subject matter preferences. The objective of a super-

vised trajectory segmentation algorithm may be to facilitate trajectory segmentation

in a trajectory tagging platform, which can save a considerable amount of time for

a subject matter expert by providing accurate suggestions on partitioning position.

When we have a high rate of capturing, this task becomes more tedious, and deciding

on a partitioning position becomes harder. We did not find any supervised method

for trajectory segmentation in the literature. Therefore, we explored this approach

to propose a supervised trajectory segmentation algorithm. Wise Sliding Window

Segmentation (WSII, it reads W-S-Two) is a supervised trajectory segmentation al-

gorithm that inherits the segmentation idea using the deviation from a norm as an

indicator to segment data.

In the following section, we explain the details of WSII approach. Then, we report

the results of our experiments on three datasets in Section 6.2. After that, we discuss

our results in Section 6.3. Finally, we summarize our proposed supervised approach

in Section 6.4.

Since we have a single object trajectory in this chapter, we do not use a superscript

as an object identifier. The superscript notation here will be used to discriminate

between labeled and unlabeled data.

99

100

Algorithm 6.1 Wise Sliding Window Segmentation (WSII)

Require: τ ln - the labeled raw trajectory
τum - the unlabeled raw trajectory
ws - Size of sliding window (an odd number)
kernel - interpolation kernel
B,Bparam - Binary classifier and its parameters
µ - Majority vote threshold

Ensure: SegmentID
1: El ← GenerateErrorSignal(τ l, ws, kernel)
2: Eu ← GenerateErrorSignal(τu, ws, kernel)
3: Dl

x, D
l
y ← CreateTrainingData(τ l.TSID,El)

4: B.Train(Dl
x, D

l
y)

5: U l
x ← CreateBlindSamples(Eu)

6: U l
y′ ← B.Predict(U l

x)

7: SegmentID ←MajorityV ote(U l
y′ , µ)

8: return SegmentID

6.1 Wise Sliding Window Segmentation (WSII)

In this algorithm, we have two trajectory data: 1) τ ln, which is a trajectory data

annotated by a subject matter expert. 2) τun , which is a trajectory data that we do

not have the trajectory segmentation ground truth, and we are willing to segment

it. The algorithm inherits the core functions (Generating error signal) from SWS;

Therefore, ws and kernel are the window size and the kernel of SWS, as explained in

Chapter 5. We keep the window size of the proposed algorithm similar to the window

size of the core algorithm in this research. This algorithm benefits from training a

binary classifier, B that can be tuned as needed, Algorithm 6.1 line 4. Furthermore,

the algorithm uses a majority vote decision-making process in which the percentage

of required affirmative votes is defined by µ, Algorithm 6.1 line 7. For example,

µ = 0.50 means that the algorithm needs more than fifty percent of the votes to

make its decision. Algorithm 6.1 shows the steps of WSII in detail.

An overview of the Wise Sliding Window Segmentation (WSII) method is pre-

sented in Figure 6.1, which has five core procedures: 1) Calling SWS to generate

Error Signal, 2) Create Training Data, 3) Create blind samples, 4) Binary Classifi-

cation Model, and 5) Majority Vote. First, the WSII creates the error signal from

the labelled trajectory dataset (τ ln), and unlabeled dataset (τun) by calling SWS using

101

Figure 6.1: An overview of the Wise Sliding Window Segmentation (WSII). WSII
benefits from using a binary classifier and a majority vote mechanism to find potential
partitioning positions.

parameter flag = False (two yellow solid bordered boxes in Figure 6.1), which is

detailed in Section 6.1.1. The second step is to generate the training data using the

error signal, by sliding a window over its values and adding the presence or absence

of a partitioning position. This part is detailed in Section 6.1.2. The third step is

to train a binary classifier to recognize the partitioning positions over the sequence

of error signals. This part is detailed in Section 6.1.4. Finally, WSII creates samples

from unlabeled trajectories, predicts the presence of partitioning position in each sam-

ple, and utilizes a majority vote technique to decide on the location of partitioning

position, as detailed in Section 6.1.5.

6.1.1 Generating the Error Signal

The first step of our algorithm is a call to the SWS algorithm using parameter flag =

False (this parameter tells the SWS to return the error signal). It is detailed in

Chapter 5, which creates a sliding window over a trajectory to compute a single

error for trajectory points. The error is generated by calculating the deviation of

the interpolated midpoint of the window from the actual midpoint. This process

is repeated by moving a sliding window by one point forward, so receiving a new

trajectory point, it adds the next point to the window and removes the oldest point

from the sliding window. An example of this process is shown in Figure 5.1 in page 62,

and the procedure is elaborated in Algorithm 5.2 in page 63.

102

6.1.2 Creating Training Data

The second core procedure of WSII is to create a training dataset using the sequential

error values extracted in the previous step. First, we create an array of size q of error

values that will belong to the first training sample (these q error values are the

attributes of our classifier). We expect q error values in the middle of a segment

generate a monotone pattern; whereas, they may generate non-monotone pattern

when they include a partitioning position. Selecting q depends on the sampling rate

in the dataset and should include enough trajectory points to capture a behaviour

change. We use the ground truth information (i.e., if in this particular region there

was a change in the behaviour) to annotate the label of this sample, Algorithm 6.2

line five. If this window includes a partitioning position, it is labelled as 1 and 0

otherwise. This annotation plays the role of target value for our classifier. Therefore,

XTrain plays the role of attributes for the binary classifier and Y Train plays the

role of target value in Algorithm 6.2.

Algorithm 6.2 Create Training Data

Require: τ ln.TSID { The SID of the raw trajectory}
Require: El {Error signal for τ ln}
Require: q {Number of attributes}

1: XTrain← []
2: Y Train← []
3: for i← 0 to n− q do
4: XTrain[i]← El[i, i+ q]
5: Y Train[i]← Sign(len(set(TSID[i, i+ q]))− 1)
6: end for
7: return XTrain, Y Train

By receiving every new trajectory point, we remove one point from the start of our

window and add the next to the end of the window. Then we create our next sample

by applying the same step of labelling 1 when a partitioning position is present in the

sliding window, and 0 if it is not. We repeat this procedure until all the error signals

are evaluated.

To understand how the labeling process works, we show an example in Figure 6.2.

In this example, the training data are created for the sliding window built with seven

(e1 to e7) trajectory points over eleven slides (i.e., w1 to w11). As can be seen in

103

Figure 6.2, from w1 to w3, there was no big change in the error signal (ranging from

120 to 340 meters). In w4, the value of 560 characterizes a high jump in the estimated

error. It reflects a real change in the moving object’s behaviour, resulting in a positive

example (i.e., there is a partitioning position) in the training data. Examples from

w4 to w10 are labelled as positive due to the presence of a partitioning position in the

sliding window. From w11, the samples are again labelled as negative examples due

to the absence of a partitioning position.

Figure 6.2: Example of a training set generated by WSII.

Figure 6.3: The blue line shows the error signal for a sample trajectory with three
segments. Using a sliding window of 7, we calculate the standard deviation of the
error signal of the sliding window and we plot them in green. This graph shows that
maximum fluctuations in error value happen when we calculate error signal for the
boundaries of a segment.

104

6.1.3 Create Blind Samples

Algorithm 6.3 shows how we generate sample data for the unlabeled data, τum. This

procedure creates samples for the binary classifier to predict the presence of a par-

titioning position. Note that we select the same number of attribute, q, as we used

for our training step. Each sample passes to the binary classifier, and a prediction

assigns to the sample that indicates the partitioning position is present in the sample

or not.

Algorithm 6.3 Create Blind Samples

Require: Eu { Error signal for τum}
Require: q {Number of attributes}
Ensure: XTrain

1: XTrain← []
2: for i← 0 to m− q do
3: XTrain[i]← Eu[i, i+ q]
4: end for
5: return XTrain

6.1.4 Binary Classification Model

A binary classifier is used by WSII to categorize each error signal sample into either

a partitioning position or not. The labelled trajectory data, created in the previous

step, is used to generate training samples (XTrain, attributes of the classification)

for this binary classifier so that it can classify signal samples into a class (Y Train,

target variable) where a sliding window has a partitioning position (e.g., value 1) or

a class when it does not have a partitioning position (e.g., value 0).

A sample error signal is presented in Figure 6.3 that it has the minimum fluctua-

tions far from a partitioning position, and the maximum variations while transitioning

from one segment to a new one.

Therefore, detecting the area that includes partitioning positions is an indicator

that the behaviour has changed. We apply the binary classifier to identify these areas

over a trajectory with the highest likelihood of containing partitioning positions. In

this work, we used a random forest classifier [9] as a base binary classifier to benefit

from its bagging power while processing extended window sizes faster by limiting the

number of features. However, we explored some other classification models that can

105

Figure 6.4: Example of the majority vote mechanism.

be used in this step. After forecasting these transitioning areas, we use a majority

vote mechanism to decide precisely where to place a partitioning position, explained

in the next section.

6.1.5 Majority Vote

At this step, we use the same sliding window of size q to decide if a partitioning

position occurred. The steps of this procedure are explained in Algorithm 6.4. Since

we are using a sliding window, each trajectory point can be part of q sliding windows,

and we classify each window using the binary classifier. This means that we have

q predicted values by the binary classifier, each of them is generated using one of

the sliding windows that contains the trajectory point, Algorithm 6.4 line 5. Using

a majority vote mechanism for these q outputs leads us to the final decision: the

trajectory point is a partitioning position if more than µ% of the sampled signals are

labelled as a partitioning position.

Leveraging this feature and applying the voting technique, we can have a more

robust evaluation to support if a point is a partitioning position or not. q results

support the decision on identification of a trajectory point as a partitioning position,

each of which contributes 1/q to the final decision. This means a misclassification of

the binary classifier weights 1/q. Although increasing q can make the algorithm more

robust to noise, it will make it fail to identify segments with a length smaller than q

and only possible when we have a good sampling rate. Furthermore, the algorithm

is robust against noisy points for longer trajectories, which may happen in trajectory

106

Algorithm 6.4 Majority Vote

Require: U l
y

Require: µ, q
Ensure: SegmentID

1: mid←int(q/2)
2: start←0, ng←− 1, pg←1, SegmentID←[]
3: l←len(U l

y)
4: for i←mid+ 1 to l −mid do
5: if

∑i+mid
n←i−mid U

l
y[n] > [ws ∗ µ] then

6: if i− start ≤ q then
7: SegmentID←SegmentID+[−ng]∗ (i−start) {A∗n, where A is an array

and n is an integer, and it concatenates n copies of array A. For example,
[0] ∗ 3 = [0, 0, 0]}

8: ng←ng − 1
9: start←i

10: else
11: SegmentID←SegmentID + [−pg] ∗ (i− start+ 1)
12: pg←pg + 1
13: start←i+ 1
14: end if
15: end if
16: end for
17: SegmentID←SegmentID + [pg] ∗ (l − start)
18: return SegmentID

data due to collection device errors.

The inability to discover segments shorter than the sliding window is one of the

WSII weaknesses.

An example of the majority vote mechanism’s advantages is shown in Figure 6.4,

where a window with q = 7 was used. In Figure 6.4, the column bcls was forecasted

by the binary classifier for wm to wm+9. It is possible to see in Figure 6.4 that

wm+3 is decided by evaluating the bcls column values from wm to wm+6 (0,1,0,0,0,1,1).

The decision regarding a majority vote for wm+3 is equal to 0 since |#0| = 4 and

|#1| = 3. For deciding the final value of wm+4 the lines from wm+1 to wm+7 are

used. The evaluation of the set (1,0,0,0,1,1,1) through a majority vote (|#0| = 3

and |#1| = 4) results in the decision of 1 (i.e., a partitioning position occurred). As

previously stated, such a strategy makes WSII robust against spatial jumps due to

GPS error in the data collection process.

107

6.2 Experimental Evaluation

In this section, we evaluate our proposed supervised method and compare it to state-

of-the-art approaches. We focus on three experiments: 1) majority vote selection,

2) binary classifier selection, 3) comparison against other trajectory segmentation ap-

proaches. In Section 6.2.1, we evaluate the majority vote parameter tuning. Then

we present the experimental results on the selection of the binary classifier in Sec-

tion 6.2.2. After that, we compare the performance of WSII with other trajectory

segmentation algorithms in Section 6.2.3.

6.2.1 Majority Vote Experiment

The majority vote’s µ value is one of the parameters of the WSII algorithm. This

parameter identifies the number of affirmative votes for a trajectory point so that the

algorithm can call it partitioning position. In this experiment, we applied random

forest as the binary classifier and measured the effect of the majority vote parameter,

µ, on three datasets: the fishing dataset, the Atlantic hurricanes dataset, and the

Geolife dataset. In this experiment, we avoid cleaning the dataset from segments

shorter than the window size of the WSII to capture and highlight any weakness of

WSII.

In Chapter 4, we reviewed some features of our datasets. One of these features

was the number of short segments in each dataset, discussed in Section 4.1.

Tables 4.1, 4.2, and 4.3 show that 283/1990 ≈ 14.22% of the Atlantic hurricanes

dataset are segments shorter than window size seven, 158/5190 ≈ 3.04% of the fishing

dataset are segments shorter than sliding window size seven, and 44/32046 ≈ 0.13%

of the Geolife dataset is shorter than window size seven. When we increased the

majority vote parameter, µ, from 0.6 to 0.9, the average harmonic mean of purity

and coverage increased from 67.31% to 68.85% on the fishing dataset. On the Atlantic

hurricanes dataset, the average harmonic mean increased from 71.37% to 82.94% by

increasing the majority vote parameter, µ, from 0.6 to 0.9. The average harmonic

mean of purity and coverage experienced a raise from 91.76% to 92.41% by increasing

the majority vote parameter, µ, from 0.6 to 0.9 on the Geolife dataset.

108

Figure 6.5: Segmentation using WSII with different Majority Vote parameters using
random forest as binary classifier. The results show that the increase in majority
vote value increases the harmonic mean; however, this increase is not significant for
all datasets.

Despite the improvements in harmonic mean on all datasets, a Wilcoxon test indi-

cated that just the gain on the Atlantic hurricanes dataset is statistically significant

(p = 0.019, s = 2.34). The improvements on the Geolife dataset and the fishing

dataset were not statistically significant. The results of this experiment are presented

in Figure 6.5. The results show that by increasing µ, the WSII would not signif-

icantly improve in terms of harmonic mean on the Geolife dataset and the fishing

dataset. Therefore, we suggest using µ = 0.6 as a default value for this parameter.

Depending the attributes of a dataset (amount of noise or sampling rate), we might

find adjustment of this parameter beneficial.

6.2.2 Binary Classifier Experiment

The binary classifier is one of the principal components of WSII. There are several

choices for a binary classifier such as Decision Tree (DT), Random Forest (RF), Neural

Networks (NN)1, and Naive Bayes (NB). To evaluate the performance of WSII using

1Feed-forward Neural Networks with one hidden layer with seven nodes and Relu activation
functions, an Adam optimizer and alpha = 0.001

109

these binary classifiers, we apply these four binary classifiers, which are representa-

tives of four categories of classifiers. Since we are using a majority vote decision-

making mechanism after applying the binary classifier, a weak classifier still can

produce satisfactory results. Considering the complexity of some classifiers such as

neural networks, we prefer to use a simple classifier such as decision tree or Naive

Bayes as a default parameter for our algorithm.

Figure 6.6: WSII experiment for different binary classifiers.

Similar to the previous experiment, we decided to skip the cleaning step for WSII.

Therefore, we did not remove the segments shorter than the sliding window of size

seven.

The results of Wilcoxon tests on three datasets using four classifiers with a random

walk kernel is presented in Table 6.1. The median harmonic mean in WSII with

neural networks as the core binary classifier was 84.22% (IQR = 1.37), the highest

on the fishing dataset. On the Atlantic hurricanes dataset, the Naive Bayes binary

classifier gained the most top harmonic mean of 89.30% (IQR = 2.80), and the highest

110

Datasets Median DT RF NN NB

Fishing
Dataset

DT 68.2 1.000 0.596 0.000 0.820
RF 68.6 0.596 1.000 0.000 0.596
NN 84.2 0.000 0.000 1.000 0.000
NB 68.2 0.820 0.596 0.000 1.000

Atlantic
Hurricanes

Dataset

DT 86.6 1.000 0.879 0.005 0.082
RF 84.1 0.879 1.000 0.012 0.289
NN 58.3 0.005 0.012 1.000 0.000
NB 89.3 0.084 0.289 0.000 1.000

Geolife
Dataset

DT 94.5 1.000 0.325 0.023 0.226
RF 93.5 0.325 1.000 0.023 0.496
NN 63.2 0.023 0.023 1.000 0.025
NB 91.6 0.226 0.496 0.025 1.000

DT: Decision Tree
RF: Random Forest
NN: Neural Network
NB: Naive Bayes

Table 6.1: The Wilcoxson test’s p-value results to compare the harmonic mean of
WSII with different binary classifiers on the three datasets. The p-values with signif-
icant differences are highlighted in bold.

harmonic mean on the Geolife dataset was 94.53% (IQR = 2.48). The Wilcoxon test

indicated that there is a significant difference in using neural networks on the fishing

dataset compared to all other classifiers. Moreover, it suggested that the use of Naive

Bayes as a core binary classifier is not significantly different than using the random

forest.

Considering the performance of Naive Bayes comparing to random forest, the

use of Naive Bayes as a core binary classifier may bring considerable performance

improvement.

Furthermore, the Wilcoxon test showed that the difference between using a Deci-

sion tree and Random Forest on the Geolife dataset was not significant (p = 0.325,

statistic = −0.98).

On the fishing dataset, the neural network as the binary classifier of WSII gained

the highest harmonic mean (84.22%) in comparison to Decision Tree (68.27%), Ran-

dom Forest (68.62%), and Naive Bayes (68.27%). On the Atlantic hurricanes dataset,

Naive Bayes classifier produced the highest harmonic mean (89.30%) in comparison

to Decision Tree (86.66%), Random Forest (84.19%), and Neural Networks (58.32%).

111

The best harmonic mean is produced by Decision Tree (94.53) on the Geolife dataset

in comparison to Naive Bayes (91.61%), Random Forest (93.50%), and Neural Net-

works (63.25%). Figure 6.6 shows the results of this experiment.

The results of this experiment suggest that Decision Tree and Random Forest

classifiers perform better than other classifiers on the Geolife dataset. For Atlantic

hurricane dataset, the Naive Bayes gained the highest performance among all binary

classifiers. For the fishing dataset, Neural Networks provided the highest harmonic

mean among all experimented binary classifiers.

Figure 6.7: Comparing the results of harmonic mean of WSII against five other
trajectory segmentation algorithms on three different datasets. WSII in brown out-
performed SWS in blue on the Atlantic hurricanes dataset and the Geolife dataset.

6.2.3 Comparison With Other Segmentation Approaches

We compared WSII results on harmonic mean with SWS [23], GRASP-UTS [69], SPD

[85], CB-SMoT [58] and WKMeans [44] on the fishing dataset, the Atlantic hurricanes

dataset, and the Geolife dataset. The GRASP-UTS was excluded from experiments

on the Geolife dataset because it did not generate the segments after waiting for three

days, while other algorithms produced their results in the range of a few seconds or

minutes. In these experiments, we decided to skip cleaning the short segments from

112

Trajectory
Segmentation
Algorithms

Median CBSMoT
GRASP

UTS
SPD SWS WKMeans WSII

CBSMoT 91.90 1.000 0.173 0.000 0.226 0.000 0.000
GRASP-UTS 89.96 0.173 1.000 0.000 0.019 0.000 0.019
SPD 37.50 0.000 0.000 1.000 0.000 0.000 0.000
SWS 92.86 0.226 0.019 0.000 1.000 0.000 0.000
WKMeans 77.74 0.000 0.000 0.000 0.000 1.000 0.000
WSII 84.22 0.000 0.019 0.000 0.000 0.000 1.000

Table 6.2: The p-value results of the Wilcoxson test to compare the harmonic mean
of WSII with different binary classifiers on the fishing dataset. The p-values with
significant differences are highlighted in bold.

the datasets to highlight one of the weaknesses of WSII.

Learning from previous experiments in Sections 5.4.2 and 6.2.2, we set up this

experiment with the following parameters to achieve better results in each domain.

Note that the experiments followed the experimental protocol (see Section 5.4.1).

First, we choose a Neural Network’s core binary classifier and linear interpolation

kernel for the fishing dataset. On the Atlantic hurricanes dataset, we use a Naive

Bayes classifier with a linear interpolation kernel. For the Geolife dataset, we applied

a random forest binary classifier with a kinematic interpolation kernel.

The results of Wilcoxon tests on the fishing dataset for six trajectory segmentation

algorithm is presented in Table 6.2. Contrary to our expectation, WSII did not

perform well on this dataset and was not able to outperform CB-SMoT, GRASP-

UTS, and SWS.

We found that the number of short segments, the sub-segments in the course of

fishing, the presence of more than one moving object in each fold, and the frequency

of capturing new trajectory points can be four major factors for this failure.

The results of Wilcoxon tests on the Atlantic hurricanes dataset for six trajectory

segmentation algorithm is shown in Table 6.3. A Wilcoxon test indicated that WSII

with linear interpolation kernel and Naive Bayes binary classifier could significantly

outperform all other experimented trajectory segmentation algorithm.

The results of Wilcoxon tests for WSII with kinematic interpolation kernel and

random forest binary classifier on the Geolife dataset against five trajectory segmen-

tation algorithms is displayed in Table 6.4. The median harmonic mean for WSII

113

Trajectory
Segmentation
Algorithms

Median CBSMoT
GRASP

UTS
SPD SWS WKMeans WSII

CBSMoT 87.92 1.000 0.049 0.000 1.000 0.058 0.008
GRASP-UTS 86.01 0.049 1.000 0.000 0.003 0.449 0.000
SPD 37.00 0.000 0.000 1.000 0.000 0.000 0.000
SWS 87.90 1.000 0.003 0.000 1.000 0.000 0.000
WKMeans 86.02 0.058 0.449 0.000 0.000 1.000 0.000
WSII 90.71 0.008 0.000 0.000 0.000 0.000 1.000

Table 6.3: The Wilcoxson test’s p-value results to compare the harmonic mean of
WSII with different binary classifiers on the Atlantic hurricanes dataset. The p-values
with significant differences are highlighted in bold.

algorithm on the Geolife dataset was 95.50 (IQR = 0.85), whereas the median for

SWS algorithm was 93.55 (IQR = 6.29). The Wilcoxon test showed that the differ-

ence between WSII and SWS was significant (p = 0.000, statistic = −3.47). Fur-

thermore, WSII gained significant higher harmonic mean in comparison to CB-SMoT

(p = 0.000, statistic = −3.55). There was significant difference between WSII and

SPD according to Wilcoxon test results (p = 0.000, statistic = −3.77). Moreover,

the results of WSII had lower variations (IQR = 0.85) in comparison to other exper-

imented algorithms.

A Wilcoxon test indicated that WSII with kinematic interpolation kernel and

random forest binary classifier could significantly outperform all other experimented

trajectory segmentation algorithms on the Geolife dataset.

Since one of our datasets (the Geolife dataset) has a low number of short segments,

the increase in the performance of WSII on this dataset shows the importance of

having segments longer than the sliding window. WSII cannot produce high-quality

segments when the size of a segment is less than the sliding window size. To achieve

the best performance of WSII, we need to set the frequency of capturing so that the

shortest segment size be double the size of the sliding window. This is because the

head and tail of error signal, [ws/2] of the head and [ws/2]+1 of the rear of the error

signal are not the best representation of interpolation method, Algorithm 5.2 lines 14

and 15.

The results of this comparison using harmonic mean of purity and coverage is pre-

sented in Figure 6.7. The results indicate that WSII provides higher-quality segments

114

Figure 6.8: Comparing the results of coverage of WSII against five other trajectory
segmentation algorithms on three different datasets.

on the Atlantic hurricanes dataset and the Geolife dataset. WSII did not gain the

best performance on the fishing dataset. We attribute this to the weakness of WSII

to handle short segments and the dataset properties. Figures 6.8 and 6.9 show the

results of measuring purity and coverage. The WSII performs unsuccessfully in terms

of coverage on the fishing dataset. We measured the number of discovered segments

using WSII, shown in Figure 6.10.

WSII and SWS can be compared in the sense that both of them receive one fold

Trajectory
Segmentation
Algorithms

Median CBSMoT SPD SWS WKMeans WSII

CBSMoT 91.58 1.000 0.596 0.289 0.058 0.000
SPD 91.74 0.596 1.000 0.405 0.000 0.000
SWS 93.55 0.289 0.405 1.000 0.041 0.000
WKMeans 86.84 0.058 0.000 0.041 1.000 0.000
WSII 95.50 0.000 0.000 0.000 0.000 1.000

Table 6.4: The Wilcoxson test’s p-value results to compare the harmonic mean of
WSII with different binary classifiers on the Geolife dataset. The p-values with sig-
nificant differences are highlighted in bold.

115

of labeled data and the rest of the data without labels for the test. In the former

the labeled fold is used to train the binary classifier and in the latter the labeled fold

is used for tuning the epsilon parameter. WSII performed better than SWS on the

Geolife dataset and the Atlantic hurricanes dataset; whereas, it produced unfortunate

results on the fishing dataset. The properties of the dataset and the nature of fishing

were significant factors of this weakness.

Figure 6.9: Comparing the results of purity for WSII against five other trajectory
segmentation algorithms on three different datasets.

6.3 Discussion

WSII is a supervised trajectory segmentation algorithm. This algorithm relies on the

labelled data provided for its training. One application of a supervised trajectory

segmentation algorithm is in trajectory tagging applications such as VISTA [68]. In

these applications, a visual representation of a trajectory is provided to a subject

matter expert. The task is that the user finds the partitioning positions by using

visual tools available on the platform. Visualization of many trajectory points and

functionality of zooming in and out on the map to find the best segments is a tedious

task for subject matter experts. A supervised trajectory segmentation can gradually

116

Figure 6.10: Comparing the number of discovered segments with ground truth using
six trajectory segmentation algorithms on three datasets.

learn from the subject matter as they provide more labels to predict and suggest the

next best partitioning positions. The complexity of this task is high when dealing

with trajectories with a higher frequency of capturing new points. WSII is designed

to assist subject matter experts in this situation.

The period of capturing a new trajectory point affects the performance of the

WSII, which comes from SWS. We observed that this algorithm did not perform well

on the fishing dataset. We think the following could be the reasons that limit WSII.

First, there is a lot of short segments in the fishing dataset. WSII is working based

on the sliding window and majority vote. Therefore, it has limitations on discovering

short trajectory segments. Second, the properties of a dataset, such as the frequency

of capturing a new trajectory point and its variation, can affect the quality of WSII.

Third, the fishing dataset includes multiple moving objects in each fold. This makes

WSII confused in the tuning phase. This kind of datasets can be processed in a way

that their time overlap issue is resolved before using WSII.

117

6.4 Summary and Concluding Remarks

In this chapter, we proposed a supervised solution for a trajectory segmentation task

called WSII. In this approach, the algorithm requires labelled data to train the core

binary classifier. Experiments showed that this approach could segment trajectories

to high-quality segments. However, this algorithm has two weaknesses: 1) WSII

cannot process segments shorter than the sliding window size. 2) WSII requires a

high frequency of capturing data. Despite its weaknesses, WSII is the first supervised

trajectory segmentation algorithm that can be adjusted to the domain by providing

labelled data.

6.5 Guideline

We provide a guideline for an end-user to choose a trajectory segmentation algorithm

based on the available data and the application domain. We remark that the data

used in this research is sampled at irregular intervals, and any sampling at a regular

rate can improve the quality of segmentation. However, sampling at a regular rate is

not common in mobility data since we have jump noise and poor GPS signal coverage

since moving objects cannot communicate with GPS satellites.

The first factor in evaluating for selection of a trajectory segmentation algorithm

is the type of trajectory data. If the trajectory data is in the form of multi-object

trajectory data and there is more than one moving object in the dataset, there are

two possible options. First, utilizing an algorithm designed for such data considers

the collective behaviour of moving objects such as TRACLUS. Second, converting the

multi-object trajectory data to a single object trajectory dataset so that algorithms

designed for single moving objects such as SPD, CBSMoT, GRASP-UTS, SWS, WSII

can be utilized. This conversion must assure the user that there is no time conflict

in moving two objects. SPD, CBSMoT, GRASP-UTS, SWS, WSII, WKMeans are

designed for single moving object trajectory datasets. When our trajectory data is

sparse such as datasets for point of interest, using SPD and GRASP-UTS can produce

high-quality segments. In these cases, algorithms such as SWS, WSII, CBSMoT

and WKMeans do not perform well because they rely on sliding window speed and

capturing trajectory points.

118

When the trajectory data comes with some semantic knowledge and labels, algo-

rithms such as GRASP-UTS can benefit from the extra information. In cases where

a subject matter expert is interactively working with a trajectory dataset such as

VISTA [68], WSII can benefit from learning patterns of subject matter expert seg-

mentation and facilitate trajectory tagging tasks. The current version of the VISTA

platform benefits from the visualization of point features. This platform can suggest

to users where the partitioning position could be after collecting some labelled data

from interaction with a subject matter expert. In cases that trajectory data does

not have any semantic knowledge, SWS, CBSMoT, or SPD exhibit reasonable per-

formance. SPD and CBSMoT require parameter tuning, and the parameter tuning

for them can be challenging, depending on the available tuning data. CBSMoT and

SPD are more domain-specific, and using them in a new domain requires more ex-

periments. Whereas, SWS can perform well in most situations independent from the

domain because of its adaptability to a proper kernel domain, this algorithm uses

limited memory, and it can be used in an edge environment such as a raspberry pi.

Selecting SWS as a general approach for unsupervised segmentation requires some

consideration that we discuss here. For a general-purpose domain, SWS can produce

reasonably good segments using linear interpolation with epsilon equal to percentile

95. we suggest using this epsilon because this value provided reasonably good seg-

ments on average in all of our experiments on all datasets. Selecting a suitable kernel

for each domain can increase the quality of the produced segments. Our experiments

suggest that a linear regression kernel with window size seven is the right choice for

the fishing dataset. Moreover, the experiments did not support the use of the cubic

kernel for this domain. Experiments on the Atlantic hurricanes dataset showed that

the cubic kernel is the right choice for this application. In the transportation domain,

the best kernel is the kinematic kernel with a window size of seven. The experiments

strongly supported the use of the kinematic kernel in this application. In the end,

considering the weakness of SWS in working with a sparse dataset and being sensitive

to the quality of capturing is vital. Short segments cannot be processed well by these

SWS and WSII algorithms because of the use of a sliding window. Decreasing the

size of the sliding window depends on the applied interpolation kernel. The minimum

window size is three for linear interpolation and seven for kinematic interpolation. In

119

cases where a segment does not have enough trajectory points, we suggest increasing

the frequency of capturing new trajectory points to overcome this issue. We recom-

mend avoiding the application of the approach presented here in a given application

that includes segments shorter than the window size.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, we studied the trajectory segmentation task — a pre-processing task

for trajectory mining — in which a trajectory is split into smaller parts. Applying

trajectory segmentation algorithms helps researchers to extract a graph representation

for trajectory data. This representation facilitates the discovery of hidden patterns in

trajectories. It answers queries on: graph topology features, edges features, vertices

features and similarity features, including but not limited to the following questions.

What are the trending stop points over the years? What are the predictions on an

edge or vertices feature? What are the abnormal movement behaviours? What are

the top n most connected vertices over the years, and what are the changes from one

year to the next?

Moreover, such segmentation algorithms can be beneficial for researchers and sub-

ject matter experts interested in annotating trajectories. An example is the use of

trajectory segmentation algorithms in a platform like VISTA [68].

We reviewed available trajectory segmentation algorithms and discussed their

properties from four perspectives, including learning, features, performance, and other

aspects. We identified two gaps in the literature of trajectory segmentation. First,

an unsupervised single moving object trajectory segmentation algorithm that 1) uses

only geolocation of moving object and does not rely on any particular knowledge,

and 2) consumes low memory and CPU time, during the discovery of segments. We

followed the idea that such an algorithm must discover segments when a moving ob-

ject changes its behaviour. Such an algorithm can be domain-independent because it

just utilizes the geolocation of moving objects. To cover this gap, we proposed Slid-

ing Window Segmentation (SWS) as a single moving object unsupervised trajectory

segmentation algorithm that discovers segments by identifying behaviour changes in

the course of movement, detailed in Chapter 5. SWS generates a geolocation error

120

121

signal as an intermediate step to find segments. This error signal represents possible

partitioning positions where a moving object changes its behaviour and is used to

split trajectory data into segments. The proposed model is flexible concerning dif-

ferent domains by adjusting an interpolation method, which is the kernel of SWS. In

the course of searching for this trajectory segmentation algorithm, we developed two

trajectory mining libraries in Python (TrajSeg1, TrajLib2) to segment trajectories

and generate features for each segment. We proposed some applications of trajectory

segmentation in extracting a graph representation for trajectory data [11]. We com-

pared the quality of discovered segments by SWS against four other segmentation

algorithms (GRASP-UTS, CBSMoT, SPD, WKMeans) on three datasets from sep-

arate domains (the fishing dataset, the Atlantic hurricanes dataset, and the Geolife

dataset).

The experimental results showed that SWS significantly increased the overall per-

formance of trajectory segmentation on all datasets. Although the results of har-

monic mean show that SWS and CBSMoT generating the same quality segments,

the number of discovered segments, amount of memory and CPU consumption and

the v-measure suggested that SWS identified more high-quality segments with less

memory and CPU usage. Our experiments showed that the best interpolation kernels

of SWS are as follows:

• For the fishing dataset, the best kernel is the linear regression, with no significant

difference than the linear kernel.

• For the Atlantic hurricanes dataset the best kernel is the cubic kernel.

• For the Geolife dataset, the best kernel is the kinematic kernel.

Second, we could not find any supervised trajectory segmentation algorithm to

facilitate the trajectory annotation task. To cover this gap, we proposed a super-

vised trajectory segmentation algorithm called Wise Sliding Window Segmentation

(WSII), detailed in Chapter 6. WSII applies the idea of discovering segments using

change detection in a trajectory, a binary classifier, and a majority vote decision-

making process. In the course of research for the trajectory segmentation algorithm,

1https://github.com/metemaad/TrajSeg
2https://github.com/metemaad/TrajLib

122

we captured a rich trajectory dataset from Automatic Identification System (AIS)

messages in partnership with AISHUB. We applied a subset of this dataset (pub-

lished under the common creative licence to facilitate research in this domain) for

debugging the WSII algorithm. During this research, we presented a platform for

trajectory annotation called VISTA (see Appendix C.1 for more information) that

can benefit from a supervised trajectory segmentation algorithm. We compared the

results of segmentation using WSII with five other segmentation algorithms (SWS,

GRASP-UTS, CBSMoT, SPD, WKMeans) on three datasets from different domains

(the fishing dataset, the Atlantic hurricanes dataset, and the Geolife dataset).

The experimental results showed the WSII boosted the performance of the tra-

jectory segmentation task on the Atlantic hurricanes dataset and the Geolife dataset.

A Wilcoxon test indicated that the performance boost of WSII on the Atlantic hurri-

canes dataset and the Geolife dataset in comparison to the fishing dataset are signif-

icant. WSII was not able to increase the performance of the trajectory segmentation

task on the fishing dataset. We consider contributing factors such as dataset proper-

ties and the presence of short segments as the reason for this limitation. WSII comes

in handy for helping subject matter experts to segment trajectories with high fre-

quency. WSII requires a capturing rate in which we receive at least twice the window

size for each segment. Moreover, it can not process trajectory segments shorter than

its window size.

7.2 Limitations

We evaluated both proposed algorithms (SWS and WSII) to find their weaknesses

and the situation they can become most useful by conducting various experiments.

Before we review the weaknesses of our proposed algorithms, we discuss the situation

in which the algorithms are designed for them. Our proposed method is designed for a

single moving object to segment its trajectory of movement. Our algorithm is intended

to be fast and to consume as little memory as possible to run on a moving object

platform (for example, a raspberry pi) with a limited power source and processing

power; the experiment in Section 5.4.7 indicated that SWS requires less memory

and CPU time than CBSMoT, SPD, and GRASP-UTS. In general, a moving object

does not need to share the full trajectory of movement information after applying

123

segmentation. It can benefit by sharing some summary statistics about each segment

to increase its privacy, which can be a future work. In this situation, our moving

object has real-time access to variables such as time and geolocation. SWS is a single

moving object unsupervised trajectory segmentation algorithm that is proposed in

Chapter 5. This algorithm has two key weaknesses. First, the algorithm requires a

sampling rate in which the behaviour changes in moving objects be identifiable. A

low sampling rate could result in missing evidence of behaviour change, which is the

only knowledge that is provided to our method. Second, SWS identifies behaviour

changes which may not follow a specific semantic. We observed this limitation for

SWS in segmenting the fishing dataset. This limitation is because the ground truth

are segmented in the level of Fishing and Non-fishing, where there are some behaviour

changes in the course of fishing activity, detailed in Section 5.6 and Figure 5.18.

Our second proposed method (WSII) is a single moving object supervised trajec-

tory segmentation aim for facilitating the trajectory annotation task. This algorithm

inherits the weaknesses of SWS because they are using the same idea in their kernel.

WSII requires a reasonable sampling rate to be functional because it has two sliding

windows and a majority vote process. Having short segments in ground truth is an

indication of not enough captured trajectory points. WSII cannot identify segments

in such a situation. Moreover, this algorithm generates an error signal in its kernel.

Therefore, the sampling rate is critical for this algorithm.

7.3 Future work

As future work, trajectory segmentation research can continue in three following

categories: 1) algorithmic and implementation enhancements 2) evaluation methods,

3) applications.

Here, we discuss five future work on algorithmic and implementation enhance-

ments of the presented approaches. First, future research ideas focus on improving

the quality of SWS and WSII by removing their weaknesses. We may be able to learn

from the amount of available data to train interpolation models for each domain.

For example, using AIS data, we may be able to train a deep neural network model

to extrapolate the next trajectory point. Such a model can be applied as the SWS

kernel. We can improve WSII and SWS by studying a post-processing mechanism

124

that merges similar trajectories based on the semantic definitions. For example, the

post-processing can combine three behaviours identified by SWS and recognize them

as one course of behaviour.

Second, trajectory segmentation algorithms need to be implemented in a stream

and online environment. These methods can benefit from parallel processing (execut-

ing on NVIDIA Jetson Nano or Google Coral, or similar IoT devices with the power

of parallel processing) and become much faster.

Third, trajectory segmentation has a focus on segmenting trajectories without any

overlap. In a real-world situation, we may see some overlaps, such as the trajectory

of a user travelling in a subway. The subway stops at a station, but the movement of

the passenger might ahead or with delay.

Fourth, trajectory segmentation with considering the overlap between segments

has not been studied exhaustively. We just observed one research that indirectly

pointed to this subject. In some types of movement, the moving object gradually

changes its behaviour from one segment to another segment that makes it hard to

find an exact cutting point. For example, while a person starts walking in a train

before departure. We think some solutions using fuzzy logic membership can open

opportunities to have a segmentation while segments can overlap.

Fifth, when we introduced the kinematic movement, we did not consider the

weight of the moving object. Including the weight of a moving object in a kinematic

interpolation can produce more accurate results in cases that moving object follows

the rules of physics. This can be enriched by adding more parameters such as fraction

force of the type of surface that moving object moves there.

Our work can be extended by doing research on the evaluation methods for trajec-

tory segmentation tasks. The metrics applied to evaluate the quality of segments can

improve. A trajectory segmentation that has mistakes in the head or rear of a tra-

jectory may be punished less than a trajectory segmentation algorithm with mistakes

in the middle of a trajectory, resulting in breaking a trajectory to two.

The last category of our future work is the applications of trajectory segmentation

to various tasks. The following are seven applications of trajectory segmentation that

can extend our work.

First, the study of trajectory annotation can benefit from embedding WSII in a

125

platform similar to VISTA. This can create a new generation of trajectory tagging

platforms that can learn from their users. Studying the possibility of transfer learning

and active learning in such platforms can be another branch of this study.

Second, we provide many questions, Section 7.1, on trajectory mining that can be

answered after segmenting a trajectory. These are studies based on the topology of

the graph representation extracted from a trajectory.

Third, our proposed trajectory segmentation can be applied to text mining to

segment a text written by an author (texttiling) [34]. We can use word similarity

functions as an interpolation method in our proposed work, such as cosine similarity

between the vectorized version of each word extracted from a word embedding such as

GloVe. The generated error value can be processed in the same way as we proposed

in SWS. When the writer switch from one subject to the next topic, the error signal

may show this difference because of dissimilarity between two sections. Therefore,

the text can be segmented.

Forth, calculating the error signal from a kinematic interpolation method can be

applied in an application that helps regulators to find the best place to place road

signages such as speed limit postage. The idea behind this application is when the

moving object error signal increases from the kinematic interpolation, the moving

object might deviate from the road. Therefore, the moving object requires to change

its behaviour. Accordingly, the speed limit signage can place a little bit before each

identified segment. In a railway application, these places can be identified to place

some security sensors to control the train’s speed to automatically decrease the speed

of the train by mechanical movements in the rails.

Fifth, recently, the insurance industry has started to leverage the use of telematics

and mobility data. An example of that is the use of sharp braking by a driver in the

calculation of car insurance premiums. Another indicator can be driven from our

proposed method, which is the average area under the error signal for each driver.

When this area is higher for a driver, this means that driver drives in a way that is

far from normal kinematic. Hence the more possibility of going off the road or cause

loss. Therefore, research on this topic can devise new measures for evaluating the

quality of driving for each driver.

Sixth, trajectory of hand movements while using a wearable device like a watch can

126

be a novel security method. Trajectory segmentation can be applied to find segments

in each movement to trigger an event such as unlocking a car, signing a transaction,

or performing an artistic movement. A car security key can be a pattern of hand

movement that the user performs to unlock a car. Finding such a pattern is possible

when we can segment a movement and compare segments with a recorded signature.

This can be used to trigger any event using wearable devices. For example, a firework

artist can use these patterns to magically commence an event such as changing the

projector colour or starting a ventilation system to produce smoke and make a foggy

scene.

Seventh, a trajectory segmentation algorithm application could be applied to the

process of heart rate variability signals, captured during a therapeutic session such

as massage therapy, physiotherapy, or osteopathy. In this application, the normal

pattern of heart rate variability of a patient can be captured before starting the

therapeutic session. This information can be used as an interpolation in our proposed

algorithms. Therefore, the signal captured during the session can be segmented, and

the distance of each segment be calculated from the normal. In this way, a health

practitioner can identify which segments in the session are more healing for a patient.

Bibliography

[1] Charu C Aggarwal and S Yu Philip. A general survey of privacy-preserving data
mining models and algorithms. In Privacy-preserving data mining, pages 11–52.
Springer, 2008.

[2] David W Aha. Lazy learning. Springer Science & Business Media, 2013.

[3] Luis Otavio Alvares, Vania Bogorny, Bart Kuijpers, Jose Antonio Fernandes
de Macedo, Bart Moelans, and Alejandro Vaisman. A model for enriching tra-
jectories with semantic geographical information. In Proceedings of the 15th
annual ACM international symposium on Advances in geographic information
systems, page 22. ACM, 2007.

[4] Luis Otavio Alvares, Vania Bogorny, Bart Kuijpers, Jose Antonio Fernandes
de Macedo, Bart Moelans, and Alejandro Vaisman. A model for enriching tra-
jectories with semantic geographical information. In Proceedings of the 15th
annual ACM international symposium on Advances in geographic information
systems, page 22. ACM, 2007.

[5] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Op-
tics: ordering points to identify the clustering structure. In ACM Sigmod record,
volume 28, pages 49–60. ACM, 1999.

[6] Fateha Khanam Bappee, Amı́lcar Soares Júnior, and Stan Matwin. Predicting
crime using spatial features. In Ebrahim Bagheri and Jackie C.K. Cheung, ed-
itors, Advances in Artificial Intelligence, pages 367–373, Cham, 2018. Springer
International Publishing.

[7] Derya Birant and Alp Kut. St-dbscan: An algorithm for clustering spatial–
temporal data. Data & Knowledge Engineering, 60(1):208–221, 2007.

[8] Azedine Boulmakoul, Lamia Karim, and Ahmed Lbath. Moving object trajec-
tories meta-model and spatio-temporal queries. arXiv preprint arXiv:1205.1796,
2012.

[9] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[10] Ricardo JGB Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. Hier-
archical density estimates for data clustering, visualization, and outlier detection.
ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1):5, 2015.

127

128

[11] Emanuele Carlini, Vinicius Monteiro de Lira, Amilcar Soares, Mohammad
Etemad, Bruno Brandoli Machado, and Stan Matwin. Uncovering vessel move-
ment patterns from ais data with graph evolution analysis. In Proceedings of
the Workshops of the EDBT/ICDT 2020 Joint Conference, EDBT/ICDT 2020,,
2020.

[12] Pablo Samuel Castro, Daqing Zhang, Chao Chen, Shijian Li, and Gang Pan.
From taxi gps traces to social and community dynamics: A survey. ACM Com-
puting Surveys (CSUR), 46(2):17, 2013.

[13] Nitin R Chopde and Mangesh K Nichat. Landmark based shortest path detection
by using a* and haversine formula. International Journal of Innovative Research
in Computer and Communication Engineering, 1(2):298–302, 2013.

[14] Sina Dabiri and Kevin Heaslip. Inferring transportation modes from gps tra-
jectories using a convolutional neural network. Transportation research part C:
emerging technologies, 86:360–371, 2018.

[15] Maria Luisa Damiani, Fatima Hachem, Hamza Issa, Nathan Ranc, Paul Moor-
croft, and Francesca Cagnacci. Cluster-based trajectory segmentation with local
noise. Data Mining and Knowledge Discovery, pages 1–39, 2018.

[16] Erico N de Souza, Kristina Boerder, Stan Matwin, and Boris Worm. Improv-
ing fishing pattern detection from satellite ais using data mining and machine
learning. PloS one, 11(7):e0158248, 2016.

[17] Renata Dividino, Amilcar Soares, Stan Matwin, Anthony W Isenor, Sean Webb,
and Matthew Brousseau. Semantic integration of real-time heterogeneous data
streams for ocean-related decision making. In Big Data and Artificial Intelligence
for Military Decision Making. STO, 2018.

[18] Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, and Akihisa Kawanobe. Deep
feature extraction from trajectories for transportation mode estimation. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 54–66.
Springer, 2016.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Kdd, volume 96, pages 226–231, 1996.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Kdd, volume 96, pages 226–231, 1996.

129

[21] Mohammad Etemad, Zahra Etemad, Amilcar Soares, Vania Bogorny, Stan
Matwin, and Luis Torgo. Wise sliding window segmentation: A classification-
aided approach for trajectory segmentation. In Advances in Artificial Intelli-
gence: 33st Canadian Conference on Artificial Intelligence, Canadian AI 2020,
Ottawa, ON, Canada, May , 2020, Proceedings 33. Springer, 2020.

[22] Mohammad Etemad, Amı́lcar Soares Júnior, Arazoo Hoseyni, Jordan Rose, and
Stan Matwin. A trajectory segmentation algorithm based on interpolation-based
change detection strategies. In Proceedings of the Workshops of the EDBT/ICDT
2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019.,
2019.

[23] Mohammad Etemad, Amilcar Soares, Elham Etemad, Jordan Rose, and Stan
Matwin. Sws: An unsupervised trajectory segmentation algorithm based on
change detection with interpolation kernels. GeoInformatica, 2020.

[24] Mohammad Etemad, Amı́lcar Soares, Stan Matwin, and Lúıs Torgo. On feature
selection and evaluation of transportation mode prediction strategies. In Proceed-
ings of the Workshops of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT
2019, Lisbon, Portugal, March 26, 2019., 2019.

[25] Mohammad Etemad, Amı́lcar Soares Júnior, and Stan Matwin. Predicting trans-
portation modes of gps trajectories using feature engineering and noise removal.
In Advances in Artificial Intelligence: 31st Canadian Conference on Artificial
Intelligence, Canadian AI 2018, Toronto, ON, Canada, May 8–11, 2018, Pro-
ceedings 31, pages 259–264. Springer, 2018.

[26] Mohammad Etemad, Nader Zare, Amilcar Soares, Bruno Brandoli Machado,
and Stan Matwin. Using deep reinforcement learning methods for autonomous
vessels in 2d environments. In Advances in Artificial Intelligence: 33rd Canadian
Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON, Canada,
May 13–15, 2020, Proceedings, page 220. Springer Nature, 2020.

[27] Shanshan Feng, Gao Cong, Bo An, and Yeow Meng Chee. Poi2vec: Geographical
latent representation for predicting future visitors. In AAAI, pages 102–108,
2017.

[28] Miao Gao, Guoyou Shi, and Shuang Li. Online prediction of ship behavior with
automatic identification system sensor data using bidirectional long short-term
memory recurrent neural network. Sensors, 18(12):4211, 2018.

[29] Yikai Gong, Richard O Sinnott, and Paul Rimba. Rt-dbscan: Real-time par-
allel clustering of spatio-temporal data using spark-streaming. In International
Conference on Computational Science, pages 524–539. Springer, 2018.

[30] Arthur Gretton, Kenji Fukumizu, and Bharath K Sriperumbudur. Discussion of:
Brownian distance covariance. The annals of applied statistics, 3(4):1285–1294,
2009.

130

[31] Antonin Guttman. R-trees: A dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[32] Frank R Hampel. The influence curve and its role in robust estimation. Journal
of the American Statistical Association, 69(346):383–393, 1974.

[33] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-
niques. Elsevier, 2011.

[34] Marti A Hearst. Text tiling: Segmenting text into multi-paragraph subtopic
passages. Computational linguistics, 23(1):33–64, 1997.

[35] Samuel J Howarth and Jack P Callaghan. Quantitative assessment of the accu-
racy for three interpolation techniques in kinematic analysis of human movement.
Computer methods in biomechanics and biomedical engineering, 13(6):847–855,
2010.

[36] Myeong-Hun Jeong, Seung-Bae Jeon, Tae-Young Lee, Min Kyo Youm, and Dong-
Ha Lee. Vessel trajectory reconstruction based on functional data analysis using
automatic identification system data. Applied Sciences, 10(3):881, 2020.

[37] Jungwook Jun, Randall Guensler, and Jennifer Ogle. Smoothing methods to
minimize impact of global positioning system random error on travel distance,
speed, and acceleration profile estimates. Transportation Research Record: Jour-
nal of the Transportation Research Board, 1(1972):141–150, 2006.

[38] Amı́lcar Soares Júnior, Chiara Renso, and Stan Matwin. Analytic: An active
learning system for trajectory classification. IEEE computer graphics and appli-
cations, 37(5):28–39, 2017.

[39] Amilcar Soares Júnior, Valeria Cesario Times, Chiara Renso, Stan Matwin, and
Lućıdio AF Cabral. A semi-supervised approach for the semantic segmentation
of trajectories. In 2018 19th IEEE International Conference on Mobile Data
Management (MDM), pages 145–154. IEEE, 2018.

[40] M Kuhn, Horst Tomaschewski, and Hermann Ney. Fast nonlinear time alignment
for isolated word recognition. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’81., volume 6, pages 736–740. IEEE, 1981.

[41] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a
partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD in-
ternational conference on Management of data, pages 593–604. ACM, 2007.

[42] Luis A Leiva and Enrique Vidal. Revisiting the k-means algorithm for fast
trajectory segmentation. In ACM SIGGRAPH 2011 Posters, page 86. ACM,
2011.

131

[43] Luis A. Leiva and Enrique Vidal. Warped k-means: An algorithm to cluster
sequentially-distributed data. Information Sciences, 237(10):196–210, 2013. In
Press.

[44] Luis A Leiva and Enrique Vidal. Warped k-means: An algorithm to cluster
sequentially-distributed data. Information Sciences, 237:196–210, 2013.

[45] Qingyang Li, Nengchao Wang, and Dayi Yi. Numerical analysis. 1986. Huazhong
University of Science and Technology Publishing, China.

[46] Lin Liao, Dieter Fox, and Henry Kautz. Location-based activity recognition. In
Advances in Neural Information Processing Systems, pages 787–794, 2006.

[47] Hao Liu, Satoshi Oyama, Masahito Kurihara, and Haruhiko Sato. Landmark fn-
dbscan: An efficient density-based clustering algorithm with fuzzy neighborhood.
Journal of Advanced Computational Intelligence Vol, 17(1), 2013.

[48] Jed A Long. Kinematic interpolation of movement data. International Journal
of Geographical Information Science, 30(5):854–868, 2016.

[49] James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[50] MarineTraffic. Marinetraffic – a day in numbers. https://www.marinetraffic.
com/blog/a-day-in-numbers/. Accessed: 2020-03-25.

[51] Ronaldo dos Santos Mello, Vania Bogorny, Luis Otavio Alvares, Luiz Hen-
rique Zambom Santana, Carlos Andres Ferrero, Angelo Augusto Frozza, Geo-
mar Andre Schreiner, and Chiara Renso. Master: A multiple aspect view on
trajectories. Transactions in GIS, 2019.

[52] Anna Monreale, Roberto Trasarti, Dino Pedreschi, Chiara Renso, and Vania
Bogorny. C-safety: a framework for the anonymization of semantic trajectories.
Trans. Data Privacy, 4(2):73–101, 2011.

[53] Francisco Moreno, Anderson Castano, and Francisco Javier de Cos Juez. Spet
algorithm: Stop and proximity episodes in trajectories. Applied Mathematics &
Information Sciences, 9(2):549, 2015.

[54] Norman Morrison. Introduction to sequential smoothing and prediction. McGraw
Hill, 2014.

[55] Movebank. Movebank website. https://www.movebank.org/cms/

movebank-main,note=accessed:2020-03-25.

132

[56] Panagiotis Nikitopoulos, Aris-Iakovos Paraskevopoulos, Christos Doulkeridis,
Nikos Pelekis, and Yannis Theodoridis. Hot spot analysis over big trajectory
data. In 2018 IEEE International Conference on Big Data (Big Data), pages
761–770. IEEE, 2018.

[57] Malay K Pakhira. A linear time-complexity k-means algorithm using cluster
shifting. In Computational Intelligence and Communication Networks (CICN),
2014 International Conference on, pages 1047–1051. IEEE, 2014.

[58] Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and Luis Otavio Alvares.
A clustering-based approach for discovering interesting places in trajectories. In
Proceedings of the 2008 ACM symposium on Applied computing, pages 863–868.
ACM, 2008.

[59] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Na-
talia Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis,
Jose Macedo, Nikos Pelekis, et al. Semantic trajectories modeling and analysis.
ACM Computing Surveys (CSUR), 45(4):1–32, 2013.

[60] Lokukaluge P Perera, Carlos Guedes Soares, et al. Ocean vessel trajectory es-
timation and prediction based on extended kalman filter. In The Second Inter-
national Conference on Adaptive and Self-Adaptive Systems and Applications,
pages 14–20. Citeseer, 2010.

[61] Jose Antonio MR Rocha, Valéria C Times, Gabriel Oliveira, Luis O Alvares, and
Vania Bogorny. Db-smot: A direction-based spatio-temporal clustering method.
In Intelligent systems (IS), 2010 5th IEEE international conference, pages 114–
119. IEEE, 2010.

[62] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In Proceedings of the 2007 joint con-
ference on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL), 2007.

[63] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL), pages 410–420, Prague,
Czech Republic, June 2007. Association for Computational Linguistics.

[64] P Samarati and L Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression (tech.
rep. sri-csl-98-04). CS Lab, SRI International, 1998.

[65] R. W. Schafer. What is a savitzky-golay filter? [lecture notes]. IEEE Signal
Processing Magazine, 28(4):111–117, July 2011.

133

[66] Amilcar Soares, Renata Dividino, Fernando Abreu, Matthew Brousseau, An-
thony W Isenor, Sean Webb, and Stan Matwin. Crisis: Integrating ais and
ocean data streams using semantic web standards for event detection. In In-
ternational Conference on Military Communications and Information Systems
ICMCIS2019. IEEE, 2019.

[67] Amı́lcar Soares, Renata Dividino, Fernando Abreu, Matthew Brousseau, An-
thony W Isenor, Sean Webb, and Stan Matwin. Crisis: integrating ais and ocean
data streams using semantic web standards for event detection. In 2019 In-
ternational Conference on Military Communications and Information Systems
(ICMCIS), pages 1–7. IEEE, 2019.

[68] Amı́lcar Soares, Jordan Rose, Mohammad Etemad, Chiara Renso, and Stan
Matwin. VISTA: A visual analytics platform for semantic annotation of trajec-
tories. In Advances in Database Technology - 22nd International Conference on
Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019, pages 570–573, 2019.

[69] Amı́lcar Soares Júnior, Bruno Neiva Moreno, Valéria Cesário Times, Stan
Matwin, and Lućıdio dos Anjos Formiga Cabral. Grasp-uts: an algorithm for
unsupervised trajectory segmentation. International Journal of Geographical In-
formation Science, 29(1):46–68, 2015.

[70] Stefano Spaccapietra and Christine Parent. Adding meaning to your steps
(keynote paper). In International Conference on Conceptual Modeling, pages
13–31. Springer, 2011.

[71] Stephen C Stubberud and Kathleen A Kramer. Kinematic prediction for inter-
cept using a neural kalman filter. In Proceedings of the IFAC World Congress,
2005.

[72] Georgios Technitis, Walied Othman, Kamran Safi, and Robert Weibel. From a to
b, randomly: a point-to-point random trajectory generator for animal movement.
International Journal of Geographical Information Science, 29(6):912–934, 2015.

[73] Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence seg-
mentation. In Proceedings of the 2006 SIAM International Conference on Data
Mining, pages 316–327. SIAM, 2006.

[74] Tammy M Thompson, Sebastian Rausch, Rebecca K Saari, and Noelle E Selin. A
systems approach to evaluating the air quality co-benefits of us carbon policies.
Nature Climate Change, 4(10):917, 2014.

[75] Waldo R Tobler. A computer movie simulating urban growth in the detroit
region. Economic geography, 46(sup1):234–240, 1970.

134

[76] Le Hung Tran, Quoc Viet Hung Nguyen, Ngoc Hoan Do, and Zhixian Yan. Ro-
bust and hierarchical stop discovery in sparse and diverse trajectories. Technical
report, inst, 2011.

[77] Glen Van Brummelen. Heavenly mathematics: The forgotten art of spherical
trigonometry. Princeton University Press, 2012.

[78] Iraklis Varlamis, Konstantinos Tserpes, Mohammad Etemad, Amı́lcar Soares
Júnior, and Stan Matwin. A network abstraction of multi-vessel trajectory data
for detecting anomalies. In Proceedings of the Workshops of the EDBT/ICDT
2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019.,
2019.

[79] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[80] Min Wang, Genlin Ji, Bin Zhao, and Mengmeng Tang. A parallel clustering
algorithm based on grid index for spatio-temporal trajectories. In 2015 Third In-
ternational Conference on Advanced Cloud and Big Data, pages 319–326. IEEE,
2015.

[81] Zhixian Yan, Nikos Giatrakos, Vangelis Katsikaros, Nikos Pelekis, and Yannis
Theodoridis. Setrastream: semantic-aware trajectory construction over stream-
ing movement data. In International Symposium on Spatial and Temporal
Databases, pages 367–385. Springer, 2011.

[82] Hyunjin Yoon and Cyrus Shahabi. Robust time-referenced segmentation of mov-
ing object trajectories. In 2008 Eighth IEEE International Conference on Data
Mining, pages 1121–1126. IEEE, 2008.

[83] Daiyong Zhang, Jia Li, Qing Wu, Xinglong Liu, Xiumin Chu, and Wei He. En-
hance the ais data availability by screening and interpolation. In Transportation
Information and Safety (ICTIS), 2017 4th International Conference on, pages
981–986. IEEE, 2017.

[84] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Under-
standing mobility based on gps data. In Proceedings of the 10th international
conference on Ubiquitous computing, pages 312–321. ACM, 2008.

135

[85] Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie, and Wei-Ying Ma. Recommend-
ing friends and locations based on individual location history. ACM Transactions
on the Web (TWEB), 5(1):5, 2011.

[86] Max Zimmermann, Thomas Kirste, and Myra Spiliopoulou. Finding stops in
error-prone trajectories of moving objects with time-based clustering. In Intel-
ligent interactive assistance and mobile multimedia computing, pages 275–286.
Springer, 2009.

[87] Dimitrios Zissis, Elias K Xidias, and Dimitrios Lekkas. Real-time vessel behavior
prediction. Evolving Systems, 7(1):29–40, 2016.

Appendix A

Appendix A

A high-level view of our platform which is designed to capture and consume AIS

data is shown in Figure A.1. This application includes the source code that runs on

stations to capture data, the communication platform to share data with the AISHUB

community, Processing and storage of data, and the applications consuming this data.

In the next sections we explain each component briefly.

Figure A.1: A high-level view of our application to capture and use the AIS data.

A.1 Stations

A station is a terrestrial AIS antenna installed in a location that can capture AIS

messages transmitted by vessels. Each station includes three main components: 1)

antenna 2) processor 3) station firmware. We used a Shakespeare Galaxy Antenna

for each station, which is a 243.8 x 7.6 x 7.6 cm omnidirectional antenna that works

136

137

in 3 MHz within 2.0:1 VSWR. Each station’s processor contains three hardware mod-

ules: a Raspberry Pi 4 Model B, dAISy HAT and a Raspberry Pi UPS HAT. The

hardware is connected to the Internet. The station firmware is responsible for re-

ceiving ais messages and submit them to our central server. The firmware can catch

received messages in memory when there is a problem in the network connection.

The link between the station and the central server is secured by private and public

key encryption that updated using elliptic curve cryptography. Each client submits

a heartbeat signal periodically to the central server along with its statistics such as

free memory, CPU usage and identified logs. The source code for a station firmware

is available at https://git.cs.dal.ca/big-data-institute/client.

A.2 Central Server

This component of system is responsible for the following tasks: 1) communicating

with stations and receive the submitted messages. 2) communicating with AISHUB

to share the feed of collected AIS messages with the community. 3) receiving the

shared feed of AIS messages from the AISHUB community. 4) sharing the real-

time feed of Automatic Identification System (AIS) messages with applications such

as AISExplore, or Ballast Water Reporting Form (BWRF). 5) Storing the raw AIS

messages in CSV files for further processing 6) processing the heartbeat signals and

providing an interface for monitoring all the system components.

A.3 Data Processor

This module is responsible for reading CSV files and process the AIS messages. Here

we decode all AIS messages and perform more processing. The first step is to decode

the raw AIS message and extract all the fields in each message. We process message

five separately and store them in a P-SQL database for fast processing. We store

all the decoded information in a MongoDB instance, which maintains spatial and

temporal indexing for AIS messages. We applied a GPU processing with the help of

level DB to store the latest location of each vessel around the globe for realtime visu-

alization of AIS messages. A link to our processed data is provided to the application

center, including AISExplore, with rest APIs function.

138

A.4 Applications

The platform is designed to provide AIS data to some applications using rest APIs

functions. AISExplore is an application that is designed to consume this data.

A.4.1 AISExplore

This application consumes AIS messages for visualization and answering to users’

AIS related queries. AISExplore receives the latest location of each vessel using rest

APIs and provides an interface that the user can interact with the system.

Appendix B

Appendix B

B.1 Parameter Selection Tables

Dataset Kernel
Window

size
E-threshold

Selected
Percentile

Fold 1 Fishing Linear Regression 11 11953.61 99
Fold 2 Fishing Linear Regression 11 12604.23 99
Fold3 Fishing Linear Regression 11 922983.78 98.5
Fold 4 Fishing Linear Regression 11 483383.78 99
Fold 5 Fishing Linear Regression 11 75376.38 90
Fold 6 Fishing Linear Regression 11 9457.08 97.5
Fold 7 Fishing Linear Regression 11 10626.88 98.5
Fold 8 Fishing Linear Regression 11 15672.23 99
Fold 9 Fishing Linear Regression 11 12648.73 98.5
Fold 10 Fishing Linear Regression 11 10721.34 97

Table B.1: Parameters applied in experiments for on the fishing dataset for SWS

Dataset area min time time tolerance merge tolerance
Fold 1 Fishing 0.1 360 0 0
Fold 2 Fishing 0.1 360 0 0
Fold 3 Fishing 0.9 360 0 0
Fold 4 Fishing 0.9 360 0 0
Fold 5 Fishing 0.1 3600 0 0
Fold 6 Fishing 0.1 360 0 0
Fold 7 Fishing 0.01 360 0 0
Fold 8 Fishing 0.01 360 0 0
Fold 9 Fishing 0.1 360 0 0
Fold 10 Fishing 0.3 3600 0 0

Table B.2: Parameters applied for CBSMoT

139

140

Dataset alpha
partitioning

factor
max

iterations
min time jcs

Fold 1 Fishing 0.3 0 10 6 0.7
Fold 2 Fishing 0.7 0 20 6 0.3
Fold 3 Fishing 0.7 0 10 60 0.7
Fold 4 Fishing 0.3 0 10 6 0.3
Fold 5 Fishing 0.7 0 20 60 0.7
Fold 6 Fishing 0.3 0 10 6 0.7
Fold 7 Fishing 0.3 0 20 60 0.7
Fold 8 Fishing 0.5 0 30 6 0.7
Fold 9 Fishing 0.3 0 10 6 0.7
Fold 10 Fishing 0.7 0 20 360 0.7

Table B.3: Parameters applied for GRASPUTS on the fishing dataset.

B.2 Comparing Haversine and Euclidean distance

Figure B.1 shows the difference between using haversine and euclidean formula to

calculate the distance between two points on the earth. The x-axis increases from

0 to 180, which is representing the longitude of a point. We measured the distance

of these points with latitude between 0 to 90 and longitude between 0 to 180 using

haversine and euclidean formula. Then we calculate the average difference between

these two numbers for each longitude. The red line shows this difference, and the

y-axis unit is kilometre. The graph shows that if the distance between two points is

less than 25 degrees, the error of the euclidean formula is minute.

141

Dataset ThetaTimeParam ThetaDistancePara
Fold 1 Fishing 2000 6000
Fold 2 Fishing 60 6000
Fold 3 Fishing 2000 6000
Fold 4 Fishing 2000 6000
Fold 5 Fishing 2000 100
Fold 6 Fishing 2000 6000
Fold 7 Fishing 2000 6000
Fold 8 Fishing 60 6000
Fold 9 Fishing 60 6000
Fold 10 Fishing 2000 6000

Table B.4: Parameters applied for SPD on the fishing dataset.

Dataset
Number of
segments

delta

Fold 1 Fishing 171 1
Fold 2 Fishing 162 1
Fold 3 Fishing 198 1
Fold 4 Fishing 180 1
Fold 5 Fishing 81 1
Fold 6 Fishing 144 1
Fold 7 Fishing 126 1
Fold 8 Fishing 144 1
Fold 9 Fishing 72 1
Fold 10 Fishing 90 1

Table B.5: Parameters applied for WKMeans on the fishing dataset.

142

Figure B.1: Comparing the difference between haversine distance and Euclidean dis-
tance.

Appendix C

Appendix C

C.1 VISTA

VISTA is a visual analytics platform for semantic annotation of trajectories pre-

sented in [68]. Figure C.1 shows the architecture and workflow of this platform. This

platform has three layers: 1) Data Collection, 2) Data Processing and, 3) Data Visu-

alization. A raw trajectory and its related semantic information (Point Of Interests

(POIs), Region of Interest(ROIs)) are submitted to the system in the Data Col-

lection layer. In the data processing layer, VISTA provides some tools to generate

point features and semantic features. During the data processing, VISTA benefits

from our public trajectory mining library called TrajLib. After generating semantic

and point features, the system provides a trajectory tagging session for annotator (a

subject matter expert). Annotator, with the help of visualization tools provided by

the platform, decides on where the partitioning position must be. Figure C.2 shows

a screenshot of the annotator dashboard in the VISTA platform while a user in a

tagging session for a vessel trajectory.

143

144

Figure C.1: The architecture and workflow of VISTA platform.

Figure C.2: A screenshot of the annotator user dashboard with the vessels trajectories
dataset.

