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ABSTRACT 

 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the defective 

protein in cystic fibrosis, is an ion channel regulated by PKA and PKC 

phosphorylation of its regulatory region (R-region) through a mechanism still not 

completely understood, preventing a full comprehension of the process involved 

in CFTR activation. To provide novel insights into the CFTR activation 

mechanism, I analyzed in situ and in vitro interactions of the R-region with other 

parts of CFTR at different phosphorylation conditions (PKA, PKC, PKA+PKC). 

For in situ analysis, I used a split-CFTR construct expressing the front half 

(FH;N-tail/TMD1/NBD1), back half (BH;TMD2/NBD2/C-tail) and the R-region as 

three separate polypeptides expressed in BHK cells. I found that PKA stimulation 

increased both FH-R and BH-R interactions and PKC+PKA further increased 

only FH-R interactions whereas PKC stimulation alone had no effect. Inactivation 

of PKC consensus site S686 (S686A) significantly reduced basal BH-R 

interaction and prevented the further enhancing of FH-R interactions by 

PKC+PKA phosphorylation that was found with the wild-type R-region. The 

opposite phosphomimetic mutation S686D restored basal BH-R and rescued 

80% of FH-R interactions after PKC+PKA stimulation compared to wild-type 

levels. As the channel function is mainly stimulated by PKA phosphorylation of 

the R region, and this response is doubled by PKC+PKA phosphorylation, results 

from this thesis suggest that PKC enhances PKA effect by increasing R-region 

interactions with the FH. Also, PKC site S686 was found to be crucial for the PKC 

enhancing effect which appeared to be mediated by a permissive interaction of 

the R-region with the BH, allowing FH-R interactions to be enhanced by PKC.  

Analysis of in vitro interactions of the R-region with six polypeptides 

corresponding to the N- and C-terminal tails and the four cytoplasmic loops (CLs) 

of CFTR showed that phosphorylation strongly increased R-region interactions 

with both N- and C-tails of CFTR. Moreover, PKA and PKC+PKA phosphorylation 

reduced R-region interactions with CLs 4 and 3, respectively, a mechanism that 

permits the channel activation by PKA and PKC enhancing effect. All together, 

these results demonstrate that phosphorylation induces an R-region shift from 

the cytoplasmic loops to both amino and carboxyl ends of the protein, to activate 

the channel.  
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CHAPTER 1: INTRODUCTION  

 

1.1 CYSTIC FIBROSIS 

Cystic Fibrosis (CF) is a life-limiting disease affecting epithelial cells from 

exocrine glands throughout the body. The basic defect in CF is a malfunction of 

the cystic fibrosis transmembrane conductance regulator (CFTR) chloride 

channel. CFTR regulates salt, and consequently water transport across epithelia 

and its defect causes mucus build up and clogging of exocrine ducts and airways 

(Davis, 2006; Elborn, 2016).  

CF was first described 80 years ago by Dorothy Andersen (1938) by analysing 

post-mortem files of 49 patients previously diagnosed as celiac disease. She 

found ‘extensive fibrosis with the formation of cysts’ in the pancreas and 

denominated it ‘cystic fibrosis of the pancreas’, with distinctive features from 

celiac disease. Severe involvement of the lungs was soon associated with CF 

(Andersen, 1938). In 1946, Andersen and Hodges reported the study of the 

family history of 47 CF patients and found evidence to acknowledge CF as a 

genetic disease following mendelian autosomal recessive traits (Andersen & 

Hodges, 1946). In 1953, pediatrician Paul di Sant’Agnese and colleagues 

reported elevated levels of electrolytes in the sweat of 43 CF patients which 

became the basis of the ‘sweat test’, a powerful CF screening test still used 

today (Sant’Agnese et al, 1953). Three years later, Sant’Agnese described CF as 

a systemic disease affecting all exocrine glands, including not only the pancreas 

but also biliary ducts, sweat glands and airways (Sant’Agnese, 1956). In 1983, 
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Quinton demonstrated low chloride permeability in isolated CF sweat ducts as 

the primary deficiency in CF (Quinton, 1983). In 1989, the cDNA encoding the 

CFTR protein was isolated. The resulting protein, CFTR, is a 1480 amino acid 

polypeptide, member of the ATP binding cassette (ABC) superfamily of 

transporters. This family has a canonical architectural structure of two 

transmembrane domains (TMDs), each composed of six membrane spanning 

helices, and two nucleotide binding domains (NBDs), capable of binding and 

hydrolysis of ATP. In CFTR a unique and mostly disordered regulatory region (R 

region) is found between the two TMD-NBD halves and contains several 

phosphorylation consensus sites, including nine for protein kinase A (PKA) and 

seven for protein kinase C (PKC) (Riordan et al, 1989). 

Because CFTR is expressed in tissues all over the body, its malfunction or 

absence affects several organs (Figure 1).  In the lungs, mucus accumulation 

leads to chronic infection and inflammation that progressively deteriorate the 

organ. Mucus accumulation is a result of lower water content in the periciliary 

liquid (PCL) that is caused by the combination of lower or absent chloride 

secretion through CFTR and by hyperabsorption of sodium through the epithelial 

sodium channels (ENaC), which are normally downregulated by CFTR. The 

dense mucus formed accumulates in the airways and prevents normal ciliary 

clearance, creating an environment prone to inflammation and bacterial infection 

(Tang et al, 2014; Castellani & Assael, 2017). CFTR also mediates bicarbonate 

transport and the pH changes in airways liquids caused by CFTR dysfunction 

contributes to innate immune impairment with reduced bacterial killing efficiency  



3 
 

  

Figure 1. Organs affected by Cystic Fibrosis. 

CF is a multisystem condition affecting many organs and causes several clinical 
complications. Reproduced from Paranjape SM & Mogayzel PJ (2014), with 
permission from the American Academy of Pediatrics. 



4 
 

and mucus hyperviscosity (Quinton, 2008; Hoegger et al, 2014). CF lungs also 

show exacerbated inflammatory responses with neutrophil infiltration and the 

presence of free neutrophil elastase and overproduction of pro-inflammatory 

cytokines, which can be found even in absence of bacterial infection (Cohen & 

Prince, 2012; Cohen-Cymberknoh et al, 2013). Lung infection is caused mostly 

by Staphylococcus aureus in children and as the disease progress, 

Pseudomonas aeruginosa becomes the most prevalent bacteria in adulthood. 

Patients with CF are also more prone to infections by non-tuberculous 

mycobacteria and fungi such as Aspergillus. Recurrent infections and 

inflammation result in progressively deterioration of airway tissues which 

eventually leads to respiratory failure and death, unless lung transplantation is 

possible (Cohen & Prince, 2012; Elborn, 2016; Castellani & Assael, 2017).   

In the pancreas, the lower water content and acidic pH of pancreatic secretions 

due to CFTR dysfunction cause obstruction and progressive destruction of 

exocrine ducts, starting in fetal life. Ductal epithelial cells secrete bicarbonate 

which serves as a buffer to neutralize gastric acid and maintain optimal pH for 

digestive enzymes (Park & Lee, 2012; Gibson-Corley et al 2016). The deficient or 

absent pancreatic enzyme secretion leads to malabsorption of fat and proteins 

which causes malnutrition and poor growth in children with CF (Haller et al. 2014; 

Castellani & Assael, 2017). Exocrine pancreas impairment leads to high levels of 

trypsinogen in the bloodstream, which can be detected by the immunoreactive 

trypsinogen test, part of the neonatal screening now available in most countries 

where CF is prevalent (Levy & Farrell, 2015). 
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Liver disease occurs in a minority of patients. CFTR is expressed in the bile duct 

epithelia and regulates water and electrolyte content in the bile. CFTR 

dysfunction leads to acidic, thick and viscous bile which increases susceptibility 

to infection and causes periductal inflammation, progressing into biliary cirrhosis, 

periportal fibrosis and portal hypertension. At this stage patients are 

recommended for liver transplantation (Flass & Narkewicz, 2013; Kobelska-

Dubiel et al, 2014; Ledder et al, 2014).  

Congenital bilateral absence of vas deferens (CBAVD) is present in 90-95% of 

CF male, causing infertility. Other mutations in the CFTR gene that retain some 

channel activity and do not cause classic CF disease, are also reported to cause 

CBAVD (Castellani & Assael, 2017; Gajbhiye & Gaikwad, 2017).  

Sweat glands secretion is severely affected by CFTR impairment and elevated 

levels of chloride and sodium in the sweat is a hallmark for CF diagnosis 

(Kobelska-Dubiel et al, 2014; Elborn, 2016). The sweat test is the gold standard 

in the diagnosis of CF and measures the levels of chloride in the sweat. Levels 

higher than 60mmol/L are indicative of CF, while levels lower than 30mmol/L are 

unlikely to be found in patients with CF. Patients with chloride levels in between 

those values need additional tests such as screening for genetic mutations 

(https://www.cff.org/What-is-CF/Testing/Sweat-Test/). 

Life expectancy for patients with CF has seen a great improvement in the past 

decades; from a death sentence in early childhood in the 1950s to >50 years old 

today (Burgel et al, 2015). This increase in survival has been accompanied with 

comorbidities usually occurring in older patients. In the pancreas, later in life, islet 

https://www.cff.org/What-is-CF/Testing/Sweat-Test/


6 
 

cells of endocrine pancreas are affected by pancreatic deterioration. CF related 

diabetes (CFRD) is turning into an important issue for CF patients, affecting up to 

40-50% of adults. CFRD differs from conventional diabetes mellitus with mixed 

features of type 1 and type 2 diseases, and it is considered a bad prognosis for 

pulmonary disease progression (Kelly & Moran, 2013; Castellani & Assael, 

2017).  

Osteopenia is another condition commonly observed in older patients. Those 

patients show low bone mineral density that is attributed to late puberty, chronic 

inflammation, poor vitamin D absorption and reduced physical activity (Sermet-

Gaudelus et al. 2011). 

 

1.2 ABC HALF-TRANSPORTERS AND SPLIT-CFTR CHANNELS 

CFTR is a non-canonical member of the ABC superfamily of transporters and 

despite transporting ions bidirectionally as a channel, instead of transporting 

larger substrates unidirectionally, it shares a similar molecular mechanism to 

perform this task: ATP binding cassettes (ABCs or NBDs), with the capacity of 

binding and hydrolysis of ATP, are coupled to TMDs which are responsible for 

the translocation task (Higgins, 1992).  

ABC proteins are divided in two main groups, importers and exporters. ABC 

importers or “uptake systems” are present only in the cytoplasmic membrane of 

prokaryotes and are mostly involved in the uptake of a plethora of nutrients that 

range from small carbohydrates, amino acids, and small peptides to metals, 

anions, iron chelators (siderophores), and vitamins. ABC exporters or “efflux 
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systems” are present in all live organisms and localize at the plasma membrane 

of both prokaryotes and eukaryotes as well as in membranes of intracellular 

organelles (Davidson & Chen, 2004; Biemans-Oldehinkel, 2006; Theodolou & 

Kerr, 2015). 

The four core structural domains of a typical ABC transporter (two TMDs and two 

NBDs) can be organized in several different arrangements ranging from 4 distinct 

domains expressed separately to one single polypeptide containing the four 

domains, and almost every imaginable type of arrangement has been already 

described (Figure 2). In the nickel transporter from gram-negative and the 

oligopeptide transporter from gram-positive bacteria, each TMD and NBD are 

represented by a separate and distinct polypeptide. Some ABCs, like the glucose 

and maltose transporters, display two identical NBDs coupled with two distinct 

TMDs and occasionally, the two TMDs or NBDs can be fused as one polypeptide 

chain as it is the case of siderophore and ribose transporters, respectively. These 

complex structural organizations are found exclusively in prokaryotic importers. 

Several ABC transporters, mostly in eukaryotes but also found in bacteria, are 

organized as half-transporters where a TMD is fused covalently to a C-terminal 

NBD and the functional assembly consists either of two identical (homodimer) or 

two distinct (heterodimer) halves. This is the most common structural 

organization observed in eukaryotic exporters. The remaining eukaryotic 

exporters express the four core domains in a single long polypeptide with, 

normally, each NBD being C-terminal to each TMD and are called full-length  
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Figure 2. Domain organization of ABC transporters from different 
organisms. 

In Gram-negative bacteria, importers comprise two TMDs, two NBDs (ATPase 
subunits) and a periplasmic SBP. Energy coupling factor (ECF) transporters 
comprise two NBDs, a transmembrane protein (T) and a substrate-specific 
integral membrane protein (S). All bacteria and archaea also contain homo- or 
heterodimeric exporters, in which a TMD is fused with an NBD. Eukaryotic ABC 
proteins are classified in eight subfamilies (A–H). The organization of core and 
additional domains is shown for different representative topologies in each 
subfamily. Not included are soluble subfamilies E and F and transporter 
subfamily H, which is absent from mammals, plants and fungi. Reproduced 
from ABC transporter research: going strong 40 years on, by Theodoulou & 
Kerr (2015), licensed under CC BY 3.0. No changes were made. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652935/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652935/
https://creativecommons.org/licenses/by/3.0/
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transporters (Higgins, 1992, Biemans-Oldehinkel, 2006; Theodolou & Kerr, 

2015).  

The four canonical domains suffice to perform the translocation of substrates, 

inwardly or outwardly, depending on the system. Extra, accessory domains are 

found in particular ABC transporters members, and serve as regulatory roles or  

for uptake of substrates. This is the case of CFTR and its regulatory region, or 

the substrate-binding protein (SBP) of several prokaryotic ABCs. The accessory 

domains can be identified as extra transmembrane segments or attached to the 

TMDs or NBDs and in most cases their deletion has no effect in the translocation 

function (Higgins, 1992; Biemans-Oldehinkel, 2006). 

In humans, there are 48 ABC transporters subdivided in seven subfamilies, 

ABCA-ABCG, based on the similarities in amino acid sequence and phylogeny. 

Subfamilies ABCA and ABCC are entirely comprised of full-length transporters 

while ABCD and ABCG subfamilies are all half-transporters. ABCB subfamily 

members can be both half and full-length transporters. The last two subfamilies, 

ABCE and ABCF, have no TMDs associated with the NBDs and therefore, are 

not able to translocate substrates, although, their NBDs are phylogenetically 

similar to other ABC proteins (Dean & Annilo, 2005). 

Although CFTR functions as a channel rather than either an importer or an 

exporter, its structural organization resembles the ABC exporters, such as the 

Staphylococcus aureus multidrug transporter Sav1866, which was often used as 

template for CFTR homology models before high resolution structures became 

available (Mornon et al, 2008; 2009; Serohijos et al, 2008; Norimatsu et al. 
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2012). Sav1866 is organized as a half-transporter with 2 homodimers, each 

composed of a TMD linked to an NBD. It displays a structural arrangement 

similar to CFTR, with the two half’ TMDs intertwined with each other and tight 

interactions between both TMDs and NBDs (Dawson & Locker, 2006). 

Since the basic functional mechanism of ABC proteins is conserved in all live 

organisms, from archaea to man, with diverse structural assemblies able to form 

functional systems, it is not unrealistic to assume that different structural 

arrangements of the same ABC protein could still generate functional transport 

systems. Indeed, the two NBDs of the Salmonella typhimurium peptide 

transporter (OppD and OppF), which are natively expressed as separate 

proteins, can be fused together to give a single functional polypeptide 

(Higgins,1992). Also, the yeast a-factor mating pheromone transporter, STE6, 

which is normally expressed as a single polypeptide of four domains, can be 

expressed as two halves, and are able to reassemble and mediate a-factor 

transport. Expression of each of the two halves alone did not generate functional 

transporters (Berkower & Michaelis 1991). Similar results were obtained with 

half-molecules of P-glycoprotein, a drug-exporter involved in resistance to cancer 

drugs, which exhibited drug-stimulated activity only when both halves were co-

expressed (Loo & Clark, 1994). 

This natural flexibility of ABC transporters structures has also been explored in 

CFTR research. Ostedgaard et. al (1997) demonstrated results similar to the 

yeast STE6 and P-glycoprotein transporters (Berkower & Michaelis 1991; Loo & 

Clark, 1994) by expressing CFTR as two halves, the N-terminal half comprising 
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amino acids 1-835, including the lasso motif, TMD1, NBD1 and the R-region, and 

the C-terminal half including amino acids encoding TMD2, NBD2 and the C-

terminal tail (aa 836-1480). Co-expression of both CFTR halves elicited a cAMP-

regulated channel activity, whereas expressing each half alone did not 

(Ostedgaard et al, 1997). Moreover, the authors suggested that the segments 

involved in the interaction between the two CFTR halves are located in the 

TMDs, as removal of the cytoplasmic regions, NBDs, R-region, and N- and C-

tails, did not prevent association (Ostedgaard et al, 1997). 

Earlier studies identified cAMP-regulated currents in oocytes expressing either a 

kidney-specific natively expressed N-terminal half of CFTR (TNR-CFTR; Morales 

et al, 1996) or an artificially truncated N-terminal construct (D836X) (Sheppard et 

al, 1994). The native kidney-specific form of CFTR, found to be expressed only in 

specific segments (renal medulla) of rat and human kidney, generated only 15-

25% of the current observed in wild-type CFTR but retained the regulatory 

function over outwardly rectifying chloride currents (Morales et al, 1996), 

indicating that functional CFTR channels can also be reassembled as 

homodimers. 

In a study aiming to identify the N- and C-terminal boundaries of NBD1, various 

combinations of CFTR half constructs were expressed in oocytes and channel 

activity similar to wild-type CFTR was observed in the constructs where the 

cutting site did not impair NBD1 function (Chan et al, 2000). In another study, the 

same group demonstrated that CFTR halves cut just before (aa 1-633 + 634-

1480) or just after (aa 1-835 + 837-1480) the R-region boundaries could 
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reassemble to form functional channels, as well as a construct lacking the whole 

R-region segment (aa 1-633 + aa 837-1480) supporting the idea that the four 

core ABC transporter domains are enough to produce translocation (Csanady et 

al, 2000). 

CFTR half constructs were also used in a study demonstrating PKA-induced 

interactions between CFTR domains. A split-CFTR construct similar to the one 

used by Csanady et al. (2000), comprising segments 1-634 and 837-1480, was 

co-expressed with a third polypeptide representing the R-region (aa 635-836). 

Co-expression of the R-region partially inhibited the constitutive activity observed 

in the split-channel (aa 1-634 + aa 837-1480). Moreover, physical and functional 

reassembly of the two halves were demonstrated by a combination of 

immunolocalization and functional studies (Chappe et al, 2005). Taken together, 

the natural existence of half-transporters in the ABC family (including CFTR in 

the kidney) and the studies using engineered half-transporters, including 

prokaryotic members, yeast and human (CFTR included), provide strong 

evidence for the usefulness of studies employing CFTR half-transporters to 

investigate how association between CFTR domains modulate channel function. 

 

1.3 CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR 

The CFTR gene is located on chromosome 7 (7q31), contains 27 exons and 

encodes a 1480 amino acids protein, the CFTR protein. Over 2,000 mutations in 

the CFTR gene have been reported (http://www.genet.sickkids.on.ca/Statistics 

Page/) and functional effects of many of them have been elucidated (Sosnay et 
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al, 2013; https://www.cftr2.org/). The majority of CFTR mutations are missense 

modifications, followed by frameshift, splicing and nonsense mutations. In frame 

deletions and insertions account for only 2% of the number of mutations. 

CFTR mutations are currently grouped into six classes based on their effect on 

the protein expression and function (Figure 2). Class I mutations lead to 

premature stop codons that interrupt CFTR translation prematurely, producing 

truncated and generally non-functional CFTR proteins. They are synthesis defect 

mutations that account for 10% of all CF causing mutations. Class II mutations 

lead to misfolded proteins that are targeted for degradation by the proteasome. 

They are trafficking/processing defect mutations and include the most prevalent 

CF mutation, F508del, which is present in ~90% of CF alleles. Class III mutations 

generate CFTR proteins that reach the cell surface but do not open for chloride 

transport. They cause a gating defect and account for 2-3% of CF mutations. 

Class IV mutations lead to defects in chloride conductance. CFTR reaches the 

cell surface but the flow of chloride ions through the channel is largely reduced. 

They are very uncommon, accounting for less than 2% of all mutations. Class V 

mutations cause a reduction in CFTR synthesis. They are mostly caused by 

splicing defects in the mRNA processing. Only few CFTR proteins are processed 

in the endoplasmic reticulum and few reach the cell surface. They are the least 

common group of CFTR mutations. Finally, Class VI mutations lead to CFTR 

proteins that are well folded, conduct chloride properly, but lack stability at the 

cell surface. In general, patients with classes IV, V and VI mutations have 

residual CFTR function, which grant them a mild phenotype. They are mostly 
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pancreatic sufficient and have mild lung disease. In contrast, patients with 

classes I, II, and III mutations have very low to no CFTR function and experience 

more severe phenotypes of the disease, including pancreatic insufficiency and 

rapid degradation of lung function (Elborn 2016; Castellani & Assael, 2017; 

Gajbhiye & Gaikwad 2017). 

 

1.3.1 CFTR SYNTHESIS AND TRAFFICKING 

CFTR is a multidomain protein and its processing and trafficking includes several 

highly regulated steps which aim to guarantee that only functional, well folded 

forms of the protein are delivered to the plasma membrane (Younger et al, 2006; 

Riordan, 2008; Farinha & Canato, 2017). F508del-CFTR was found to be 

retained intracellularly and failed to be transported to the plasma membrane 

(Cheng et al, 1990). This finding pointed out to the importance of understanding 

the mechanisms of biosynthesis and trafficking of CFTR proteins, with the aim of 

finding strategies to rescue processing mutants. Briefly, CFTR biogenesis starts 

in the rough endoplasmic reticulum (RER), where the nascent polypeptide chain 

is targeted to the endoplasmic reticulum (ER) membrane translocon Sec61 

complex through the signal recognition particle. Protein folding and core 

glycosylation happen co-translationally and only proper folded CFTR chains are 

sent to the Golgi apparatus where they are fully glycosylated, turning into the 

mature form that is transported from Golgi to the plasma membrane (Skach, 

2000; Farinha & Canato, 2017) 
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Figure 3. Classes of CFTR mutations. 

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) 
gene can be divided into six classes. Class I mutations result in premature stop 
codons with unstable mRNA and no protein production. Class II mutations are 
the commonest and cause retention of a misfolded protein at the endoplasmic 
reticulum, and subsequent degradation in the proteasome (e.g. F508del). Class 
III mutants can reach cell surface but do not open properly to transport chloride 
and are called gating mutations (e.g. G551D). Class IV mutants also reach cell 
surface but show a low level of conduction/flow of ions. Class V mutations cause 
splicing defects that substantially reduce mRNA and protein levels. Class VI 
mutations result in reduced amounts of functional CFTR at the cell surface 
because of high instability at the plasma membrane. Reproduced from Boyle MP 
& DeBoeck K (2013) with permission from Elsevier. 
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Successful maturation and folding of CFTR requires a co-translational folding of 

each individual domain (Kleinzen et al, 2005) in combination with post-

translational steps which involves critical domain-domain interactions in order to 

achieve proper final native conformation (Serohijos et al, 2008; Du & Lukacs, 

2009). This process is tightly controlled by the ER quality control (QC) 

machinery, which is comprised of several cytosolic and ER chaperones and 

lectins, responsible for preventing nascent domains from aggregation, facilitating 

CFTR folding and assembly or targeting a misfolded version for degradation via 

the ubiquitin-proteasome pathway (Pranke & Sermet-Gaudelus, 2014; Farinha & 

Canato, 2017). Although the exact mechanism by how ERQC discriminate native 

from non-native CFTR proteins is not fully understood, to date, four ERQC 

checkpoints have been described (Figure 4). The first checkpoint takes place in 

early stages of CFTR biogenesis and involves nascent polypeptide interaction 

with cytosolic chaperones Hsp70/Hsc70 and its co-chaperones Hdj-1 and Hdj-2 

(Hsp40 family) (Meacham et al, 1999; Farinha et al, 2002). The chaperone pairs 

(Hsp70/Hdj-1 or Hsc70/Hdj-2) were found to bind to CFTR as soon as NBD1 is 

translated into the cytosol and this association is decreased after the translation 

of the R-region. Interaction of the co-chaperones with the mutant protein 

F508del-CFTR was found to be increased compared to wild type CFTR, 

indicating that proper folding and NBD1-R-region interaction is a critical step in 

CFTR biogenesis (Meacham et al, 1999). In a late stage of biogenesis, 

chaperone Hsp90 and its co-chaperone Aha-1 also regulate CFTR folding. 

Similarly, interaction of Aha-1 with F508del-CFTR, but not with wild type CFTR, 
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Figure 4. Endoplasmic reticulum quality control (ERQC) machinery 
regulating CFTR folding and trafficking. 

When the nascent polypeptide emerges from the ribosome, it interacts with 
chaperones/co-chaperones (Hsc70/Hdj-2 or Hsp70/Hdj-1 or Hsp90/Aha-1) that 
assist its folding. Prolonged retention of unfolded CFTR (e.g. F508del-CFTR) by 
the chaperone system at this point enables CHIP to interact with Hsc70/Hsp70 
(probably by displacing Hdj-1/Hdj-2) and causes the mutant to be degraded 
through the Hsc70-CHIP-UbcH5 pathway (first checkpoint). Then, the immature 
protein is glycosylated and interacts with the calnexin/calreticulin system. CFTR 
acquires its native conformation through successive rounds of release-
deglucosylation and rebinding-reglucosylation to calnexin/calreticulin. Prolonged 
retention in the calnexin cycle may cause misfolded CFTR to be targeted for 
degradation (second checkpoint). CFTR retention in the ER is modulated through 
the exposure of retention/retrieval motifs (AFTs). As CFTR achieves a correct 
folding, these AFTs are internalized, preventing CFTR retention at the ER (third 
checkpoint) and ER export motifs (the diacidic exit code - DAD) are exposed, 
mediating its inclusion into COPII vesicles (fourth checkpoint). Misfolded 
F508del-CFTR is retained in the ER being trapped at the first checkpoint 
(dependent on the Hsp70 machinery) and subsequently degraded at the 
proteasome. Reproduced from Farinha CM & Canato S (2017), with permission 
from Springer Nature. 
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is increased (Loo et al, 1998). The Hsp70/40/90 system cooperates with other 

complexes, including CHIP (carboxy-terminal of Hsp70 interacting protein) E3 

ubiquitin ligase/E2 enzyme UbcH5 (Matsumura et al, 2013), and E2 ubiquitin 

conjugating enzyme Ubc6e/RMA1 + the membrane associate Derlin-1, to 

ubiquitinate CFTR (Younger et al, 2006). Ubiquitination of CFTR recruits other 

partners, such as P97, which deliver CFTR to the proteasome to be degraded. 

The second checkpoint takes place during co-translational core-glycosylation and 

folding, and it involves the chaperones lectins, calnexin and calreticulin. Core-

glycosylation involves enzymatic addition of a 14-unit oligosaccharide into two 

asparagine residues (894 and 900) in the extracellular loop 4, between TMs 7 

and 8 (Pind et al, 1994; Patrick et al, 2011). Enzymatic removal of 2 

monosaccharides turn the glycan structure recognizable by calnexin and 

calreticulin, that bind CFTR and assist in its folding. Upon removal of one more 

monosaccharide, calnexin/calreticulin dissociate and if correct folding is 

achieved, CFTR is directed out of the ER to gain complex glycosylation in the 

Golgi apparatus. In the case of improper folding, the monosaccharide that was 

last removed is re-attached to the oligosaccharide chain, making CFTR again 

recognizable by calnexin/calreticulin, starting another cycle that repeats until 

proper folding is eventually achieved, or if stuck in this cycle for too long, CFTR is 

tagged for ER associated degradation (Hammond et al, 1994). Most F508del-

CFTR do not reach this second checkpoint as most of it is directed to 

degradation by the early Hsp-ubiquitin complex checkpoint (Farinha & Amaral, 

2005). 
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The third and fourth checkpoints described are related to signals involved in the 

CFTR ER-to-Golgi transport. Arginine-framed tripeptides (AFTs) are specific 

signals that promote retention of CFTR in the ER. CFTR has four AFTs in its 

sequence, one at the lasso motif, two at NBD1 and one in the R-region 

(Michelsen et al, 2005). In order for the trafficking machinery to prompt CFTR for 

transport from the ER to the Golgi, those sites must be hindered by proper 

folding. Misfolded F508del-CFTR that eventually overcome the first two 

checkpoints is retained in the ER due to the exposure of the AFTs. Indeed, 

substitution of arginine by lysine in the four AFTs of F508del-CFTR promotes its 

escape from the ERQC (Chang et al, 1999). An ER export signal present in 

NBD1, the diacidic exit code (Asp-Ala-Asp - DAD), must be exposed for CFTR 

recognition by the Sec24 cargo selection complex, part of the COPII transport 

vesicles. Misfolded CFTR may have this exit code masked and, therefore, are 

not recruited into the COPII vesicles heading to the Golgi apparatus (Wang et al, 

2004). In fact, mutations of both Asp residues to Ala, completely abolish CFTR 

processing (Farinha et al, 2015). 

 

1.3.2 CFTR FUNCTION AND INTERACTIONS IN EPITHELIAL CELLS  

CFTR has two main roles involved in electrolytes and fluid transport in a variety 

of epithelial tissues, such as the airways, secretory glands, and gastrointestinal 

tract: a role as an anion conduction pathway (channel) and a role as a regulator, 

modulating the function of other ion transporters and channels. Outcomes from 

CFTR activity are tissue specific and depend on the distinct tissue expression 
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and localization of the other ion transporters that cooperate with CFTR, which 

together generate the electrolyte potentials that govern the direction of 

transepithelial and paracellular fluid and salt transport, maintaining tissue 

integrity and homeostasis. In airways specifically, because of the contact with the 

air coming from the external environment, CFTR function is also related to body 

defense against pathogens (Frizzell & Hanrahan, 2012; Saint-Criq & Gray, 2017). 

Epithelial cells have an apical-basal polarity, that is, the basolateral and apical 

membranes possess distinct functions and are in contact with different body 

compartments. Depending on the tissue, the apical membrane is found facing the 

external environment or the lumen of internal cavities. The basolateral membrane 

of epithelial cells faces the interstitium, being responsible for the uptake of 

nutrients (including oxygen and ions) and disposal of waste metabolites from and 

to the bloodstream, respectively. Another characteristic of epithelial cells is the 

presence of tight junctions between cells, that keep them close together while 

creating distinct milieux compositions bathing the apical and basolateral 

membranes (Hong et al, 2014; Saint-Criq & Gray, 2017). Transepithelial 

transport of salt and fluids follow either a transcellular pathway, crossing both 

basolateral and apical membranes and the cytoplasmic environment, or a 

paracellular pathway, between the cells crossing the tight junctions. Paracellular 

transport is always passive, directed by the electrochemical gradient, while 

transcellular transport involves both passive and active electrolyte transports, 

carried by a series of ion channels, co-transporters and pumps (Figure 5) 

(Frizzell & Hanrahan, 2012; Hong et al, 2014; Saint-Criq & Gray, 2017). 
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Figure 5. Basic characteristics of an epithelial layer 

A, Epithelial cells are joined together by junctions [tight junctions (TJ), gap 
junctions (GJ)]. Uptake of nutrients and oxygen, and removal of cellular waste 
products occur on the basolateral surface. Water and ion transport can occur 
through the transcellular or paracellular pathways. B, In absorptive epithelia 
transport is mainly driven by active Na+ absorption through ENaC in the apical 
membrane and the Na+/K+-ATPase in the basolateral membrane creating an 
electrochemical driving force for paracellular passive Cl−transport. Water then 
follows either through aquaporins or the paracellular pathway. C, In secretory 
epithelia transport is mainly driven by Cl− secretion through CFTR and other 
Cl− channels in the apical membrane. NKCC1 and the coupled action of an anion 
exchanger and NBC in the basolateral membrane accumulate Cl− in the cell. 
Active Cl− secretion creates the driving force for Na+ movement across the 
epithelium through the paracellular pathway and water transport occurs 
paracellularly and/or transcellularly. Red and green arrows show active transport, 
and yellow arrows show passive transport. Reproduced from Role of CFTR in 
epithelial physiology by Saint-Criq V & Gray MA (2017), licensed under CC BY 
4.0. No changes were made. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209439/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209439/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In secretory epithelia, the primary energy source for active transcellular transport 

of electrolytes comes from the activity of the Na+/K+ ATPase at the basolateral 

membrane, creating an inward Na+ chemical gradient that drives the activity of 

the basolateral secondary active co-transporter NKCC1 which brings 1 Na+, 1 K+  

and 2 Cl- ions into the cytosol. K+ is recycled back to the interstitium through 

basolateral K+ channels, and Na+ is continuously pumped out of the cell via 

Na+/K+ ATPase, resulting in chloride accumulation inside the cell (Frizzell & 

Hanrahan, 2012; Saint-Criq & Gray, 2017). In some epithelial cells, such as the 

airway cell line Calu-3 and serous cells of exocrine glands, an alternative 

mechanism for chloride accumulation through the cooperative activity of Cl-

/HCO3
-, Na+/H+ exchangers and Na+/HCO3

- co-transporter (NBC) was described 

(Shan et al, 2012; Huang et al, 2012). Accumulated chloride ions are then driven 

to the apical membrane where they are secreted mainly through CFTR, but other 

chloride channels such the calcium activated chloride channel (CaCC) 

TMEM16A (also called ANO1) (Caputo et al, 2008) and members of the solute 

carrier (SLC) 26A family (Bertrand et al, 2009) also take part in chloride secretion 

in some tissues. Active secretion of chloride into the lumen creates an 

electrogenic-driven paracellular passive transport of Na+, generating salt (NaCl) 

accumulation that ultimately drives water passive transport either via the 

paracellular pathway or via aquaporins (Frizzell & Hanrahan, 2012; Saint-Criq & 

Gray, 2017). Lack of CFTR activity in epithelia abrogates the secretion of 

chloride ions, the primary electrochemical driving force involved in fluid secretion, 

which when impaired, constitutes the basic defect underlying the phenotypes 
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observed in patients with CF. CFTR also secretes bicarbonate and its importance 

in CF disease became notorious when some characteristics of the disease, such 

as hyperinflammatory responses and mucus processing impairment, that could 

not be explained solely by the defects in chloride secretion and hyperabsorption 

of sodium, were associated with defects in bicarbonate secretion (Choi et al, 

2001; Quinton, 2001).  

In the lungs, CFTR proper function maintains the volume, fluidity and 

composition of the periciliary liquid (PCL), one of the components of the airway 

surface liquid (ASL). Bicarbonate secretion via CFTR was shown to contribute to 

the maintenance of the other component of the ASL, the mucus layer (Trout et al, 

1998) and also of the ASL pH (Coakley et al, 2003). Maintenance of ASL 

hydration and pH is tightly regulated by fluid and electrolytes transepithelial 

transport, and its impairment results in inefficient mucociliary clearance (Tarran, 

2004), impaired bacterial killing (Pezzulo et al, 2012) and reduced fluid and 

mucus homeostasis (Hoegger et al, 2014). 

Fluid secretion in the airways follows the basic secretory pathway described early 

in this section, with chloride accumulation at the basolateral membrane and its 

subsequent secretion through the apical membrane. The presence of epithelial 

sodium channels (ENaC) together with CFTR in the apical membrane of airway 

epithelia grant those cells the capacity of controlling ASL height and composition 

through the balance between sodium absorption and chloride secretion. In fact, 

several studies have proposed a negative regulation of ENaC by CFTR, 

preventing sodium absorption which would reduce ASL volume. This regulation 
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was first demonstrated to be lost in CF patients where, indeed, an excessive 

ENaC activity was observed (Gowen et al, 1986). Supporting evidences came 

from studies using mice overexpressing ENaC, which generated a CF-like 

phenotype including reduced ASL, exacerbated inflammation, and poor bacterial 

killing (Mall et al, 2004), and from electrophysiology measurements of epithelial 

alveolar cells from WT and CFTR knockout mice showing enhanced ENaC 

activity in the absence of CFTR (Lazrak et al, 2011). However, other studies 

could not confirm this functional association between ENaC and CFTR. By 

overexpressing CFTR in the background mice from Mall’s group, the expected 

rescue of CF-like phenotype was not observed (Grubb et al, 2012), and the CF 

pig model do not display increased sodium absorption (Itani et al, 2011). 

CFTR is also proposed to regulate other chloride channels and transporters, 

including CaCCs and members of the SLC26A family. Co-expression of 

exogenous CFTR caused a decrease in the currents of endogenously expressing 

CaCCs and this inhibitory effect was increased upon CFTR activation (Wei et al, 

1999). Similar results were observed in human bronchial epithelial cells lines 

expressing CFTR and TMEM16A (a CaCC). This study also demonstrated 

mutual inhibition and physical association between the two channels 

(Ousingsawat et al, 2011).   

CFTR bicarbonate conductance is a key factor for maintenance of ASL pH. 

Evidences of acidic ASL in CF were reported on studies measuring the pH of 

fluid secretions from primary airway cell cultures (Coakley et al, 2003) and 

submucosal glands (Song et al, 2006) from CF and non-CF patients as well as 
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from newborn CF and non-CF piglets (Pezzulo et al, 2012). The dysregulated pH 

caused by defective bicarbonate secretion has been implicated in deficient 

mucus properties, exacerbated inflammatory reactions and poor immune 

response to pathogens. Mucus is a polymer hydrogel produced by goblet cells 

and mucous cells of submucosal glands that covers and protect the airway 

lumen. Mucins, the main component of mucus, are released in the ASL as a 

condensed viscous form, inside granules linked to cations, mostly to calcium 

(Verdugo et al, 1987). It is proposed that when in contact to bicarbonate-rich 

ASL, calcium is sequestered from the mucins, which then are able to expand to 

form a fluid gel. Poor bicarbonate concentrations in the ASL from CF patients 

would prevent mucin expansion, thus, leaving mucus in an aggregate form, 

which combined with the reduced PCL, compromise mucociliary clearance, 

leaving CF lungs predisposed to microorganism colonization (Quinton, 2008; 

Tang et al, 2016). Acidic ASL also reduce the activity of resident antimicrobial 

peptides (AMPs), further complicating bacterial killing (Pezzulo et al, 2012). The 

cause of the exacerbated inflammatory response observed in CF is still a 

controversial subject. There is no consensus on whether the exacerbated 

inflammation is a result of continuous airway infection or is an intrinsic immune 

dysfunction of the epithelia due to CFTR dysfunction. A good body of evidence 

suggesting intrinsic dysregulation of inflammatory responses in CF airways 

showed the presence of high levels of interleukin-8 (IL-8), neutrophils 

agglomeration and abnormal activation of NF-κB (nuclear factor κ light-chain 

enhancer of activated B cells), even before any apparent infection (Tirouvanziam 
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et al, 2002; Verhaeghe et al, 2007). In contrast, other studies showed no 

differences in the levels of inflammatory markers in bronchoalveolar lavages of 

CF infants (Armstrong et al, 2005) or CF piglets (Wine, 2010) compared to 

controls, suggesting infection as the factor initiating and sustaining inflammation. 

Upon airways infection, bacterial PAMPs (pathogen-associated molecular 

patterns) trigger an exacerbated inflammatory response, characterized by TNF 

(tumor necrosis factor) and IL-8 expression, mucin secretion, neutrophils 

recruitment and protease release (Li et al, 1997; Sagel et al, 2002; Quinn et al, 

2010). However, this exaggerated response is not efficient against pathogens, 

instead, it causes progressive damage to the airways. Neutrophil-released 

mediators, especially neutrophil elastase, which are crucial for bacterial killing in 

normal airways, are found in abundance in CF airways and are related to 

structural and functional destruction of the lungs, but inefficient against bacteria 

(Sly et al, 2009). In addition, levels of natural proteases inhibitors, such as 

secretory leucoprotease inhibitor, are reduced in CF lungs (Weldon et al, 2009). 

Intracellular signaling cascades involved in pro-inflammatory responses, 

including NF-κB, were found to be upregulated in CF cell lines compared to 

control cells whereas signaling cascades involved in resolution of acute 

inflammation and recruitment of adaptative immune responses were decreased 

in CF, which would explain the sustained inflammatory state of CF lungs (Cohen 

& Prince, 2012). Upregulated pro-inflammatory signals result in overproduction of 

reactive oxygen species (ROS) by the abundant neutrophils present in the 

airways, which in addition to exogenously ROS produced by colonized bacteria, 



27 
 

overwhelm the capacity of antioxidants to supress oxidative stress, and increase 

lung deterioration (Cohen-Cymberknoh et al, 2013). Two important ions that 

function as antioxidants are secreted by CFTR in the apical membrane of airway 

cells and contribute to control oxidative damage. Glutathione (GSH-) is present in 

high concentrations (compared to the serum) in normal airways fluids (Day et al, 

2004). Because its major function in the redox balance, an important mechanism 

against pathogens, absence of GSH- secretion in CFTR-deficient cell lines or in 

CFTR knock-out mice, has been connected to an inability to adapt to bacterial 

infections leading to increased inflammation and oxidative stress (Day et al, 

2004; Rottner et al, 2009). Thiocyanate anion (SCN-) is a precursor in the 

synthesis of a potent antioxidant agent, hypothiocyanite (OSCN). Lack of CFTR-

mediate SCN- transport would decrease OSCN levels, contributing to the chronic 

bacterial settling observed in CF airway surface (Xu et al, 2009). Despite whether 

sustained exacerbated inflammatory responses in CF are intrinsically or 

extrinsically mediated, probably both, this is the main cause of lung damage and 

poor bacterial killing, which are the major factors involved in morbid-mortality 

associated with CF.   

In the exocrine pancreas, CFTR secretes both chloride and bicarbonate and 

works in concert with apical Cl-/HCO3
- exchangers of the SLC26A family to 

accumulate bicarbonate in the lumen of the ducts. Sodium then moves 

paracellularly toward the high concentrated (of Cl-) pancreatic fluid which leads 

water to follow osmotically, creating an alkaline solution that is critical for 

clearance of the ducts and for the digestive enzymes to perform their catalytic 
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function. Accumulation of Cl- and HCO3
- inside the ductal epithelia is achieved by 

the work of NKCC1 and NBC co-transporters. Conversion of CO2 to HCO3
- via 

carbonic anhydrase also helps cytosolic bicarbonate accumulation. In CF, lack of 

CFTR anion secretion results in pancreatic insufficiency due to ductal 

obstruction, which subsequently leads to atrophy and fibrosis, destroying the 

tissue (Frizzell & Hanrahan, 2012; Saint-Criq & Gray, 2017; Kunzelmann et al, 

2017). 

In the intestine, CFTR chloride and bicarbonate secretion is critical for the correct 

volume and composition of the luminal surface liquid that aids in nutrient uptake 

and enzyme activity. The transepithelial anion transport in the intestine follows 

similar pathways as in the airways with chloride crossing the epithelia 

transcellularly and sodium and water following through the paracellular pathway 

and osmotically, respectively. In CF, lack of CFTR function may lead to intestine 

obstruction (meconium) and constipation (Grubb & Gabriel, 1997; Frizzell & 

Hanrahan, 2012).  

Defects in ion composition in the sweat glands was the first description related to 

CF disease back in the 1950s (Sant’Agnese et al, 1953). CFTR is expressed in 

both apical and basolateral membranes of sweat gland absorptive ducts 

(Quinton, 2007). In the apical membrane of epithelial cells, CFTR is co-

expressed with ENaC but, in contrast to the airways, CFTR and ENaC work in 

conjunction to absorb salt from the ductal lumen into the interstitium (Reddy et al, 

2003). Similar to the airways, sodium enters the cells through apical ENaC down 

the electrochemical gradient and it is pumped out to the interstitium via 
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basolateral Na/K pumps, which creates the electrical gradient that drives chloride 

transcellular absorption. In CF, lack of CFTR activity leads to the formation of a 

high salt concentrated sweat, due to the inefficient chloride absorption, which 

prevents sodium absorption (Quinton, 2007; Bovell, 2015, Saint-Criq & Gray, 

2017).  

Besides the functional and physical interaction with other channels and 

transporters, CFTR can associate with other intracellular partners. The four last 

amino acids at the C-terminal end of CFTR (DTRL) is a site for binding of PDZ 

(PSD95, Dlg1, Zo-1) domain-containing proteins. Mutations at the PDZ binding 

site results in partial mislocalization of CFTR, indicating a role for this motif in 

anchoring the CFTR protein at the apical membrane (Wang et al, 1998). Indeed, 

two of the PDZ-domain containing proteins reported to interact with CFTR, 

NHERF (Na+/H+ Exchanger Regulator Factor)1 and NHERF2, are cytosolic 

proteins concentrated at the apical membrane of airways cells (Vankeerberghen 

et al, 2002). NHERF1 contains two PDZ domains (PDZ1 and PDZ2) that bind to 

CFTR (with different affinities) when the C-terminal of NHERF1 is attached to 

ezrin, a PKA anchoring protein, or phosphorylated by PKC (Li et al, 2007; 

Alshafie et al, 2014). NHERF2 (E3KARP), a related PDZ-protein, has been 

shown to interact with CFTR and ezrin, and together with NHERF1, function as a 

scaffold protein suggested to localize ezrin, and consequently PKA, near the R-

region of CFTR (Sun et al, 2000). Ezrin also binds to actin (Sato et al, 1992), 

which perhaps helps stabilize the protein complex at the cell surface. NHERF3 

(CAP70), a four PDZ-domain protein, was reported to be able to link two CFTR 
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molecules and potentiate chloride currents (Wang et al, 2000). CAL (CFTR-

associated ligand), is a Golgi-associated protein that binds CFTR through its sole 

PDZ domain and confine it inside the cell, reducing its expression at the plasma 

membrane (Cheng et al, 2002). RACK1, another scaffold protein proposed to be 

part of the CFTR interactome, is a receptor for activated C kinase, which binds to 

NHERF1 forming a complex that helps stabilize CFTR at the cell surface and 

brings PKC close to CFTR (Auerbach & Liedtke, 2007; Alshafie et al, 2014). 

Shank2E is also able to bind the C-terminal of CFTR through its PDZ-domain, 

but in contrast to NHERF proteins that recruit the ezrin/PKA complex, Shank2E 

form a complex with the cyclic nucleotide phosphodiesterase PDE4D, which 

prevents cAMP/PKA signals in epithelial cells, thus inhibiting CFTR activity (Lee 

et al, 2007). A competition between positive regulators, such as NHERFs, and 

negative regulators, such as CAL and ShanK2E for binding to CFTR modulates 

its surface expression and activity (Cheng et al, 2002; Kim et al, 2004; Alshafie et 

al, 2014).  

Acidic residues located at the N-terminal lasso motif of CFTR were described to 

interact with SNARE proteins. Syntaxin 1A, a t-SNARE protein, inhibits both 

CFTR trafficking and activation by cAMP when attached to the lasso motif. 

Binding of syntaxin 1A was described to disrupt the interaction between the lasso 

motif and the R-region of CFTR, suggesting that this interaction is involved in 

CFTR activation. Binding of syntaxin 1A to Munc-18a disrupts its association with 

CFTR, which, in turn, relieves the inhibition (Naren et al, 1997; Naren et al, 

2000).   
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1.3.3 CFTR STRUCTURE 

CFTR was classified as a member of the ATP binding cassette (ABC) 

superfamily of proteins after its DNA sequence (Riordan et al, 1989) revealed the 

presence of well conserved canonical sequences encoding the ABC (usually 

referred to as NBD) domains, a hallmark of the family. ABC proteins are found in 

all kingdoms of life and most members transport a variety of substrates through 

cell membranes (Higgins et al, 1992; Dean et al, 2001). A structural architecture 

comprising two transmembrane domains (TMDs) and two cytoplasmic nucleotide 

binding domains (NBDs, the ABC domain) is a characteristic of this family. In 

contrast to the NBDs, which contain several conserved signature sequences 

involved in ATP binding and hydrolysis, the TMDs are much more diverse in 

sequence and arrangement. Expression of the four core domains in ABC 

proteins vary among species: four separate polypeptides assembling to form a 

functional unit are observed exclusively in prokaryotes, and 2 half-molecules 

(TMD/NBD) that re-assemble post-translationally to form functional proteins or 

single polypeptide chains containing all four domains are seen in eukaryotes 

(Higgins, 1992;  Dean et al, 2001; Davidson & Chen, 2004; Dean & Annilo, 

2005).   

In humans, there are 48 ABC proteins, divided into seven subfamilies (ABCA-

ABCG), and CFTR is included in the ABCC subfamily (Dean & Annilo, 2005). 

CFTR is unique among ABC proteins as it functions as an ion channel rather 

than a substrate transporter (Bear et al, 1992). In CFTR, the four canonical 

domains are organized structurally in two hetero-halves (TMD1-NBD1 and 
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TMD2-NBD2) connected by a unique and intrinsically disordered regulatory 

region (R-region), which contains multiple PKA and PKC phosphorylation 

consensus sites (Riordan et al, 1989). CFTR also contains an amino-terminal 

segment of 77 residues (lasso motif) and a carboxy-terminal segment of ~40 

residues, which is mostly disordered (Liu et al, 2017). The final domain 

organization of CFTR is, from amino-terminal to carboxy-terminal: lasso motif, 

TMD1, NBD1, R region, TMD2, NBD2 and C-terminal tail, all expressed in a 

single polypeptide chain of 1480 amino acids (Figure 6 A). The 12 membrane 

spanning helices of the TMDs are responsible to form the pore of the channel for 

ion conductance and the ion selectivity filter. Through four intracellular 

extensions, called cytoplasmic loops (CLs), TMDs connect with the NBDs, which 

are responsible for CFTR channel opening and closing (gating) through binding 

and hydrolysis of ATP molecules. The mostly disordered R-region (Ostedgaard 

et al, 2000; Baker et al, 2007, Bozoki et al, 2013), modulates CFTR activity by 

means of phosphorylation and dephosphorylation of several PKA and PKC 

consensus sites. Details on the structure of each of the CFTR domains will be 

discussed in the next sections. 

 

1.3.3.1 The Nucleotide Binding Domains and Channel Gating 

The NBDs of CFTR house the canonical consensus motifs of ABC proteins. 

Binding and hydrolysis of ATP in between NDBs is the driving force for substrate 

transport in ABC transporters. In CFTR, channel gating is regulated by ATP 

binding at two distinct sites, each site sharing conserved sequences and motifs 
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from both NBDs. The ATP-bound NBDs dimerize in a head-to-tail conformation 

(Mense et al, 2006; Vergani et al, 2007) with the A-loop, Walker A motif 

(GXXGXGKS/T, with X being any residue), Walker B motif (ϕϕϕϕDE, with ϕ being 

a hydrophobic residue), Q-loop and H-loop from one NBD (the ‘head’) 

cooperating with the signature sequence (LSGGQ) and D-loop of the adjacent 

NBD (the ‘tail’) in the task of binding and hydrolysis of ATP (Figure 6 B). The A-

loop tryptophan 401 in NBD1 and tyrosine 1219 in NBD2 interact with the 

adenosine base of each ATP; the Walker A motif lysine interacts with the 

phosphates α and β of ATP; the Walker B motif arginine interacts and coordinate 

the Mg+2 ion, a cofactor for ATP hydrolysis; the Q-loop glutamine interacts with 

the γ phosphate of ATP; the H-loop histidine interacts with the D-loop, the Walker 

B glutamate and with the γ phosphate of ATP; the D-loops from both NBDs 

mediates cross-talk between the two ATP sites; and the signature sequence 

further stabilizes ATP binding (Ter Beek et al, 2014; Hwang et al 2019). The two 

NBDs in CFTR only share ~30% sequence identity (Klein et al, 1999) and some 

of those differences directly affect the capacity to hydrolyze ATP. The ATP site 2, 

composed by NBD1 signature sequence and NBD2 walkers A and B motifs, is 

well conserved and catalytically competent whereas in the ATP site 1, the 

signature sequence in NBD 2 is modified to LSHGH and the walker B motif of 

NBD1 lacks the catalytic glutamate responsible for ATP hydrolysis (Hung et al, 

1998), which renders the site 1 hydrolysis incompetent (Aleksandrov et al, 2002; 

Basso et al, 2003). Other difference, not related to ATP hydrolysis, is the 

presence of a disordered region in NBD1, the regulatory insertion (RI), which  
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Figure 6. CFTR topology and its conserved motifs. 

A, Representation of CFTR topology showing its 12 TMs, two NBDs (gray, 
NBD1; green, NBD2), the R domain in red, and cytoplasmic loops 1-4 in dark 
blue, cyan, red and yellow, respectively. Note the two interfaces between ICL2-
NBD2 and ICL4-NBD1 described in the text. B, Conserved sequences and motifs 
in CFTR’s NBDs. Head and tail subdomains of NBDs with two ATP molecules 
sandwiched in the dimer interface and characteristic motifs highlighted in 
different colors as indicated. Reproduced with adaptations from Structural 
mechanisms of CFTR function and dysfunction by Hwang T-C, Yeh J-T, Zhang J, 
Yu Y-C, Yeh H-I, Destefano S (2018), licensed under CC BY-NC-SA 4.0. ‘A’ was 
taken from figure 8 and ‘B’ was taken from figure 12. 

A 

B 

http://jgp.rupress.org/content/150/4/539
http://jgp.rupress.org/content/150/4/539
http://jgp.rupress.org/content/150/4/539
https://creativecommons.org/licenses/by-nc-sa/4.0/
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contains a single consensus site for PKA phosphorylation at S422 (Lewis et al, 

2004). In a construct where most of the RI was absent, channel responses to 

ATP and phosphorylation were largely similar to the WT, except for slightly 

shortened open bursts and faster closing, indicating that this segment may be 

involved in stabilizing the channel in the open state (Csanady et al, 2005). The RI  

was also demonstrated to interact with NBD1 at the dimerization interface and 

that interaction was disrupted by phosphorylation, facilitating the NBD dimer 

formation. Furthermore, the phosphorylated RI was implied to interact with the 

first cytoplasmic loop (Kanelis et al, 2010).   

Two gating mechanisms are currently proposed for CFTR. The first defends a 

strict coupling between a gating cycle and an ATP hydrolysis cycle. Here, each 

gating cycle begins with NBDs dimerization, induced by ATP binding, and 

finishes with dimer dissociation, triggered by ATP hydrolysis in the competent 

catalytic site (Gunderson & Kopito, 1995; Csanady et al, 2010; Liu et al, 2017). In 

this mechanism CFTR is proposed to undergo a cycle of four functional states 

(C1, O1, O2 and C2), where C1 represents a closed state before NBDs 

dimerization and ATP binding at the two composite sites promotes the open state 

(O1) until the ATP at the competent site is hydrolyzed (state O2), causing partial 

dimer dissociation (C2), and finally total dimer dissociation (state C1). The fact 

that preventing ATP hydrolysis, either by mutations at the competent catalytic 

site (Gunderson & Kopito, 1995; Vergani et al, 2005) or by using non-

hydrolysable ATP analogs (Gunderson & Kopito, 1994; Hwang et al, 1994) 

abolishes the transition between states O1 and O2, keeping the channel in a 



36 
 

steady open state, support the idea of the strict coupling mechanism. It was also 

demonstrated that ATP binding to the catalytic competent site is critical for 

channel opening, whereas binding to the degenerated site is less important 

(Vergani et al, 2003; Zhou et al, 2006). 

Although 95% of CFTR openings terminate with ATP hydrolysis (Csanady et al, 

2000), an alternative mechanism must exist to explain the spontaneous 

(uncoupled) openings observed, although infrequently, in CFTR functional 

experiments in the absence of ATP (Bompadre et al, 2005). The second 

mechanism defends a nonstrict coupling between gating and ATP hydrolysis 

cycles. This theory is based on several studies that identified structural and 

functional features that can not be explained by the first theory. For instance, 

CFTR channels can open without the presence of ATP. This uncoupled 

(spontaneous) gating can also be observed in mutants with a dysfunctional site 2 

(CF causing mutation G551D) (Bompadre et al, 2007), and even in truncated 

constructs lacking the NBD 2 (Cui et al, 2007; Wang et al, 2007), indicating that 

ATP hydrolysis at site 2 or NBD dimerization are not essential for CFTR gating. 

Some mutations, such at position 978 in the cytoplasmic loop 3 or at position 355 

in TM6, promote strong spontaneous gating events (Bai et al, 2010; Wang et al, 

2010). Another study identified a transitory open state where ATP site 2 was 

already empty after an ATP hydrolysis cycle (Jih et al, 2012a). In a follow up 

study, the same group, using a construct bearing a mutation neutralizing the 

positive charge of a residue lining the cytoplasmic vestibule of the pore (R352Q), 

demonstrated that this mutant followed the similar pattern of C1, O1, O2 and C2 
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states, but with several cycles between O1 and O2 before full closure of the 

channel, suggesting the presence of several ATP hydrolysis cycles within the 

same opening burst and the existence of intermediate open state(s) between 

ATP hydrolysis and channel closure (Jih et al, 2012b). 

Regardless of the mechanism involved, the movement of the NBDs (the gating 

power stroke) during a dimerization/dissociation cycle are translated to the pore 

(containing the gate) through the TMDs cytoplasmic extensions (cytoplasmic 

loops) in order to promote the conformational changes in TMDs necessary for 

channel gating (He et al, 2008). CFTR contains four cytoplasmic loops formed by 

the helical extensions of TM 2-3 (CL1), TM 4-5 (CL2), TM 8-9 (CL3) and TM10-

11 (CL4) with one cytoplasmic loop from each TMD (CL2 and CL4) traversing the 

protein to make tight connections with the NBD located in the opposite half 

(Dawson & Locker, 2006). Thus, CL1 and CL4 interact with NBD1 while CL2 and 

CL3 interact with NBD2, forming two structural halves in CFTR: one formed by 

TM helices 1, 2, 3, 6 (from TMD1), 10, 11 (from TMD2) and NBD1, and the other 

formed by TM helices 7, 8, 9, 12 (from TMD2), 4, 5 (from TMD1) and NBD2 (see 

Figure 5 A). The recent crystal structures show asymmetrical interaction between 

the CLs and NBDs. CL2-NBD2 and CL4-NBD1 interfaces are tightly connected in 

a ball-in-a-socket fashion, while CL1 and CL3 make less connections with NBD1 

and NBD2, respectively, and do not form ball-in-a-socket associations (Zhang et 

al, 2016; Liu et al, 2017; Hwang et al, 2019). Upon NBD dimerization, CL2-NBD2 

and CL4-NBD1 tight associations remain relatively unaltered, while CL1-NBD1 
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and CL3-NBD2 loosen connections are reduced (Zhang et al, 2017; Zhang et al, 

2018).  

 

1.3.3.2 The Transmembrane Domains and Channel Pore 

Each of the TMDs of CFTR consist of six membrane spanning helices (TM 1-6 

and TM 7-12), which bundle together to form the anion pathway and channel 

gate. Although structural features of CFTR resemble the other ABC transporters, 

its function as an ion channel rather than an active transporter prevent a direct 

comparison of the transport mechanism with other ABC transporters. The CFTR 

pore must be simultaneously open to both intracellular and extracellular sides of 

the membrane in order to promote passive ion diffusion down the 

electrochemical gradient, in contrast to other ABC transports that alternate the 

opening of an intracellular or an extracellular gate depending on the protein 

conformation. Several studies suggest a continuous pathway for ion flux through 

CFTR, consisting of a lateral cytoplasmic entrance between TM4 and TM6, lined 

by several positively charged amino acid side chains, which attract negatively 

charged ions to the cytoplasmic entrance of the pore (El Hiani & Linsdell, 2015; 

El Hiani et ai, 2016), a large cytoplasmic vestibule (Bai et al, 2011), a narrow 

constriction predicted to function as a gate and selective filter, located close to 

the extracellular membrane surface, and involving residues T338-S341 in TM 6, 

L102 in TM 1 and N1138 in TM 12 (Gao et al., 2013, Gao & Hwang, 2015; 

Linsdell, 2016; Zhang et al, 2018), and a shallow extracellular vestibule 

(Norimatsu et al, 2012). In the past decade, several studies using the substituted 
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cysteine accessibility method (SCAM) have predicted contributions of TMs 1, 3, 

4, 5, 6, 9, 10, 11, and 12 to the channel pore (Fatehi and Linsdell, 2008; Bai et 

al., 2010; El Hiani and Linsdell, 2010; Wang et al., 2011; Bai et al., 2011; Qian et 

al., 2011; Norimatsu et al., 2012; Gao et al., 2013; Wang et al., 2014; Zhang and 

Hwang, 2015; El Hiani and Linsdell, 2015; Gao and Hwang, 2015; El Hiani et al., 

2016; Negoda et al, 2017).  

Although most of the biochemical and biophysical studies on the structure and 

function of the TM segments of CFTR were confirmed by comparison with the 

CFTR structures solved, with the exception of the asymmetrical feature of TM 8 

helix which is broken down in two parts and dislocated toward the center of the 

pore, some residues identified by SCAM as pore lining are not facing the pore in 

any of the structures solved so far. L102, proposed to be part of the constriction 

area of the pore (Gao et al., 2013) is only facing the pore in the human (Zhang et 

al, 2018), but not in the zebrafish (Zhang et al, 2017) phosphorylated ATP-bound 

structure. In fact, the structures solved in the phosphorylated ATP-bound state 

(Zhang et al, 2017; Zhang et al, 2018), which were supposed to reflect an open 

state of the channel, do not display a fully conductive pathway as the 

extracellular access of the pore is blocked by the tilted TM 8 and by TM 12 in 

zCFTR, and only a very small opening, that is too small to permit flow of water or 

ions, is observed in hCFTR (opening radius of 1,2Å compared to the chloride ion 

radius of 3.6Å). To date, a CFTR structure where both sides of the pore are 

accessible to the aqueous environment is not available (Hwang et al, 2018; 

Csanady at al, 2019).  
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Although the CFTR pore displays high predilection for anions compared to 

cations, it does not discriminate different anions (Linsdell et al, 2000; McCarty & 

Zhang, 2001). In CFTR, the narrowest region of the pore (residues 338-341 in 

TM 6) is suggested to be the selective filter for both charge and size (Hwang et 

al, 2018). The fact that this region is only permeable to anions with similar size as 

chloride, i.e. bicarbonate or nitrate, and that mutations at residues 338 and 341 

as well as at residues nearby that region, such as 337, 1118 and 1134, changes 

the selectivity properties of CFTR, are evidences supporting this idea (Linsdell et 

al., 2000; Linsdell, 2001; McCarty and Zhang, 2001). In addition to this region, 

the positively charged residues that line the lateral opening and the internal 

vestibule of the pore are suggested to contribute to anion selectivity by attracting 

anions over cations to the pore entrance (Linsdell, 2016). 

 

1.3.3.3 The Regulatory Region: An Intrinsically Disordered Protein 

The unique R-region of CFTR is a disordered segment located in between and 

connecting the two CFTR halves. The sequence encoding the R-region is not 

found in any other ABC family member or in any other known protein (Riordan et 

al, 1989), and its origin was attributed to an evolutionary loss of a splice donor 

site which rendered an extension of exon 14 and appearance of exon 15 in the 

CFTR gene sequence, that are not found in other ABC members. This way, a 

non-coding intronic region became the coding sequence of the R-region, 

conferring the internal regulated channel function of CFTR (Sebastian et al, 

2013). R-region phosphorylation is the primary critical step for CFTR activation, 
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followed by ATP binding at the dimerized NBD domains (Tabcharani et al, 1991; 

Gadsby & Nairn, 1999; Ostedgaard et al, 2000). Several phosphorylation 

consensus sites are found in the R-region, including ten for cAMP-protein kinase 

(PKA) and seven for protein kinase C (PKC) (Riordan et al, 1989). Besides 

modulation through PKA (Cheng et al, 1991; Anderson et al, 1991) and PKC 

phosphorylation (Hwang et al, 1989; Picciotto et al, 1992), other kinases, 

including cGMP-dependent kinases (French et al, 1995), tyrosine kinases 

(Fischer et al, 1996; Billet et al, 2015) and AMP-activated kinases (AMPK) 

(Hallows et al, 2000; King et al, 2009), can also phosphorylate and modulate 

CFTR function. Although the overall sequence of the R-region is not well 

conserved across species, the presence and distribution of the phosphorylation 

sites is highly conserved (Riordan et al, 1989).  

Structural studies of the R-region show that this region of CFTR is mostly 

unstructured (disordered), assuming a random coil conformation rather than a 

well defined secondary structure, in contrast to all other CFTR domains 

(Ostedgaard et al, 2000, Baker et al, 2007; Marasini et al, 2013). There is still no 

full consensus on the R-region sequence boundaries. This is mainly due to the 

difficulty of establishing the exact limit between the C-terminal portion of NBD1 

and the N-terminal portion of the R-region. On the other hand, because of easy 

identification of the starting point for TMD2, the C-terminal boundary of the R-

region is more defined around residue D836. This uncertainty has led to early 

studies using shorter constructs (aa 708-831) to evaluate the structural 

properties of the R-region (Ostedgaard et al, 2000). By that time, studies using 
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constructs bearing a deletion between residues 708-835 were able to generate 

currents similar to wild-type channel (Rich et al, 1991) and supported the use of 

the aforementioned construct. Circular dichroism (CD) spectra analysis of this 

shorter R-region segment shows a mostly disordered conformation with only 5% 

of the protein composed by helical content. Those characteristics were not 

altered by PKA phosphorylation, suggesting it does not promote structural 

changes (Ostedgaard et al, 2000). NMR spectroscopy studies of a longer 

construct (654-838) also showed that the R-region is predominantly disordered, 

and that phosphorylation does not disturb the overall disorder. Phosphorylation 

promoted, nevertheless, isolated chemical shifts at the phosphoserines and to 

some adjacent residues, not enough, however, to promote global folding of the 

protein. This study identified the segments within the R-region with higher 

tendency to form elements of secondary structures. Residues within segments 

654-670, 755-778 and 801-818 displayed the highest α-helix propensity, with up 

to 30-40%. Phosphorylation decreased the helical content of those segments of 

the R-region (Baker et al, 2007). Small angle X-ray scattering (SAXS) structural 

analysis of a R-region construct bearing residues 654-838 generate conflicting 

results. Although the data demonstrated that the R-region is mostly unstructured, 

a higher level of secondary structure was reported. Moreover, phosphorylation 

increased the rate of secondary structures, with the random coil fraction varying 

from ~30-18% and secondary structures varying from ~50-70% before and after 

phosphorylation, respectively (Marasini et al, 2013). All data discussed above 

was obtained from isolated recombinant proteins in solution and may not 
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represent the R-region state in the context of the full CFTR protein anchored at 

the plasma membrane. As the available crystal structures of the full-length CFTR 

did not resolve most of the R-region, to date, there is no certainty of the structural 

conformation(s) that the R-region assumes when integrated into the full CFTR 

sequence. 

Proteins like the R-region that are biologically active, but retain an unstructured 

conformation are classified as intrinsically disordered proteins (IDPs). In contrast 

to the stable secondary structure of folded proteins, IDPs appear in several 

interchangeable conformations, with rapid alternation among individual 

conformations. This intrinsic lack of well folded secondary and tertiary structure 

provides functional advantages for these proteins, including the ability of binding 

to multiple partners. Therefore, IDPs are key participants in several protein-

protein interactions, as well as signalling and regulation processes in the cell 

(Wright & Dyson, 1999; Dyson & Wright, 2005). This rapid interconversion of 

multiple conformations may give IDPs an advantage in interaction processes, 

increasing the overall radius of the protein, thus facilitating the initial contact with 

the binding partner, which can trigger further contacts with the same partner or 

provide accessibility to other binding partners (Shoemaker & Portman, 2000). 

One study analysing structural disorder prediction in four eukaryotic 

interactomes, including the human, showed that hub proteins (those interacting 

with ten or more binding partners) are significantly more unstructured than end 

proteins (those that interact with only one partner). The same study 

demonstrated that functions related to transcription, regulation and development 
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are performed by proteins with high level of disorder, whereas proteins with 

membrane localization and the ones with catalytic and transport functions are 

depleted of disorder, suggesting a positive correlation between the functional 

promiscuity of hub proteins and the presence of intrinsic structural disorder, with 

disorder serving as a ‘stimulus’ for protein interactivity (Haynes et al, 2006).  

Many IDPs experience folding transitions upon binding to a partner assuming 

one main conformation at the bound state (Dyson & Wright, 2005). However, 

other alternative configurations may arise after a binding event, including 

interaction systems where:(1) the IDP assumes more than one bound 

conformation upon binding;(2) only the segment of the IDP involved in the 

binding event becomes folded but the flanking regions remain unfolded;(3) two 

folded bound segments of the IDP are connected by a segment that remain 

unfolded and serve as a linker;(4) the majority or the whole IDP remains highly 

dynamic even in the bound state, and displays only local ordering based on weak 

transient interactions with their binding partners (Tompa & Fuxreiter, 2008). The 

R-region seems to fit in one or a mix of the alternative configurations for 

interacting systems, as proposed by Ostedgaard et al, (2000) in four speculative 

models for the interactions of the R-region with the rest of CFTR.  

Amino acid sequence analysis of several naturally folded and non-folded proteins 

identified that IDPs usually have a low mean hydrophobicity and a high net 

charge, which confers the protein a low driving force for compaction and 

electrostatic repulsion, features that favor a disordered state (Uversky, 2011). In 

fact, the R-region sequence (aa 635-836) contains only 40% of hydrophobic 
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residues, and 30% are charged residues. Most positive charged residues are 

distributed among the phosphorylation consensus sites, while the negative 

charged residues are clustered in two distinct areas named NEG1 (aa 725-733) 

and NEG2 (aa 817-838). The sequence of NEG2 is well conserved among 

species and mutations in some residues within NEG2 cause CF, suggesting an 

important role for this segment in channel function. Moreover, ΔNEG2-CFTR 

channels displays low constitutive activity and are insensitive to PKA (Xie et al, 

2002). Phosphorylation further increases the net charge of the R-region by 

addition of phosphate groups and this feature was reported the be the most 

common mechanism in which IDPs change the binding affinity to different binding 

partners (Iakoucheva et al, 2004), reinforcing the association between regulatory 

processes and unstructured proteins.   

Several studies attempted to understand the functional role of the R-region in 

CFTR function by expressing constructs lacking different portions of the R-region 

sequence and examining the consequences in function. As for the structural 

studies, early functional studies on the function of the R-region used constructs 

lacking a shorter segment of the R-region, aa 708-835. Those studies 

demonstrated that CFTR-ΔR (708-835) channels were constitutively active in the 

presence of ATP and did not requir phosphorylation, in contrast to full length 

channels that require both ATP and phosphorylation to be active (Rich et al, 

1991; Ma et al, 1997). Based on this data, it was proposed that the R-region was 

an inhibitory particle and its phosphorylation relieved this inhibition. However, this 

proposition was brought into question based on studies showing that co-
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expression of half-CFTR proteins which included the R-region, also generated 

constitutive activation [aa 1-833 + aa 834-1480 (Csanady et al, 2000) or Δ1-836 

+ M837X (King & Sorscher, 2000)], and addition of variants of exogenous 

unphosphorylated R-region segments (aa 645-834 or 590-858 or 708-831) to 

CFTR-ΔR (708-835) channels were not able to re-establish the inhibition and 

block spontaneous activity (Winter & Welsh, 1997, Ma et al, 1997, Ostedgaard et 

al, 2000). On the other hand, the addition of the same R-region fragments, but 

now after phosphorylation, was able to increase the constitutive activity observed 

in CFTR-ΔR (708-835), confirming that besides an inhibitory role, the R-region is 

also able to stimulate channel activity, but only when it is phosphorylated (Winter 

& Welsh, 1997, Ma et al, 1997, Ostedgaard et al, 2000). Another study has 

demonstrated, however, that addition of a R-region segment (aa 635-836) was 

able to reduce, the constitutive activity of half-CFTR channels (aa 1-634 and aa 

837-1480). Phosphorylation of the R-region increased the constitutive activity 

(Chappe et al, 2005). 

The idea that the R-region can both prevent constitutive activity and stimulate 

activity after phosphorylation led to studies aiming to find parts of the R-region 

that are involved in this dual role. As mentioned above, constructs lacking NEG2 

(aa 817-838), displayed constitutive activity that could not be enhanced by 

phosphorylation. Addition of exogenous NEG2 peptides was able to stimulate 

full-length CFTR channels suggesting that this segment is critical for the 

stimulatory role of CFTR (Xie et al, 2002). Another study, using several deletions 



47 
 

of the R-region, proposed that the region comprising aa 760-783 holds the 

inhibition role of the R-region (Baldursson et al, 2000). 

These data strongly support the idea that the R-region holds both inhibitory and 

stimulatory roles, and the addition of negative charges or the conformational 

changes induced by phosphorylation is the determinant of whether it functions in 

a stimulatory or inhibitory mode. Further evidence for the inhibitory role was 

found in the recent crystal structure, which shows the unphosphorylated R-region 

located in between the two CFTR ‘halves’ preventing NBD dimerization, but, 

unfortunately, the structures did not show any evidence for the stimulatory role of 

the R-region as the phosphorylated R-region is mostly not visible (Liu et al, 2017; 

Zhang et al, 2018) (Figure 7).  

 

1.3.4 CFTR REGULATION BY PHOSPHORYLATION 

Although gating of CFTR channels is promoted by ATP binding, the primary 

stimulus to activate CFTR channels is phosphorylation. Cytosolic concentrations 

of ATP always exceed the threshold for CFTR opening, so the physiological 

regulation of CFTR activity comes from the balance between phosphorylation 

and dephosphorylation. Several kinases were reported to modulate CFTR, but 

cAMP-activated kinase (PKA) is the main regulator of CFTR activity (Cheng et al, 

1991; Anderson et al, 1991). On the other side, several phosphatases such as 

phosphatases 2A (PP2A) and 2C (PP2C) have been found to be the most 

effective in dephosphorylating CFTR (Berger et al, 1993; Luo et al, 1998).   



48 
 

 

 

Figure 7. Human CFTR structures. 

Ribbon representation of the unphosphorylated, ATP-free (A) and the 

phosphorylated, ATP bound conformation (B). Note the red dashed lines 

representing parts of the R-region that could not be resolved. Red EM densities 

correspond to unstructured parts of the R-region. The distances between the last 

visible residue in the R region and the first residue in TMD2 are indicated. TM 8 

is highlighted in cylinder. ATP is shown in ball-and-stick and colored by 

heteroatom. A: Reproduced with adaptations from Liu F, Zhang Z, Csanády L, 

Gadsby DC, Chen J, (2017), with permission from Elsevier. B: Reproduced with 

adaptations from Molecular structure of the ATP-bound, phosphorylated human 

CFTR by Zhang Z, Liu F, Chen J (2018), licensed under CC BY-NC-ND 4.0.  

  

https://www.pnas.org/content/115/50/12757
https://www.pnas.org/content/115/50/12757
https://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

PKA recognizes specific amino acids sequences, consensus sites, and catalyzes 

the incorporation of phosphate groups at the side chains of serine or threonine 

residues. Consensus sites for PKA can be monobasic (R-X-S/T; X represents 

any amino acid) or dibasic (R-R/K-X-S/T). CFTR contains ten dibasic consensus 

sites as well as several monobasic sites. Among the dibasic sites, eight were 

found to be phosphorylated at least in vitro, seven located within the R-region 

(S660, S700, S712, S737, S768, S795 and S813) and one (S422) located at the 

RI, a small disordered region within NBD1. Only two of the monobasic PKA sites 

were found to be phosphorylated at least in vitro (S670 and S753). From all PKA 

sites, at least six (S660, S700, S737, S768, S795 and S813) were found to be 

phosphorylated in vivo (Cheng et al, 1991; Picciotto et al, 1992; Hegedus et al, 

2009). Among the two remaining dibasic sites, S686 is actually a substrate for 

PKC phosphorylation and T788 was only seen to be slightly phosphorylated 

(15%) by PKA in one study (Baker et al, 2007). 

Mutational analysis of PKA sites demonstrated that none of these sites is 

essential for CFTR function and favors the idea of an additive mechanism for the 

phosphorylated-dependent activation of CFTR. However, it seems that each site 

does not contribute equally for the maximal response. Mutation of four sites with 

alanines (S660A, S737A, S795A and S813A) reduced substantially CFTR 

response to cAMP. Including mutations of the other 4 dibasic sites within the R-

region (S686A, S700A, S712A, S768A), or even removing all ten dibasic PKA 

sites in CFTR (by also including S422A and T788A) further reduced the channel 

response, and a low level of activity was still observed, probably because of 
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phosphorylation of the monobasic sites (Chang et al 1993, Rich et al, 1993). Only 

after removing fifteen PKA sites (by including five monobasic sites) no further 

reduction in channel activity was observed (Seibert et al, 1999). Those results 

pointed to a mechanism of redundancy where CFTR maximal function would be 

achieved by graded addition of negative charges (phosphorylation) in an 

increasing number of sites. Evidences in favor of this mechanism were obtained 

by experiments showing that mutants carrying six or eight (but not less than six) 

aspartate residues in place of serine residues (to mimic incorporation of negative 

charges similar to phosphorylation) displayed a low, but measurable, activity in 

the absence of PKA (Rich et al, 1993). On the other hand, evidence against this 

simple accumulative mechanism came after the finding that two of the dibasic 

sites (S737 and S768) play inhibitory roles (Wilkinson et al, 1997; Csanady et al, 

2005), and from structural studies demonstrating that PKA phosphorylation 

promotes conformational changes in R-region peptides, altering significantly its 

secondary structure, the CD spectra and the mobility in SDS-PAGE (Dulhanty & 

Riordan, 1994; Dulhanty et al, 1995; Ostedgaard et al, 2000, Baker et al, 2007; 

Marasini et al, 2013). Thus, the fact that addition of negative charges can cause 

stimulatory or inhibitory effects, and that phosphorylation does cause marked 

conformational changes in the R-region that could be involved in the regulatory 

mechanism, supports a mechanism where individual phosphorylation sites may 

play specific functions, rather than just being responsible for an accumulation of 

negative changes (Gadsby & Nairn, 1999; Csanady et al, 2005). 
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The exact mechanism by how PKA phosphorylation of the R-region regulates the 

activity of CFTR still remains unclear. To date, two main mechanisms were 

proposed based on the available biochemical, structural and functional data. The 

first argues that the R-region modulates function by controlling NBDs 

dimerization. In support, NMR studies and CFTR structures demonstrated that 

the R-region interacts with both NBDs and that PKA phosphorylation relieves 

those interactions. (Baker et al, 2007; Bozoki et al, 2013; Liu et al, 2017). Also, 

the efficiency of NBDs dimerization was found to be positively affected by PKA 

phosphorylation (Mense et al, 2006; He et al, 2008). In this mechanism, PKA 

phosphorylation would both relieve R-region binding to NBDs and stimulate NBD 

dimerization, therefore, activating the channel. The second mechanism defends 

that the R-region modulates function by interactions with the pore machinery 

either indirectly, through interaction with the CLs or directly interacting with the 

TMDs, regulating channel gating independently of the NBDs. As supporting 

evidence is the finding that CFTR constructs lacking NBD2 are still active and 

activation is independent of ATP, but dependent of PKA stimulation (Cui et al, 

2007; Wang et al, 2007). Also, gating deficient channels harboring G551D 

mutation are still active in the presence of PKA (Bompadre et al, 2007). This 

mechanism is based on spontaneous channel openings that are observed in the 

absence of ATP in several expression systems. As NBD2-truncated and G551D 

channels are not able to NBD dimerization and hydrolyze ATP, respectively, an 

alternative mechanism is necessary for channel activation. That would be 

achieved by PKA-induced direct connections of the R-region with CLs or TMDs, 
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which has been observed in the CFTR crystal structures (Zhang et al, 2016; Liu 

et al, 2017). In addition, an ancillary mechanism is based on PKA 

phosphorylation at S422, localized at the RI in NBD1, proposed to modulate an 

interaction between NBD1 and the CL1 of TMD1. Upon phosphorylation of S422, 

a potential site on NBD1, responsible for binding to CL1 is exposed and this 

binding is proposed to complement the effects ensued by PKA phosphorylation 

of the R region (Kanelis et al, 2010). However, a study using half-CFTR channels 

missing most of the RI (1-414 and 433-1480) behaved largely similar to wild type 

channels (Csanady et al, 2005), suggesting that segment, and therefore S422, 

plays minimal, if any, role in CFTR activation by PKA.  

All of the above mechanisms are reasonable and perhaps a combination of them 

are responsible for PKA stimulation of CFTR activity. The high number of PKA 

sites in CFTR, and the fact that phosphorylation of individual sites elicits different 

channel responses (Winter & Welsh, 1997; Wilkinson et al, 1997, Baldursson et 

al, 2000) support such a cooperative mechanism. 

Besides PKA, which is clearly the major regulatory pathway for CFTR activation, 

CFTR is also phosphorylated by other kinases, including protein kinase C (PKC) 

and AMP activated protein kinase (AMPK). The R-region has seven PKC 

consensus sites (S641, T682, S686, S707, S790, T791 and S809). From those, 

five (S641, T682, S686, S707 and S790) have been phosphorylated in vitro and 

only S686 was found phosphorylated in vivo. PKC also phosphorylates S660 and 

S700, but in a lower rate than PKA does (Picciotto et al, 1992; Jia et al, 1997; 

Chappe et al, 2004). In contrast to PKA, PKC phosphorylation of the R-region did 
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not induce changes in the CD spectra or in SDS-PAGE mobility (Picciotto et al, 

1992, Dulhanty & Riordan, 1994). PKC phosphorylation itself only elicits small 

activation of CFTR. However, PKC phosphorylation prior to PKA stimulation was 

found to potentiate PKA responses by approximately two-fold (Tabcharani et al, 

1991; Berger et al, 1993, Chappe et al, 2003). Moreover, a low level of 

constitutive PKC phosphorylation is argued to be essential for CFTR activation 

by PKA (Berger et al, 1993; Jia et al, 1997). This effect is better observed in 

prolonged cell patches, or when cells are treated with PKC inhibitors. In both 

cases, PKA stimulation is almost completely abrogated, apparently because PKC 

phosphorylation is removed by either the action of phosphatases in prolonged 

patches or because of the effect of the inhibitors. Moreover, when comparing cell 

responses to PKA stimulation, cells that were pre-treated with PKC inhibitors 

show reduced responses compared to control cells (Jia et al, 1997). Thus, PKC 

seems to work in synergy with PKA, however, the mechanism involved in this 

cooperative work is unknown. Later studies have examined the role of PKC sites 

in CFTR function. Mutation of nine PKC sites in CFTR (seven of the R-region and 

two localized at NBD1; T582A and T604A) dramatically reduced responses to 

PKA and abrogated the enhancing effect on PKA response. Moreover, after 

treatment with phosphatases, PKC elicited a small response in wild-type 

channels but not in the PKC mutant (Chappe et al, 2003). The results suggested 

that both the small response in absence of PKA and the modulation of PKA 

response are a result of direct PKC phosphorylation of CFTR rather than an 

indirect regulation via other molecules. In a detailed investigation on the role of 
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individual PKC sites, S641 and T682 were described as inhibitory sites, similarly 

to PKA sites S737 and S768, and S686 was described as essential for PKC 

modulation of PKA response (Chappe et al, 2004). Channels lacking S641 had 

increased responses to PKA and channels lacking T682 had very high responses 

to PKC. In contrast, channels lacking S686 could not be stimulated by 

exogenous PKC and lost the PKC enhancing effect on PKA response (Chappe et 

al, 2004), suggesting that S686 may play a significant role in CFTR regulation by 

PKC. The two PKC sites localized within NBD1 (T582 and T604) were found to 

be important for channel function as their mutation to alanine drastically reduced 

the channel response to phosphorylation (Chappe et al, 2004). 

In addition to the modulation of CFTR activity, PKC is also involved in CFTR 

expression and trafficking. The PKCε isoform is a key component in the VIP 

(vasoactive intestinal peptide) signaling cascade that promotes CFTR membrane 

localization. Phosphorylation by PKCε of the actin-binding protein complex 

ezrin/radixin/moesin (ERM) is critical for its binding to NHERF-1 and CFTR, 

forming a complex that stabilized CFTR at the cell membrane (Alshafie et al, 

2014).  

AMPK is a metabolic-stress sensitive kinase that modulates ion transport activity 

in response to cell metabolic status. AMPK localizes at the apical membrane in 

epithelial cells, binds to the C-terminal tail of CFTR at residues 1420-1457 and 

phosphorylates the two inhibitory PKA sites (S737 and S768; mostly at the latter 

one) in response to high levels of AMP, providing a link between CFTR function 

and metabolic status. When activated, AMPK prevents channel activation by 
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PKA and PKC, but also inhibits constitutive low activation of CFTR. Inhibition of 

AMPK or mutations at both S737 and S768 to alanine increased baseline activity 

of CFTR, and the response of CFTR to cAMP agonists (Hallows et al, 2000; King 

et al, 2009, Kongsuphol et al, 2009). Thus, the basal activity of CFTR found in 

several expression systems is proposed to be regulated by the levels of 

endogenous AMPK in the cell, with high activation of AMPK, reflecting metabolic 

stress, keeping CFTR silent and low activity of AMPK, enabling constitutive 

activity of CFTR (Kongsuphol et al, 2009). In cells expressing a highly activated 

AMPK mutant, CFTR stimulation by PKA is completely abrogated, and this effect 

is not seen in cells expressing a dominant-negative version of AMPK. 

Interestingly, CFTR phosphorylation by AMPK at sites S737 and S768 did not 

prevent R-region phosphorylation at the other phosphorylation sites, but still kept 

CFTR channels closed, suggesting that AMPK phosphorylation renders CFTR in 

a state or conformation where PKA or PKC phosphorylation are not able to 

promote channel activation (King et al, 2009). 

Casein kinase 2 (CK2) is a constitutively active serine/threonine protein kinase 

described to regulate both CFTR biosynthesis and function. CK2 co-localize with 

CFTR and its inhibition was found to reduce both channel function and protein 

processing. CK2 was described to phosphorylate CFTR at S422 at NBD1 and 

T1471 at the C-terminal tail (Treharne et al., 2009; Luz et al., 2011; Venerando et 

al., 2013). CFTR phosphorylation by spleen tyrosine kinase (SYK) at Y512 has 

been found to reduce its membrane localization by a mechanism still unknown. It 

is proposed that SYK and CK2 work cooperatively, with phosphorylation at Y512 
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by SYK being required prior to phosphorylation by CK2. Inhibition of SYK or 

mutation of Y512 has been demonstrated to strongly increase CFTR currents by 

preventing its removal from the plasma membrane. Mutations that mimic 

phosphorylated (Y521E) or unphosphorylated (Y521F) states have led to 

reduction and increase of CFTR levels at the membrane, respectively (Luz et al, 

2011; Mendes et al, 2011). Two other tyrosine kinases, Pyk2 (proline-rich 

tyrosine kinase 2) and Src (proto-oncogene tyrosine-protein kinase) are also able 

to phosphorylate and stimulate CFTR function, reaching 80% of the response 

obtained by PKA phosphorylation (Fisher et al, 1996; Billet et al, 2015). The 

proposed sites for both Src and Pyk2 phosphorylation are residues Y625 and 

Y627, localized in the end of NBD1. Mutation of these sites for phenylalanine 

robustly decreased channel function, but did not abrogated completely, 

suggesting other sites are still to be identified (Billet et al, 2016). 

CFTR dephosphorylation, and consequently deactivation, is carried out by 

protein phosphatases, however, there is no single phosphatase able to 

completely dephosphorylate CFTR. CFTR exposure to PP2A, PP2C and alkaline 

phosphatase is able to decrease CFTR activity by >90% (Thelin et al, 2005). 

PP2A and PP2C, deactivate CFTR in distinct ways. While deactivation by 

exogenous PP2C requires Mg+2, and resembled the spontaneous deactivation 

observed in cells after removal of PKA agonists, with no changes in the burst 

duration, deactivation by PP2A requires no cofactors and causes a dramatic 

reduction in channel burst durations, indicating they may act at different 

phosphorylate sites (Luo et al, 1998). PP2A directly binds to peptides comprising 
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residues 1451-1476 at the C-terminal of CFTR and residues 672-855 at the R-

region of CFTR by means of two different regulatory subunits of the protein, B’ε 

and PR65 respectively (Thelin et al, 2005; Vastiau et al, 2005). PP2C efficiently 

dephosphorylates a R-region peptide (aa 654-837) and was found to interact with 

CFTR but specific interaction sites are still unknown (Zhu et al, 1999).  

In order to be activated or deactivated by kinases or phosphatases, CFTR must 

be exposed to those components and this is achieved by the formation of 

compartmentalized protein complexes anchored to the cytoskeleton, which bring 

together scaffold proteins, adaptors, phosphodiesterases, other transporters and 

several regulatory factors and enzymes, including kinases PKA, PKC and AMPK 

and phosphatases PP2A and PP2C, that interact with CFTR promoting its 

regulation in the apical cell surface. Among other molecules, the CFTR 

interactome is composed of NHERF1 binding to the C-terminal PDZ motif of 

CFTR which brings PKA and PKC close to CFTR via NHERF1-erzin-actin 

complex and NHERF1-RACK1 dimer-tubulin complex, respectively, in addition to 

the direct interaction of PP2A, PP2C and AMPK to CFTR as described above. 

 

1.3.5 R-REGION INTERACTIONS INDUCED BY PHOSPHORYLATION 

Several studies have reported phosphorylation-dependent interactions of the R-

region with all cytoplasmic parts of CFTR, including the N-terminal lasso motif 

(Naren et al, 1999), NBD1 (Wang et al, 2002; Baker et al, 2007; Bozoki et al, 

2013), NBD2 (Wang et al, 2002; Bozoki et al, 2013), C-terminal tail (Bozoki et al, 

2013), and cytoplasmic loops (Wang et al, 2002; Wang, 2010; Wang & Duan, 
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2012). In addition, interactions with the STAS domain of SLC26A family 

members (Ko et al, 2004) and with the protein adaptor 14-3-3 (Liang et al, 2012) 

have also been reported.  

Studies using a split CFTR construct, expressing the two CFTR halves and the 

R-region as three separate polypeptides, have shown that phosphorylation by 

PKA enhances association of the R-region with both CFTR halves (Chappe et al, 

2005), and additional phosphorylation by PKC further enhanced the interactions 

(Seavilleklein et al, 2008), an indication that phosphorylation regulates CFTR not 

only by causing its dissociation from an inhibitory site but also by promoting 

stimulatory R-region interaction with other CFTR domains. 

By probing an extensive overlapping peptide library spanning all intracellular 

regions of CFTR with a recombinant R-region (aa 589-830) peptide, Wang et al 

(2002) found interactions of the R-region with peptides spanning regions of both 

NBD1 and NBD2. Recent NMR studies revealed interactions involving several 

parts of the R-region and both NBDs, and those interaction were mostly 

eliminated after phosphorylation. Five segments of the unphosphorylated R-

region, aa 661-681, 702-718, 748-778, 803-813 and 829-834, that interact with 

NBD1 were reduced to only three segments, aa 748-778, 805-815, and 829-833, 

that bound to NBD1 with a four-times weaker strength after phosphorylation. 

Three segments of the unphosphorylated R-region, aa 661-673, 752-778, and 

819-836, also interact with NBD2 and this interaction was reduced to only one 

weak interacting segment, 802-824, after phosphorylation (Baker et al, 2007; 

Bozoki et al, 2013). The three first segments interacting with NBD1 as well as the 
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two first segments interacting with NBD2 contain two PKA phosphorylation sites, 

one bordering the beginning and another one somewhere in the middle of each 

interacting segment. Those segments are the ones showing the highest 

reduction in interactions with the NBDs after phosphorylation. The same study 

also demonstrated that the putative sites on NBD1 that bind to the R-region are 

likely located in the NBDs dimer interface (Bozoki et al, 2013). Those results are 

in accordance to the CFTR structures showing a large EM density ascribed to the 

R-region located in between the NBDs in the unphosphorylated state, that 

completely vanished in the phosphorylated state (Liu et al, 2017; Zhang et al, 

2018). The observations from NMR studies and cryo-EM structures as well as 

the fact that phosphorylation promotes ATP hydrolysis (Mense et al, 2006), 

provide strong evidence for the first mechanism explaining PKA-regulation of 

CFTR function, described in the previous section, where the R-region modulate 

channel function by phosphorylation-dependent interference in NBDs 

dimerization.  

Early studies have reported interactions of the R-region with a cluster of acidic 

residues (D47, E51, E54, D58) localized in the N-terminal lasso motif. Alanine 

substitution of those residues caused a reduction in both channel function and 

binding to the R-region. In vitro interaction of recombinant R-region and lasso 

motif peptides showed only a slight increase after phosphorylation (Naren et al, 

1999). In addition, a recombinant R-region (aa 589-830) was also found to 

interact with overlapping peptides comprising the 35 first residues of the lasso 

motif (Wang et al, 2002). Although in the unphosphorylated CFTR structure no 
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direct interactions between the lasso motif and the R-region were described, a 

small helix proposed to be part of the R-region is seen interacting with residues 

34-39 of the lasso motif in the phosphorylated human structure. The residues 

seen interacting with the R-region in the human structure diverge from the ones 

observed with isolated peptides (Zhang et al, 2018).  

Interactions between the R-region and the C-terminal tail (C-tail) of CFTR were 

only recently described. An isolated peptide comprising residues 1438-1480 was 

found to interact mostly with one segment (aa 747-771) of the unphosphorylated 

R-region, with other three segments (663-680, 697-717, and 803-815) showing 

weaker interactions. After phosphorylation, interactions with the four segments 

dramatically increased, and one new segment (827-836), mapped at the NEG2 

region (aa 817-838), now appeared as a binding partner to the C-tail. The 

interaction with C-tail, which is also unstructured, promoted a large chemical shift 

in the R-region, indicating a certain degree of disorder-to-order transition in some 

parts of the R-region and/or the C-tail (Bozoki et al, 2013). Such disorder-to-order 

transition could be the explanation for the extra thirteen residues resolved at the 

C-tail of the phosphorylated human structure, compared to the unphosphorylated 

structure. Interestingly, those residues form a small helix and are positioned just 

near one of the R-region densities (Zhang et al, 2018), suggesting a possible 

interaction with the R-region as the cause for the disorder-to-order transition of 

this C-tail segment. 

In order for phosphorylation to induce channel activity independently of the NBDs 

motion, as proposed by the second mechanism for PKA activation, interactions 
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between the R-region and the cytoplasmic loops or directly with the pore region 

are imperative. A recombinant R-region peptide (aa 589-830) bound to portions 

of CL1 and CL4, with interaction with the latter reported to be stronger than with 

the former (Wang et al, 2002).  

A series of studies have proposed interactions of some acidic residues within 

NEG2 with some basic counterparts within CL3, either through a metal (Fe+3) 

bridge or through a complex electrostatic attraction involving an arginine of the 

S768 PKA consensus site (Wang, 2010, 2011; Wang & Duan, 2012). However, 

all residues in CL3 reported in those studies (H950, H954 and R946) are located 

fairly far from the proposed R-region helix (aa 825-836; within NEG2) of the 

unphosphorylated human CFTR structure, and their side chains are facing away 

from the helix position (Liu et al, 2017), which in turn, makes it difficult to 

conceive the feasibility of those interactions. The same crystal structure shows 

that the R-region helix do interact with CL3, but in residues divergent from the 

ones proposed in Wang’s studies, as well as with CL4 and TM12. In addition, 

parts of the R-region densities are located nearby to both NBD1-CL1 and NBD1-

CL4 interfaces, where it could possibly interfere with the NBD-TMD 

communication during gating (Liu et al, 2017). In the phosphorylated structure, a 

stretch of thirteen residues (which could not be assigned) form a helix that is 

tightly associated with CL4, but at residues distinct from the ones in the 

unphosphorylated helix (Zhang et al, 2018). The interactions reported in the 

solved structures as well as the location of the unphosphorylated R-region helix 
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at the entrance of the intracellular vestibule of the pore provide substantial 

evidence for a mechanism regulating CFTR activity independent of the NBDs.  

Phosphorylation also regulates channel activity by promoting intermolecular 

interactions. Early in this chapter, a functional association between CFTR and 

members of the SLC 26 family was briefly described. Both CFTR (Wang et al, 

1998) and SLC26A transporters (Lamprecht et al, 2002) contain a PDZ motif at 

their C-terminal ends and through binding to NHERF1, they are co-localized at 

the apical membrane. In addition, the R-region of CFTR was found to directly 

interact with the STAS domain of SLC26A3 and A6, in a phosphorylation 

dependent manner (Ko et al, 2004). CFTR and SLC26A3/A6 are proposed to 

undergo reciprocal regulation and the R-region and STAS domain play a critical 

role. First, removal of STAS from SLC26A prevent its binding to and activation of 

CFTR and the inverse occurs when the R-region is deleted from CFTR in the 

presence of STAS domain. Second, phosphorylation of the R-region dramatically 

enhances its association with the STAS domain and consequently, increases 

reciprocal positive regulation for both membrane translocators, which is 

facilitated by their PDZ-mediated spatial co-localization (Ko et al, 2004).  

Phosphorylation not only modulates channel function at the cell surface but also 

increases the rate of maturation and trafficking of CFTR to the plasma 

membrane.  

14-3-3 proteins are a family of regulatory proteins that typically interact with 

phosphoserine and phosphothreonine motifs stabilizing the phosphorylated state 

of proteins in order to regulate several cellular functions. 14-3-3 proteins have 
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been shown to improve surface localization of several receptors and ion 

channels, in a posttranslational mechanism (Yuan et al, 2003; Liang et al, 2012). 

Such mechanism was also reported for CFTR, where the expression levels are 

enhanced by a mechanism involving PKA phosphorylation and interaction of 14-

3-3 proteins with the PKA sites within the R-region (Liang et al, 2012). Two 14-3-

3 isoforms, β and ε, have their binding to both immature and mature forms of 

CFTR increased by phosphorylation. Also, co-expression of 14-3-3β increases 

biosynthesis and immature-to-mature conversion of CFTR (Liang et al, 2012). 

NMR studies demonstrated binding of 14-3-3β to five segments of the 

unphosphorylated R-region and this interaction was increased to eight small 

segments that bound > 6-times stronger after PKA phosphorylation. Seven out of 

the eight segments contained at least one phosphoserine (Bozoki et al, 2013). 

Those results support the idea of a mechanism where phosphorylation promotes 

CFTR processing by inducing interactions of 14-3-3 proteins with the R-region, 

which in turn, improve ER exit, maturation and trafficking of CFTR. 
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1.4 THESIS RATIONALE AND HYPOTHESES 

Thirty years after the discovery of the CFTR gene, and even with the recent high-

resolution structures of CFTR, a full picture of the molecular events induced by 

phosphorylation of CFTR is still missing. The majority of phosphorylation sites in 

CFTR, ten for PKA and seven for PKC, are located in the R-region, a disordered 

segment that functions as a dynamic hub, proposed to make transient 

interactions with many partners dependent on its phosphorylation state. While 

extensive work has been done investigating the role of PKA phosphorylation in 

modulating channel function and intramolecular interactions, the role of PKC 

phosphorylation, which is known to be required for and to potentiate PKA 

responses, has not been investigated to the same extent. Furthermore, the 

unphosphorylated CFTR structure clearly shows parts of the R-region density 

situated between the two halves, sterically preventing dimerization, but in the 

phosphorylated structure the R-region is mostly missing, except for a small helix 

interacting with residues at CL4 and the lasso motif, hindering the identification of 

most of the interaction partners of the phosphorylated R-region. A caveat found 

in previous studies examining PKA modulation of intramolecular interactions in 

CFTR is that they were done in vitro, using isolated polypeptides.  

Previous results from our lab showed that deletion of all seven PKC sites within 

the R-region disturbs channel responses to PKA, prevent the PKC potentiation of 

PKA responses (PKC enhancing effect), and disrupt R-region intramolecular 

interactions, indicating that one or more PKC sites are needed for CFTR 

activation and domain-domain interactions. Moreover, mutation of different 
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subsets or individual PKC sites were found to disturb channel responses to PKA 

and PKC differently.  

For these reasons, the main goal of my thesis work was to provide novel 

information about the mechanism underlying the phosphorylation-induced 

activation of the CFTR channel by means of investigating in detail 

phosphorylation-dependent R-region interactions and the role of PKC 

phosphorylation sites in the R-region interactions.  The hypotheses were that 

different states of phosphorylation of the R-region promote different levels of 

interaction with other parts of CFTR and that the effects of PKC phosphorylation 

in channel function could be correlated with PKC-driven modulations of the R-

region interactions. 

To test those hypotheses, I used both in situ and in vitro approaches to 

investigate the modulation of R-region interactions by PKA and PKC 

phosphorylation. For in situ analysis, aimed to reflect conditions inside the cell, in 

the context of the CFTR interactome, a Split-CFTR construct expressing the 

channel as three separate polypeptides in BHK cells was used, and the 

interactions of the R-region with the N-terminal and C-terminal halves of CFTR 

were investigated. By inserting mutations at subsets of PKC sites within the R-

region, the effect of PKC phosphorylation in the interactions with the CFTR 

halves could be analyzed. For in vitro analysis, a recombinant R-region peptide 

was generated, and the effects of phosphorylation in the interactions of this 

peptide with six cytoplasmic subdomains of CFTR, three from the N-terminal half 

(N-tail, CLs 1 and 2) and three from the C-terminal half (CLs 3 and 4 and C-tail), 
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were investigated. It was expected that those results could be used to propose 

molecular models for the R-region dynamics induced by phosphorylation and for 

the mechanism involved in the PKC enhancing effect. 
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CHAPTER 2: MATERIALS AND METHODS  

 

2.1 CHEMICALS  

Monolith NT.115 Capillaries was from NanoTemper (Munich, Germany).  IMAC 

SepharoseTM 6 Fast Flow chromatography medium was from GE Healthcare 

(Uppsala, Sweden). Ampicillin sodium salt, Chloramphenicol, 2-mercaptoethanol 

(BME), Isopropyl β-D-1-thiogalactopyranoside (IPTG), Imidazole and Urea were 

from Bioshop Canada (Burlington, ON). Amicon Ultra-15 Centrifugal Filter Units 

was from Millipore Sigma (Burlington, MA). cAMP-dependent protein kinase 

(PKA), catalytic subunit was from New England Biolabs (Ipswich, MA). PKC Lipid 

Activator, LB broth Miller and LB Agar Miller were from EMD Millipore (Temecula, 

CA). 10x Tris/Glycine/SDS buffer, 10x Tris/Glycine, CertifiedTM Molecular biology 

Agarose, 30% Acrylamide/Bis solution 29:1, Quick StartTM Bradford 1x Dye 

Reagent and ClarityTM Western ECL chemiluminescence detection kit were from 

Bio-Rad (Mississauga, ON). Platinum® PCR SuperMix High Fidelity Kit, 

Ponasterone A (PA), Zeocin and G418 were from Invitrogen (Burlington, ON); 2x 

Taq FroggaMix was from FroggaBio (Toronto, ON). Methotrexate was from 

Faulding Inc. (Montreal, QC). GenepHlow™ Gel Extraction Kit and PCR Cleanup 

Kit was from GeneAid (Taiwan). QIAprep Spin Miniprep Kit was from Qiagen 

(Mississauga, ON). Quick change II Site-direct mutagenesis kit was from Agilent 

Technologies (Santa Clara, CA). FuGene® HD Transfection Reagent and Protein 

Kinase C (PKC) were from Promega (Madison, WI). Penicillin-Streptomycin, 

Protease inhibitors, Fetal Bovine Serum, DMEM/F12 HEPES medium, BamHI 
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and SalI restriction enzymes were from ThermoFisher Scientific (Waltham, MA). 

Vectashield Mounting Medium for Fluorescence was from Vector Laboratories 

(Burlingame, CA). Duolink in situ Proximity Ligation Assay orange Kit, Albumin 

from bovine serum (BSA), Adenosine 5’-triphosphate magnesium (Mg+2-ATP), 8-

(4-chlorophenylthio) adenosine 3’,5’-cyclic monophosphate sodium salt (cAMP), 

Forskolin (FSK), DL-Dithiothreitol (DTT), Phorbol 12-myristate 13-acetate (PMA), 

3-Isobutyl-1-methylxanthine (IBMX), Tetramethyl ethylenediamine (TEMED) and 

other chemicals were from Sigma-Aldrich (St. Louis, MO). 

 

2.2 ANTIBODIES  

A list with the names of CFTR antibodies used during this study as well as the 

manufacturing company, host, epitopes and dilutions used are shown in Table 1.  

A list with names of secondary antibodies used during this study as well as the 

manufacturing company, host and dilutions used are shown in Table 2. All CFTR 

and secondary antibodies were optimized experimentally by testing specificity, 

phospho-sensitivity, concentration and incubation times for each technique used. 

 

2.3 CFTR POLYPEPTIDES  

Polypeptides corresponding to six cytoplasmic regions of CFTR with a N-terminal 

5-FAM-tag were synthesized by Proteogenix (Schiltigueim, France). The first 

three polypeptides are part of our front half construct and corresponded to the 

sequences of the Lasso motif of CFTR (aa 1-77), the cytoplasmic loop 1  
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Table 1. CFTR antibodies Information 

Name Company Host Target/Epitope Dilution 

MM13-4 
Monoclonal 

Antibody 

Millipore Sigma 
(Burlington, 
MA,USA) 

Mouse Front Half of CFTR. Synthetic 
peptide (RKGYRQRLELSD) 

corresponding to residues 25-36 
of human (CFTR) 

1:1000 (WB) 

M3A7 
Monoclonal 

Antibody 

Millipore Sigma 
(Burlington, 
MA, USA) 

Mouse Back-Half of CFTR. GST-fusion 
protein corresponding to 

residues 1197-1480 of human 
CFTR. The epitope maps within 

amino acids 1365-1395. 

1:1000 (WB) 

MAB1660 
Monoclonal 

Antibody 

R&D Systems 
(Minneapolis, 

MN, USA) 

Mouse R-region of CFTR. Beta-
galactosidase-coupled CFTR 
Cys590-Lys830 (predicted) 

1:1000 (WB) 

1:500 
(IF,PLA) 

H-182 
Polyclonal 
Antibody 

Santa Cruz 
Biotechnology 
(Dallas, TX, 

USA) 

Rabbit Front Half of CFTR. Epitope 
corresponding to amino acids 1-
182 mapping at the N-terminus 

of human CFTR. 

1:4000 (WB) 

1:1000 
(IF,PLA) 

C-19 
Polyclonal 
Antibody 

Santa Cruz 
Biotechnology 
(Dallas, TX, 

USA) 

Goat Back-Half of CFTR. Epitope 
mapping near the C-terminus of 

CFTR of human origin 

1:1000(WB) 

1:500 
(IF,PLA) 

WB: Western Blot 
IF: Immunofluorescence 
PLA: Proximity Ligation Assay 
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Table 2. Secondary Antibodies Information 

Name Company Host Dilution 

Cy3-conjugated anti-
mouse IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Goat 

IF 

1:100 

Peroxidase-conjugated 
anti-mouse IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Goat 

WB 
1:10000 

Alexa Fluor® 488-
conjugated anti-rabbit 

IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Goat 

IF 

1:200 

Peroxidase-conjugated 
anti-rabbit IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Goat 

WB 
1:5000 

Alexa Fluor® 488-
conjugated anti-goat IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Bovine 

IF 

1:200 

Peroxidase-conjugated 
anti-goat IgG 

Jackson ImmunoResearch 
Laboratories (West Grove, 

PA, USA) 
Bovine 

WB 
1:5000 

WB: Western Blot 
IF: Immunofluorescence 
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comprising the cytoplasmic extensions of TM 2 and 3 (aa 147-195) and the 

cytoplasmic loop 2 comprising the cytoplasmic extensions of TM 4 and 5 (aa 

244-298). The last three polypeptides are part of our back half construct and 

corresponded to sequences of the cytoplasmic loop 3 comprising the cytoplasmic 

extensions of TM 8 and 9 (aa 940-990), the cytoplasmic loop 4 comprising the 

cytoplasmic extensions of TM 10 and 11 (aa 1035-1095) and the C-terminal tail 

of CFTR (aa 1439-1480). Table 3 shows information and amino acid sequences 

for each polypeptide. DNA sequences used for polypeptide synthesis were taken 

from the human CFTR database (UniProt accession #P13569). 

 

2.4 SPLIT-∆R AND SPLIT-R CDNAS CONSTRUCTION AND TRANSFECTION INTO BABY 

HAMSTER KIDNEY CELLS  

Split-ΔR cDNA ligated into the ecdysone-inducible vector pIND (Split-ΔR), wild-

type (R-WT) and mutant R-region cDNAs of R-6CA (S641A/T682A/S707A/ 

S790A/T791A/S809A), R-S686A and R-S641A/T682A incorporated into the 

pNUT vector were a generous gift from Dr. John Hanrahan (Department of 

Physiology, McGill University). For details on the constructs pIND-Split-ΔR and 

pNUT-R, see Irvine, 2002 and Chappe et al. 2005)  

The R-S686D mutant was generated using the R-WT in pNUT (R-WT) vector as 

a template. First, empty pNUT vector and R-WT containing vector were digested 

with NCoI restriction enzyme and the presence of an extra band at 862bp in 1% 

agarose gel confirmed the presence of the R-region insert (two bands of 4774pb 

and 757pb are expected in the empty pNUT with an extra 862pb present in R-WT  
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Table 3. CFTR Polypeptides Information 

Polypeptide Name Purity Amino acid sequence 

CFTR N-terminal 

(Lasso motif) 

Amino acids 1-77 

>90% 5-FAM-MQRSPLEKASVVSKLFFSWTRPILRKGY 
RQRLELSDIYQIPSVDSADNLSEKLEREWDRELA
SKKNPKLINALRRCF-NH2 (77a.a.) 

CFTR cytoplasmic  

Loop 1  

Amino acids 147-195 

>90% 5-FAM-HIGMQMRIAMFSLIYKKTLKLSSRVLDKI 
SIGQLVSLLSNNLNKFDEG-NH2 (49a.a.) 

CFTR cytoplasmic  

Loop 2 

Amino acids 244-298 

>90% 5-FAM-MMKYRDQRAGKISERLVITSEMIENIQSV 
KAYCWEEAMEKMIENLRQTELKLTRK-NH2 
(55a.a.) 

CFTR cytoplasmic  

Loop 3 

Amino acids 940-990 

>90% 5-FAM-TLITVSKILHHKMLHSVLQAPMSTLNTLK 
AGGILNRFSKDIAILDDLLPLT-NH2 (51a.a.) 

CFTR cytoplasmic  

Loop 4 

Amino acids 1035-1095 

>90% 5-FAM-QTSQQLKQLESEGRSPIFTHLVTSLKGL 
WTLRAFGRQPYFETLFHKALNLHTANWFLYLST-
NH2 (61a.a.) 

CFTR C-terminal tail 

Amino acids 1439-1480 

>90% 5-FAM-QAISPSDRVKLFPHRNSSKCKSKPQIAA 
LKEETEEEVQDTRL-NH2 (42a.a.) 
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(Amer, 2010) (Figure 8, lanes 1 and 2). R-WT was then used to transform DH5-α 

E. coli cells and the transformation product was plated in Luria Bertani (LB) 

plates supplemented with 100mg/ml ampicillin (AMP). A single colony was 

inoculated in LB+AMP broth overnight at 37ºC and plasmids were isolated using 

QIAprep Spin Miniprep Kit. Quick change II Site-direct mutagenesis kit was used 

to generate the R-S686D mutant, using the following primers 5'-TCTCCTGGACA 

GAAACAAAAAAACAAGATTTTAAACAGACTGGAGAGTTTGG-3' (forward) and 

5'-CCAAA CTCTCCAGTCTGTTTAAAATCTTGTTTTTTTGTTTCTGTCCAGGAG 

A-3' (reverse) (16 cycles: denaturing 95ºC for 30sec, annealing 55ºC for 1 min 

and extension 68ºC for 6.5min, following manufacturing instructions). 

Mutagenesis product was used to transform DH5-α E. coli cells. Four colonies 

were selected and inoculated in LB+AMP overnight at 37ºC followed by DNA 

extraction (QIAprep Spin Miniprep Kit) and products were digested with NCoI to 

check DNA integrity (Figure 8, lane 3) and R-S686D was confirmed by 

sequencing.  

Plasmid DNA (7.2 μg) from split-ΔR (in pIND vector) alone or in addition to R-

WT, R-6CA, R-S686A, R-S686D, R-S641A/T682A (in pNUT vector) was mixed 

with 22μl of FuGENE® HD reagent in sterile water and incubated for 10 min at 

room temperature before adding to BHK-21 cells according to manufacturer’s 

instruction. Forty-eight hours post-transfection, adherent cells were harvested 

and plated at several different dilutions in selective medium that was changed 

every three days. Stable resistant clones were isolated after 14 days and tested 

for protein expression using immunoblotting. Successful co-transfection of pIND  
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5000bp 

862bp 

757bp 

4774bp 

900bp 

700bp 

1 2 3 

Figure 8. Preparation of the expression vector pNUT-RDS686D. 

1% agarose gel showing migration of empty pNUT vector (lane 1), pNUT vector 

containing the wild-type R-region (lane 2) and pNUT vector containing the 

S686D R-region after site direct mutagenesis (lane 3) after digestion with NCoI, 

showing an extra fragments at 862bp corresponding to the presence of the R-

region (lanes 2 and 3). Visualized by RedSafe staining. 
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and pNUT vectors into BHK cells induced the expression of three polypeptides: 

the front half (FH; aa 1-634), and the back half (BH; aa 837-1480) from pIND and 

the R-region (aa 635-836) from pNUT (see section 3.1 in Results). 

 

2.5 CELL CULTURE 

BHK cells were routinely cultured in DMEM/F12 containing 5% fetal bovine 

serum and 1% penicillin-streptomycin. Medium was replaced twice a week and 

cells were kept in a humidified incubator at 37°C with 5% CO2. G418 (400 µg/ml) 

and Zeocin (250 µg/ml) were used to maintain cells stably expressing the split-

∆R alone (pIND vector). Cells stably co-expressing split-ΔR and wild-type or 

mutant R-regions (pIND + pNUT vectors) were selected using the combination of 

G418 (400 µg/ml), Zeocin (250 µg/ml), and Methotrexate (MTX, 500 μM). MTX is 

a drug that inhibits folate metabolism and is toxic to cells not expressing pNUT 

vector which contains a gene encoding a mutated dihydrofolate reductase 

(resistant to MTX) (Simonsen & Levinson, 1983; Palmiter et al. 1987; Chang et 

al. 1993). Expression of the R-region (from pNUT) was constitutive and 

expression of split-ΔR (from pIND) was induced by Ponasterone A (PA, 10 μM), 

added to the medium 48 h prior to experiments. 

 

2.6 IMMUNOBLOTTING  

Cells stably expressing split-∆R, split-∆R/R-WT (SR-WT), SR-6CA, SR-S686A, 

SR-S686D and SR-S641A/T682A were cultured in 6-cm dishes until confluency 

and split-∆R was induced with 10µM PA for 48 h before harvesting. Medium was 
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removed, and cells were washed three times with ice-cold PBS, harvested by 

scrapping and subjected to 20 min centrifugation at 13,000 rpm at 4°C. Cell 

pellets were re-suspended in RIPA buffer (10 mM Tris-Cl, pH 7.5, 1 mM EDTA, 

1% Triton X-100, 0.08% deoxycholic acid, 0.1% SDS, 150 mM NaCl) 

supplemented with a protease inhibitor cocktail (Thermo Fisher) and lysed on ice 

for 30 min. After centrifugation for 20 min at 4°C, an aliquot of the supernatant 

(cell lysate) was assayed for protein concentration using the Bradford method 

(see below). For immunoblotting, 50 µg of extracted proteins was diluted in 2x 

SDS (sodium dodecyl sulfate) loading buffer (100 mM Tris-HCl pH 6.8, 4% SDS, 

0.2% bromophenol blue, 200 mM dithiothreitol (DTT)) and subjected to SDS 

polyacrylamide gel electrophoresis (SDS-PAGE) for 1.5 hr at 120 V in running 

buffer (25 mM Tris, 192 mM glycine, 0.1%SDS, pH 8.3). Stacking gels consisted 

of 5% acrylamide with 125 µM Tris-HCl pH 6.8, 0.1% SDS, 1% ammonium 

persulfate (APS) and 0.01% Tetramethyl ethylenediamine (TEMED). Resolving 

gels consisted of 7.5%, 12% or 18% acrylamide, 380 µM Tris-HCl pH 8.8, 0.1% 

SDS, 0.1% APS and 0.01% TEMED. Separated proteins were transferred to a 

nitrocellulose membrane for 2 hr at 45 V in transfer buffer (25 mM Tris, 192 mM 

glycine, 20% methanol, pH 8.3). The membrane was saturated/blocked in Tris-

base saline (TBS; 20 mM Tris + 500 mM NaCl, pH 7.5) containing 0.1% tween20 

(TBS-T) and 5% skim milk for 1 h at room temperature before incubation with the 

primary antibody in TBS + 0.2% BSA + 0.01% NaN3 overnight at 4°C with gentle 

shaking.  
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The front half (FH) was detected using the MM13-4 monoclonal antibody, the 

back half was detected using the M3A7 monoclonal antibody and the R-region 

was detected using the MAB1660 monoclonal antibody (Figure 9). After three 15 

min washes in TBS-T followed by one 15 min wash in TBS, membranes were 

incubated with appropriate peroxidase-conjugated secondary antibody for 2 h at 

room temperature in TBS + 0.5% skim milk. After five 10 min washes in TBS-T 

followed by one final 15 min wash in TBS, to remove excess of secondary 

antibodies, membranes were exposed to ClarityTM Western ECL 

chemiluminescence detection kit reagents for 2-5 min before exposure on 

BIOMAX light films (Carestream Health, Rochester, NY, USA). Films were 

developed in an X-ray processor. Front half and back half of CFTR appeared as 

a band at 62 kDa and the R-region appeared as a band at 23 kDa on films. After 

film exposure, membranes were stained for 5 min in amido-black to reveal total 

protein loaded in each well. Concentration of CFTR proteins expressed in each 

construct was estimated based on the ratio of the density of the bands in 

scanned films to the corresponding density of total protein loaded in each well, 

using the ImageJ software (National Institutes of Health; http://rsb.info.nih.gov/ij/).  

 

2.7 PROTEIN ASSAY 

We used the Bradford method to estimate protein concentration in aliquots of cell 

lysates or in aliquots of purified recombinant R-region proteins. Concentration 

standards were prepared by diluting 0, 2, 5, 10 and 15 µg of BSA in ddH20. A 

standard curve was obtained by plotting the absorbance measured by a 
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Figure 9. SplitΔR + R-region construct.  

Cartoon representation of the Front Half, R-region and Back Half polypeptides. 

Rectangles represent transmembrane (TM) helices of TMD1, in blue, and TMD2, 

in green. Antibodies recognizing the N-terminal of the front half (H-182), the R-

region (MAB1660), and the C-terminal of the back half (C-19) are represented. 

NBD (nucleotide binding domains), CL (cytoplasmic loops). Epitopes for each 

antibody are described in Table 1. 
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spectrophotometer at 595 nm for each standard versus their concentration. 

Extracted proteins (from BHK cells) or purified proteins (from E. coli) were first 

diluted 1/5 in ddH20. 10 µL of the first dilution was diluted in 490 µL ddH20 in 

duplicates and incubated with Bradford dye for 15 min at room temperature 

before absorbance measurement at 595 nm. The resulted equation from the 

standard curve was used to calculate protein concentration of the unknown 

purified/extracted proteins sample using the Protein/DNA assay software 

(Copyright by Frederic & Valerie Chappe). 

 

2.8 FLUORESCENCE IMMUNOSTAINING 

The re-assembly of the 3 CFTR domains and the correct membrane localization 

for the SR-S686D construct were demonstrated using immunofluorescence 

assays, as follows: BHK cells stably expressing the SR-S686D, were cultured on 

glass coverslips at low density inside 35 mm Petri dishes. Expression of the split-

∆R was induced by PA (10 µM) for 48 h. The medium was removed, and cells 

were washed four times with PBS, then fixed with a 2% paraformaldehyde/PBS 

mixture for 20 min, and then permeabilized with 0.1% TritonX-100/2% BSA in 

PBS for 45 min at room temperature. After the removal of the permeabilization 

buffer, the cells were incubated overnight in 600 μl of anti-CFTR antibody (H-182 

to detect the FH of CFTR or C-19 to detect the BH of CFTR) diluted in 0.1% 

TritonX-100/0.2% BSA at 4°C with very gentle shaking. After antibody labeling, 

the cells were washed three times with PBS/ 0.1% TritonX-100 for 10 min in 

gentle shaking, and then incubated in 600 μl of Cy3- or Alexa Fluor® 488-
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conjugated goat anti-rabbit or bovine anti-goat secondary antibody, diluted in 

0.1% TritonX-100/0.2% BSA, for one hour at room temperature, protected from 

light. Antibody excess was removed by three washes in PBS/ 0.1% TritonX-100 

for 10 min each. To detect the co-localization of split-ΔR and R-region, cells were 

double labeled with a second primary anti-CFTR antibody, targeting the R-region 

(MAB1660), and a second secondary antibody (Cy3- or Alexa Fluor® 488-

conjugated goat anti-mouse or goat anti-rabbit) followed by a final wash. The 

coverslips were removed from the dishes, then mounted on a glass microscopy 

slide with mounting buffer, sealed with nail polish and allowed to dry at room 

temperature before storage at -20°C. Slides were visualized using a Zeiss LSM 

510 Confocal Microscope at the Dalhousie Cellular & Digital Imaging Facility of 

the Faculty of Medicine (https://medicine.dal.ca/ research-dal-

med/facilities/cellular-molecular-digital-imaging.html). Negative controls were 

performed by either immunolabeling non-transfected cells or by omitting primary 

antibodies.  

 

2.9 IODIDE EFFLUX 

To determine activity of the reassembled CFTR channels, measurements of 

iodide efflux from BHK cells were performed as follow.  BHK cells were cultured 

to confluence in 6-well plates. After removing the culture medium and three 

washes with efflux buffer (136 mM NaNO3, 3 mM KNO3, 2 mM Ca(NO3)2, 11 mM 

glucose, and 20 mM HEPES; pH 7.4), the cells were incubated in 2 ml of iodide 

loading buffer (136 mM NaI, 3 mM KNO3, 2 mM Ca(NO3)2, 11 mM glucose, and 
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20 mM HEPES; pH 7.4) at room temperature for 1h. Extracellular iodide was 

then removed and quickly replaced three times with 2 ml fresh efflux buffer. 

Afterwards, 1.5 ml efflux buffer was added in each well, collected and replaced 

with fresh efflux buffer, at 1 min intervals, over 15 min. The three first samples 

collected were used to establish a stable efflux baseline (time (t)=1 to 3 min). A 

cocktail composed of 150 μM CPT-cAMP, 1 mM IBMX and 10 μM FSK was 

added to the efflux buffer from t =4 min to t =15 min to stimulate CFTR. When 

also tested for PKC stimulation, cells were exposed to 20 nM PMA for 2 h prior to 

the assay (first hour PMA was added to cell culture medium; second hour PMA 

was added to iodide loading buffer). Control cells (basal) received efflux buffer 

free of stimulators during the whole assay. Iodide concentration (in nmol/ml/min) 

in each sample collected (t=1 min to 15 min) was measured by a computer-

controlled iodide-sensitive electrode (Thermo Electron) based on a standard 

curve generated from known iodide concentrations and plotted versus time 

(Efflux Analysis Software, copyright to F. Chappe & V. Chappe). From these 

plots, the iodide efflux rate constant k (min-1) was calculated based on Becq et al. 

(2003; European working group on CFTR expression) for every minute interval. 

Iodide efflux peaks (maximum efflux rate obtained during stimulation) were 

compared after subtraction of the efflux rate measured under basal conditions of 

the same efflux time. 
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2.10 IN SITU PROXIMITY LIGATION ASSAY (PLA) 

The proximity ligation assay (PLA) depends on the concurrent and specific 

identification of two target molecules by a pair of affinity probes each linked to 

a DNA aptamer, that are able to hybridize to a DNA connector and serve as 

template for a fluorescence-detectable rolling-circle amplification reaction, only 

if the two target molecules are in close proximity (≤40 nm). This way, a specific 

mechanism of simultaneous recognition of two different molecules is translated 

to amplifiable circular DNA sequences, which are easily visualized due to the 

hybridization of complementary fluorescence-labeled oligonucleotides 

(Fredriksson et al. 2002; Gullberg et al.2004; Soderberg et al. 2006) (Figure 

10). 

In the PLA experiments, using Duolink® PLA reagents (Sigma) following the 

manufacturer's instructions, interactions between the R-region and either the 

front or back halves of CFTR were investigated in situ, preserving the 

cytoplasmic environment for optimal interaction. BHK cells were cultured on 

glass coverslips at low density. The cells were then induced by PA for 48 h, and 

stimulated (or not), at 37°C for 2 h prior to the assay, either with a cAMP cocktail 

(150 μM CPT-cAMP, 1 mM IBMX and 10 μM FSK) to activate PKA, or with 20 nM 

PMA to activate PKC, or with a combination of PKA and PKC stimulators to 

activate both kinases. The culture medium was removed; then cells were washed 

three times with PBS and fixed with 2% paraformaldehyde for 20 min at room 

temperature, followed by permeabilization/ blocking in a PBS solution containing 

0.1% TritonX-100/2% BSA for 45 min at room temperature.  
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Figure 10. Principle of the in situ proximity ligation assay. 

A, Samples are incubated with primary antibodies targeting the two proteins of 
interest. B, species-specific secondary antibodies conjugated to oligonucleotides 
(PLA probes plus and minus) are added to the reaction. C, a ligation solution 
containing oligonucleotides and ligase are added to the reaction. The 
oligonucleotides will hybridize with the PLA probes and form a closed circle only 
if the two proteins of interest are in close proximity. D, an amplification solution 
containing nucleotides and fluorescent oligonucleotides and polymerase are 
added to the reaction. One of the PLA probes function as a primer for a rolling-
circle amplification and the ligated circular oligonucleotide from C serve as a 
template. The fluorescent oligonucleotides hybridize to the amplification product 
creating the PLA signal. E, (1) the PLA signal is easily visible as a fluorescent red 
spot by fluorescence microscopy. The images are converted to a gray scale and 
a line is drawn following the cell membrane (2) guided by the brightfield image of 
each cell (3), using the ImageJ software (National Institutes of Health; 
http://rsb.info.nih.gov/ij/) 
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The cells were incubated at 4°C overnight with the two primary antibodies 

simultaneously in PBS/0.1% Triton X-100/0.2% BSA. In PLA, the primary 

antibodies targeting the two proteins investigated must be raised in different host 

species; here, the front half was detected by the rabbit polyclonal H-182 

antibody, the back half by the goat polyclonal C-19 antibody and the R-region by 

the mouse monoclonal MAB1660. Assays either used H-182 + MAB1660 to 

investigated FH-R interactions or C-19 + MAB1660 to investigated BH-R 

interactions. After removing the primary antibodies, the cells were washed three 

times with PBS/0.1% Triton X-100/0.2% BSA for 10 min, and then incubated with 

two PLA probes (oligonucleotide-tagged secondary antibodies) diluted 1:5 in 

PBS/0.1% Triton X-100/0.2% BSA for 60 min at 37°C. Each PLA probe, 

containing a PLUS or MINUS version of the oligonucleotide tag, recognizes a 

different species of primary antibody: anti-rabbit PLUS (for H-182), anti-mouse 

MINUS (for MAB1660) or anti-goat PLUS (for C-19).  The cells were then 

washed twice with PLA wash buffer A and incubated with the ligation mixture for 

30 min in water bath at 37°C, washed again with PLA wash buffer A, and 

incubated with the amplification mixture (containing fluorophore-tagged 

oligonucleotides that hybridize to the amplification product) for 100 min in water 

bath at 37°C, protected from light. After two final 10 min washes in PLA wash 

buffer B, the cells were mounted on a glass microscopy slide using the Duolink in 

situ mounting medium with DAPI, sealed and dried. Slides were visualized using 

filters 365/420 nm and 546/590 nm for DAPI and PLA orange fluorophore 
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visualization, respectively, in a Zeiss Axiovert II MOT Fluorescence Microscope 

(Dalhousie Cellular & Digital Imaging Facility of the Faculty of Medicine). 

For each condition tested, a total of 110-230 cells distributed in a minimum of 8 

different microscopic fields were measured in at least three independent 

experiments (three different cell passages) using 400x total magnification. Cell 

fluorescence (PLA signal) was calculated as corrected total cell fluorescence 

(CTFC), based on the signal intensity and the area of each cell. CTFC is used to 

normalize the distribution of the signal (fluorescence) inside the cell Every cell 

was delineated at the cell membrane, and the area,integrated density (the 

product of Area and Mean Gray Value) as well as three measurements of the 

background around each cell ) were calculated using the ImageJ software 

(National Institutes of Health; http://rsb.info.nih.gov/ij/) (Figure 10 E, image 2). 

CTCF was calculated as follows: CTCF = Integrated Density - (Area of selected 

cell x Mean fluorescence of background) (Gavet & Pines 2010; McCloy et al. 

2014). 

 

2.11 GENERATION OF RECOMBINANT R-REGION 

The DNA sequence encoding the wild-type R-region of CFTR (aa 635-836) was 

synthesized and incorporated into stock pUC57-Amp vectors using BamHI 5’ end 

and Sall 3’ end cloning sites by Bio Basic (Markham, Ontario). pUC57-R-region 

vectors were digested with BamHI and SalI restriction enzymes for 45min at 

37°C, and the fragment corresponding to the R-region (~600pb), visualized in 1% 

agarose gels (Figure 11 A), was extracted and purified using the GenepHlow™ 

http://rsb.info.nih.gov/ij/
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Gel Extraction Kit. The R-region fragment was ligated (Ligation: 16ºC for 15min, 

22ºC for 30min; using T4 DNA Ligase from New England Biolabs) into a modified 

version of a pET21 plasmid (pET-21(+) DNA - Novagen), containing a 

hexahistidine tag and the sequence encoding the B1 domain of Streptococcal 

protein G (GB1) incorporated into the multiple cloning site (kindly provided by Dr. 

David Langelaan, Dept. of Biochemistry & Molecular Biology, Dalhousie 

University) (Figure 12). GB1 is a 56-residue highly soluble and stable protein. It 

enhances expression levels, stability and refolding of fusion proteins and, 

because of its small size, it does not affect the structure of the target protein 

(Gronenborg & Clore, 1996; Zhou et al, 2001; Cheng & Patel, 2004). Ligation 

product was used to transform chemically competent DH5-α E. coli cells (New 

England Biolabs) which were plated in LB + AMP plates and left overnight at 

37°C. Ten colonies were selected for PCR (initial denaturing at 94ºC for 5 min 

followed by 30 cycles of denaturing at 94ºC for 30s, annealing at 57°C for 30s 

and extension at 72°C for 1min, followed by a final extension of 7min at 72°C; 

using 2x Taq FroggaMix) using T7 promoter forward (TAATACGACTCA 

CTATAGGG) and T7 terminator reverse (GCTAGTTATTGCTCAGCGG) primers 

and then visualized in 1% agarose gels (Figure 11 B). Colonies showing a band 

at ~950 pb (~600 pb from the R-region and ~350 pb from the vector) were 

inoculated in LB broth + AMP overnight at 37ºC. Plasmid DNA was isolated using 

QIAprep Spin Miniprep Kit and DNA sequences were confirmed by sequencing. 

pHis-GB1-R-region (HGB1-R) vectors were transfected into Rosetta BL21(DE3) 

competent cells (Novagen), which contains an extra chloramphenicol-resistant  
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Figure 11. Preparation of pHis-GB1-R-region vector. 

A, Preparation of the R-region insert. 1% agarose gel showing migration of 
pUC57-R-region vector, loaded in lane 1, after double digestion with BamHI 
and Sall, resulting in fragments at 2710bp and 606bp. The fragment at 606bp, 
corresponding to the R-region, was cut out of the gel and used for gel 
extraction and purification for subsequent ligation into pHis-GB1 vector. B, 
Ligation of R-region insert into pHis-GB1 vector. After R-region insert (from A) 
ligation into pHis-GB1 vector and transformation of DH5-α E. coli cells with the 
ligation product, ten colonies were selected for colony PCR and DNA 
amplicons from each colony were loaded in lanes 1-10 of a 1% agarose gel. 
Migration resulting in a fragment at ~950bp indicates the ligation of the R-
region insert (606bp) into the pHis-GB1 vector (~350bp). Lane 11 was loaded 
with PCR mix without DH5-α cells. Visualized by RedSafe staining 

A 

B 
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Figure 12. Amino acid sequence of the modified pET21 plasmid. 

A pET21 b(+) plasmid (Novagen) was modified by the insertion of a hexahistidine 

tag (in purple), a GB1 protein (in blue), and a linker (in green) containing the TEV 

protease restriction site (underlined). The sequence of the R-region (aa 635-836 

from the human CFTR sequence; in bold) was inserted into the plasmid multiple 

cloning site. PKC and PKA sites within the R-region are underlined and coloured 

in red and gold, respectively. 
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plasmid encoding extra tRNA that enhance the expression of eukaryotic proteins, 

and platted in LB+AMP+CAM.  

 

2.12 EXPRESSION AND PURIFICATION OF RECOMBINANT R-REGION 

A single colony of Rosetta BL21 (DE3) strain harboring HGB1-R vector was used 

to grow a 5 ml starter culture (LB + AMP + CAM) overnight and then used to 

inoculate 1 L of LB + AMP + CAM). Cells were grown in a shaker (200 rpm) at 

37°C until an absorbance of 0.6-0.8 (at 600 nm) was attained, followed by 4 h 

induction with 0.5 mM IPTG under same conditions. Bacteria were pelleted by 20 

min centrifugation at 4,000 rpm and resuspended in 20 ml of denaturing lysis 

buffer (20 mM Tris-HCl pH 8.0, 250 mM NaCl, 8 M urea). After sonication, 

bacteria were centrifuged at 14,500 rpm for 20 min and the supernatant was 

loaded into a column containing 5 ml of immobilized metal affinity 

chromatography (IMAC) medium (GE healthcare) that was pre-charged with Ni2+ 

ions and pre-equilibrated with lysis buffer. The column was then washed with 

lysis buffer containing 5 mM imidazole and the fusion protein was eluted by lysis 

buffer containing 300 mM imidazole and 5 mM BME. The choice for denaturing 

conditions during purification was due to the poor yield of fusion protein when 

native buffers (without the addition of 8 M urea) were used. Protein expression 

and purification yield were verified by 12% SDS-PAGE stained with Coomassie 

brilliant blue. Unfolding of the R-region fusion protein was performed by overnight 

dialysis against a 10 mM HCl solution containing 5 mM BME. Dialysis product 

was concentrated using AMICON centrifugal filters (MWCO 10 kDa) to a final 
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volume of 1 mL. 2 mM of DTT was added to the concentrated protein before the 

pH was adjusted to 7.5-8.0 using tris-base pH 11.0. Protein concentration was 

measured using the Bradford method.  

An empty HGB1 vector was expressed in BL21 cells and purified using the same 

protocol as the fusion R-region protein with the difference being the use of native 

buffers (without 8 M urea). Protein expression and purification yield of the empty 

vector was verified by 18% SDS-PAGE stained with Coomassie brilliant blue. 

This construct was used as a negative control for protein-protein interaction 

experiments (see below).  

 

2.13 PHOSPHORYLATION OF RECOMBINANT R-REGION 

Phosphorylation of the concentrated purified fusion R-region was performed by 

adding 100 nM PKA + 2 mM Mg+2-ATP, for PKA phosphorylation; by adding 2 

mM Mg+2-ATP + 5 nM PKC + PKC lipid activator for PKC phosphorylation; or by 

adding 100 nM PKA + 2 mM Mg+2-ATP + 5 nM PKC + PKC lipid activator for PKA 

+ PKC phosphorylation, followed by 2 h incubation at 30°C. To verify the 

phosphorylation status of the R-region, aliquots (1.25 µg) were loaded into 12% 

SDS-PAGE and stained with Coomassie brilliant blue or Pro-Q diamond 

phosphoprotein gel stain. For Coomassie stain, gels were incubated in 0.1% 

Coomassie brilliant blue + 50% methanol + 10% glacial acetic acid for 40 min 

and destained overnight in 40% methanol + 10% glacial acetic acid. For the 

selective phosphoprotein gel stain, gels were fix in 50% methanol + 10% glacial 

acetic acid for 1 h, followed by three washes in ultrapure water for 10 min each 
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before incubation in Pro-Q diamond phosphoprotein gel stain for 90 min 

protected from light. Gels were then destained in 20% acetonitrile + 50 mM 

sodium acetate, pH 4.0 followed by two washes of 5 min in ultrapure water. 

Bands were imaged using the VersaDoc 4000 MP system with Quantity one 

software using the Cy3 filter and quantified using the ImageJ software (National 

Institutes of Health; http://rsb.info.nih.gov/ij/). 

 

2.14 PROTEOMIC ANALYSIS OF HGB1-R-REGION 

To verify the phosphorylation status of the R-region, aliquots of purified fusion R-

region that were left untreated or after PKA, PKC, PKA + PKC treatment were 

separated in 12% SDS-PAGE and stained with Coomassie brilliant blue and 

bands corresponding to the R-region fusion protein were sent to the Dalhousie 

Biological Mass Spectrometry Core Facility of the Faculty of Medicine. 

The excised gel slices, stained with Coomassie brilliant blue, were processed for 

LC-MS/MS as previously described (Shevchenko et al., 2007), with minor 

modifications. Briefly, gel slices were rinsed for two hours in water and then cut 

into ~1 mm cubes and rinsed twice with 200 µL of dH2O. Gel cubes were 

reduced with 10 mM dithiothreitol (DTT) at 56°C for 30 minutes, alkylated with 55 

mM iodoacetamide for 30 minutes at room temperature in the dark, and 

dehydrated with 200 µL ACN. Dried gel cubes were saturated with 20 µg/mL of 

trypsin protease (Pierce Thermo Scientific) for 2 hours, then 20 µL of 50 mM 

ammonium bicarbonate was added and the samples were incubated overnight at 

37°C. Digested peptides were extracted from the gel cubes on a gentle vortex 

http://rsb.info.nih.gov/ij/
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shaker using 100 µL of 50% ACN in 5% formic acid. The samples were finally 

dried to a pellet in a vacuum centrifuge and subsequently resuspended in 20 µL 

of a 3% ACN, 0.5% formic acid solution. The samples were transferred to a 300 

µL HPLC vial and subject to analysis by LC-MS/MS on a VelosPRO orbitrap 

mass spectrometer (ThermoFisher Scientific) equipped with an UltiMate 3000 

Nano-LC system (ThermoFisher Scientific). Chromatographic separation of the 

digests was performed on PicoFRIT C18 self-packed 75 µM x 60 cm capillary 

column (New Objective, Woburn, MA) at a flow rate of 300 nl/min. MS and 

MS/MS data was acquired using a data-dependent acquisition method in which a 

full scan was obtained at a resolution of 30,000, followed by ten consecutive 

MS/MS spectra in both higher-energy collisional dissociation (HCD) and collision-

induced dissociation (CID) mode (normalized collision energy 36%). Internal 

calibration was performed using the ion signal of polysiloxane at m/z 445.120025 

as a lock mass. Raw MS data were analyzed using Proteome Discoverer 2.2 

(ThermoFisher Scientific). Peak lists were searched against the human CFTR 

database (UniProtKB - P13569) as well as the E. coli BL21 database and cRAP 

database of common contaminants (Global Proteome Machine Organization). 

Cysteine carbamidomethylation was set as a fixed modification, while methionine 

(Met) oxidation, N-terminal Met loss, and phosphorylation on serine, threonine, 

and tyrosine were included as variable modifications. A mass accuracy tolerance 

of 5 ppm was used for precursor ions, while 0.02 Da for HCD fragmentation or 

0.6 Da for CID fragmentation was used for product ions. Percolator was used to 

determine confident peptide identifications using a 0.1% false discovery rate 
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(FDR). Site-specific determination of phosphorylated amino acids was confirmed 

using PhosphoRS (ThermoFisher Scientific) (Taus et al, 2011). 

 

2.15 MICROSCALE THERMOPHORESIS (MST) 

Thermophoresis is the directed movement of molecules induced by thermal 

gradients. This physical phenomenon strongly depends on molecular properties 

such as size, charge, hydration shell and conformation. After interaction of two 

molecules, one or more of those parameters is altered, modifying the movement 

of the molecule through the thermal gradient. In MST experiments an infrared 

laser creates the thermal gradient and the molecules movement through the 

gradient are detected and quantified by fluorophores attached to one of the 

binding partners (Seidel et al. 2013; Jerabek-Willemsen et al. 2014; Schubert & 

Längst, 2015) (Figure 13). 

In our MST experiments we used six 5-carboxyfluorescein (5-FAM)-fluorescent-

tagged CFTR polypeptides (N-terminal lasso motif, cytoplasmic loops 1-4 and C-

terminal tail; see table 3) to measure protein-protein interaction with the 

recombinant R-region. CFTR polypeptides were diluted in MST buffer (50 mM 

Tris-HCl pH 7.4, 150 mM NaCl, 10 mM MgCl2, 0.05% Tween-20) to a stock 

concentration of 2µM. Purified fusion R-region was phosphorylated by PKA or 

PKA + PKC or left untreated (basal control). A 350 µM stock concentration of 

purified fusion R-region (basal, PKA or PKA + PKC) was titrated 3/1 into 12 tubes 

using 50 mM Tris-HCl pH 8 + 2 mM DTT. 5-FAM-CFTR polypeptides were added 

to each tube to a final concentration of 150 nM followed by a 10 min incubation at 
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Figure 13. Microscale Thermophoresis technical setup. 

(A) In thin glass capillaries, the movement of the optically visible interaction 

partner through temperature gradients, induced by an infrared laser, is monitored 

by optically focusing the centre of the capillary. (B) MST time trace - a profile 

depicting the movement of molecules in a temperature gradient. After 5 sec of 

cold phase (laser off), the laser is switched on and establishes the temperature 

gradient. After the initial T-Jump phase, in which heat induction results in the 

decrease of fluorescent dye signal yield, the thermophoretic movement takes 

place. The laser is turned off again after 30 sec and the molecules diffuse back 

into the observation window. (C) Results of a typical MST experiment: 12-16 

capillaries containing a low nanomolar concentration of a fluorescent interaction 

partner and increasing concentrations of an unlabelled ligand. The MST profiles 

are recorded over time (three of the MST traces are shown in the graph on the 

left side). The normalized fluorescence of all MST traces is plotted against the 

concentration of the ligand (graph on the right). Data points were fitted to obtain 

binding parameters such as the binding affinity (black - unbound; grey - partially 

bound; red - fully bound state). Reproduced from Studying epigenetic interactions 

using MicroScale Thermophoresis (MST) by Schubert T & Langst G (2015), 

licensed under CC BY 4.0. Minor modifications made. 

https://www.aimspress.com/biophysics/article/392/fulltext.html
https://www.aimspress.com/biophysics/article/392/fulltext.html
https://www.aimspress.com/biophysics/article/392/fulltext.html
https://www.aimspress.com/biophysics/article/392/fulltext.html
https://www.aimspress.com/biophysics/article/392/fulltext.html
https://www.aimspress.com/biophysics/article/392/fulltext.html
https://creativecommons.org/licenses/by/4.0/
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room temperature protected from light and loaded into monolith NT.115 standard 

capillaries. MST experiments were performed in a Monolith NT.115 system using 

the MO.Control software (NanoTemper Technologies). 

Samples were exposed to an infra-red laser at ‘high’ power and excited with a 

green LED-filter (at 60% power) and thermophoresis of fluorescent signals 

measured during 20 sec. Affinity curves with dissociation constant (Kd) values 

were obtained by plotting MST raw data into the MO.Affinity Analysis software 

(NanoTemper Technologies). The Kd values were derived from monitoring the 

target’s (CFTR polypeptides) MST signals over a dilution series of the ligand (R-

region). The ligand concentration where 50% of the target is bound is the Kd 

value. Because the GB1 was used as a fusion partner to compensate for 

solubility issues of the R-region, MST experiments following the same conditions 

as described above, were performed using the GB1 protein (expressed from 

empty HGB1 vector) as the binding partner to the six CFTR polypeptides to verify 

for any unspecific interaction.   

 

2.16 STATISTICAL ANALYSIS 

Results are reported as the mean ± SEM with N=number of independent 

experiments. When comparing multiple values, differences were assessed using 

one-way ANOVA, followed by Dunnett’s or Tukey’s post test corrections for 

multiple comparisons. When comparing two groups, differences were assessed 

using Student’s t test. For all comparisons, a value of p<0.05 was considered 

significant.  
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CHAPTER 3: RESULTS 

 

3.1 CO-EXPRESSION AND CO-LOCALIZATION OF SPLIT-∆R AND WILD-TYPE OR MUTANT 

R-REGIONS 

Previous works have used split-CFTR constructs for biochemical and functional 

studies. Several studies have tested the functional and physical association of 

split-CFTR channels and demonstrated that such channels display the typical 

features of full-length CFTR, which includes phosphorylation and ATP-

dependence for gating, slow channel conductance, and open-locked state by use 

of non-hydrolysable AMP analogs (Ostedgaard et al. 1997; Chan et al. 2000; 

Csanady et al. 2000; Chappe et al. 2005; Seavilleklein et al. 2008). Our lab has 

previously demonstrated that split-ΔR constructs lacking the R-region (aa 1-634 

+ aa 837-1480) form constitutively active channels that acquire the ability to 

respond to PKA when co-expressed with the R-region (aa 635-836). Moreover, 

PKA was shown to increase the interaction of the phosphorylated R-region to 

both halves of split-ΔR CFTR (Chappe et al. 2005). For my thesis work, I used 

the same split-CFTR constructs, expressing the CFTR protein as 3 separated 

polypeptides (front half (FH), back half (BH), and R-region) to pursue further 

insights on the phosphorylation-induced inter-domain interactions within CFTR, 

with focus on the R-region dynamics. 

Because a mutant R-region construct lacking all seven PKC consensus 

phosphorylation sites (R-7CA) had its ability to interact with split-ΔR after 

phosphorylation dramatically reduced (Seavilleklein et al. 2008), here, I decided 
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to use four R-region constructs (R-6CA, R-S641A/T682A, R-S686A and R-

S686D) containing different combinations of PKC site mutations to investigate the 

roles of specific PKC consensus sites in phosphorylation-dependent R-region 

interactions with other parts of the channel. The selection of PKC sites for this 

study was based on the functional effects of mutations at PKC sites revealed by 

patch-clamp studies of full-length CFTR (Chappe et al. 2004). Mutations S641A 

and T682A generated highly responsive channels, hence identifying them as 

inhibitory sites or gain-of-function mutations. Conversely, mutation S686A 

generated low responsive channels, hence identifying it as a stimulatory site or a 

loss-of-function mutation (Chappe et al. 2004). In order to further explore the role 

of the PKC site S686, a construct where S686 is the only active PKC site (R-

6CA) and a construct where a phosphomimetic substitution at S686 was applied 

(R-S686D) were used in my analysis. 

Expression of the three CFTR fragments was determined by immunoblotting of 

cell lysates stably co-expressing split-∆R with either WT (split-ΔR/R-WT; 

hereafter SR-WT) or mutated R-regions (R-6CA, R-S641A/T682A, R-S686A or 

R-S686D) using antibodies recognizing each of the three polypeptides. Front and 

back halves of CFTR were detected in blotting membranes as a ~62kDa band by 

MM13-4 and M3A7 antibodies, respectively. A ~23kDa band was observed when 

membranes were exposed to the R-region specific antibody MAB1660. 

All antibodies used to detect the expression of the front and back halves or R-

region of CFTR were tested in lysates of non-transfected BHK cells (BHK-21) 

(Figure 14 A, far right row in each blot) for specificity. MAB1660, the antibody 
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detecting the R-region of CFTR is not phospho-sensitive as it was able to 

recognize the unphosphorylated and phosphorylated versions of the R-region 

similarly (Seavilleklein et al, 2008) 

Although expression of mutant R-regions was similar to the WT polypeptide, the 

FH expression in SR-S641A/T682A was lower (69% of WT; p<0.05) (Figure 14 

B). 

Following proof of expression of the three polypeptides in BHK cells, the next 

step was to determine if split-∆R and R-region can reassemble and co-localize at 

the cell periphery. Detection of the wild-type and mutant R-regions (SR-6CA, SR-

S641A/T682A and SR-S686A) in BHK cells as well as their co-localization with 

the split-ΔR were previously demonstrated using fluorescence immunolabelling 

with specific monoclonal antibodies followed by confocal microscopy visualization 

(Chappe et al, 2005; Amer, 2010). Here, a similar approach was used, 

immunolabelling the 3 CFTR polypeptides to demonstrate the successful re-

assembly in the SR-S686D construct. This was confirmed by double labeling the 

R-region + FH (using H-182 antibody for the FH and MAB1660 antibody for the 

R-region) or the R-region + BH (using C-19 antibody for the BH and MAB1660 

antibody for the R-region) followed by visualization of overlapping signals near 

the cell surface by confocal microscopy. Probing non-transfected BHK cells or 

omitting the two primary antibodies in SR-S686D showed no signal, confirming 

labeling specificity (Figure 15). 
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Figure 14. Expression of the Split-CFTR front half, back half and R-region 
Polypeptides in BHK cells. 

A, Representative Western blots showing Split-CFTR front half (FH), back half 
(BH) and R-region in cells expressing SR-WT, SR-6CA, SR-S641A/T682A, SR-
S686A and SR-S686D, detected with MM13-4 (FH), M3A7 (BH), or MAB1660 
(R-region) monoclonal antibodies. Non-transfected BHK cells (BKH-21) probed 
with each of the antibodies are shown in the far right for each blot. B, Histogram 
representing averages of expression levels measured by band density. Band 
densities were normalized based on the total protein loaded in each well, 
measured after membrane staining with amido-black (shown below each blot). 
All densities were measured using the ImageJ software (National Institutes of 
Health; http://rsb.info.nih.gov/ij/). Levels for each mutant construct are expressed 
as a percentage of that for the wild-type. Values are means ± SEM for 3 
independent experiments; *p<0.05. 
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Figure 15. Co-localization of Split-CFTR FH, BH and R-region Polypeptides 
in BHK cells expressing SR-S686D. 

Left panel, representative confocal microscopy images of BHK cells co-

expressing the split-CFTR front half (FH) or back half (BH) in green and the 

S686D-R-region in red. Upper row shows FH and R-region labeling and bottom 

row show BH and R-region labeling, with membrane co-localization, in yellow, 

indicated by arrows. FH, BH and R-region were detected by H-182 (1:1000), C-19 

(1:500) and MAB1660 (1:500) antibodies, respectively. Right panel, negative 

controls images where primary antibodies were omitted or where non-transfected 

BHK cells were probed. 



101 
 

3.2 CO-EXPRESSED SPLIT-∆R AND MUTANT R-REGIONS PRODUCE ACTIVE CHANNELS 

After confirmation of expression and membrane localization of the two halves 

plus the R-region polypeptides in BHK cells, I investigated the activity of re-

assembled CFTR channels by performing iodide efflux assays using confluent 

monolayers of BHK cells that stably express WT or mutant constructs. The use of 

nonradioactive iodide efflux assays to measure ion flow from CFTR channels is a 

fast and convenient method to access real time ion movement from large groups 

of cells and has the ability to sense the effect of channel modulators (Hyde et al. 

1993; Chang et al, 1993; Long & Walsh, 1997). Thus, this assay is suitable to 

test the functional viability of the split-CFTR channel constructs studied here. 

Iodide ions serve as a tracer for chloride and are easily detected by an iodide-

specific electrode. In my assay, iodide ions flowing outside the cells were traced 

for 15 minutes with aliquots collected every minute for iodide concentration 

measurement (see section 2.9 in Materials and Methods). 

Iodide efflux traces for SR-WT are shown in Figure 15 B with iodide efflux peaks 

induced by PKA and PKC + PKA stimulation indicated by arrows. As expected, 

because of the presence of the R-region, an increase in the iodide efflux rate was 

measured after cAMP cocktail stimulation (PKA agonists) and a further increase 

was observed when cells were pre-treated with PMA (PKC agonist) 2 h prior to 

cAMP stimulation (0.33 ± 0.03 to 0.60 ± 0.10 min-1, p<0.01). Iodide efflux rate 

peaks in response to PKA and PKC + PKA in SR-WT were used to compare with 

the ones observed in mutant constructs. To confirm that responses to PKA and 

PKC agonists are dependent on the presence of the R-region, I performed iodide 
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effluxes using the same conditions as used for SR-WT in split-∆R cells, which 

lack the R-region, and responses to PKA or PKC + PKA phosphorylation were 

abolished (Figure 16 A). Iodide efflux traces for each mutant at basal or after 

PKA or PKC + PKA stimulations are shown in Figures 16 C-F. No significant 

peaks were observed in any of the mutants at basal conditions. However, 

baseline levels of iodide release from SR-S686D were significantly higher than 

any other construct (0.23 ± 0.03 min-1 for SR-S686D compared to 0.11 ± 0.01 

min-1 for SR-WT; 0.10 ± 0.01 min-1 for SR-6CA; 0.13 ± 0.01 min-1 for SR-

S641A/T682A; 0.09 ± 0.02 min-1 for SR-S686A, p<0.001 for all constructs), 

indicating that this mutation disturbs the inhibitory role of the unphosphorylated 

R-region, creating a constitutive activity for this mutant channel (Figure 17 A and 

B).   

As described in section 2.9 in Material and Methods, in order to reflect only the 

effect of phosphorylation on CFTR channels’ activity, the basal values shown 

above for each construct were subtracted from the values obtained after cAMP 

and PMA + cAMP stimulations, which are discussed next. 

All mutant constructs were functional with respect to stimulation by the cAMP 

cocktail (Figure 16 G). SR-6CA, SR- S641A/T682A and SR-S686A displayed 

iodide efflux peaks similar to SR-WT. SR-S686D peak was two-fold higher than 

other constructs (0.60 ± 0.17 for SR-S686D compared to 0.33 ± 0.03 min-1 for 

SR-WT, p<0.01; 0.40 ± 0.04 min-1 for SR-6CA, p<0.05; 0.26 ± 0.05 min-1 for SR-

S641A/T682A, p<0.05; 0.26 ± 0.04 min-1 for SR-S686A, p<0.01). These results 
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indicate that none of the mutated sites are essential for PKA-dependent 

activation of CFTR (Figure 16 C-F and white bars at Figure 16 G). 

In cells pre-treated with PMA before cAMP stimulation, a further increase in 

iodide efflux peaks was observed in SR-6CA (0.40±0.04 min-1  for cAMP to 

0.53±0.04 min-1 for PMA + cAMP, p<0.05) (Figure 16 C and 16 G) and SR-

S641A/T682A (0.26 ± 0.05 min-1 for cAMP to 0.41 ± 0.07 min-1 for PMA + cAMP, 

p<0.05) (Figure 16 D and 16 G). SR-S686A did not respond to PMA pre-

treatment, indicating that the PKC enhancing effect is lost in the absence of 

serine 686 (0.26 ± 0.04 min-1 for cAMP to 0.25 ± 0.03 min-1 for PMA + cAMP; 

p>0.4) (Figure 16 E and 16 G). Cells expressing SR-S686D also did not respond 

to PMA pre-treatment (0.60 ± 0.17 min-1 for cAMP to 0.69 ± 0.22 min-1 for PMA + 

cAMP) (Figure 16 F and 16 G). However, because stimulation with cAMP alone 

induced very high iodide efflux peaks in SR-S686D, which were equivalent to 

those observed in SR-WT cells after PMA + cAMP treatment (0.60 ± 0.17 min-1 

for S686D after cAMP and 0.60 ± 0.10 min-1 for SR-WT after PMA + cAMP; 

p>0.5) (Figure 16 G), The conclusion is that the phosphomimetic mutation 

introduced at this site yields a constitutive enhancing effect where maximal efflux 

levels are achieved without the need of PKC as well as a mild basal (i.e. 

constitutive) activity of CFTR.  

Taken together these data indicate that all re-assembled SR-CFTR channels are 

functional (responsive to PKA) and consensus PKC site S686 is required for the 

enhancing effect of PKC, further confirming the critical role of S686 in the  
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Figure 16. Basal and phosphorylation-induced activity of Split∆R/R 
constructs. 

Iodide effluxes were measured from BHK cell monolayers induced with 10µM 
ponasterone A (PA) for 48h. A, Iodide efflux from cells expressing SplitΔR in the 
absence of the R-region. No peaks were observed after addition of PKA (150μM 
CPT-cAMP, 1mM IBMX and 10μM FSK, dark circles) or PKA+PKC (150μM CPT-
cAMP, 1mM IBMX ,10μM FSK and 20nM PMA, dark triangles) stimulants 
starting at time t=4min. Peaks indicating the effect of PKA stimulation (dark 
circles) or PKC+PKA stimulation (dark triangles) added from time t=4min on 
iodide effluxes from cells expressing SR-WT (B), SR-6CA (C), SR-S641A/T682A 
(D), SR-S686A (E) and SR-S686D (F) are indicated by arrows. No peak was 
observed in cells left untreated (basal activity, open circles). G, average iodide 
efflux rates at peak (efflux rate at peak - efflux rate at basal at the time of the 
peak; see section 2.9 in materials and methods) after PKA (white bars) and PKC 
+ PKA (black bars) stimulations for each of the constructs displayed in A-F. 
Significance (*p<0.05) was calculated between PKC + PKA and PKA 
stimulations for each construct. Values are means ± SEM of a minimum of 4 
independent experiments performed in duplicate. 
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Figure 17. Iodide efflux rates at basal conditions. 

Iodide effluxes were measured from BHK cell monolayers, after induction with 
10µM ponasterone A (PA) for 48h, at 1 min intervals. A, iodide efflux traces from 
unstimulated cells (basal conditions) expressing SR-WT, or SR-6CA, or SR-
S641A/T682A, or SR-S686A or SR-S686D. B, Histogram representing the 
average of iodide efflux rates measured from time t=4min (after stable baseline 
was achieved) to t=12min (before cells start to rupture) for each of the constructs 
displayed in A. Significance (*p<0.001) was calculated in relation to values 
measured in SR-WT. Values are means ± SEM of a minimum of 4 independent 
experiments performed in duplicate. 
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channel regulation as reported previously with full-length CFTR channels 

(Chappe et al. 2004). 

 

3.3 PHOSPHORYLATION CHANGES R-REGION ASSOCIATION WITH BOTH HALVES OF 

CFTR 

After confirming that all mutant constructs can assemble into functional CFTR 

channels at the cell membrane, interaction of the R-region with both CFTR 

halves was assessed by in situ proximity ligation assay (PLA). For each assay, 

two primary antibodies, raised in different species, either targeting FH+R-region 

or BH+R-region must recognize their specific target simultaneously. If targets 

recognized by the two primary antibodies are localized within 40 nm distance 

(close proximity), two unique complementary DNA strands attached to the 

secondary antibodies will be able to hybridize, circularize and serve as primers 

for a rolling circle amplification (PCR reaction) that uses fluorophore-tagged 

oligonucleotides which generate the PLA signal. This way, concurrent binding of 

two antibodies to two very close epitopes can be translated to an amplified 

fluorescence signal that can be easily visualized by fluorescence microscopy. 

Fluorescence can be semi-quantified using ImageJ software (see section 2.10 in 

Material & Methods for details). Antibodies H-182 and C-19 detected the front 

and back halves of CFTR at the cell surface of BHK cells expressing SR-WT. No 

signal was observed in the absence of primary antibodies or in non-transfected 

BHK cells (BHK-21), showing their specificity (Figure 18 E and F). Detection of 

front and back halves by H-182 and C-19 was not affected by phosphorylation 

(Figure 18 A - D).  
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First, PLA signals were imaged in BHK cells stably expressing SR-WT stimulated 

with either cAMP cocktail, or PMA, or PMA + cAMP cocktail or left untreated 

(basal conditions) (Figure 19 A, B). At basal conditions, the unphosphorylated R-

region showed the same level of interaction, measured by corrected total cell 

fluorescence (CTCF), with both CFTR halves. The R-region interaction with the 

FH (FH-R)  significantly increased by 45% from basal conditions after cell 

stimulation with cAMP cocktail (CTCF = 3.90 ± 0.18 at basal and 5.67 ± 0.55 

after cAMP; p<0.01) and further increased to 7.91 ± 0.21 (p<0.0001) after PMA + 

cAMP cocktail stimulation. Stimulation with PMA alone did not affect FH-R 

interaction, which remained similar to basal conditions (Figure 19 A, C). The R-

region interaction with the BH (BH-R) was enhanced by 42% when the cells were 

stimulated by the cAMP cocktail (CTCF = 3.41 ± 0.20 at basal and 4.82 ± 0.39 

after cAMP stimulation; p<0.01). No changes in BH-R interaction was observed 

after PMA or PMA + cAMP cocktail treatments (Figure 19 B, C).  

These results indicate that PKA phosphorylation, which supports CFTR function, 

induces stronger interactions of the R-region with both halves of the CFTR 

channel. Interestingly, maximal activation of CFTR, which is induced by PKC + 

PKA stimulation, promotes a very strong interaction of the R-region with the front 

half of CFTR only. 

 



109 
 

 

Figure 18. Specificity and phospho-sensitivity tests for CFTR antibodies 
used in proximity ligation assays. 

BHK cells expressing SR-WT were PKA-stimulated with cAMP cocktail (150 μM 
CPT-cAMP, 1 mM IBMX and 10 μM FSK) or PKC-stimulated with 20 nM PMA for 
2 h or left untreated (basal). Cell lysates were probed with CFTR antibody H-182, 
targeting the front half (A), or CFTR antibody C-19, targeting the back half (B) 
showing bands at ~62 kDa. Detection was not affected by phosphorylation of the 
R-region as shown in the histograms representing the bands for H-182 (C) and 
C-19 (D) antibodies. Band densities were normalized based on the total protein 
loaded in each well, measured after membrane staining with amido-black 
(showed bellow each blot). All densities were measured using the ImageJ 
software (National Institutes of Health; http://rsb.info.nih.gov/ij/). Values for PKA 
or PKC phosphorylation are expressed as a percentage of that for basal 
conditions (unphosphorylated). Values are means ± SEM for 3 independent 
experiments. Confocal microscopy images of BHK cells expressing SR-WT 
showing detection of the front (E) and back (F) halves at the cell surface using H-
182 and C-19 antibodies. Negative control images where primary antibodies 
were omitted or where non-transfected BHK cells were used are shown as 
indicated. 
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Figure 19. R-region Interaction with the FH and the BH of CFTR. 

Representative fluorescence microscopy images from in situ PLA experiments 
showing FH-R (A), and BH-R (B) interactions (red dots). SR-WT cells were either 
left untreated (Basal), or PKA stimulated with 150μM CPT-cAMP+1mM 
IBMX+10μM FSK, or PKC stimulated with 20nM PMA, or PKA+PKC stimulated 
with 150μM CPT-cAMP+1mM IBMX+10μM FSK+20nM PMA. Cells expressing 
SplitΔR CFTR (with no R-region) and full-length CFTR were used as negative 
and positive controls, respectively. Cell nuclei were stained with DAPI (blue). FH, 
BH and R-region were detected by H-182, C-19 and MAB1660 antibodies, 
respectively. Assays either used H-182+MAB1660 to investigate FH-R 
interactions or C-19+MAB1660 to investigate BH-R interactions. C, Histogram 
representing averages of the corrected total cell fluorescence (CTCF) for the FH-
R and BH-R interactions, measured in BHK cells in each condition displayed in A 
and B (see section 2.10 in materials & methods for CTCF calculation). Statistical 
significance (*p<0.01; **p<0.0001) was calculated in relation to basal values for 
each half. Values are means ± SEM for a minimum of 5 independent 
experiments 
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3.4 MUTATIONS AT CONSENSUS PKC SITES DISTURB R-REGION INTERACTION WITH 

CFTR HALVES  

After establishing how the wild-type R-region interactions with both halves of 

CFTR change depending on its phosphorylation status, I asked whether 

mutations at important PKC sites (S641A/T682A, S686A, S686D, and 6CA) 

modify the R-region dynamic interactions (Figure 20 A-D), since mutations at 

PKC sites are known to affect channel function (Chappe et al, 2004). 

In cells expressing the SR-CFTR with the two inhibitory PKC sites inactivated 

(SR-S641A/T682A; Figure 20 A), the R-region interaction with the BH was 3.5-

fold higher than that measured with SR-WT under basal conditions (CTCF = 11.8 

± 0.91 compared to 3.41 ± 0.20, respectively; p < 0.0001), whereas the FH-R 

interaction was reduced by 2.5-fold compared to SR-WT (CTCF = 1.45 ± 0.27 in 

SR-S641A/T682A and 3.90 ± 0.18 in SR-WT; p < 0.0001) (Figure 20 E, F). This 

reduction was too extensive to be explained only by the lower expression of the 

FH in SR-S641A/T682A (see Figure 14 B). The basal weak FH-R interactions, 

nonetheless, were gradually increased to very high levels by stimulation of PKA, 

PKC, and PKC + PKA in this highly functional channel. From basal (CTCF = 1.45 

± 0.28) to PKA stimulation (CTCF = 4.24 ± 0.65; p < 0.01), a ~3-fold increase 

was observed. After PKC stimulation, a ~6-fold increase from basal occurred 

(CFTC = 9.26 ± 0.64; p < 0.0001), and the highest measured interaction (9-fold 

increase from basal) was obtained following PKC + PKA stimulation (CTCF = 

13.01 ± 1.11; p < 0.0001). PKA stimulation in SR-S641A/T682A brings FH-R 

interactions back to the level of SR-WT (CTCF = 4.24 ± 0.65 and 5.67 ± 0.55 
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respectively; p>0.1), whereas PKC and PKC + PKA stimulations induced FH-R 

interactions 3-fold and 1.5-fold stronger than observed in SR-WT (PKC: 3.30 ± 

0.55 for WT and 9.26 ± 0.64 for SR-S641A/T682A; PKC + PKA: 7.91 ± 0.21 for 

WT and 13.01 ± 1.11; p<0.0001 for both comparisons) (Figure 20 A, E). On the 

other hand, BH-R interaction was back to the WT levels after PKA stimulation 

and remained even at all phosphorylation conditions (Figure 20 A, F). These 

results suggest that when the R-region is unphosphorylated, S641 and T682 are 

important for interactions with both halves; however, when phosphorylated, those 

sites are only involved in FH-R interactions. Since full-length channels with 

S641A and T682A mutations display larger functional responses to PKA and 

PKC phosphorylation than WT CFTR (Chappe et al. 2004), the conclusion is that 

the increased interaction of the phosphorylated R-region with the FH, as 

measured here, plays a key role in CFTR functional response to phosphorylation. 

In full-length CFTR with the S686A mutation, the functional response to PKA was 

reduced and the enhancing effect of PKC was lost (Chappe et al. 2004). In the 

present study, alanine substitution in Ser686 (SR-S686A) strongly reduced the 

basal BH-R interaction compared to the WT (> 50% decrease; CTCF = 3.41 ± 

0.20 in WT to 1.56 ± 0.14 in S686A; p < 0.001) (Figure 20 B, F) and shifted the 

R-region towards the FH, increasing the FH-R interaction by 25% under basal 

conditions (CTCF for WT was 3.90 ± 0.18 and 4.86 ± 0.35 for S686A; p<0.05) 

(Figure 20 B, E). Levels of BH-R interaction remained lower after PKA and PKC 

+ PKA stimulations, compared to SR-WT (PKA: CTCF = 1.51 ± 0.20 for S686A 

and 4.82 ± 0.39 for WT; p<0.0001and PKC + PKA: 1.82 ± 0.19 for S686A and 
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3.28 ± 0.15; p<0.02) (Figure 20 B, F). Interestingly, but not unexpectedly, FH-R 

interaction after PKC stimulation was abolished (CTCF = 0.51 ± 0.14 for S686A 

compared to 3.29 ± 0.24 for WT; p<0.0001) and FH-R interaction after PKC + 

PKA stimulation was dramatically reduced in this construct (CTCF = 3.49 ± 0.13 

for S686A and 7.91 ± 0.21 for WT; p<0.0001) (Figure 20 B, E). In SR-S686A, 

PKC + PKA phosphorylation induced a reduction (~45%) rather than a further 

enhancement in FH-R interactions when compared to PKA phosphorylation 

alone (CTCF = 6.15 ± 0.17 for PKA and 3.49 ± 0.13 for PKC + PKA; p<0.0001), 

suggesting that serine 686 plays a key role in the PKC further enhancement in 

FH-R interactions as observed in SR-WT (Figure 20 C). 

In cells expressing the phosphomimetic mutation S686D, the functional opposite 

mutation of S686A, it was expected to see contrasting results and this was 

partially achieved. Unlike SR-S686A, R-region interactions with both halves 

resembled those of SR-WT under basal conditions, restoring proper basal 

interaction with the BH (Figure 20 C, F). R-region interaction with the FH after 

PKC stimulation was re-established to levels even higher than the WT (CTCF = 

4.54 ± 0.46 for S686D and 3.29 ± 0.24 for WT; p<0.05), and after PKA + PKC 

stimulation, was recovered to the WT levels (CTCF = 6.16 ± 0.38 for S686D and 

7.91 ± 0.21 for WT; p>0.05 ).. FH-R interactions induced by PKA alone seem not 

to be affected by S686 (CTCF = 5.67 ± 0.55 for WT, 6.15 ± 0.18 for S686A; 

p>0.9, and 6.75 ± 0.33 for S686D; p>0.2) (Figure 20 C, E). In this construct BH-R 

interactions remained lower compared to SR-WT in all phosphorylation 

conditions (Figure 20 F). 
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All together, these results indicate that basal interaction of the R-region with the 

BH plays a permissive role for the phosphorylation-dependent increase in FH-R 

interaction that is thought, based on our data, to induce the CFTR functional 

response to PKA and PKC + PKA stimulation. 

The SR-6CA construct was developed with the idea to investigate the behaviour 

of channels where S686 is the only active PKC site. This channel is still able to 

respond to PKA or PKC + PKA stimulations similar to the SR-WT despite lacking 

6 PKC sites, as measured in iodide efflux assays (Figure 16 C and G). PLA 

experiments showed that the unphosphorylated R-region almost completely 

dissociated from the FH (<10% of the SR-WT; CTCF = 0.33 ± 0.07 for 6CA and 

3.90 ± 0.18 for WT; p<0.0001) while no changes were observed in basal BH-R 

interaction (Figure 20 D). Note that the findings for the SR-S686A mutant at 

basal conditions were the opposite of the ones observed in SR-S641A/T682A 

and SR-6CA. Also, in SR-6CA and SR-S641A/T682A, the reduced FH-R 

interaction at basal conditions did not impact the channel response to the PKC 

effect, unlike reduced BH-R interaction observed in SR-S686A which abolish 

such response, as demonstrated in iodide efflux assays and previous studies 

(Chappe et al. 2004). Although still very low compared to the WT, I measured an 

increase from basal conditions in the FH-R interaction after PKA stimulation in 

SR-6CA, as expected for a functional channel (CTCF = 0.33 ± 0.07 at basal and 

1.40 ± 0.27 after PKA; p<0.01). Stimulation for PKC and PKC + PKA strongly 

increased the FH-R interaction compared to basal conditions (CTCF = 5.54 ± 

0.31 for PKC and 5.28 ± 0.68 for PKC + PKA, p < 0.0001) (Figure 20 D, E).  
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Two main conclusions emerge from these results. First, a phosphorylation-

dependent increase in the FH-R interaction is related to channel activation. This 

increase can be achieved either by inducing new R-region interactions with the 

front half or by making stronger the FH-R interactions already present in the 

unphosphorylated R-region. Second, interactions of the unphosphorylated R-

region with the BH seems to play a permissive role to the PKC enhancing effect 

observed in CFTR function. That is, if the unphosphorylated R-region is 

displaced from the BH, PKC phosphorylation is not able to play its synergic role 

with PKA to enhance FH-R interactions and therefore, channel function. PKC site 

S686 seems to be central in this mechanism. Based on these findings, a 

schematic model describing the effect of phosphorylation in the R-region 

dynamics was developed and it is illustrated in Figure 21. 

 

3.5 PHOSPHORYLATION-INDUCED CHANGES IN R-REGION INTERACTION WITH 

CYTOPLASMIC CFTR POLYPEPTIDES. 

In the previous section, I established a new molecular model for the effect of 

phosphorylation (by PKA and PKC) in the profile for R-region interactions with 

the two halves of CFTR. Although novel and illustrative, this model does not 

show what regions within the front half and back half are interacting with the R-

region in each phosphorylation condition. 
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Figure 20. Mutant R-region interactions with the FH and the BH of CFTR. 

Representative fluorescence microscopy images from in situ PLA experiments 
showing FH-R (upper row) and BH-R (lower row) interactions (red dots) for 
mutant constructs SR-S641A/T682A (A), SR-S686A (B) SR-S686D (C) and SR-
6CA (D) at basal or after PKA or PKA+PKC stimulation as described in figure 6. 
Cell nuclei were stained with DAPI (blue). FH, BH and R-region were detected by 
H-182, C-19 and MAB1660 antibodies, respectively. Assays either used H-
182+MAB1660 to investigated FH-R interactions or C-19+MAB1660 to 
investigated BH-R interactions. Histograms representing the average of 
corrected total cell fluorescence for FH-R (E) and BH-R (F) interactions 
measured in BHK cells from A-D. Statistical significance (*p<0.05; **p<0.01; 
***p<0.001) was calculated in relation to values for SR-WT in each 
phosphorylation condition. Values are means ± SEM for a minimum of 3 
independent experiments 
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Figure 21. Schematic model of the R-region dynamic interactions with the 
split CFTR. 

When the channel is closed, under basal conditions, the unphosphorylated R-

region interacts equally with both half of the split CFTR, preventing NBD 

dimerization. Following PKC phosphorylation, the R-region interaction strength 

remains unchanged but now in a new permissive location, allowing NBD 

dimerization and ATP binding, making the split CFTR channel competent for 

gating with minimal activity. After PKA phosphorylation, the R-region interaction 

increases, with both FH and BH, allowing normal gating and activity of the 

channel. In presence of both PKA and PKC phosphorylation, the strongest FH-R 

interaction is measured, while a basal BH-R interaction enables the enhancing 

effect of PKC. FH: TMD1 (light blue) + NBD1 (dark blue); BH: TMD2 (light green) 

+ NBD2 (dark green); red ribbon: R-region; ATP (yellow circles) binds to NBDs in 

the open states; black dots: chloride ions; black arrows: chloride flow. 
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I then decided to investigate the association of the R-region with polypeptides 

designed based on six cytoplasmic subdomains of CFTR, three from the front 

half and three from the back half. From the front half, I used the N-terminal lasso 

motif (aa 1-77), the cytoplasmic loop 1 (aa 147-195) and the cytoplasmic loop 2 

(aa 244-298). From the back half, I used the cytoplasmic loop 3 (aa 940-990), 

cytoplasmic loop 4 (aa 1035-1095) and the C-terminal tail (aa 1439-1480). The 

subdomains’ boundaries and amino acids sequences used for polypeptide 

synthesis were taken from the human CFTR database (UniProt accession 

#P13569) which are based on the human unphosphorylated CFTR structure (Liu 

et al, 2017). All polypeptides were synthesized with a 5-FAM tag incorporated at 

the N-terminal end, to a purity level of >90% by Proteogenix (Schiltigueim, 

France) (see Table 3 for polypeptides sequences). 

To analyze interactions with those polypeptides, the DNA sequence encoding the 

same amino acid sequence of the R-region used in PLA assays described in the 

first section (aa 635-836) was incorporated into a pET21 vector containing a 6x-

histidine tag, for binding to Ni+2 columns and the sequence encoding the B1 

domain of Streptococcal protein G (GB1), for solubilization purposes, and 

expressed this recombinant R-region in E. coli cells followed by purification using 

Ni+2 column affinity chromatography (see section 2.11 in Material and Methods 

for details). Addition of the GB1 motif rendered a ~5-fold increase in the solubility 

of the final renatured R-region fusion protein.  

As many eukaryotic proteins, the R-region DNA sequence has several codons 

rarely used in the E. coli machinery, including arginine, isoleucine, leucine and 
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proline codons. To achieve good expression of the R-region, I used the 

RosettaTM BL21 E. coli strain which contains an extra plasmid encoding tRNAs 

that enhance the expression of such eukaryotic proteins. 

Even with the addition of GB1 in our construct, the R-region was highly insoluble 

in native buffers usually used for purification, so I used an 8 M urea denaturing 

purification. Expression of the R-region induced by IPTG in Rosetta BL21 cells, 

and purification in denaturing conditions showed a very good protein yield in the 

elution fraction (Figure 22 A). This high amount of fusion protein, however, was 

mostly precipitated after overnight dialysis against a variety of buffers in the pH 

range of 7-8, which are suitable for the subsequent phosphorylation steps. The 

maximum concentration achieved in those buffers was ~75 µM, which was found 

to be insufficient for microscale thermophoresis (MST) measurements. During 

the extensive solubilization tests, the R-region was found to be more soluble in 

pure water, shifting the water pH to acidic levels of 4-5. The R-region fusion 

protein was then dialyzed against a 10 mM HCl solution containing 5 mM BME 

and precipitation was avoided. After centrifugal concentration, the pH was 

adjusted to 7.5-8 (in the optimal range for PKA and PKC phosphorylation) by 

adding Tris-base pH 11 to a final concentration of 60-80 mM. This procedure 

rendered a maximum of 350 µM of stable soluble fusion protein, now in sufficient 

amount for MST measurements. Expression and purification of the GB1 protein 

followed a similar protocol as used for the recombinant R-region with the 

difference of the use of BL21 cells (no rare codons for E. coli are found in GB1) 

and native buffers (GB1 is highly soluble in aqueous buffers). The high amount of 
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protein that was obtained in the elution fraction (Figure 22 B) was diluted to 350 

µM, the same as obtained for the recombinant R-region, to be used as a negative 

control for protein-protein interaction experiments. Purified fusion R-region was 

then phosphorylated by PKA (100 nM PKA + 2 mM Mg+2-ATP) and PKA + PKC 

(100 nM PKA + 2 mM Mg+2-ATP + 5 nM PKC + PKC lipid activator) for 2 h at 

30°C or left untreated (basal control). Attempts to phosphorylate the R-region 

only with PKC by adding 5 nM PKC + 2 mM Mg+2-ATP + PKC lipid activator 

caused most of the protein to precipitate and it could not be re-solubilized. For 

this reason, PKC-phosphorylated R-region proteins were not tested for protein-

protein interactions with the cytoplasmic CFTR polypeptides. Phosphorylation of 

the R-region was verified by selective staining of phosphoproteins by the use of 

Pro-Q diamond stain and by the change in the electrophoretic mobility on SDS-

PAGE (Figure 23), as reported in previous studies (Picciotto et al. 1992; 

Ostedgaard et al. 2000). When the R-region protein was treated with PKA and 

PKA + PKC, the electrophoretic shift was observed after Coomassie brilliant blue 

staining (Figure 23 A, upper lanes 1 to 3) and strong bands were detected after 

8.5 seconds of exposure using a Cy3 filter in a VersaDoc MP 4000 system, 

compared to the untreated protein (Figure 23 A, bottom lanes 1 to 3), although 

no significant difference was observed between the two phosphorylation 

conditions after measuring the density of the bands (Figure 23 B). 
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Figure 22. Expression and purification of recombinant R-region and HGB1 
proteins. 

12% (A) and 18% SDS polyacrylamide gels (B) after Coomassie blue staining 

representing expression and purification steps of the wild type recombinant R-

region (A) and HGB1-empty vector (B). Expression of both proteins after 

induction by 4h incubation with 0.5mM IPTG was detected in lane 2 as a band at 

~35kDa (R-region, A) and ~18kDa (HGB1, B), compared to lane 1 (before IPTG 

induction). Total bacteria lysate was subjected to centrifugation and after 

separation of soluble (lane 3) and insoluble (lane 4) fractions, the soluble fraction 

was loaded into a Ni+2 affinity column. Unbound proteins are observed at the 

column flow through (lane 5). After column wash (lane 6) using 5-10mM 

imidazole to remove undesired entrapped proteins, purified recombinant R-region 

(A) and HGB1 (B) proteins were eluted from column using 300mM imidazole 

(lane 7). 
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To demonstrate R-region phosphorylation by PKC, an aliquot of the R-region that 

remained soluble after PKC treatment was exposed to the selective 

phosphoprotein stain and a band was detected only after a long exposure of 60 s 

(7-fold longer than the one used to detect PKA phosphorylation) using the same 

filter and imaging system described above (Figure 23 A, bottom lanes 4 and 5). 

The difference observed in phosphorylation levels after PKA and PKC treatment 

may explain why a difference between PKA and PKA + PKC phosphorylation 

was not visible under the Pro-Q phosphoprotein staining technique. 

As an alternative to verify the phosphorylation state of the R-region, samples of 

the R-region after PKA, PKC and PKA + PKC treatments were sent for proteomic 

analysis by mass spectrometry. Each sample was digested by trypsin protease, 

generating a population of peptides that were analyzed by mass spectrometry. 

All ten PKA sites within the R-region (S660, S670, S700, S712, S737, S753, 

S768, T788, S795, S813) and four out of seven PKC sites within the R-region 

(S686, S707, S790, T791) were found to be phosphorylated in the analysis. The 

majority of phosphorylation sites (S660, S670, S686, S700, S707, S712, S737, 

S753, S768, S795, S813) were identified with nearly 100% accuracy, that is, in 

nearly 100% of the phosphorylated peptides bearing those sites, site-specific 

determination (PhosphoRS algorithm; Taus et al, 2011) identified 

phosphorylation modifications at those residues. In the phosphorylated peptides 

bearing T788, S790 and T791, PhosphoRS could not identify the specific residue 

modified by phosphorylation, probably because the quality of fragmentation in the 

mass spectra was not sufficient to unequivocally identify the phosphorylation 
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sites, what could be explained by the close proximity of those phosphorylation 

sites. PhosphoRS was able, however, to calculate site probabilities for those 

phosphorylation sites. In the peptide “TTASTR” (aa 234-239 in the HGB1 

sequence at Figure 12), the probability of phosphorylation of S790 was higher 

(50-90%) compared to T791 (50%). Phosphorylation of T788 was found in the 

peptide “KTTASTR” (aa 233-239 in Figure 12) with probabilities varying from 50-

99%.  

R-region interaction with each of the polypeptides was assessed by MST, which 

identifies protein-protein interactions in solution by detecting changes in the 

movement, induced by a thermal gradient, of one of the binding partners before 

and after a binding event.  

To confirm that the interactions described below were attributed to the R-region 

and no interference was caused by the fusion partner GB1, we tested the 

interaction of each CFTR polypeptide with GB1 with the same buffers, 

concentrations and conditions applied to the R-region fusion protein. No 

significant changes in MST curves were found and no Kd values could be 

calculated from the MST curves after addition of GB1 alone to any of the CFTR 

polypeptides tested indicating that GB1 does not bind the polypeptides tested in 

this study (Figure 24). To improve our understanding of the FH-R interactions 

observed in PLA, I addressed the interaction of the recombinant R-region peptide 

with the lasso motif, and cytoplasmic loops 1 and 2, parts of the front half. 
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Figure 23. Analysis of the phosphorylation state of purified R-region. 

A, 12% SDS polyacrylamide gels after Coomassie blue staining (upper) and after 
Pro-Q diamond phosphoprotein gel stain (lower) showing phosphorylation of the 
R-region after treatment with PKA + Mg+2-ATP (lane 2), PKA + PKC + Mg+2-ATP 
+ PKC lipid activator (lane 3) and PKC + Mg+2-ATP + PKC lipid activator (lane 5) 
for 2 h at 30°C, compared to the unphosphorylated R-region (lanes 1 and 4). 
Note the mobility shift in the recombinant R-region migration after PKA 
phosphorylation (lanes 2 and 3). Phosphoprotein stained gels were imaged on a 
VersaDoc 4000 MP with Quantity One software using the Cy3 filter and exposed 
for 8.5 seconds (lanes 1-3) and 60 seconds (lanes 4 and 5). B, Histogram 
showing band density averages of PKA and PKA + PKC phosphorylated R-
regions (lanes 2 and 3) measured using the ImageJ software (National Institutes 
of Health; http://rsb.info.nih.gov/ij/). Values for PKA + PKC are expressed as a 
percentage of that for PKA. Values are means ± SEM for 5 independent 
experiments. 
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Figure 24. Interaction of His-GB1 with CFTR polypeptides 

MST experiments where the concentration of the 5-FAM-labeled N-terminal lasso 

motif, cytoplasmic loop 1-4 and the C-terminal tail was kept constant (150nM), 

while the non-labeled His-GB1(HGB1) protein was serial diluted (3:1) starting at 

350µM, similarly to the R-region in figures 18 and 19. Reactions were performed 

as described in figure 17 and no Kd was derived from any reaction indicating the 

absence of interaction between peptides. A, normalized fluorescence (Fnorm%) 

and B, baseline corrected normalized fluorescence (∆Fnorm%) showing no 

significant change in the MST signal at different concentrations of HGB1 (N=3 

independent measurements, error bars represent the standard error). 
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Interaction of the unphosphorylated R-region (resembling the basal conditions 

found in PLA) with the N-terminal lasso motif was ~2.5-fold weaker than 

observed after PKA phosphorylation with dissociation constants (Kd) of 316 ± 

26.3 µM for basal and 118.8 ± 2.4 µM for PKA phosphorylated peptides 

(p<0.0001). Additional PKC phosphorylation did not alter the binding affinity of 

the R-region to the lasso motif compared to PKA alone (Kd =118.8 ± 2.4 µM for 

PKA and 128.4 ± 11.6 µM for PKA + PKC p>0.9) (Figure 25 A). MST 

measurements for the R-region interaction with the first and second cytoplasmic 

loops showed that the basal interaction found for both polypeptides was not 

significantly altered by phosphorylation. Dissociation constants for the R-region 

interaction with cytoplasmic loop 1 at basal (Kd = 111.3 ± 7.7 µM) remained 

constant after PKA (Kd = 131.7 ± 2.9 µM; p>0.1) and PKA + PKC 

phosphorylation (Kd=119.3 ± 9.2 µM; p>0.7) (Figure 25 B). Similar results were 

found for the R-region interaction with the cytoplasmic loop 2 (Kd =106.8 ± 8.4 

µM for basal; 137.6 ± 12.0 µM for PKA; p>0.1 and 107.0 ± 11.3 µM for PKA + 

PKC; p>0.9) (Figure 25 C). These results demonstrate that the increase in FH-R 

interactions found in PLA experiments after PKA stimulation is due to new 

interactions with the lasso motif. 

The BH-R interactions found in PLA were further studied by testing the effects of 

phosphorylation on the recombinant R-region interaction with the third and forth 

cytoplasmic loops as well as with the C-terminal tail. Interactions of the 

unphosphorylated R-region with the cytoplasmic loop 3 remained similar after 
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Figure 25. Affinity curves for the interaction of the R-region with 
polypeptides comprised into the front half of CFTR. 

Affinity curves obtained in MST experiments where the concentration of the 5-

FAM-labeled N-terminal lasso motif (A), cytoplasmic loop 1 (B) and cytoplasmic 

loop 2 (C) was kept constant (150 nM), while the non-labeled unphosphorylated 

(blue), or PKA (black) or PKA + PKC (red) phosphorylated R-region was serial 

diluted (3:1) starting at 350 µM. After a 10 min incubation the samples were 

loaded into Monolith NT.115 Standard Treated Capillaries and the MST 

measurement was performed using the Monolith NT.115. An MST-on time of 20 

s was used for analysis, and the Kd derived from each interaction is shown at the 

top left boxes color coded as the curves (N>3 independent measurements, error 

bars represent the standard error). 
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PKA phosphorylation (Kd = 80.8 ± 9.9 µM for basal and 95.9 ± 7.5 µM after PKA; 

p>0.4). Dual PKA + PKC phosphorylation, however, reduced significantly the 

binding affinity to this loop (Kd = 136.4 ± 7.9 µM), compared to basal (p<0.01) 

and to PKA phosphorylation only (p<0.05) (Figure 26 A). In the case of R-region 

interactions with the cytoplasmic loop 4, only PKA phosphorylation caused a 

reduction in the association to this loop(Kd = 80.0 ± 3.9 µM for basal and 120.6 ± 

10.1 µM after PKA; p<0.01) while PKA + PKC did not induce significant changes 

in the interactions (Kd = 104.5 ± 9.9 µM; p>0.1) (Figure 26 B). Although 

phosphorylation in general weaken R-region binding affinity to both loops in the 

BH, this displacement seems to happen differently for each loop. While PKA 

phosphorylation affects the interaction with the loop 4, PKA + PKC 

phosphorylation affects the interaction with loop 3. Finally, the interaction of the 

recombinant R-region with the C-terminal tail of CFTR exhibited a strong 

modulation by PKA and PKC. Phosphorylation promoted a strong association 

(~2.3-fold higher) of the R-region to this final segment of CFTR, with no 

difference observed between PKA and PKA + PKC stimuli (Kd = 136.1 ± 7.5 µM 

for basal, 64.3 ± 3.9 µM after PKA and 55.1 ± 3.8 µM after PKA + PKC; p<0.0001 

for both comparisons) (Figure 26 C). These results demonstrate that 

phosphorylated-induced changes in BH-R interactions found with the PLA 

method are due to a coordinated shift of the R-region from loops 3 and 4 to the 

C-terminal tail. After PKA, the increase in BH-R interactions found in PLA 

experiments could be explained by the stronger increase in interactions with the 

C-tail compared to a weaker displacement from loop 4. The displacement from 
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loop 3 with no further interaction with the C-tail after PKA + PKC would explain 

the BH-R interaction levels in found with PLA at the same condition.  

After analyzing the effect of phosphorylation in association of the R-region with 

each polypeptide individually, we took a different perspective of our MST studies, 

and analyzed binding affinities found with all of the six polypeptides in each 

phosphorylation condition to have an insight of the R-region dynamics throughout 

the CFTR protein. Figure 27 A shows affinity curves for the unphosphorylated R-

region interactions with the lasso motif, cytoplasmic loops 1 to 4 and the C-

terminal tail of CFTR. It is clearly visible the weaker association of the 

unphosphorylated R-region with the lasso motif (Kd Lasso-R = 316.2 ± 26.3 µM) 

and the stronger association with both cytoplasmic loops 3 and 4 (Kd Loop 3-R = 

77.8 ± 17.0 µM and Loop 4-R = 80.0 ± 3.9 µM; p<0.0001 for both compared to 

Lasso-R). Interactions with the CFTR C-tail were weaker than interactions with 

loops 3 and 4 (Kd C-tail-R = 136.1 ± 7.5 µM; p<0.03 to both loops), but much 

stronger compared to interactions with the lasso motif (p<0.0001). This analysis 

shows that besides the interactions reported with the NBDs (Baker et al, 2007; 

Bozoki et al. 2013), the unphosphorylated R-region is also in contact (with 

different affinities) with all cytoplasmic subdomains of CFTR. 
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Figure 26. Affinity curves for the interaction of the R-region with 
polypeptides comprised into the back half of CFTR. 

Affinity curves obtained in MST experiments where the concentration of the 5-

FAM-labeled N-terminal lasso motif (A), cytoplasmic loop 1 (B) and cytoplasmic 

loop 2 (C) was kept constant (150 nM), while the non-labeled unphosphorylated 

(blue), or PKA (black) or PKA + PKC (red) phosphorylated R-region was serial 

diluted (3:1) starting at 350 µM. Reactions were performed as described in figure 

17 and the Kd derived from each interaction is shown at the top left boxes color 

coded as the curves (N>3 independent measurements, error bars represent the 

standard error). 
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Figure 27 B shows affinity curves of the PKA-phosphorylated R-region. 

Interactions with the C-tail peptide becomes prevalent compared to all other 

CFTR regions tested after PKA phosphorylation. Moderate interaction was 

observed with the cytoplasmic loop 3 (Kd C-tail-R = 64.3 ± 3.9 µM and Kd Loop 

3-R = 95.9 ± 7.5 µM; p<0.03) and the weakest interactions were observed with 

cytoplasmic loops 1 and 2 (Kd Loop 1-R = 131.7 ± 2.9 µM; p<0.02 and Kd Loop 

2-R = 137.6 ± 12.0 µM; p<0.01) compared to Loop 3-R. Interactions with the 

lasso motif and cytoplasmic loop 4 were neither significantly different from Loop 

3-R nor from Loop 1-R and Loop 2-R.  

Dual phosphorylation of the R-region with PKA and PKC promoted a significant 

reduction in the R-region association with the cytoplasmic loop 3 compared to  

PKA phosphorylation alone (Kd = 95.9 ± 7.5 µM after PKA and 136.4 ± 7.9 µM 

for PKA + PKC; p<0.05) while maintaining strong interactions with both lasso 

motif and C-tail polypeptides. Interactions with the C-tail remained the most 

prevalent compared to interactions with all other CFTR polypeptides (p<0.03) 

(Figure 27 C). In general, the R-region is displaced from the central area of the 

protein where it prevents NBDs dimerization to interact strongly with new 

partners in both amino and carboxyl ends of the protein. Interactions with the 

cytoplasmic loop 4 must be disrupted in order to permit the channel activation by 

PKA just as interactions with the cytoplasmic loop 3 must be disturbed for PKC to 

promote its enhancing effect. A schematic model illustrating the effect of 

phosphorylation in the R-region dynamics in respect to the six CFTR 

polypeptides described above is shown in Figure 28. 
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Figure 27. Phosphorylation effects on the interaction of the R-region with 
CFTR polypeptides. 

Affinity curves from figures 17 and 18 were re-organized per phosphorylation 

condition showing interaction of the N-terminal lasso motif (blue), cytoplasmic 

loop 1 (black), cytoplasmic loop 2 (red), cytoplasmic loop 3 (light green), 

cytoplasmic loop 4 (gold) and C-terminal tail (dark green) with the 

unphosphorylated (A), or PKA-phosphorylated (B), or PKA + PKC-

phosphorylated (C) R-regions.  
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Figure 28. Schematic model of the R-region interaction with the CFTR 
polypeptides. 

Interaction of the R-region with six CFTR cytoplasmic polypeptides was tested in 

vitro and the corresponding localization of each polypeptide in the full length 

CFTR protein is shown as black ribbons. Effect of R-region phosphorylation by 

PKA or PKA + PKC on those interactions are shown as cyan or gold arrows, 

respectively. R-region is represented by a gray ribbon. A, the unphosphorylated 

R region binds weakly with the lasso motif, strongly with cytoplasmic loops (CLs) 

3 and 4 and moderately with the CLs 1 and 2 and the C-tail. B, PKA 

phosphorylation increased the association of the R-region to both lasso motif and 

C-tail while reducing the interaction with the CL 4. C, Additional PKC 

phosphorylation (PKA + PKC) maintain the strong association of the R-region 

with the lasso motif and C-tail while reducing interaction with CL 3. R-region 

interaction with CL 1 and 2 was not affected by phosphorylation. Light blue bars 

represent transmembrane helices and blue lines represent the plasma 

membrane. NBDs were omitted for better visualization. 
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CHAPTER 4: DISCUSSION 

 

The fact that phosphorylation of the R-region is responsible for the activation of 

CFTR is a well-established concept, but its mechanism of action remains to be 

elucidated. The current data point to a mechanism where the R-region regulates 

channel function through interactions with multiple partners coordinated by 

phosphorylation of several consensus sites. Removal of individual or groups of 

PKA sites showed different effects in channel activity, with none of the ten PKA 

sites found in the R-region being specifically required for regulation, and 

demonstrated that these sites typically function in an additive way (Cheng et al, 

1991; Rich et al, 1993; Chang et al, 1993), where most sites are stimulatory and 

two sites, S737 and S768, are inhibitory (Wilkinson et al, 1997). Deletion of the 

R-region generates channels that open spontaneously in the presence of ATP, 

with no need of phosphorylation (Rich et al, 1991; Ma et al, 1997, Chappe et al., 

2005). Addition of exogenous unphosphorylated R-region restored inhibition 

while addition of exogenous phosphorylated R-region stimulates activity of those 

channels (Winter & Welsh, 1997, Ma et al, 1997, Ostedgaard et al, 2000, Chappe 

et al, 2005). Two segments of the R-region, aa 760-783 and 817-838 have been 

found to be important to prevent spontaneous activity, with the latter also being 

critical for channel response to PKA (Baldursson et al, 2000; Xie et al, 2002). All 

together, those studies demonstrate that the R-region orchestrate a complex 

regulatory mechanism for CFTR activity, where multiple interactions of the 

unphosphorylated R-region play inhibitory roles, keeping the channel closed and 
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phosphorylation relieves inhibitory interactions, potentially also promoting 

stimulatory interactions that activate the channel. 

In order to conceptualize such a complex regulation, we must consider that the 

R-region is an intrinsically disordered region (IDR) of CFTR that behaves as an 

intrinsically disorder protein (IDP). Rather than forming stable well-folded 

structure, IDPs alternate between several flexible interchangeable conformations 

in physiological conditions (Wright & Dyson, 1999). Besides this flexibility, IDPs 

have other features such as a low complex and biased primary sequence, with a 

low rate of hydrophobic and a high rate of hydrophilic amino acids, the presence 

of multiple accessible sites for post-translational modification (i.e. 

phosphorylation sites), short linear binding motifs, and the capacity of binding 

with high specificity but moderate affinity. Those features are implied to grant 

advantages to IDPs in signalling and regulatory processes where multiple quick-

reversible interactions with several binding partners are all-important. During 

those processes, several interactions are formed and IDPs can engage in 

multiple complexes, binding to distinct partners transiently and dynamically 

through multiple, often overlapping binding sites, while still accessible to a 

delicate control by cellular signals and post-translational modifications, allowing 

them to function as ‘switches’ (on-off signals) or ‘rheostats’ (gradation of signals) 

and in some cases providing a link between two related processes (Dyson & 

Wright, 2005; Wright & Dyson, 2015). 

As an IDR of CFTR (Baker et al, 2007; Bozoki et al, 2013), the R-region probably 

exerts its regulation on CFTR function by local conformational shifts induced by 
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phosphorylation which change the number and strength of interactions with 

distinct parts of the channel. Several partners for intramolecular interactions with 

the R-region, including all other CFTR subdomains, have been described (Naren 

et al, 1999; Wang et al, 2002; Baker et al, 2007; Wang & Duan, 2012; Bozoki et 

al, 2013). Because the R-region is unique to CFTR and there is no other related 

protein in all kingdoms of life (Sebastian et al, 2013) that can be used as a 

template, homology modeling of the R-region is impossible. This and the fact that 

attempts to predict R-region structure using computational methods have 

generated conflicting results (Hegedus et al, 2008; Mornon et al, 2009), hindering 

the comprehension of how the R-region is arranged in the context of the full-

length protein and how it activates CFTR when phosphorylated.  

Recently, electron cryo-microscopy structures of the full-length CFTR from 

zebrafish and human, in both unphosphorylated and phosphorylated states were 

determined (Zhang & Chen, 2016; Liu et al, 2017; Zhang et al, 2017; Zhang et al, 

2018). The two orthologs share 55% residues identity, and were found to be very 

similar, displaying a mostly disordered R-region positioned between the NBDs 

and the cytoplasmic loops. In both structures, the R-region has multiples contacts 

with both halves of the molecule, consistent with the model proposed here. In the 

phosphorylated state, the R-region was displaced from between the NBDs and 

becomes even more unstructured and not visible in cryo-EM maps, except for a 

small helix and a couple of small amorphous densities. Because of the 

unstructured nature of the R-region, the novel full-length CFTR structures were 

unable to provide significant insights into the interacting partners of the 
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phosphorylated R-region. Therefore, the data presented here, showing the R-

region dynamic interactions in situ and in vitro in response to PKA and PKC 

stimulations, contribute with novel findings for the understanding of how the R-

region regulates channel activity. Moreover, it proposes a model that explains 

PKC enhancing effect which was described functionally but not structurally.  

 

4.1 SPLIT-CFTR CHANNELS BEARING PKC MUTATIONS ARE FUNCTIONALLY 

REASSEMBLED AT THE CELL SURFACE 

All split-CFTR constructs used in the present study were successfully expressed 

in BHK cells, consistent with the variable structural organization of core domains 

in ABC transporters and previous studies (Chappe et al, 2005; Seavilleklein et al, 

2008). In previous studies, although no mature complex glycosylated form of the 

wild type split-CFTR construct was detected after expression in BHK cells, 

functional reassembly of the core glycosylated isoform of CFTR at the plasma 

membrane was confirmed by cell surface biotinylation, immunofluorescence 

localization, iodide efflux assays, and patch clamping (Chappe et al, 2005). It 

was thus demonstrated that complex glycosylation is not a definite determinant 

for CFTR targeting to the apical membrane or for its activity as a chloride channel 

(Morris et al, 1993). Also, a portion of immature CFTR can be trafficked to the 

membrane through a nonconventional pathway (Yoo et al, 2002).  

Insertion of mutations in the R region did not prevent the expression and 

functional re-assembly of the 3 domains at the cell surface. Expression of split-

ΔR was less efficient compared to full length CFTR, but enough for detection of 
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substantial activity by both iodide efflux and patch clamp assays (Irvine, 2002; 

Chappe et al, 2005). Similar to SR-WT (Chappe et al, 2005), SR-7CA 

(Seavilleklein et al, 2008), SR-6CA, SR-S641A/T682A and SR-S686A (Amer, 

2010), the three polypeptides of the new SR-S686D construct introduced in this 

work reassembled and co-localized at the cell surface as visualized in 

immunolabeling assays using specific antibodies for each polypeptide (Figure 

15).  

SR-S686D responses to PKA were amplified compared to SR-WT, reaching 

levels equivalent to responses observed only when SR-WT channels were pre-

treated with PKC before PKA stimulation. Serine-to-aspartate mutations to mimic 

the effect of addition of negatively charged phosphates groups were previously 

tested in several proteins including CFTR. In another study, substitution of no 

less than six serine residues within PKA sites for aspartate generated a mild 

constitutive activity that was enhanced by cAMP treatment (Rich et al, 1993). 

Interestingly, this constitutive activity was only observed after S686 (which was 

thought to be a PKA site in that study) was included in the list of sites mutated in 

that study, consistent with the mild increase found in basal (constitutive) activity 

of the SR-S686D in the present study. 

Expression of S686A channels in oocytes and BHK cells showed contrasting 

results in previous works. In oocytes, whole-cell measurements after IBMX and 

FSK stimulation did not show any alteration in channel response (Wilkinson et al, 

1997). In contrast, single channel measurements in BHK cells showed a dramatic 

reduction in responses to PKA and abolition of the PKC enhancing effect 
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(Chappe et al, 2004). In the present work, SR-S686A responses to PKA, 

measured by iodide efflux, were comparable to SR-WT but this channel was 

insensitive to PKC, abolishing the enhancing effect (Figure 16 G). The 

considerable differences found in responses to PKA or PKC + PKA of SR-S686D 

and SR-S686A suggests that modifications at this specific site disturb 

significantly the sensitivity of CFTR to kinases. 

 

4.2 MODULATION OF THE WILD TYPE R-REGION INTERACTIONS WITH THE CFTR 

HALVES BY PHOSPHORYLATION 

In situ PLA data showing the dynamics of interactions between the R-region and 

both front and back halves of CFTR, under different stimulation conditions, 

allowed us to consider the channel structure/function relationship in its native cell 

environment and to investigate the molecular mechanism by which 

phosphorylation regulates CFTR activity. I found that the unphosphorylated R-

region (basal conditions) interacts similarly with both halves of the channel, 

consistent with several other studies (Wang et al, 2002; Baker et al, 2007; Wang, 

2010; Wang & Duan, 2012; Bozoki et al, 2013; Zhang & Chen, 2016; Liu et al, 

2017). This basal level of interaction is thought to keep the channel in the closed 

state, most probably by preventing the NBDs interaction, as demonstrated by 

NMR data (Bozoki et al, 2013) and by the R-region densities that were found to 

be located between the two NBDs in the unphosphorylated CFTR structures 

(Zhang & Chen, 2016; Liu et al, 2017). Here, in situ PLA data confirmed that 

phosphorylation of the R-region by PKA significantly enhances its interaction with 
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other parts of the channel, as previously reported (Chappe et al, 2005; 

Seavilleklein et al, 2008). Moreover, I found that FH-R interactions are 

particularly increased by PKA and further increased by additional PKC 

phosphorylation (Figure 19 C). Although in vitro interactions of the R-region with 

the NBD1 domain (part of the FH construct) alone was reported to be 

considerably reduced after PKA phosphorylation (Baker et al, 2007; Bozoki et al, 

2013), a well conserved, highly charged segment comprising the second helix of 

the lasso motif (aa 46-60) was shown to interact with the R-region after PKA 

phosphorylation (Naren et al, 1999). Successive elimination of negatively 

charged residues within the second lasso motif helix was shown to gradually 

reduce both channel activity and binding to the R-region, therefore pointing this 

segment as a good candidate binding partner of the PKA-phosphorylated R-

region. Indeed, the recent human CFTR crystal structure in the phosphorylated 

state shows a helix which is proposed to be part of the R-region interacting with 

residues 34-39 of the lasso motif (Zhang et al, 2018). Data obtained in the 

present study with in vitro MST assays, show a great increase in the R-region 

interaction with the peptide containing the lasso motif after PKA phosphorylation 

(Figure 24 A). In the human structure (Zhang et al, 2018), phosphorylation did 

not completely displace the R-region from NBD1, instead, it seems to create 

additional binding sites with areas away from the NBD dimer surface. Newly 

formed interactions may contribute to the channel activation through favoring 

NBDs dimer formation, ATP binding and hydrolysis or the NBDs-TMDs 

communication, as suggested previously (Ma et al, 1997). I propose that these 
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newly formed interactions contribute to the increased FH-R interactions found in 

situ by PLA in the present work.  

In this study, the FH of the channel was found to be the major recipient area for 

the phosphorylated R-region, which supports CFTR function. Consistent with 

this, phosphorylation by both PKC and PKA, which increase channel responses 

to PKA by 2-fold (Jia et al, 1997; Chappe et al, 2003), induced the strongest 

binding of the R-region to the front half, yet leaving binding to the back half 

unaltered, indicating that more interactions were formed, rather than a relocation 

of the R-region. This further enhancement in FH-R interactions was then 

proposed to be related to the PKC enhancing effect. 

Phosphorylation by PKC alone is known to elicit only minor CFTR activity and in 

this study, it did not cause any significant change in the R-region interaction 

profile. This pattern differs from previous immunoprecipitation experiments that 

showed an increased R-region binding to both halves of CFTR after stimulation 

by PKC alone (Seavilleklein et al, 2008). Co-immunoprecipitation experiments 

used in previous studies require cell lysis and protein purification which 

significantly impacts proteins organization and interactions which are later probed 

in non-native, lipid-free environment. The PLA experiments used in the present 

study analyze protein interactions in situ (i.e. in intact cells) preserving the 

membrane environment and all cytosolic interacting partners that could be 

competing for binding to the R-region. Also, it is a more sensitive and specific 

technique (see section 2.10 in Material and Methods) to evaluate transient and 

fast interactions made by disordered proteins like the R-region. For instance, the 
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unphosphorylated R-region was not found in pull downs with the two CFTR 

halves (Seavilleklein et al, 2008), although substantial interactions of 

unphosphorylated R-region with both NBDs have been described (Baker et al, 

2007; Bozoki et al, 2013). Those interactions were now detected in the in situ 

PLA experiments.  

In situ BH-R interactions were significantly increased after PKA stimulation 

(Figure 19 C). Moreover, phosphorylation enhanced the in vitro association of the 

R-region with the C-tail peptide designed for the present study (Figure 25 C). 

Previously, PKA phosphorylation was shown to reduce R-region interactions with 

NBD2 (part of the BH construct), but also to induce a strong interaction with the 

C-terminal tail of CFTR (aa 1438-1480) (Bozoki et al, 2013). 

 

4.3 PKC SITE S686 IS KEY FOR R-REGION INTERACTIONS INVOLVED IN THE PKC 

ENHANCING EFFECT  

Removal of PKC sites was previously shown to modify CFTR responses to 

phosphorylation by PKA and PKC, in both full-length and half-CFTR channels 

(Chappe et al, 2004; Seavilleklein et al, 2008), indicating an important functional 

role for these sites. Thus, it raised the question to whether disabling these PKC 

sites would also impact the R-region interacting profile. Indeed, in vitro interaction 

of the R-region was lost in immunoprecipitation experiments using a R-region 

lacking all seven PKC sites (Seavilleklein et al, 2008). I thus investigated the 

effect of mutations at PKC sites in the R-region interaction, in situ, to refine our 

model and better understand the regulation of CFTR activity by PKC. All PKC 
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mutant constructs studied here displayed alterations, to different degrees, in the 

R-region interactions to the CFTR halves and some striking changes could be 

fairly associated with functional impairments. The R-region, as a disordered 

segment, can make transient connections, where multiple segments can bind 

and detach dynamically from a variety of interaction partners, as indicated in 

NMR studies (Baker et al, 2007, Bozoki et al, 2013). In our model, the 

unphosphorylated R-region binds to both halves equally. PKC phosphorylation 

alone did not change the pattern observed at basal conditions, consistent with 

CD spectra data showing that PKC phosphorylation do not induce the 

conformational changes observed with PKA phosphorylation (Dulhanty & 

Riordan, 1994). This is also consistent with functional studies that show very 

minor current after PKC phosphorylation alone (Tabcharani et al, 1991; Berger et 

al, 1993, Chappe et al, 2003). However, PKC phosphorylation induced a marked 

increase of R-region interaction with the FH over PKA alone, consistent with the 

PKC enhancing effect on CFTR activity. Among the mutant constructs studied 

here, SR-S686D and SR-S641A/T682A can be classified as ‘gain of function’ 

while SR-S686A as a ‘loss of function’ mutant. Reduced FH-R interactions at 

basal conditions were observed in SR-S641A/T682A channels but that did not 

prevent their response to phosphorylation. A construct where the only functional 

PKC site is S686 (SR-6CA) showed even weaker FH-R interactions, but still 

responded to phosphorylation similarly to SR-WT in iodide efflux measurements. 

In contrast, reduced binding of the R-region to the BH at basal conditions, as 

observed in S686A channels, was associated with the inability of this mutant to 
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strongly increase R-region interactions with the FH in response to PKC + PKA 

phosphorylation, thus abolishing the PKC enhancing effect. The opposite 

mutation, S686D, on the other hand, displayed normal basal BH-R and FH-R 

interactions and was overresponsive to phosphorylation. Furthermore, SR-6CA, 

that had similar basal BH-R interactions as SR-WT was able to increase FH-R 

interactions after PKC + PKA phosphorylation and SR-S641A/T682A, that 

displayed a 3.5-fold increase in basal BH-R compared to SR-WT, had its FH-R 

interaction after PKC + PKA increased by a similar level (~3-fold). These results 

demonstrate that interactions of the unphosphorylated R-region with the BH are 

crucial for the phosphorylation-induced increased interactions of the R region 

with the FH, resulting in channel activation. These data also suggest a 

mechanism where strong anchoring of the unphosphorylated R-region to 

unidentified regions in the BH is critical for the R-region phosphorylation-

dependent interaction with the FH which regulates CFTR activity. 

 

4.4 PHOSPHORYLATION INDUCES R-REGION INTERACTIONS WITH THE N- AND C-

TERMINAL DOMAINS OF CFTR  

In order to improve the model derived from in situ PLA data, I used MST 

experiments to investigate R-region interactions with the cytoplasmic loops within 

each half of CFTR as well as with the amino and carboxyl ends of the protein. 

Acquisition of sufficient amounts of soluble recombinant R-region peptides for 

protein-protein assays has been proved challenging and, in the literature, only a 

few studies, have reported successful purifications of the whole R region. A 124-
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residues peptide (aa 708-831) was purified to ~400 µM (Ostedgaard et al, 2000), 

while a longer peptide of 185 residues (aa 654-838), carrying a F833L 

polymorphism (Baker et al, 2007; Bozoki et al, 2013) was purified to ~500 µM. 

Other studies have used a purified 190-residues peptide (aa 645-834) but 

maximal concentrations were not reported (Picciotto et al, 1992; Winter & Welsh, 

1997).  

The R-region used in the present study was slightly longer (202 residues; aa 

635-836) to contain the consensus PKC site at position 641. The N-terminal of 

this construct differs from the two previous long constructs reported by the 

addition of the final residues of helix H8 and the whole helix H9 described in the 

mouse and human NBD1 structures (Lewis et al, 2004; 2005). Here, even with 

the use of GB1 domain as a solubilizing tag partner, the presence of the N-

terminal helical segment may explain the low yield of ~350 µM of soluble R-

region at the maximum. Even trying to include the F833L polymorphism as used 

by others (Baker et al, 2007) did not improve significantly the solubility of the R-

region. 

The MST technique requires only small amounts of soluble protein for probing 

protein-protein interactions (<50µL of R-region was used for each experiment) 

and for that reason this method was chosen to test in vitro R-region interactions 

with the cytoplasmic regions of CFTR.  

My result show that the R-region interacts with all peptides tested with moderate 

affinities (in the micromolar range), consistent the expected behaviour of an 

intrinsically disordered protein (Dyson & Wright, 2005; Wright & Dyson, 2015). 
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Previous data also demonstrated this promiscuous behaviour with multiple 

segments of the R-region interacting with different partners (Bozoki et al, 2013). 

In addition, EM densities attributed to the R-region in the unphosphorylated 

structures of CFTR show interactions with several areas of the protein (Zhang & 

Chen, 2016; Liu et al, 2017).  

Phosphorylation strongly enhanced interactions of the R-region with the lasso 

motif and the C-tail by 2.5-fold and 2.3-fold respectively, while only a smaller but 

significant reduction in the interaction with CLs 3 and 4 was observed (Figure 

27). Deletion of the C-tail was shown to reduce by half the open probability of 

CFTR in epithelial cells (Ostedgaard et al, 2003) and phosphorylation-induced 

interactions with the C-tail were previously suggested to be involved in 

stimulation of NBDs dimerization and channel function (Bozoki et al, 2013). The 

latter study also showed that interactions between the R-region and C-tail, which 

is also disordered, caused a certain degree of ordering, at least in part, of those 

segments, an outcome not common in R-region interactions with other parts of 

CFTR tested in the study (Bozoki et al, 2013).  

The disordered C-tail segment is not visible in the unphosphorylated structures of 

CFTR, but it becomes partially ordered in the phosphorylated structures. 

Interestingly, the extra thirteen residues resolved at the C-tail in the 

phosphorylated human structure form a small helix that is positioned just near 

one of the R-region densities (Zhang et al, 2018), providing further support for a 

possible disorder-to-order transition involved in this interaction. 
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R-region interactions with the lasso motif were also previously reported, but their 

association with phosphorylation was not very clear (Naren et al, 1999). In the 

present study, I demonstrate for the first time an association with the lasso motif 

that is strongly dependent on phosphorylation.  

Because interactions with CLs 1 and 2 were not affected by phosphorylation, the 

increased interaction with the FH observed in situ (in cells) with PLA can be 

attributed to the lasso motif. Consequently, I propose that the Lasso-R 

interactions are responsible at least in part for the channel activation induced by 

PKA phosphorylation, probably in combination with interactions with the C-tail.  

With MST in vitro experiments, I could not reproduce the dramatic increase in 

FH-R interactions observed after PKC + PKA stimulation in situ compared to PKA 

alone stimulation. A possible explanation for this is that inside the cells multiple 

other partners are interacting with the R-region and the lasso motif, for instance 

syntaxin 1A (Naren et al, 1997; Naren et al, 2000), and in the absence of optimal 

physiological conditions where CFTR engages in several complexes with scaffold 

proteins, this interaction may not be formed.  

In addition, my data suggests that R-region displacement from CLs 3 and 4 also 

support the channel function. Missense mutations in both CLs 3 and 4 have been 

found in patients with CF, with some of them reported to disturb channel gating, 

altering the open probability of the channel and to promote a small change in 

channel conductance (Seibert et al, 1996a; 1996b). Also, mutation of a well 

conserved residue in CL 3, K978, leads to ATP-independent channel activity 

(Wang et al, 2010). The involvement of those loops in channel gating and 
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conductance suggest that, perhaps, small adjustments in those channel 

properties underlie the mechanism by which R-region interactions with those 

loops regulate channel function. In fact, MST data showed that R-region release 

from those loops was fine-tuned with its phosphorylation state with partial 

displacement of the R-region from the CL 4 after PKA phosphorylation suggested 

to aid in CFTR activation by PKA, and partial displacement from the CL 3 after 

dual phosphorylation suggested to be involved in the mechanism for the PKC 

enhancing effect. 

In summary, the results reported here complement previous data on the R-region 

interactions (Bozoki et al, 2013) and suggest a model where phosphorylation 

controls R-region dynamic interactions with all cytoplasmic domains of CFTR. 

When in resting conditions strong interactions with the NBDs and cytoplasmic 

loops 3 and 4 keep the channel closed. Phosphorylation does not only decrease 

inhibitory interactions with those central areas of the protein but also stimulates 

new interactions with peripheral areas, the N- and C-terminus, which facilitate 

channel activation. 

 

4.5 CONCLUSION AND IMPORTANCE OF THE STUDY 

The present study provides new insights on the understanding of the R-region 

dynamics, analyzing in situ interactions with the front and back halves of CFTR 

as well as in vitro interactions with six cytoplasmic subdomains in three different 

phosphorylation conditions (PKA, PKC and PKC + PKA). Together with previous 

results reported by our group (Chappe et al, 2004; Chappe et al, 2005; 



153 
 

Seavilleklein et al. 2008), the present findings reinforce the importance of PKC 

sites in CFTR function and domains interaction. They show that R-region 

dynamics change considerably with different phosphorylation states which may 

reflect the mechanisms used by different kinases to regulate CFTR activity. The 

molecular model proposed here shows that R-region interactions within the front 

half, especially with the lasso motif, are important to regulate phosphorylation-

dependent activation of the channel. Interactions with the C-terminal tail, part of 

the back half, also support function. Moreover, I propose that PKC enhancing 

effect is mediated by a permissive interaction of the R-region with the back half of 

CFTR, with PKC site S686 being crucial in this mechanism. Future experiments 

investigating interactions of recombinant R-regions carrying S686A or S686D 

mutations with the cytoplasmic subdomains of CFTR may provide more 

information about this mechanism.  

Unfortunately, at the moment, with the technology available, we still do not have 

enough data to predict what is the actual conformation of the R-region in the 

whole protein. As the R-region controls channel function, a lot is missing on the 

molecular mechanism of channel activation. The R-region is physically present in 

between the two halves but, is it interfering directly with ATP binding or 

hydrolysis? Or is it exerting its inhibition by just sterically blocking NBDs 

dimerization? Do the interactions with the cytoplasmic loops affect directly the 

pore properties? How the phosphorylated R-region stimulates channel function? 

Those are few out of many questions that still remain to be answered. 
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The disordered nature of the R-region has prevented the resolution of most of its 

sequence in all crystal structures currently available, with the two helices and 

some patches of densities ascribed to be parts of the R-region combined with 

extensive biochemical and functional data nurturing the speculations about its 

mechanism of action. The specific interaction sites in each of the CFTR halves 

that are involved in both inhibitory and stimulatory functions of the R-region still 

need to be discovered; however, the comprehension of how phosphorylation 

changes the R-region dynamics in the context of the full CFTR protein, in its 

native membrane environment, like it was demonstrated in this study, is of 

fundamental importance to understand the mechanism by which phosphorylation 

regulates CFTR activation. Also, the finding that interactions with the lasso motif 

and CL 3 and 4 are modulated by phosphorylation contribute for building up a 

more complete model for this complex regulatory mechanism.  

A better understanding of the mechanism underlying the 2-fold increase in PKA-

activated CFTR currents elicited by PKC as well as the identification of the 

inhibitory and stimulatory interactions of the R-region may facilitate the design of 

therapeutic drugs (potentiators) that either compete with the unphosphorylated 

R-region and (partially) release its inhibition or mimic the R-region stimulation on 

CFTR gating to treat patients that have mutant forms of classes III, IV or V, that 

escape from the ERQC machinery, reach the cell surface but are incapable of 

generate ion currents. 
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