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Abstract

Real stabilizer operators, which are also known as real Clifford operators, are gen-

erated, through composition and tensor product, by the Hadamard gate, the Pauli

Z gate, and the controlled-Z gate. We introduce a normal form for real stabilizer

circuits and show that every real stabilizer operator admits a unique normal form.

Moreover, we give a finite set of relations that suffice to rewrite any Clifford circuit to

its normal form. This yields a presentation by generators and relations of the strict

spatial monoidal category of real stabilizer operators.
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Chapter 1

Introduction

Stabilizer operators, which are also known as Clifford operators, play a fundamental

role in the study of fault-tolerant quantum computation [10].

The Clifford operators are generated, under composition and Kronecker product,

by the gates

ω = e
iπ
4 , H =

1√
2

[︄
1 1

1 −1

]︄
, S =

[︄
1 0

0 i

]︄
, and CZ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦ ,

where ω is a scalar, and H, S, and CZ are the Hadamard, phase, and controlled-Z

gates, respectively. For all n ≥ 0, the set of Clifford operators on n qubits forms a

group, which is known as the complex Clifford group and is denoted C(n,C). This

group is a finite subgroup of U(2n), the unitary group of degree 2n. If C is a Clifford

operator, any representation for C in terms of the generators above is called a circuit

for C.

Quantum circuits for stabilizer operators have been extensively studied [1, 4, 5,

7, 11, 13, 15]. In particular, in [13], Selinger gave a finite presentation of Clifford

operators by introducing a normal form for Clifford circuits together with a finite

collection of relations that suffice to rewrite any Clifford circuit to its normal form.

In this thesis, we study real Clifford operators which are generated by

−1, H =
1√
2

[︄
1 1

1 −1

]︄
, Z =

[︄
1 0

0 −1

]︄
, and CZ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦ ,

where Z is the Pauli Z gate. The group of n-qubit real Clifford operators C(n,R) is
the intersection of C(n,C) and the orthogonal group O(2n) of degree 2n.
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Restrictions such as the one considered here have been previously studied in the

context of randomized benchmarking [8], graphical languages [6, 16], and exact syn-

thesis [3].

The contributions of this thesis are the following. We define a normal form for real

Clifford circuits and show that every real Clifford operator admits a unique normal

form. We then introduce a collection of relations between real Clifford circuits and

formulate a rewrite system to transform any real Clifford circuit to its normal form,

using a finite number of applications of the relations. Our work largely follows the

methods used by Selinger in [13]. In particular, our normal forms, the notions of

clean and dirty normal forms, and the normalization procedure described below are

adapted from [13]. But the focus on real operators requires additional restrictions on

the construction of normal forms. These restrictions are enforced by introducing a

notion of coloured circuit.

The thesis is organized as follows. In Chapter 2, we examine the structure of the

real Pauli and Clifford groups. In Chapter 3 we review the diagrammatic language

of circuits and introduce coloured circuits. In Chapter 4 we proceed to define our

normal forms and to prove that real Clifford operators admit a unique normal form.

We then state our relations in Chapter 5 and propose a system for transforming any

real Clifford circuit to its normal form. Lastly, we discuss avenues for future work in

Chapter 6.



Chapter 2

The Real Pauli and Clifford Groups

In this chapter, we introduce the matrix groups that will be the focus of this thesis. If

A and B are matrices, we write AB for their product and A⊗B for their Kronecker

product. We write In for the identity matrix of dimension n, dropping the subscript

n when the dimension can be inferred from context. For brevity, if a is a scalar

we write a for aI. We denote the transpose of the matrix A by A⊺. A matrix A

is symmetric if A = A⊺ and orthogonal if A−1 = A⊺. The collection of real n × n

orthogonal matrices forms a group under multiplication known as the orthogonal

group of degree n and denoted O(n). Following [13], for A,B ∈ O(n), we write A •B
for ABA−1. Throughout, we use the terms “operator” and “matrix” interchangeably,

assuming that operators are always represented with respect to the standard basis.

Furthermore, we will refer to our Kronecker product as simply the tensor product,

when in reality it is a special case of a tensor product on finite dimensional matrices,

such that (A⊗B)⊗ C = A⊗ (B ⊗ C).

2.1 The Real Pauli Group

Definition 2.1.1. The real Pauli matrices X and Z are defined as

X =

[︄
0 1

1 0

]︄
and Z =

[︄
1 0

0 −1

]︄
.

We note that X and Z are orthogonal and symmetric so that X2 = Z2 = I.

Moreover, X and Z anticommute: XZ = −ZX. This implies that (XZ)2 = −1 so

that XZ is orthogonal but not symmetric.

Definition 2.1.2. The real Pauli group on n qubits P(n,R) is defined as

P(n,R) = {±(P1 ⊗ . . .⊗ Pn) | Pi ∈ {I,X, Z,XZ}}.

In what follows, we drop the adjective “real” and simply refer to X and Z as Pauli

matrices and to P(n,R) as the Pauli group. In addition, we write P(n) for P(n,R).

3
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Note that P(n) ⊆ O(2n). A set of generators for P(n) is obtained by taking tensor

products of the form I ⊗ · · · ⊗ I ⊗X ⊗ I ⊗ · · · ⊗ I and I ⊗ · · · ⊗ I ⊗Z ⊗ I ⊗ · · · ⊗ I,

where X and Z appear in all of the possible n components. For example, the following

operators generate P(3):

X ⊗ I ⊗ I,

I ⊗X ⊗ I,

I ⊗ I ⊗X,

Z ⊗ I ⊗ I,

I ⊗ Z ⊗ I, and

I ⊗ I ⊗ Z.

Any element P of P(n) can be written as P = (−1)a(Xb1Zc1 ⊗ · · · ⊗ XbnZcn)

where a, bi, ci ∈ Z2. The Pauli matrix P can thus be represented by a triple (a, b, c)

where b = [b1, b2, . . . , bn] and c = [c1, c2, . . . , cn] are n-dimensional binary vectors.

The mapping P ↦→ (b, c), where (a, b, c) is the binary representation of P , defines a

homomorphism from P(n) onto Zn
2 × Zn

2 .

Proposition 2.1.3. |P(n)| = 22n+1

Proof. By counting the binary representations of Pauli operators.

Proposition 2.1.4. Let P = (−1)a(P1 ⊗ . . . ⊗ Pn) with Pi ∈ {I,X, Z,XZ}. Then

P 2 = I if and only if there are evenly many i such that Pi = XZ.

Proof. If Pi ∈ {I,X, Z} then P 2
i = I and if Pi = XZ then P 2

i = −1. Hence, for any

P ∈ P(n), P 2
i = (−1)dI where d is the number of components for which Pi = XZ.

Thus, P 2 = I if and only if d is even.

Proposition 2.1.5. The single-qubit Pauli group P(1) spans M2(R), the space of real
2× 2 matrices.

Proof. We notice that

I + Z

2
=

[︄
1 0

0 0

]︄
,

X −XZ

2
=

[︄
0 1

0 0

]︄
,
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X +XZ

2
=

[︄
0 0

1 0

]︄
, and

I − Z

2
=

[︄
0 0

0 1

]︄
.

It follows that P(1) spans M2(R).

Corollary 2.1.6. The n-qubit Pauli group P(n) spans M2n(R), the space of real

2n × 2n matrices.

Proof. If V is a vector space spanned by some set S, then S⊗n = {s1⊗· · ·⊗sn : si ∈ S}
spans V ⊗n = V ⊗ · · · ⊗ V . As a special case of this, since P(1) spans M2(R) by

Proposition 2.1.5, P(n) = P(1)⊗n spans M2(R)⊗n. But the latter space is isomorphic

to M2n(R) and the result follows.

2.2 The Real Clifford Group

Definition 2.2.1. The real Clifford group on n qubits C(n,R) is the normalizer of

P(n) in O(2n). That is,

C(n) = {U ∈ O(2n) | U • P ∈ P(n) for all P ∈ P(n)}.

As with the Pauli group, we drop the adjective “real” when referring to C(n,R)
in what follows and, for brevity, write C(n) for C(n,R). Since the Clifford group is

the normalizer of the Pauli group, we have that C • P ∈ P(n) for every Clifford C

and every Pauli P . Furthermore, conjugation is a group automorphism of P(n).

Proposition 2.2.2. Let C ∈ C(n). If C • P = P for all P ∈ P(n), then C = ±1.

Proof. By Corollary 2.1.6, P(n) spans the space of 2n × 2n real matrices. By our

assumption, we have that CPC−1 = P , for all P ∈ P(n). It follows that for any

2n × 2n operator N , CNC−1 = N . Thus, C commutes with every real matrix and is

therefore a scalar. Because the only scalars in O(2n) are ±1, we get C = ±1.

Corollary 2.2.3. If C and D are two elements of C(n) that act identically on P(n),

then C = ±D.

Proof. Since C and D act identically on P(n), we have

(D−1C) • P = D−1 • C • P = D−1 •D • P = P.

Thus, by Proposition 2.2.2, D−1C = ±1. Hence C = ±D.
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Definition 2.2.4. The Hadamard matrix H and the Controlled-Z matrix CZ are

defined as

H =
1√
2

[︄
1 1

1 −1

]︄
and CZ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦ .

We note that H ∈ C(1), CZ ∈ C(2), and P(n) ⊆ C(n). For future reference, the

action of some chosen Clifford operators on elements of the Pauli group are recorded

in the proposition below, which is proved by direct calculation.

Proposition 2.2.5. We have

X •X = X X • Z = −Z

Z •X = −X Z • Z = Z

H •X = Z H • Z = X

CZ • (X ⊗ I) = X ⊗ Z CZ • (Z ⊗ I) = Z ⊗ I

CZ • (I ⊗X) = Z ⊗X CZ • (I ⊗ Z) = I ⊗ Z

2.3 The Complex Pauli and Clifford Groups

We close this chapter with some brief remarks about the complex Pauli and Clifford

groups. Recall that a complex matrix V is unitary if V † = V −1, where V † is the

conjugate transpose of V , and that the group of n×n unitary matrices forms a group

known as the unitary group of degree n and denoted U(n).

The complex Pauli operators are generated by the operators X and Z of Defini-

tion 2.1.1 together with the following Pauli Y gate

Y =

[︄
0 −i

i 0

]︄
.

On a fixed number n of qubits, complex Pauli operators form a group known as the

complex Pauli group on n qubits and denoted P(n,C). The complex Clifford group on
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n qubits C(n,C) is the normalizer of P(n,C) in U(2n), the unitary group of degree 2n.

It is known, and was proved, for example, in [13], that the group C(n,C) has order

|C(n,C)| = 8 ·
n∏︂

i=1

2(4i − 1)4i.

In contrast, the real Clifford group has order

|C(n,R)| = 2 ·
n∏︂

i=1

(4i + 2i − 2)(2 · 4i−1)

as was proved in [9]. We will also establish this fact in Chapter 4.



Chapter 3

Circuits

In this chapter, we review the language of quantum circuits, which provides a conve-

nient graphical notation for operators.

3.1 Quantum Circuits

Quantum circuits are made up of gates. Let m,n ∈ N. A gate with n inputs and m

outputs is represented by a diagram of the following form.

n m
...

...G

Above, we have n input wires on the left, and m output wires on the right. We assume

the existence of an identity gate with 1 input and 1 output. It is represented by a

wire as below.

Note that a gate can have 0 inputs and 0 outputs, in which case we call it a scalar

and often denote it without its bounding box. We can compose gates in two ways:

horizontally and vertically. The horizontal composition of two gates G1 and G2 is

represented by

.
...

...
...G1 G2

For the horizontal composition of G1 and G2 to be defined, G2 must have as many

inputs as G1 has outputs. The vertical composition of two gates G1 and G2 is repre-

sented by

.
...

...

...
...G1

G2

8
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If the gate G1 has n1 inputs and m1 outputs, while the gate G2 has n2 inputs and m2

outputs, then their vertical composition will have n1+n2 inputs and m1+m2 outputs.

A circuit is a diagram constructed from the horizontal and vertical composition of

gates from a base set. For example, consider the base set of gates below.

G1
G2 G3

G4

An example of a circuit constructed from these gates is shown below.

G4

G2

G1

G3
G4

In general, if a circuit C is constructed using gates from {G1, . . . , Gk}, we say that C

is a circuit over the gate set {G1, . . . , Gk}.
It will sometimes be convenient to refer to gates within a circuit. We say that a

gate G is immediately before a gate G′ if one of the outputs of G connects to one of

the inputs of G′. A gate G is simply before a gate G′ if there is a sequence of gates,

each immediately before the next one, starting with G and ending with G′.

We can interpret circuits as matrices. This is done by introducing an interpretation

map J·K which assigns a matrix JCK to any circuit C. The interpretation is defined by

assigning a matrix to each one of the basic gates, and by extending this assignment

to arbitrary diagrams as follows: the vertical composition of two diagrams C and D

is defined as JCK⊗ JDK and the horizontal composition of two (composable) diagrams

C and D is defined as JDK · JCK. Two circuits are said to be equivalent if JCK = JDK.

By a slight abuse of notation, we often omit J·K. Instead, if C is a circuit and M is

a matrix such that JCK = M , we often write C = M . Similarly, we often denote the

fact that two circuits C and D are equivalent by simply writing C = D.

We only consider circuits up to certain topological deformations. In particular,

scalars can be freely moved around the diagrams so that we consider the two circuits

below to be equal.

λ =
λ
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This property is sometimes called the spatial law. In addition, gates can be moved

along wires, so that, for example, the two circuits below are also considered equal.

f

g
=

f

g

This property is known as the bifunctorial law. Finally, wires can be bent or stretched

at will, but not cut or crossed. The interpretation of circuits as matrices is robust to

these deformations in the sense that if C and D are two circuits that differ only up

to, e.g., the placement of scalars, then C and D are in fact equivalent. We note that

these implicit identifications endow the collection of circuits with the structure of a

spatial monoidal category (see [13], and more formally introduced in [12]), although

this fact will not play a large role in what follows.

In what follows, we will be interested in circuits for Clifford operators. To this

end, we introduce the below gates to be interpreted as the Hadamard, Pauli Z, and

controlled-Z matrices respectively.

H =
1√
2

[︄
1 1

1 −1

]︄
=

[︄
1 0

0 −1

]︄
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦
Note that the Pauli X operator can be represented over this gate set since

H H =

[︄
0 1

1 0

]︄
.

For brevity, we introduce some derived gates below, which are shorthand for some

Clifford circuits.

= H H =
H H

The derived gate on the left represents the Pauli X gate. We call the derived gate on

the right the CXZ gate, an abbreviation for controlled-XZ.

As a final example of an interpreted circuit, it can be verified that the circuit
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corresponds to the matrix below.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2 Coloured Circuits

We now introduce coloured circuits. The notion of a coloured gate coincides with our

previous notion of gate, with the difference that some of the wires are coloured, as

shown in the two examples below.

G1 G2

The colouring of wires does not affect the vertical composition of gates, but two gates

can only be composed horizontally if the colours of the corresponding wires are the

same. For example, the gates G1 and G2 above can be composed as

G1 G2

but not as

G2 G1

so that the composition in this last diagram is not well-defined.

Coloured circuits are then constructed from coloured gates with this restriction.

This colouring of gates is meant to act as a form of typing to constrain the construction

of circuits.

A coloured gate is defined in two stages. In the first stage, a standard gate is

specified, for example by associating a diagram to a matrix or a circuit made from
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preexisting gates. In the second stage, colours are associated to the input and output

wires of the gate. Note that any coloured circuit can still be viewed as a non-coloured

circuit by simply forgetting about the colour of the wires.

We will sometimes assign more than one colour to the wires of a circuit to concisely

specify a family of circuits. As an illustration, consider the coloured gates below.

G1 G2 H1 H2

Then the diagram

G H

represents the family of circuits in which the gate on the left-hand side is one of G1

or G2 and the gate on the right-hand side is one of H1 or H2 subject to the condition

that the circuit is a well-formed coloured circuit. In fact, there are two circuits in

this specific family, namely the two circuits below.

G1 H2 G2 H1

3.3 Annotated Circuits

We close this chapter with a final notational convention: annotations. These annota-

tions allow us to express the action of a Clifford operator on a Pauli operator under

conjugation. When C ∈ C(n), and P = P1 ⊗ · · · ⊗Pn, Q = Q1 ⊗ · · · ⊗Qn ∈ P(n), we

write

...
...
Qn

Q1

Pn

P1

C

to indicate that C •P = Q. For example, we can describe the action of the CXZ gate

in this way as follows.

.

XZ

I

XZ

I



Chapter 4

Normal Forms for Real Clifford Circuits

In this chapter, we introduce normal forms for Clifford operators. That is, we specify

a family of circuits and show that every Clifford operator is represented by a unique

element of this family.

4.1 Derived Generators

We start by introducing derived generators, which will serve as the basic building

blocks for our normal forms. As discussed in Chapter 3, we introduce these derived

generators in two stages: first we define the gates as (uncoloured) circuits and then

we specify the colours of their wires. Our derived generators come in five groups

which we name A, B, C, D, and E.

Definition 4.1.1. The A gates are defined below.

A1 = A2 = H A3 =

Definition 4.1.2. The B gates are defined below.

B1 = B5 =
H H

H

H

H

B2 = B6 =
H

H

B3 = B7 =
H

H

H

B4 = B8 =
H H H

H

Definition 4.1.3. The C gates are defined below.

C1 = C2 =

13
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Definition 4.1.4. The D gates are defined below.

D1 =
H

H

H

H

H

D2 =
H

H

H

H

D3 =
H

H

H

H

H

D4 =
H

H

H

Definition 4.1.5. The E gates are defined below.

E1 = E1 =

In what follows, we sometimes say that a gate is of type A (respectively B,C,D,E)

if it is an A (respectively B,C,D,E) gate.

Definition 4.1.6. The coloured gates of type A, B, C, D, and E are defined below.

A1 A2 A3

B1 B2 B3 B4

B5 B6 B7 B8

C1 C2

D1 D2 D3 D4

E1 E2

The following corollary reformulates the actions of Proposition 2.2.5 into anno-

tated circuits. These can be used to compute the actions of larger circuits, such as

the defined derived generators.
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Corollary 4.1.7. The following annotated circuits record the action of the X,Z,H,

and CZ gates on selected Pauli operators.

X −X

Z Z

X X

Z −Z

X ZH

Z XH

Z Z

I I

X X

I Z

I I

Z Z

I Z

X X

X X

Z I

Z I

X X

Proof. The first seven annotated circuits follow from the actions in Proposition 2.2.5,

while the final two annotated circuits follow from the above seven, and the fact that

CZ is self-inverse.

The next proposition states the action of the derived generators on well-chosen

Pauli operators and will play an important role in the study of normal forms.

Proposition 4.1.8. The following annotated circuits record the action of the gates

of type A, B, C, D, and E on certain Pauli operators.

Z ZA1 X ZA2 XZ XZA3

Z

XZ

I

XZ
B4

Z

Z

I

Z
B3

Z

X

I

Z
B2

Z

I

I

Z
B1

XZ

XZ

I

Z
B8

XZ

Z

I

XZ
B7

XZ

X

I

XZ
B6

XZ

I

I

XZ
B5

Z ZC1 −Z ZC2
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XZ

X

XZ

I
D4

Z

X

X

I
D3

X

X

X

I
D2

I

X

X

I
D1

XZ

XZ

X

I
D4

Z

XZ

XZ

I
D3

X

XZ

XZ

I
D2

I

XZ

XZ

I
D1

I

Z

Z

I
D4

I

Z

Z

I
D3

I

Z

Z

I
D2

I

Z

Z

I
D1

X XE1 Z ZE1 −X XE2 Z ZE2

Furthermore, in each action represented above, the specified gate is the unique derived

generator of its type and output colours that performs this action.

Proof. By computation.

The proof of Proposition 4.1.8 requires tedious computation. We note here that

one can verify the actions of the derived generators stated above by applying the

actions described for each basic generator in Proposition 2.2.5. For example, consider

the action of the gate B2 on the Pauli X⊗Z. Note that since we are only considering

the action of the gate, wire colours can be omitted here. Since B2 = CZ ·(H⊗H) ·CZ ,

we get

B2 • (X ⊗ Z) = CZ • ((H ⊗H) • (CZ • (X ⊗ Z)))

= CZ • ((H ⊗H) • (X ⊗ I))

= CZ • (Z ⊗ I)

= Z ⊗ I.

This can also be recognized diagrammatically by considering the annotated circuit

of B2 acting on X ⊗ Z, and applying a sequence of the actions in Corollary 4.1.7 to

receive the right hand side of the annotated circuit. This is shown in the following

example.

X

Z

X

I

Z

I

Z

IH

H
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4.2 Normal forms

We now describe our normal forms.

Definition 4.2.1. An n-qubit circuit is a Z-circuit if it is of the form

.

...
...

...
...

· · ·

A
B

B

B

B
C

Z-circuits have a ladder structure, and a matching of coloured wires along the

way. An example of a Z-circuit is shown below.

A3

B5

B7

B8

B4

C2

Definition 4.2.2. An n-qubit circuit is an X-circuit if it is of the form

.

· · ·
· · ·...

D

D

D

D
E

Definition 4.2.3. An n-qubit circuit is normal if it is of the form

=
...

...
N

· · ·
· · ·...

...
...

...
... ·(±1)Ln Mn

Ln−1 Mn−1

L2 M2

L1 M1

where, for 1 ≤ i ≤ n, Li is a Z-circuit, and Mi is an X-circuit.
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The next several propositions culminate in the proof that every Clifford operator

is represented by a unique normal circuit.

Proposition 4.2.4. Let P be a n-qubit Pauli operator, with P = P1 ⊗ P2 ⊗ · · · ⊗ Pn,

P 2 = I, and P ̸= ±I. Then there exists a unique Z-circuit L such that L • P =

Z ⊗ I ⊗ · · · ⊗ I.

Proof. Since P ̸= ±I, there is an index m such that Pm ̸= ±I. Let m be the largest

such index. Then Pm = ±X,Pm = ±Z, or Pm = ±XZ. With this, we consider the

following diagram.

±Pm

Pm−1

Pm−2

P2

P1

I

I

...
...

Z

I

I

I

I

I

I

...
...

±V1

±V2

±V3 · · ·
· · · ±Vm−1

±Z

A
B

B

B
C

In the above diagram, the Vs are Pauli operators such that Vs ∈ {Z,XZ} and are

determined in the following way. By Proposition 4.1.8, if Pm = ±X,±Z, there is a

unique A gate Ag with green output such that Ag • Pm = ±Z. If Pm = ±XZ, there

is a unique A gate Ar with red output such that Ar • Pm = ±XZ. So the A gate

is uniquely determined. Furthermore after the application of the A gate, we either

have V1 = ±XZ on a red wire or V1 = ±Z on a green wire. We will further use the

actions described in Proposition 4.1.8 to move these Z or XZ Pauli operators up.

By inspection of these actions, we see that for each choice of Pm−1 ⊗ V1, there is

a unique B gate Bj such that Bj • Pm−1 ⊗ V1 = V2 ⊗ I and V2 = Z or V2 = XZ. If

V2 = Z, the output wire is green, and if V2 = XZ, the output wire is red. We can

continue this process up to the top qubit and this will produce a Z-circuit if we can

ensure that the top output wire is green. Since we are constructing a normal circuit

C such that C • P = Z ⊗ I ⊗ . . . ⊗ I, which squares to the identity, we must have

that the final B-gate is such that B • (P1 ⊗ ±Vm−1) = Z ⊗ I, and hence ends on a

green wire. Another reasoning for such is that since P 2 = I, there are evenly many

indices i such that Pi = XZ, which are in effect canceled out by an application of B8,

switching back to Z along a green wire. Thus we will always end up constructing a
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circuit C such that C • P = ±Z ⊗ I ⊗ . . .⊗ I, to which there is a unique C-gate Ck

such that Ck • ±Z = Z. This completes the proof of existence.

Finally, note that every choice of gate is unique with respect to type and colour. If

our normal form was constructed the same way with the absence of colours, uniqueness

with respect to type would be sufficient for a unique Z-circuit, as typing and place-

ment would be the only restrictions on circuit construction. Here with uniqueness with

respect to type and colour, we must prove that no two Z-circuits describing an action

as above can have different colour schemes, as with respect to colour each choice of

gate is unique, making the overall Z-circuit unique. Thus we consider two Z-circuits C

andD that correspond to the diagram above, such that C•P = D•P = Z⊗I⊗. . .⊗I,

and prove they have the same colour schemes. Note that both A gates in C and D

must satisfy A • Pm = ±V1, where V1 = ±Z,±XZ. A2 is the only A gate such that

A • ±X = ±Z, and the equations A • ±Z = ±Z and A • XZ = ±XZ both have

two A gates with these properties, A1 and A3. Both of these gates are different with

respect to output colour, but represent the same actions. When an A1 is chosen as

the A gate, there is an even number of gates from the set {B4, B8} which appear to

its right, as these B gates switch the colour up the ladder. If A3 is chosen as the A

gate, then there is an odd number of gates from the set {B4, B8} which appear to

its right. These B4 and B8 gate represent the gate and actions, but with different

colours of inputs and outputs. Thus it is not possible for both circuits C and D to

start with the different A gates A1 and A3 respectively, as it is not possible for both

resulting circuits to have C • P = D • P = Z ⊗ I . . . ⊗ I with a different number of

occurrences of a given local action. Hence, C and D share the same A gate, and have

the same starting colour. Note that if the input colour is given, there are four choices

of possible local actions of B •Pm−j ⊗ Vj = Vj+1 ⊗ I, corresponding to B1, B2, B3, B4

in the case of green, and B5, B6, B7, B8 in the case of red. Since our output colour of

A is given, and we must satisfy all needed equations of B •Pm−j⊗Vj = Vj+1⊗I, there

are four choices for four possibilities at each choice of B, which all describe different

actions. Here we see that with a shared A gate, both Z-circuits C and D must also

have the same B gates, and thus the same colouring scheme, ending in green, with

the corresponding unique choice of a C gate such that C • ±Z = Z. Hence we have

that C and D have the same colouring scheme. Since the colouring schemes must be
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the same, every local action must be the same unique gates chosen with respect to

type. Hence these two Z-circuits are equal. This concludes uniqueness.

Proposition 4.2.5. Let Q be an n-qubit Pauli operator with Q = Q1⊗Q2⊗· · ·⊗Qn,

Q2 = I, Q ̸= ±I, and Q anticommutes with Z ⊗ I ⊗ · · · ⊗ I. Then there exists a

unique X-circuit M such that M •Q = I ⊗ · · · ⊗ I ⊗X.

Proof. Since Q anticommutes with Z⊗ I⊗· · ·⊗ I, we have Q1 = ±XZ or Q1 = ±X.

With this, we consider the diagram

...
...±Vn−1· · ·

· · ·
±V1

±V2

±X

Q1

Q2

Q3

Qn−1

Qn

I

I

I

I

X

D

D

D
E

where the Vs are Pauli operators such that Vs ∈ {X,XZ}, and are determined by

the Qi as in Proposition 4.2.4. By Proposition 4.1.8, the D gates push X and XZ

gates down the qubits. This is again until we encounter XZ ⊗ XZ, at which point

we apply D4. There is always a unique D gate to perform the needed action, and will

leave us with V1 = X,XZ. We continue the same process down to the bottom qubit.

Again since Q2 = I, by Proposition 2.1.4, there are evenly many indices t such that

Qt = XZ. These occurrences of XZ get cancelled out in pairs, ensuring that we are

left with an ±X on the bottom qubit. By Proposition 4.1.8, there is a unique E gate

Eh such that Eh • ±X = X. Thus we are left with I ⊗ · · · ⊗ I ⊗X and our circuit

is an X-circuit. Furthermore, since each gate was unique with respect to type, the

circuit is uniquely determined.

Proposition 4.2.6. Every X-circuit M satisfies M •(Z⊗I⊗· · ·⊗I) = I⊗· · ·⊗I⊗Z.

Proof. The claim follows from the actions described in Proposition 4.1.8 with respect

to the diagram below.

...
...

Z· · ·
· · ·

Z

Z

Z

Z

I

I

I

I

I

I

I

I

Z

D

D

D
E
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Proposition 4.2.7. Let P and Q be Pauli operators such that P 2 = Q2 = I, P,Q ̸=
±I, and P and Q anticommute. Then there exists a unique pair of a Z-circuit L and

a X-circuit M such that

ML • P = I ⊗ · · · ⊗ I ⊗ Z and ML •Q = I ⊗ · · · ⊗ I ⊗X

Proof. By Proposition 4.2.4, there is a unique Z-circuit L such that L • P = Z ⊗
I ⊗ · · · ⊗ I. Since P and Q both square to the identity and anticommute, so do

L • P and L • Q. Thus by Proposition 4.2.5, there exists a unique X-circuit M

such that M • (L • Q) = ML • Q = I ⊗ I ⊗ · · · ⊗ X and, by Proposition 4.2.6,

ML•P = M•(L•P ) = M•(Z⊗I⊗· · ·⊗I) = I⊗I⊗· · ·⊗Z. This proves existence. For

uniqueness, we assume that L′ and M ′ are two other circuits satisfying the conditions

of the proposition. Since M ′L′ • P = I ⊗ · · · ⊗ I ⊗ Z, and M ′ • (Z ⊗ I ⊗ · · · ⊗ I) =

I⊗· · ·⊗ I⊗Z, we can deduce that L′ •P = Z⊗ I⊗· · ·⊗ I. Therefore L′ = L by the

uniqueness of Proposition 4.2.4, and since M ′ •L •Q = M •L •Q = X ⊗ I ⊗ · · · ⊗ I,

we have that M ′ = M by the uniqueness of Proposition 4.2.5.

Proposition 4.2.8. Let ϕ : P(n) → P(n) be an automorphism of the Pauli group.

Then there exists a normal circuit C such that for all P , C • P = ϕ(P ). Moreover,

the normal form C is unique up to a scalar ±1.

Proof. We proceed by induction on n. For n = 0, we observe that Pauli operators

are the scalars ±1. Thus in this case ϕ is the identity. Choosing C = 1, we get

C • P = ϕ(P ). Uniqueness up to scalar follows from the fact that when n = 0, all

Clifford operators are the scalars ±1. Now suppose that our claim is true for n − 1

and consider the case of n. First we will prove existence. Let P = ϕ−1(I⊗ . . .⊗I⊗Z)

and Q = ϕ−1(I⊗ . . .⊗I⊗X). Then PQ = ϕ−1(I⊗ . . .⊗I⊗ZX). Now note that since

I⊗ . . .⊗I⊗Z and I⊗ . . .⊗I⊗X anticommute, so do P and Q. By Proposition 4.2.7,

there exists a unique X-circuit M and a unique Z-circuit L such that

ML • P = I ⊗ . . .⊗ I ⊗ Z = ϕ(P ),

ML •Q = I ⊗ . . .⊗ I ⊗X = ϕ(Q), and

ML • PQ = (ML • P )(ML •Q) = I ⊗ · · · ⊗ I ⊗ ZX = ϕ(PQ).
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We now define a new automorphism ϕ′ : P(n) → P(n) by

ϕ′(U) = ϕ((ML)−1 • U)

for all n-qubit Pauli operators U . Note that I ⊗ · · · ⊗ I ⊗ Z, I ⊗ · · · ⊗ I ⊗ X and

I ⊗ · · · ⊗ I ⊗ ZX are all fixed points of ϕ′, since

ϕ′(I ⊗ · · · ⊗ I ⊗ Z) = ϕ((ML)−1 • (I ⊗ · · · ⊗ I ⊗ Z)

= ϕ((ML)−1 • (ML) • P ) = ϕ(P ) = I ⊗ · · · ⊗ I ⊗ Z

and

ϕ′(I ⊗ · · · ⊗ I ⊗X) = ϕ((ML)−1 • (I ⊗ · · · ⊗ I ⊗X)

= ϕ((ML)−1 • (ML) •Q) = ϕ(Q) = I ⊗ · · · ⊗ I ⊗X.

Let R be an (n − 1)-qubit Pauli operator. We consider ϕ′(R ⊗ I). Since R ⊗ I

commutes with I⊗· · ·⊗ I⊗Z, I⊗· · ·⊗ I⊗X, and I⊗· · ·⊗ I⊗ZX, the same is true

of ϕ′(R ⊗ I). Hence ϕ′(R ⊗ I) = V ⊗ I, where V ∈ P(n− 1). It follows that there

exists an automorphism ϕ′′ : P(n− 1) → P(n− 1) such that for every R ∈ P(n− 1)

ϕ′(R⊗ I) = ϕ′′(R)⊗ I.

Since I ⊗ · · · ⊗ I ⊗ Z, I ⊗ · · · ⊗ I ⊗X, and I ⊗ · · · ⊗ I ⊗ ZX are all fixed points of

ϕ′, we then have ϕ′ = ϕ′′ ⊗ I.

Now by our induction hypothesis, there exists a normal n−1 qubit Clifford circuit

C ′ such that for all R ∈ P(n− 1), C ′ •R = ϕ′′(R). Let C = (C ′ ⊗ I)ML. Now since

ML • U = (ϕ′)−1(ϕ(U)), we see that

C•U = (C ′⊗I)ML•U = (C ′⊗I)•((ϕ′)−1(ϕ(U)) = (C ′⊗I)•((ϕ′′)−1⊗I)(ϕ(U)) = ϕ(U)

This proves existence.

Now, to prove uniqueness, suppose that D is another Clifford circuit in normal

form such that D • U = ϕ(U) for all U ∈ P(n). Then by our definition of normal

form, D = (D′⊗I)M ′L′ where M is an X-circuit, L is a Z-circuit, and D′ is a normal

Clifford circuit on n−1 qubits. Since (D′⊗I)M ′L′•P = D•P = ϕ(P ) = I⊗· · ·⊗I⊗Z,

we have

M ′L′ • P = (D′ ⊗ I)−1(I ⊗ · · · ⊗ I ⊗ Z) = I ⊗ · · · ⊗ I ⊗ Z.
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From the uniqueness of Proposition 4.2.7, M ′ = M and L′ = L. Then by the

uniqueness of our induction hypothesis, C ′ and D′ are equal up to a scalar of ±1.

Thus the same is true of C and D. This proves uniqueness.

By the existence part of Proposition 4.2.8, every automorphism of the Pauli group

can be represented as a circuit over H, Z, and CZ . Thus all of these automorphisms

are Clifford operators. Conversely, as remarked in Chapter 2, every Clifford operator

is an automorphism of the Pauli group. Hence, Proposition 4.2.8 indeed establishes

that every Clifford operator admits a unique normal form. We also note that this

proves that the Clifford operators are indeed generated by −1, Z,H, and CZ , a prop-

erty that in prior was taken on faith. We can therefore count these normal forms in

order to count Clifford operators.

Corollary 4.2.9. The Clifford group on n qubits has exactly

|C(n)| = 2 ·
n∏︂

i=1

(4i + 2i − 2)(2 · 4i−1)

elements.

Proof. First note that by Definition 4.2.1, the A gate on the left of a normal form

will determine the input colour of the first possible B gate. Then the choice of each

B gate is dependent of the output colour of the previous gate.

There are four gates with a green input, B1, B2, B3, and B4, and four gates with

a red input, B5, B6, B7, and B8. The gates B1, B2, B3, B5, B6, and B7 have the

output colour of the top wire matching that of the input colour of the bottom wire.

The gates B4 and B8 on the other hand, swap between red and green. Thus, if the

last chosen gate had a green output wire, then we must choose one of B1, B2, B3, or

B4. Similarly, one of B5, B6, B7, or B8 must be chosen if the previous gate had a red

output wire.

Now to end with a circuit that is normal, the top output wire of the last B gate

must be green. This means that if we start with an A1 gate or an A2 gate, then we

start on a green wire and we must choose evenly many colour-swapping gates (B4 and

B8) in our construction. Moreover, the first one of which must be a B4 gate and the

last one of which must be a B8. If we start with an A3 gate, then we start on a red
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wire and we must choose oddly many colour-swapping gates, the first one of which

must be a B8 gate, and the last one of which must be a B4 gate.

In general, the number of Z-circuits starting with an A1 gate or an A2 gate is

exactly

4 ·
n∑︂

m=1

⌊m−1
2

⌋∑︂
k=0

(︃
m− 1

2k

)︃
3m−2k−1 =

n∑︂
m=1

2m−1(2m + 2)

and the number of Z-circuits that starting with an A3 gate is exactly

2 ·
n∑︂

m=1

⌊m−1
2

⌋∑︂
k=0

(︃
m− 1

2k + 1

)︃
3m−2(k+1) =

n∑︂
m=1

2m−2(2m − 2).

This produces a total of

n∑︂
m=1

2m−1(2m+2)+
n∑︂

m=1

2m−2(2m−2) =
n∑︂

m=1

(2m−1(2m+2)+2m−2(2m−2)) = 4n+2n−2

Z-circuits. By Definition 4.2.2, there are exactly 2 ·4n−1 X-circuits on n qubits. Since

there are exactly 2 scalars, by Definition 4.2.3, there are exactly

2 ·
n∏︂

i=1

(4i + 2i − 2)(2 · 4i−1)

normal circuits. By Proposition 4.2.8, these are in bijection with the elements of the

n-qubit Clifford group.



Chapter 5

Relations for Real Clifford Circuits

In this chapter, we introduce relations for real Clifford circuits and describe an al-

gorithm for converting any n-qubit Clifford circuit to its normal form, using finitely

many applications of the relations. To normalize circuits, it is sufficient to have

relations to

1. rewrite the empty circuit into the normal form for the identity and

2. rewrite a circuit consisting of a single gate appearing on the left of a normal

form into a normal form.

Indeed, one can then start with an arbitrary circuit, append the normal form for the

identity to the right of it, and iteratively merge the gates of our initial circuit into

the normal form on its right.

5.1 Relations

Definition 5.1.1. The relations are given in Figures 5.1 to 5.9.

The relations are meant to cover all the cases where a gate appears to the left of

a normal form. Because our gates act on no more than two qubits, there are only

finitely many cases to consider. The difficulty arises because the right-hand side of a

relation may contain multiple gates. As a result, we are led to consider cases where a

circuit appears on the left-hand side of a rule. This process increases the number of

cases to consider and could, in principle, fail to terminate. However, a careful analysis

shows that this is not the case. In total, 139 relations appear in Figures 5.1 to 5.9.
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A1 = A1

A2 = A2

A3 = A3

H A1 = A2

H A2 = A1

H A3 = A2 H

A1
=

A1 A2
=

A1
B2

H

A3
=

A1
B4

H

H

A1
B1 =

A1
B1

H H A2
B1 =

A2
B3

A1
B2 =

A2

H A2
B2 =

A3
B8

H

A1
B3 =

A1
B3

H H A2
B3 =

A2
B1

A1
B4 =

A3

H

H

A2
B4 =

A3
B6

H

Figure 5.1: Rewrite rules for normal forms, part I.
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A3
B5 =

A3
B7

H

H

A3
B6 =

A2
B4

H

A3
B7 =

A3
B5

H

H

A3
B8 =

A2
B2

H H H

H
B5 = B5

H

H
B6 = B6

H

H
B7 = B7

H H
B8 = B8

H H H

B1 = B1

B2 = B2

B3 = B3

B4 = B4

B5 = B5

B6 = B6

B7 = B7

B8 = B8

Figure 5.2: Rewrite rules for normal forms, part II.
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H
B1 = B1

H

H
B2 = B3

H
B3 = B2

H
B4 = B4

H

H
B5 = B5

H

H
B6 = B7

H
B7 = B6

H
B8 = B8

H

B1 = B1

B2 = B2

B3 = B3

B4 = B4

B5 = B5

B6 = B6

B7 = B7

B8 = B8

B1 = B1

B2 = B2

B3 = B3

B4 = B4

B5 = B5

B6 = B6

B7 = B7

B8 = B8

C1 = C1 C1 = C1
C1 =

C1

C2 = (−1) · C2 C2 = C2
C2 =

C2

Figure 5.3: Rewrite rules for normal forms, part III.
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B1

=
B1

H H H H

B2

=
B2

H H

B3

=
B3

H H

B4

=
B4

H

H

H

H

H

H

H

H

H H

B5

=
B5

H H

H H H H

H H

B6

=
B6

H H

H H H H

H H

H H

B7

=
B7

H H

H H H H

H H

H H

B8

=
B8

H H

H H H H

H H

H H

Figure 5.4: Rewrite rules for normal forms, part IV.
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B1

B1

= B1

B1

H

H

H

H
B1

B2

= B3

B2

H H

B1

B3

= B1

B3

H

H

H

H
B1

B4

= B3

B4

H H

B2

B1

= B2

B3
H H

B2

B2

= B4

B8

B2

B3

= B2

B1
H H

B2

B4

= B4

B6

B3

B1

= B3

B1

H

H

H

H
B3

B2

= B1

B2

H H

B3

B3

= B3

B3

H

H

H

H
B3

B4

= B1

B4

H H

B4

B5

= B4

B7
H H

B4

B6

= B2

B4

B4

B7

= B4

B5
H H

B4

B8

= B2

B2

Figure 5.5: Rewrite rules for normal forms, part V.
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B5

B5

= B5

B5

H

H

H

H
B5

B6

= B7

B6

H H

B5

B7

= B5

B7

H

H

H

H
B5

B8

= B7

B8

H H

B6

B5

= B6

B7
H H

B6

B6

= B8

B4

B6

B7

= B6

B5
H H

B6

B8

= B8

B2

B7

B5

= B7

B5

H

H

H

H
B7

B6

= B5

B6

H H

B7

B7

= B7

B7

H

H

H

H
B7

B8

= B5

B8

H H

B8

B1

= B8

B3
H H

B8

B2

= B6

B8

B8

B3

= B8

B1
H H

B8

B4

= B6

B6

Figure 5.6: Rewrite rules for normal forms, part VI.
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D1 = D1

D2 = D2

D3 = D3

D4 = D4

D1 = D1
H H

D2 = D2

D3 = D3
H H

D4 = D4

H
D1 = D1

H

H
D2 = D3

H
D3 = D2

H
D4 = D4

H

D1 = D3

D2 = D4

D3 = D1

D4 = D2

E1 = E2 E2 = E1

Figure 5.7: Rewrite rules for normal forms, part VII.
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D1

D1
= D1

D1

H

H

H

H
D1

D2
= D3

D2

H H

D1

D3
= D1

D3

H

H

H

H
D1

D4
= D3

D4

H H

D2

D1
=

D2

D3
H H

D2

D2
=

D4

D4

D2

D3
=

D2

D1
H H

D2

D4
=

D4

D2

D3

D1
= D3

D1

H

H

H

H
D3

D2
= D1

D2

H H

D3

D3
= D3

D3

H

H

H

H
D3

D4
= D1

D4

H H

D4

D1
=

D4

D3
H H

D4

D2
=

D2

D4

D4

D3
=

D4

D1
H H

D4

D4
=

D2

D2

Figure 5.8: Rewrite rules for normal forms, part VIII.

= A1 C1 E1

C1

B1

C1
D1

Figure 5.9: Rewrite rules for normal forms, part VIIII.
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5.2 Normalization

We start by imposing additional colourings on normal circuits, which is convenient to

describe our rewrite system. This further colouring is not used to restrict horizontal

composition, but simply to aid in referring to specific parts of the circuit and will be

used as a labelling to discuss the rewrite rules.

Definition 5.2.1. Consider an n-qubit normal circuit

...
...

...
...

· · ·

· · ·
· · ·

...
A

B

B

B

B
C

D

D

D

D

D
E

Nn−1

where N(n−1) is recursively assumed to be an (n − 1)-qubit normal form. We apply

colours to specific wires to produce the following coloured normal form

...
...

...
...

· · ·

· · ·
· · ·

...
A

B

B

B

B
C

D

D

D

D

D
E

Nn−1

where N(n−1) is recursively coloured in the same manner. Explicitly, the output wire

of a C gate is blue, the top input wire of the first D gate is blue, the top input wire

of all other D gates is purple, the bottom output wire of a D gate is purple, and the

output wire of an E gate is orange.

Definition 5.2.2. Dirty normal forms are obtained from coloured normal forms by

adding gates according to the following scheme.

� An H gate can be placed on a black or red wire.

� A Z gate can be placed on a black, green, red, blue, or purple wire.
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� An X gate can be placed on a black, green, or red wire.

� A CZ gate can be placed on adjacent wires, provided that the bottom wire is

black, and the top wire is black, green, or blue.

� A CXZ gate can be placed on adjacent wires, provided that the bottom wire is

black, and the top wire is red.

� No gate can be placed on an orange wire.

When discussing dirty normal forms, we call H, Z, X, CZ , and CXZ gates dirty, while

gates of type A, B, C, D, and E are called clean.

Intuitively, dirty normal forms are circuits “during the normalization process” and

we now explain how the relations can be used to transform dirty normal forms into

clean ones.

Lemma 5.2.3. Any dirty normal form can be converted to its normal form by ap-

plying the relations of Figures 5.1 to 5.8 a finite number of times.

Proof. By inspection of Definition 5.2.2, it can be observed that every dirty gate

occurs before a clean gate. Therefore, as long as there is still at least one dirty gate

in the circuit, there must be a dirty gate that occurs immediately before a clean gate.

The left-hand side of the relations in Figures 5.1 to 5.8 contain every possible case of

a dirty gate occurring immediately before a clean gate. Thus as long as dirty gates

are left, a rule can be applied. In fact, a tedious inspection of the figures shows that

each rule takes a dirty normal form to another dirty normal form. It now remains to

show that this procedure terminates in a finite number of steps. To this end we can

associate a sequence of natural numbers to each dirty normal form in the following

way. Suppose a dirty normal form has t clean gates, which can be indexed 1, . . . , t as

they appear from left to right. Then we can define a sequence s = (s1, s2, . . . , st) where

si is the number of dirty gates that occur before the i-th clean gate. Now note that

a left-to-right application of the rules decreases the sequence s in the lexicographic

order. It is also clear from the rules that the length of this sequence might not be

constant, but this is in fact bounded by the maximum possible number of clean gates
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in a circuit. In an n-qubit normal form, one can notice that this is represented by

the sum
n∑︂

i=1

2i+ 1 = n2 + 2n.

Because the set of all such sequences is well-ordered, this process terminates in a

finite number of steps.

Proposition 5.2.4. Any Clifford circuit can be rewritten into its normal form using

the relations in Figures 5.1 to 5.9.

Proof. The normal form of the identity operator on n qubits is of the form

· · ·
· · ·

· · ·
· · ·

A1

B1

B1

B1

C1
D1

D1

D1
E1

I

where I denotes the normal form for the identity on n − 1 wires. Note that by

applying the relation in Figure 5.9, we can rewrite the empty circuit on n wires into

its normal form. Now consider a Clifford circuit C. By expanding the wires on the

right of C into the normal form for the identity, we obtain a dirty normal form. We

can then convert this dirty normal form into a normal form using Lemma 5.2.3, which

completes the proof.

As an remark, this yields a presentation for the Clifford operators, with the only

additional condition that we include the definition of our coloured gates in terms of its

generators without colour, as relations in the system. Without doing this, we would,

for example, be unable to prove that A1A1 is equal to A1. Another approach is to

include the derived generators as their definition in terms of basic gates, and include

all relations with the derived generators replaced as their definition in terms of basic

gates. This set of relations will be complete, but complex, untidy, still redundant,

and less magnifying to the structure of the Clifford group in its current state.

As another concluding remark, the reader may wonder how one would come to

find such rewrite rules. We can consider this with the use of annotated circuits using

the following example.
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Imagine we wish to find the right hand side of the following rewrite rule.

D2

Recall that the intended action of the D2 gate is D2 • ±X ⊗X = I ⊗ ±X. We can

place this on the right hand side of the annotated circuit, and back track it to the

left by applying reverse conjugation of every gate. This shows us how the additional

CZ gate perturbs the local action.

I

X

X

X

XZ

ZX
D2

We now receive XZ ⊗ ZX on the left hand side of the annotated circuit, which

is also equal to −(XZ ⊗ XZ). This is the Pauli operator that this circuit takes to

I⊗X under conjugation. We can notice that D4 also describes this same action, that

D4 • (XZ ⊗ Z) = I ⊗±X. This gives us the D gate that we wish to have as the left

gate in the right hand side of the equation, along with possibly some dirty gates to

the right. As in we wish to complete the following rewrite rule.

D2 = D4 G

Where G is a possible circuit to the right of D4. We can solve for G by computing

D2 · CZ ·D†
4, and finding a circuit over the basic gates representing this operator. In

this case we receive that D2 · CZ ·D†
4 = I ⊗ Z, and hence we arrive at the following

rewrite rule.

D2 = D4



Chapter 6

Conclusion

In this thesis, we defined a normal form for real Clifford operators. We then introduced

a rewrite system to transform any real Clifford circuit to its associated normal form,

applying only a finite number of rules.

The most natural extension of this work is to find a more compact presentation.

Indeed, our derived generators are highly redundant, especially once colours are for-

gotten. For example, the gates A1 and A3 represent the same operator: the identity.

It would be preferable to re-express the relations solely in terms of the basic generators

H, Z, and CZ .

Further afield, it would be interesting to study universal extensions of the real

Clifford gate set. One such extension is obtained by adding the Toffoli gate to the

generators. The resulting gate set is universal for quantum computing [2, 14]. As

a consequence, the group of n-qubit operators expressible as a circuit over this gate

set is infinite (for n ≥ 3) and the problem of finding relations for these circuits is

presumably much harder.
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