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Abstract

In this article, we develop an understanding of
how errors from exchange-correlation function-
als affect the modeling of non-covalent interac-
tions in dispersion-corrected density-functional
theory. Computed CCSD(T) reference binding
energies for a collection of small-molecule clus-
ters are decomposed via a molecular many-body
expansion, and used to benchmark density-
functional approximations, including the effect
of semilocal approximation, exact-exchange ad-
mixture, and range separation. Three sources
of error are identified. Repulsion error arises
from the choice of semilocal functional approx-
imation. This error affects intermolecular re-
pulsions, and is present in all n-body exchange-
repulsion energies with a sign that alternates
with the order (n) of the interaction. Delo-
calization error is independent of the choice of
semilocal functional but does depend on the ad-
mixture of exact exchange. Delocalization error
misrepresents the induction energies, leading
to overbinding in all induction n-body terms,
and underbinds the electrostatic contribution to
the 2-body energies. Deformation error affects
only monomer relaxation (deformation) ener-
gies, and behaves similarly to bond dissocia-
tion energy errors. Delocalization and deforma-
tion errors affect systems with significant inter-

molecular orbital interactions (hydrogen- and
halogen-bonded systems, for instance), whereas
repulsion error is ubiquitous. Many-body errors
from the underlying exchange-correlation func-
tional greatly exceed, in general, the magni-
tude of the many-body dispersion energy term.
A functional built to accurately model non-
covalent interactions must contain a dispersion
correction, semilocal exchange and correlation
components that minimize repulsion error in-
dependently, and must also incorporate exact
exchange in such a way that delocalization er-
ror is absent.

1 Introduction

Modeling intermolecular interactions in
density-functional theory (DFT) requires func-
tionals that account for dispersion effects.1–22

Common density functionals do not account for
dispersion, and so the electronic energies ob-
tained using these methods must be augmented
by one of several available dispersion-correction
approaches.1 Regardless of the method used to
obtain it, the dispersion energy is combined
with a pre-existing exchange-correlation func-
tional (the base functional), which accounts
for the non-dispersive component of the non-
covalent interaction energy. Hence, by using
dispersion-corrected DFT, a tacit assumption
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is made that the base functional gives an accu-
rate representation of electrostatics, induction,
and exchange-repulsion, as well as any other
non-dispersive intermolecular effects.23 In this
article, we show that this presumption is overly
optimistic and that most base functionals fail at
describing non-dispersive intermolecular inter-
actions, sometimes spectacularly so. Dispersion
corrections are, in general, used to correct for
these failings via error cancellation.

Dispersion and base functional combinations
have been extensively tested against benchmark
sets composed of high-level reference data. Vir-
tually all of these sets are limited to gas-
phase molecular dimers, for which coupled-
cluster calculations combined with complete-
basis-set extrapolation techniques are used to
obtain very accurate reference data.24–34 For
larger systems, where coupled-cluster calcula-
tions are not possible (except for fragment-
based approaches35–38), back-corrected experi-
mental binding energies are used, although this
approach has limitations regarding the accu-
racy limit of the benchmark set.33,39–42 Com-
paratively, there are only a few benchmark data
sets for small-molecule clusters that can bridge
the gap between isolated dimers and condensed
phases, and the majority of these comprise wa-
ter clusters.35,43–54

The importance of many-body (many-
molecule) contributions to intermolecular bind-
ing energies, such as cooperative polarization
effects and 3-body dispersion,53,55–59 increases
for molecular aggregates compared to dimers.
In this context, it is natural to employ a many-
body expansion of the total energy as a sum
of n-molecule terms of decreasing magnitude
for increasing n. Many-body expansions have
been applied in the past to analyze the en-
ergetic contributions to water clusters,53,58–63

benzene trimers,64 nucleic acid tetramers,65 no-
ble gases,53 and others.54 Wavefunction theory
can be combined with polarizable force fields
in a many-body interaction model to study
molecular clusters66 or crystals.67,68 The many-
body expansion has also been used successfully
with electronic embedding methods in studies
of water clusters and of ice and carbon dioxide
crystals.61,69 Many-body calculations have also

allowed the highly-accurate determination of
the lattice energy of benzene.70,71

The most popular approach to incorporate
dispersion effects in density-functional theory
is to use a damped asymptotic pairwise dis-
persion expression. One example of such an
approach is the exchange-hole dipole moment
(XDM) dispersion model,2,72 in which the co-
efficients that enter the pairwise dispersion ex-
pression are calculated non-empirically. This
approach has been shown to give excellent re-
sults for gas-phase dimers4,73 as well as molecu-
lar crystals.42,74,75 In the framework of a many-
body expansion of the energy, a pairwise dis-
persion correction can affect almost exclusively
the 2-body energies, except for the minor varia-
tions in the dispersion energy caused by chang-
ing dispersion coefficients. Therefore, errors in
the treatment of 3-body and higher-order terms
coming from the base functional remain uncor-
rected, regardless of how the dispersion correc-
tion is parametrized. Since n > 2 terms scale
faster with the number of molecules than the
pairwise terms, it is likely that these errors be-
come important for systems composed of many
interacting molecules, particularly if these are
densely packed.53

We assemble a benchmark for small-molecule
clusters in this article, consisting of 2 to 6
monomers and covering a range of interaction
types. The cluster binding energies are de-
composed into monomer, pairwise, 3-body, and
higher-order contributions, and calculated us-
ing high-level wavefunction theory. The re-
sulting reference data is then used to bench-
mark different density-functional approxima-
tions (DFA). The underlying reasons behind
the performance of a particular base and dis-
persion functional combination are poorly un-
derstood, and it is difficult to predict a priori
the adequacy of a particular combination for
a given purpose.76–78 Our choice of DFAs in-
cludes several popular generalized-gradient ap-
proximations (GGA), and we explore the ef-
fect of varying the fraction of exact exchange
in hybrids derived from the chosen semilo-
cal functionals. Range-separated hybrid func-
tionals are also considered. Our work ex-
tends previous benchmark studies that were re-
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stricted to water and rare-gas clusters or a re-
duced set of semilocal functionals.53 Delocal-
ization error and exchange-repulsion53,59,61,77,78

have been suggested as likely candidates, and
we analyze the contribution of each of these er-
rors in this article.

Our coupled-cluster results show that pair-
wise interactions are dominant for dispersion-
bound clusters, but 3-body and higher-order
effects are important for hydrogen-bonded (H-
bonded) complexes. In agreement with previ-
ous studies,53 the errors in the many-body en-
ergies caused by the choice of DFA are much
larger than the many-body dispersion effect,
which explains the difficulties in their appli-
cation when a damped asymptotic dispersion
expression is used.3,39 The DFA results on our
benchmark set of dispersion-bound clusters are
mostly explained by the errors in the inter-
molecular exchange-repulsion component (re-
pulsion error), which is controlled by the under-
lying GGA,53 and which alternates in sign with
the order of the interaction (the sign for the 2-
body error is the opposite as the 3-body error,
but the same as the 4-body error, etc.). How-
ever, repulsion error alone does not explain the
DFA performance in H-bonded clusters, where
induction and electrostatic effects are impor-
tant. In these systems, a second source of devi-
ation from the reference data is delocalization
error79–82 coming from the base functional. The
amount of delocalization error depends solely
on the admixture of exact exchange and affects
the induction energy, resulting in overbinding
of all n-body induction terms, and the electro-
static energy, which results in an underbinding
contribution to the 2-body term. The combined
effect of delocalization error on the 2-body en-
ergies depends on the relative contribution of
induction and electrostatics to overall binding,
and hence on the type of non-covalent inter-
action. Monomer distortion (deformation) is
also shown to be relatively important for H-
bonded complexes, and the performance of dif-
ferent DFAs regarding deformation error is di-
rectly related to their ability to predict bond-
dissociation energies.

2 Theory

Let us consider a cluster of n molecules. The
binding energy, BE(n), is defined as:

−BE(n) = −BE
(n)
relax = E(n) − nE(1), (1)

where E(n) is the energy of the cluster and E(1)

is the energy of a single monomer at its relaxed
geometry. In this work, attractive interactions
correspond to a positive binding energy.

It is convenient to consider the monomers at
the geometries distorted by the cluster envi-
ronment instead of isolated-monomer optimized
geometries. We define the deformation en-
ergy ∆E(1) as the energy difference between the
monomers in their distorted geometries from
the n-molecule cluster and their relaxed geome-
tries:

−∆E(1) =
1⊂n∑
i

E
(1)
i − nE(1). (2)

In this equation, the notation “1 ⊂ n” indicates
that the sum runs over all possible monomers
in the n-molecule cluster and E

(1)
i is the energy

of monomer i at the geometry of the monomer
in that cluster. The total binding energy with
respect to the rigid monomers is:

−BE
(n)
rigid = E(n) −

1⊂n∑
i

E
(1)
i . (3)

In the rest of this section, unless otherwise
stated, we will consider rigid-monomer binding
energies only.

The leading-order contribution to the binding
energy is the sum of the dimer binding energies,
the pairwise or 2-body contribution:

∆E(2) =
2⊂n∑
i<j

BE
(2)
ij , (4)

−∆E(2) =
2⊂n∑
i<j

E
(2)
ij − (n− 1)

1⊂n∑
i

E
(1)
i . (5)

In equation 4, BE
(2)
ij represents the binding en-

ergy and E
(2)
ij is the total energy of the dimer

composed of monomers i and j. The encom-
passing sums run over all possible pairs in the
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n-molecule cluster, with a total of
(
n
2

)
= n(n−

1)/2 terms.
The 3-body energy is defined as the contribu-

tion to the binding energy of a given trimer that
is not captured by the sum of the BEs of the
three constituent dimers. The total 3-body en-
ergy for the n-molecule cluster is the sum of
the 3-body energies, ∆E(3), over all possible
trimers within the cluster. Thus, the 3-body
contribution to the total binding energy of the
n-molecule cluster is the difference between the
sum of trimer binding energies and 2-body con-
tributions of their constituent dimers:

∆E(3) =
3⊂n∑
i<j<k

BE
(3)
ijk − (n− 2)

2⊂n∑
i<j

BE
(2)
ij ,

(6)

−∆E(3) =
3⊂n∑
i<j<k

E
(3)
ijk − (n− 2)

2⊂n∑
i<j

E
(2)
ij

+
(n− 1)(n− 2)

2

1⊂n∑
i

E
(1)
i . (7)

In equation 6, the first sum runs over all the
trimers (indices i, j, k) in the n-molecule clus-

ter, BE
(3)
ijk is the binding energy of a particular

trimer, and E
(3)
ijk is the total energy. There are(

n
3

)
= n(n − 1)(n − 2)/6 terms in the trimer

sum.
Using the same procedure, the 4-body and

higher-order contributions, up to the n-body
contributions, can be defined. The general m-
body contribution to the total binding energy
can be evaluated directly as:

−∆E(m) =
m∑
k=1

(−1)m−k (n− k)!

(n−m)!(m− k)!

k⊂n∑
i<j...

E(k).

(8)
The total relaxed binding energy of the cluster
is the sum of the deformation energy plus the
n-body binding-energy terms with n ≥ 2:

BErelax =
n∑
k=1

∆E(k). (9)

In this work we consider only the 2-body, 3-
body, and a composite ≥4-body term. As we

shall see in the next section, the higher-order in-
teractions represent small contributions to the
total binding energies. Thus, the ≥4-body con-
tribution to the binding energy is simply evalu-
ated as the difference between the total, rigid-
monomer binding energy of the cluster and the
sum of the 2-body and 3-body terms:

∆E(≥4) = BE
(n)
rigid −∆E(2) −∆E(3). (10)

For all the terms defined above, we define the
error as the difference between the approximate
energy coming from a DFA and the reference
energy from CCSD(T). Since positive values of
the binding energy and the n-body terms indi-
cate attractive interactions, positive values of
the error correspond to overbinding, and nega-
tive values to underbinding behavior. In addi-
tion, in order to estimate the magnitude of the
3-body dispersion term to compare it to the 3-
body errors originating from different DFA, we
use the difference in the CCSD(T) and MP2 3-
body energies, as done in previous works.53,77,78

3 Computational Methods

We consider homogeneous n-molecule (n = 2–
6) clusters of noble gases (Ne, Ar), as well as
molecules with interactions that are predomi-
nantly dispersion (N2, CH4, and CO), and hy-
drogen bonding (NH3, H2O, HF). The geome-
tries for each of these clusters are provided
in the supporting information (SI). Larger HF
clusters with n = 7–9 molecules were also con-
sidered. The binding energies of the molecular
clusters were calculated and decomposed into a
series of contributions, as discussed in the pre-
vious section.

For the Ne and Ar clusters, geometries were
constructed to have the maximum symmetry
(tetrahedral, trigonal bipyramidal, octahedral)
with fixed nearest-neighbor distances of 3.1 Å
for Ne and 3.8 Å for Ar. Single-point energy cal-
culations were performed using CCSD(T)/aug-
cc-pV5Z with the Gaussian09 program,83 with
counterpoise corrections for basis set superpo-
sition error.84 Because the counterpoise cor-
rection generally over-corrects for basis-set su-
perposition error effects,85–89 the counterpoise-
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corrected and non-counterpoise results were
averaged to obtain the final binding ener-
gies.88,90,91

For the N2 and CO clusters, initial geometries
were obtained from the corresponding molecu-
lar crystals. For the NH3 and HF clusters, ini-
tial geometries were chosen to involve a cyclic
planar network of hydrogen bonds. In the
case of HF, cycles are the most stable cluster
structures, although they are in general non-
planar.92 The geometries for these four sets of
clusters were then optimized using LC-ωPBE-
XDM4,93,94 with the aug-cc-pVDZ basis set.
For the CH4 clusters, geometries were opti-
mized using a preliminary version of methane-
specific dispersion-correcting potentials.95 For
the H2O clusters, geometries were taken from
the work of Shields et al.48 In all of these
cases, single-point energy calculations were per-
formed using CCSD(T)/aug-cc-pVQZ with the
Turbomole program.96 As in the case of noble
gases, the counterpoise- and non-counterpoise-
corrected results were averaged to obtain the fi-
nal binding energies. The only exception is the
methane hexamer, for which we were unable to
run the CCSD(T) calculation on the full clus-
ter. For this case only, the ≥4-body effects were
evaluated at the CCSD level of theory. It will be
shown that, for dispersion dominated systems,
> 4 body effects are sufficiently small that our
inability to evaluate this term via CCSD(T) will
not impact our conclusions.

Subsequent calculations were performed us-
ing a range of dispersion-corrected density-
functional methods. In addition, a series of six
hybrid functionals with varying fractions of ex-
act exchange were used. These hybrid func-
tionals are based on semilocal functionals built
from all six combination of B88,97 PW86,98 and
PBE99 exchange with LYP100 and PBE99 cor-
relation. The mixing fraction of exact exchange
was varied from 0-100% in 10% increments. Ad-
ditional calculations were also performed using
the B3LYP,100,101 B971,102,103 and PBE0 hy-
brid functionals,104 and the LC-ωPBE105 range-
separated hybrid functional. All DFT calcula-
tions used the aug-cc-pVTZ basis set and ul-
trafine integration grids with the Gaussian 09
program. The dispersion corrections were ob-

tained using the exchange-hole dipole moment
(XDM) method. The XDM dispersion energies
were calculated using the postg program106 and
added to the base DFT energies. Damping pa-
rameter values are the same as those in previous
work.107

To investigate the perturbation theory energy
components in the dimers, we have carried out
calculations using symmetry-adapted perturba-
tion theory (SAPT) using the psi4 program108

and the aug-cc-pVQZ basis set at the SAPT2+3
level.109 To illustrate the difference between hy-
drogen bonding and halogen bonding, we use
the FBr· · ·NCH dimer from the XB18 set,110

which we calculated using the aug-cc-pVTZ ba-
sis set.

4 Coupled-cluster results

Figure 1: Average percent contributions of the
2-body, 3-body, and ≥4-body terms to the total
rigid-monomer binding energies of the molecu-
lar clusters. The 3-body dispersion contribu-
tion (∆E(3,disp)) is estimated as the difference
between the CCSD(T) and MP2 3-body terms.
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The CCSD(T) rigid and relaxed binding ener-
gies, n-body energies, and deformation energies
for the molecular clusters are shown in Table 1
of the SI. In addition, we also show the 3-body
dispersion contribution, estimated by the differ-
ence between CCSD(T) and MP2 3-body ener-
gies.53,77,78 The average percent contributions
to the total binding energies are represented
graphically in Figure 1, in a style similar to

5



the figure presented by Góra et al. for water
clusters.63

There are clearly two behavior regimes, de-
pending on whether hydrogen bonds are present
in the cluster or not. For non-H-bonded clus-
ters (Ne, Ar, N2, CO, CH4) the pairwise in-
teractions are almost the only contribution to
the binding energy, and the higher-order effects
are very small. The 3-body interaction is very
slightly repulsive (except for CO), and slightly
smaller in magnitude than the Axilrod-Teller-
Muto dispersion contribution.3,21,111,112 Higher-
order contributions to the binding energies and
deformation energies are negligible.

Figure 2: Total binding energies for the HF
clusters and their component contributions, ex-
pressed as the absolute value of the energy, per
hydrogen bond. The 3-body dispersion contri-
bution (∆E(3,disp)) is estimated as the difference
between the CCSD(T) and MP2 3-body terms.
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In contrast, for the H-bonded clusters, there
are significant 3-body and ≥4-body contribu-
tions to the binding energies. These non-
additive effects have been described in the
past,113,114 and are sometimes known as cooper-
ative effects.113 In an intermolecular perturba-
tion framework,23 these arise from many-body
induction effects, and they usually (though not
always23) stabilize the H-bonded network rela-
tive to the sum of the binding energies of the
component dimers. The 3-body and ≥4-body
energies are correlated, and increase in the se-
quence NH3 <H2O<HF. HF is an extreme case:

for (HF)6, the total 3-body contribution is al-
most as large as the 2-body for the clusters with
n > 3.

Because of its behavior, its simple geometry,
and the relatively small number of atoms, we
will focus on the energy contributions to the
HF clusters in the rest of the article to ana-
lyze functional performance in H-bonded net-
works. The individual contributions to the HF
cluster binding energies per hydrogen bond are
shown as a function of cluster size in Figure 2.
The equivalent figure reporting total energies
is shown as Figure 1 in the SI. The pairwise
contribution per hydrogen bond is roughly con-
stant, although it dips for n = 3, where the
geometry is strained. However, the 3-body con-
tribution per hydrogen bond, which is directly
related to induction effects, grows rapidly with
cluster size. The strength of the cooperative ef-
fects per monomer peaks at the hexamer and
stabilizes for larger clusters. Figures 1 and 2
also show that the dispersion contribution to
the 3-body energies in the H-bonded systems is
smaller than in the dispersion-bound clusters,
and negligible compared to the other energy
contributions.46,59,61,115,116

Cooperative effects arise from the collective
polarization of the monomers forming the H-
bonded network, and have a characteristic sig-
nature in the electron density and density ma-
trix. The polarization density, defined as the
difference between the electron density in the
hexamer minus the monomer densities, is shown
in Figure 3. The effect of forming a H-bonded
cluster is that the monomer polarizes so as to
deplete the electron density of the hydrogen and
populate the electron-pair region close to the
fluorine, which is oriented toward the hydrogen
of the adjacent molecule. The leading contri-
bution to the polarization density in Figure 3 is
the 2-body term, defined as in Equation 4, but
with the energies replaced by densities. The
3-body and higher-order n-body contributions
to the polarization density have essentially the
same shape but decrease in magnitude with in-
creasing n.

The deformation energy is also an impor-
tant contribution to the binding energy in H-
bonded clusters. Because it is determined by
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Figure 3: Difference between the electron
density for the HF hexamer and the sum
of the monomer densities (BH&HLYP/aug-cc-
pVTZ). Blue indicates density accumulation
and red indicates density depletion in the hex-
amer, relative to the sum of the monomers.
The colors scale goes from 0.03 (blue) to −0.03
(red). Positive and negative contours are rep-
resented by full and dotted lines, respectively.
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the intramolecular potential-energy surface, the
strength of the relaxation-energy effect corre-
lates directly with the bond strength of the
monomer. The deformation energy trend is
NH3 <H2O<HF even though the water-dimer
hydrogen bond is stronger than that in the
HF dimer. The magnitude of the deforma-
tion energy is mirrored by changes in X-H bond
length (X=N,O,F) between the complexes and
relaxed monomers. The maximum change in
bond length is 0.010 Å for NH3, 0.021 Å for
H2O, and 0.044 Å for HF hydrogen-bond donors
in the clusters.

Because the deformation and ≥4-body terms
are effectively zero for the dispersion-bound
clusters (Ne, Ar, N2, CO, and CH4), but large
in magnitude for the H-bonded clusters (NH3,
H2O, and HF), we will consider these two
classes separately.

5 Density-functional re-

sults: Dispersion-bound

clusters

The 2-body, 3-body, and total rigid-monomer
binding energies for each set of dispersion-
bound clusters are shown in Table 1 for
CCSD(T) and the density functionals employed
in this work. The deformation energies are neg-
ligible, so the relaxed and rigid binding ener-
gies are approximately equal. While the total
binding energies are dominated by the pairwise
contributions, the mean absolute errors (MAE)
show that the 3-body errors with DFAs are
large compared to the reference 3-body contri-
bution to binding. They range from a quarter
to a half of the 2-body errors and are much
larger than the CCSD(T) 3-body energies.

To help analyze the source of the DFA er-
rors in our dimers, we calculated the dimer
binding energy components using symmetry-
adapted perturbation theory (SAPT). Table 2
shows that the two significant contributions to
binding in the dispersion-bound clusters are dis-
persion and exchange-repulsion. Since disper-
sion interactions are assumed to be treated by
the dispersion correction, errors caused at the
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Table 1: Accumulated binding-energy contributions for the dispersion-bound clusters (sum of
the corresponding contributions for all n-body clusters, with n = 2–6) with CCSD(T) and the
dispersion-corrected functionals used in this work. All values are kcal/mol.

CCSD(T) LC-ωPBE B3LYP B971 PBE0 BLYP PW86PBE PBE

BErigid

Ne 2.53 2.62 2.32 4.19 3.55 1.16 2.41 4.72
Ar 8.55 5.86 5.24 10.20 8.11 2.73 7.58 9.41
N2 8.76 9.17 7.38 11.22 10.03 5.15 9.33 11.05
CO 10.67 10.89 10.11 14.51 12.74 7.78 12.57 14.03
CH4 13.20 12.35 11.99 15.55 13.28 10.54 14.20 14.65

MAE 0.85 1.34 2.39 0.98 3.27 0.91 2.03

∆E(2)

Ne 2.53 2.47 2.32 4.68 4.03 1.10 2.73 5.65
Ar 8.66 5.25 5.13 11.33 8.97 2.38 7.98 10.93
N2 8.83 8.83 7.03 11.67 10.44 4.62 9.40 11.84
CO 10.64 10.26 9.61 15.26 13.32 6.95 12.69 15.18
CH4 13.48 11.38 11.44 17.01 14.33 9.30 14.61 16.61

MAE 1.19 1.73 3.16 1.39 3.96 0.93 3.21

∆E(3)

Ne −0.01 0.09 0.07 −0.57 −0.56 0.19 −0.35 −1.04
Ar −0.11 0.47 0.27 −1.20 −0.97 0.62 −0.42 −1.66
N2 −0.08 0.33 0.39 −0.49 −0.45 0.57 −0.10 −0.86
CO 0.01 0.57 0.55 −0.83 −0.69 0.94 −0.18 −1.32
CH4 −0.30 0.96 0.71 −1.61 −1.24 1.58 −0.48 −2.25

MAE 0.58 0.49 0.84 0.69 0.88 0.21 1.33

Table 2: Symmetry-adapted perturbation theory (SAPT) energy components (electrostatic, ex-
change, induction, dispersion) and total binding energies for the studied dimers. The FBr· · ·NCH
dimer from the Kozuch and Martin XB18 set110 is also included for comparison.

Dimer Elec. Exch. Ind. Disp. Total Ref.
Ne 0.02 −0.10 0.00 0.14 0.07 0.08
Ar 0.11 −0.37 0.02 0.51 0.26 0.27
N2 0.04 −0.27 0.01 0.49 0.27 0.27
CO 0.27 −0.38 0.03 0.51 0.43 0.39
CH4 0.18 −0.69 0.03 1.05 0.58 0.55
NH3 5.03 −5.15 1.38 2.09 3.36 3.16
H2O 8.10 −7.88 2.47 2.59 5.28 5.09
HF 6.75 −6.59 2.59 2.08 4.83 4.73
FBr· · ·NCH 14.94 −21.63 8.26 6.68 8.25 7.61

8



base functional level in these systems can be at-
tributed to the exchange-repulsion component,
and we will call this the “repulsion” error in the
rest of the article.

Table 1 illustrates some of the challenges fac-
ing the development of density-functional meth-
ods for non-covalent interactions. Pairwise dis-
persion corrections like XDM can only affect
the 2-body energies. A great deal of effort has
been put into calculating the 3-body dispersion
contribution3,22,112 but, although this term is
non-negligible for certain intermolecular geome-
tries, errors coming from the base functional
in the representation of exchange-repulsion 3-
body interactions are typically one order of
magnitude larger.111 This observation explains
why previous efforts to include 3-body disper-
sion effects in a dispersion functional based on
the asymptotic expression have not been suc-
cessful,3,39 even though the coefficients for the
leading 3-body term (C9) can be calculated
with relatively high accuracy.3 In the absence of
base functional errors, the asymptotic Axilrod-
Teller-Muto (ATM) term damped with a prod-
uct of Tang-Toennies damping functions117 suc-
cessfully reproduces 3-body dispersion effects
with an atom-based summation.78 However, a
base functional that gives an accurate repre-
sentation of the short-range 3-body repulsion
is necessary in order to make progress in the
field.77

Figure 4: Enhancement factors for three GGA
exchange functionals.
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5.1 Exchange enhancement fac-
tor

Table 1 shows that PW86PBE performs best
for both ∆E(2) and ∆E(3) and is second only
to LC-ωPBE for accuracy of the total bind-
ing energies. This result is in stark contrast to
the other two GGAs, BLYP and PBE, which
give quite large errors. The behavior of these
GGAs is convincingly explained by the argu-
ment of Lacks and Gordon25,53,118,119 using the
exchange enhancement factor, which was re-
cently extended to 3-body and higher-order in-
teractions by Gillan.53 For GGA functionals,
the exchange energy can be written as:

EGGA =
∑
σ

∫
F (χσ)εLSDA

σ dr, (11)

where εLSDA
σ is the local spin-density approxi-

mation (LSDA) exchange-energy density:

εLSDA
σ = cXρ

4/3
σ , (12)

and F (χσ) is the exchange enhancement factor,
which depends on the reduced density gradient,
χσ = |∇ρσ|/ρ4/3σ .

The enhancement factors for three GGA ex-
change functionals considered in this work are
plotted in Figure 4. They show very different
behaviors in the limit of large reduced gradient,
which is related to the intermolecular repulsion
energy obtained from the base functional. In
particular, the large-χ part of the enhancement
factor determines the energy contribution com-
ing from the exponentially-decaying tails of the
electron density in the region of space surround-
ing a molecule. A portion of this energy con-
tribution disappears upon dimer formation, be-
cause parts of those regions are now occupied
by other monomers, which explains the impor-
tance of the large-χ enhancement factor in de-
termining intermolecular repulsion.53 The ar-
gument can be easily extended to 3-body and
higher-order n-body contributions53 to show
that functionals that underestimate the 2-body
intermolecular closed-shell repulsion overesti-
mate the 3-body contribution, and vice versa.
This argument also agrees with the picture
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of exchange-repulsion arising from intermolecu-
lar wavefunction overlap.23 Accurate values for
all the n-body components of the exchange-
repulsion energies can be obtained with a sim-
ple Hartree-Fock (HF) calculation.53,111

PW86PBE has the lowest 2-body and 3-body
errors of all GGAs.118,119 For BLYP, the large-
χ enhancement factor is too high, relative to
PW86, so the large gradient regions in the
monomers are too stable and the 2-body term
is too repulsive. For PBE, the enhancement
factor is too small, so the large gradient re-
gions are not stable enough and the 2-body
term is too attractive. In this sense, BLYP and
PBE can be considered extremes of repulsion
behavior.25,59,119 The 3-body errors follow the
same pattern as the 2-body errors, but oppo-
site in sign. The 3-body contribution is now too
attractive with BLYP and too repulsive with
PBE. Similar alternation of signs is seen if one
considers the 4- and 5-body errors for the hex-
amers, although they are much smaller in mag-
nitude.

5.2 Exact-exchange mixing

Next, we consider the effect of exact-exchange
mixing. Plots of the 2-body and 3-body ener-
gies for the methane clusters are shown in Fig-
ure 5. As increasing fractions of exact exchange
are used, the contribution of the GGA exchange
term is reduced. Focusing only on the func-
tionals with LYP correlation, which gives ap-
proximately correct 2-body and 3-body energies
in the 100% exact-exchange limit, we see that
PBE and PW86 2-body energies become less
binding with increasing exact exchange, and the
opposite happens for B88. The reverse trend is
observed for the 3-body energies. This is con-
sistent with the enhancement-factor effects dis-
cussed in previous studies53,118 and shown in
Figure 4.

A technique that is successfully used to ad-
dress shortcomings of hybrid functionals is
range-separation. Common range-separated
functionals combine semilocal and exact ex-
change such that the semilocal part is used
for the short-range interelectronic interactions,
while exact exchange is used for the long-range

interactions. The parameter that controls the
extent of the short- and long-range terms (ω)
can be tuned to improve the description of a
number of properties, including band gaps, po-
larizabilities, and ionization potentials (see Ref.
120 and references therein).

Figure 6 shows the effect of varying ω on the
2-body and 3-body errors for the dispersion-
bound methane clusters with the LC-ωPBE
functional. The semilocal functional (ω = 0)
is overly repulsive for the 2-body energies and
too attractive for the 3-body contributions. As
ω increases and long-range exact exchange is
incorporated, the error curves move toward the
HFPBE result, with the ω = 1.0 functional giv-
ing almost the same results as HFPBE. The
ω = 0.2 value provides good performance for
both the 2-body and 3-body contributions (c.f.
the ω = 0.4 value in the usual definition of LC-
ωPBE93,94).

5.3 Correlation effects

A comparison of the HFPBE and HFLYP re-
sults (the red curves in Figure 5) shows that
the choice of correlation functional also impacts
the calculation of the 2-body and 3-body en-
ergies. HF accurately describes repulsion ef-
fects, so errors in the HFPBE and HFLYP
curves come exclusively from the correlation
functional, which should have a zero contribu-
tion to the exchange-repulsion energy. There-
fore, Figure 5 shows that the LYP correlation
functional has superior performance compared
to PBE. Moreover, the signature of opposing
contributions to the 2-body and 3-body errors
is again present. PBE correlation overestimates
2-body energies and underestimates 3-body en-
ergies, whereas LYP gives small errors in both
cases.

The observation that exchange and correla-
tion functionals have the same repulsion error
behavior offers the possibility of using function-
als that benefit from error cancellation between
the exchange and the correlation part. In fact,
the good performance of PW86PBE seen in Ta-
ble 1 and in previous studies118,119 can be at-
tributed not to PW86 exchange giving a par-
ticularly accurate representation of exchange-
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Figure 5: Errors for the different contributions to the (CH4)n cluster binding energies against the
number of molecules in the cluster using hybrid functionals built from combinations of B88 (left),
PW86 (middle), and PBE (right) exchange with PBE (top) and LYP (bottom) correlation. The
errors are for the 2-body energies (∆E(2), first block) and 3-body energies (∆E(3), second block).
Pure GGA functionals are represented in blue, half-and-half functionals are shown in green, and
HF plus correlation is in red. Positive values indicate overestimation of the corresponding energy
contribution. All units are kcal/mol. Figure 2 in the SI contains the same information with 10%
steps in the exact exchange fraction.
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Figure 6: Errors in the 2-body (left) and 3-body (right) contributions to the (CH4)n cluster binding
energies using range-separated functionals based on LC-ωPBE with different values of the range-
separation parameter (ω) against the number of molecules in the cluster. The pure GGA functional
is represented in blue. Positive values indicate overestimation of the corresponding energy contri-
bution. Figure 3 in the SI contains the same information with 0.1 steps in the range separation
parameter. All units are kcal/mol.
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repulsion effects, but to its successful pairing
with PBE correlation and consequent error can-
cellation. When PW86 exchange is incremen-
tally replaced by exact exchange, the 2-body
and 3-body errors increase and approach the
erroneous HFPBE results.

In summary, the binding-energy errors for
dispersion-bound clusters can be easily under-
stood by the description of exchange-repulsion
effects demonstrated by different functionals.
These errors have a characteristic signature: if
the functional overbinds the 2-body energy, it
underbinds the 3-body energy, and vice versa.
Exchange and correlation functionals, sepa-
rately and in combination, show this behavior
and, as it is the case for PW86PBE, it is pos-
sible to find a particular exchange-correlation
combination that cancels both errors, result-
ing in a relatively accurate description of in-
termolecular repulsion at the semilocal func-
tional level. However, we observed in previous
attempts to use PW86PBE hybrid functionals
that the performance in the XDM parametriza-
tion degrades with increasing exact-exchange
fraction, which is explained by the loss of favor-
able error cancellation. A good functional for
dispersion-bound systems could, in principle,
be designed to avoid error cancellation between

exchange and correlation, and hybrids based on
this functional should be equally successful in
describing intermolecular repulsion.

6 Density-functional re-

sults: Hydrogen-bonded

clusters

Turning to the H-bonded clusters, the compo-
nents of the total binding energies are shown
in Table 3 with selected DFAs. Overall, LC-
ωPBE gives the best performance for the rigid-
and relaxed-monomer binding energies and for
∆E(2) and ∆E(≥4). B971 gives the lowest errors
for ∆E(3) and PBE0 the lowest errors for ∆E(1).
No single term dominates either the total bind-
ing energies or the errors and the sources of
error for each component will be discussed sep-
arately.

6.1 ≥4-body errors

Let us begin by analyzing the highest-order
contribution to binding: the ≥4-body energies.
The errors in Table 3 follow the general trend
that range-separated < hybrid < GGA, regard-
less of the choice of semilocal functional. This
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Table 3: Accumulated binding-energy contributions for the H-bonded clusters (sum of the cor-
responding contributions for all n-body clusters, with n = 2–6) with CCSD(T) and selected
dispersion-corrected functionals. All values are kcal/mol.

CCSD(T) LC-ωPBE B3LYP B971 PBE0 BLYP PW86PBE PBE

BErigid

NH3 76.65 76.86 81.56 81.94 84.33 83.65 87.65 87.35
H2O 134.72 137.07 142.68 138.20 144.42 141.38 143.97 144.59
HF 154.78 158.91 166.80 161.06 170.29 160.23 163.05 167.06

MAE 2.23 8.30 5.02 10.96 6.37 9.51 10.95

∆E(2)

NH3 64.61 63.14 67.37 69.62 71.49 68.03 73.46 74.35
H2O 101.25 100.73 105.17 103.69 109.48 100.91 105.44 108.41
HF 87.86 88.90 95.95 92.88 101.43 86.79 91.54 96.94

MAE 1.01 4.92 4.15 9.56 1.61 5.57 8.66

∆E(3)

NH3 11.12 12.76 13.25 11.25 11.72 14.63 13.01 11.70
H2O 29.55 31.70 32.36 29.90 30.51 33.71 31.76 30.44
HF 58.19 60.98 61.61 58.67 59.40 63.68 61.34 59.68

MAE 2.19 2.78 0.32 0.92 4.38 2.41 0.98

∆E(≥4)

NH3 0.92 0.95 0.94 1.07 1.12 0.99 1.18 1.30
H2O 3.91 4.64 5.15 4.62 4.43 6.76 6.77 5.74
HF 8.72 9.02 9.24 9.51 9.46 9.76 10.17 10.44

MAE 0.35 0.59 0.55 0.48 1.32 1.52 1.31

∆E(1)

NH3 −1.15 −1.98 −1.23 −0.90 −1.37 0.33 0.16 0.35
H2O −6.06 −5.27 −4.36 −5.08 −5.71 −1.31 −1.95 −2.18
HF −24.20 −19.92 −18.19 −20.97 −22.61 −8.07 −8.81 −10.72

MAE 1.97 2.60 1.49 0.72 7.46 6.94 6.29
BErelax

NH3 75.50 74.88 80.34 81.04 82.97 83.98 87.81 87.70
H2O 128.65 131.81 138.32 133.12 138.71 140.08 142.02 142.41
HF 130.58 138.98 148.61 140.09 147.67 152.15 154.24 156.34

MAE 4.06 10.85 6.51 11.54 13.83 16.45 17.24
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Figure 7: Left: error in the ≥4-body binding-energy contribution for the (HF)n clusters, relative
to the CCSD(T) reference data. Middle: monomer polarization measured using the Bader charge
on the F atom. Right: intermolecular delocalization index. All plots use hybrid functionals based
on the BLYP semilocal functional with varying fractions of exact exchange.
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suggests that the errors in the ≥4-body energies
are determined by delocalization error from the
exchange functional,79–82 and we argue in the
following that this is indeed the case by em-
ploying two usual indicators for delocalization
error in complex systems.107,121

The first indicator is that the error in the 4-
body energies is almost exclusively determined
by the amount of exact exchange in the func-
tional, and is minimized for fractions of exact-
exchange mixing close to 50%. Figure 7 (left)
shows this behavior for BLYP-based function-
als. Analogous plots for the other semilocal
functionals examined (PBE, PW86PBE, and
TPSS) are almost exactly the same, and are
shown in Figure 4 of the SI. This behavior was
also observed for halogen-bonded systems,107

where delocalization error is expected to impact
the binding energies to a greater extent because
of the increased orbital-interaction component
compared to H-bonded systems. In that work,
we showed that only functionals that mini-
mize delocalization error (range-separated hy-
brids and 50%-hybrids) are successful in treat-
ing halogen-bonded dimers. Delocalization er-
ror in halogen-bonded systems strongly influ-
ences the binding energy of simple dimers,
where many body induction effects are absent,
so there are reasonable grounds to believe that
delocalization error also affects the 2-body and
3-body energies of the H-bonded clusters stud-
ied in this work.

Due to delocalization error, GGA functionals
overestimate the cooperative H-bonding effects
that increase the polarization of each monomer
involved in H-bonding.47 This effect carries a
characteristic signature in the electron density
(fractional charges are over-stabilized81,107,121

and monomers are spuriously over-polarized47)
and in the spread of the density matrix (overly
delocalized107). Intermolecular delocalization
can be conveniently measured by calculating
Bader’s delocalization indices122–126 (DIs) be-
tween neighboring molecules, and we have
shown previously that DIs serve as excellent in-
dicators for delocalization error.77,107 Figure 7
shows the intramolecular charge transfer and
intermolecular delocalization index in the HF
cycles for BLYP-based hybrids. The plots show
that the electron-density distribution and elec-
tron delocalization change dramatically with
the fraction of exact exchange, much more so
than with cluster size.

An interesting question regarding delocaliza-
tion error is how to separate the direct ener-
getic contributions from the form of the ex-
change functional and the changes in den-
sity resulting from the overpolarization of the
monomers in the cluster.78 To do this, we
compare the n-body energies calculated using
BLYP, BH&HLYP, and BLYP evaluated using
the self-consistent BH&HLYP density (shown
in Figure 7 of the SI). The difference be-
tween the BLYP energies using the BLYP and
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BH&HLYP densities is much smaller than be-
tween the BLYP and BH&HLYP energies both
using the BH&HLYP density. Since delocaliza-
tion error depends only on the exact exchange
fraction, this observation indicates that delocal-
ization error comes directly from the exchange
functional energy term.

The choice of semilocal exchange-correlation
functional has no significant effect on the ≥4-
body contributions to the H-bonded cluster
binding energies, which are controlled by the
exact-exchange content alone. This obser-
vation stands in contrast with our analysis
in dispersion-bound clusters, where we saw
that many-body errors coming from exchange-
repulsion are strongly dependent on the under-
lying GGA. Since many-body dispersion contri-
butions can not be modeled by the base func-
tional, delocalization error is necessarily linked
to errors in the ≥4-body induction terms. This
argument is also intuitively reasonable, since
induction energies arise from molecular charge
rearrangements, and delocalization error oper-
ates by overstabilizing systems with fractional
charges.127

It is interesting to point out that these results,
and those shown below, imply that semilocal
functionals, which are always affected by de-
localization error, are inevitably unable to give
an accurate description of systems where induc-
tion effects are important, and in particular H-
bonding interactions. This is the case even if
the semilocal functional is fitted to dispersion-
less SAPT interaction energies.128

6.2 Three-body errors

The errors in the 3-body terms for hybrids built
using six GGA functionals are shown in Fig-
ure 8. The plots show that all of the hybrids
exhibit the same trend for the 3-body energies:
they become less binding as the exact exchange
fraction is increased. This suggests that the 3-
body energies are also affected by delocalization
error (c.f. dispersion-bound clusters, Figure 5).
However, unlike the ≥ 4-body energies, the ex-
tent of the overestimation of the 3-body ener-
gies is dependent on the identity of the semilo-
cal exchange functional upon which the hybrid

is built.
It is illustrative to compare the 3-body er-

rors for HF clusters in Figure 8 to those for the
methane clusters in Figure 5. For the methane
clusters, the trends in the 3-body errors were
explained as arising from the error in predicted
repulsion by the semilocal functional. A com-
bination of the overestimation of 3-body induc-
tion caused by delocalization (overly-attractive
for all GGA functionals) and repulsion errors
(attractive or repulsive depending on the func-
tional form) can be used to explain the shape of
the plots in Figure 8. With B88 exchange, the
semilocal functional over-estimates the 3-body
contribution in the methane clusters, and exact-
exchange mixing decreases the binding. For the
HF clusters, delocalization error adds to this ef-
fect, resulting in large variations in the 3-body
energies. For the functionals based on PBE
or PW86, more exact-exchange mixing leads
to increased binding in the methane clusters.
Therefore, in the HF clusters, cancellation oc-
curs between delocalization and intermolecular-
repulsion errors, and the impact of varying the
exact-exchange mixing fraction on the 3-body
errors is diminished.

These observations explain the results in Ta-
ble 3, where we see the same trend in the GGA
functionals as in the dispersion-bound clusters:
the 3-body energies are most attractive with
BLYP, followed by PW86, and then PBE. How-
ever, unlike the case for the dispersion-bound
complexes, all the GGAs predict the 3-body
terms to be too stabilizing and this can be at-
tributed to delocalization error.

6.3 Two-body errors

Figure 9 shows the behavior of the six series
of hybrid functionals for the pairwise contribu-
tions to the binding energies of the HF clus-
ters. The 2-body errors are dominated by the
fraction of exact exchange in each functional.
However, unlike the 3-body and higher-order
contributions to the binding energies, increased
fractions of exact exchange result in strong
overbinding. This observation is in strong con-
trast with the trend for the n > 2 terms in the
same clusters and also with our results for halo-
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Figure 8: Errors for the 3-body contributions to the cyclic (HF)n cluster binding energies against
the number of molecules in the cluster using hybrid functionals built from combinations of B88
(left), PW86 (middle), and PBE (right) exchange with PBE (top) and LYP (bottom) correlation.
Pure GGA functionals are represented in blue, half-and-half functionals are shown in green, and
HF plus correlation is in red. Positive values indicate overestimation of the corresponding energy
contribution. Figure 5 in the SI contains the same information with 10% steps in the exact exchange
fraction. All units are kcal/mol.
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Figure 9: Errors in the 2-body contributions to the cyclic (HF)n cluster binding energies against
the number of molecules in the cluster using hybrid functionals built from combinations of B88
(left), PW86 (middle), and PBE (right) exchange with PBE (top) and LYP (bottom) correlation.
Pure GGA functionals are represented in blue, half-and-half functionals are shown in green, and
HF plus correlation is in red. Positive values indicate overestimation of the corresponding energy
contribution. Figure 6 in the SI contains the same information with 10% steps in the exact exchange
fraction.All units are kcal/mol.
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gen bonded dimers,107 where the observed trend
was the reverse: additional exact exchange in
the base functional decreases the binding en-
ergy.

To understand these results, we can use the
fact that the two-body energy in HF clusters
comes mostly from the hydrogen bonds. We can
therefore use the dimer as a model to study the
source of DFA errors in the 2-body term. Ta-
ble 2 shows the SAPT breakdown of the bind-
ing energies in three H-bonded dimers (NH3,
H2O, and HF) and one halogen-bonded dimer
(FBr· · ·NCH). Our results show that the in-
duction contribution in H-bonded systems is
relatively small compared to the electrostatic
term, whereas it is relatively much higher in
the halogen-bonded dimer.

A simple explanation for the results in Fig-
ure 9 is that, in the case of the H-bonded
dimers, delocalization error affects both the in-
duction and the electrostatic contributions, al-
though with errors of different sign. This is
reasonable; given the wide variation in atomic
charges caused by exact-exchange admixture
shown in Figure 7, one would expect that the
electrostatic energies will be affected by delo-
calization error, which is a function solely of
the exact-exchange fraction. In the case of the
three-body and higher-order energies, no elec-
trostatic term is present (because electrostatic
effects are additive23), and delocalization error
causes an overestimation of the binding energy
contribution through the induction term. In the
case of two-body energies, however, both the in-
duction and electrostatic energies are affected.

The SAPT results in Table 2 suggest that,
since the induction term in H-bonded systems
is small compared to the electrostatic term, a
decrease in delocalization error causes charge
localization and an increase in binding from the
electrostatic term. When the exact-exchange
fraction in the hybrid functionals increases
above 50%, localization error sets in, caus-
ing the well-known overstabilization of ionic
states seen from Hartree-Fock calculations. As
an illustrative example, HFLYP and HFPBE
overbind the LiF molecule relative to the sepa-
rated Li+ and F− ions by 5.4 and 3.4 kcal/mol,
respectively, compared to CCSD(T) reference

data, despite the usual underbinding tendency
of Hartree-Fock exchange regarding bond dis-
sociation.129 Figure 7 shows that the fluorine
atomic charges in the HF hexamer become more
negative and the H-F bond becomes more ionic
as the exact-exchange mixing fraction is in-
creased. This can be contrasted with halogen-
bonded dimers (Table 2 and ref. 107), where
induction is more important than in H-bonded
systems, and the delocalization-error effect on
induction dominates over electrostatics.107

In addition, Figure 9 shows that the 2-body
errors also depend on the underlying GGA on
which the hybrids are built, although to a
lesser extent than the exact-exchange mixing
in the particular case of HF clusters. As in
the case of the 3-body errors, this is caused
by the repulsion error discussed above. Let
us focus only on the pure GGA functionals
(all present delocalization error to the same ex-
tent) and compare to the repulsion error ex-
hibited in the dispersion-bound clusters (Fig-
ure 5). For BLYP and BPBE, delocalization
error overbinds the clusters, but this is off-
set by the strong underestimation of 2-body
energies caused by repulsion error. As a re-
sult, BLYP performs particularly well for the
2-body energies of the H-bonded clusters in
Table 3 and excellent performance of BLYP-
D3 has been noted previously for ice.130 Con-
versely, for PW86 and PBE, the repulsion er-
ror causes an overestimation of the 2-body en-
ergies, which is only made worse by delocal-
ization error effects. Indeed, for hybrid func-
tionals based on PW86 and PBE exchange, the
base functional alone is already over-binding for
any amount of exact exchange. This is clearly
a problem for the use of dispersion-correction
methods built on these functionals, since the
dispersion-energy contribution is always attrac-
tive.

Similar trends to those in Figure 9 are ob-
served for the two-body energy errors in the
other H-bonded clusters (H2O and NH3). How-
ever, by comparing PBE and PBE0 or BLYP
and B3LYP results in Table 3, one can readily
see that the action of exact exchange on the to-
tal binding energies differs depending on the H-
bonded system, and the relative importance of
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exchange-repulsion, induction, and electrostat-
ics. For water, as for HF, an increased fraction
of exact exchange results in an increase in bind-
ing, whereas it is the contrary for ammonia. A
succinct analysis of the n-body contributions in
the other H-bonded clusters is presented in Sec-
tion 6.6.

We note that PBE0, which is commonly cho-
sen for modeling water and other H-bonded
systems, behaves well for the 3-body energies,
but grossly overestimates the 2-body energies,
as shown in Figures 8 and 9 and in Table 3.
This observation explains the systematic over-
estimation of water-cluster binding energies,59

the lattice energies of ice,115,116 and the den-
sity of liquid water with PBE0. Any dispersion
correction coupled with PBE or PBE0 is inca-
pable of modeling strongly-polarized H-bonded
systems like the HF clusters because these base
functionals overestimate the binding energies.

6.4 Monomer deformation

Finally, monomer deformation is also an impor-
tant contribution to the binding energies in H-
bonded clusters. Table 3 shows that GGA func-
tionals give the largest errors in the deformation
energies, while the errors are reduced for the
hybrid and range-separated hybrid functionals.
All methods shown overestimate rigid-monomer
binding energies. As the stabilization coming
from monomer deformation is overestimated,
agreement with the reference relaxed-monomer
binding energies is consequently worse than
with rigid-monomer binding energies. Because
benchmarking studies are often carried out us-
ing rigid geometries,24,26,28 one should expect
more overbinding in production DFT calcula-
tions (e.g. in the calculation of lattice ener-
gies42), where energies are always computed rel-
ative to relaxed-monomer geometries.

The trends in deformation energies can be
explained based on the observed changes in
bond lengths upon hydrogen bond formation.
When a hydrogen bond is formed, the X-H bond
of the hydrogen donor is stretched relative to
the isolated monomer, and the degree of bond
stretching increases with stronger cooperative
H-bonding effects, as shown in the left panel of

Figure 10 (c.f. Figure 2). Thus, the deformation
errors are related to how well the functionals
reproduce the reference CCSD(T) intramolec-
ular X-H bond stretching potential-energy sur-
face close to the equilibrium bond length.

The errors in the deformation energies for the
HF clusters are shown in the right panel of Fig-
ure 10 for BLYP-based hybrid functionals with
various fractions of exact exchange. Analogous
plots for hybrids based on all other semilocal
functionals considered (shown in Figure 8 of
the SI) are essentially the same. The abil-
ity of a functional to predict an accurate X-H
bond length for the H-bond donor determines
its performance for ∆E(1). The GGA func-
tionals all overestimate the equilibrium bond
length and consequently predict too little en-
ergy penalty for monomer deformation. Con-
versely, functionals with high percentage of
exact exchange underestimate the equilibrium
bond length and overestimate the deforma-
tion energies. Roughly 30% exact exchange
gives the best agreement with CCSD(T) refer-
ence data, explaining the good performance of
PBE0 (25% exact exchange104) in Table 3. Hy-
brid functionals that perform well for thermo-
chemistry and bond-dissociation energies (with
exact-exchange fractions close to 25%) pro-
vide reliable deformation energies.101,104 It is
also important to note that deformation en-
ergies in Figure 10 are calculated at a fixed
cluster geometry. In practical applications,
the cluster geometry is relaxed for each func-
tional, which would introduce variations in the
monomer bond stretching and, possibly, de-
crease the magnitude of the deformation error
for approximate density functionals.

6.5 Range separation

Now we examine the performance of LC-ωPBE
as a function of the range-separation parameter
(the literature definition of LC-ωPBE93,94 uses
ω = 0.4). Figure 11 shows the n-body contribu-
tions to the binding energy in the (HF)n clus-
ters with ω. As in the case of hybrid function-
als, the GGA (ω = 0.0) overbinds the ≥4-body
contribution. Increasing ω, which increases the
weight of the long-range, exact-exchange part
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Figure 10: Reference CCSD(T) deformation energies for the cyclic (HF)n clusters and H-F bond
lengths (left) and relaxation-energy errors using hybrid functionals with various fractions of exact
exchange built on BLYP (right) against the number of molecules in the cluster.
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of the functional, decreases the value of this
contribution, minimizing delocalization error at
about ω = 0.5. Interestingly, the same trend is
observed for the deformation energies, with the
same optimal value of the range separation pa-
rameter. This is in contrast to the observed
behavior of hybrid functionals for which a sin-
gle fraction of exact exchange can not minimize
delocalization error (50%) and deformation er-
rors (20–25%).

The 3-body errors, as in the case of the hy-
brids, are affected by a mixture of delocalization
and repulsion error. The error plot is similar
to PBE (Figure 8), which is no surprise given
the similarity of the underlying GGA function-
als. However, the variation of ω induces a more
complex behavior than in the case of PBE hy-
brids. With higher ω, the 3-body error first in-
creases (more binding) and peaks at ω = 0.3, at
which point the error decreases and approaches
zero. This behavior is likely the result of the
interplay between delocalization error (as evi-
denced by the ∆E(4) plot) and repulsion error
as exact exchange enters the functional defini-
tion. The 2-body plot shows a similar behavior,
where increasing ω first decreases the binding
(and the error) up to ω = 0.3, at which point
overbinding begins to occur. Minimal 2-body
error is found at ω = 0.2.

In view of the preceding discussion, it is clear
that the underlying GGA functional in LC-
ωPBE is affected by non-negligible repulsion er-
ror. However, provided a range-separated func-
tional could be built on a GGA with zero re-
pulsion error, Figure 11 suggests that a range-
separation parameter can be found that gives
good deformation energies and minimizes delo-
calization error. Although this may be a good
recipe for building functionals with accurate
treatment of the non-dispersive parts of non-
covalent interactions in small systems, range-
separated functionals are afflicted by strong
size-dependence in their delocalization error be-
havior.131–133

6.6 Other hydrogen-bonded sys-
tems

The conclusions from the preceding analysis
also apply to the other hydrogen-bonded sys-
tems in this study—water and ammonia—
provided one takes into account the relative
importance of each n-body term, as shown in
Figure 1. Figures 8 and 9 of the SI show the n-
body contribution errors in water and ammonia
clusters, respectively. The 2-body, 3-body, ≥4-
body, and deformation errors are plotted as a
function of cluster size (up to the hexamer), for
hybrids built on BLYP and PBE with varying
amounts of exact exchange.

For all n-body errors, the trends regarding
the fraction of exact exchange, and the rela-
tive behavior of PBE and BLYP, are the same
those presented in figures 7, 8, 9, and 10 for the
HF clusters. The ≥4-body contribution trend
is ammonia < water < HF (Figure 1), and the
same is observed for the corresponding errors.
The ≥4-body error is functional independent,
except in the case of ammonia, where the de-
localization contribution is so small that the 4-
body repulsion error becomes noticeable.

The spread of the three-body errors caused
by variations in the exact exchange fraction in
water and ammonia clusters is higher in BLYP
than in PBE, and has the same behavior as
in HF clusters (Figure 8). The invariance of
PBE hybrids to exact exchange composition
can be explained by cancellation between re-
pulsion (PBE gives an overly repulsive 3-body
term) and delocalization error (overly attrac-
tive). The 2-body and deformation error plots
are also consistent with the HF results in Fig-
ure 9 and 10, respectively.

7 Conclusions

In this article, we analyzed the way in which dif-
ferent density-functional approximations affect
the description of the non-dispersion compo-
nents in non-covalent interactions. This was ac-
complished by first developing a database of ref-
erence CCSD(T) many-body energy terms for
a set of small molecular clusters bound by non-
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covalent interactions of different types. The
ability of various density-functional approxima-
tions to reproduce the different n-body terms
was assessed, including the effect of the semilo-
cal functional, exact-exchange admixture, and
range separation. The reference n-body energy
decomposition shows that only pairwise contri-
butions to the binding energy are significant for
non-hydrogen-bonded (dispersion-bound) clus-
ters. However, for hydrogen-bonded clusters, 3-
body, monomer deformation, and higher-order
effects all contribute to the total binding ener-
gies.

Our analysis shows that there are three main
contributors to the error in the binding en-
ergy from different density-functional approx-
imations:

1. Repulsion error arises from the incor-
rect treatment of intermolecular repul-
sion originating from the overlap between
closed-shell wavefunctions. This error, re-
lated to the exchange-repulsion term in
perturbation theory, is controlled by the
semilocal functional, primarily by the ex-
change term, and to a lesser extent by
the correlation functional. The 2-body
repulsion error is positive or negative de-
pending on the functional, and the sign
alternates with the order (n) associated
with higher-order n-body terms. The re-
pulsion error from the exchange and the
correlation functionals behaves in similar
ways, which allows for error cancellation
if they are correctly paired (for instance,
PW86PBE). However, the presence of
such error cancellation in the semilocal
functional implies that hybrid functionals
built on it will not represent intermolecu-
lar repulsion as accurately. Repulsion er-
ror affects all types of non-covalent inter-
actions, since the exchange-repulsion con-
tribution is always present.

2. Delocalization error arises from the ten-
dency of semilocal functionals to oversta-
bilize fractional charges. Delocalization
error is controlled by the amount of ex-
act exchange and is independent of the
semilocal functional employed. In pertur-

bation theory terms, it affects the induc-
tion energy, which results in an oversta-
bilization of all n-body induction terms,
and an underestimation of the additive
(2-body) electrostatic energy. Delocaliza-
tion error is only present in systems with
significant intra- or intermolecular charge
transfer such as hydrogen bonds or halo-
gen bonds. While the 3-body and higher
order error results in spurious attraction,
the effect on the 2-body electrostatic term
depends on the balance between induc-
tion and electrostatics, and hence on the
type of non-covalent contact. From the
systems examined in this work and in our
previous study,107 evidence indicates that
delocalization error results in the over-
estimation of 2-body energies in halogen
bonds and underestimation of 2-body en-
ergies in hydrogen bonds.

3. Deformation error is related to the abil-
ity of the functional to model the ener-
getics of bond stretching upon the forma-
tion of a non-covalent interaction. This
error affects deformation energies, and
has the same behavior as errors in the
calculation of bond dissociation energies,
which have been extensively studied in
the past.101,104,106 Semilocal functionals
overestimate deformation energies, and a
25% fraction of exact exchange is op-
timal. This error only appears if the
non-covalent interaction causes signifi-
cant monomer distortion, for instance, in
hydrogen bonds and halogen bonds.

While LC-ωPBE-XDM gives the lowest over-
all errors, none of the studied common function-
als is able to provide sufficiently accurate re-
sults for large molecular clusters. However, the
insights listed above provide some guidelines
for developing functionals that accurately de-
scribe the non-dispersive part of a non-covalent
interaction. In order to minimize repulsion er-
ror, semilocal exchange and correlation func-
tionals should be chosen such that they inde-
pendently and correctly describe intermolecu-
lar repulsion. To our knowledge, there is no
commonly used hybrid functional that simulta-
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neously minimizes delocalization error (50% ex-
act exchange is optimal) and deformation error
(25%). LC-ωPBE with ω = 0.5 seems to mini-
mize both errors at the same time, so a range-
separated functional based on a repulsion-error-
free semilocal functional could be a good can-
didate for accurate, across-the-board perfor-
mance for non-covalent interactions in small
systems. However, it should be kept in mind
that delocalization error increases with system
size when range-separation is applied.131–133
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Graphical TOC Entry

Density-functional approximations present errors in the treatment of the
non-dispersive part of non-covalent interactions, which originate from re-
pulsion, delocalization, and deformation errors. We analyze each source
of error via a molecular many-body expansion and propose ways to im-
prove functional performance for non-covalent interactions.
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