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Abstract 

 

 Automated target recognition (ATR) systems are typically designed to operate 

using a high sensitivity and a liberal decision criterion to reduce the risk of missing a 

target. The high number of false alarms that occur as a result of this design tend to lead to 

a decrease in operator trust and reliance. The purpose of this study was to determine how 

changing or informing a user of the false alarm rate of an ATR system affects the user’s 

level of trust and reliance in the system and the user’s performance during an underwater 

mine detection task. When not informed of the false alarm rate, the number of false 

alarms made by the system had a significant effect on the participants’ response bias. In 

addition, when informed of the false alarm rate, the participants had greater trust in the 

system and a more consistent response bias. These results suggest that informing a user 

of the false alarm rate of an automated system may positively influence the level of trust 

and reliance the user has in the aid. 
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Chapter 1: Introduction  

 Underwater mines continue to be a common threat in maritime warfare. The 

explosive devices are low in cost, easy to access and lay, provide a constant threat, and 

are difficult to detect, making them an ideal choice for a weapon (CF, 2011; Pavlovic et 

al., 2012). To result in maximum damage, mines are often strategically placed along 

routes where ships are expected to travel (Ho, Pavlovic, Arrabito & Abdalla, 2011). Since 

the ocean is significantly used for transportation, the threat of a mine could lead to major 

consequences such as ships being damaged or destroyed, people being injured, or 

disruptions in the trading of goods (CF, 2011). To reduce the risk of encountering a mine 

and the consequences that may arise, measures must be taken to locate and identify the 

explosive devices so they can be avoided.  

 Over the past few decades, unmanned underwater vehicles (UUV) have 

increasingly been used in mine countermeasure (MCM) operations (Ho et al., 2011). 

MCM operations often include the detection, classification, identification and sometimes 

neutralisation of underwater mines (Pavlovic et al., 2012). During the detection and 

classification process, UUVs are typically used to visualize the seafloor by using side-

scan sonar (Ho et al., 2011; Kessel & Myers, 2005; Pavlovic et al., 2012). After retrieval 

of the sonar data, a sonar operator aboard a ship is responsible for scanning the seafloor 

imagery and classifying any foreign objects detected as mine-like or non-mine-like (Ho et 

al., 2011).  

 The process of manually detecting foreign objects in the sonar imagery and 

classifying the objects as potential targets can be mentally fatiguing for sonar operators, 

making the task difficult to complete over time. Along with the relatively rare presence of 
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mines, the seafloor is home to rocks, seagrass and debris. The ability for mines to be 

hidden within the seafloor clutter or disguised as a seafloor object may make it more 

challenging for a mine to be located. In addition, the quality of the sonar imagery 

collected by the UUV may also make locating mines challenging. Mine-like objects are 

typically recognized by sonar operators by using a set of characteristics associated with 

the appearance of a mine when using sonar imagery. If the side-scan imagery is poor, the 

operator may not be able to distinguish a mine-like object from a non-mine-like object 

(Kessel & Myers, 2005).  

Detecting or classifying mines in an image that is cluttered and/or of poor quality 

may lead to an increase in the workload experienced by the sonar operator. The operator 

may also be forced to operate under conditions of uncertainty resulting in a potential 

decrease in accuracy and performance. To help improve the accuracy of the detection and 

classification process, automated target recognition (ATR) algorithms are being created 

(Ho et al., 2011; Kessel & Myers, 2005; Myers, 2009). ATR algorithms developed for 

mine detection operate as an automated system that can be used to assist or replace a 

human operator in determining whether a foreign object detected in the sonar imagery is 

a potential target or not (Kessel & Myers, 2005).  

Algorithms designed to aid with mine detection typically work in a similar 

manner as sonar operators by using known characteristics associated with the presence of 

a mine in sonar imagery to determine if an object is mine-like or non-mine-like. Some of 

the characteristics of interest that the algorithm may be designed to recognize include the 

shape, size and shadow of the object (Myers, 2009). If the ATR aid detects an object that 

appears to have the characteristics of a mine, the aid may classify the object as mine-like. 



 

 3 

Depending on the level of automation programmed into the ATR system, the sonar 

operator may be notified that the system has detected a potential target in the side-scan 

sonar data. The notification could be received by the operator in the form of a visual cue 

to the area in the sonar imagery where the object of interest is present. Once being cued 

to the potential target, the sonar operator must decide if the object needs further 

examination before a final classification is made (Ho et al., 2011). Regardless of whether 

a manual investigation of the object is performed, the operator will be responsible for 

agreeing or disagreeing with the classification made by the algorithm.  

In classifying an object as mine-like or non-mine-like, the ATR system may result 

in one of the following outcomes: hit, false alarm, miss or correct rejection (Wickens, 

Hollands, Banbury & Parasuraman, 2013). A hit is when the ATR algorithm correctly 

identifies a mine as present, a false alarm is when the algorithm states a mine is present 

when there is no mine, a miss is when the algorithm says a mine is not present when there 

is a mine and a correct rejection is when the algorithm correctly identifies a mine as not 

present. The sensitivity of the ATR system designed, as well as the decision criterion 

used, may alter the proportion of each outcome that occurs. In general, an ATR system 

with a greater sensitivity will result in more foreign objects being classified as mine-like, 

leading to a greater number of hits and fewer misses. In the case of an ATR system with a 

lower sensitivity, fewer foreign objects are expected to be classified as mine-like, leading 

to a fewer amount of hits and more misses. Since the algorithms are designed to aid in the 

detection of mines, a system with a higher sensitivity would allow for more mines to be 

identified and fewer missed. Although using the high sensitivity appears to be more 
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beneficial, sonar operators tend to have low trust in the aids due to the high number of 

false alarms that occur as a result (Kessel, 2005; Kessel & Myers, 2005).  

In addition to using a system with a higher sensitivity, using a more liberal 

decision criterion is also suggested to result in a high number of false alarms, but may 

also reduce the number of misses that occur (Allendoerfer, Pai & Friedman-Berg, 2008). 

The high number of false alarms typically result when using this type of criterion due to 

less evidence being required for the system to indicate that a signal is present (Wickens et 

al., 2013). In a mine detection task, this may result in the automated target recognition 

system classifying an object that only has some of the suggested mine-like characteristics 

as a potential target. Since the actual presence of mines along the seafloor is rare, a liberal 

criterion will result in a large number of objects incorrectly being classified as potential 

targets by the system (Wickens et al., 2013). To result in a fewer number of false alarms, 

the decision criterion could be altered to create a system with a similar overall sensitivity 

but requires more evidence to indicate that a signal is present. This type of decision 

criterion would operate more conservatively and may only classify an object that has all 

of the suggested mine-like characteristics as a potential target. Although the conservative 

criterion may result in fewer false alarms, the system may miss more potential targets 

than would be missed using the liberal criterion due to the objects not having all of the 

required mine-like characteristics (Allendoerfer et al., 2008).  

To determine if it is the high number of false alarms specifically that is leading to 

the decrease in trust experienced by the sonar operators, an ATR system with different 

false alarm rates should be examined. It is important to understand why and under what 

conditions a human operator is expected to trust and rely on the automated system to 
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achieve the benefits associated with using automation (Hollands & Neyedli, 2011). An 

assumption that is often made when developing automation to aid a human operator with 

a task is that the human-automation team will perform better than the operator or the 

automated system would on their own (Dzindolet, Peterson, Pomranky, Pierce & Beck, 

2003; Dzindolet, Pierce, Beck & Dawe, 2002). The issue with this assumption is that 

once trust is broken between the automated system and the human operator, reliance on 

the automated system tends to decrease leading to misuse or disuse of the aid (Colebank, 

2008; Wickens et al., 2013). These human performance issues have been suggested to 

arise when human operators are working with automated systems due to the devices 

being designed from a technology-centered perspective (Wickens et al., 2013). Therefore, 

instead of solely focusing on improving the algorithms or cues generated by the 

automated system, human performance patterns must also be considered.  

Purpose 

 The purpose of this study was to determine if the false alarm rate of an automated 

target recognition system affects a user’s trust in the system, confidence in their own 

abilities and mine detection performance during an underwater mine detection task, and 

whether informing the user of the false alarm rate of the system affects each of these 

factors. To test this purpose, two groups of participants performed an underwater mine 

detection task with the help of an ATR system. The reliability and sensitivity of the aid 

was held constant across groups and across the experimental sessions, but the false alarm 

rate of the system changed part way through the study. One group of participants was 

informed of the change in the false alarm rate and one group was not.  
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Hypotheses 

It was hypothesized that the users’ level of trust in the automated system would be 

higher during the low false alarm rate condition compared to their level of trust during 

the high false alarm rate condition. Furthermore, it was expected that the users’ level of 

trust would be higher when they are informed of the automated system’s false alarm rate 

compared to when they are not informed of the false alarm rate of the system. It was also 

expected that the false alarm rate condition and the group the participant was assigned to 

(informed vs. not informed) would affect the users’ level of confidence in their own 

abilities and performance during the underwater mine detection task. Due to the limited 

research on the effect false alarm rate has on an individual’s level of confidence or 

performance, non-directional hypotheses were used for these measures. Given the present 

research on trust and reliance on an automated target recognition system, the next chapter 

will discuss some of the literature on automation, factors suggested to influence trust and 

reliance, and research related to cueing and target detection.  
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Chapter 2: Review of Literature   

Automation  

 The prevalence of automation within the world has significantly increased since 

the 1960s (Wickens et al., 2013). Today, automation can be found in all aspects of life 

from technology such as cell phones and cars to specialized systems in hospitals, aircraft 

and the military (Hollands & Neyedli, 2011; Madhavan, Wiegmann & Lacson, 2003; 

Wickens et al., 2013). The increasing desire for automated systems to perform tasks 

previously executed by humans may be attributed to the recent rise in advanced 

technology and operational challenges (Colebank, 2008; Parasuraman & Riley, 1997; 

Parasuraman, Sheridan & Wickens, 2000). It is proposed that automated systems have the 

ability to complete tasks that humans are unable to perform or do so poorly, to assist 

humans in completing tasks where human limitations may arise, to save money by not 

having to pay for human labor or training costs involved in the completion of tasks, as 

well as to increase productivity (Satchell, 1998; Wickens et al., 2013).  

In completing a task, automation can be used to assist with four general processes 

including information acquisition, information analysis, decision and action selection, 

and action implementation (Balfe, Sharples & Wilson, 2015; Parasuraman et al., 2000). 

Within each of these processes, the level of automation applied can vary across a 

continuum from low (full manual control) to high (full automated control) (Parasuraman 

et al., 2000; Röttger, Bali & Manzey, 2009; Wickens et al., 2013). For information 

acquisition, a lower level of automation may involve the gathering of information (e.g., 

side scan sonar may be used to capture images of the sea floor) and a higher level may be 

associated with the organization or filtering of the information (e.g., the images captured 
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may be prioritized according to whether or not objects appear to be present along the sea 

floor, as indicated by the strength of the return echoes or cast shadows) (Parasuraman et 

al., 2000; Wickens et al., 2013). A lower level of information analysis automation may 

involve the use of algorithms to process the information to make future predictions (e.g., 

an algorithm may be developed to scan the sonar images and highlight areas that may be 

suspicious) (Parasuraman et al., 2000; Yin, Wickens, Pang & Helander, 2011), where 

integration of the information may be included when using higher levels of information 

analysis (e.g., the algorithm may provide more distinct information to the human user 

such as whether it thinks a suspicious object is threatening or not). For decision and 

action selection, a level of automation from the lower to the higher end of the continuum 

may be associated with a decrease in the number of decision choices provided by the 

automated system (e.g., the automated system may provide a user with a full list of 

potential responses, such as “the object may be a rock, a log, debris or a mine”, or the 

system may provide the user with a single best response, such as “the object may be a 

mine”). Similarly, an increase in the level of automation for action implementation may 

correspond to a decrease in the amount of manual activity used to execute a response 

(e.g., for a low level of automation a human may be fully responsible for carrying out a 

desired action or response, such as indicating that a suspicious object detected in the 

sonar data is a mine, where for a high level of automation the human may not take part in 

carrying out the action or response) (Parasuraman et al., 2000; Wickens et al., 2013).   

In assisting with information acquisition, information analysis, decision and 

action selection and/or action implementation, automation use may be able to maintain 

the efficiency and efficacy of performing daily tasks (Colebank, 2008; Parasuraman & 
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Manzey, 2010; Wickens et al., 2013), improve safety (Parasuraman & Manzey, 2010; 

Wickens et al., 2013), reduce workload (Balfe et al., 2015; Parasuraman & Manzey, 

2010; Röttger et al., 2009; Wickens & Hollands, 2000; Wickens et al., 2013), reduce 

costs (Wickens & Hollands, 2000), and compensate for human limitations (Re & Macchi, 

2010; Wickens & Hollands, 2000). To achieve these benefits, it is important that the 

human users rely on the automation appropriately (Hollands & Neyedli, 2011), the design 

of the system encourages appropriate use, and proper training is received by the users 

(Parasuraman & Manzey, 2010). If the automation requires a high level of monitoring 

and cognitive effort by the user, the benefits of using the system will be diminished and 

errors will likely occur (Parasuraman & Riley, 1997). Some of these errors include 

automation complacency, automation bias and commission error (Balfe et al., 2015). 

Automation complacency refers to a reduction in the user’s ability to detect 

malfunctions with the automated system while under automated control (Parasuraman & 

Manzey, 2010). This typically occurs when the user is expected to attend to multiple 

tasks at the same time (Parasuraman & Manzey, 2010; Wickens et al., 2013), as well as in 

situations where the automation appears to have a consistently high level of reliability 

(Bahner, Huper & Manzey, 2008). Automation bias is the tendency for users to favor the 

information provided by an automated aid when different information is provided by a 

non-automated aid (Dzindolet et al., 2002; Parasuraman & Manzey, 2010; Parasuraman 

& Riley, 1997). The bias towards information provided by automated devices tends to 

occur in various settings regardless of any training or skills obtained by the user. 

Although training and user ability does not appear to have an effect, the literature 

suggests that automation bias may be influenced by the level of automation used, the 
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reliability of the aid and how responsible the user feels for the outcome of the human-

automation interaction (Parasuraman & Manzey, 2010). Commission error is when the 

user complies with incorrect information provided by the automated device (Bahner et 

al., 2008; Parasuraman & Manzey, 2010). Incorrect information may be used if the user 

does not attempt to determine if the information is correct or incorrect, or if the user is 

biased towards information provided by the automation (Bahner et al., 2008). Automation 

complacency, automation bias and commission errors are examples of situations where 

human users have developed inappropriate reliance on automated systems. 

Reliance and Trust 

According to the literature, the tendency for humans to develop inappropriate 

reliance on automation is fairly common (Dzindolet, Pierce, Beck, Dawe & Anderson, 

2001). In general, users tend to initially have high expectations in automation regardless 

of the system’s abilities (Bagheri & Jamieson, 2004). As a result of the high expectations, 

errors often occur due to the user relying on the automated aid when they should not 

rather than ignoring the aid when they should (Dzindolet et al., 2003; Dzindolet et al., 

2001). The over reliance on imperfect automation is suggested to occur because the users 

want to save their resources (Wickens & Dixon, 2007) and use the least amount of 

cognitive effort when making decisions (Wickens & Hollands, 2000). Several factors 

suggested to influence reliance behaviors include trust in automation (Dzindolet et al., 

2003; Lee & Moray, 1992; Lee & Moray, 1994; Lee & See, 2004), user self-confidence 

(Lee & Moray, 1994; Lewandowsky, Mundy & Tan, 2000; Madhavan & Wiegmann, 

2004), attitudes toward or liking of automation (Merritt, Sinha, Curran & Ilgen, 2011), 
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system reliability (Dzindolet et al., 2001; Parasuraman & Riley, 1997) and feedback (Lee 

& Moray, 1994; Wickens et al., 2013).  

Trust is a multidimensional concept (Colebank, 2008) that can be influenced at 

the individual, organizational and cultural level. The individual level is concerned with an 

individual’s past experiences with trust and reliance, and how these experiences affect the 

individual’s specific tendency to trust and interpret information. Trust may be influenced 

at the organizational level through human interactions and discussion regarding the 

supposed trustworthiness of a specific agent. At the cultural level, the norms and 

expectations within society may impact an individual’s propensity to trust (Lee & See, 

2004). Lee and See define trust as “the attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and vulnerability” (2004). 

Therefore, trust can be identified within each level as situations where individuals allow 

themselves to be vulnerable around others with the assumption that a positive result will 

occur. The vulnerability seen in these situations can be toward other humans, as well as 

toward automated systems (Mayer, Davis & Schoorman, 1995).  

Individuals that have a tendency to be more trusting in general are suggested to 

trust other humans and automation more appropriately than those who are less trusting 

(Lee & See, 2004; Mayer et al., 1995). The degree to which an individual will trust 

another human or automated aid is influenced by the traits of the trustor and how the 

incoming information is interpreted. Three characteristics identified in the literature that 

impact user trust include ability, benevolence and integrity. Ability refers to the 

characteristics or skills of the human or automated aid, benevolence is the aid’s desire to 
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do good and integrity is identified as the level of honesty or morality of the aid (Mayer et 

al., 1995).   

 The ability, benevolence and integrity of a human or automated aid can be 

observed or learned by the human user by taking a closer look at the performance, 

process and purpose of the aid. Performance is indicative of the ability of the aid and is 

concerned with aspects of the aid’s behaviour, such as the aid’s reliability and 

predictability. Benevolence can be determined by developing a deeper understanding of 

how the aid operates and the algorithms or underlying processes used when the aid is 

acquiring information, analyzing data, selecting an appropriate decision and/or 

implementing a response. The purpose of the aid can be used to help identify the aid’s 

level of integrity by allowing the user to understand why the aid was developed and what 

the aid was designed to do (Lee & See, 2004). As the users gain more information about 

and work with the aid, an appropriate level of trust should occur (Mayer et al., 1995).  

 It is suggested that many commonalities exist between the trust a human has in 

another human and the trust a human has in an automated device (Hollands & Neyedli, 

2011; Madhavan & Wiegmann, 2004). Although this may be true, it is important to note 

that slight differences in trust may exist between the two types of interactions as well 

(Madhavan & Wiegmann, 2004; Madhavan & Wiegmann, 2007). According to the 

literature, a user’s level of trust appears to have a greater influence on the user’s decision 

to rely on an automated system compared to the user’s decision to rely on another human 

(Lee & See, 2004; Lewandowsky et al., 2000). This may be due to a user perceiving their 

responsibility in a human-automation relationship to lie within themselves and their 

responsibility in a human-human relationship to be dispersed between themselves and the 
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other person (Lewandowsky et al., 2000). If a user believes they are solely responsible 

for the outcome of a human-automation interaction, it may explain why users tend to rely 

on automated systems they trust and disregard systems they do not (Lee & See, 2004).   

Trust also has a tendency to breakdown more quickly when dealing with an 

automated aid compared to a human aid (Madhavan & Wiegmann, 2004). In general, 

when an automated aid is compared to a human aid, the mechanical counterpart is often 

perceived as more reliable (Dijkstra, 1999) and is expected to perform better than the 

human aid (Dzindolet et al., 2003). For these reasons, human users have a tendency to 

foster initial biases toward the automation (Bagheri & Jamieson, 2004; Dzindolet et al., 

2002; Hollands & Neyedli, 2011; Lyons & Stokes, 2012; Merritt, Hall, Louis, Curran & 

Ilgen, 2015) and associate more realistic expectations with the human aid (Madhavan & 

Wiegmann, 2007). Therefore, when an error or fault occurs, the high expectations 

associated with the automated system result in the user’s trust in the system to decrease 

faster than their trust in the other human (Lewandowsky et al., 2000; Madhavan & 

Wiegmann, 2004).  

 The decrease in trust humans experience toward automated devices appears to be 

exacerbated following the first failure. Prior to the first error made by an automated aid, 

users tend to be in a state of over-trust due to their high expectations in the aid’s abilities 

(Wickens et al., 2013). These expectations appear to be violated upon the automation’s 

first failure, sending the user into an instant state of mistrust (Dzindolet et al., 2003; 

Wickens et al., 2013). As a result, humans tend to ignore the automated system even if it 

is accurate and reliable (Dzindolet et al., 2002; Madhavan et al., 2003; Parasuraman & 

Riley, 1997). Over time, trust is expected to gradually recover to a level approximating 
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appropriate trust in the automation’s capabilities (Lee & Moray, 1992; Wickens et al., 

2013; Yeh, Merlo, Wickens & Brandenburg, 2003).  

Allowing human users to gain exposure to errors in training or practice may aid in 

reducing the rapid level of distrust users experience following the first automation failure 

(Parasuraman & Manzey, 2010). If humans are aware that automated aids are not perfect 

and are knowledgeable on when and why errors may occur, they may be more likely to 

trust and rely on the aid (Bagheri & Jamieson, 2004; Dzindolet et al., 2003; Dzindolet et 

al., 2002; Dzindolet et al., 2001; Parasuraman & Riley, 1997). In circumstances where 

the error made by the aid is obvious and detected by the user, trust and reliance may be 

undermined regardless of any information provided. This may occur due to the user 

believing that they can perform better than the automated system (Madhavan et al., 

2003). In other words, the user’s level of confidence in their own abilities may exceed the 

user’s trust in the automated system.  

 The level of self-confidence possessed by a human user has a significant influence 

on whether the user trusts and relies on an automated aid (Lewandowsky et al., 2000; 

Madhavan & Wiegmann, 2004). In conditions where trust in automation exceeds the 

user’s confidence in their own abilities, automation tends to be used. If instead the user’s 

level of self-confidence is greater than their trust in automation, the task tends to be 

completed manually (Dzindolet et al., 2002; Lee & Moray, 1992; Lee & Moray, 1994; 

Parasuraman & Riley, 1997). Any changes that may occur in the level of trust in 

automation or user self-confidence is suggested to correspond to an associated change in 

automation use (Lee & Moray, 1994). Due to the ability of these changes to influence 

reliance on automation, designers should consider how different aspects of an automated 
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system may influence the level of trust and/or self-confidence a user may experience and 

adjust these aspects accordingly to encourage appropriate use. Information should also be 

made available to the user regarding both automated and manual performance to prompt 

any adjustments in the user’s level of trust and self-confidence (Lee & Moray, 1994).   

 In addition to the levels of self-confidence experienced, how much the user likes 

an automated aid is also proposed to influence trust and reliance. Whether or not the user 

likes an automated device can be determined by examining the level of positive attitude 

the user has toward the system. In the early stages of interaction, it is suggested that 

reliance is heavily dependent on whether the user likes the automation. As the user and 

the automated device continue to interact over time, reliance is more influenced by trust 

(Merritt et al., 2011). The tendency for one to like an automated aid is suggested to be 

influenced by individual differences as well as the various components that make up the 

device (Merritt et al., 2015). Knowledge of these individual and automated characteristics 

may be useful in designing an automated device that users will like and rely on.  

Another factor suggested to influence trust and reliance on automation is the 

reliability of the system (Wickens et al., 2013). An increasing amount of research has 

shown that human operators are sensitive to slight changes in reliability levels and the 

types of errors made by an automated system (Madhavan & Wiegmann, 2007). In 

general, as the reliability of an automated aid increases there is a subsequent increase in 

user trust and performance. The opposite results in user trust and performance are to be 

expected when the reliability of the aid is decreased (Dzindolet et al., 2003; Hollands & 

Neyedli, 2011; Madhavan et al., 2003; Parasuraman et al., 2000). According to the 

literature, a decrease in the aid’s reliability below a level of 70% results in a decrease in 
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performance below what would be expected if no automation was used (Wickens & 

Dixon, 2007). Although using a higher reliability appears to be more beneficial for user 

trust and performance, it is also important to note that automated aids with a higher level 

of reliability tend to lead to a reduction in the amount of time the user monitors the aid as 

well as a decrease in the attention the user has toward the raw data the automation is 

processing (Parasuraman et al., 2000; Wickens et al., 2013). This decrease in effort 

toward overseeing the processes of the aid may also be seen in cases where the operator 

perceives the automated aid as a teammate and therefore believes the responsibility of the 

outcome is dispersed between themselves and the aid (Parasuraman & Manzey, 2010).  

Since the majority of automated systems are implemented to aid human users with 

tasks that are performed under conditions of uncertainty, there will be situations when the 

automation is incorrect (Hollands & Neyedli, 2011). In these situations, imperfect 

automation tends to be underestimated resulting in a decrease in user trust and reliance 

(Madhavan et al., 2003; Parasuraman & Riley, 1997; Wickens & Hollands, 2000). 

Disclosing the level of reliability of the automated system to the user is proposed to 

increase performance (Bagheri & Jamieson, 2004; Hollands & Neyedli, 2011; Neyedli, 

Hollands & Jamieson, 2011; Wang, Jamieson & Hollands, 2009). By providing 

information regarding the reliability of the automation, the user may be able to adjust 

their expectations and develop appropriate trust and reliance in the system (Bagheri & 

Jamieson, 2004; Wickens & Dixon, 2007). This information may provide additional 

benefit in conditions where the reliability of the system changes over time in a context-

sensitive manner. In these situations, users provided with real time reliability data 

(Neyedli et al., 2011) and knowledge regarding the sensitive nature of the system to 
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different contexts, may improve performance and reliance when using automation that is 

imperfectly reliable (Bagheri & Jamieson, 2004). It is important to note that although 

some automated systems are not perfect, their assistance still may be useful throughout 

the process of completing a task. In complex environments or situations, the task 

components where automation use may be beneficial include signal detection, 

visual/attentional guidance and response selection (Madhavan & Wiegmann, 2004; 

Madhavan & Wiegmann, 2007; Parasuraman & Manzey, 2010; Wickens & Dixon, 2007; 

Wickens et al., 2013).  Given the focus on mine detection, the role of automation in 

cueing and target detection will be discussed in further detail. 

Cueing and Target Detection  

  In some situations, a signal or event may be so apparent that detection occurs 

almost instantaneously, while in other situations the ability to discern a signal or event 

from background noise may not be so easy. The process of detecting a signal or event 

during the latter situation is often modeled according to Signal Detection Theory (SDT) 

(Green & Swets, 1966; Phillips, Saks & Peterson, 2001; Wickens et al., 2013). SDT is a 

framework that can be used to measure the performance of human, automation or human-

automation teams in detecting signals, as well as to measure user reliance patterns toward 

an automated device (Green & Swets, 1966; Hollands & Neyedli, 2011; Parasuraman, 

1987; Sorkin & Woods, 1985; Swets, 1998). Two components of SDT that correspond to 

performance and reliance measures are sensitivity and response bias. 

 Sensitivity refers to the ability of a detector (human or otherwise) to identify an 

event or signal within background noise (Green & Swets, 1966; Neyedli et al., 2011; 

Wang et al., 2009). Several factors suggested to influence the ability to discriminate 
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between signal and noise include the experience or skill obtained by the user, the level of 

technology programmed into the automated system, the quality or resolution of the 

stimuli being examined and the salience of the signal that the user or automated system is 

trying to detect (Phillips et al., 2001; Wickens et al., 2013). When dealing with SDT, the 

two available responses are that the signal is present or that the signal is not present and 

the four potential outcomes are a hit, miss, false alarm or correct rejection (Figure 1). If 

the user or automated system has a higher level of sensitivity, a greater amount of hits 

and correct rejections are expected to occur (Figure 2a). If instead the user or automated 

system has a lower sensitivity, more false alarms and misses are to be expected (Figure 

2b) (Phillips et al., 2001; Wickens et al., 2013).  

 

 
Figure 1. Four outcomes for Signal Detection Theory. Wickens, C. D., Hollands, J. G., 

Banbury, S. & Parasuraman, R. (2013). Engineering Psychology and Human 

Performance (4th ed.). Pearson Education. (Figure 2.1). 
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Figure 2. Sample Signal Detection Theory distributions for (a) high sensitivity and (b) 

low sensitivity. Wickens, C. D., Hollands, J. G., Banbury, S. & Parasuraman, R. 

(2013). Engineering Psychology and Human Performance (4th ed.). Pearson Education. 

(Figure 2.3).  

 

In a detection task where two users have the same sensitivity, different outcomes 

may result due to the users having different response biases in determining whether a 

signal is present or not (i.e., the criterion beta line in Figure 2 shifts to the left or to the 

right) (Phillips et al., 2001). Response bias refers to the patterns in user response (Green 

& Swets, 1966; Neyedli et al., 2011; Wang et al., 2009). In general, users tend to vary in 

response bias by being more liberal (criterion beta line shifts to the left) or more 

conservative (criterion beta line shifts to the right) in indicating that a signal is present. If 

a user is more liberal, they may be more likely to indicate that a signal is present, leading 

to a greater amount of hits at the expense of making a lot of false alarms. If the user is 

more conservative, they may be less likely to indicate that a signal is present, resulting in 

less false alarms from occurring but increasing the number of potential misses 
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(Parasuraman & Masalonis, 2000; Wickens et al., 2013). Two factors suggested to 

influence whether a user responds more liberally or conservatively in indicating that a 

signal or event is present are the probability of a signal or event occurring and the costs 

and benefits associated with saying that a signal or event is present or absent 

(Parasuraman & Masalonis, 2000; Phillips et al., 2001; Wickens et al., 2013).  

A classic example that demonstrates response bias is when a radiologist is 

examining an X-ray of a patient. If a patient is unhealthy, the probability of the 

radiologist finding an abnormality in the X-ray and classifying it as a tumor may be more 

likely than if the radiologist is examining an X-ray of a healthy patient (Swets & Pickett, 

1982). In these circumstances, the user may be more likely to develop a liberal response 

bias in indicating that a tumor is present in the patient that is unhealthy and develop a 

conservative response bias in indicating that a tumor is present in the patient that is 

healthy. In addition to the probability of a tumor being present, the user may also weigh 

the costs of incorrectly indicating that a tumor is present and the patient undergoing 

unnecessary chemotherapy or incorrectly indicating that a tumor is absent and the 

patient’s condition getting worse or the patient passing away. Depending on which cost 

the operator believes is worse, they may respond liberally to ensure if the patient does in 

fact have a tumor that it does not progress, or they may respond more conservatively to 

ensure the patient does not go through dangerous and costly treatment that they may not 

need. 

 SDT can be applied to visual search tasks where the goal is locating an object or 

target of interest. Searching for a target is a task that most humans do on a daily basis 

(Wickens et al., 2013). This is especially true for humans with specialized jobs such as 
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radiologists, industrial inspectors and military operators, who are responsible for 

detecting indistinct targets and classifying the targets as signal or noise (Drury, 2006). In 

addition to trying to detect or classify a faint target, some humans are also forced to 

identify potential targets in a search field with a large amount of noise or distracting 

elements. The combination of the faint targets and the noisy background can make 

signals very difficult to detect. To aid in the detection process during these situations, 

automated systems can be used to cue or guide an individual’s attention to a potential 

target or area of interest (Wickens et al., 2013).  

 Automated systems used for attentional guidance typically work by using an 

internal decision criterion set by the designers of the system to determine if a potential 

signal is present in the stimuli the system is being used to examine. If the system detects a 

potential target, according to the criterion programmed by the designers, the system may 

alert or cue the user to the location in the stimuli where it believes the target is present. 

Users are responsible for monitoring the alerts or cues made by the automated system and 

must decide upon receiving a response if they are going to trust the cue made by the 

automated system or if they are going to seek more evidence before indicating that a 

target is present (Allendoerfer et al., 2008). An important consideration when designing 

automated systems is the decision criterion that should be used. If a more liberal decision 

criterion is chosen, the automated system may be able to detect more targets but may also 

make a lot of false alarms. If a more conservative decision criterion is used, the 

automated system may make less false alarms but may not be able to detect as many 

targets (Wickens et al., 2013).  
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 Most automated systems used for alerting or cueing a user to a potential target 

tend to use a more liberal decision criterion due to the cost of missing a target being 

perceived as more negative than the cost of being alerted to a target that is not present. 

This is often the case when dealing with fire alarms or airplane traffic, where alerting 

people about a fire that is not occurring or alerting pilots to a plane that is not flying on 

their route is better than the consequences that may result if a fire is actually occurring 

and nobody is alerted or a plane is about to collide with another plane and the pilot is not 

informed (Phillips et al., 2001; Wickens et al., 2013). Even though in some circumstances 

the probability of an event or signal occurring is low, the high cost associated with 

missing the event or signal when it does occur tends to result in designers using a more 

liberal decision criterion regardless of the high number of false alarms that result 

(Parasuraman, Hancock & Olofinboba, 1997; Wickens et al., 2013).  

 Although using an automated system that results in more hits and fewer misses 

has many benefits, several negative consequences are suggested to occur due to the high 

number of false alarms that the system also produces. In the case where a user is in 

charge of monitoring both the automated system and the raw data the system is 

processing, frequent false alarms may result in the user having to continuously check the 

raw data to determine if the alert or cue is correct in identifying a signal or event as 

present (Dixon, Wickens & McCarley, 2007). When the operator is in charge of 

performing multiple tasks at a time, or monitoring more than one system, the frequent 

disruptions may result in the benefits associated with using the automated systems to be 

reduced due to the operator experiencing an increased workload having to continuously 

respond to the false positive alerts (Wickens et al., 2013). In addition, a high false alarm 
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rate also tends to lead to the “cry wolf” effect (Breznitz, 1983; Sorkin, 1989), where users 

ignore the alerts over time, even when they may be correct (Allendoerfer et al., 2008; 

Parasuraman & Riley, 1997; Satchell, 1993; Sorkin, 1988). In these situations the user 

may develop a more conservative response bias to compensate for the automated 

system’s liberal decision criterion (Wickens et al., 2013). The “cry wolf” effect has led to 

several tragic incidents including the injury or death of 21 percent of patients on long-

term ventilators due to the ventilator alarms being ignored or checked too late (Joint 

Commission, 2002), and the death of 100 people on board a Korean Airlines flight that 

crashed due to a collision avoidance system being disabled (Wickens et al., 2013).  

 Another negative consequence that tends to occur when users are working with 

automated systems that result in a high number of hits and few misses is attention 

narrowing or tunneling. Attention narrowing or tunneling is a phenomenon demonstrated 

by users when an automated system consistently cues the user to the correct location of a 

target when a target is present. Due to the automation being perceived as reliable, the 

visual search that is performed by the user tends to decrease. If the user is not examining 

the search field, they may be more likely to miss a target if it is not cued by the 

automated system (Wickens et al., 2013). This phenomenon has been demonstrated in 

multiple studies that looked at target cueing with soldiers, where when the soldiers were 

cued to a target and a more threatening un-cued target was also present, the soldiers 

tended to miss the more dangerous un-cued target (Yeh et al., 2003; Yeh, Wickens & 

Seagull, 1999). Attention narrowing has also been seen in flight studies where skilled 

pilots failed to notice a dangerous event that was visible through the airplane windshield 
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due to solely focusing on the information provided by the automated system and not 

examining the raw data in the search field (Wickens & Alexander, 2009).  

 The situations described above where the users had the tendency to ignore 

automated systems that had high false alarm rates and missed targets when working with 

automated systems with high hit rates are examples of issues that may occur when an 

automated aid is not 100% reliable. When a user is working with an automated system 

that generates cues that are imperfectly reliable, the benefits of when the cues are correct 

and the costs of when the cues are incorrect are pronounced as the reliability of the cues 

increases toward 100% (Wickens et al., 2013). This usually occurs due to the tendency of 

users to over trust automated systems that consistently produce hits and correct 

rejections, and therefore feel they do not need to monitor the system or the information 

the system is processing. Due to the complex nature of most detection tasks, the ability 

for an automated system to result in only hits and correct rejections is extremely rare 

(Parasuraman & Masalonis, 2000). Therefore, when an automated system makes a false 

alarm or misses a target and the user is not monitoring the system, the error often occurs 

without being detected (Bagheri & Jamieson, 2004). Depending on how many errors the 

system is expected to make, the costs of continuously missing an error may lead to 

negative consequences. Informing the user of the reliability of the system or the number 

of errors that are expected to occur may encourage the user to rely on the system more 

appropriately (Neyedli et al., 2011).  

 If a user is aware of the reliability level at which an automated system is expected 

to operate, they may be more likely to adjust their expectations in the system to lead to 

more appropriate reliance on and monitoring of the aid (Bagheri & Jamieson, 2004). In a 



 

 25 

study by Dzdinolet and colleagues (2003), participants who were not given information 

regarding the reliability of an automated system developed unrealistic expectations about 

the capabilities of the aid. Similar results were found in a study by Bagheri and Jamieson 

(2004), where participants who were given information regarding the reliability of an 

automated system were able to develop more appropriate levels of trust and expectations 

in the system. In a study by Wang and colleagues (2009), the researchers examined the 

effect of aid reliability and reliability disclosure on an automated identification system. 

Results from this study revealed a positive influence of reliability disclosure on the levels 

of trust and reliance the users had in the automated aid.  

 To measure user reliance patterns on an automated device, an optimal response 

bias difference can be computed. This approach, based on SDT, can be used to determine 

if a user is relying on an automated system too much, or if a user is not relying on the 

system enough (Wang et al., 2009). As discussed at the beginning of this section, whether 

a user indicates that a signal is present or not is influenced by sensitivity and response 

bias. Each of these measures can be determined based on the user’s hit and false alarm 

rate when performing a signal detection task. The optimal response bias of a user for any 

signal detection task can be determined if the rate of signals, as well as the costs and 

benefits associated with indicating that a signal is present, are known.  

 By assessing how humans respond to automation under different automated or 

environmental conditions, designers may be able to develop systems from a more human-

centered perspective that will encourage appropriate trust and reliance. This is the aim of 

the present research, which deals with an automated system designed to assist users in an 

underwater mine detection task. To summarize the content explored in the introduction 
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section, underwater mine detection typically uses side-scan sonar to visualize the sea-

floor. Although using sonar data in water tends to be more beneficial than using data 

collected using light or other methods, the complex nature of the seafloor may make the 

quality of any data obtained difficult to interpret (Ho et al., 2011). Since the operator’s 

ability to view the seafloor is dependent on the sonar data obtained, the poor quality of 

the imagery may make identifying or classifying mines a complicated task to complete. 

This may result in the user operating under conditions of uncertainty in determining if a 

signal present in the sonar imagery is a potential mine or benign seafloor clutter. 

Automated systems have been developed to aid the operator during these situations by 

detecting signals within the sonar data, cueing or guiding the operator to areas of interest 

and/or providing suggestions regarding which response should be selected when 

determining if a signal is a mine or not (Madhavan & Wiegmann, 2004; Madhavan & 

Wiegmann, 2007; Parasuraman & Manzey, 2010; Wickens & Dixon, 2007; Wickens et 

al., 2013). A specific automated system that has been created to aid with each of these 

task components is the automated target recognition (ATR) system (Ho et al., 2011; 

Kessel & Myers, 2005; Myers, 2009).  

ATR is an algorithm-based system developed to assist or replace a human 

operator in detecting and classifying underwater mines (Kessel & Myers, 2005). The 

algorithms designed for ATR systems work by identifying key characteristics associated 

with the presence of a mine in sonar imagery to detect and classify signals (Myers, 2009). 

Using an automated system to aid with these task components may reduce the frequency 

and amount of information the operator seeks from the external environment in order to 

make an accurate decision (Röttger et al., 2009).  In addition to reducing the amount of 
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workload experienced by the operator, the systems may also aid in improving the overall 

accuracy and performance in completing the mine detection task. Although ATR aids are 

on average accurate and reliable, they are not perfect and sometimes make mistakes. 

These mistakes may include false alarms and misses. Since ATR systems typically 

operate using a higher sensitivity and a more liberal decision criterion to reduce the risk 

of missing a mine, the number of false alarms that occur as a result tend to lead to a 

decrease in the trust and reliance the operators have in the systems (Kessel, 2005; Kessel 

& Myers, 2005).    

 As previously discussed, automated cues that result in a high number of hits or 

false alarms tends to lead to the user missing un-cued targets or ignoring the aid 

altogether. If researchers are aware of the underlying processes used by the operators 

when deciding whether to rely on the suggestions provided by the automated system or to 

rely on themselves, the design and implementation of these systems can be altered to 

encourage appropriate trust and reliance (Dzindolet et al., 2003). To develop and 

implement an ATR system that operators will rely on, the relationship between the false 

alarm rate and the operators’ trust must be further examined, along with other aspects that 

may influence trust and reliance. To gain more insight into the effect of false alarms on 

the user, an ATR system with a more liberal (high false alarm rate) and a more 

conservative (low false alarm rate) decision criterion will be used. The purpose of this 

manipulation is to determine the effect a conservative decision criterion may have on user 

performance in a mine detection task compared to the more typically used liberal 

criterion. The study will also aim to explore how being informed of the high and low 

false alarms rates of the system may influence the user’s performance compared to those 
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that are not provided with this information. How the effect of different false alarm rates 

and disclosure patterns on human performance will be measured are explained in more 

detail in the next chapter.  
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Chapter 3: Methods 

Participants  

Seventy healthy adults (Age: M = 20.13 years, SD = 2.04; Gender: 55 female, 14 

male, 1 no gender specified) were recruited from the Dalhousie University community 

using the Dalhousie Undergraduate Psychology Pool (Psychology Participant Pool 

(SONA) Contact Sheet – Appendix A). Those interested in the study were contacted and 

encouraged to ask questions to clarify information about the study as needed. To be 

eligible to participate, participants had to be between the ages of 18-55 and had to have 

normal or corrected to normal vision. The age range of 18-55 corresponds to the age of 

most sonar operators and the participants had to have normal or corrected to normal 

vision in order to detect the mines in the sonar images. Recruited participants were asked 

to read over an Informed Consent Form (Appendix B) and sign an Informed Consent 

Signature Page (Appendix C), SONA Signature Page (Appendix D) and an optional Age 

and Gender Form (Appendix E) before beginning the study.   

In the consent form, participants were informed that they may withdraw from the 

study throughout the session at any given time and without any limitations by 

communicating to the experimenter that they no longer wished to continue. Participants 

were also notified in the consent form that they would receive $10 if they achieved a 

significantly high level of performance in completing the study and that performance 

would be based on the total number of correct mines identified during the task. At the end 

of the study, all participants received $10 regardless of performance so not to 

disadvantage participants who may have been assigned to a potentially less advantageous 

group. This performance bonus was implemented to provide an increased level of 
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urgency and motivation to the participants while completing the task. The participants 

were also awarded two credit points to a psychology course.  

Apparatus and Measures  

Apparatus 

A computer-based simulator was used for this study. Participants were seated in 

front of a monitor and interacted with a simulation using a computer mouse. The main 

simulation display showed sonar images of the sea floor. The task of the participants 

during the simulation was to identify whether a mine was present or absent in each of the 

sonar images. The participants entered each of their responses by clicking an area in the 

sonar image where they believed a mine was present or by clicking a black box in the top 

right-hand corner of the image labeled “NO MINE” if they believed a mine was not 

present.  

 During some blocks of trials an automated target recognition system aided the 

participants. For these blocks, a rectangle appeared around a region on the sonar image if 

the system believed a mine was present (Figure 3).  

 
Figure 3. Example of a sonar image with a cue from the automated target recognition 

system to alert the user to a region on the image where the system believes a mine is 

present. 
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Trust 

Participants were asked to complete a Trust in Automation Questionnaire (Jian, 

Bisantz & Drury, 2000; Appendix F) following each of the experimental blocks where 

automation was used. The questionnaire was comprised of 12 questions that the 

participants responded to using a 7-point Likert scale (1 = not at all : 7 = extremely) and 

was used to gather the participants’ perceived level of trust in the automated system. 

Example questions included “The system behaves in an underhanded manner” and “The 

system provides security”. 

 Confidence 

Participants were asked to complete a Confidence in Abilities Questionnaire 

(Appendix G) after the first training block and each of the experimental blocks. The 

questionnaire was an adapted version of the Trust in Automation Questionnaire and was 

used to assess the participants’ level of confidence in their own abilities to detect 

underwater mines in the sonar images. The questions in the Confidence in Abilities 

Questionnaire were created using the questions from the Trust in Automation 

Questionnaire as a template.  Each question was altered to assess the users’ level of 

confidence in their mine detection abilities rather than their level of trust in the automated 

system (e.g., I am confident in the system (Trust in Automation Questionnaire)  I am 

confident in my ability to identify mines (Confidence in Abilities Questionnaire)). The 

adapted questionnaire had 10 questions that the participants responded to using a 7-point 

Likert scale (1 = completely disagree : 7 = agree). Example questions included “I believe 

that my ability to identify mines on my own may lead to negative outcomes” and “I feel 

like others could depend on my ability to identify mines”.  
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Performance 

The coordinates on the sonar images where the participants clicked were recorded 

using the computer programming software MATLAB. Each click coordinate was used to 

determine whether the participant thought a mine was present (clicked an area on the 

sonar image) or not present (clicked the black “NO MINE’ box), along with the exact 

location on the sonar image the participant believed the mine was if they thought there 

was a mine. Comparing the participants’ click coordinates to the true coordinates of the 

mines in the sonar images, the number of hits, misses, false alarms and correct rejections 

could be obtained. Sensitivity and response bias for each block of trials could then be 

calculated using the number of hits and false alarms determined.  

Response time, in seconds, was also recorded using MATLAB to determine the 

time it took the participants on each trial to select a response regarding whether they 

believed a mine was present or not following the image being displayed on the screen. 

Response time was measured from the time the imaged appeared to when the participant 

clicked on the image. Using the response time recorded on each trial, average response 

time was calculated for the trials where a mine was present and for the trials where a 

mine was absent. 

Design  

 Participants completed four experimental blocks, two of which they completed 

with no automation and the other two with automation. The no automation experimental 

blocks were made up of 50 trials each, with 25 of the trials having sonar images with a 

mine present and the other 25 trials having sonar images with no mine present. The 

automation experimental blocks consisted of 100 trials each, with a mine present in the 



 

 33 

sonar images on 50 of the trials and no mine present in the sonar images on the remaining 

50 trials.  

 In the automation experimental blocks, the reliability level of the automated 

system was set at either a low or a high false alarm rate. The order of the false alarm rate 

set for the automated experimental blocks was counterbalanced between participants. If 

the automated system was set at a low false alarm rate, 12% of the trials had false alarms. 

For the low false alarm rate automated experimental block, 6 of the trials where a mine 

was not present had false alarms and 11 of the trials where a mine was present had 

misses. If the automated system was set at a high false alarm rate, 24% of the trials had 

false alarms. For the high false alarm rate automated experimental block, 12 of the trials 

where a mine was not present had false alarms and 5 of the trials where a mine was 

present had misses. The misses were adjusted for each of the false alarm rate conditions 

to ensure that the overall sensitivity of the system was kept constant.  

Participants were randomly assigned to one of two groups. The automated (not 

informed) group performed the automated experimental blocks without being informed of 

the false alarm rate/reliability of the system and the automated (informed) group 

performed the automated experimental blocks with being informed of the false alarm 

rate/reliability of the system. The false alarm rate/reliability information in the form of 

the percentage of false alarms that were expected to occur were given to the participants 

in the automated (informed) group via a script (Training and Automation Scripts – 

Appendix H) before starting the trials for the automation experimental blocks.  
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Procedure  

  Participants attended a single session lasting approximately 1.5-2 hours. For the 

duration of the study the participants were seated at a computer workstation. After 

providing informed consent, the participants read through a Mine Detection Training 

Script (Appendix H) explaining the simulation and the tasks that would be required of 

them. The participants were informed that they would play the role of a naval commander 

aboard a Navy Frigate about to sail in unchartered waters with the task of monitoring 

sonar images collected by an unmanned submarine to identify underwater mines. The 

participants were also provided an example of four sonar images and were given the 

opportunity to ask questions about any of the information presented to them that may 

have been unclear before continuing.  

After going over the instructions, the participants completed six blocks of trials, 

two of which were training blocks (Figure 4 for study design). First participants 

completed a training block of 50 trials with no automation using images “collected from a 

previous mission” where they were given the opportunity to interact with the simulation 

and get comfortable with the mine detection task. On each trial a sonar image appeared 

and the participants were instructed to indicate using the computer mouse whether a mine 

was present or absent. The participants received feedback on the screen during this no 

automation training block indicating if they were correct in determining whether a mine 

was present or not in the sonar image (Figure 5).  
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Figure 4. Study design for the training and experimental blocks of trials. 

 

a)  b)  

c)  d)  

Figure 5. a) Sonar image with a mine present and b) the potential feedback that may be 

received for the image based on the automated system’s and user’s response. c) Sonar 

image with no mine present and d) the potential feedback for the image based on the 

response made by the automated system and the user.  

  

After the first training block, the participants read Experimental Session Script – 

No Automation Block 1 (Appendix H) and completed an experimental block of 50 trials 

with no automation. The participants were told that the images for each trial were 

collected along their proposed route by the unmanned submarine and that it was 

important that all mines were detected in a timely fashion in order for the mission to 

progress. For this experimental block and those following, the participants had to 
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determine whether a mine was present or not in each of the sonar images but did not 

receive feedback on whether their mine detection decision was correct.   

 Following completion of the first experimental block, the participants were 

informed that an automated target recognition system had been designed to assist them in 

completing their task. The participants were provided an Automation Training Script 

(Appendix H) that described the automated system and how it works. The script 

explained to the participants that the system uses computer vision to identify the presence 

of mines but is not entirely perfect. The script also informed the participants that the 

system could be altered to change the number of false alarms that occur. The participants 

were given an opportunity after reading the script to ask any questions they had about the 

information presented to them that may have been unclear. The participants then ran 

through a training block of 4 trials with automation to get familiarized with the 

appearance of the system. The participants received feedback during this training block 

regarding how the automated system works.  

 After completing the training block on automation, the participants completed an 

experimental block of 100 trials with assistance from the automated target recognition 

system. The participants were reminded through the Experimental Session Script – 

Automation Block 1 (Appendix H) how the automation works and that the system could 

be altered by the system designers to change the number of false alarms that occur. The 

participants in the informed group were given an additional portion of the script 

indicating whether the false alarm rate for the experimental block had been set to high 

(24% of the trials will have false alarms) or low (12% of the trials will have false alarms). 

The participants in the not informed group were not given any information regarding the 
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false alarm rate set for the experimental block. As with the no automation experimental 

block, the participants had to determine whether a mine was present or not in each of the 

sonar images, but also received assistance from the automated target recognition system. 

The participants were informed that although the automated system may be used to assist 

them, they had to make the final decision regarding the potential presence of a mine. The 

participants were also reminded that they had to examine the images in a timely fashion.  

 Following completion of the automation experimental block, the participants 

completed an experimental block of 50 trials with no automation. The participants were 

told through Experimental Session Script – No Automation Block 2 (Appendix H) that 

the automated system was being re-calibrated and that they would not have access to it 

for this block of trials. The participants were reminded that they would be examining 

images collected by the unmanned submarine along their proposed route and that it was 

important that all mines were detected in a timely fashion. Similar to the other 

experimental blocks, the participants had to determine whether a mine was present or not 

in each of the images but would not receive assistance from the automated system.  

 After completion of the second no automation experimental block, the 

participants completed another experimental block of 100 trials with automation. The 

participants were told that the automated target recognition system was recalibrated and 

was now available to assist them with this block of trials. As with the other automation 

experimental block, the participants were reminded through a script, Experimental 

Session Script – Automation Block 2 (Appendix H), how the automation works and that 

the system could be altered by the system designers to change the number of false alarms 

that occur. The participants in the informed group were given an additional portion of the 
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script indicating whether the false alarm rate for the experimental block was set to high 

(24% of the trials will have false alarms) or low (12% of the trials will have false alarms). 

The participants in the not informed group were not given any information regarding the 

false alarm rate set for the experimental block. The participants had to determine whether 

a mine was present or not in each of the sonar images and received assistance from the 

automated target recognition system. The only difference between this automation 

experimental block and the first automation experimental block was the false alarm rate 

that was set (i.e., if the first automation experimental block was set at a high false alarm 

rate this experimental block was set at a low false alarm rate). Time was allotted between 

each block to allow the participants to take a break if desired.  

 The participants were asked to complete the Confidence in Abilities 

Questionnaire following the first training block and each of the experimental blocks, as 

well as the Trust in Automation Questionnaire following the low and high false alarm 

rate automation experimental blocks. The participants did not receive the Trust in 

Automation Questionnaire following the no automation experimental blocks because they 

were not interacting with the automated system while completing the trials. At the end of 

the study the participants were debriefed about the experiment (Debriefing Form – 

Appendix I), the goals of the experiment, and were given an opportunity to ask any 

questions they had about the experiment or possible results of the experiment.  

Data Analysis  

 Response time was calculated on each trial by taking the difference between when 

the sonar image appeared on the screen and when the participant clicked the mouse to 

select a response. Using the calculated response times for each trial, an average response 
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time was determined for the trials when a mine was present and when a mine was absent. 

The response times for the mine present and mine absent trials were analyzed separately 

because visual search on trials where a target is absent typically takes longer when 

compared to trials where a target is present.  

The proportion of hits and false alarms that occurred in each block of trials per 

participant were calculated by dividing the number of hits and false alarms determined by 

the number of trials present in each block. The hit and false alarm proportions were then 

converted to z-scores within MATLAB using an inverse complementary error function 

and inputted into the following equation to calculate sensitivity:  

𝑑′ = 𝑧ℎ𝑖𝑡 −  𝑧𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚    (1)  

Using the calculated z-scores for hits and false alarms, response bias values were 

also determined for each block of trials per participant using the equation:  

𝛽 =  −0.5 ∗ (𝑧ℎ𝑖𝑡 +  𝑧𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚)   (2) 

The confidence scores collected from the Confidence in Abilities Questionnaire 

were inputted into an excel document per participant for each block of trials. To compute 

an average confidence score for each experimental block, the first four questions were 

reversed so a higher score indicated a higher confidence the participant had in their own 

abilities to identify the underwater mines (i.e., a score of 1 would change to a score of 7, 

a score of 2 would change to a score of 6, etc.). Using the reversed scores for questions 

one to four and the original scores for questions five to ten, an average confidence score 

was computed. 

The trust scores obtained using the Trust in Automation Questionnaire were 

inputted into an excel document for the low and high false alarm rate automation blocks 
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for each participant. To calculate a trust score for the two automation blocks, the first five 

questions were reversed so a higher score indicated a higher trust in automation. An 

average trust score was computed using the reversed scores for questions one to five and 

the original scores for questions six to twelve. 

 A 2 (Group: informed, not informed) by 4 (Automation Condition: no automation 

1, no automation 2, low false alarm rate automation, high false alarm rate automation) 

mixed ANOVA was performed on response time when a mine was absent, response time 

when a mine was present, sensitivity, response bias and confidence and a 2 (Group: 

informed, not informed) by 2 (Automation Condition: low false alarm rate automation, 

high false alarm rate automation) mixed ANOVA was performed on response bias and 

trust.  For measures where sphericity was violated (p < .05), Greenhouse-Geisser 

estimates were used. Effect size, ηp
2, was calculated for each main effect and Tukey’s 

HSD post hoc comparisons were performed to follow up on any main effects involving 

Automation Condition or significant interactions. To determine which Automation 

Condition(s) or interaction(s) were significantly different from the others, a critical value 

was calculated for each measure using the following equation:  

 critical value =  𝑞√
𝑀𝑆𝑤

𝑛𝑘
      (3) 

 If the difference between the means for two Automation Conditions or 

interactions was greater than the critical value calculated for that measure, Tukey’s HSD 

was found to be significant or there was a significant difference between the two 

conditions/interactions. If instead the difference between the means for two Automation 

Conditions or interactions was less than the critical value calculated for that measure, a 

significant difference was not found between the two conditions/interactions.  
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Chapter 4: Results  

Response Time  

Response time when a mine was present was not significantly different between 

the Informed and Not Informed Groups, F(1, 68) = .019, p = .89, ηp
2 = < .01 (Figure 6 A). 

A significant difference was found between the response times for Automation 

Condition, F(1.74, 118.6) = 147.9, p < .01, ηp
2 = .685, where no automation 1 (M = 6.12s, 

SEM = .34) showed a significantly longer response time compared to the other 

conditions: no automation 2 (M = 2.76s, SEM = .14), low false alarm rate automation (M 

= 2.79s, SEM =.16) and high false alarm rate automation (M = 2.56, SEM =.16), (critical 

value = .51). No difference in response time was found between the three other 

conditions. There was no significant interaction between Group and Automation 

Condition for response time, F(1.74, 118.6) = 1.18, p = .31, ηp
2 = .02. 

 There was no significant difference in response time on trials where a mine was 

absent between the Informed and Not Informed Groups, F(1, 68) = .093, p = .76, ηp
2 = < 

.01 (Figure 6 B). There was a significant effect of Automation Condition for response 

time, F(2.10, 142.5) = 68.8, p < .01, ηp
2 = .50, where similar to the trials when a mine was 

absent, no automation 1 (M = 6.22s, SEM = .42) showed a significantly longer response 

time compared to the other conditions: no automation 2 (M = 3.67s, SEM = .24), low 

false alarm rate automation (M = 3.68s, SEM =.24) and high false alarm rate automation 

(M = 3.70s, SEM = .27), (critical value = .56). Again, no difference in response time was 

found between the three other conditions and the interaction between Group and 

Automation Condition was not significant, F(2.10, 142.5) = .55, p = .59, ηp
2 = .01.  
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Figure 6. Average response time of participants in the informed (I) and not informed (NI) 

groups for each automation condition on trials where a mine was present (A) or absent 

(B).   

 

Sensitivity   

 There was no significant difference in sensitivity between the Informed and Not 

Informed Groups, F(1, 68) = 1.35, p = .25, ηp
2 = .02, however there was a significant 

effect of Automation Condition, F(2.60, 176.6) = 68.9, p < .01, ηp
2 = .50 (Figure 7 A). 

Mean sensitivity for no automation 1 (M = .91, SEM = .04) was found to be significantly 

lower compared to the other three conditions: no automation 2 (M = 1.43, SEM = .04), 

low false alarm rate automation (M = 1.40, SEM = .03) and high false alarm rate 

automation (M = 1.31, SEM = .04), (critical value = .11). In addition, mean sensitivity 

was also found to be significantly lower in the high false alarm rate automation condition 

(M = 1.31, SEM = .04) compared to no automation 2 (M = 1.43, SEM = .04). The 

interaction between Group and Automation Condition for sensitivity was not significant, 

F(2.60, 176.6) = .80, p = .48, ηp
2 = .01.  

Response Bias  

 Response Bias was not significantly different between the Informed and Not 

Informed Groups, F(1, 68) = 1.53, p = .22, ηp
2 = .02. A significant difference in response 

bias was found for Automation Condition, F(2.63, 179.0) = 14.48, p < .01, ηp
2 = .18, 
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where no automation 2 (M = .99, SEM = .03) showed a significantly lower response bias 

(i.e., the participants were more likely to say a mine was present) compared to the other 

three conditions: no automation 1 (M = 1.08, SEM = .02), low false alarm rate 

automation (M = 1.12, SEM = .03) and high false alarm rate automation (M = 1.05, SEM 

= .03), (critical value = .05). The high false alarm rate automation condition (M = 1.05, 

SEM = .03) also showed a significantly lower response bias compared to the low false 

alarm rate automation condition (M = 1.12, SEM = .03). A significant effect for response 

bias was not found for the interaction between Group and Automation Condition, F(2.63, 

179.0) = 1.80, p = .16, ηp
2 = .03.   

 To more specifically examine whether a difference in participant response bias 

was influenced by a change in the automation response bias, a separate ANOVA 

compared only the blocks of trials where the participants used the automation. In the 

automation present conditions there was no significant difference between the Informed 

and Not Informed Groups, F(1, 68) = .79, p = .38, ηp
2 = .01 (Figure 7 B). A significant 

main effect of Automation Condition was found, F(1, 68) = 17.7, p < .01, ηp
2 = .21, 

however this effect was superseded by the interaction between Group and Automation 

Condition, F(1, 68) = 5.58, p = .021, ηp
2 = .08. In the Not Informed Group, mean 

response bias was found to be significantly lower for the high false alarm rate automation 

condition (M = 1.01, SEM = .04) compared to the low false alarm rate automation 

condition (M = 1.12, SEM = .04) (critical value = .06). However, for the Informed Group 

no significant difference in mean response bias was found between the low false alarm 

rate automation (M = 1.12, SEM = .04) and high false alarm rate automation (M = 1.09, 

SEM = .04) conditions. 
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Figure 7. Average sensitivity of participants in the informed (I) and not informed (NI) 

groups for each automation condition (A) and average response bias of participants per 

group for the low false alarm rate (Auto Low FA) and high false alarm rate (Auto High 

FA) automation conditions (B).  

 

Trust   

  Trust in automation was significantly different between the Informed and Not 

Informed Groups, F(1, 68) = 4.37, p = .040, ηp
2 = .06, where the Informed Group had 

greater trust in the automated system compared to the Not Informed Group (Figure 8 A). 

There was no significant difference in trust between Automation Conditions, F(1, 68) = 

3.39, p = .070, ηp
2 = .05, nor was there a significant effect for the interaction between 

Group and Automation Condition, F(1, 68) = .77, p = .39, ηp
2 = .01. 

Confidence  

 Confidence in mine detection ability was not significantly different between the 

Informed and Not Informed Groups, F(1, 68) = 1.48, p = .23, ηp
2 = .02 (Figure 8 B). A 

significant difference was found in confidence levels between Automation Conditions, 

F(3, 204) = 24.63, p < .01, ηp
2 = .27, where mean confidence for no automation 1 (M = 

2.92, SEM = .10) was significantly lower compared to the other three conditions: no 
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automation 2 (M = 3.44, SEM = .13), low false alarm rate automation (M = 3.37, SEM = 

.13) and high false alarm rate automation (M = 3.20, SEM = .13), (critical value = .17). In 

addition, mean confidence was also significantly lower in the high false alarm rate 

automation condition (M = 3.20, SEM = .13) compared to no automation 2 (M = 3.44, 

SEM = .13). The interaction between Group and Automation Condition was not 

significant for confidence, F(3, 204) = .98, p = .40, ηp
2 = .01.  

 
  

Figure 8. Average trust of participants in the informed (I) and not informed (NI) groups 

for the low false alarm rate (Auto Low FA) and high false alarm rate (Auto High FA) 

automation conditions (A) and average confidence of participants per group for each 

automation condition (B).  
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Chapter 5: Discussion  

The purpose of this study was to determine if the false alarm rate of an automated 

target recognition system affects a user’s level of trust in the automated system, level of 

confidence in their own abilities and level of performance during an underwater mine 

detection task, and whether these outcome variables are influenced by informing the user 

of the false alarm rate/reliability of the system. Trust in the automated system was greater 

for the participants who were informed of the false alarm rate compared to the 

participants who did not receive any false alarm rate information. In addition, the 

response bias of the participants in the informed group remained relatively unchanged 

between the low false alarm rate and high false alarm rate automation conditions, where 

the response bias of the participants in the not informed group appeared to be influenced 

by whether the system was set at a low or a high false alarm rate. Furthermore, sensitivity 

and confidence levels were found to be lower for the high false alarm rate automation 

condition compared to when no automation was used later in the session. It should be 

noted that participant’s performance improved from the first no automation block to the 

second no automation block, indicating that they still may have been learning about the 

task during the first block. Therefore, the discussion will mainly focus on comparing the 

automation conditions to the second no automation block of trials.  

Trust  

  Participants who were informed that the automated system was set at a low or a 

high false alarm rate had greater trust in the system compared to the participants who did 

not receive any false alarm rate information. This finding is consistent with our initial 

hypothesis that the users’ level of trust would be higher when informed of the automated 
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system’s false alarm rate compared to when not informed of the false alarm rate of the 

system. This hypothesis was based on previous research that has indicated that disclosing 

the reliability level of an automated aid (Hollands & Neyedli, 2011; Neyedli et al., 2011; 

Wang et al., 2009), or providing information regarding the aid’s behaviour or competence 

(Bagheri & Jamieson, 2004; Lee & See, 2004; Muir, 1994), should lead to more 

appropriate levels of trust and reliance. As discussed in Chapter 2, three characteristics of 

a human or automated aid that have been identified in the literature that impact user trust 

include the ability, benevolence and integrity of the aid. Each of these characteristics 

associated with the aid can be determined by a human user respectively by observing how 

the aid behaves or having knowledge pertaining to the reliability/predictability of the aid 

(performance), by developing a deeper understanding about how the aid operates or the 

algorithms used (process) and by learning information regarding why the aid was 

developed or what the aid was designed to do (purpose) (Lee & See, 2004).  

 All participants were provided information regarding why the automated target 

recognition system was designed (purpose) and how the system works (process), but 

information about the false alarm rate/reliability of the system (performance) was only 

given to participants who were placed in the informed group. Since the participants did 

not have previous interactions with the automated target recognition system, those who 

were not informed of the false alarm rate information may have had to determine the 

ability of the system by observing its actions and decisions (Bagheri & Jamieson, 2004). 

Due to errors made by an automated system being more prominent than correct decisions 

(Dzindolet et al., 2003), the ability or performance of the system may have been 

underestimated by the participants when highly salient false alarm errors occurred, 
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resulting in the system being perceived as less trustworthy. This may especially be true if 

the participants had high expectations in the automated system (Bagheri & Jamieson, 

2004; Dzindolet et al., 2002; Hollands & Neyedli, 2011; Lyons & Stokes, 2012; Merritt 

et al., 2015). Therefore, when the participants were informed of the false alarm rate of the 

automated system, they may have been able to adjust their expectations, resulting in the 

system being perceived as more trustworthy.  

 Although informing the participants of the false alarm rate of the automated 

system resulted in an increase in overall trust, it is interesting to note that a significant 

difference in trust was not found between the low false alarm rate and high false alarm 

rate automation conditions. These results are inconsistent with our initial hypothesis that 

the users’ level of trust in the automated system would be higher during the low false 

alarm rate condition compared to their level of trust during the high false alarm rate 

condition. Trust was expected to be lower in the high false alarm rate condition because 

false alarm errors may be more noticeable than miss errors. According to the literature, as 

the reliability of an automated aid increases there is usually a subsequent increase in user 

trust and performance and as the reliability of an automated aid decreases a decrease in 

user trust and performance is expected (Dzindolet et al., 2003; Hollands & Neyedli, 2011; 

Madhavan et al., 2003; Parasuraman et al., 2000). Similarly, research has shown that 

human operators are sensitive to slight changes in reliability levels and the types of errors 

made by an automated system (Madhavan & Wiegmann, 2007). Since the overall 

sensitivity of the system and overall system reliability (i.e., total errors, both misses and 

false alarms) were kept constant for each false alarm rate condition, this may suggest that 
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trust is less sensitive to changes in an automated system’s response bias (i.e., whether the 

system makes more false alarms or misses).  

Response Bias  

Participants who were not informed of the false alarm rate of the automated 

system had a lower, more liberal response bias (i.e., the participants were more likely to 

say a mine was present) for the more liberal, high false alarm rate automation condition 

and a higher, more conservative response bias (i.e., the participants were less likely to say 

a mine was present) for the more conservative, low false alarm rate automation condition. 

On the other hand, the response bias for the participants who were informed of the false 

alarm rate remained relatively unchanged between the two automation conditions. These 

results suggest that when the participants were not informed of the system’s false alarm 

rate, their responses were more likely to be influenced by the response bias of the 

automated system. This change in user response bias to be similar to that of the 

automated system may be attributed to automation bias, or the tendency for users to 

overly rely on information provided by an automated aid (Dzindolet et al., 2002; 

Dzindolet et al., 2001; Parasuraman & Manzey, 2010; Parasuraman & Riley, 1997). 

Automation bias has been demonstrated in multiple studies and scenarios such as when 

participants displayed lower diagnostic accuracy when making medical diagnoses under 

the aid of an imperfect decision support system compared to when the participants made 

the diagnoses without assistance from the aid (Goddard, Roudsari & Wyatt, 2012) and 

when 75% of pilots were found to make an error by shutting down an engine when 

incorrectly advised to do so by an automated aid compared to 25% when a manual 

checklist was used (Wickens et al., 2013).  
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Research suggests that human users often fail to examine all the necessary data 

required to verify if a diagnosis recommended by an automated aid is correct or not 

(Bahner et al., 2008; Parasuraman & Manzey, 2010; Skitka, Mosier & Burdick, 1999; 

Wickens & Dixon, 2007). This may be due to the tendency for users to select the path 

with the least amount of cognitive effort required to make a decision (Wickens et al., 

2013), especially when the user perceives the aid as a teammate and therefore may feel 

that the responsibility for the outcome of the team’s performance is dispersed between 

themselves and the aid (Dzindolet et al., 2002; Parasuraman & Manzey, 2010). In 

addition, as discussed in the previous section, those not informed of the false alarm rate 

would have been required to determine how much they should trust and rely on the 

system by observing the cues generated by the aid. Since no feedback was given 

regarding whether the cues made by the automated system were correct or not, and due to 

the difficulty of some of the sonar images, the participants may have perceived the 

reliability of the aid during the automation conditions to be greater than it was.  

When the participants were informed of the false alarm rate of the automated 

system, their responses were not significantly influenced by the liberal and conservative 

response biases set for the aid. For the low false alarm rate condition the response biases 

of the participants from the informed and not informed groups were similar and for the 

high false alarm rate condition the response biases of the participants from the informed 

group were more conservative compared to the more liberal response biases seen for the 

participants from the not informed group (Figure 7 B). If a user is aware of the reliability 

level of an automated system, they may be more likely to monitor the cues or information 

generated by the aid appropriately (Bagheri & Jamieson, 2004) and interfere with the 
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system when they do not believe the cue generated is an appropriate response (Colebank, 

2008). Furthermore, in situations where an automated system has a high false alarm rate, 

the user may develop a more conservative response bias to compensate for the system’s 

liberal decision criterion (Wickens et al., 2013). Therefore, if the participants are aware 

that in the high false alarm rate condition 24% of trials where a mine is not present will 

have false alarms (compared to 12% for the low false alarm rate condition) they may (1) 

pay more attention to the cues generated by the automated system compared to the 

participants who were not given this false alarm rate information, (2) be more cautious of 

the cues in the high false alarm rate condition compared to the cues in the low false alarm 

rate condition and (3) intervene when the automated cues deviate from what they believe 

to be the best response.  

Sensitivity and Confidence  

 The sensitivity and confidence levels of the participants from both the informed 

and not informed groups were found to be lower for the high false alarm rate automation 

condition compared to the second experimental condition where no automation was used 

(No Automation 2). In other words, the participants performed significantly worse and 

had significantly less confidence in their own abilities when the mine detection task was 

completed with the aid of the automated target recognition system set at a 24% (high) 

false alarm rate compared to when the task was completed without the aid of the 

automated system. According to the literature, when trust in an automated system 

exceeds a user’s level of confidence in their own abilities, automation tends to be used 

and when a user’s confidence in their own abilities is greater than their trust in the 

automated system, the task tends to be completed manually (Dzindolet et al., 2002; Lee 
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& Moray, 1992; Lee & Moray, 1994; Parasuraman & Riley, 1997). When the automated 

system was set at a high false alarm rate, the system made 45 hits and 12 false alarms 

compared to 39 hits and 6 false alarms when the system was set at a low false alarm rate. 

Although during the high false alarm rate condition the automated system made more 

false alarms compared to the low false alarm rate condition, the system also made more 

hits. Therefore, depending on the difficulty of the false alarms and misses made by the 

aid, the participants may have perceived the system to be more capable than themselves 

of detecting the mines in the sonar images. This may have led to the participants 

developing lower confidence in their own ability to perform the mine detection task and 

as a result allocated more control to the automated system.   

 As discussed in Chapter 2, when a user is working with an automated system that 

results in a high number of hits and a low number of misses, performance decrements 

may occur due to attention narrowing or tunneling. Attention narrowing or tunneling is a 

phenomenon demonstrated by users when an automated system consistently cues the user 

to the correct location of a target when a target is present. Since the automated system is 

perceived as reliable, the visual search that is performed by the user tends to decrease. If 

the user is not examining the search field, they may be more likely to miss a target if it is 

not cued by the automated system (Wickens et al., 2013), such as when the soldiers 

missed dangerous un-cued targets when cued to a different location (Yeh et al., 2003; 

Yeh et al., 1999) or when the pilots failed to notice a dangerous event visible through the 

airplane windshield due to focusing on the information provided by the automated system 

(Wickens & Alexander, 2009). Therefore, due to the high number of hits performed by 

the automated system during the high false alarm rate condition, along with the reported 
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decrease in confidence in their mine detection abilities, the participants may have decided 

to simply rely on the aid rather than monitor the images and cues appropriately.  

 It was hypothesized that the false alarm rate condition and the group to which the 

participant was assigned (informed vs. not informed) would affect the users’ level of 

confidence in their own abilities and performance during the underwater mine detection 

task. While in the high false alarm rate condition users had lower confidence and 

sensitivity compared to when the task was completed without the aid, the difference 

between other conditions (i.e., low false alarm rate vs. no automation, low vs. high false 

alarm rate and main effect of Group) did not reach significance. Thus when the task was 

completed manually the users had similar sensitivity scores and confidence in their own 

abilities compared to when the task was completed with the automated system at a low 

false alarm rate. Similarly, the users’ detection performance and confidence did not 

significantly differ between the high and low false alarm rate conditions. A significant 

difference may not have been found between the two false alarm rate conditions due to 

them having the same overall sensitivity and reliability (error rate). In addition to the 

users’ confidence in their own abilities and mine detection performance being less 

affected by the slight changes in the decision criterion used by the automated system, the 

results also suggest that these measures were not affected by informing the users of the 

false alarm rate. While there appears to be a small numerical difference between the two 

groups, with sensitivity and confidence being higher for those in the informed group 

(Figure 7 A and Figure 8 B), knowledge of the number of false alarms that were expected 

to occur did not significantly improve the users’ ability to detect the mines in the images 

or increase the users’ confidence in their decisions.  
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 For the first experimental condition where no automation was used (No 

Automation 1), sensitivity and confidence levels were found to be lower compared to the 

other three experimental conditions. This may suggest that the participants were still 

learning during the first experimental block. To aid in increasing performance during this 

condition, an additional training block could be implemented where the participants 

would complete the mine detection task manually without any feedback provided. In 

addition, a training block with automation could also be implemented, where the users 

could gain experience with the automated system and exposure to automated errors such 

as false alarms and misses. Since experiencing an automation failure is suggested to be 

more beneficial to a user compared to simply being informed that the aid may fail 

(Bahner et al., 2008; Parasuraman & Manzey, 2010; Wickens et al., 2013), the 

automation training condition may result in greater levels of confidence and performance.   

Practical Implications  

 The aim of this study was to gain more insight into the effect false alarms have on 

a user. This was accomplished by having an automated target recognition system set at a 

more liberal (high false alarm rate) or a more conservative (low false alarm rate) decision 

criterion aid participants with an underwater mine detection task. Although the system 

was more likely to indicate that a mine was present in the high false alarm rate condition, 

or a mine was absent in the low false alarm rate condition, the overall sensitivity of the 

system was the same between the two conditions and the system produced the same 

amount of errors (17) within each block of trials. The effect of informing the user of the 

false alarms was also examined by providing the false alarm rate of the automated system 

to one group of participants and not to another. 
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 Based on the results, when a user is informed of the false alarm rate of an 

automated system, the user has greater trust in the aid regardless of the number of false 

alarms the system is expected to produce. This may be beneficial for automated systems 

that tend to produce a high number of false alarms. When the signal to noise ratio is low, 

frequent false alarms may be made by an automated system, even when the system is 

designed to have a low false alarm rate (Ho et al., 2013; Parasuraman & Masalonis, 

2000). This is frequently the case when ATR is used for mine detection, due to the rare 

presence of mines along the seafloor. In addition, since missing targets such as mines 

may be more costly than being alerted to a target that is not there, designing an ATR 

system with a liberal decision criterion (high false alarm rate) may be more beneficial 

than designing a system with a more conservative decision criterion (low false alarm 

rate).   

 If an automated system has a low false alarm rate, informing the user of the 

number of false alarms the system is expected to make does not significantly influence 

the user’s response bias. If the automated system is expected to make a high number of 

false alarms, informing the user of the system’s false alarm rate may encourage the user 

to adopt a more conservative response bias. As seen with trust, this may be beneficial in 

situations where the probability of encountering a true target is low. If an automated 

system makes a high number of false alarms regardless of the false alarm rate set, a 

conservative response bias adopted by the user may aid in reducing the amount of errors 

that may occur as the result of the false alarms. Furthermore, informing users that the 

false alarm rate of the system can be changed may improve trust by providing more 

process-based information on how the automation operates. Since the user is not able to 
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observe the processes or algorithms used by the system to make a decision, knowledge 

that the system can be flexible and adopt different decision criterions to either detect 

more mines (liberal response bias/high false alarm rate) or miss fewer mines 

(conservative response bias/low false alarm rate) may make the decisions reached by the 

system appear more rational or understandable (Dzindolet et al., 2003; Wickens et al., 

2013). Given that there is reported disuse of ATR systems (Kessel & Myers, 2005), 

increased trust from informing participants about false alarm rates may lead to increased 

use of the systems. 

 While informing the participants of the false alarm rate of the automated system 

had a significant effect on response bias and trust, sensitivity and confidence levels did 

not appear to be affected by this information. In addition, the participants’ performance in 

the detection task and confidence in their own abilities were found to be similar for the 

low false alarm rate and high false alarm rate automation conditions. Based on these 

results, a user may be expected to have the same sensitivity and confidence levels during 

a detection task regardless of the number of false alarms made by the automated system 

or whether the false alarm rate was provided to the user.  

Although the number of false alarms that occurred did not have a significant 

effect on the participants’ sensitivity and confidence levels for the automation conditions, 

the participants did perform significantly worse and had lower confidence in their own 

abilities during the high false alarm rate condition compared to when the task was 

completed manually. Providing the users information during these situations regarding 

when and why the aid might make an error, as well as what factors the aid considers 

when making a decision, may reduce this performance decrement observed (Bagheri & 
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Jamieson, 2004; Dzindolet et al., 2003). In addition, allowing the users or the automated 

system to state their confidence in indicating that a signal is present or not, rather than 

providing a yes or no answer, may lead to an increase in confidence and performance 

(Sorkin et al., 1988).  

Limitations and Future Directions  

A limitation of the present study is the participant population used. Compared to 

trained sonar operators, the individuals who participated in this experiment were not 

familiar with ATR systems or the appearance of mines. Operators with experience 

examining sonar data may be able to easily detect errors made by an automated system 

where novices who are unaware of the defining features of a mine may mistake false 

alarms for hits or misses for correct rejections. In addition, since encountering a mine 

along the seafloor is a rare event, the mine detection task used for this study was designed 

to examine false alarms from more of a basic rather than applied research standpoint. In 

other words, the number of mines and false alarms that occurred during this study were 

inflated compared to what would be expected in an actual mine detection task in order to 

examine the specific effect different false alarm rates have on a user.  

Overall, the results from this study suggest that informing a user of the false alarm 

rate of an automated system may positively influence the level of trust and reliance the 

user has in the aid. According to past research, users are just as likely to rely on an aid 

when it makes false alarms as they are when it makes misses (Dzindolet et al., 2003). 

This appears to be due to the users concluding that if it is reasonable for the aid to 

indicate that a target is present when it is not, it is just as reasonable to indicate that a 

target is not present when it is. Therefore, if reliance patterns are similar regardless of the 
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type of error made by an automated aid, the results seen for this study may extrapolate to 

situations where the miss rate is provided rather than the false alarm rate. Due to missing 

a mine being more dangerous than being cued to a location where a mine is not present, 

future research may look at the effect misses have on trust and reliance compared to false 

alarms. In addition, researchers may want to determine if increasing the overall 

sensitivity of the automated system or adjusting the decision criterion will lead to an 

increase in confidence and performance. Furthermore, studies may also want to examine 

the effect false alarms have on a user’s performance during a mine detection task where 

advice is provided from an automated system and a human teammate simultaneously. 

Finally, researchers may want to determine the effect false alarm rate has on experts in a 

more realistic scenario.  
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Chapter 6: Conclusion 

 In mine countermeasure operations, sonar operators are typically responsible for 

scanning seafloor imagery and classifying any foreign objects detected as mine-like or 

non-mine-like (Ho et al., 2011). Due to the high workload placed on the operators when 

tasked to manually examine the sonar data, as well as the decrease in accuracy and 

performance observed when users are forced to operate under conditions of uncertainty, 

automated target recognition systems are frequently designed and implemented to aid 

with identifying and classifying the underwater mines (Ho et al., 2011; Kessel & Myers, 

2005; Myers, 2009). Although ATR aids are on average accurate and reliable, they are 

not perfect and sometimes make mistakes. These mistakes may include false alarms and 

misses. Since ATR systems typically operate using a more liberal decision criterion to 

reduce the risk of missing a mine, the number of false alarms that occur as a result tend to 

lead to a decrease in the trust and reliance the operators have in the system (Kessel, 2005; 

Kessel & Myers, 2005).   

The purpose of this project was to determine how changing the false alarm rate in 

a mine detection task affects trust, reliance and performance and whether informing the 

user of the false alarm rate could mitigate the potentially detrimental effects of high false 

alarm rates on trust and reliance. When users were not informed of the false alarm rate of 

the automated system, the number of false alarms made by the system had a significant 

effect on the participants’ response bias (reliance behaviour). Furthermore, informing the 

participants of the false alarm rate resulted in greater trust in the automated system and a 

more consistent response bias obtained by the user. Sensitivity and confidence were not 

influenced by disclosure of the false alarm rate, but the performance and confidence 
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measures were significantly worse for the high false alarm rate condition compared to 

manual performance. To increase a user’s level of trust in an automated system and to 

encourage the user to rely on the recommendations made by the system more 

appropriately, information should be provided regarding the number of false alarm errors 

that are expected to occur. In addition, designers should use caution when implementing 

systems with a high false alarm rate due to the detrimental effects it may have on user 

confidence or performance. Designers should also be aware that informing the user of the 

false alarm rate of an automated system may not result in an increase in each of these 

measures.  
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Appendix A: Psychology Participant Pool (SONA) Contact Sheet  

Study title: Trust and reliance on an automated target recognition system for underwater 

mine detection 

Humanities Research Ethics Board approval code: 2019-4853 

Principal Investigator: Dr. Heather Neyedli, School of Health and Human Performance 

Co-investigator: Shala Knocton, Masters Student 

Description: The study aims to look at performance, self-confidence and trust of 

participants performing an identification task with the support of an automated system. In 

the study, you will play the role of a naval commander monitoring sonar images of the 

sea floor. The task is to identify whether a mine is present or absent in each image. All 

together the experiment is expected to last 1.5-2 hours. The study will be conducted in 

the Dalplex in the Cognitive Motor and Performance Lab at Dalhousie University. 

Compensation from this experiment includes $10 if you perform the task well (rank 

within the top 25% of participants), as well as 2 (two) SONA credits if you are currently 

enrolled in a psychology class at Dalhousie University. The information gained form this 

experiment will contribute to our understanding of human-automation interactions and 

factors that affect performance, self-confidence and trust involving automated systems.  

 

Inclusion criteria:  Must be between the ages of 18 and 55 years or old, normal or 

corrected-to-normal vision. 

Location: Cognitive and Motor Performance Lab, Dalplex 218C  
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Appendix B: Informed Consent Form  

 

 
 

Study Title: Trust and reliance on an automated target recognition system for underwater 

mine detection  

 

Lead Researcher: 

Dr. Heather Neyedli 

Kinesiology, Faculty of Health 

Department of Psychology  

Dalhousie University  

Phone: (902) 494-6786 

Email: hneyedli@dal.ca 

 

Other Researchers: 

Shala Knocton 

Masters Student 

Division of Kinesiology, Health and Human Performance, Dalhousie University 

Phone: (902) 870-2861 

Email: sh846683@dal.ca 

 

Affiliated Researchers: 

Dr. Lori Dithurbide – Kinesiology – Dalhousie University 

Dr. Aren Hunter – Defense Research and Development Canada 

 

Funding: 

This project has received funding from the Defense Research and Development Canada 

(DRDC) and the Social Sciences and Humanities Research Council (SSHRC). 

 

Introduction 

You are invited to take part in the research project described below. The Social Sciences 

and Humanities Research Ethics Board of Dalhousie University has reviewed the project 

and found it to conform to current ethical guidelines. These guidelines require:  

 

1) That you be informed of the purpose of the research project and any possible 

inconveniences, risks, or benefits. 

2) That the character of the task required be explained to you. 

3) That you understand that participation is voluntary, and that you may decline to 

continue participation at any point throughout the course of the research project, 

without loss of expected compensation, nor any academic impact as a result of 

deciding whether or not to participate.  

4) That you be assured that all information assembled is entirely confidential. 

 

mailto:David.Westwood@dal.ca
mailto:sh846683@dal.ca
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Should you have any further question after reading this informed consent form, please 

feel free to ask question about anything that may have been unclear.  

 

Purpose of the Study 
The purpose of this study is to 1) determine how the false alarm rate of an automated 

target recognition system affects your trust, self-confidence and performance during an 

underwater mine detection task and 2) to determine whether trust, self-confidence and 

performance in the automated target recognition system is influenced by informing you 

of the system’s false alarm rate/reliability.  

 

Who Can Take Part in the Research Study 

You are eligible to participate in this study if you are between the ages of 18 and 55 years 

old and have normal or correct-to-normal vision.  

 

What You Will Be Asked to Do 

The experiment consists of a computer simulation of a mine detection task. In the 

simulation, you will play the role of a naval commander aboard a Navy Frigate. The 

simulation will consist of sonar images of the sea floor. Your task is to identify whether a 

mine is present or absent in each of the images.  

 

The experiment is expected to take a total of 1.5-2 hours. First, the experimenter will 

provide you with detailed instructions about the task. After the instructions you will have 

the opportunity to ask the researcher about any questions or concerns you may have 

regarding the experiment or the simulation.  

 

Following explanation of the experiment, you will complete a series of training and 

experimental sessions lasting between 5-15 minutes each. In all sessions, sonar images 

will appear on the screen in front of you and your task is to identify whether a mine is 

present or absent. After each session you will be provided an opportunity to take a break 

if needed.  

 

The training sessions will allow you to get familiarized with the mine detection task and 

the automated target recognition system. For the experimental sessions, you will perform 

the mine detection task with and without assistance from the automated system.  

 

Immediately after each of the experimental sessions you will be asked to complete a 

questionnaire measuring your self-confidence and if you were using the automation, one 

measuring your trust in the system.  

 

Possible Benefits 

Participation in this study may not benefit you directly, but this study will contribute to 

knowledge within the field of cognitive ergonomics as well as human-computer 

interactions. 
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Compensation / Reimbursement 

If you achieve a high level of performance in the simulation you will receive $10 for 

participating in this study. Performance is based on the number of correctly identified 

mines. The top 25% of participant performances will receive the bonus $10. Participants 

who are students and are also registered in a psychology class at Dalhousie University 

will be granted 2 (two) credit points if you have signed up through SONA. 

 

Possible Risks and Discomforts 
Possible risks of participation in this study includes fatigue that may be caused by the 

mental effort required to perform the task in the experiment. The task will also be more 

challenging at some points. This could lead to stress similar to playing a more 

challenging level on a video game. 

 

If You Decide to Stop Participating 

You may choose not to continue your participation in the study at any time. If you decide 

not to take part in the study or if you leave the session early, your data will be 

automatically withdrawn from the study. Further, you may choose to withdraw your data 

after you have participated. However, once data has been analyzed, it will no longer be 

possible to withdraw from the study. We will hold off analyzing data for 1 week 

following collection from the final participant (i.e., study completion) to allow you to 

withdraw your data after you have participated.  

 

How Your Information Will Be Protected  

Every effort to protect your privacy will be made. No identifying information will be 

included in publications or presentations. Minimal information about you will be 

collected by the research team, ensuring only required information (such as age, and 

information from study questionnaires) is collected. 

 

Confidentiality: In order to protect your privacy and keep your participation in the study 

confidential, you will be de-identified using a study code. For the purpose of data 

analyses, all participants will only be identified by their study code (e.g., P001) and all 

data will be stored on password protected computers and spreadsheets. You will be 

permitted to withdraw your data up to a week after completion of the study (i.e., one 

week after the final participant is collected), as data typically is analyzed one week after 

completion. However, once data is analyzed (i.e., after one week of study completion), it 

will not be possible to withdraw your data.  

 

Data Retention: information that you provide to us will be kept private. Only the 

researchers will have access to this information. Only anonymized data will be sent to 

them through password protected files. Your name will not appear on any of these files. 

We will describe and share our findings in theses, presentations, public media, journal 

articles, etc. This means that you will not be identified in any way in our reports. The 

people who work with us have an obligation to keep all research information private. 

Also, we will use a participant number (not your name) in our written and computer 

records so that the information we have about you contains no names. All your 
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identifying information contained on the consent will be securely stored separately from 

your data in a locked cabinet in the Cognitive and Motor Performance Lab.  

 

Questions 
We are happy to talk with you about any questions or concerns you may have about your 

participation in this research study. For further information about the study you may call 

the principal or co-investigator (Contact information has been provided on the first page 

of this Informed Consent Form).  

If you have any ethical concerns about your participation in this research, you may also 

contact Research Ethics, Dalhousie University at (902) 494-1462, or email: ethics@dal.ca 

(and reference REB file 2019-4853). 
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Appendix C: Informed Consent Signature Page 

 

 
 
INFORMED CONSENT SIGNATURE PAGE 

 

Study Title: Trust and reliance on an automated target recognition system for underwater 

mine detection 

 

I have read the informed consent form and meet the requirements for participation as 

outlined on the screening form for this study. I have been given the opportunity to discuss 

the study and my questions have been answered to my satisfaction. 

 

I agree that my study information may be used as described in this consent form. 

 

I understand that my participation in this study is voluntary and that I may withdraw my 

consent from the study at any time, without penalty.  

 

 

_____________________        ____________________ ___________ 

 

Name (Please Print)    Signature Date 
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Appendix D: SONA Signature Page 
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Appendix E: Age and Gender Form  

 

The following information is being collected to get a general idea of the sample group 

that took part in this study. Please fill out this information if you are comfortable 

disclosing it.  

 

Gender: _______________________ Age: ____________  
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Appendix F: Trust in Automation Questionnaire 

 

Questionnaire about Trust between People and Automation  

 
Instructions: Mark an X at the location of your choice (in a space rather than on a line) 

Note: 1 = not at all; 7 = extremely 

 

1. The system is deceptive 

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

2. The system behaves in an underhanded manner  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

3. I am suspicious of the system’s intent, actions, or outputs  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

4. I am wary of the system  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

5. The system’s actions will have a harmful or injurious outcome  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

6. I am confident in the system  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

7. The system provides security  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

8. The system has integrity  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

9. The system is dependable  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

10. The system is reliable  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

11. I can trust the system  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 

12. I am familiar with the system  

|_________|_________|_________|_________|_________|_________|_________| 

         1                 2                 3                 4                 5                 6                 7 
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Appendix G: Confidence in Abilities Questionnaire  

 

In this section, please answer the questions regarding your confidence in your 

abilities WITHOUT THE USE OF THE AUTOMATED SYSTEM. 

For each question, choose an answer between 1 (completely disagree) to 7 (agree). 

 

1. I believe that my ability to identify mines on my own may lead to negative outcomes. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

2. I am not confident in my own ability to identify mines. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

3. I am wary of identifying mines on my own. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

4. My lack of confidence in my ability to identify mines worsens my performance. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

5. I am confident in my ability to identify mines. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

6. I feel secure in my ability to identify mines. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

7. I feel like others could depend on my ability to identify mines. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

8. My ability to identify mines is reliable. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

9. I can trust my ability to identify mines. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 

 

10. My confidence in my ability to identify mines improves my performance. 

Completely Disagree             Agree 

1                    2                    3                    4                    5                    6                    7 
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Appendix H: Training and Experimental Scripts  

 

(note that each script was given separately before each portion of the experiment) 

Mine Detection Training Script 

In this simulation, you will play the role of a naval commander aboard a Navy 

Frigate. You are about to sail in unchartered waters which could become dangerous due 

to the possibility of encountering underwater mines. A small unmanned submarine has 

been released into the waters to capture images of the sea floor. Your task is to examine 

the images to see if any mines are present. It is important that all mines are identified to 

ensure safe travels through the water. You must examine all of the images before the ship 

leaves.  

You will complete two training sessions, and four mission blocks that range in 

length from approximately 5-15 minutes depending on the number of images you have to 

look at for each mission. We will provide you more information before each mission. 

As with other sea floors, rocks, sea grass and debris may be present that could 

look like mines. Also, enemies will try to disguise the mines to appear like rocks or 

debris. This could make completing your task very difficult.  

Here are some example images. The experimenter will now point out which 

contain mines and which contain rocks or other things that could be mistaken for mines. 

After the experimenter goes over this with you, you will have the opportunity to look at 

50 different images from a previous mission and indicate whether a mine is present or 

absent. We will tell you if you were correct. 
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Experimental Session Script – No Automation Block 1 

Now that you have completed training, you will examine 50 images that the 

unmanned submarine has collected of the sea floor along our proposed route. As 

mentioned before, it is important that all mines are detected; however, you cannot take 

too long with any one image because the mission needs to progress in a timely fashion. 

Looking at 50 images usually takes about 5 minutes and you will have a maximum of 8 

minutes to examine them before we have to confirm our route to set sail. Therefore, 

please do not feel you have to rush for any particular image, but you will need to stay 

focused to make sure you get the task completed on time.  

 

Automation Training Script  

An Automated Target Recognition System has been designed to assist you to 

increase performance on the mine detection task. This system may help you make your 

decisions more quickly and help you detect more mines. The system uses computer 

vision to identify the presence of mines. The system isn’t entirely perfect. If we want it to 

detect more mines (in other words, if we want it to miss detecting very few mines), often 

it can make a false alarm mistake and say a mine is present when it really isn’t. The 

system designers can change the system to trade off how many mistakes of this type the 

automation makes.   

Here is an example of what the Automated Target Recognition’s response may 

look like on one of the images. A rectangle will appear around a region on the sonar 

image where the system believes a mine is present. You will now have the opportunity to 

look at 4 different images from a previous mission that display the 4 possible responses 

that you may receive from the automated system.   

 

 
 

Experimental Session Script – Automation Block 1  

Now that you have completed training on the automation, you can use the 

Automated Target Recognition System to help you with this block of trials. As discussed 

earlier, this system may help you make your decisions more quickly and help you detect 

more mines. The system uses computer vision to identify the presence of mines. If we 

want it to detect more mines (in other words, if we want it to miss detecting very few 

mines), often it can make a false alarm mistake and say a mine is present when it really 

isn’t. The system designers can change the system to trade off how many mistakes of this 

type the automation makes.   
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 For informed group only, High FA rate condition: 

For this mission, your commander has set the sensitivity of the device high. That means 

that it is expected that 24% of the trials the automation is going to have a false 

alarm where it says a mine is present but in fact there is no mine. However, this also 

means that the system may detect more mines. 

 For informed group only, Low FA rate condition: 

For this mission, your commander has set the sensitivity of the device low. That means 

that it is expected that 12% of the trials the automation is going to have a false 

alarm where it says a mine is present but in fact there is no mine. However, this also 

means that the system may miss a few more mines. 

You can use the automation to help inform your decision, but you must make the 

final decision. This mission block will consist of 100 images collected from the 

unmanned submarine. You will have a maximum of 15 minutes to examine the images 

before we have to confirm our route to set sail though most times it should take only 

about 10 minutes to look through 100 images. Therefore, please do not feel you have to 

rush for any particular image because it is important to detect mines, but you will need to 

stay on task so we can confirm our route.  

 

Experimental Session Script – No Automation Block 2 

For this mission we are re-calibrating the automated system so you will not have 

access to it. You will examine 50 images that the unmanned submarine has collected of 

the sea floor along our proposed route. As mentioned before, it is important that all mines 

are detected; however, you cannot take too long with any one image because the mission 

needs to progress in a timely fashion. Looking at 50 images usually takes about 5 minutes 

and you will have a maximum of 8 minutes to examine them before we have to confirm 

our route to set sail. Therefore, please do not feel you have to rush for any particular 

image, but you will need to stay on task.  

 

Experimental Session Script – Automation Block 2 

The Automated Target Recognition System has been recalibrated and can help 

you with this block of trials. As mentioned before, this system may help you make your 

decisions more quickly and help you detect more mines. The system uses computer 

vision to identify the presence of mines. The system isn’t entirely perfect. If we want it to 

detect more mines, often it can make mistakes and say a mine is present when it really 

isn’t. The system designers can change the system to trade off how many mistakes of this 

type the automation makes.   

 

 For informed group only, High FA rate condition: 

During the recalibration, your commander has set the sensitivity of the device high for 

this mission. That means that it is expected that 24% of the trials the automation is 

going to have a false alarm where it says a mine is present but in fact there is no 

mine. However, this also means that the system may detect more mines. 
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For informed group only, Low FA rate condition: 

During the recalibration, your commander has set the sensitivity of the device low for this 

mission. That means that it is expected that 12% of the trials the automation is going 

to have a false alarm where it says a mine is present but in fact there is no mine. 

However, this also means that the system may miss a few more mines. 

You can use the automation to help inform your decision, but you must make the 

final decision. This mission block will consist of 100 images collected from the 

unmanned submarine. You will have a maximum of 15 minutes to examine the images 

before we have to confirm our route to set sail though most times it should take only 

about 10 minutes to look through 100 images. Therefore, please do not feel you have to 

rush for any particular image because it is important to detect mines, but you will need to 

stay on task so we can confirm our route.  
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Appendix I: Debriefing Form 

 

Study Title: Trust and reliance on an automated target recognition system for underwater 

mine detection 

Researchers: Heather Neyedli and Shala Knocton 

Contact Information: sh846683@dal.ca  

Debriefing:  

The purpose of this experiment is to better understand how false alarms affect user self-

confidence, trust and performance in an underwater mine detection task. Over the 

experimental blocks, two different false alarm rates were used. The experiment also 

consisted of 2 groups of participants. One group was informed of the automation’s false 

alarm rates and one was not. Previous research has demonstrated that being informed of 

an automated system’s false alarm rate may help the user have more appropriate levels of 

trust and reliance. Automated systems and tasks performed under uncertainty are present 

in a variety of fields (such as air traffic control, patient monitoring, nuclear power plant 

monitoring) and if appropriate self-confidence and trust in the automated system can be 

fostered, performance may increase leading to a reduction in the occurrence of errors. We 

told you at the start of the study that you would receive $10 compensation based on 

performance; however, all participants regardless of performance receive $10. We did 

this to increase your motivation on the task to more realistically mimic the motivation 

that a naval commander might have. 

Questions   

 

If after you leave today, you have questions or concerns about your participation in this 

research study please contact Dr. Heather Neyedli (902 494-6786, hneyedli@dal.ca) at 

any time with questions, comments, or concerns about the research study.  

 

If you have any ethical concerns about your participation in this research, you may also 

contact Research Ethics, Dalhousie University at (902) 494-1462, or email: 

ethics@dal.ca. 

 

Withdrawal of Data 

 

As we stated in the consent form, you still have the opportunity to withdraw your data up 

until the point it is entered into analysis (typically 1 week after study completion). If you 

wish to do so after reading this debrief form please inform the experimenter verbally or 

you can also contact Dr. Heather Neyedli (hneyedli@dal.ca, 902-494-6786) at a later 

date. 
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