DATING OF ALTERATION AT THE RADOMIRO TOMIC PORPHYRY COPPER DEPOSIT, NORTHERN CHILE BY THE HIGH PRECISION ⁴⁰Ar/³⁹Ar METHOD.

Gregory Blaine Pemberton

Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science, Honours Department of Earth Sciences Dalhousie University, Halifax, Nova Scotia April 1997

Distribution License

DalSpace requires agreement to this non-exclusive distribution license before your item can appear on DalSpace.

NON-EXCLUSIVE DISTRIBUTION LICENSE

You (the author(s) or copyright owner) grant to Dalhousie University the non-exclusive right to reproduce and distribute your submission worldwide in any medium.

You agree that Dalhousie University may, without changing the content, reformat the submission for the purpose of preservation.

You also agree that Dalhousie University may keep more than one copy of this submission for purposes of security, back-up and preservation.

You agree that the submission is your original work, and that you have the right to grant the rights contained in this license. You also agree that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.

If the submission contains material for which you do not hold copyright, you agree that you have obtained the unrestricted permission of the copyright owner to grant Dalhousie University the rights required by this license, and that such third-party owned material is clearly identified and acknowledged within the text or content of the submission.

If the submission is based upon work that has been sponsored or supported by an agency or organization other than Dalhousie University, you assert that you have fulfilled any right of review or other obligations required by such contract or agreement.

Dalhousie University will clearly identify your name(s) as the author(s) or owner(s) of the submission, and will not make any alteration to the content of the files that you have submitted.

If you have questions regarding this license please contact the repository manager at dalspace@dal.ca.

Grant the distribution license by signing and dating below.

Name of signatory

Date

Dalhousie University

Department of Earth Sciences Halifax, Nova Scotia Canada B3H 315 (902) 494-2358 FAX (902) 494-6889

DATE April 15, 1997

AUTHOR	Gregory Blaine	Pemberton	· · · · ·	· · ·	
TITLE	DATING OF A	ALTERATION AT THE	E RADOMIRO	TOMIC PORP	HYRY COPPER
	DEPOSIT, NC	RTHERN CHILE BY 1	THE HIGH PRI	ECISION ⁴⁰ Ar/3	³⁹ Ar METHOD.
	<u> </u>				
Degree	BSc	Convocation	May	Year	1997

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED. Dating of Alteration at the Radomiro Tomic Porphyry Copper Deposit, Northern Chile by the High Precision ⁴⁰Ar/³⁹Ar Method.

i

Pemberton, Greg

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

The Radomiro Tomic (RT) porphyry copper deposit is located approximately 8-10km north of the Chuquicamata mine and 245km northeast of the port city of Antofagasta. Estimates place the deposit at over 800 million tonnes of ore with an average grade of 0.59% Cu (mostly supergene ore) and a mine life of 22 years. RT does not outcrop as the entire deposit is buried beneath Miocene piedmont gravels up to 200m in thickness and has been known only from drillcore and limited underground workings. Stripping is now underway and the mine is due to start operating in 1997 as a new separate division of CODELCO, the Chilean national copper mining company.

The deposit is hosted within an intrusive body of quartz monzodiorite composition that is approximately lower to middle Oligocene in age and was emplaced within the regional N-S trending Domeyko Fault system. This system is spatially associated with all the major porphyry deposits in northern Chile.

High precision, stepwise degassing ⁴⁰Ar/³⁹Ar dating was conducted at Dalhousie University to determine the ages of the potassic, argillic and quartz-sericite alteration assemblages at Radomiro Tomic. K-feldspar, biotite and sericite grains were hand picked from six drillcore samples representing the three hydrothermal alteration zones. Results are suggestive of potassic and argillic alteration assemblages having an average age of 32.6±0.3Ma as part of an initial hydrothermal event. As well, a younger hydrothermal event was dated to 31.8±0.3Ma from quartz-sericitic alteration minerals. Age differences among the potassic and argillic alteration minerals (K-feldspar and biotite) having high or low closure temperatures are not detectable, are indicative of rapid cooling following emplacement of the host porphyry. ³⁹Ar degassing plateau patterns combined with X-ray diffraction analyses on the K-feldspar samples also support the scenario of a rapid decrease in temperature to less than 150°C in the order of hundreds of thousands of years, rather than millions, following each hydrothermal event.

A full suite of ancillary data was generated on the dated samples establishing the close similarity of the petrology, mineralogy and chemistry to samples of similar alteration types from Chuquicamata.

Key Words and Phrases: Radomiro Tomic, porphyry copper deposit, Chile, argon dating, geochronology, hydrothermal, alteration, potassic, argillic, quartz-sericitic, Chuquicamata

Table of Contents

- -----

. .

.

.

.

		Abstract	i
		Table of Contents	ü
		List of Figures	iv
		List of Tables	v
		Acknowledgements	vi
Chapter 1.	Introduc	tion	1
	1.1	General Statement	1
	1.2	Project Scope	1
	1.3	Regional History	3
	1.4	Mining statistics and methods	5
	1.5	Geologic setting	7
	1.6	Porphyry copper deposit models	9
	1.7	Proposals for the genesis of Radomiro Tomic	11
Chapter 2.	Whole-H	Rock Samples and Methods	15
	2.1	Introduction	15
	2.2	Sample descriptions	19
	2.3	Whole-rock chemisty	26
	2.3.1	Introduction	26
	2.3.2	Methods	27
	2.3.2.1	XRF Whole-rock analysis	27
	2.3.2.2	Atomic absorption spectrometry	28
	2.3.2.3	Titration analysis and measurement of H2O content	28
	2.3.2.4	Trace level rare earth analysis	29
	2.3.3	Discussion and interpretation	29
	2.3.3.1	Rock type	30
	2.3.3.2	Tectonic setting	32
	2.3.3.3	Alteration effects	32
	2.3.3.4	Rare earth elements	37
	2.3.4	Productive vs unproductive porphyry copper deposits	37
	2.3.5	Conclusions	39
Chapter 3.	Dated M	inerals and Methods	42
	3.1	Introduction	42
	3.2	Mineral separation	42
	3.3	Supporting X-ray diffraction analysis	43
	3.4	XRD results on dated minerals	44
	3.5	Perthitic textures, K-feldspar origin and the validity of using K-feldspar for 40Ar/39Ar dating	53
	3.6	Triclinicity tests and cooling rates of potassium feldspars	55
	3.7	Electron microprobe methods	56
	3.8	Electron microprobe results	58

Table of Contents

Chapter 4.	40Ar/3	70	
-	4.1	Argon dating theory	70
	4.2	40Ar/39Ar theory	73
	4.2.1	Potassium feldspar results	74
	4.2.2	Biotite results	78
	4.2.3	Sericite results	81
	4.3	Mineral pairs from DDH3439 samples	82
Chapter 5.	Conclu	usions and Future Work	91
	5.1	Conclusions from whole-rock chemistry and mineralogy	91
	5.2	40Ar/39Ar dating	92
	5.3	Evidence for two sericite types	95
	5.4	Proposed genesis	97
	5.5	Future work	99
References			100
Appendices		•	
	Α	Whole-rock geochemical data	A1

A	Whole-rock geochemical data	Al
В	XRD powder diffractograms and peak lists	B1
С	Electron microprobe data	CI
D	Argon plateaus and datasheets	DI

List of Figures				
Table #	Figure Name	Page		
Figure 1.1	Location map of northern Chile	2		
Figure 1.2a-b	Panoramas of the RT and Chuquicamata deposits	4		
Figure 1.3	Summary of geologic evolution of the Antofogasta region	8		
Figure 1.4	Onion-skin' porphyry copper deposit model	12		
Figure 1.5	Vertical zonation in a porphyry copper deposit	13		
Figure 2.1	Planview of Radomiro Tomic deposit	16		
Figure 2.2	10750N cross-section	17		
Figure 2.3	9500N cross-section	18		
Figure 2.4a-b	Photographs of Cu-1001 and Cu-999	21		
Figure 2.5a-b	Photographs of Cu-1002 and Cu-1011	23		
Figure 2.6a-b	Photographs of Cu-1010 and Cu-1006	25		
Figure 2.7	Zr/TiO2 vs Nb/Y discrimination diagram	31		
Figure 2.8	Na2O+K2O vs SiO2 discrimination diagram	33		
Figure 2.9	Tectonic setting 1 (spider diagram)	34		
Figure 2.10	Tectonic setting 2 (Rb vs Y+Nb)	35		
Figure 2.11	Na2O v K2O discrimination diagram	36		
Figure 2.12	Rare earth element diagram	38		
Figure 2.13	Productive vs unproductive intrusions	40		
Figure 3.1a-b	XRD analysis of Cu-999K	44		
Figure 3.2a-b	XRD analysis of Cu-999Bi	· 46		
Figure 3.3a-c	XRD analysis of Cu-1001K and Cu-1001Bi	47		
Figure 3.4a-c	XRD analysis of Cu-1002K and Cu-1002Bi	49		
Figure 3.5a-b	XRD analysis of Cu-1006K	51		
Figure 3.6a-b	XRD analysis of Cu-1010K	52		
Figure 3.7a-b	XRD analysis of Cu-1011	53		
Figure 3.8	Perthitic texture	54		
Figure 3.9	Triclinicity tests	57		
Figures 3.10-3.19	Electron microprobe images and analyses	60-69		

~ --

.

List of Tables

Table #	Name	Page
Table 1.1	Mine statistics for Radomiro Tomic and Chuquicamata	5
Table 2.1	Sample location information	19
Table 2.2	Samples used for comparison from Chuquicamata	27
Table 3.1a-c	Averaged electron microprobe data	59
Table 4.1	Summary of 40Ar/39Ar dates for RT	74

Acknowledgements

I would like to thank my supervisors, Milton Graves of Cuesta Research Ltd. and Dr. Marcos Zentilli for all of the help and encouragement that they provided throughout the duration of my project.

I am grateful to Patricio Cuadra, chief mine geologist for CODELCO, Division RT for advising on sample selection and providing access to company documentation. As well, my thanks go out to Dr. Peter Reynolds and Keith Taylor of the Argon Lab, Gordon Brown from the thin section lab and Bob Mackay at the microprobe lab for all of their assistance..

I often sought the advice and assistance of graduate students Lexie Arnott, Nick Wilson and Darryl Lindsay who were always more than willing to help out and I am indebted to them as well.

Finally, the person who deserves the bulk of my gratitude is my wife Carolyn, who for four long years has been my main source of inspiration.

Chapter 1

Introduction

1.1 General Statement

The Radomiro Tomic (RT) porphyry copper deposit is located in northern Chile approximately 8-10km north of the giant Chuquicamata deposit, and 250km northeast of the port city of Antofagasta (see Figure 1.1). Radomiro Tomic (known also as Chuqui Norte) is one of a series of porphyry copper deposits that make up a late Eocene-Oligocene (31-41Ma) metallogenic belt in the Andes mountain range parallel to the Pacific coast of Chile. The development of this metallogenic belt was the result of a noncollisional, subduction-related, volcanic and plutonic orogeny known as the Andean tectonic cycle (Camus, 1997 and Maksaev, 1990).

1.2 Project Scope

The purpose of this project was to determine the age or ages of hydrothermal alteration and hypogene mineralization of the Radomiro Tomic porphyry copper deposit. Six drill core samples of different locations within the deposit were dated using ⁴⁰Ar/³⁹Ar stepwise degassing techniques. X-ray diffraction, electron microprobe, whole rock chemistry, transmitted and reflected light microscopy techniques were used to aid in the interpretation of the geochronological data generated from potassium bearing mineral separates. From similar work to the south at the Chuquicamata deposit, it has been shown

Figure 1.1 Map of northern Chile showing Radomiro Tomic (shown here as Chuqui Norte) and Chuquicamata. Note the N-S trending Domeyko regional fault system, the local expression of this system at RT is known as the West Fissure or Falla Oeste. The insert shows a map of South America with a black circle over northern Chile (after Maksaev, 1990).

that accurate dating methods should allow the isolation of discrete events in the history of the Radomiro Tomic deposit and the correlation of the timing of such events to regional stratigraphy.

The project also compared the ⁴⁰Ar/³⁹Ar dating and geochemistry results from the Radomiro Tomic samples to similar data from previous studies done at Chuquicamata (Reynolds et al., 1997). Four samples from Chuquicamata were chosen as representatives of alteration rock types closely corresponding to altered rock at Radomiro Tomic.

1.3 Regional History

The mining history of this area is centred around the Chuquicamata porphyry copper deposit. Radomiro Tomic is a blind deposit buried beneath more than 150m of gravel and was only discovered in the late 1970's (see Figure 1.2a). Native copper and turquoise had been extracted for ornamental use from surface deposits at Chuquicamata since about 2400 years ago by the Atacàmeño Indians (Peña and Lillo, 1927). Although mining developed rapidly after the arrival of the Spaniards, major exploitation of the Antofagasta region did not begin until the Chile Exploration Company consolidated the property at Chuquicamata in 1913. The Anaconda Copper Mining Company purchased the rights to Chuquicamata in 1923 and retained control for over fifty years (Zentilli et al, 1994). In 1971, large Chilean copper mines were nationalized and put under the control of the Corporacion del Cobre de Chile (CODELCO), the Chilean national copper mining company. 3

Figure 1.2 a) Panoramic photograph of the RT deposit looking due east at the Chuquicamata hills which represents Mesozoic basement rock. The Chuquicamata open pit is about 8-10km distant at the right (south) of the photograph. 20m high benches can be seen in centre of the photograph where excavation of the Miocene gravels has begun. b) The Chuquicamata open pit looking north toward RT from the south rim. Each bench is 20m in height and the pit is almost 1km deep.

b

Radomiro Tomic was discovered during the post-nationalization period by CODELCO geologists and has recently been made a fully separate division of CODELCO. Production is due to start in late 1997 or early 1998.

1.4 Mining Statistics and Methods

Chile hosts one of the largest concentrations of copper mineralization on earth accounting for more that 50% of all the copper metal known to date along the circum-Pacific rim basin. Estimates are stated for resources plus reserves of over 340 million tonnes of fine copper metal (Camus, 1997).

Throughout this report, the similarities between Radomiro Tomic and Chuquicamata will be emphasized. However, it is important to note that in terms of the scale of mineral resources, Chuquicamata is much larger.

Table 1.1 Mine Statistics for Radomiro Tomic and Chuquicamata (Cuadra, 1996)

	<u>RT</u>	<u>Chuqui</u>
Production	est.>150,000tpy	637,000tpy
Reserves	800Mt	3000Mt
Ore grade	0.59 wgt% Cu	0.89 wgt% Cu

Types of Ore Copper oxides and halides, supergene and hypogene sulphides at both

As seen in Table 1.1, Chuquicamata has three times the probable yearly production of Radomiro Tomic and well over three times the ore reserves of RT. However, the estimates from Radomiro Tomic are constantly being revised upward as the startup date approaches and more detailed data from a more comprehensive drilling program become available. Reserves at Radomiro Tomic could approach 1000Mt. After the gravels capping the deposit are removed, a zone of oxidised ore approximately 200-300m thick will be encountered. The ore grade of this zone averages 1.0 weight percent copper in the form of copper halides, oxides, carbonates and sulphates. Common oxidised copper minerals include atacamite [CuCl₂] and malachite [Cu₂(CO₃)OH)₂]. The cost per pound to produce copper from oxidized ore is less than for supergene sulphide ore which will be encountered when the oxidised zone is depleted. The supergene sulphide ore minerals include covellite [CuS] and digenite [Cu_{1.8}S]. Beneath the supergene ore zone, hypogene ore minerals (bornite [Cu₂FeS₄] and chalcopyrite [CuFeS₂) are found.

Radomiro Tomic will be mined by open pit methods similar to those methods used at Chuquicamata (see Figure 1.2b). Mining of the oxidised ore zone will involve dissolution of the oxides, halides, sulphates and carbonates. The next step will include placing electrodes into the resulting solution and electrically plating the cathodes with extremely pure copper metal.

When the supergene ore zone is encountered, ore extraction will involve crushing the ore and using floatation cell techniques to generate copper concentrates. Floatation methods use detergents of compositions specifically designed to adhere to the surfaces of specific minerals. The finely crushed ore is mixed into vats containing the detergents where mineral-rich grains will be caught in the froth floating on the top of the vat. The concentrated ore and froth is then removed. The purity of the copper concentrates using floatation techniques is not as high as with dissolution methods but subsequent refining and smelting of the copper sulphide minerals are used to further isolate copper metal.

1.5 Geologic Setting

Radomiro Tomic is located within the Domeyko Cordillera and is associated with a hypabyssal intrusive body of granodioritic to monzodioritic composition with hydrothermal alteration dated to Lower Oligocene. Emplacement of the porphyry system occurred near the end of a period of volcanic-plutonic activity known as the Incaic tectonic event (Late Eocene-Early Oligocene) (see Figure 1.3). The intrusion (Porfido Este) was emplaced in Paleozoic and Mesozoic basement rocks within a system of north-south trending regional transcurrent faults known collectively as the Domeyko Fault system. Falla Oeste (or the West Fissure) and Falla Mesabi are two major components of this system that bracket the Radomiro Tomic and Chuquicamata deposits. The Mesabi and Falla Oeste faults systems are likely to have localized intrusion and hydrothermal activity during Eocene-Oligocene time and likely focused volcanic activity and plutonism within the Domeyko Cordillera at transtensive fault jogs (Maksaev and Zentilli, 1988).The Mesozoic basement metasediments, and igneous rocks related to former stratovolcanoes were then eroded exposing the deeper sections of the porphyry which are characterized by

Figure 1.3 Diagram summarizing the general geologic evolution of the Antofogasta Region: western slope of the Central Andes (not to scale). Note the Incaic period of deformation related to the development of porphyry copper systems in the Oligocene (after Maksaev, 1990). potassic alteration (Maksaev, 1990).

Supergene oxidation and enrichment processes in northern Chile were active between about 34 and 14Ma (early Oligocene to middle Miocene; Berggren et al., 1985). Supergene processes consist of a downward vertical and lateral migration of copper in secondary solutions creating a secondary enrichment blanket with ore grades over two to three times the protore grade and also in extended stratabound exotic copper ore bodies (Camus, 1997). A period of hyperaridity set in at 14Ma preserving the supergene enriched blankets from erosion. The most likely cause of the onset of climatic desiccation was the evolution of the Altiplano-Puna plateau which created a rain-shadow effect (Alpers and Brimhall, 1988), a similar event to the evolution of the Tibetan Plateau (Ruddiman and Kutzbach, 1989).

The uppermost section of the deposit has been buried beneath pediment gravels since the mid to upper Miocene (Cuadra et al, 1994). This aggradation of gravel also helped in preserving the deposit.

1.6 Porphyry Copper Deposit Models

Porphyry deposits are large tonnage, low grade mineral deposits with metal assemblages that may include copper, molybdenum, gold and silver. It is generally accepted that many porphyry ore deposits consist of upright cylinders of coaxially distributed zones of alteration and mineralization centred on a felsic, porphyry stock 9.

(Sillitoe, 1973). The origin of these deposits is related to the emplacement of intermediate to felsic porphyritic intrusions at hypabyssal depths (2-5km). These intrusions are most commonly found at current or paleo-convergent plate margins (Titley and Beane, 1981; Sawkins, 1990).

These shallowly emplaced plutons undergo hydraulic fracturing with the onset of cooling and crystallization. Anyhydrous minerals generally form first from the melt and do not consume H_2O in the process, resulting in an increase in the water content of the residual melt until fluid pressure overcomes lithostatic pressure (Phillips, 1973). When fluid pressure exceeds lithostatic pressure and rock strength, fracturing and brecciation will occur. The fracturing of the rock allows the vapour and fluids to escape and also creates a zone of relatively high permeability within which a hydrothermal convection cell may form. With the fracturing of the rock, pressure decreases which reduces the solubility of the metals being transported by the vapour and fluids. Copper tends to be several hundred times more concentrated in the vapour phase of a magma than in the residual melt. As pressure decreases metals are precipitated as sulphides along the fractures and veinlets. It is in this manner that up to 60% of the mineralization in a porphyry deposit can be deposited in the characteristic veinlet network of the porphyry stock within a period of under 5,000 years (Sondergeld and Turcotte, 1979).

The energy driving the hydrothermal convection cell comes from the cooling pluton itself. The cooling of a pluton under conditions such as these is thought to be under 100,000 years (Roedder, 1976).

The combination of high permeability due to fracturing along with large amounts

of high- to moderate-temperature fluids circulating through the fractures is responsible for mineralization and alteration of the rock. Alteration is the process of chemical exchange between host rock and circulating fluids. Alteration terms and patterns used in this project are based on the 'onion-skin' model (see Figure 1.4) first developed by Lowell and Guilbert (1970). Potassic alteration occurs at the highest temperatures, 350-550°C, (Rose and Burtt, 1979) generally, just below magmatic temperatures. This type of alteration occurs in conjunction with the initial hydraulic fracturing and the release of magmatic waters.

Although there is some controversy over the relationship between porphyry copper deposits and volcanism, several examples exist such as El Teniente, Los Bronces, Potrerillos, El Salvador, La Escondida and Collahuasi that show related volcanic features. Most other porphyry deposits that lack obvious volcanic features have been eroded more deeply, eliminating the link to any preserved surficial expression of the system (Alfaro, 1997). Sillitoe (1973) created a model for vertical zoning in a porphyry deposit which showed an 8km high system that included a pluton at the lowermost levels and a related comagmatic pile at the uppermost level (see Figure 1.5). This comagmatic pile is theorized to constitute a stratovolcano.

1.7 Proposals for the Genesis of Radomiro Tomic

Three basic hypotheses can be formed to explain the genesis of Radomiro Tomic

Figure 1.4 This is the 'onion skin' porphyry deposit model (after Lowell and Guilbert, 1970). The cross-section shows the likely positions within the model of the dated samples used in this[•] project according to alteration assemblages. This model is based on the San Manuel - Kalamazoo deposit in Arizona.

Figure 1.5 Model of a simple porphyry copper deposit (after Sillitoe, 1973) showing its sub-volcanic position intermediate to plutonic and volcanic environments. Alteration zoning is based on the Lowell and Guilbert model. Vertical and horizontal scales are approximate.

relative to Chuquicamata (see Figures 1.6a-c): (1) a formation process resulting from the emplacement of an individual magma body separate from the one responsible for the formation of Chuquicamata; (2) formation as part of the original Chuquicamata deposit, after which it separated, due to faulting and was transported to its current location; (3) that the magma body, which initiated the formation of Radomiro Tomic, was actually an extension of the pluton that formed the Chuquicamata porphyry.

Although the primary focus of this thesis was on determining the age of different alteration events at Radomiro Tomic, the ⁴⁰Ar/³⁹Ar and chemistry data generated in this project may help resolve the origin of Radomiro Tomic.

Chapter 2

Whole-Rock Samples and Methods

2.1 Introduction

Radomiro Tomic drill core samples were selected at the Chuquicamata core library by Dr.Marcos Zentilli with the advice of Patricio Cuadra, Chief Mine Geologist at Radomiro Tomic. Two sampling trips were made one on July 14, 1995 and the other on July 5, 1996. From this collection six specimens were selected containing potassium bearing minerals suitable for ⁴⁰Ar/³⁹Ar dating (see Table 2.1) for the determination of ages for alteration/mineralization (thermal events) at Radomiro Tomic. The drillcore samples come from the 9500N and the 10750N sections (see Figures 2.1-2.3). The coordinate system used at Radomiro Tomic is based on a reference point to the south at Chuquicamata.

Three of the samples chosen (Cu-999, Cu-1001, and Cu-1002) came from drillcore DDH3439 (see Figures 2.1 and 2.2) and produced good potassium feldspar and biotite specimens at the 40-60mesh level. The mineralogy of these samples is characteristic of potassic alteration. Xray powder diffraction was used to verify the mineralogy of these samples and proved that the Kfeldspar [KAlSi₃O₈] is orthoclase and that the biotite [K(Mg,Fe,Ti)₃Al₂Si₆(OH,O,F,Cl)₂] is indeed biotite.

Cu-1006, Cu-1010 and Cu-1011 from drillcore DDH1513 (see Figures 2.1 and 2.3) were originally selected for argon dating of sericite [KAl₃Si₃O₁₀(OH,F)], but the X-ray diffraction results proved that what was thought to be sericite was predominantly kaolinite $[Al_2(Si_2O_5)(OH)_4]$. Cu-1006 and Cu-1010 contained large sub-euhedral K-feldspar crystals with a

Figure 2.1 Planview of the Radomiro Tomic deposit showing the locations of the cross-sections in Fig.2.2 and 2.3. The grid is 1km x 1km and coordinates are measured north from a reference point at the Chuquicamata deposit. The Mesozoic Chuquicamata hills, seen in Fig.1.2a, are on the right of the diagram and represent basement rock. RT does not outcrop due to a cover of gravel which dominates the centre of the map. Note the N-S trending faults of the Domeyko Fault system, most important is Falla Oeste also known as the West Fissure (after Cuadra et al., 1994).

Figure 2.2 Locations of dated samples on the 10750N section. Zones, from top to bottom, are gravels (gr), oxidized minerals (ox), leachate zone characterized by goethite and hematite (lx), supergene sulphides (ss) and a region of mixed oxides and supergene sulphides (mx). The outer zone (p) shows the extent of the porphyry. Surface is approximately 3000m above sea level (after Cuadra et al., 1994).

17

Figure 2.3 Locations of dated samples on the 9500N section. Zones, from top to bottom, are gravels (gr), oxidized minerals (ox), supergene sulphides (ss) and a region of mixed oxides and supergene sulphides (mx). The outer zone (p) shows the extent of the porphyry. Surface is approximately 3000m above sea level (after Cuadra et al., 1994).

grainsize on the order of 1-3mm which were selected for dating. The final sample, Cu-1011SK, was determined to contain sericite through X-ray powder diffraction and by the pattern of argon gas emission during step-wise degassing.

Lab#	Field#	Drill Core	Depth (m)	Grid N (m)	Grid E (m)	elev. (m)
Cu-999K	Z660-95	dd3439	424.58	10774	3460	2624
Cu-999Bi	Z660-95	dd3439	424.58	10774	3460	2624
Cu-1001K	Z662-95	dd3439	389.85	10771	3479	2652
Cu-1001Bi	Z662-95	dd3439	389.85	10771	3479	2652
Cu-1002K	Z663-95	dd3439	501.08	10778	3419	2561
Cu-1002Bi	Z663-95	dd3439	501.08	10778	3419	2561
Cu-1006K	Z667-95	dd1513	763.72	9500	3950	2238
Cu-1010K	Z671A-95	dd1513	730.00	9500	3950	2272
Cu-1011SK	Z671B-95	dd1513	428.80	9500	3950	2573
Cu-1011S	Z671B-95	dd1513	428.80	9500	3950	2573

Table 2.1 Sample Location Information (coordinates are based on the mine grid in Fig.2.1)

2.2 Sample Descriptions

Observations were made from hand specimen and polished thin section for the purpose of identifying potassium bearing minerals. All petrology for this project was done using polished thin sections that were suitable for electron microprobe analysis as well. Opaque minerals were confirmed during the mineral separation stage, by reflected-light microscopy or electron microprobe analysis.

DDH3439

Cu-1001 (see Figure 2.4a) is a section of 2" diameter drillcore composed of plagioclase crystals (55%), potassium feldspar (35%), quartz (5%) and biotite (5%). K-feldspar crystals are grains >1cm in size with perthitic texture (see section below on the significance of perthitic texture) containing minor quartz, biotite and sodic-plagioclase [NaAlSi₃O₈] inclusions. Plagioclase occurs as large, zoned crystals (1-3mm in size) that are slightly sericitized. Cu-1001 contains books of biotite (1mm grains) with only slight chloritization at the edges. Sub-millimetre size quartz grains appear interstitially and as inclusions in the larger K-feldspar crystals. Opaque minerals include magnetite [Fe₃O₄], ilmenite [FeTiO₃] and rutile [TiO₂]. Ilmenite and rutile appear to have replaced euhedral (calcic?) amphibole crystals [NaCa₂(Fe,Ti,Mg)₅Al₂Si₆(OH,F,Cl)₂]. There is also pyrite [FeS₂] and a very minor amount of chalcopyrite. Covellite and digenite appear as rims on the chalcopyrite grains. These rims probably represent supergene enrichment processes although the rims may also represent a second phase of hypogene mineralization associated with the possible younger hydrothermal event dated at 31.8Ma by sericite Cu-1011SR. The dominant accessory mineral is apatite [Ca₅(PO₄)₃(F,Cl,OH)] which seems to be closely associated with biotite. This sample has characteristics typical of potassic alteration.

Cu-999 (see Figure 2.4b) is a section of 2" diameter drillcore composed of plagioclase crystals (55%), potassium feldspar (25%), quartz (10%) and biotite (10%). K-feldspar crystals are grains 2-4mm in size with perthitic texture (see section below on the significance of perthitic texture) containing inclusions of sodic-plagioclase. Plagioclase occurs as large, zoned crystals (1-3mm in size) and is slightly sericitized. Cu-999 contains books of biotite (1mm grains) with only

Figure 2.4 a) Sample Cu-1001 is a potassically altered sample composed primarily of zoned plagioclase, perthitic K-feldspar and smaller amounts of slightly chloritized biotite and quartz. b) Cu-999 has a composition similar to that of Cu-1001.

slight chloritization at the edges. Sub-millimetre size quartz grains appear interstitially and as inclusions in the larger K-feldspar crystals. Opaque minerals include magnetite, ilmenite and rutile. Again, ilmenite and rutile appear as pseudomorphs having partially replaced amphibole. Other opaque minerals include pyrite and a very minor amount of chalcopyrite. The dominant accessory minerals are apatite which seems to be closely associated with biotite and amphibole, which in turn, appears to be partially replaced by iron-titanium oxides. This sample has characteristics typical of potassic alteration although the presence of amphibole would suggest that the intensity of alteration was low.

Cu-1002 (see Figure 2.5a) is a section of 2" diameter drillcore composed of plagioclase crystals (55%), potassium feldspar (30%), quartz (10%) and biotite (10%). K-feldspar crystals are grains 2-4mm in size with perthitic texture (see section on the significance of perthitic texture) containing sodic plagioclase. Plagioclase occurs as large, zoned crystals (1-3mm in size) and is slightly sericitized. Cu-1002 contains books of biotite (1mm grains) with only slight chloritization at the edges. It appears that the biotite grains are also oriented to a slight degree which may define a planar fabric. Sub-millimetre size quartz grains appear interstitially and as inclusions in the larger K-feldspar crystals. Opaque minerals include magnetite, ilmenite and rutile which appear as pseudomorphs having completely replaced amphibole. Chalcopyrite and bornite are present. The dominant accessory mineral is apatite which seems to be closely associated with biotite. This sample has characteristics typical of potassic alteration.

Figure 2.5 a) Sample Cu-1002 is a potassically altered sample composed primarily of zoned plagioclase, perthitic K-feldspar and smaller amounts of slightly chloritized biotite and quartz. It is similar in most respects to both Cu-999 and Cu-1001 except that it contains partially replaced hornblende. b) Cu-1011, from DDH1513 is a quartz-sericitically altered sample containing almost entirely quartz and sericite.

DDH1513

Cu-1011 (see Figure 2.5b) is a 2" diameter section of drillcore composed of sericite (75%) and quartz (25%). The quartz appears as sub-millimetre grains and sericite is yellow-green and extremely fine grained. As determined from X-ray powder diffraction, the sericite is a mixture of muscovite and clays. Opaques are present in very minor quantities and are almost entirely covellite and digenite. This sample is characteristic of quartz-sericitic alteration.

Cu-1010 (see Figure 2.6a) is a 2" diameter section of drillcore composed primarily of light green kaolinite (45%) which appear as pseudomorphs of earlier plagioclase crystals, 1mm grains of quartz (35%), 1mm grains of K-feldspar (15%) and sericite (5%) which appears as small patches within the kaolinite and are visible with the aid of a microscope. Opaques are mainly chalcopyrite. Cu-1010 contains the most chalcopyrite of any of the thin sections surveyed. This sample is characteristic of argillic-type alteration.

Cu-1006 (see Figure 2.6b) is a 2" diameter section of drillcore composed primarily of light green kaolinite (50%) which appear as pseudomorphs of earlier plagioclase crystals, 1mm grains of quartz (25%), 1mm grains of K-feldspar (20%) and sericite (5%) which appears as small patches within the kaolinite. This sample is characteristic of argillic-type alteration.

Figure 2.6 Samples a) Cu-1010 and b) Cu-1006 are argillically altered samples composed primarily of kaolinite, K-feldspar, quartz and small amounts of sericite. Cu-1006 also has a cross-cutting quartz-molybdenum vein.

2.3.1 Introduction

The six samples chosen for ⁴⁰Ar/³⁹Ar dating (Cu-999, Cu-1001, Cu-1002, Cu-1006, Cu-1010 and Cu-1011) were sent to Chemex Labs Limited, Vancouver, British Columbia for chemical analysis. Chemical analysis was done in order to help generate a more complete characterization of the dated samples and allow conclusions to be drawn about the petrogenesis of the samples. Tectonic settings and pre-alteration rock types can sometimes be determined from samples that have been highly altered. Chemistry of similar samples from the Chuquicamata deposit (Cu-093, Cu-510, Cu-512, and Cu-513; see Table 2.2) were available from previous studies and have been used in order to provide a comparison of the two deposits.

All of the samples are hydrothermally altered to some extent. Major element analyses with mineralogy and petrology were used characterize this alteration with respect to standard patterns of porphyry copper deposit alteration zones as proposed by Lowell and Guilbert (1970). More immobile elements, especially trace elements, were used to help see through the alteration effects, make a determination of the original rock type and petrogenesis of the samples.

Sample#	Location	Alteration Type
Cu-093	ddh3472: depth 602.60m	quartz-sericite
Cu-510	Banco 1: N360 E3750	propylitic
Cu-512	Banco L3: N3100 E3180	potassic
Cu-513	Banco M3: N400 E3450	argillic

Table 2.2 Samples used for comparison from Chuquicamata.

Each sample from Radomiro Tomic consisted of a 1-2cm³ section. The samples were prepared in a way to generate the most information about the original rock type. As most of the samples have undergone silicification through veining, sections of the samples were chosen to minimize vein content. As well, weathered surfaces were removed. The samples were crushed to 150 mesh (100 micron) grainsize by Chemex using a chrome steel ring mill.

2.3.2 Methods

2.3.2.1 XRF Whole-rock Analysis

X-ray fluorescence spectroscopy was used to determine the higher concentration elements which are reported as oxides, included were Al_2O_3 , CaO, Cr_2O_3 , Fe_2O_3 , K_2O , MgO, MnO, Na₂O, P_2O_5 , SiO₂ and TiO₂. The amounts of Rb, Sr, Nb, Zr, and Y were also measured by the same technique. The method involves fusing a powdered sample and then creating a glass disk from the
melt. In this technique, electrons strike a target (such as Mo or Au) resulting in the release of Xrays. This primary source of X-rays irradiates a secondary target which is the sample. This irradiation causes the sample to produce secondary X-rays). The fluorescent X-rays have characteristic energies unique to the source element that emitted them. The number of X-rays produced is proportional to the concentration of the element responsible for emission. Therefore this method provides both the identity of an element and the concentration of that element.

2.3.2.2 Atomic Absorption Spectrometry

The amount of copper in each sample was determined by Atomic Absorption Spectrometry, also by Chemex. In AAS, the material is first put into solution which allows elements in their atomic form to be placed in the path of a beam of light, of a wavelength that causes the atoms to absorb light energy and enter an excited state. The intensity of the beam of light is reduced due to this absorption and the amount of reduction can be correlated to the concentration of the element by comparing the results to absorption in known calibration standards. The element can be identified from the wavelength of light required for excitation to occur.

2.3.2.3 Titration Analysis and Measurement of H₂O Content

FeO was measured by titration analysis by combining FeO in solution with a reacting

species of known concentration. Typically with titration analysis a chemical indicator signals the end of the reaction by changing colour when the FeO present has completely reacted. The volume of FeO is calculated based on the volume of reactant consumed in order to completely react the FeO. Sulphur is measured by Leco titration, a procedure similar to that performed for FeO. H_2O content is measured simply by weighing the sample, drying it and weighing again and then calculating the difference between the two masses.

2.3.2.4 Trace Level Rare Earth Analysis

Rare earth elements (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm and Yb) were measured by plasma mass spectrometry. In this method the sample is introduced, in solution, into a plasma stream which heats the sample to 8000°C. At this temperature the ions that are generated from the sample are removed to a mass spectrometer where they are separated and collected by their mass to charge ratios. This ratio is unique to each element and is used for identification of the element. This method is useful for elements, such as the rare earth elements that occur in very small amounts (ppm level) and are difficult to separate from one another by other methods.

2.3.3 Discussion and Interpretation

Results are reported in Appendix A. An interpretation of the data is summarized below.

The $Zr/TiO_2*0.0001$ vs Nb/Y discrimination diagram (Winchester and Floyd, 1977) in Figure 2.7, clearly defines the Radomiro Tomic samples and two of the Chuquicamata samples as trachyandesitic which is the extrusive equivalent to quartz monzodiorite. The Zr/TiO_2 ratio acts as an index of differentiation while Nb/Y ratio shows alkalinity.

The distribution of mobile major elements demonstrates the importance of alteration and mineralization effects on these rocks. The Na₂O+K₂O vs SiO₂ diagram in Figure 2.8, a standard discrimination diagram used to determine rock type, plots the samples from Radomiro Tomic and Chuquicamata as rhyolitic in composition, the extrusive equivalent to granite. This silica-rich determination of rock type is primarily the result of silicification (mostly due to dense quartz veining) which is part of alteration processes typical of porphyry copper deposits and obscures the original composition. The two samples that plot outside the rhyolite zone, Cu-1011 and Cu-093 (this sample plots outside the boundaries of the discrimination diagram; $Na_20 = 0.01$, $K_20 = 2.90$, $SiO_2 = 77.34$), have undergone quartz-sericite alteration. This alteration process increases the silica content by increasing the amount of quartz and reduces the sodium content through the sericitization of plagioclase. The samples, therefore, plot outside of the rhyolite zone boundaries in a region on the diagram higher in silica which is consistent with the effects of this type of alteration. Thus the use of the Zr/TiO₂*0.0001 vs Nb/Y discrimination diagram to determine rock type is more appropriate than discrimination diagrams that involve SiO_2 because it involves less mobile elements allowing it to see through the alteration processes.

2.3.3.2 Tectonic Setting

Typically, volcanic arc granites are enriched in K, Rb, Ba, Th, Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb. Pearce et al. (1984) used a comparison of patterns made from these element values normalized to a hypothetical ocean ridge granite in order to categorize samples into four main tectonic settings. These categories were ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG) and collision granites (Syn-COLG). Figure 2.9 shows that the RT samples and two of the Chuquicamata samples have patterns similar to those considered as being typical Chilean volcanic arc granites by Pearce (see insert in Figure 2.9).

It is also possible to discriminate between tectonic settings with only Rb, Y and Nb (see Figure 2.10). The Rb/Y+Nb discrimination diagram (Pearce et al, 1984) clearly defines the RT and Chuquicamata samples sets as volcanic arc granites. Pearce considers these three elements to be the most effective for this purpose.

2.3.3.3 Alteration Effects

The Na₂O/K₂O diagram in Figure 2.11 shows two distinct groupings that separate the samples that have undergone extensive alteration from those that are relatively unaltered. Cu-1006, Cu-1010 show argillic alteration and Cu-1011 shows quartz-sericite alteration. Cu-999, Cu-1001, and Cu1002 are from the potassic alteration zone. From the diagram it can be concluded that Na becomes depleted with an increasing degree of alteration. The least altered samples are from the potassic alteration zone, but have less potassium than the most altered samples. The

33

Figure 2.8 The sample set plots within the rhyolite (granite) zone when using the Na_2O+K_2O vs SiO₂ discrimination diagram. This diagram actually represents alteration rather than original rock type. Silica and potassium content increase with increasing degrees of alteration which changes sample set rock type from quartz monzodioritic to granitic. The two samples that plot outside of the rhyolite zone, Cu-1011 and Cu-093 (this sample plots outside of the boundaries of the discrimination diagram and is not shown; $Na_2O = 0.01$, $K_2O = 2.90$ and $SiO_2 = 77.34$), have undergone quartz-sericitic alteration. This type of alteration increases SiO_2 by increasing the amount of quartz and reduces the sodium content through the sericitization of plagioclase (after Cox et al., 1979).

Sample/Ocean Ridge Granite

Y+Nb

Figure 2.10 This discrimination diagram using Rb, Y and Nb (from Pearce et al., 1984), clearly defines the sample set as volcanic arc granites (VAG) as opposed to collision granites (syn-COLG), within-plate granites (WPG) or ocean ridge granites (ORG).

35

potassium content of both groups can be attributed to orthoclase content but the increased level of potassium in the more highly altered samples is likely due to the significant amounts of sericite (potassium bearing mica) present. The Chuquicamata samples show similar trends. Cu-093 from the quartz-sericite alteration zone is depleted in sodium. Cu-513 from the argillic alteration zone has potassium amounts similar to RT samples Cu-1006 and Cu-1010 of the same alteration zone.

2.3.3.4 Rare Earth Elements

Chondrite-normalized (La 0.367; Ce 0.957; Pr 0.137; Nd 0.711; Sm 0.231; Eu 0.087; Gd 0.306; Tb 0.058; Dy 0.381; Ho 0.0851; Er 0.249; Tm 0.0356; Yb 0.248; Lu 0.0381; Y 2.1; Evensen et al.,1978) rare earth patterns from RT show enrichment in light rare earth elements (LREE) and low values for heavy rare earth elements (HREE) (see Figure 2.12). This is similar to the pattern shown by the Chuquicamata samples. This trend of enriched LREE's and depleted HREE's is indicative of strong rare earth element fractionation between melt and a residual mineral phase that retained HREE's during magma genesis (Maksaev, 1990). In the case of Radomiro Tomic, the residual mineral phase retaining HREE's would likely have been amphibole. As well, hydrothermal alteration may also have the effect of enriching LREE's and depleting HREE's (Taylor and Fryer, 1982).

2.3.4 Productive vs Unproductive Porphyry Copper Deposits

The discrimination diagram of Baldwin and Pearce (1983) uses Y vs MnO₂ to distinguish

between productive and unproductive intrusions. The data generated the expected results when plotted on this diagram since it is already known that Radomiro Tomic is a productive deposit. This helps to demonstrate the possible value of this discrimination diagram as an exploration tool. The more highly altered samples (Cu-1006, Cu-1010, and Cu-1011) at Radomiro Tomic plot within the productive region of the diagram while the least altered samples (Cu-999, Cu-1001, and Cu-1002) plot in the sub-productive zone (see Figure 2.13). Although this diagram does show a good correlation between the samples with greater copper content and those with less copper, there is some controversy about whether or not the diagram really shows potential productivity or just the degree of alteration.

2.3.5 Conclusions

The original, pre-alteration rock type of the sample set from Radomiro Tomic is quartz monzodiorite as derived from the $Zr/TiO_2*0.0001$ vs Nb/Y discrimination diagram (Winchester and Floyd, 1977). Tectonic setting was determined by using a comparison of patterns made from certain trace element values normalized to a hypothetical ocean ridge granite and the Radomiro Tomic samples were determined to have had a volcanic arc setting. By plotting Na₂O vs K₂O the samples can be clearly divided into those that have undergone extensive alteration (Cu-1006, Cu-1010 and Cu-1011) and those that have not (Cu-999, Cu-1001, and Cu-1002). It is probable that rare earth element amounts were affected by amphibole crystallization in the magma, resulting in depletion of the heavy rare earth elements (HREE) and enrichment of light rare earth elements (LREE). As well, the Y vs MnO₂ diagram determines the more highly altered sections of the

Figure 2.13 Discrimination diagram (after Baldwin and Pearce, 1983) separating productive and non-productive intrusions based on Y vs MnO_2 . There is definite segregation of the more highly mineralized (and altered) samples which are classed as productive, from those of the potassic alteration zone that are classed as sub-productive. This correlation was confirmed with observations from ore microscopy.

Radomiro Tomic deposit to be productive while the least altered sections are sub-productive.

Overall, the results concur with those of similar analyses done on samples from Chuquicamata.

Chapter 3

Dated Minerals and Methods

3.1 Introduction

This chapter deals specifically with the potassium-bearing minerals that were separated from each of the drill core samples. These sub-samples of potassium feldspar (orthoclase), biotite and sericite were mechanically separated for submission to ⁴⁰Ar/³⁹Ar dating analysis, X-ray diffraction analysis and electron microprobe analysis.

3.2 Mineral Separation

Mineral separation was done in order to provide individual samples for argon dating. In addition enough of each sample was separated to provide sub-samples for X-ray diffraction and electron microprobe analysis. In order to liberate the individual minerals, 2-4cm³ pieces of drillcore were manually crushed to the 40-60mesh level (\approx 1mm grain-size). The crushed sample was then washed in distilled water to remove the clay-sized fraction, and dried in an oven at 60°C for several hours. At this stage, I used a low-power, binocular microscope to identify grains of good quality and manually removed those grains for dating. For most samples, individual minerals were separated at a grainsize of approximately 2-3mm. For a sub-sample to be considered good quality the grains had to have few or no visible inclusions. The individual grains were then graded into three categories: (1) those with no inclusions, suitable for argon dating; (2) those with very few inclusions which were used for X-ray diffraction analysis; (3) those with few inclusions which were used for electron microprobe analysis. Argon dating requires samples with no inclusions that might contaminate the analysis with spurious argon gas, but inclusions may be allowed as long as they are not potassium bearing minerals. X-ray diffraction was used to provide confirmation of the mineral composition.

3.3 Supporting X-ray Diffraction Analysis

X-ray diffraction analyses were done at the Fission Track Research Laboratory, Earth Sciences Department, Dalhousie University for the purpose of verifying the visual identification of the samples selected for argon dating. Analyses were performed on small sub-samples by standard powder diffraction. An automated Philips 100kV generator and diffractometer unit was used for mineral identification by powder diffractometry. The sub-samples were crushed to a very finegrained granular consistency by hand in acetone using an agate mortar and pestle. The powdered sub-samples were placed on glass microscope slides and in the case of samples Cu-1001Bi and Cu-1010K, on amorphous silica mounts (to reduce the background response from the mount itself) and the acetone allowed to evaporate. The mounted sample was then placed in the diffractometer. The sample and X-ray detector are rotated at a known rate with respect to the CuK~ X-ray source and the energy detected is recorded and processed automatically. The output consists of a peak list and energy response curve. Peak lists can be found in Appendix B.

Diffractograms were done to verify the compositions of minerals selected for argon dating, specifically K-feldspar, biotite and sericite. Diffractograms were also generated to apply the Triclinicity Test on all K-feldspar samples found. Triclinicity testing, which can provide a measure of the rate of cooling of the potassium feldspar, is discussed in greater detail in Section 3.6.

3.4 XRD Results on Dated Minerals

Cu-999K: A very good match with orthoclase, albite and quartz was found with about 95% of all peaks identified including all major peaks (see Figure 3.1a). In thin section, the orthoclase crystals show perthitic texture with inclusions of plagioclase, quartz, minor biotite and apatite (see Figure 3.1b).

Cu-999Bi: A relatively good match for biotite was found with the possibility of some phlogopite content (see Figure 3.2a). In thin section, biotite occurs as good clean (few or no inclusions) crystals with only slight chloritization along the edges of some grains (see Figure 3.2b). Biotite grains without visible chlorite were selected for both argon dating and XRD analysis.

Cu-1001K: This sub-sample provided a very good match with orthoclase, albite and quartz accounting for almost 95% of all peaks generated including all major peaks (see Figure 3.3a). In thin section the orthoclase crystals showed perthitic texture with inclusions of quartz (see Figure 3.3c).

Cu-1001Bi: A very good match for biotite was determined which accounted for all major and minor peaks (see Figure 3.3b). In thin section, biotite grains were relatively free of chloritization (see Figure 3.3c).

Cu-1002K: A very good match with orthoclase, albite and quartz accounting for almost

Figure 3.1a-b a) XRD identification of perthitic orthoclase and quartz in Cu-999K.
c) Photomicrograph of Cu-999 showing perthitic orthoclase host grain with inclusions of plagioclase, apatite, biotite and opaque minerals. (magn. 5X; scale bar = 380mm; XPL)

Figure 3.2a-b a) XRD identification of biotite in Cu-999Bi. b) Photomicrograph of Cu-999 showing biotite grain at centre with chlorite and opaque minerals at edges. (magn. 5X; scale bar = 380mm; PPL)

Figure 3.3a-c a) XRD identification of perthitic orthoclase and quartz in Cu-1001K. b) XRD identification of biotite in Cu-1001Bi. c) photomicrograph of Cu-1001 showing perthitic orthoclase in the upper left, slightly chloritized biotite at bottom-centre with quartz grains between. (magn. 5X; scale bar = 380mm; PPL)

95% of all peaks generated including all major peaks (see Figure 3.4a). In thin section the orthoclase crystals show perthitic texture with inclusions of quartz, minor biotite, opaques and apatite (see Figure 3.4c). Only grains without biotite inclusions were selected for argon dating.

Cu-1002Bi: A good match for biotite (see Figure 3.4b). In thin section biotite occurs as good clean crystals with only slight chloritization along the edges of some grains. Only biotite grains that were not chloritized were selected for argon dating and XRD analysis (see Figure 3.4c).

Cu-1006K: The pattern from this sample provided a perfect match for orthoclase (see Figure 3.5a). In thin section K-feldspar was difficult to identify visually since it usually was obscured by clays (see Figure 3.5b) but once the mineral is mechanically separated good pink Kfeldspar crystals became apparent. Although inclusions were undetectable, it is likely that kaolinite was present as was found from electron microprobe analysis. Over 95% of the peaks were identified and were attributable to orthoclase.

Cu-1010K: The pattern from this sample was a perfect match for orthoclase (see Figure 3.6a). In thin section K-feldspar is difficult to identify visually since it usually was obscured by clays (see Figure 3.6b) but once the mineral is mechanically separated clean, pink K-feldspar crystals become apparent. Although no inclusions were identified, it is likely that kaolinite was present as was found from electron microprobe analysis. Over 95% of the peaks were identified and attributed to orthoclase.

Cu-1011SR: This sub-sample returned a perfect match for a combination of muscovite, illite and quartz (see Figure 3.7a) when combined with its light yellow-green colour and very fine grained nature, confirms this as a sericite. In thin section the very fine grained nature of sericite can be seen with fine grained quartz intermixed (see Figure 3.7b).

Figure 3.4a-c a) XRD identification of perthitic orthoclase and quartz in Cu-1002K. b) XRD identification of biotite in Cu-1002Bi. c) Photomicrograph of Cu-1002 showing K-feldspar phenocryst with minor inclusions of biotite and opaque minerals. (magn. 5X; scale bar = 380mm; PPL)

Figure 3.5a-b a) XRD identification of orthoclase and quartz in Cu-1006K. b) Photomicrograph of Cu-1006 showing orthoclase at centre with quartz and then kaolinite at bottom left. (magn. 5X; scale bar = 380mm; XPL)

Figure 3.6a-b a) XRD identification of orthoclase and quartz in Cu-1010K. b) Photomicrograph of Cu-1010 showing orthoclase at centre surrounded by quartz grains. Kaolinite appears in the upper left. (magn. 5X; scale bar = 380mm; XPL)

Figure 3.7a-b a) XRD identification of sericite in Cu-1011. b) Photomicrograph of Cu-1011 showing dominant fine-grained sericite throughout most of the field of view with coarsergrained, quartz as the only other mineral visible. (magn. 5X; scale bar = 380mm; XPL)

Cu-1011SK: This sub-sample was originally thought to be a potassium feldspar grain. This mineral separate was spotted with a white powdery mineral which, with only visual means of identification, may have been either sericite or kaolinite. Subsequent XRD analysis revealed only orthoclase. When sample Cu-1011SK was run through the step-wise degassing process, it was determined that this sample behaved as a sericite from the characteristic manner in which argon gas was evolved. Further examination of Cu-1011SK (XRD, electron microprobe and petrology) has resulted in the decision to reclassify this sub-sample as a sericite that is almost identical to sub-sample Cu-1011SR.

3.5 Perthitic Textures, K-Feldspar Origin and the Validity of Using K-feldspar for 40 Ar/ 39 Dating

Cu-999, Cu-1001, Cu1002 all have perthitic textures (see Figure 3.8). Perthite textures have two possible origins: exsolution of the sodic phase as a primary magmatic potassium feldspar cooled, or a reaction with sodic-rich fluids acting on earlier-formed potassium feldspar. In either case, the presence of perthitic texture suggests that the potassium feldspar from DDH3439 was formed in late-magmatic conditions (Gates, 1953). These samples were specifically selected because of their location outside the main ore body in the hopes that these samples had been only minimally affected by alteration effects.

Perthitic textures have long been said to provide pathways for increased argon diffusion resulting in argon-loss (up to 40%) and an anomalously young age generated by ⁴⁰Ar/³⁹Ar dating (Sardarov, 1957; Berger, 1975). However, Parsons et al. (1988) state that it is incorrect to assume that perthite lamellar interfaces invariably provide a channel for argon-loss and that the

Figure 3.8 This photomicrograph of Cu-1002 shows narrow albite lamellae forming perthitic texture within the orthoclase host grain. The role of these lamellae as pathways that allow significant argon-loss is controversial (Sardarov, 1957; Parsons et al., 1988). Strong correlation of argon dates between biotite and K-feldspar grains from the same sample suggests that the lamellae do not result in significant argon-loss. (scale bar = 380µm; PPL)

great majority of perthites studied have been found to be fully coherent. Parsons et al. (1988) also observe that the coarseness of the exsolution texture has no correlation with argon retention. Therefore, it will be assumed that the perthitic K-feldspars found in the DDH3439 samples are valid for ⁴⁰Ar/³⁹Ar dating.

3.6 Triclinicity Tests and Cooling Rates of Potassium Feldspars

The potassium feldspar crystals may exist as triclinic or monoclinic structures. The time period over which a potassium feldspar crystal has to cool determines its structure. Microclines, which are plutonic in origin and have undergone slow cooling, have more time for their crystal structure to become ordered. Microcline crystals are triclinic as are some orthoclase crystals. On the other hand, sanidine and some orthoclase crystals are monoclinic as a result of fast cooling.

In the test for triclinicity, one examines the range of 29.5° to 30.2° 20 CuK α in X-ray diffraction patterns of potassium feldspars and determines if a single high intensity peak exists or if two exist. Triclinic potassium feldspars will exhibit a double peak within this range of 20 CuK α demonstrating greater ordering of the crystal structure. Monoclinic potassium feldspars having very little ordering in their crystal structure will exhibit only a single high intensity peak with this range.

Monoclinic potassium feldspars are 'expected to have cooled quickly and their presence would indicate a volcanic or high-level subvolcanic environment' whereas triclinic potassium feldspars are expected to have 'crystallized slowly under plutonic conditions in deep-seated granites and in most metamorphic rocks' (Hutchison, 1974). In all cases, the potassium feldspars examined during this study exhibited a single, highintensity peak within the range of 29.5° and 30.2° 2θ CuK α (see Figure 3.9). This is indicative of fast cooling and high-level subvolcanic emplacement which concurs with the porphyritic textures observed in hand specimen.

3.7 Electron Microprobe Methods

The electron microprobe at Dalhousie University's Earth Sciences Department was used to determine the potassium content and homogeneity of potassium distribution in the dated samples and among the entire sample set. The microprobe was also used to identify any potassium-bearing phases or inclusions that might contaminate the argon dating analysis. Grainmounts were made of each dated mineral. These were carbon coated before being mounted in the electron microprobe for analysis. The JEOL 733 electron microprobe is equipped with four wavelength-dispersive spectrometers and an Oxford Link eXL energy dispersive system, the latter of which was used for all elements analyzed. Resolution of the energy dispersive detector was 137ev at 5.9Kev. Each spectrum was acquired for 40 seconds with an accelerating voltage of 15Kv and a beam current of 15nA. The width of the microprobe beam was approximately 1 micron. Raw data correction was done using Link's ZAF matrix correction program.

Figure 3.9 Alkali-feldspars with a single high intensity peak in the range of 29.82-29.97 degrees 2θ (Cu K α) are expected to have cooled rapidly and are indicative of volcanic or high-level sub-volcanic environments (Hutchison, 1974).

3.8 Electron Microprobe Results

Data and detection limits from electron microprobe analyses can be found in Appendix C. Two main conclusions were drawn from the results of electron microprobe analysis. First, few samples contained potassium-bearing inclusions that would result in anomalous ages from argon dating. These samples were all from DDH3439. The K-feldspar grains contained small amounts of biotite in some cases but these did not pose a problem since the inclusions were easily avoided during the mineral separation process through crusshing and manual picking of inclusion-free grains. This is supported by X-ray diffraction analysis which did not identify these problematic inclusions.

The second conclusion was that potassium was homogeneously distributed throughout each dated mineral grain from edges to centres irrespective of mineral type (see Table 3.1a-c). Spot analyses on 144 grains which included K-feldspar, biotite and sericite also proved that potassium content is relatively constant among each of these minerals. These spot analyses can be seen for a sample grain from each dated mineral in Figures 3.10-3.19 on the following pages.

Sample #	SiO2	Al2O3	Na2O	K2O	BaO	Total
Cu1006	63.91	18.62	1.74	13.53	0.84	98.42
Cu1010	63.25	18.45	1.58	13.56	1.08	97.77
Cu999	63.12	18.45	1.03	14.69	1.27	98.38
Cu1001	63.46	18.38	1.22	14.60	0.95	98.20
Cu1002	62.96	18.61	1.62	13.78	1.44	98.42
Average K-feldspar	63.34	18.50	1.44	14.03	1.12	98.24

 Table 3.1a
 Averaged K-feldspar Microprobe Data for RT Dated Samples - January 15-16, 1997

Table 3.1b Average	l Biotite Micro	probe Data for	RT Dated Sam	ples - Januar	v 15-16,	1997
--------------------	-----------------	----------------	--------------	---------------	----------	------

Sample #	SiO2	TiO2	Al2O3	FeO	MnO	MgO	Na2O	K2O	Cl	Total
Cu999	34.96	3.42	13.09	13.86	0.45	14.15		8.36		88.51
Cu1001	35.96	3.37	13.82	13.41	0.29	14.40	0.30	8.35	0.10	89.70
Cu1002	37.21	3.39	14.43	14.04	0.35	14.95	0.34	8.32	0.11	93.13
Average Biotite	36.05	3.39	13.78	13.77	0.36	14.50	0.32	8.34	0.11	90.45

Table 3.1c Averaged Sericite Microprobe Data for RT Dated Samples - January 15-16, 1997

Sample #	SiO2 Al2O3	FeO	MgO	Na2O	K2O	Total
Cu1011SK	45.47 34.97	1.24	0.60	0.39	8.89	91.84
Cu1011SR	46.63 33.87	0.95	1.23	0.36	8.58	91.61
Average Sericite	46.05 34.42	1.09	0.91	0.38	8.74	91.72

Figure 3.10 Electron microprobe image of Cu-999K. The numbered points on the image correspond to the table of analyses. Perthitic texture (best seen in upper-centre of image) in the crystal was due to unmixing of sodic-plagioclase from K-feldspar although the possibility exists that this texture may be the result of the exposure of K-feldspar to sodic-rich hydrothermal fluids (Gates, 1953). Other minerals within the Cu-999K grains were determined to be quartz and minor biotite. Biotite did not pose a problem, as it was easily eliminated through mechanical separation methods. No inclusions of biotite were visible in the samples submitted for ⁴⁰Ar/³⁹Ar dating and subsequent argon dating results did not indicate the presence of a second potassium-bearing phase within the K-feldspar.

Point	SiO2	Al2O3	Na2O	K2O	BaO	Total
26	64.22	18.21	1.36	14.78		98.57
27	63.49	1 8.28	1.06	15.36	-	98.18
28	63.29	18.73	1.62	13.53	1.51	98.66
29	63.71	18.13	0.88	14.48		97.20
avg	63.68	18.34	1.23	14.54		98.15
avg RT K-feldspar	63.34	1 8.50	1.44	14.03	0.96	98.3 1

Figure 3.11 Electron microprobe image of Cu-1001K. The numbered points on the image correspond to the table of analyses. Perthitic texture in the crystal was due to unmixing of sodic-plagioclase from K-feldspar although the possibility exists that this texture may be the result of the exposure of K-feldspar to sodic-rich hydrothermal fluids (Gates, 1953). Other minerals within the Cu-1001K grains were determined to be quartz and rutile.

Point	SiO2	A12O3	Na2O	K2O	BaO	Total
45	62.90	18.62	1.71	13.58	1.39	98.20
47	63.09	18.76	1.46	14.16	1.65	99.12
48	62.85	18.60	1.44	14.10	1. 69	98.68
49	62.57	18.73	1.63	13.56	1. 59	98.08
avg	62.85	18.68	1.56	13.85	1.58	98.52
avg RT K-feldspar	63.34	18.50	1.44	14.03	0.96	98.31

Figure 3.12 Electron microprobe image of Cu-1002K. The numbered points on the image correspond to the table of analyses. Perthitic texture in the crystal was due to unmixing of sodic-plagioclase from K-feldspar although the possibility exists that this texture may be the result of the exposure of K-feldspar to sodic-rich hydrothermal fluids (Gates, 1953). Other minerals within the Cu-1002K grains were determined to be quartz, plagioclase phenocrysts and Fe-oxides.

Point	SiO2	A12O3	Na2O	K2O	Cl	BaO	Total
66	63.65	18.36	1.23	14.36		0.68	98.27
67	62.29	18.04	1.01	14.20		0.74	96.27
68	63.53	18.09	1.01	14.46			97.08
69	53.68	15.55	0.85	12.95			83.03
70	63.40	18.44	1.19	14.60		0.66	98.28
71	64.52	18.86	2.21	12.73		0.80	99.12
72	63.15	18.54	2.30	13.12		0.96	98.08
73	63.11	18.67	2.09	13.06	0.11	0.86	97.89
avg	62.17	18.03	1.52	13.59		0.80	95.68
avg RT K-feldspar	63.34	18.50	1.44	14.03		0.96	98.31

Figure 3.13 Electron microprobe image of Cu-1006K. The numbered points on the image correspond to the table of analyses. Inclusions in the K-feldspar crystal were determined to be quartz and kaolinite with sulphides at the edges of the grain.

Point	SiO2	Al2O3	Na2O	K2O	BaO	Total
84	61.90	18.48	1.34	13.86	1.79	97.37
85	63.01	18.71	2.33	12.84	1.65	98.53
86	63.32	19.02	2.22	12.74	1.16	98.46
88	63.55	18.65	1.15	14.46	0.81	98.62
avg	62.94	18.71	1.76	13.48	1.35	98.25
avg RT K-feldspar	63.34	18.50	1.44	14.03	0.96	98.31

Figure 3.14 Electron microprobe image of Cu-1010K. The numbered points on the image correspond to the table of analyses. Note the lack of perthitic texture in this crystal as compared to Cu-999K, Cu-1001K and Cu-1002K. Sulphides (seen as bright spots) represent the only mineral inclusion in this sample.

Point	SiO2	TiO2	Al2O3	FeO	MnO	MgO I	Na2O	K2O	Cl	BaO	Total
118	36.63	3.79	13.59	14.69	0.54	14.86		8.81		0.74	93.65
119	36.10	3.73	13.37	14.68	0.58	14.51	0.28	8.72			91.97
121	35.80	3.28	13.70	15.08	0.31	1 4.19		8.52	0.09		90.96
127	34.30	3.31	12.76	13.66	0.41	13.82		8.26			86.51
128	31.98	2.98	12.03	11.19	0.41	13.35		7.49			79.44
avg	34.96	3.42	13.09	13.86	0.45	14.15		8.36			88.51
Average RT Biotite	36.20	3.38	13.80	13.77	0.36	14.60	0.34	8.38	0.10	0.87	90.73

Figure 3.15 Electron microprobe image of Cu-999Bi. The numbered points on the image correspond to the table of analyses. There appears to be little variation in potassium content within individual grains, among the grains of one sample and as well, among the entire sample set. Two forms of biotite are present in this sample based on Fe content. Analysis points 127 and 128 show higher Fe amounts than in points 118-121. This compositional variation appears to be responsible for a slight difference in the colouring of the biotite in the image above. There are also inclusions of plagioclase and apatite within this sample.

Point	SiO2	TiO2	Al2O3	FeO	MnO	MgO	Na2O	K2O	Cl	BaO	Total
131	37.15	3.53	14.15	14.78		14.59	0.31	8.63	0.10		93.23
132	35.35	3.79	13.88	15.17	0.29	13.56		8.69		1.01	91.73
135	33.72	2.89	13.12	1 1. 99	0.27	13.38	0.25	7.70			83.33
136	36.16	3.15	14.10	12.37		14.33	0.28	8.20	0.12		88.70
137	37.40	3.86	1 4 .30	15.09		14.20		8.81	0.09		93.74
avg	35.95	3.44	13.91	13.88	0.28	14.01	0.28	8.40	0.10	1.01	90.14
Average RT Biotite	36.20	3.38	1 3.80	13.77	0.36	14.60	0.34	8.38	0.10	0.87	90.73

Figure 3.16 Electron microprobe image of Cu-1001Bi. The numbered points on the image correspond to the table of analyses. There appears to be little variation in potassium content within individual grains, among the grains of one sample and as well, among the entire sample set. There are inclusions of plagioclase and apatite in this sample as well.

Figure 3.17 Electron microprobe image of Cu-1002Bi. The numbered points on the image correspond to the table of analyses. There appears to be little variation in potassium content within individual grains, among the grains of one sample and as well, among the entire sample set. There are inclusions of plagioclase, ilmenite and apatite. As well there is a myrmekitic intergrowth of biotite and quartz (labelled Qtz/Bi).

Point	SiO2	TiO2	A12O3	FeO	MgO	Na2O	K20	Cl	Total
98	45.46		35.48	1.03	0.46	0.36	9.24		92.02
99	45.73		35.51	0.81	0. 62	0.41	9.04		92.12
100	45.14	0.34	35.10	1.04	0.54	0.40	8.82		91.38
101	45.55	0.32	33.79	2.08	0.78	0.41	8.48	0.43	91.85
avg	45.47	0.33	34.97	1.24	0.60	0.39	8.89		91.84
Average RT Sericite	46.05	0.33	34.42	1.09	0.91	0.38	0.28		92.13

Figure 3.18 Electron microprobe image of Cu-1011SK. The numbered points on the image correspond to the table of analyses. This sample is from a zone of quartz-sericite alteration. The only other mineral inclusions in this sample are digenite and covellite which were identified by reflected light microscopy.

Figure 3.19 Electron microprobe image of Cu-1011SR. The numbered points on the image correspond to table of analyses. This sample is from a zone of quartz-sericite alteration and is mostly sericite with tiny quartz inclusions and veinlets. The only other mineral inclusions in this sample are digenite and covellite which were identified by reflected light microscopy.

Chapter 4

⁴⁰Ar/³⁹Ar Dating

4.1 Argon Dating Theory

During the radioactive decay of the parent isotope ⁴⁰K, the daughter isotopes of ⁴⁰Ar and ⁴⁰Ca are produced. In argon dating, it is the production of ⁴⁰Ar that is important and 11.2% of ⁴⁰K atoms decay to ⁴⁰Ar with a decay constant of 4.962 x 10⁻¹⁰yr⁻¹ (Steiger and Jäger, 1977). Under ideal conditions it is assumed that any ⁴⁰Ar present in a sample is the result of the decay of ⁴⁰K. Therefore, this type of argon is referred to as radiogenic argon, represented by the symbol ⁴⁰Ar*. Argon tends to remain in the gaseous phase as a magma cools and as an inert gas it does not combine with other elements to form compounds or minerals. However, the introduction of excess argon into the crystal structure through metamorphic or alteration processes may result in anomalously old apparent ages. In the case of hydrothermal systems, it is highly likely that argon is carried by the circulating fluids in the convection cell. Argon may therefore become incorporated in any newly forming hydrothermal minerals, in the low temperature domains of pre-existing or primary minerals as they undergo alteration, or within fluid inclusions. Domains are places in a crystal lattice that trap argon. Lower temperature domains require less energy to liberate or incorporate argon and are more likely to record lower temperature alteration processes such as quartz-sericite alteration which occurs at 200-350°C (Richards and McDougall, 1990). High temperature domains are less prone to the liberation or incorporation of argon and are

more likely to record higher temperature events such as primary cooling from a magma or potassic alteration (350-550°C, Rose and Burtt, 1979). After taking excess argon into consideration, an accurate age for a mineral can be derived from the relative amounts of ⁴⁰Ar* to ⁴⁰K present.

The amount of ⁴⁰K is measured indirectly by neutron activation analysis (McDougall and Harrison, 1988). Samples are irradiated with fast neutrons in a nuclear reactor, which converts a small proportion of ³⁹K to ³⁹Ar. For this process, the Radomiro Tomic samples were shipped to the reactor at McMaster University (Hamilton, Ontario).

After cooling and subsequent return to the Argon Lab at Dalhousie University, samples are then heated in an ultra-high vacuum and the gas produced is analyzed and measured by mass spectrometer to obtain the ratio of 40 Ar* to 39 Ar. This step was completed at Dalhousie. 39 Ar is proportional to 39 K and the ratio of 39 K to 40 K is fixed, therefore the amount of 40 K can be derived from the amount of 39 Ar. Thus the ratio of 40 Ar*/ 39 Ar is proportional to the ratio of 40 Ar*/ 40 K and therefore to the age of the sample.

The age t comes from the equation:

 $t=1/\lambda \ln[({}^{40}\text{Ar}*/{}^{39}\text{Ar})(J)+1]$, where

 λ is the decay constant. The value for J is obtained by simultaneously irradiating a flux monitor or standard of known K-Ar age, and then heating it and analysing the gas to obtain a ⁴⁰Ar*/³⁹Ar ratio. J is calculated from the following equation:

$$J = (e^{\lambda tm} - 1)/(40 \text{Ar}^{*/39} \text{Ar})_{s}$$
, where

tm is the age of the standard and ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{s}$ is the ratio measured for the standard sample.

The samples were individually wrapped in thin aluminum foil and placed in an aluminum capsule with flux monitors interspersed and similarly wrapped. The flux monitor used was the hornblende standard MMHb-1 (Alexander et al., 1978). The J values obtained from the standards were plotted with errors against their positions along the length of the capsule. A straight line fitted to the plotted points provided J values for the samples (York, 1969). The J value represents a unitless measure of the efficiency of conversion of ³⁹K to ³⁹Ar and is used to correct for differences in neutron flux that occur within the reactor during the irradiation phase. A J-value of 0.00232 was found for all the dated samples in this project.

For high precision ⁴⁰Ar/³⁹Ar dating, a step-wise degassing method is used which involves extracting gas at sequential temperature steps and measuring the isotope ratios at each step. The apparent age of each step is plotted against the percentage total ³⁹Ar released at each step, and the resulting graph is called an age spectrum. The amount of gas produced at each step determines the weight the corresponding apparent age carries in the calculation of the age of the sample (Hanes, 1991).

The ages should represent the point at which the rapid cooling of a pluton or heated hydrothermal fluids reach temperatures less than the closure temperatures of the minerals selected for dating. The closure temperature is the temperature at which the products of radioactive decay (in this case ⁴⁰Ar), become immobile due to a reduction in temperature which closes the crystal lattice of the rock or mineral during solidification. From the point at which a crystal reaches its closure temperature, daughter products from radioactive decay will accumulate and an age may be calculated from the ratio of the parent isotope to its daughter isotope. Closure temperatures vary according to mineralogy composition

(perthitic K-feldspar 150°C: Harrison and McDougall, 1982; biotite 300-350°C: McDougall and Harrison, 1988; sericite ≈350°C: Purdy and Jäger, 1976 & Jäger, 1979). By comparing the ages generated from samples of differing closure temperatures, it may be possible to determine a cooling rate.

4.2⁴⁰Ar/³⁹Ar Results

A well-defined plateau as defined by Turner (1968) and Fitch et al. (1969) is one where several sequential steps (a minimum of three consecutive steps is generally required) in the heating schedule share a similar age (with overlapping 1σ error) in a plateau diagram. As well, any steps in the heating schedule that are dominated by atmospheric argon will be excluded from the calculation of the plateau age. This section will provide an interpretation of the argon plateau diagrams for each sample as well as an interpretation of mineral-pair comparisons.

The average age for all dated minerals is 32.6Ma.The average age for potassic alteration minerals (K-feldspar and biotite) is 32.7Ma. Average ages by mineral type were 32.6Ma for K-feldspar and 32.7Ma for biotite. The two sericite samples are thought to be two different types (replacement and vein sericite) and therefore an average of the two would be meaningless. The older sericite has an age of 33.0Ma while the younger sericite has an age of 31.8Ma. A summary of the results of argon dating is shown in Table 4.1 followed by a more detailed account of the results ordered by drillcore and mineral type.

The errors given are at the 1σ level and include the dominant uncertainty of the J factor (0.00232). Age spectra and datasheets are located in Appendix D.

Lab#	Field#	Drill	Depth	Mineral	Age (Ma)
	_	Core	(m)	Dated	
Cu-999K	Z660-95	dd3439	424.58	K-feldspar	32.2±0.3
Cu-999Bi	Z660-95	dd3439	424.58	biotite	32.6±0.3
Cu-1001K	Z662-95	dd3439	389.85	K-feldspar	32.8±0.3
Cu-1001Bi	Z662-95	dd3439	389.85	biotite	32.9±0.3
Cu-1002K	Z663-95	dd3439	501.08	K-feldspar	33.0±0.3
Cu-1002Bi	Z663-95	dd3439	501.08	biotite	32.6±0.3
Cu-1006K	Z667-95	dd1513	763.72	K-feldspar	32.7±0.3
Cu-1010K	Z671A-95	dd1513	730.00	K-feldspar	32.2±0.3
Cu-1011SK	Z671B-95	dd1513	428.80	sericite	33.0±0.3
Cu-1011SR	Z671B-95	dd1513	428.80	sericite	31.8±0.3

Table 4.1 Summary of ⁴⁰Ar/³⁹Ar Dates for RT - February 17, 1997.

4.2.1 Potassium Feldspar Results

The crystal structure of potassium feldspar is divided into a low and a high domain with respect to argon retention. Domains are temperature-dependent sites within a crystal where argon gas may remain trapped. The low temperature domain corresponds to sites within the crystal that are sensitive to low temperature thermal events. In other words, argon-loss or introduction of excess argon may occur in these sites during low-temperature thermal events.

Cu-999K1: The age spectra (see Figure 4.1a) for this sub-sample, a perthitic Kfeldspar, can be divided into two domains, the low temperature domain which ranges from 750°C to 1025°C in the heating schedule, and a high temperature domain from 1025°C to 1250°C in the heating schedule. The high temperature domain was chosen for calculating the plateau age for its stability as was determined from the ³⁷Ar/³⁹Ar plot seen in Figure 4.2a. The ³⁷Ar/³⁹Ar plot shows that there is probable minor contribution of argon from some phase other than K-feldspar. This extraneous gas can be attributed to the albitic phase that defines the perthitic texture. The average plateau age from this sample, weighted by the percent gas release at each heating step, was calculated to be 32.2±0.3Ma.

Cu-1001K1: This sub-sample is a perthitic K-feldspar from outside the orebody and shows a well-defined plateau at 32.8±0.3Ma between 1000°C and 1225°C (see Figure 4.1b). This corresponds to the high temperature domain and approximately 75% of the gas released by the sample. Some minor fluctuations occur in the low temperature domain, but a reasonably good plateau at the same approximate age can be interpolated between the heating schedule steps of 650°C and 1000°C. However, less than 25% of the gas is released in this interval so its importance is not significant.

Cu-1002K1: This perthitic K-feldspar sub-sample has an average age (weighted to percent gas release) of 33.0±0.3Ma calculated from the high temperature domain (see Figure 4.1c). The high temperature domain used ranged from 1100°C to 1250°C in the

Figure 4.1a-c ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age spectra for potassium feldspar samples from DDH3439.

Figure 4.2a-b ³⁷Ar/³⁹Ar plots from K-feldspar samples Cu-999K1 and Cu-1006K1 representing the release of radiogenic argon generated from calcium during the irradiation phase of sample preparation. Peaks in the calcium plot are interpreted to represent the presence of Ca-bearing phases within the K-feldspar.

heating schedule and accounted for 46.2% of the gas released.

Cu-1006K1: This sub-sample is a K-feldspar with no perthitic texture. Its average age (weighted by percent gas release) was calculated from the high temperature domain (see Figure 4.3a) to be 32.7 ± 0.3 Ma. This is a very good plateau with only a few minor fluctuations in gas release. The ³⁷Ar/³⁹Ar plot clearly indicates that this is a single phase sub-sample (see Figure 4.2b).

Cu-1010K1: This sub-sample is also a clean K-feldspar with no perthitic textures. The ³⁷Ar/³⁹Ar values found in the data sheets (located in Appendix D) indicate that this is a single-phase mineral sample. A very good plateau exists in the high temperature domain from 1200°C to 1450°C in the heating schedule (see Figure 4.3b). This segment accounts for 61.5% of the total gas released. An average age (weighted by percent gas release) was calculated to 32.2±0.3Ma.

4.2.2 Biotite Results

Cu-999Bi1: This biotite sub-sample shows some signs of argon loss as the age gradually increases at the lower temperature heating steps (see Figure 4.4a). It is standard laboratory practice with biotite to use almost the entire spectrum to calculate the average age. This essentially mimics the total gas age but ignores the extreme low and high heating

Figure 4.3a-b ⁴⁰Ar/³⁹Ar age spectra for potassium feldspar samples from DDH1513.

Figure 4.4a-c 40 Ar/ 39 Ar age spectra for biotite samples from DDH3439.

80

steps where the gas release is not reliable. This procedure attempts to negate the effects of possible argon recoil. Argon recoil involves the mobilization of argon from biotite into intercalated chlorite layers. However, it was determined from XRD analysis that the biotite used in this project was likely to be less than 1% chloritized. The calculated age is 32.6±0.3Ma.

Cu-1001Bi1: This sub-sample appears to have a two stage thermal history with a high temperature gas release pattern showing an age of about 33Ma and a low temperature age of approximately 32Ma (see Figure 4.4b). Again, for biotite, it is standard laboratory practice to calculate the average age based on almost the entire heating schedule to average the effects of argon recoil as discussed for sample Cu-999Bi1. This procedure approximates the total gas age while excluding the extreme high and low heating steps which are not considered reliable. Therefore the calculated average age (weighted by percent gas release) is 32.9 ± 0.3 Ma.

Cu-1002Bi1: This sub-sample of biotite shows a similar spectrum to those of Cu-999Bi and Cu-1001Bi with an age of 32.6 ± 0.3 Ma (see Figure 4.4c). The gradual increase in age with increasing percent ³⁹Ar released in indicative of minor argon loss, similar to the pattern seen in Cu-999Bi. As well, the two stage pattern seen in the spectra for Cu-1001Bi seems to be present with a low temperature plateau (age of ≈ 31.9 Ma) and a high temperature plateau (≈ 32.9 Ma). The low temperature plateau may correspond to the quartzsericite alteration event (sericite date of 31.8Ma). This is not conclusive however as a similar result may be attributed to argon recoil (see discussion for sample Cu-999Bi1).

4.2.3 Sericite Results

Cu-1011SK: This sub-sample, which has a very good plateau with an average age of 33.0±0.3Ma, is similar to K-feldspar and biotite ages and significantly older than the other sericite from Cu-1011SR which was dated to 31.8Ma. Cu-1011SK shows no indications of excess argon problems as interpreted from the gas release pattern so the difference in age appears real. This sub-sample was originally picked as a K-feldspar sample from visual and X-ray diffraction observations; however the degassing pattern (see Figure 4.5a and gas release data found in Appendix D) exhibited by this sample revealed it as a sericite. The bulk of the gas (91.1%) was released between 700°C and 975°C in the heating schedule, similar to the release pattern in Cu-1011SR. This sample was subsequently reclassified as a sericite based upon the release pattern data combined with electron microprobe and further XRD analyses. It is thought that this may be a relic potassic alteration-related sericite which explains the much older age relative to sericite Cu-1011SR from the same sample.

Cu-1011SR: This sericite sample generated a very good plateau with an average age (weighted by percent gas release) of 31.8±0.3Ma (see Figure 4.5b). As with biotite, the age of the plateau approximates the total gas age excluding the extreme end steps of the

Figure 4.5a-b 40 Ar/ 39 Ar age spectra for sericite samples from DDH1513.

heating schedule where the atmospheric component of the gas released dominates the analysis. The bulk of the gas (87.5%) was released between 700°C and 1000°C in the heating schedule which is typical of a sericite.

4.3 Mineral Pairs from DDH3439 samples

Four of the samples provided mineral pairs for dating. K-feldspar and biotite grains were separated from each of the DDH3439 samples (Cu-1002, Cu-1001 and Cu-999) and two sericite grains were taken from sample Cu-1011 from DDH1513. The plateaus for each of these mineral pairs were combined in order to get a better comparison of the age data and possibly a more constrained age for the DDH3439 samples.

Cu-1002K1 + Cu-1002Bi1: The combined patterns from these two sub-samples again show good agreement in age in the high temperature domain region of the K-feldspar (see Figure 4.6). The K-feldspar sample has an age of 33.0 ± 0.3 Ma and the biotite has an age of 32.6 ± 0.3 Ma. If the calculation of the age of the biotite is limited to only the overlapping steps in the heating schedule of the K-feldspar the new age would be 32.9 ± 0.3 Ma. This new age combined with the K-feldspar age and the rapid cooling evidence again supports the theory of a high 32Ma to low 33Ma potassic event. There is good correlation of a possible low temperature plateau (weighted average age of 31.9Ma) in the biotite spectrum to the age of the sericitic sub-sample (31.8Ma). This low temperature plateau may be the result of argon recoil and not of a low temperature thermal event at RT.

The data combined with the lack of correlation between the K-feldspar low temperature domain and the sericite age may suggest that biotite is more susceptible to low temperature disturbances than K-feldspar when the two are subjected to the same conditions.

Cu-1001K1 + Cu-1001Bi1: The combined patterns from these two sub-samples show excellent agreement in age (see Figure 4.7). The K-feldspar sample has an age of 32.8 ± 0.3 Ma and the biotite has an age of 32.9 ± 0.3 Ma. This similarity in calculated ages combined with the similarity of the gas release pattern strengthen the confidence in constraining the age of the potassic event at Radomiro Tomic to a high 32Ma to low 33Ma window. Rapid cooling is implied by K-feldspar and biotite having congruent patterns though different closure temperatures.

Cu-999K1 + Cu-999Bi1: The age calculated for the K-feldspar sub-sample was 32.2 ± 0.3 Ma which was young compared to the ages generated from the other potassic alteration mineral separates. The overall average age for all samples was 32.6Ma which includes the 31.8Ma age for the sericite sample. However, when looking at the combination of the K-feldspar/biotite pair (see Figure 4.8), one can see that there is overlap of two high temperature steps in the heating schedule. The K-feldspar and biotite are assumed to have been the result of the same hydrothermal alteration event and because it has already been assumed that this is a rapidly cooled system from XRD evidence, we can also assume that the age of these two crystals should be the same within the resolution of the 40 Ar/ 39 Ar dating technique. Therefore, it should be possible to narrow down the age of these samples using

these overlapping steps in the heating schedule. Calculations based only on the two overlapping steps from the K-feldspar sub-sample reveal a much older age 32.8 ± 0.3 Ma) more consistent with other similar samples. The new age calculated for the biotite separate from its two overlapping steps is 32.4 ± 0.3 Ma, which is now slightly younger but still overlapping within 1 σ error of the new K-feldspar age.

Cu-1011SR + Cu-1011SK: No overlap is apparent (see Figure 4.9) between these two age spectra even though the shape of their age spectra and their degassing character has similar trends. The reason that this is important is because they are both sericites separated from Cu-1011, however, Cu-1011SR has an age of 31.8Ma and Cu-1011SK has an age of 33.0Ma. A working hypothesis is that, although the two samples are both sericite, Cu-1011SK is part of a younger quartz-sericite alteration assemblage dated to 31.8Ma. Cu-1011SK may have formed in the outer quartz-sericite alteration zone (see onion-skin model; Figure 1.4) as part of the earlier hydrothermal event recorded during the earlier hydrothermal event recorded by the potassic alteration minerals at about 33Ma. The quartzsericite alteration effects were primarily chemical exchange and not merely a thermal effect, therefore the hydrothermal event failed to reset the previously formed sericite because the older sericite was in equilibrium with the circulating hydrothermal fluids. This may also explain why Cu-1011SK was not initially identified as a sericite. Cu-1011SK was older and formed under different conditions, possibly resulting in a different appearance than the younger Cu-1011SR sub-sample.

Figure 4.9 Two sericite argon release patterns from Cu-1011 showing no overlap but similar shape and degassing trends. It is suspected that the pair represents two generations of sericite, replacement sericite corresponding to the quartz-sericite alteration during the initial hydrothermal event (Cu-1011SK = 33.0±0.3Ma) and vein-sericite corresponding to quartz-sericite event at RT (Cu-1011SR = 31.8±0.3Ma).

Chapter 5

Conclusions and Future Work

5.1 Conclusions from Whole-Rock Chemistry and Mineralogy

Whole-rock geochemical data were used in a variety of discrimination diagrams which classified such things as original rock type, tectonic setting and magma source. The pre-alteration rock type at Radomiro Tomic can be inferred to be quartz monzodiorite when data were plotted on the Winchester and Floyd (1977) discrimination diagram that compares Zr/TiO_2 to Nb/Y. Tectonic setting was confirmed to be Chilean volcanic arc granite by using a spider diagram after Pearce et al. (1984) and also by plotting Rb against Y+Nb. Radomiro Tomic rare earth element patterns match those of the Chuquicamata sample set which suggests a similar magma source. The short distance between Radomiro Tomic and Chuquicamata combined with the REE data increases the probability that the intrusions associated with these deposits shared the same magma source at depth.

X-ray powder diffraction was used to conduct triclinicity tests on all potassium feldspars that were dated. This test is an indicator of cooling rates of these crystals which is based on how ordered the crystal lattice of a potassium feldspar becomes as it cools. All potassium feldspars (all orthoclase) showed similar results indicative of high level sub-volcanic emplacement.

Mineral chemistry results from electron microprobe analyses (144 data points) show that potassium content is consistent from edge to centres of K-feldspar, biotite and sericite grains, among grains within a sample and also among the sample set for each mineral type (5 K-feldspar,

3 biotite and 2 sericite). Therefore potassium content and distribution among each of the Kfeldspars, biotites and sericites is essentially homogeneous. Also, no inclusions were found containing potassium in DDH1513 K-feldspar samples. Few inclusions were found in DDH3439 potassium feldspar samples that might affect age and those that were found were easily avoided in the mineral separation stage.

Perthitic textures were observed in the DDH3439 potassium feldspar separates which suggests that the K-feldspar was formed at or near magmatic temperatures and therefore suggests that the ages generated from these K-feldspars may be close to the emplacement age.

5.2 ⁴⁰Ar/³⁹Ar Dating

Two thermal events are recorded by argon geochronology at Radomiro Tomic. The older event (~33.0Ma) is associated with potassic, argillic and sericitic alteration while the younger event is associated with quartz-sericitic alteration (~31.8.0Ma). This is based on the interpretation of ten 40 Ar/ 39 Ar dates (see Figure 5.1) from six drillcore samples with an average age of 32.6Ma.

K-feldspar and biotite pairs (Cu-999K1/Cu-999Bi1, Cu-1001K1/Cu1001Bi1 and Cu-1002K1/Cu1002Bi1) all gave similar ages within the resolution of the ⁴⁰Ar/³⁹Ar dating technique. This suggests rapid cooling to temperatures below 150°C based on similar ages coming from minerals with different closure temperatures. The lack of any evidence, in the K-feldspar plateaus, of significant argon-loss leads to the conclusion that temperatures must have cooled rapidly to below 150°C. Had the K-feldspar crystals been held at temperatures greater than 150°C or

RT High Precision Argon Dates Final Data

Figure 5.1 All RT ages with associated errors. Also shown are the average ages for the potassic alteration and quartz-sericite alteration at Chuquicamata (33.4Ma labelled Chuqui_K and 31.1Ma labelled Chuqui_S respectively; Reynolds et al., 1997).

greater, for periods of time \geq 1Ma, substantial argon-loss would have occurred (Foland, 1974).

The combined argon plateau diagrams from Cu-1002K1 and Cu-1002Bi1 show good agreement in age of the high temperature domain region of the K-feldspar (see Figure 4.6). Individually, the K-feldspar sample has an age of 33.0±0.3Ma and the biotite has an age of 32.6±0.3Ma. If the calculation of the age of the biotite is limited to only the overlapping steps in the heating schedule of the K-feldspar the new age of the biotite would be 32.9±0.3Ma. This age combined with the K-feldspar age and the rapid cooling evidence again supports the hypothesis of a high 32Ma to low 33Ma potassic alteration event. Overlap of a low-temperature plateau (weighted average of 31.9Ma) in the biotite spectra of Cu-1002Bi with the age generated from the younger sericite sample (31.8Ma) may suggest partial resetting of the biotite age as a result of the younger hydrothermal event. However, this low-temperature disturbance in the biotite spectra may only be the result of argon recoil.

There is a good agreement of a low temperature plateau (weighted average age of 31.9Ma) in the biotite spectra to the age of the sericite sub-sample (Cu-1011SR; 31.8Ma). This data combined with the lack of correlation between the K-feldspar low temperature domain of sample Cu-1002K1 and the sericite age suggests that biotite is more susceptible to low temperature disturbances than K-feldspar, when subjected to the same conditions. In other words, this may indicate that the closure temperature of the K-feldspar high temperature domain is greater than the closure temperature of biotite (300-350°C; McDougall and Harrison, 1988) and also greater than the temperatures attained during quartz-sericite alteration (200-350°C; Richards and McDougall, 1990).

The implication of similar low-30Ma quartz-sericite alteration ages at Radomiro Tomic and Chuquicamata is that the hydrothermal event responsible for the quartz-sericite alteration may actually be regional and unrelated specifically to Chuquicamata but more related to an episode of regional fault movement (M. Graves, pers comm).

A comparison of age spectra between two K-feldspar crystals, one from RT and the other from Chuquicamata, dated by 40 Ar/ 39 Ar techniques is shown in Figure 5.2. Both K-feldspar are from potassic alteration zones and have perthitic textures. Cu-1002 has a flat 'well-behaved' age spectrum which generates an age of 33.0±0.3Ma while Cu-406 from Chuquicamata clearly records a different thermal history. There is a break in the plateau of Cu-406, dividing the high and low temperature domains of the K-feldspar crystal. Two events are recorded by Cu-406, an older event at 33.7±0.2Ma in the high temperature domain and a younger event (~31Ma) in the low temperature domain (Reynolds et al., 1997). This is strongly suggests that Chuquicamata and Radomiro Tomic have experienced different thermal histories.

5.3 Evidence for Two Sericite Types

There are six factors which lead to the conclusion of the presence of two types of sericite within sample Cu-1011:

1) different appearance (Cu-1011SK was originally identified as a K-feldspar,

2) different ages (Cu-1011SK 33.0Ma; Cu-1011SR 31.8Ma),

a) the older age of Cu-1011SK is similar to age of the older hydrothermal event as

Figure 5.2 A comparison of K-feldspar plateau diagrams between samples from Chuquicamata and Radomiro Tomic. Note the distinctive break in the plateau for sample Cu-406 dividing a higher temperature, older plateau at 33.7Ma (the age of potassic alteration at Chuqui) and a younger, lower temperature plateau at about 31.1Ma that corresponds to the age of Chuqui sericitic alteration. No break appears in the RT K-feldspar clearly indicating a different thermal history at Radomiro Tomic.

seen from the ages of the other samples,

b) the younger sericite is somewhat similar in age to the second hydrothermal event recorded in quartz-sericite alteration assemblages at Chuquicamata suggesting a similar pattern in the type or intensity of thermal events at

both deposits,

3) there are no signs of excess argon in the age spectra of the older sericite, and

4) there are no signs of argon-loss in the younger sericite sample.

5.4 Proposed Genesis (see Figure 5.3)

A sequence of events can be inferred from the dating results and from microscope analysis. At about 34Ma, dated from K-feldspar from the potassic alteration zone, a pluton was emplaced at Chuquicamata. About 1.0 million years later (33.0Ma) a second pluton or stock from the pluton at Chuquicamata was emplaced 8-10km north at Radomiro Tomic. Evidence of rapid cooling of the pluton comes from triclinicity tests and dating of mineral pairs of K-feldspar and biotite from single samples. At <32Ma regional-scale movement along the Domeyko Fault system generated fluids resulting in low temperature, quartz-sericitic alteration that formed new sericite at Radomiro Tomic (31.8Ma) and disturbed the low temperature domains of some of the Kfeldspar and biotite crystals but left the potassium and argon content of Cu-1011SK unaffected.

As for addressing the three hypotheses put forth in Chapter 1 on the origin of Radomiro Tomic in relation to the Chuquicamata deposit, more sampling is required. The results of this

97

Figure 5.3 Hypothetical sequence of events at Radomiro Tomic and Chuquicamata showing the results of two hydrothermal events due to the emplacement of plutons at Chuquicamata (34Ma) RT (33Ma). Rapid cooling follows each event shown, to levels below 150°C within 1Ma (Roedder, 1976). If the temperature did not cool to below 150°C within this time period the K-feldspar plateau diagram would show evidence of significant argon-loss (Foland, 1974). As well, dating of mineral pairs with higher and lower closure temperatures (K-feldspar and biotite) from the same sample showed no detectable difference in age which is to be expected with rapid cooling. At 31.8Ma, quartz-sericite alteration minerals at RT record a younger hydrothermal event, while quartz-sericite alteration minerals at Chuquicamata record an even younger event at 31.1Ma.

study have only highlighted the need for more data. However, the most likely hypothesis for the origin of RT that is favoured by the author, is that proposed above which involves the emplacement of separate plutons from a similar source. This does not disprove the other hypotheses but this scenario does have the advantage of simplicity.

5.5 Future Work

Since the data generated from this project are based on a limited sample set (ten dated minerals from six drillcore samples) it should be considered a reconnaissance study of geochronology of the Radomiro Tomic deposit. Although the work has identified the possibility of two thermal events similar in ages to the two phases at Chuquicamata, more sampling is required (specifically, more sericite samples) in order to put greater confidence in these results. Both types of sericites, vein and replacement, are required in order to reproduce the old and young ages from this study and to prove that vein sericites are younger. Also samples are required to complete a transect between Radomiro Tomic and Chuquicamata in order to identify differences between local and regional scale hydrothermal effects.
References

- Alexander, E., Michelson, G. and M. Lanphere, 1978, 'MMHb-1: A new ⁴⁰Ar/³⁹Ar dating standard', USGS Open File Report 78-701, p6-8
- Alfaro, M., 1997, 'Relationship Between Volcanism and the Occurrence of Hydrothermal Ore Deposits in Young Cordilleran Environments', in Contributions to Latin American Ore Deposit Geology, abstract, MDD/GAC Symposium 4, Ottawa
- Alpers, C. and G. Brimhall, 1988, 'Middle Miocene climatic change in the Atacama in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida', GSA Bulletin, v100, p1640-1656
- Baldwin, A. and J. Pearce, 1982, 'Discrimination of productive and non-productive porphyritic intrusions in the Chilean Andes', Economic Geology, v77, 664-674
- Berger, G., 1975, ⁴⁰Ar/³⁹Ar Step Heating of Thermally Overprinted Biotite, Hornblende and Potassium Feldspar from Eldora, Colorado', Earth and Planetary Science Letters, v26, p387-408
- Berggren, W., Kent, D., Flynn, J., and J. van Couvering, 1985, 'Cenozoic geochronology', GSA Bulletin, v96, p1407-p1418
- Camus, F., 1997, 'Porphyry Copper Systems in the Chilean Andes', in Contributions to Latin American Ore Deposit Geology, GAC/MAC Symposium, May 19-21, Ottawa, abstract
- Cuadra, P., 1996, 'Proyecto Mina Radomiro Tomic: El Mayor Desafío de Codelco', Geoinformativo, Bulletin of the Colegio de Geologos de Chile, Santiago, Summer, 1996/1997, 2p
- Cuadra, P., Grez, E., Gröpper, H. and V. Villarroel, 1994, 'Informe Preliminar Modelamiento Geologico Proyecto Radomiro Tomic, CODELCO', confidental internal company report
- Evensen, N., Hamilton, P. and R. O'nions, 1978, 'Rare-earth abundances in chondritic meteorites', Geochimica et Cosmochimica Acta, v42, p1199-1212
- Fitch, F., Miller, J., and J. Mitchell, 1969, 'A new approach to radioisotopic dating in orogenic belts', in Time and Place in Orogeny, Kent, Sattherthwaite and Spencer (eds), Geological Society of London Special Publication No.3, 157p
- Foland, K., 1974, 'Ar⁴⁰ diffusion in homogeneous orthoclase and an interpretation of Ar diffusion in K-feldspars', Geochimica et Cosmochimica Acta, v38, p151-166

- Gates, R., 1953, 'Petrogenic Significance of Perthite', in Selected Petrogenic Relationships of Plagioclase, Emmons (ed), GSA Memoir 52
- Hanes, J., 1991, 'K-Ar and 40Ar/39Ar geochronology: methods and applications', In Short Course Handbook on Applications of Radiogenic Isotope Systems to Problems in Geology, Heaman and Ludden (eds), Mineralogical Association of Canada Short Course Handbook, v19, p27-57
- Harrison, T. and I. McDougall, 1982, 'The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar/39Ar age spectrum results', Geochimica Cosmochimica Acta, v46, p1811-1820
- Hutchison, C.S., 1974, 'Laboratory Handbook of Petrographic Techniques', John Wiley and Sons, Toronto, 527p
- Jäger, E., 1979, 'Introduction to geochronology', in Isotope Geology, Springer, p1-12
- Lowell, J. and J. Guilbert, 1970, 'Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits', Economic Geology, v65, p373-408
- Maksaev, V., 1990, 'Metallogeny, geological evolution and thermochronology of the Chilean Andes between latitudes 21° and 26° South, and the origin of major porphyry copper deposits', PhD Thesis, Dalhousie University, Halifax, Canada, 554p
- Maksaev, V. and M. Zentilli, 1988, 'Marco metalogenico regional de los megadepositos de tipo porfido cuprifero del norte grande de Chile', V Congreso Geologico Chileno, Tomo I, pB181-B212
- McDougall, I. and T. Harrison, 1988, 'Geochronology and Thermochronology by the ⁴⁰Ar/³⁹Ar Method', Oxford University Press
- Parsons, I., Rex, D., Guise, P. and A. Halliday, 1988, 'Argon-loss by alkali feldspars', Geochimica et Cosmochimica Acta, v52, p1097-1112
- Pearce, J., Harris, B. and A. Tindle, 1984, 'Trace element discrimination diagrams for tectonic interpretation of granitic rocks', J. Of Petrology, v25, i4, p956-983
- Peña Y Lillo, O., 1927, 'Breve reseña sobre la minería en Chile', Boletín de la Sociedad Nacional de Minería, Santiago, v39, p702-722
- Phillips, W., 1973, 'Mechanical effects of retrograde boiling and its probable importance in the formation of some porphyry ore deposits', Institute of Mining and Metallurgy, pB90-B98

- Reynolds, P., Ravenhurst, C., Zentilli, M., and D.Lindsay, 1997, 'High-precision ⁴⁰Ar/³⁹Ar Dating of Two Consecutive Hydrothermal Events in the Chuquicamata Porphyry Copper System, Chile', Isotope Geoscience, in press
- Richards and McDougall, 1990, 'Geochronology of the Porgera gold deposit, Papua, New Guinea: Resolving the effects of excess argon on K-Ar and ⁴⁰Ar/³⁹Ar age estimates for magmatism and mineralization', Geochimica et Cosmochimica Acta, v54, p1397-1415
- Roedder, E., 1976, 'Fluid inclusion evidence on the genesis of ores in sedimentary and volcanic rocks', In K.H.Wolf (ed), Handbook of Stratabound and Stratiform Ore Deposits, Elsevier, Amsterdam, v2, p67-110
- Rose, A. and D. Burtt, 1979, 'Hydrothermal alteration', in Barnes (ed) Geochemistry of hydrothermal ore deposits, 2nd edition, Wiley-Interscience, p173-235
- Ruddiman, W., and J. Kutzbach, 1989, 'Forcing of late Cenozoic northern hemisphere climate by plateau uplift in souther Asia and the American West', Journal of Geophysical Research, v94, p18409-18427
- Sardarov, S., 1957, 'Retention of radiogenic argon in microcline', Geochemistry, v3, p233-237
- Sawkins, F., 1990, 'Metal deposits in relation to plate tectonics,', second edition, Springer Verlag, 461p
- Sillitoe, R., 1973, 'The Tops and Bottoms of Porphyry Copper Deposits', Economic Geology, v68, p799-815
- Sondergeld, C. and D. Turcotte, 1979, 'A laboratory study of mineral deposition in a boiling environment', Economic Geology, v74, p109-115
- Steiger, R. and E. Jäger, 1977, 'Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology', Earth and Planetary Science Letters, v36, p359-362
- Titley, S. and Beane, R., 1981, 'Porphyry copper deposits. Part I. Geologic settings, petrology, and tectonogenesis', Economic Geology, 75th Anniversary Volume, p214-235
- Turner, G., 1968, 'The distribution of potassium and argon in chondrites', in Aherns, L.H. (ed), Origin and distribution of the elements, London, Pergamon, p387-398
- Winchester, J., and P. Floyd, 1977, 'Geochemical discrimination of different magma series and their differentiation products using immobile elements', Chemical Geology, v20, p325-343

- York, D., 1969, 'Least squares fitting of a straight line with correlated errors', Earth and Planetary Science Letters, v5, 973-975
- Zentilli, M., Leiva, G., Rojas de la R., J., and M. Graves, 1994, The Chuquicamata Porphyry Copper System Revisted', Society of Economic Geologists (SEG) Symposium, Concepcion, Chile, 17-21 October, 5p

Appendix A.

Whole-rock Geochemical Data

Radomiro Tomic and Chuquicamata Geochemical Data and Analytical Methods

Sample	SIO2 %	TIO2 %	A1203 %	Fe2O3 %	FeO %	FeOT %	Fe2O3T %	MaO %	MgO %	C=0 %	Na20 %	K20 %	P2O5 %	H2Op	H2Om	LOI %	Total
Cu999	70.06	0.24	15.59	1.84	1.06	2.72	3.02	0.03	0.46	2.39	4.49	3.24	0,10	0.19	0.03	0.50	98.94
Cu1001	72.03	0.29	14.09	1.76	0.94	2.52	2.80	0.03	0.52	2.00	4.01	3.22	0.11	0.27	0.10	0.47	98.53
Cu1(0)2	69.14	0.28	15.92	1.69	1.16	2.68	2.98	0.02	0.51	2.45	4.58	3.10	0.12	0.35	0.22	0.78	98.59
Cu1006	75.49	0.19	13.57	0.66	0.91	1.50	1.67	0.01	0.08	0.16	0.30	4.70	0.10	2.39	0.48	3.53	98.79
Cu1010	70.06	0.27	15.94	1.13	0.81	1.83	2.03	0.01	0.20	0.16	0.07	6.16	0.10	2.64	0.45	3.94	98.0 4
Cu1011	73.25	0.22	16.35	0.74	0.50	1.17	1.30	0.01	0.38	0.04	0.10	5.06	0.03	1.64	0.19	2.52	98.70
Cu()93	77.34	0.17	9.5	1.11	2.17	3.17	3.52	0.01	0.21	1.52	0.01	2.9	0.07	1.14	0.14	4.15	96.98
Cu510	72.6	0.22	13.5	2.97	0.91	3.58	3.98	0.05	0.5	0.42	2.82	4.82	0.07	1.14	0.09	1.9	99.9
Cu512	69.6	0.22	15.7	1.16	0.79	1.83	2.04	0.03	0.6	0.88	4.96	4.97	0,09	0.65	0.28	1.35	99.6
Cu513	72	0.19	15.7	0.65	0.68	1.26	1.41	0.08	0.56	0.38	5.28	4.42	0.1	0.61	0.15	1.1	100.5
Analytical info																	
Detection Limit	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Upper Limit	100	100	100	100	100	100	100	100	100	100	100	1(3)	100	100	100	100	105
Method	XRF	XRF	XRF	XRF	Titration	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	Locu RMC100	Loco RMC100	XRF	Calculation

Trace Element Data

Sample	Ba (ppm)	Rb (ppm)	Sr (ppm)	Y (ppm)	Zr (ppm)	Nb (ppm)	Cu (%)	S (%)
Cu999	635.00	76.00	584.00	10.00	93.00	10.00	0.05	0.11
Cu1001	610.00	72.00	508.00	10.00	102.00	12.00	0.01	0.04
Cu1002	710.00	76.00	590.00	10.00	108.00	14.00	0.08	0.07
Cu1006	360.00	94.00	128.00	10.00	105.00	18.00	0.46	0.58
Cu1010	820.00	114.00	136.00	14.00	105.00	12.00	1.06	0.87
Cu1011	220.00	128.00	10.00	12.00	99.00	14.00	0.11	0.04
Cu093	185.00	74.00	188.00	8.00	66.00	8.00	1.86	1.86
Cu510	840.00	160.00	190.00	12.00	106.00	2.00		0.02
Cu512	721.00	158.00	346.00	4.00	108.00	9.00		0.45
Cu513	661.00	132.00	253.00	6.00	116.00	3.00		0.19
Analytical Info								
Detection Limit	- 5	2	2	2	3	2	0.01	0.01
Upper Limit	5(XXX)	500XX)	50000	SCXXX0	50000	SOXXX	100	100
Method	XRF	XRF	XRF	XRF	XRF	XRF	AAS	Loui-IR Dolocium
							Nitric-HCI dig's	Loop famace

Rare Earth Element Data

Sample	La (ppm)	Ce (ppm)	Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)
Cu999	18.00	34.00	3.30	11.00	1.50	0.60	1.20	0.20	0.80	0.20	0.60	0.10	0.60	0.10
Cu1001	22.00	46.00	4.40	11.00	2.10	0.60	1.40	0.20	1.10	0.20	0.60	0.10	0.50	
C'u 1002	44.00	67.00	5.50	16.00	2.50	0.70	1.90	0.30	1.20	0.20	0.80	0.10	0.80	0.10
Cu1006	12.00	26.00	2.30	6.00	1.20	0.40	0.70	0.10		0.20		0.10	0.20	
Cu1010	61.00	84.00	7.10	16.00	3.10	0.90	2.30	0.30	1.40 ,	0.20		0.10	0.60	0.10
Cu1011	15.00	34.00	3.30	11.00	1.70	0.40	1.10	0.20	0.80	0.20	0.50		0.40	0.10
Cu()93	14.00	24.00	2.20	6.00	0.90	0.30	0.60	0.10	0.50				0.30	0.10
Cu510	18.00	36.00	3.30	12.00	2.00	0.70	1.30	0.20	0.90	0.20		0.10	0.50	0.10
Cu512	14.00	27.00	4.10	9.00	1.80	0.60	0.80	0.10	0.80	0.20		0.10	0.40	0.10
Cu513	12.00	22.00	2.10	7.00	1.30	0.50	0.70	0.10				0.10	0.30	0.10
Analytical Info														
Detection Limit	1	2	0.2	1	0.5	0.2	0.2	0.1	0.5	0.2	0.5	0.1	0.1	0.1
Upper Limit	10000	10000	1000	1000	500	100	500	100	5(X)	1000	500	500	1000	500
Method	ICP-MS													

A2

Analytical Chemists * Geochemists * Registered Assayers 6175 Timberles Bivd., Mississeuge Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: CUESTA RESEARCH LTD.

154 VICTORIA RD. DARTMOUTH, NS B3A 1V8

A9626404

£

Comments: ATTN: MILTON GRAVES

CERTIFICATE

A9626404

CHEMEX NUMBER DETECTION UPPER CODE DESCRIPTION METHOD LIMIT LIMIT A1203 N: XRF 902 10 XRF 0.01 100.00 906 10 CAO NI XEF XXI 0.01 100.00 100.00 2590 10 Cr203 Ni XRF XBT 0.01 903 10 Fe203 A: XEF XRF 100.00 0.01 908 10 K20 NI XRF xar 0.01 100.00 905 10 HgO & XEF XRF 0.01 100.00 1989 HOO & XET 10 XX 0.01 100.00 907 HA20 NI XRF 10 XRF 0.01 100.00 909 10 205 VI XEF XRF 0.01 100.00 901 8102 N: XEF 10 XRF 0.01 100.00 904 10 T102 %: XRF XBP 0.01 100.00 910 LOI & XRF 10 XRF 0.01 100.00 2540 10 Total N CALCULATION 105.00 2091 10 Ba ppm: XRF xar 50000 - 5 2067 Rb ppm: XRF 10 111 2 50000 Sr ppm: XEF 2898 10 XRF 50000 2973 10 Hb ppm: XRF XRF 50000 2 2978 10 Ir ppm: XRF XBF 50000 3 Y ppm: XRF 2974 10 XRF 50000 2 451 10 FeO N: Acid decomposition TITRATION 0.01 100.0 818 Crystalline water 10 Leco EMC100 0.01 100.0 819 Surface moisture 10 Leoo BHC100 100.0 0.01 1380 10 S & Leco furnace LECO-IR DETECTOR 0.01 100.0 301 10 Cu N: Conc. Mitric-HCL dig'n AAS 0.01 100.0

ANALYTICAL PROCEDURES

(LJB) - CUESTA RESEARCH LTD.

Project: P.O. # :

Samples submitted to our lab in Mississauge, OM. This report was printed on 20-AUG-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226	10 10	Geochem ring to approx 150 mesh 0-3 Kg crush and split

Analytical Chemists * Geschemists * Registered Assayers 5175 Timberies Blvd., Mississauga Ontario, Canada LAW 253 PHONE: 905-624-2008 FAX: 905-624-6163 To: CUESTA RESEARCH LTD.

164 VICTORIA RD. DARTMOUTH, NS B3A 1V8

A9626405

1

.

÷

:

1

Commenta: ATTN: MILTON GRAVES

CERTIFICATE

A9626405

(LIB) - CUESTA RESEARCH LTD.

Project: P.O. # :

Samples submitted to our lab in Mississauga, OM. This report was printed on 3-SEP-96.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
299 297	10 10	Fulp; prepped on other workorder Nota-borate fusion charge

ANALYTICAL PROCEDURES CHEMEX NUMBER DETECTION UPPER LIMIT DESCRIPTION METHOD Co ppm: ICP-MS Dy ppm: ICP-MS 2501 ICP-MS ICP-MS 10000 10 2 2502 10 0.5 500 Rr ppm: ICP-MS Ru ppm: ICP-MS Gd ppm: ICP-MS 2503 10 10 ICP-MS 0.5 ... 2504 ICP-MA 0.2 100.0 10 ICP-MS .2 500 No ppm: IPC-MS La ppm: ICP-MS La ppm: ICP-MS 2506 2507 10 ICP-MS .2 1000 10 ICP-M •.1 10000 2508 10 ICP-M 500 2509 10 nd ppm: ICP-MS ICP-MA 1000 1 2510 Pr ppm: ICP-MS 10 ICP-MS 0.2 1000 An ppm: ICP-MS Th ppm: ICP-MS Th ppm: ICP-MS Yb ppm: ICP-MS 2511 10 ICP-MA 0.5 500 2512 10 ICP-M 0.1 100.0 2513 ICP-M 10 0.1 500 2514 10 ICP-MS 0.1 1000

Analytical Chemists * Geochemists * Registered Assayers 6175 Timberies Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2006 FAX: 905-624-6163 To: CUESTA RESEARCH LTD.

154 VICTORIA RD. DARTMOUTH, NS B3A 1V8 Page Number :1 Total Pages :1 Cartificate Date:03-SEP-96 Invoice No. :196805 P.O. Number : Account :LJB

Project : Commente: ATTN: MILTON GRAVES

									CERTI	FICATE	OF AN	ALYSIS	5	496264)5	
sample	PRI COD	LP)IL	Ce 998	Dy ppm	Er ppn	Bu ppe	gd ppm	lio ppa	La ppa	La pps	nd ppn	Pr ppm	Sen ppen	Tb ppm	Ta ppa	Yb ppm
	299 2 644 4 644 4 299 2		****	:11:	0.3 11 0.6	0.3 11 0.6		0.1 901 0.2	14 8 4 8 1	0.1		2.2	0.9	0.1	< 0.1	: 11 :
CV 1001 CV 1002 CV 1006 CV 1010 CV 1011	299 2 299 2 299 2 299 2 299 2 299 2	197 197 197 197 197	46 67 26 84 34	1.1 1.2 	0.6 0.8 0.4 0.4	0.6 0.7 0.4 0.9 0.4	1.4 1.9 0.7 2.3 1.1	0.2 0.2 0.2 0.2 0.2	22 44 12 61 15	< 0.1 0.1 < 0.1 0.1 0.1	11 16 6 16 11	4.4 8.8 2.3 7.1 3.3	2.1 2.8 1.2 3.1 1.7	0.2 0.3 0.1 0.3 0.2	0.1 0.1 0.1 0.1 € 0.1	0.5 0.0 0.2 0.6 0.4
																A5

wylicel Chemiete * Geochemiete * Registered Asseyers 6175 Timberles Blvd., Mississeurge Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 To: CUESTA RESEARCH LTD.

154 VICTORIA RD. DARTMOUTH, NS B3A 1V8 Page Number : 1-A Total Pages : 1 Certificate Dela: 20-AUG-96 Invoice No. : 1955404 P.O. Number : Account : LUB

٠

:

	Oi Pt	Nario, Canad IONE: 905-6	18 24-2806 FAX	L4W (: 905-624-6	253 163		Project : Commen	ts: ATTN:	MILTON G	RAVES			Ac	count	: LJB
				-				CERTI	FICATE	OF AN	ALYSIS	5	4962640)4	
SAMPLE	PRE	P AL203 K XBP	CaO N	Cr203 V	re203 \ XRF	K20 N XBF	NgO N XIIP	NEO V	Na20 N XRF	P205 \ XBF	\$102 \ XBF	Tio2 N	LOI N	TOTAL	Ba pps
CU 993	205 2 205 2 205 2	26 9.5 46 41 46 41 26 15.5	0 1.52			2.90	0.21	0.03	< 0.01	0.07	77.34	0.17	4.15 C	96.90	105
CU 1001 CU 1002 CU 1006 CU 1016 CU 1011	205 2 205 2 205 2 205 2 205 2 205 2	26 14.0 26 15.9 26 13.9 26 15.9 26 15.9 26 15.9 26 15.9 26 15.9	9 2.00 2 2.45 7 0.16 4 0.16 5 0.04	<pre>< 0.01/ < 0.01/ < 0.01/ < 0.01 < 0.01 < 0.01</pre>	1.76 1.69 0.66 1.13 0.74	3.22 3.10 4.70 6.16 5.06	0.52 0.51 0.08 0.20 0.30	0.03 0.02 4.01 0.01 0.01	4.01 4.50 0.30 0.07 0.10	0.11 0.12 0.10 0.10 0.03	72.03 69.14 75.49 70.06 73.25	0.29 0.20 0.19 0.27 0.22	0.47 0.70 3.53 3.94 2.52	98.53 96.59 96.79 96.64 96.70	610 710 360 820 220
		I		l											
	F :			_											A

CERTIFICATION: Heart Buchley

Chemex Labs Ltd. Analytical Chemists * Geoch cietered Asservers

6176 Timberles Blvd., Mississung Ontario, Canada L4W 253 PHONE: 905-624-2808 FAX: 905-624-6163

154 VICTORIA RD. DARTMOUTH, NS B3A 1V8

To: CUESTA RESEARCH LTD.

Page Number : 1-8 Total Pages : 1 Cartilicate Date: 20-AUG-96 Invoice No. : 19626404 P.O. Number : Account : LJB

Project : Comments: ATTN: MILTON GRAVES

								CERTI	FICATE	OF AN	ALYSIS	6	496264	04	
SAMPLE	PREI	Rb ppm	Sr ppa	npen Np	Zr ppm	Y ppa	7e0 \	+#20	-#20 \	8 \ Total	Cu N				
CU 093	205 22	16 74 16 74 16 76		• • • • • • • • • • • • • • • • • • • •	ilt:		2.17	1.14 0.19	0.14	1.03	1.86				
CU 1001 CU 1002 CU 1006 CU 1010 CU 1011	205 22 205 22 205 22 205 22 205 22	16 72 16 76 16 94 16 114 16 128	508 590 128 136 10	12 14 16 12 14	102 100 105 105 99	10 10 10 14 12	0.94 1.16 0.91 0.01 0.50	0.27 0.35 2.39 2.64 1.64	0.10 0.22 0.48 0.45 0.19	0.04 0.07 0.58 0.07 0.67	0.05 0.06 0.46 1.06 0.11				
															A7
	L			L	L			L	I	L		I	1 No. (1)		200

										CE	RTIF	CATE	OF	NALY	SIS	A	9325	722		
SAMPLE	PREP	A1203 %	CaO NCI XAF	203 N/G	203 N	K20 %	NgO % XAF	NnO % I	Na 20 % XN7	P205 % XRF	8102 N ⁴ XNF	T102 %	LOI N	TOTAL	Ba P p n	Rb ppm	8r ppa	Mb ppm	Lr ppn	P
3-510 3-512	214	13.50	0.42	0.01 0.01	2.97	4.62	0.50 0.60	•.05 •.03	2.02	0.07 0.09	72.60	0.22	1.90	99.90 99.60	840 721	160 156	190 346	< 2 9	106	
)-51)	214	15.70	0.38	(0.01	0.65	4.42	0.56	0.00	5.28	0.10	72.00	0.19	1.10	100.50	661	132	25)) 	116	
	=	-																		
													•							
				•																
							•													

.

A8

ī

.o: CUESTA RESEARCH LTD. 154 VICTORIA RD. DARTMOU 111, NS B3A 1V0

Page Number : 1 Total Pages : 1 Cettricale Date: 13-1/EC-9: Invoice No. : 19326723 P.O. Number : Account : LJB

Analytical Clemiste * Geochemiste * Neglatereri Assayere 212 Brooksbank Ave., North Vanconver Britteli Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : Convente:	ATTN MILTON C GRAVES
Contraction.	ATTN. MILTON C. UNAVES

••

							CERTIFIC	ATE OF /	ANALYSIS	A9325	5723	
SANPLE	P	REP	8 % Total	+H20 %	-H20 %	F=0 %						
93-510	299		0.019	1.14	0.09	0.91			1			
193-512 193-513	299 299		0.449	0.65	0.20	0.79						
								-				
										1		
										AV.	Incl	

r

Chemex Labs Ltd. Audylical Claimlets * Geocliamlets * Geoplerical Assayers 5175 Timbertes Blvd., Missiesauga, Onlaino, Canada L4W 253 PHONE: 416-824-2806

IO: CUESTA RESEARCH LTD.

154 VICTORIA RD. DARTMOUTH, NS B3A 1V6 Page Number : 1 Total Pages : 1 Certificate Date: 18-DEC-93 Invoice No. : 19325724 P.O. Number : Account : LJB

Project : , Comments: ATTN: MILTON C. GRAVES ••

									CERTI	FICATE	OF AN	ALYSIS	6	A932572	24	
SAMPLE	P	AEP ODE	Ce ppa	Dy Dy	Er ppm	Eu ppa	Gđ ppm	Bo ppm	La ppm	Lu ppm	Nd . ppm	Pr ppm	Sa ppa	Tb ppe	Ta ppm	Yb ppm
CU93-510	299	297	36	0.9	0.3	•.7	1.3	0.2	10	0.1	12	3.3	2.0	0.2	0.1	0.5
CU93-512 CU93-513	299	297 297	27 22	0.0	U.6 0.2	0.6	0.0 0.7	0.2 0.1	14 12	0.1	9	2.4	1.0	0.1	•.1 •.1	0.4 0.3
	E															
		·														
				-												
-																
				1												
											CEF	TIFICATIO)N: J.	<u>(</u>): (· · · /	<

A10

.

:

Appendix B.

X-ray Powder Diffractograms and Peak Lists

•

14-Jun-1996 13:46 File: CU999K2.DI Phillips Analytical X-Ray B. V. PC-APD, Diffraction software Sample identification: cu999k2 Data measured at: 14-Jun-1996 13:08:00 Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1r Receiving slit: 0.1 Monochromator used: YES Start angle [x2i]: 5.000 End angle [x2i]: 95.000 Step size [x2i]: 0.020 Maximum intensity: 2284.840 Time per step [s]: 0.500 Type of scan: CONTINUOUS Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00

B3

Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 87

١

Angle	d-value	d-value	Peak width	Peak int	Back, int	Rel. int	Signif.
[x2i]	'1 []	'2 []	[12i]	[counts]	[counts]	[2]	
13.570	6.5200	6.5360	0.100	59	31	2.6	0.96
15.165	5.8377	5.8520	0.080	36	34	1.6	0.85
20.875	4.2520	4.2624	0.080	286	45	12.5	1.17
21.110	4.2052	4.2155	0.060	159	45	6.9	1.51
22.050	4.0280	4.0379	0.100	67	44	2.9	0.93
22.570	3.9363	3.9460	0.100	169	42	7.4	2.91
23.050	3.8554	3.8649	0.160	35	41	1.5	0.96
23.605	3.7660	3.7753	0.180	437	41	19.1	12.92
24.305	3.6591	3.6681	0.160	77	40	3.4	1.12
24.680	3.6044	3.6132	0.120	50	40	2.2	1.62
25.135	3.5402	3.5489	0.200	26	38	1.1	0.96
25.730	3.4596	3.4681	0.120	164	37	7.2	2.84
26.665	3.3404	3.3486	0.100	2285	36	100.0	11.52
26.980	3.3021	3.3102	0.100	392	36	17.2	3.48
27.175	3.2788	3.2869	0.080	231	36	10.1	1.63
27.565	3.2333	3.2413	0.120	894	35	39.1	9.24
27.990	3.1852	3.1930	0.140	708	34	31.0	7.70
>29.870	2.9889	2.9962	0.100	219	31	9.6	2.33
30.475	2.9309	2.9381	0.080	144	- 30	6.3	0.80
30,900	2.8915	2.8987	0.080	149	29	6.5	1.28
31,430	2.8440	2.8510	0.120	48	29	2.1	1.63
32.365	2.7639	2.7707	0.200	58	27	2.5	2.48

File: CU999K2.DI 14-Jun-1996 13:46								
Phillips	Amalytic	al X-Ray	8. V.		PC-APO, D	iffraction	software	
Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.	
[12 i]	'1 []	'2 []	[12i]	(counts)	[counts]	[2]		
33.860	2.6452	2.6517	0.040	76	25	3.3	3.38	
34.455	2.6009	2.6073	0.080	71	25	3.1	1.02	
34.870	2.5709	2.5772	0.080	174	25	7.6	1.57	
35.395	2.5340	2.5402	0.120	56	25	2.5	1.29	
35.685	2.5140	2.5202	0.120	32	25	1.4	1.58	
36.585	2.4542	2.4603	0.100	151	24	6.6	1.94	
37.235	2.4129	2.4188	0.200	46	24	2.0	2.85	
37.805	2.3778	2.3836	0.200	45	23	2.0	2.54	
38.730	2.3231	2.3288	0.080	59	23	2.6	0.91	
39.545	2.2771	2.2827	0.100	96	22	4.2	1.51	
40.340	2.2340	2.2395	0.080	114	22	5.0	1.36	
41.695	2.1645	2.1698	0.140	85	21	3.7	3.29	
42.470	2.1268	2.1320	0.060	250	21	10.9	0.95	
44.145	2.0499	2.0549	0.200	16	20	0.7	1.43	
45.180	2.0053	2.0102	0.120	20	20	0.9	0.87	
45.835	1.9781	1.9830	0.060	112	20	4.9	0.76	
46.045	1.9696	1.9745	0.060	102	20	4.5	1.30	
47.270	1.9214	1.9261	0.120	28	19	1.2	0.98	
48.325	1.8819	1.8865	0.200	21	19	0.9	1.23	
49.155	1.8520	1.8566	0.160	66	19	2.9	1.93	
50.190	1.8162	1.8207	0.080	234	19	10.2	2.22	
50.755	1.7973	1.8018	0.080	213	19	9.3	1.78	
51.395	1.7764	1.7808	0.100	71	19	3.1	1.42	
52.545	1.7402	1.7445	0.240	14	19	0.6	1.07	
53.240	1.7191	1.7234	0.280	17	19	0.7	0.80	
54.910	1.6707	1.6749	0.080	174	18	7.6	3.12	
55.065	1.6664	1.6705	0.060	71	18	3.1	0.75	
55.365	1.6581	1.6622	0.060	41	18	1.8	1.77	
56.605	1.6247	1.6287	0.240	14	18	0.6	1.33	
57.650	1.5977	1.6016	0.480	7	18	0.3	1.92	
57.890	1.5916	1.5955	0.200	15	18	0.7	0.87	
58.815	1.5688	1.5726	0.200	42	18	1.8	0.88	
60.000	1.5406	1.5444	0.080	207	18	9.1	2.85	
60.170	1.5367	1.5404	0.060	79	18	3.5	2.28	
62.010	1.4954	1.4991	0.160	55	18	2.4	1.25	
64.090	1.4518	1.4554	0.060	59	18	2.6	0.95	
64.830	1.4370	1.4405	0.240	25	18	1.1	1.44	
66.565	1.4037	1.4071	0.240	19	18	0.8	0.99	
67.785	1.3814	1.3848	0.080	210	18	9.2	2.50	
67.990	1.3777	1.3811	0.060	112	18	4.9	1.77	
68.180	1.3743	1.3777	0.060	172	18	7.5	1.00	
68.350	1.3713	1.3747	0.080	246	18	10.8	3.56	
68.540	1.3680	1.3713	0.060	110	18	4.8	1.01	
70.285	1.3382	1.3415	0.160	14	18	0.6	1.11	
71.895	1.3122	1.3154	0.240	17	17	0.7	1.20	
73.470	1.2879	1.2910	0.120	45	17	2.0	1.69	
74.205	1.2769	1.2801	0.240	29	17	1.3	1.68	
74.865	1.2673	1.2704	0.240	23	17	1.0	0.78	
75.705	1.2553	1.2584	0.080	62	17	2.7	0.90	
75.930	1.2522	1.2552	0.080	31	17	1.4	1.62	
345 545	1 3370	1 2200	A A0A	21	17	1 4	A 99	

File: CU999%2.DI

14-Jun-1996 13:46

Phillips Amalytical X-Ray B. V. PC-APD, Diffraction software

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[121]	i u	2 11	[121]	[CONNES]	(counts)	[4]	
79.900	1.1996	1.2026	0.120	37	16	1.6	2.05
81.190	1.1838	1.1867	0.100	62	16	2.7	2.15
81.530	1.1797	1.1826	0.060	71	16	3.1	1.59
81.805	1.1764	1.1793	0.080	30	16	1.3	1.13
83.885	1.1525	1.1553	0.100	26	16	1.1	1.01
84.530	1.1453	1.1481	0.160	26	16	1.1	0.89
85.595	1.1338	1.1366	0.120	18	16	Û.â	1.57
85.845	1.1311	1.1339	0.100	13	15	0.6	0.84
87.445	1.1145	1.1172	0.200	6	15	0.3	0.76
89.215	1.0969	1.0996	0.480	7	15	0.3	0.89
90.865	1.0812	1.0839	0.120	48	15	2.1	1.21
91.135	1.0787	1.0814	0.100	26	15	1.1	1.26
92.830	1.0634	1.0660	0.120	15	15	0.7	0.83
94.650	1.0477	1.0503	0.120	29	15	1.3	3.18

File: CU9998I2.DI

Phillips Analytical X-Ray B. V. PC-APO, Diffraction software

.

Sample identification: cu999bi2 Data measured at: 22-May-1996 13:43:00

Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1x Receiving slit: 0.1 Honochromator used: YES

.

Start angle [x2i]: 10.000 End angle [x2i]: 90.000 Step size [x2i]: 0.020 Maximum intensity: 4761.000 Time per step [s]: 0.800 Type of scan: CONTINUOUS

Minimum peak tip width:	0.00
Maximum peak tip width:	1.00
Peak base width:	2.00
Minimum significance:	0.75
Number of peaks:	18

Angle [x2i]	d-value '1 []	d-value '2 []	Peak width [12i]	Peak int [counts]	Back. int [counts]	Rel. int [1]	Signif.
12.465	7.0954	7.1129	0.160	58	71	1.2	1.35
17.585	5.0394	5.0518	0.060	49	117	1.0	0.77
18.675	4.7476	4.7593	0.480	17	137	0.4	0.76
25 105	3.5443	3.5530	0.240	37	202	0.8	0.91
26.520	3.3583	3.3666	0.140	4761	196	100.0	33.34
34 145	2.6238	2.6303	0.200	74	125	1.6	2.03
35 630	2.5178	2.5240	0.160	552	110	11.6	10.38
36 850	2 4372	2.4432	0.240	41	92	0.9	0.86
41 420	2.1782	2.1836	0.160	53	17	1.1	0.94
44 975	2.0140	2.0189	0.080	635	74	13.3	3.16
45.105	2.0084	2.0134	0.040	335	74	7.0	1.29
54.645	1.6782	1.6823	0.120	130	67	2.7	2.28
60.080	1.5387	1.5425	0.200	64	64	1.3	1.38
62.770	1.4791	1.4827	0.480	14	62	0.3	1.14
64 750	1.4386	1.4421	0.080	161	61	3.4	0.83
66 540	1.4042	1.4076	0.060	29	59	0.6	0.76
68.695	1.3653	1.3686	0.200	50	58	1.1	0.79
75.470	1.2586	1.2617	0.060	71	50	1.5	0.75

File: CU1001K2.DI14-Jun-1996 15:23Phillips Analytical X-Ray 8. V.PC-APD, Diffraction software

ومراجع والمراجع والمراجع

Sample identification: cu1001k2 Data measured at: 14-Jun-1996 14:45:00 Diffractometer type: PW3710 8ASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1x Receiving slit: 0.1 Monochromator used: YES Start angle [x2i]: 5.000

End angle [x2i]: 95.000 Step size [x2i]: 0.020 Maximum intensity: 1814.760 Time per step [s]: 0.500 Type of scan: CONTINUOUS

Minimum peak tip width:	0.00
Maxisum peak tip width:	1.00
Peak base width:	2.00
Minimum significance:	0.75
Number of peaks:	82

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[12]	1 []	'2 []	[12i]	(counts)	[counts]	[2]	

13.690	6.4631	6.4790	0.060	76	26	4.2	0.86
15.165	5.8377	5.8520	0.240	20	28	1.1	1.33
20.935	4,2399	4.2504	0.140	210	37	11.6	3.00
21,205	4.1865	4.1968	0.060	199	37	11.0	0.77
22.065	4.0253	4.0352	0.240	55	36	3.0	3.49
22.540	3.9415	3.9512	0.060	135	36	7.4	1.01
22.645	3.9235	3,9331	0.080	94	36	5.2	1.12
23 655	3.7582	3.7674	0.180	317	35	17.5	9.80
24 290	3.6614	3.6704	0.240	53	34	2.9	1.59
24.635	3.6109	3.6197	0.120	66	34	3.6	1.42
25.180	3,5339	3.5426	0.240	41	32	2.3	2.27
25 765	3.4550	3.4635	0.140	269	31	14.8	5.59
26 630	3.3447	3.3529	0.080	1376	31	75.8	3.52
26 735	3 3318	3.3400	0.080	1815	31	100.0	3.53
26 990	3 3009	3 3090	0.080	416	30	22.9	1.74
27 640	3 2247	3 2327	0.200	992	30	54.7	21.59
28 020	3 1819	3 1897	0 140	493	29	27.2	7.07
-29 905	2 9854	2 9978	0 180	317	27	17.5	10.94
→27.50J	2 9300	2 9372	0 080	90	27	5.0	0.94
20 825	2 9994	2 9055	0 100	210	26	11.6	1.63
22 410	2.0704	2 7670	0.080	106	24	5.8	0.93
32.410	2./042	2./0/0	0.160	12	23	0.7	0.76
72.440	2.0334	2.0417	0.100	14	23	v./	4./0

File: CU1001K2.DI 14-Jun-1996 15:23 Phillips Analytical X-Ray 8. V. PC-APD, Diffraction software

Angle	d-value	d-value	Peak width	Peak ist	Back. int	Rel. int	Signif.
[1 2i]	1 []	2 []	[121]	[counts]	[counts]	(\$)	•
(- 0	()		•••••	••	
34.495	2.5980	2.6044	0.200	49	23	2.7	2.38
34.895	2.5691	2.5754	0.200	132	22	7.3	3.52
35.260	2.5433	2.5496	0.140	86	22	4.8	2.31
35.705	2.5127	2.5188	0.160	45	22	2.5	0.98
36.175	2.4811	2.4872	0.160	. 15	21	0.8	0.88
36.645	2.4503	2.4564	0.060	149	21	8.2	0.76
37.260	2.4113	2.4172	0.240	44	21	2.4	2.60
37.770	2.3799	2.3857	0.240	36	20	2.0	2.80
38.765	2.3211	2.3268	0.160	48	20	2.6	1.73
39.505	2.2793	2.2849	0.060	106	19	5.8	2.77
40.350	2.2335	2.2390	0.160	58	19	3.2	2.07
41.025	2.1983	2.2037	0.160	18	19	1.0	0.76
41.730	2.1627	2.1681	0.080	225	19	12.4	1.89
42.515	2.1246	2.1298	0.060	130	19	7.2	1.66
43.815	2.0645	2.0696	0.160	29	19	1.6	1.14
44.140	2.0501	2.0551	0.200	. 29	19	1.6	1.35
45.210	2.0040	2.0090	0.280	36	19	2.0	3.3/
45.820	1.9788	1.9836	0.080	52	19	2.9	0.86
46.095	1.9676	1.9724	0.160	81	19	4.5	1./4
47.230	1.9229	1.9276	0.160	40	19	2.2	1.01
48.355	1.8808	1.8854	0.200	28	19	1.5	1.15
49.145	1.8524	1.8569	0.100	67	19	3./	0.89
50.230	1.8149	1.8193	0.100	256	19	14.1	2.70
50.810	1.7955	1.7999	0.080	216	19	11.9	0.85
51.485	1.7735	1.7779	0.060	66	19	3.5	1,00
52.460	1.7429	· 1./4/1	0.200	23	19	1.3	1.03
53.340	1./162	1./204	0.160	14.	18	U.0 5 1	2 77
54.915	1.6/06	1.6/4/	0.120	92	10	2.1	1 32
55.350	1.6363	1.0020	0.060	40	10	0.8	0.94
55.800	1.0402	1.6302	0.160	19	18	1 1	0.79
20.412 57 665	1 5900	1.033/	0.200	14	18	0.8	1.52
57.733	1 5473	1 5712	0.060	85	18	4.7	1.21
50.0/5	1 5408	1 5446	0 140	117	18	6.4	4.56
60 210	1 5357	1 5395	0.060	67	18	3.4	1.25
61 290	1 5117	1 5149	0 240	22	18	1.2	1.76
61 905	1 4977	1 5014	0 160	66	18	3.6	0.86
62 095	1 4936	1 4972	0.120	76	18	4.2	1.40
62 950	1 4753	1.4789	0.240	14	18	0.8	0.78
64 245	1.4487	1.4522	0.200	55	18	3.0	1.64
64 820	1.4372	1.4407	0.120	38	18	2.1	1.22
65.405	1.4258	1.4293	0,100	37	18	2.1	0.89
65,605	1.4219	1.4254	0.100	30	18	1.7	0.77
67,790	1,3813	1.3847	0.120	96	18	5.3	1.11
68.215	1.3737	1.3771	0.060	135	18	7.4	0.82
68.385	1.3707	1.3741	0.100	132	18	7.3	1.93
70.330	1.3375	1.3408	0.240	13	18	0.7	1.80
71.920	1.3118	1.3150	0.240	29	18	1.6	2.47
72.775	1.2985	1.3016	0.400	23	18	1.3	1.73
73.500	1.2874	1.2906	0.120	45	18	2.5	1.96
74.265	1.2760	1.2792	0.240	34	18	1.9	1.54

File: CU	1001K2.0	l .	14-Jum-1996 15:24 PC-APD, Diffraction software				
Phillips	Analytic	al X-Ray					
Angle [x2i]	d-value '1 []	d-value '2 []	Peak width [r2i]	Peak int [counts]	Back. int [counts]	Rel. int [1]	Signif.
75.690	1.2555	1.2586	0.200	45	18	2.5	2.03
79.945	1.1991	1.2020	0.100	44	19	2.4	1.39
81.245	1.1831	1.1860	0.080.0	37	18	2.:	C.86
81.495	1.1801	1.1830	0.060	37	18	2.1	1.46
83.930	1.1520	1.1548	0.080	35	18	1.9	1.87
87.675	1.1122	1.1149	0.240	10	14	0.5	1.27
88.475	1.1042	1.1069	0.480	6	14	0.3	0.90
90.870	1.0812	1.0839	0.120	29	15	1.6	1.26
92.965	1.0622	1.0649	0.640	5	15	0.3	0.94

•

File: CU100182.DI20-Jun-1996 12:49Phillips Analytical X-Ray B. V.PC-APD, Diffraction software

Sample identification: cu1001b2 Data measured at: 20-Jun-1996 12:11:00 Diffractometer type: PW3710 BASED

Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1r Receiving slit: 0.1 Monochromator used: YES

> Start angle [x2i]: 5.000 End angle [x2i]: 95.000 Step size [x2i]: 0.020 Maximum intensity: 4108.810 Time per step [s]: 0.500 Type of scan: CONTINUOUS

Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 18

Angled-valuePeak widthPeak intBack. intRel. intSignif.[x2i]'1[]'2[][z2i][counts][%]

8.835	10.0008	10.0254	0.080	4070	28	99.1	15.63
12.550	7.0475	7.0649	0.060	23	16	0.6	0.79
17.690	5.0097	5.0220	0.100	21	10	0.5	1.29
25.210	3.5298	3.5385	0.160	16	10	0.4	0.88
26.620	3.3459	3.3542	0.120	4109	11	100.0	22.36
35.725	2.5113	2.5175	0.060	529	7	12.9	1.83
35.845	2.5032	2.5093	0.040	276	6	6.7	3.04
45.075	2.0097	2.0147	0.080	655	5	16.0	4.96
45.200	2.0044	2.0094	0.040	335	5	8.2	5.39
54.725	1.6760	1.6801	0.080	125	3	3.1	1.88
54.870	1.6719	1.6760	0.060	66	3	1.5	1.51
64.825	1.4371	1.4406	0.080	128	3	3.1	1.75
65.015	1.4334	1.4369	0.060	67	3	1.6	2.28
68.980	1.3603	1.3637	0.480	4	4	0.1	1.63
75.530	1.2578	1.2609	0.120	90	4	2.2	2.82
75.775	1.2543	1.2574	0.080	40	5	1.0	2.61
83.070	1.1617	1.1646	0.060	7	. 6	0.2	0.76
87.125	1.1178	1.1205	0.120	15	5	0.4	1.07

File: CU1002K2.DI 23-May-1996-11:16 Phillips Analytical X-Ray B. V. PC-APD, Diffraction software Sample identification: cu1002k2 Data measured at: 23-May-1996 10:23:00 Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: ir Receiving slit: 0.1 Monochromator used: YES Start angle [x2i]: 10.000 End angle [x2i]: 90.000 Step size [x2i]: 0.020 Maximum intensity: 3249.000 Time per step [s]: 0.800 Type of scan: CONTINUOUS Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 95

 Angle
 d-value
 Peak width
 Peak int
 Back. int
 Rel. int
 Signif.

 [x2i]
 '1
 []
 '2
 []
 [x2i]
 [counts]
 [counts]
 [t]

13.650	6.4820	6.4979	0.200	85	53	2.6	1.63
15.110	5.8588	5.8732	0.160	20	58	0.6	0.95
20.880	4.2510	4.2614	0.080	159	81	4.9	1.13
21.125	4.2022	4.2126	0.080	660	81	20.3	5.08
22.105	4.0181	4.0280	0.080	85	77	2.6	0.76
22.595	3.9320	3.9417	0.120	199	76	6.1	3.27
23.130	3.8423	3.8517	0.120	64	74	2.0	1.19
23.585	3.7692	3.7785	0.100	942	72	29.0	5.58
24.350	3.6525	3.6615	0.120	79	69	2.4	1.22
24.675	3.6051	3.6140	0.100	135	69	4.1	1.92
25.130	3.5408	3.5496	0.200	49	67	1.5	1.14
25.630	3.4729	3.4814	0.040	282	67	8.7	0.97
25.760	3.4557	3.4642	0.140	449	66	13.8	7.29
26.730	3.3324	3.3406	0.120	3249	64	100.0	20.23
27.145	3.2824	3.2905	0.060	762	62	23.4	5.08
27.540	3.2362	3.2442	0.060	2767	61	85.2	1.16
27.645	3.2242	3.2321	0.060	3069	61	94.5	3.25
28.010	3.1830	3.1908	0.140	767	59	23.6	6.37
-29.950	2.9811	2.9884	0.200	538	53	16.6	14.83
30.580	2.9211	2.9283	0.080	108	52	3.3	1.35
30.850	2.8961	2.9032	0.160	571	50	17.6	14.76
32.360	2.7643	2.7711	0.060	112	45	3.5	2.20

File: CU1002K2.DI

,

.

Phillips Analytical X-Ray B. V. PC-APD, Diffraction software

Angle	d-value	d-value	Peak widt	h Poak int	Back. ist	Rel. int	Signif.
[12]	'1 []	'2 []	[12 i]	[counts]	[counts]	[1]	•
34.440	2.6020	2.6084	0.120	61	41	1.9	1.78
34.890	2.5695	2.5758	0.080	204	41	6.3	1.19
35.285	2.5416	2.5479	0.060	172	41	5.3	1.60
35.740	2.5103	2.5165	0.080	74	41	2.3	0./6
36.210	2.4788	2.4849	0.080	38	40	1.2	0.81
36.600	2.4532	2.4593	0.060	114	40	3.5	2.05
37.205	2.4147	2.4207	0.080	/2	36	2.2	0.83
37.870	2.3738	2.3797	0.200	38	<i>.</i> 86	1.2	2.02
38.740	2.3225	2.3282	0.080	94	3/	2.7	1.02
39.520	2.2784	2.2841	0.060	146	36	4.5	1.10
40.315	2.2353	2.2408	0.100	67	30	2.1	1.30
41.045	2.1972	2.202/	0.160	28	30	V.7	1.01
41.695	2.1645	2.1698	0.060	2/2	35	0.4	1.10
41.815	2.1585	2.1639	0.040	317	34	7.8	4.20
42.550	2.1229	2.1282	0.080	104	34	3.2	0./8
42.945	2.1043	2.1095	080.0	110	54	3.4	0.86
43.775	2.0663	2.0714	0.060	86	32	2./	2.44
44.115	2.0512	2.0562	0.060	49	32	1.5	1.41
45.190	2.0049	2.0098	0.200	52	31	1.8	2.22
45.830	1.9783	1.9832	0.120	74	31	2.3	2.00
46.035	1.9700	1.9749	0.200	90	31	2.8	1.90
47.325	1.9193	1.9240	0.060	90	31	2.8	1.29
48.355	1.8808	1.8854	0.200	29	31	0.9	1.01
49.135	1.8527	1.8573	0.080	108	31	3.3	1.10
49.790	1.8299	1.8344	0.060	/1	30	2.2	1.2/
50.185	1.8164	1.8209	0.060	/62	30	23.4	3.25
50.320	1.8118	1.8163	0.060	361	30	11.1	2.58
50.765	1.7970	1.8014	0.100	372	30	11.5	2.38
51.710	1.7664	1.7707	0.240	21	30	0./	1.14
52.375	1.7455	1.7498	0.200	49	30	1.5	1.44
53.350	1.7159	1.7201	0.140	32	30	1.0	1.24
54.930	1.6702	1.6743	0.080	161	30	5.0	1.45
55.100	1.6654	1.6695	0.060	76	30	2.3	1.9/
55.710	1.6486	1.6527	0.060	53	30	1.6	1.//
56.620	1.6243	1.6283	0.120	45	29	1.4	0./9
56.955	1.6155	1.6195	0.060	46	29	1.4	1.10
57.445	1.6029	1.6068	0.240	45	29	1.4	2.53
57.990	1.5891	1.5930	0.160	19	27	V.0 E A	1.30
58.810	1.5689	1.5728	0.060	164	29	5.0	0.50
58.985	1.5647	1.5685	0.060	/6	29	2.3	2.13
60.000	1.5406	1.5444	0.100	166	29	5.1	3.15
60.165	1.5368	1.5405	0.060	//	29	2.4	0./5
62.120	1.4930	1.4967	0.080	151	27	4./	1.45
63.760	1.4585	1.4621	0.120	34	28	1.0	V.84 2.00
64.300	1.4476	1.4511	0.060	156	28	4.8	3.58
64.485	1,4439	1.44/4	0.060	67	28	2.1	1.02
64.825	1.4371	1.4406	0.080	130	20	4.0	1.12
66.550	1.4040	1.40/4	0.240	22	20	9.7	1.02
67.795	1.3812	1.3846	0.100	144	20	2.4	2.70
68.225	1.3/35	1.3/69	0.000	101	20	27	1 42
65.420	1.3/01	1.3/35	0.100	121	21	3./	1.45

.

 File: CU1002K2.DI
 23-May-1996 11:17

 Phillips Analytical X-Ray 8. V.
 PC-APD, Diffraction software

.

وراغا يوسيمريكمو ولورط والرويان ور

Angle [s2i]	d-value '1 []	d-value '2 []	Peak width [x2i]	Peak int [counts]	Back. int [counts]	Rel. int [%]	Signif.
76 275	1 3384	1 3417	0 120	52	27	1.6	1.83
71 845	1 3130	1 3162	0.080	90	27	2.8	1.37
72 045	1 3098	1 3130	0 080	45	27	1.4	0.79
72 455	1 3003	1 3035	0 120	49	27	1.5	1.09
72 625	1 2871	1 2902	0 200	53	27	1.6	1.16
74 220	1 2767	1 2799	0.240	40	27	1.2	2.04
74 945	1 2676	1 2707	0.040	98	26	3.0	2.22
74.043	1.20/0	1 2677	0.000	/ C 66	26	2.0	0.75
75.434	1 2640	1 2599	0.090	117	26	3.6	1.57
75.000	1 2500	1 2544	0.000	59	26	1.8	0.85
/3.033	1 22933	1 2212	0.000	27	26	0.7	0.92
70 075	1 1002	1 2022	0.040	55	26	1 7	1.55
/9.723	1 1040	1 1997	0.000	22	26	1 2	0 84
80.130	1.1700	1.177/	0.100	30	26	1 1	1 02
80.385	1.1730	1.1703	0.120	20	25	0.9	1 10
81.215	1.1635	1.1004	0.000	27	25	1 2	1 06
81.4/0	1.1804	1.1833	0.120	10	25	1.2	1.00
82.145	1.1/24	1.1/53	0.120	10	25	1.0	1.27
83.900	1.1523	1.1551	0.120	35	25	1.1	1.70
84.495	1.1457	1.1485	0.140	26	25	0.8	1.20
85.580	1.1339	1.1367	0.120	18	25	0.5	0./5
86.625	1.1229	1.1257	0.240	8	25	0.2	0.84
88.780	1.1012	1.1039	0.320	8	24	0.3	0.82

File: CU1002BI.DI17-Jun-1996 12:58Phillips Analytical X-Ray B. V.PC-APD, Diffraction software

Sample identification: cu1002bi Data measured at: 17-Jun-1996 12:20:00 Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060

Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1x Receiving slit: 0.1 Monochromator used: YES

i

Start angle [x2i]: 5.000 End angle [x2i]: 95.000 Step size [x2i]: 0.020 Maximum intensity: 9331.560 Time per step [s]: 0.500 Type of scan: CONTINUOUS

Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 - Number of peaks: 29

Angled-valuePeak widthPeak intBack. intRel. intSignif.[x2i]'1(]'2[][s2i][counts][%]

6.255	14.1189	14.1536	0.240	27	35	0.3	0.81
8.830	10.0065	10.0311	0.100	5791	35	62.1	23.11
12.505	7.0728	7.0902	0.140	61	35	0.7	2.23
17.670	5.0153	5.0277	0.080	45	49	0.5	1.23
18.780	4.7213	4.7329	0.120	42	53	0.5	1.95
20.885	4.2500	4.2604	0.240	25	61	0.3	1.18
25.130	3.5408	3.5496	0.080	108	74	1.2	0.84
26.585	3.3503	3.3585	0.140	9332	77	100.0	51.00
31.745	2.8165	2.8234	0.960	5	50	0.1	1.10
34.115	2.6260	2.6325	0.240	40	40	0.4	1.80
35.705	2.5127	2,5188	0.080	1282	35	13.7	4.61
36.925	2.4324	2.4384	0.480	20	29	0.2	1.69
41.435	2.1775	2.1828	0.320	18	26	0.2	0.92
45.065	2.0101	2.0151	0.080	1459	23	15.6	4.77
45.195	2.0047	2.0096	0.040	671	23	7.2	6.68
47.800	1.9013	1.9060	0.640	8	19	9.1	1.39
49.555	1.8380	1.8425	0.100	5	18	0.1	0.83
50.420	1.8085	1.8129	0.960	5	18	0.1	1.00
54.745	1.6754	1.6795	0.080	296	22	3.2	1.98
54,910	1.6707	1.6749	0.060	151	22	1.6	1.63
60.175	1.5365	1.5403	0.200	38	24	0.4	0.81
64 870	1.4362	1.4397	0,100	262	25	2.8	3.61

File: CU1002BI.DI 17-Jun-1996 12:58 Phillips Analytical X-Ray B. V. PC-MPO, Diffraction software

Angled-valuePeak widthPeak intBack. intRel. intSignif.[x2i]'1[]'2[][x2i][counts][%] 65.050 1.4327 1.4362 0.080 112 25 1.2 0.95 68.860 1.3624 1.3658 0.480 26 23 2.14 0.3 75.605 1.2567 1.2598 0.140 164 19 1.8 4.92 75.815 1.2538 1.2569 0.100 104 19 1.33 1.1 81.435 1.1808 1.1837 0.640 5 14 0.1 1.13 0.2 87.130 1.1177 1.1205 0.120 23 1.50 14 92.870 1.0631 1.0657 0.640 10 14 0.1 1.53

11 - **-** - - - - - -

14-May-1996 15:28 File: CU1006K.DI Phillips Analytical X-Ray B. V. PC-APD, Diffraction software Sample identification: cu1006k Data measured at: 14-May-1996 14:34:00 Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1r Receiving slit: 0.1 Monochromator used: YES Start angle [x2i]: 10.000 End angle [x2i]: 90.000 Step size [x2i]: 0.020 Maximum intensity: 4502.410 Time per step [s]: 0.800 Type of scan: CONTINUOUS Minimum peak tip width: 0.00 1.00 Maximum peak tip width: Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 81

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.	
[121]	'1 []	'2 []	[x 2i]	[counts]	[counts]	[\$]		
11.520	7.6752	7.6941	0.120	22	48	0.5	0.95	
12.235	7.2283	7.2460	0.080	125	48	2.8	1.42	
13.575	6.5176	6.5337	0.100	199	48	4.4	2.87	
15.110	5.8588	5.8732	0.240	19	48	0.4	1.16	
20.745	4.2783	4.2889	0.100	174	58	3.9	1.70	
20.985	4.2299	4.2403	0.080	303	56	6.7	2.72	
22.480	3.9519	3.9616	0.160	121	55	2.7	1.91	
23.230	3.8260	3.8354	0.060	156	53	3.5	2.88	
23.575	3.7708	3.7800	0.100	650	53	14.4	4.94	
24.580	3.6188	3.6277	0.160	76	52	1.7	0.94	
25.610	3.4756	3.4841	0.100	620	50	13.8	5.06	
26.590	3.3496	3.3579	0.120	595	49	13.2	3.88	
26.880	3.3142	3.3223	0.060	660	48	14.7	2.90	
27.040	3.2949	3.3030	0.100	864	48	19.2	3.30	
27.485	3.2426	3.2505	0.100	4502	46	100.0	14.51	
→ 29.830	2,9928	3.0001	0.140	219	44	4.9	2.91	
>30.440	2.9342	2.9414	0.120	58	42	1.3	1.02	
30.855	2.8957	2.9028	0.120	702	41	15.6	7.71	
32.305	2.7689	2.7757	0.080	177	40	3.9	1.24	
34,430	2.6027	2.6091	0.060	104	37	2.3	1.31	
34.850	2.5723	2.5786	0.080	190	37	4.2	0.99	
35.215	2.5465	2.5528	0.060	324	37	7.2	1.23	

A = 0.7331
File: CU1006K.DI

14-May-1996 15:28

..... Phillips Analytical X-Ray B. V. PC-APD, Diffraction software

•

Angle	d-value	d-value	Peak widt	h Peak int	Back. int	Rel. int	Signif.
[12 i]	'1 []	'2 []	[12i]	[counts]	(counts)	(\$)	
					•	• •	
35.750	2.5096	2.5158	0.140	151	36	3.4	2.68
36.120	2.4847	2.4908	0.120	3/	36	0.8	1.19
36.495	2.4601	2.4661	0.080	58	36	1.3	1.0/
36.725	2.4452	2.4512	0.120	46	36	1.0	1.44
37.135	2.4191	2.4251	0.100	81	30	1.5	1.33
37.735	2.3820	2.38/9	0.280	36	35	0.0	2.31
38.700	2.3248	2.3305	0.100	51	35	1.4	0.00
39.405	2.2848	2.2905	0.060	54	34	1.4	0.79
40.225	2.2401	2.2400	0.060	49	29	0.5	1 94
40.980	2.2000	2.2000	0.320	154	32	2 6	1 72
41.615	2.1665	2.1/38	0.100	100	22	2.5	1.72
41./60	2.1013	2.1000	0.060	107	32	3.0 2.0	1 05
42.420	2.1292	2.1344	0.060	120	32	4.7	2 45
42.545	2.1232	2.1284	0.040	213	21	0.7	4 30
43.825	2.0041	2.0092	0.400	10	21	0.7	1 40
45.185	2.0051	2.0100	0.320	10	20	1 2	2 27
45.000	1.9/14	1.9/63	0.240	20	20	2 2	7 42
47.200	1.9241	1.7200	0.320	70 54	30	1 2	1 55
48.150	1.88/9	1.0720	0.060	20 01	20	1.2	1.55 A 94
49.090	1.0543	1.0007	0.000	112	20	2.0	1 00
50.105	1.0171	1.0230	0.000	433	29	9.6	3 44
50./35	1 7024	1.0024	0.000	100	29	4 9	1 80
50.8/5	1 7672	1.7715	0.000	15	29	0.3	1 41
51.000	1 7429	1 7491	0.320	24	29	0.5	0 81
52.430	1.7430	1 7776	0.120	24	29	0.5	0 84
32.733	1 4040	1 7011	0.120	18	29	0 4	1 28
53.775	1 4739	1 6790	0 320	27	28	0.6	1.55
54.000	1 6499	1 4539	0 240	26	28	0.6	0.84
55.005	1 6256	1 6296	0 120	121	28	2.7	2.05
57 445	1 6024	1 6063	0 240	15	28	0.3	0.86
57 975	1 5907	1 5947	0 240	27	28	0.6	2.80
58 790	1.5694	1.5733	0.080	119	28	2.6	1.70
59 285	1.5575	1.5613	0.120	34	27	0.7	1.32
59 955	1 5416	1.5454	0.100	164	27	3.6	2.64
60.530	1.5284	1.5321	0.060	59	27	1.3	0.75
61.335	1.5102	1.5139	0.200	36	27	0.8	0.83
61.915	1.4975	1.5012	0.080	282	27	6.3	2.25
64.195	1.4497	1.4532	0.100	114	25	2.5	1.62
64.860	1.4364	1.4399	0.240	38	26	0.9	1.88
65.800	1.4181	1.4216	0.160	88	26	2.0	2.05
66.515	1.4046	1.4081	0.240	28	26	0.6	1.27
67.705	1.3828	1.3862	0.060	146	26	3.3	2.34
68.170	1.3745	1.3779	0.080	94	25	2.1	1.11
68.355	1.3712	1.3746	0.120	77	25	1.7	1.39
70.175	1.3401	1.3434	0.160	37	25	0.8	1.22
71.780	1.3140	1.3172	0.160	38	25	0.9	0.84
72.820	1.2978	1.3010	0.320	34	24	0.7	0.79
74.215	1.2768	1.2799	0.240	37	24	0.8	1.54
75.570	1.2572	1.2603	0.280	56	24	1.2	3.39
77.640	1.2288	1.2318	0.480	18	23	0.4	2.06

File: CU1006K.DI 14-May-1996 15:28 Phillips Amalytical X-Ray B. V. PC-APD, Diffraction software

Angle [x2i]	d-value '1 []	d-value '2 []	Peak width [x2i]	Peak int [counts]	Back. int [counts]	Rel. int [3]	Signif.
79.880	1.1999	1.2028	0.060	102	23	2.3	2.19
80.095	1.1972	1.2001	0.060	59	23	1.3	0.97
80.350	1.1940	1.1970	0.120	40	22	0.9	1.02
81.445	1.1807	1.1836	0.100	58	22	1.3	1.47
83.730	1.1542	1.1571	0.320	17	22	0.4	1.08
84.485	1.1458	1.1486	0.120	42	22	0.9	0.91
86.600	1.1232	1.1259	0.480	7	22	0.2	1.01
87.760	1.1113	1.1140	0.080	37	27	0.8	0.82

B25

File: CONCIDANCE 18-49-10-7 19:01 Thilips Aralytical PC-APD, Diffraction software Sample identification: cu1010a Data measured at: 15-Mar-1997 18:16:00 Diffractometer type: PW3710 BASED Ture anto- : 11 Generator tensio (kV): 40 Generator current (mA): 45 Wavelength Alphal ():1.54660 wavelength Alpha2 []: 1.54429 Intensity ratio (alpha2/alpha1): 0.500 Divergence silt: 1x Receiving slit: 0.1 Monochromator used: YES Start angle [x21]: 5.000 End angle [x21]: 95.000 Step size [x2i]: 0.020 Maximum intensity: 3745,440 Tige per step [s]: 10.800 Type of scan: CONTINUOUS Mininum peak tip width: 2.00 1.00 Maximum peak tip width:

Maximum peak tip width: 1.00 Peak base width: 1.00 Minimum significance: 0.75 Number of peaks: 53

Angle d-value d-value Peak width Peak int Back int Rellint Signif. [x21] [1]] [2 [] [x21] [counts] [counts] [%] 11.700 7.5575 7.5762 0.120 :7 1.35 :8 2.5 12.415 7.1229 7.1414 \$.78 0.200 :: 15 \$.3 °4 13.740 5.4297 6.4556 0.120 ... 2.5 2.32 15.215 5.8186 5.8329 0.480 7 :: 1.10 3.2 20.950 4.2349 4.2453 0.120 34 :: **.**, 1.34 :: 21.225 4.1825 4.1929 0.060 15 :.: 1.13 28 143 34 34 54 55 155 9 145 3 43 43 43 0.080 ۲. ۵ 22.675 3.9133 3.9280 :0 1.21 23.005 3.75:0 3.7659 0.120 :: b.5 5.29 24.745 3.5951 3.6039 Q.÷ 2.123 \$.76 3.9 2.75 15.010 3.5147 3.5233 10
 13.120
 1.8141
 3.3233

 25.353
 3.4415
 3.4523

 15.755
 3.3213
 3.3400

 27.090
 3.2929
 2.2970

 27.705
 3.2173
 3.2252

 30.3212
 2.37312
 2.9911

 31.010
 2.3615
 2.3886
: : 2.35 1.150 2.87 0.100 5.2 0.:80 4.2 7.26 \$.::0 ::::: 14.62 0.140 t.t 7.38 3.7 4.53 0.150 32.510 2.7519 2.7587 3.57 :.3 0.160 33.280 2.6900 2.6966 0.85 0.120 0.2 34.0e0 2.5860 2.5923 0.120 43 3.39 ÷ :.3 35.151 1.55E1 2.5644 0.100 ::2 8 1.47 3.0 35.368 2.5360 2.5423 0.120 41 3 :.: 3.88

3

\$.5

2.29

36.340 0.4752 0.4763 0.240 19

B26

File: CU1010A.01 (5-War-1997 18:54 Philips Analytical PC-APD, Diffraction software

4-5.e	d-value	s-value	Peak widt	n Peak int	Back, 1nt	Rel. int	Signif.
1.1	1	2 0	[121]	[counts]	[counts]	(S)	
37.330	2.4069	2.4129	0.140	42	8	:.:	. 74
37.360	2.3744	2.2803	2.230	q	3	2	Q. 43
38,900	2.3133	2.3190	0.160	:*	3	3.3	
41.145	2.:92:	2.1975	0.160	20	3	2.5	:.04
41.305	2.1590	2.1544	0.120	289	9	7.7	4.51
42.545	2.1184	2.1236	0.240		3	0.4	1.10
43.915	2.0601	2,0651	0.240	17	3	0.4	0.95
44.220	2.0466	2.05:6	0.160	38	. 8	1.0	0.91
45.355	1.9980	2.0029	0.240	11	3	0.4	\$.75
46.160	1.9650	1.9698	0.160	:•	9	Q.5	1.06
47,410	1.9153	1.9208	0.320	12	8	0.3	1.21
49.400	1.879:	1.8838	0.240	5	8	0.1	1.01
4°.275	1.8478	1.3523	0.080	59	8	1.6	\$.77
50.245	1.8144	1.8188	0.160	:9	9	0.5	¢.82
50.230		:.7976	0.280	79	;	. .:	5.88
51.760	-1.7643	:.769:	0.320	::	3	\$.3	:.16
51.535	: 7384	1.7427	0.200		è.	2.3	1.27
53.470	:.7:23		3.480	:	ç	0.1	1.89
50.760	1.6206	: .5246	0.:20	25	3	3.9	1.19
58.965	1.5651	1.5690	0.160	38	8	: .0	1.35
50.505	1.5267	1.5304	0.320		8	0.3	1.26
52.080	1.4939	1.4975	0.160	43	6	:.3	1.27
54.370	1.4462	1497	0.200	52	3	:.4	2.73
54.950	1.4345	1.4382	3.060	64	3	:.7	0.39
55.670	1.4017	1.4052	0.320	10	8	2.3	1.05
68.545	:.3679	1.3713	0.120	34	3	\$.9	27
12.345	1.3372	:.3405	3.320	10	3	3.3	1.17
*: .975	:.3109	1.3141	0.160	25	9	\$.7	3.92
72.390	:.2967	: 2999	3.120	69	9	:.9	1.27
73.755	1.2836	1.2563	0.240	28	8	\$.7	0.75
1.320	1.2752	1.2784	0.240	21	8	3.6	1.15
256.5	1.2555	1.2537	2.240	12	3	0.0	:75
79,485	1.2048	1.2078	0.240	::	3	01.3	1.23
32.565	1.1914	1.1943	0.240	::	:0	0.3	1.43
35.745	1.:217	1.1244	3.640	5	8	0.1	1.47
90.750	1.0323	1.0350	0.400	,	3	0.2	1.16

•

B28

28-May-1996 11:14 File: CU1011SR.DI PC-APD, Diffraction software Phillips Analytical X-Ray B. V. Sample identification: cu1011sr Data measured at: 28-May-1996 10:49:00 Diffractometer type: PW3710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 45 Wavelength Alpha1 []: 1.54060 Wavelength Alpha2 []: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: 1r Receiving slit: 0.1 Monochromator used: YES Start angle [x2i]: 5.000 End angle [x2i]: 65.000 Step size [x2i]: 0.020 Maximum intensity: 1980.250 Time per step [s]: 0.500 Type of scan: CONTINUOUS Minimum peak tip width: 0.00 1.00 Maximum peak tip width:

Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 36

Angle	d-value	d-value	Peak width	n Peak int	Back. int	Rel. int	Signif.
[x2i]	'1 []	'2 []	[12i]	[counts]	[counts]	[\$]	
8,905	9.9224	9.9468	0.100	936	37	47.3	8.86
17.800	4.9790	4.9912	0.120	660	41	33.4	8.76
19.970	4.4426	4.4535	0.060	146	40	7.4	1.95
20.905	4.2459	4.2564	0.080	164	40	8.3	1.18
21.710	4.0903	4.1004	0.320	40	38	2.0	0.83
22.965	3.8695	3.8790	0.060	121	38	6.1	1.20
23.875	3.7241	3.7332	0.080	112	37	5.7	1.02
25.535	3.4856	3.4942	0.100	161	36	8.1	1.84
26.655	3.3416	3.3498	0.060	1136	36	57.4	1.04
26.810	3.3227	3.3308	0.120	1980	35	100.0	10.18
27.900	3.1953	3.2031	0.100	196	35	9.9	2.52
28.815	3.0959	3.1035	0.320	45	34	2.3	0.99
29.895	2.9864	2.9938	0.120	216	32	10.9	3.60
31.275	2.8577	2.8648	0.120	177	32	8.9	2.84
32.085	2.7874	2.7943	0.080	151	31	7.6	1.69
34.645	2.5871	2.5934	0.080	108	30	5.5	0.85
35.100	2.5546	2.5609	0.140	228	29	11.5	3.83
35.980	2.4941	2.5002	0.100	196	29	9.9	1.95
36.590	2.4539	2.4599	0.120	121	28	6.1	2.39
37.835	2.3760	2.3818	0.160	66	27	3.3	1.37
39.495	2.2798	2.2854	0.080	45	27	2.3	0.84
40.335	2.2343	2.2398	0.160	36	27	1.8	0.79

B29

File: CU	10115R.D	1		28-May-1996 11:15					

Phillips	Analytic	al X-Ray	8. V.		PC-APD, D	iffraction	software		
Angle [x2i]	d-value '1 []	d-value '2 []	Peak width [r2i]	Peak int [counts]	Back. int [counts]	Rel. int [%]	Signif.		
42.085	2.1453	2.1506	0.120	37	27	1.9	0.75		
42.470	2.1268	2.1320	0.040	104	27	5.3	1.22		
44.035	2.0547	2.0598	0.640	11	28	0.5	0.98		
45.395	1.9963	2.0012	0.080	790	28	39.9	3.14		
45.525	1.9909	1.9958	0.060	506	28	25.6	0.80		
50.165	1.8171	1.8215	0.120	81	24	4.1	6.58		
52.905	1.7292	1.7335	0.200	30	24	1.5	1.04		
55.225	1.6620	1.6660	0.080	71	24	3.6	0.87		
55.800	1.6462	1.6502	0.080	85	24	4.3	1.09		
57.535	1.6006	1.6045	0.480	10	24	0.5	0.78		
60.000	1.5406	1.5444	0.100	74	24	3.7	1.66		
60.725	1.5239	1.5277	0.400	42	24	2.1	2.24		
61.865	1.4986	1.5022	0.200	58	24	2.9	1.77		
64.030	1.4530	1.4566	0.120	42	24	2.1	0.81		

Appendix C.

Electron Microprobe Data

•

Sample #	Grain	Point	SiO2	A12O3	Na2O	K2O	BaO Total
Cu999	1	4	63.23	18.02	1.00	15.12	97.37
Cu999	1	5	63.21	18.51	1.59	14.27	0.75 98.32
Cu999	1	7	62.89	18.56	1.53	14.15	0.94 98.07
Cu999	1	10	62.09	18.09	1.15	14.47	0.52 96.32
Cu999	1	11	63.13	18.27	1.46	14.72	97.59
Cu999	2	13	62.45	18.42	1.36	14.20	1.21 97.64
Cu999	2	14	62.53	18.21	1.09	14.68	1.10 97.62
Cu999	2	17	63.18	18.62	0.89	14.53	1.34 98.56
Cu999	2	18	62.81	18.37	0.96	14.43	1.16 97.73
Cu999	2	19	62.61	18.48	1.10	14.38	2.08 98.66
Cu999	3	20	63.22	18.44	1.00	14.95	0.87 98.48
Cu999	4	22	63.46	18.30	0.63	15.63	0.59 98.61
Cu999	4	23	63.71	18.20	0.97	15.29	98 .16
Cu999	4	25	62.83	18.74	1.68	13.62	1.58 98.46
		avg	63.12	18.45	1.03	14.69	1.27 98.38
		std	0.36	0.17	0.30	0.61	0.48 0.30

····

K-feldspar Microprobe Data for RT Dated Samples (DDH3439) - January 15-16, 1997

Sample #	Grain	Point	SiO2	Al2O3	Na2O	K2O	BaO Total
Cu1001	5	26	64.22	18.21	1.36	14.78	98.57
Cu1001	5	27	63.49	18.28	1.06	15.36	98 .18
Cu1001	5	28	63.29	18.73	1.62	13.53	1.51 98.66
Cu1001 ·	5	29	63.71	18.13	0.88	14.48	97.20
Cu1001	6	33	63.74	18.13	0.91	15.23	98.01
Cu1001	6	34	63.75	18.27	0.83	15.37	98.22
Cu1001	6	35	63.84	18.35	0.99	15.15	98.32
Cu1001	6	36	62.42	18.62	1.71	13.64	1.35 97.75
Cu1001	7	39	63.32	18.27	1.35	14.47	0.79 98.19
Cu1001	7	40	63.98	18.37	0.91	14.55	0.52 98.34
Cu1001	7	41	63.18	18.63	1.82	13.79	1.15 98.57
-		avg	63.46	18.38	1.22	14.60	0.95 98.20
		std	0.50	0.17	0.38	0.64	0.32 0.24

Sample #	Grain	Point	SiO2	Al2O3	Na2O	K2O	BaO	Total
Cu1002	8	45	62.90	18.62	1.71	13.58	1.39	98.2 0
Cu1002	8	47	63.09	18.76	1.46	14.16	1.65	99.12
Cu1002	8	48	62.85	18.60	1.44	14.10	1. 69	98 .68
Cu1002	8	49	62.57	18.73	1.63	13.56	1.59	98.08
Cu1002	9	50	63.54	18.43	1.40	13.70	1.10	98. 17
Cu1002	9	51	63.16	18.57	1.21	14.35	1.41	98.71
Cu1002	9	53	63.05	18,41	1.61	13.82	1.31	98.19
Cu1002	9	54	63.50	18.43	0.96	14.82	1.16	98.86
Cu1002	10	57	63.64	18.68	1.34	14.34	0.80	98.80
Cu1002	10	60	62.97	18.56	1.28	14.18	1.00	98.00
Cu1002	10	61	63.42	18.48	2.16	13.20	1.29	98.55
Cu1002	10	62	60.99	19.13	2.81	11.77	3.14	97.84
		avg	62.96	18.61	1.62	13.78	1.44	98.42
		std	0.83	0.23	0.60	0.94	0.72	0.38

K-feldspar	[,] Microp	robe D	ata for F	CT Dated	Sample	S (DDH)	- (513)	Janua	ry 15-10	
Sample #	Grain	Point	SiO2	Al2O3	Na2O	K2O	Cl	BaO	Total	
Cu1006	11	66	63.65	18.36	1.23	14.36		0.68	98.27	
Cu1006	11	67	62.29	18.04	1.01	14.20		0.74	96.27	
Cu1006	11	68	63.53	18.09	1.01	14.46			97.08	
Cu1006	11	69	53.68	15.55	0.85	12.95			83.03	
Cu1006	11	70	63.40	18.44	1.19	14.60		0.66	98.28	
Cu1006	11	71	64.52	18.86	2.21	12.73		0.80	99.12	
Cu1006	11	72	63.15	18.54	2.30	13.12		0.96	98.08	
Cu1006	11	73	63.11	18.67	2.09	13.06	0.11	0.86	97.89	
Cu1006	12	74	64.13	18.44	1.97	13.64			98.18	
Cu1006	12	76	64.47	18.57	0.77	14.48		0.55	98.84	
Cu1006	12	78	64.01	18.38	0.55	15.16			98.10	
Cu1006	13	80	63.97	18.89	2.31	12.51		1.03	98.70	
		avg	63.91	18.62	1.74	13.53		0.84	98.42	
		std	0.53	0.18	0.70	0.90		0.17	0.43	

.

.

K	_f	J	denar	N	<i>ficropro</i>	ha	Data	for	RT	Date	48	Samnles	DI	DH1513) -	Tànuary	15	-16	1997
n	-1	- (USDAF	13	ICTODIC	vve	Data	IOF	L L	Date	uc	Jaindies ($\boldsymbol{\nu}$	711313	, -	Janual y	10	-10.	1771

1 . **4**. . . .

i i i

Sample #	Grain	Point	SiO2	Al2O3	FeO	Na2O	K2O	Cl	BaO	Total
Cu1010	14	84	61.90	18.48		1.34	13.86		1.79	97.37
Cu1010	14	85	63.01	18.71		2.33	12.84		1.65	98.53
Cu1010	14	86	63.32	19.02		2.22	12.74		1.16	98.46
Cu1010	14	88	63.55	18.65		1.15	14.46		0.81	98.62
Cu1010	15	89	63.89	18.15		1.70	14.29			98.03
Cu1010	15	90	62.66	17.74		0.75	14.73			95.88
Cu1010	15	91	63.51	18.36	0.42	2.07	12.01	0.12	0.77	97.26
Cu1010	15	92	64.34	18.59		2.24	12.52		1.11	98.80
Cu1010	16	94	63.72	18.69		1.40	13.84		0.71	98.36
Cu1010	16	95	62.65	18.14		0.62	14.29		0.66	96.37
		avg	63.25	18.45		1.58	13.56		1.08	97.77
		std	0.68	0.35		0.60	0.90		0.41	0.96

د هيد در يه مدريه دد.

Sample #	Grain	Point	SiO2	TiO2	Al2O3	FeO	MnO	MgO	Na2O	K2O	C1	BaO	Total
Cu999	22	118	36.63	3.79	13.59	14.69	0.54	14.86		8.81		0.74	93.65
Cu999	22	119	36.10	3.73	13.37	14.68	0.58	14.51	0.28	8.72			91. 97
Cu999	22	121	35.80	3.28	13.70	15.08	0.31	14.19		8.52	0.09		90.96
Cu999	22	127	34.30	3.31	12.76	13.66	0.41	13.82		8.26			86.51
Cu999	22	128	31.98	2.98	12.03	11.19	0.41	13.35		7.49			79.44
		avg	34.96	3.42	13.09	13.86	0.45	14.15		8.36			88.51
		std	1.68	0.30	0.62	1.42	0.10	0.53		0.47			5.11
Sample #	Grain	Point	SiO2	TiO2	Al2O3	FeO	MnO	MgO	Na2O	K2O	Cl	BaO	Total
Cu1001	24	131	37.15	3.53	14.15	14.78		14.59	0.31	8.63	0.10		93.23
Cu1001	24	132	35.35	3.79	13.88	15.17	0.29	13.56		8.69		1.01	91.73
Cu1001	24	135	33.72	2.89	13.12	11.99	0.27	13.38	0.25	7.70			83.33
Cu1001	24	136	36.16	3.15	14.10	12.37		14.33	0.28	8.20	0.12		88.70
Cu1001	24	137	37.40	3.86	14.30	15.09		14.20		8.81	0.09		93.74
Cu1001	25	138	36.72	3.91	14.08	14.50	0.27	14.36		8.53			92.38
Cu1001	25	140	33.47	2.82	12.56	11.13		13.67		7.98			81.63
Cu1001	25	141	37.39	3.38	14.04	13.84	0.33	15.58	0.41	8.51			93.49
Cu1001	25	143	37.47	3.56	14.20	14.43		15.29	0.28	8.84			94.07
Cu1001	25	144	34.82	2.78	13.74	10.83		15.00		7.58			84.76
	•	avg	35.96	3.37	13.82	13.41	0.29	14.40	0.30	8.35	0.10		89.70
		std	1.46	0.41	0.53	1.59	0.02	0.70	0.06	0.43	0.01		4.52
Sample #	Grain	Point	SiO2	TiO2	A12O3	FeO	MnO	MoO	Na2O	K20	CI	Total	

Biotite Microprobe Data for RT Dated Samples - January 15-16, 1997

Sample #	Grain	Point	SiO2	TiO2	Al2O3	FeO	MnO	MgO	Na2O	K2O	Cl	Total
Cu1002	18	102	37.58	3.75	14.00	13.68		15.80		8.47		93.27
Cu1002	18	103	38.36	3.67	14.48	14.33		16.03	0.39	8.50		95.75
Cu1002	18	104	35.63	3.23	13.34	13.30		14.12		7.90	0.12	87.63
Cu1002	19	105	36.59	4.00	14.25	14.48	0.36	13.99		8.32	0.10	92.09
Cu1002	19	106	37.17	2.57	14.90	14.28	0.38	14.88		8.06		92.24
Cu1002	19	109	37.94	3.11	15.58	14.20	0.31	14.85	0.29	8.68		94.96
		avg	37.21	3.39	14.43	14.04	0.35	14.95	0.34	8.32	0.11	93.13
		std	0.90	0.47	0.70	0.42	0.03	0.77	0.05	0.27	0.01	3.62

Sample #	Grain	Point	SiO2	TiO2	Al2O3	FeO	MgO	Na2O	K2O	Cl	Total
Cu1011SK	17	98	45.46		35.48	1.03	0.46	0.36	9.24		92.02
Cu1011SK	17	99	45.73		35.51	0.81	0.62	0.41	9.04		92.12
Cu1011SK	17	100	45.14	0.34	35.10	1.04	0.54	0.40	8.82		91.38
Cu1011SK	17	101	45.55	0.32	33.79	2.08	0.78	0.41	8.48	0.43	91.85
		avg	45.47	0.33	34.97	1.24	0.60	0.39	8.89		91.84
		std	0.21	0.01	0.70	0.49	0.12	0.02	0.28		0.28
Sample #	Grain	Point	SiO2	TiO2	A12O3	FeO	MgO	Na2O	K2O	Total	
Cu1011SR	20	111	45.10		34.45	0.94	0.83	0.26	8.27	89.85	
Cu1011SR	20	112	46.02		34.99	1.21	0.88	0.47	9.36	92.93	
Cu1011SR	20	114	45.89		34.56	1.31	1.01	0.37	9.40	92.54	
Cu1011SR	21	115	48.34	0.33	32.69	0.60	1.78		8.02	91.75	
Cu1011SR	21	116	47.77		32.66	0.68	1.66	0.32	7.86	90.96	

33.87 0.95

0.99 0.28

.

1.23

0.41

0.36

0.08

8.58

0.67

91.61

1.11

Sericite Microprobe Data for RT Dated Samples - January 15-16, 1997

46.63

1.22

avg

std

Appendix D.

Argon Plateaus and Datasheets

9

CU-999K1 K-FELDSPAR SUMMARY

oC	maV 39	\$ 39	AGE (Ma)	% ATM 37	/39 36/40	39/40	\$ IIC
500	1.1	0	-48.7 +/98.9	103 .1	.003497	.002742	.07
550	3.4	.2	22.1 +/- 19.6	91.2 .4	.003105	.017188	.7
600	12.4	. 8	27.4 +/- 4.6	67.2.2	.002286	.051508	.28
650	30	2	30.9 +/- 1.8	42.8 .3	.001455	.079281	.33
700	65.9	4.4	31.5 +/9	26.2 .2	.000889	.099818	.21
750	73.9	5	32.2 +/6	11.3 .1	.3 .000385	.117365	.14
775	66.4	4.5	32.1 +/6	9.1 .1	.1 .000311	.120842	.12 ·
800	59	4	32.4 +/6	9.1	. 000308	.120067	.11 .
850	82.1	5.5	32.1 +/5	10.7 .0	.000364	.118486	.08
900	82	5.5	32.1 +/6	13.2 .0	.00045	.115249	.06
950	77.2	5.2	32.1 +/7	15.7 .0	.000534	.112137	.05
975	52.1	3.5	31.6 +/9	20 .0	.000681	.108158	.07 ·
1000	51.6	3.5	31.5 +/- 1	23.9 .0	.000811	.103087	.07 ·
1025	55.1	3.7	30.6 +/- 1	27.5 .0	.000935	.101285	.06
1050	65.1	4.4	31.9 +/9	25.6 .0	.000871	.099339	.06
1075	69.3	4.7	32.3 +/8	24.7 .0	.000838	.099372	.06
1100	69.3	4.7	31.9 +/8	26.5 .0	.000899	.098151	.07
1150	134.6	9.1	31.7 +/5	26.9 .0	.000914	.098115	.07
1200	242	16.4	32.9 +/3	17.3 .0	5.000587	.107007	.05
1250	114.5	7.7	32.6 +/6	27.9 .1	4 .000945	.094202	.15
1300	22.8	1.5	27.5 +/- 3.3	73.9 .3	9.002506	.040621	.47
1350	13.3	.9	17.3 +/- 6.8	92.2.5	.003128	.019067	.94
1450	27	1.8	17.8 +/- 5.7	94 .2	3.003185	.014238	.43

TOTAL GAS AGE = 31.5 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES **%** IIC - INTERFERING ISOTOPES CORRECTION

CU-1001K1 K-FELDSPAR SUMMARY

oC	mV 39	\$ 39	AGE (Ma)	1 AT	[37/39	36/40	39/40	\$ IIC
550	3.9	.3	12.8 +/- 21	93.1	.78	.003188	.023195	1.97
600	11.4	.9	34.5 +/- 5.6	52	.13	.001777	.060331	.13
650	25.8	2	33.6 +/- 1.9	23.3	.06	.000795	.098401	.06
700	42.4	3.3	31.8 +/- 1.3	20.9	.04	.000712	.106741	.04
750	72.9	5.8	32.6 +/6	7.3	.02	.000251	.121431	.02
775	45.4	3.6	32.6 +/6	.4	.02	.000017	.131056	.03
800	38.7	3	29.3 +/8	7.8	.02	.000269	.135552	.02
850	53.1	4.2	32.9 +/6	2.6	0	.000088	.12713	0
900	47.4	3.7	30.4 +/- 1	13	.02	.000444	.122891	.02
950	43.2	3.4	32.7 +/- 1	10.8	.02	.000368	.117019	.02
975	35.4	2.8	29.2 +/- 1.6	25.8	.02	.000881	.112075	.02
1000	42.8	3.4	31.9 +/- 1.4	21.5	0	.000732	.105523	0
1025	59	4.7	32.5 +/- 1.1	21.6	.02	.000735	.10309	.02
1050	76.7	6.1	32.5 +/9	20.6	.02	.000702	.104158	.02
1075	85.6	6.8	32.8 +/8	18.2	.01	.00062	.106397	.01
1100	85.6	6.8	32.9 +/8	16.8	.02	.00057	.108117	.02
1125	97	7.7	32.8 +/8	16.7	.01	.000569	.108186	.01
1150	106.3	8.4	32.7 +/7	16.6	.01	.000563	.108766	.01
1175	116.4	9.2	32.7 +/7	17.9	.01	.000609	.107087	.01
1200	96.1	7.6	32.8 +/8	18.3	.01	.000622	.106231	.01
1225	38.7	3	32.8 +/- 1.6	25	.01	.000852	.097952	.01
1250	13.5	1	31.2 +/- 4.5	50.2	.1	.001717	.06913	.11
1350	5.6	.4	18.2 +/- 19.1	93.1	.34	.003168	.016271	.6
1450	10.4	.8	8.8 +/- 14.7	98	0	.003323	.009447	0

TOTAL GAS AGE = 32.1 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES ***** IIC - INTERFERING ISOTOPES CORRECTION

.

CU-1002K1 K-FELDSPAR SUMMARY

oC	mV 39	\$ 39	AGE (Ma)	% ATM	37/39	36/40	39/40	\$ IIC
550	8.2	.3	9 +/- 8.7	94.6	. 69	.003217	.025325	2.46
600	16.8	.6	28 +/- 3.2	56.2	.18	.001912	.067314	.21
650	42.9	1.5	32.9 +/- 1.2	27.4	.12	.000931	.094122	.12
700	79.9	2.9	33.2 +/6	12.5	.08	.000426	.112414	.08
750	129.3	4.7	32.5 +/3	6.8	.02	.000232	.122152	.02
775	111.6	4.1	32.6 +/3	5.2	.01	.000178	.123949	.01
800	99.9	3.6	32.2 +/4	7.9	.01	.00027	.121864	.01
850	105.8	3.9	32.4 +/4	8.8	.01	.000299	.119819	.01
900	97.4	3.5	32.4 +/5	11.1	0	.000378	.116748	0
950	104.3	3.8	32.6 +/5	14.8	.01	.000503	.111351	.01
975	95.7	3.5	32.6 +/6	15.1	.01	.000515	.110739	.01
1000	118	4.3	32.7 +/5	17.2	.01	.000584	.107799	.01
1025	92	3.3	32.6 +/6	16.7	.01	.000566	.108927	.01
1050	99.2	3,.6	32.6 +/6	16	.02	.000545	.109674	.02
1075	122.1	4.5	31.7 +/5	16.3	.01	.000552	.11236	.01
1100	148.4	5.4	32.7 +/4	12.8	.01	.000433	.113495	.01
1125	190.8	7	32.9 +/3	11.7	.01	.000399	.114118	.01
1150	229.7	8.4	32.6 +/3	12	.01	.000408	.114831	.01
1175	262.4	9.6	33.2 +/3	10.3	.01	.00035	.11491	.01
1200	205	7.5	33.3 +/3	11.4	.01	.000389	.113301	.01
1225	139.2	5.1	33 +/4	14.2	.01	.000483	.110782	.01
1250	89.2	3.2	32.8 +/6	20.9	.01	.00071	.102854	.01
1450	122.1	4.5	31.5 +/- 1	57.6	.01	.001953	.057239	.01

TOTAL GAS AGE = 32.6 Ma J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES \$ IIC - INTERFERING ISOTOPES CORRECTION

CU-1006K1 K-FELDSPAR SUMMARY

oC	mV 39	\$ 39	AGE (Ma)	X ATM	37/39	36/40	39/40	\$ IIC
600	95.3	3.1	31.1 +/- 1.6	71.9	. 08	.002434	.038416	.09
650	145.2	4.7	32.2 +/5	30.8	. 02	.001044	.091473	.02
700	191.9	6.2	31.8 +/5	21.3	.01	.000722	.105352	.01
750	212.1	6.9	32.4 +/3	14.5	.01	.000491	.112455	.01
775	148.6	4.8	31.2 +/4	12.4	.01	.00042	.11957	.01
800	125.2	4.1	32.2 +/4	13.8	.01	.000468	.113984	.01
850	106.2	3.4	32.5 +/5	14.2	.01	.000483	.112338	.01
900	92.6	3	32.2 +/5	13.3	.01	.00045	.114719	.01
950	102.3	3.3	32.3 +/5	11.4	0	.000388	.116758	0
975	59.8	1.9	29.4 +/7	15.6	.01	.000531	.122367	.01
1000	50.8	1.6	32 +/6	7.7	.02	.000264	.123042	.02
1025	53.7	1.7	31.7 +/6	10.4	.01	.000353	.120623	.01
1050	60.6	1.9	32.3 +/7	11.2	0	.000379	.117509	0
1075	72.7	2.3	32.3 +/6	14.3	.01	.000485	.113338	.01
1100	86.9	2.8	32.2 +/6	17.3	.01	.000586	.109482	.01
1125	124.9	4.1	32.5 +/5	19.3	0	.000655	.105696	0
1150	158.3	5.1	32.3 +/4	23.3	0	.000791	.100858	0
1175	202.8	6.6	32.6 +/4	24.2	0	.000822	.098792	0
1200	282.3	9.2	32.8 +/3	22	0	.000746	.100943	0
1225	334.5	10.9	32.9 +/3	18.2	0	.000619	.105675	0
1250	207.8	6.8	32.9 +/4	20.7	0	.000702	.102484	0
1300	68.8	2.2	32.5 +/- 1	38.8	0	.001316	.080114	0
1450	63.2	2	29.7 +/- 1.9	74.8	0	.002534	.036099	0

TOTAL GAS AGE = 32.2 Ma J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES \$ IIC - INTERFERING ISOTOPES CORRECTION

CU-1010K1 K-FELDSPAR SUMMARY

.

بالماريون وياده وحواط ويوقون فالواجو ويراد المام

oC	mV 39	\$ 39	AGE (Ma)	THE STREET	37/39	36/40	39/40	\$ 110
600	44.2	1.7	26.5 +/- 3.6	87.3	0	.002958	.020284	0
650	47.1	1.8	31.6 +/- 1.1	30.4	0	.001032	.093902	0
700	71.8	2.8	31.4 +/8	22.7	.01	.000772	.104804	.01
750	81.8	3.2	31.6 +/6	16	.01	.000542	.113406	.01
775	45.7	1.8	32 +/6	6.7	0	.00023	.124742	0
800	33	1.3	33.3 +/5	3.4	0.	.000117	.124189	0
850	36.4	1.4	32.2 +/9	11.6	0	.000397	.11754	0
900	38.4	1.5	32.8 +/8	10.9	0	.000371	.116258	0
950	45.6	1.8	32.8 +/7	9.1	0	.00031	.118235	0
975	36.7	1.4	32.8 +/6	5.8	.01	.000198	.122883	.01
1000	33.4	1.3	33.2 +/6	4.8	0	.000165	.122773	0
1025	37.7	1.5	32.2 +/9	13.3	0	.000453	.115131	0
1050	35	1.4	32.6 +/8	10.9	0	.000373	.116921	0
1075	40.4	1.6	32.5 +/9	13.4	0	.000455	.114086	0
1100	48	1.9	31.9 +/9	16.6	0	.000565	.111602	0
1125	59.7	2.4	32.3 +/8	19.7	0	.000668	.106091	0
1150	75.4	3	31.6 +/8	25.4	0	.000862	.100497	0
1175	107.8	4.3	31.4 +/6	30.8	0	.001043	.093876	0
1200	226.6	9.1	31.9 +/4	29.3	0	.000992	.09423	0
1225	568.2	22.8	32.4 +/2	21.3	0	.000721	.103457	0
1250	510	20.5	32.3 +/2	19.1	0	.000647	.106421	0
1350	113.2	4.5	31.8 +/6	32.8	.01	.001111	.090004	.01
1450	114.4	4.6	31.5 +/8	51.3	.01	.001738	.065745	.01
1500	35.4	1.4	28.1 +/- 3.4	84.1	0	.002849	.024078	0

TOTAL GAS AGE = 32 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES ***** IIC - INTERFERING ISOTOPES CORRECTION

CU-999Bil BIOTITE SUMMARY

oC	mV 39	\$ 39	AGE (Ma)	% ATM	37/39	36/40	39/40	¥ IIC
600	10.4	.7	3.7 +/- 7.1	92.7	.06	.003211	.088333	.58
650	14.4	1	23.6 +/- 4.4	52.2	.03	.001797	.089526	.05
675	15.6	1.1	26.5 +/- 3.5	37.4	03	.00129	.104467	.02
700	20.2	1.4	30.9 +/- 2.3	22	0	.000756	.110903	0
725	33.1	2.4	30.1 +/- 1.7	21.2	0	.000725	.113553	.01
750	42.8	3.1	31.2 +/9	4.3	0	.000148	.132824	0
800	76.9	5.6	32.1 +/6	3.6	0	.000124	.129054	0
850	89.7	6.6	32.6 +/5	2.6	0	.000089	.128019	0
900	83.2	6.1	32.7 +/6	4.2	0	.000144	.125594	0
950	97	7.1	33.4 +/5	3	.01	.000104	.124089	.01
975	106.2	7.8	33.3 +/4	2.8	0	.000095	.124764	0
1000	189.2	13.9	33.1 +/3	3.6	0	.000122	.124175	0
1025	231.1	17	33 +/4	7.4	.01	.000254	.119389	.01
1050	148.3	10.9	32.4 +/7	19.2	.02	.000651	.106609	.02
1100	116.4	8.5	32.4 +/8	21.4	.03	.000727	.103647	.03
1200	74.8	5.5	30.7 +/- 1.8	54.9	.24	.001864	.0627	.26
1450	7.5	.5	-82.1 +/63.9	102.7	1	.00348	.001497	.32

TOTAL GAS AGE = 31.6 Ma

J = .00232

.

ERROR ESTIMATES AT ONE SIGMA LEVEL

1. 3. -1. 1. -

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES \$ IIC - INTERFERING ISOTOPES CORRECTION

CU-1001Bil BIOTITE 1001Bil BIOTITE SUMMARY

oC	maV 39	\$ 39	AGE (Ma)	X ATM	37/39	36/40	39/40	\$ IIC
600	15.7	1	-61.9 +/6.3	295.5	18.79	.009883	.13225	8.48
650	20	1.3	3 +/4.1	100.4	7.89	.003392	.078923	1005.29
700	44.5	3	27.3 +/- 1.7	47.4	1.93	.0016	.079842	2.33
750	96.9	6.6	32 +/7	24	.6	.000811	.098161	.62
775	89.6	6.1	32.1 +/5	8.4	.52	.00029	.118031	.54
800	81.9	5.5	32 +/4	4.5	.47	.00016	.123127	.49
850	84.2	5.7	32.2 +/4	5.7	.44	.000197	.121001	.45
900	71.1	4.8	32.6 +/4	3.7	.5	.000135	.122051	.51
925	47.2	3.2	32 +/5	3.4	.7	.000129	.124424	.73
950	44.4	3	32.5 +/5	2.5	.73	.000101	.123642	.75
1000	80.6	5.5	33.3 +/3	3	.37	.000109	.12024	.37
1050	196.1	13.3	33.4 +/2	2.2	.16	.000077	.121312	.16
1100	366.1	25	33.3 +/2	1.5	.09	.000053	.122481	.09
1150	215.9	14.7	33.3 +/2	1.5	.14	.000054	.122331	.14
1250	6.2	.4	33 +/- 4.1	30	5.22	.001054	.085686	5.26
1450	3.3	.2	138.7 +/- 35.8	74.4	9.28	.002506	.007393	2.62

TOTAL GAS AGE = 31.5 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES **%** IIC - INTERFERING ISOTOPES CORRECTION

CU-1002Bil BIOTITE SUMMARY

	oC	mV 39	\$ 39	AGE (Ma)	\$ ATM	37/39	36/40	39/40	1 10
	600	12.6	.9	-62.3 +/6.6	218.8	19.74	.007377	.08047	8.85
	650	20.2	1.4	2.9 +/- 3.5	94.9	7.52	.003222	.07119	80.64
	700	50.3	3.6	28.8 +/- 1.2	37.5	1.9	.001276	.089893	2.17
	750	66.5	4.7	30.9 +/8	24.6	1.16	.00084	.100947	1.24
	8 00	115.6	8.3	32.1 +/4	8.5	.58	.000295	.118001	.59
ź	850	99	7.1	31.9 +/4	6.4	.6	.000227	.121159	.62
	900	72.7	5.2	31.7 +/4	5.7	.79	.000208	.122884	.83
	950	67.6	4.8	31.8 +/5	5.3	.88	.000198	.122886	.91
	1000	76.4	5.5	32.6 +/4	4.9	.72	.000182	.120545	.73
	1025	96	6.9	32.9 +/3	3	.58	.000116	.1216	.58
	1050	219.1	15.7	32.9 +/2	1.7	.25	.000065	.123433	.25
	1075	283.5	20.4	33 +/2	1.2	.18	.000047	.123987	.18
	1100	95.9	6.9	32.9 +/2	1.1	.45	.00005	.124135	.45
	1150	66.6	4.7	32.6 +/3	2.5	.63	.000102	.123392	.64
	1250	42.1	3	32.8 +/8	9.6	1.44	.000349	.113642	1.46
	1350	3.2	.2	91 +/- 14.1	44.9	13.84	.001552	.024528	5.55
	1450	1	0	207.3 +/- 83.9	74.7	45.72	.002536	.004863	9.51

TOTAL GAS AGE = 31.4 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES ***** IIC - INTERFERING ISOTOPES CORRECTION

CU-1011 K-FELDSPAR SUMMARY

oC	mV 39	\$ 39	AGE (Ma)	* ATM	37/39	36/40	39/40	\$ IIC
600	30.4	2.5	30.3 +/- 2.4	64.5	. 08	.002189	.050049	.09
659	57.4	4.8	32.7 +/- 1	25.1	.02	.000854	.09765	.02
700	90.7	7.6	33.2 +/4	6.9	0	.000236	.119366	0
750.	187.9	15.8	33.3 +/2	2.5	0	.000087	.124472	0
775	160.9	13.5	32.9 +/2	1.4	0	.000047	.127715	0
800	157.3	13.2	33 +/2	.6	0	.000021	.128111	0
850	224.1	18.8	32.8 +/2	1.8	0	.000062	.12737	0
900	213.7	17.9	32.6 +/2	4.6	ο	.000156	.124458	0
950	36	3	31.8 +/7	7.1	0	.000244	.125133	0
975	16.4	1.3	31.7 +/- 1.3	9.3	0	.000318	.123912	0
1000	8.4	.7	14.2 +/- 4.1	61.2	.08	.002112	.120923	.19
1025	3.9	.3	29.5 +/- 2.5	10.7	0	.000381	.140982	0

TOTAL GAS AGE = 32.7 Ma

· · ·

J = .00232

.

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES ***** IIC - INTERFERING ISOTOPES CORRECTION

CU-1011SR SERICITE

SERICITE SUMMARY

oC	mV 39	1 39	AGE (Ma)	\$ ATM	37/39	36/40	39/40	¥ IIC
450	6.4	.5 -	-34 +/17.3	134.8	2.46	.004602	.045145	2.14
500	1.7	.1	26 +/- 12.3	39.1	11.44	.001552	.103071	14.43
550	6.7	.6	44.2 +/- 5.7	24.7	2.66	.000869	.072675	2.04
600	11.5	1	32 +/- 3.8	33.2	1.34	.001151	.089851	1.39
650	35.8	3.1	30.7 +/9	6.9	.59	.000251	.129736	.64
700	64.7	5.7	32.3 +/6	7.1	.3	.000248	.122687	.31
750	100.9	8.9	32.1 +/3	2.5	.19	.000092	.12937	.2
800.	133.4.	11.8	31.9 +/3	1.8	.15	.000068	.130772	.16
850	161.9	14.3	32 +/2	.4	.13	.00002	.13231	.14
900	186.2	16.5	31.6 +/2	2.3	.12	.000082	.131707	.12
950	221	19.6	31.6 +/2	2.6	.1	.00009	.131149	.11
1000	118.7	10.5	31.5 +/3	1.9	.18	.000069	.132427	.19
1050	42.7	3.7	27.8 +/9	10.5	.52	.000369	.137836	.61
1100	17.8	1.5	14.4 +/- 2.7	49	1.39	.001696	.153618	3.12
1200	8.1	.7	3.4 +/- 8.7	93.7	3.61	.00322	.078848	33.02
1450	7.5	.6	180.4 +/- 22.1	52.3	4.63	.001776	.01082	1.06

TOTAL GAS AGE = 31.9 Ma

J = .00232

ERROR ESTIMATES AT ONE SIGMA LEVEL

37/39,36/40 AND 39/40 Ar RATIOS ARE CORRECTED FOR INTERFERING ISOTOPES ***** IIC - INTERFERING ISOTOPES CORRECTION