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ABSTRACT 

 

This research proposed the algorithm, that can detect powdery mildew and give the highest 

classification accuracy (CA). Three image processing and two machine learning algorithms 

(artificial neural network; ANN and support vector machine) were used to find the optimal 

combination for different image resolutions. Also, data augmentation by using a rotation 

technique was carried out to simulate the real-world field-situation. The results after data 

augmentation tended to be underfitting due to the added directional parameter. The results 

showed the highest CA of 94.34% for the combination of speeded-up robust features and 

ANN at 908×908 image size. To get better performance, six convolutional neural network 

algorithms were compared after data augmentation. ResNet-50 as the highest CA, AlexNet 

as the shortest computation time, and SqueezeNet-MOD2 as the smallest memory would 

be recommended in the conclusion. 
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CHAPTER 1: INTRODUCTION 

 

From the late 1900s to the early 2000s, changes in agricultural practices led to 

various outcomes such as increasing productivity, food diversity, and reducing seasonal 

dependence to help the world produce more food (Kearney, 2010). However, the estimates 

the world population to increase by more than a billion over the next 15 years and it will 

reach 11.2 billion in 2100 (United Nations, 2015). Also, per capita, food intake has 

increased by nearly 400 kcal per person per day worldwide and climatic instability caused 

by global warming is a factor (Alexandratos et al., 2006; Thompson, 2016). Hence, 

increasing the production of food should be prepared and a balance between the growing 

food demand and global agricultural output is required. Plant diseases may pose a serious 

threat to national food security; hence, the disease management could be a clear solution 

to meet growing demand. For example, potato blight caused by Phytophthora infestans hit 

Europe in the 1840s and around one million people died of starvation in Ireland (Strange 

& Scott, 2005). The threat to food security has increased in recent years. For example, 

banana, a major crop for Africans, has devastated the cultivars of previous varieties due to 

the new species that cause Panama disease (Ploetz, 1994). Also, wheat rust fungus, which 

is not resistant to current varieties of wheat, barley, and grains, is spreading from Africa to 

the Middle East (Thompson, 2016). Pathogens and weeds cause a loss of from 20 to 40% 

in global agricultural productivity (Teng & Krupa, 1980; Teng & James, 2002; Savary et 

al., 2012). Destruction of crops due to such devastating diseases could threaten national 

security (Strange & Scott, 2005). 

 

https://link.springer.com/article/10.1007/s12571-012-0200-5#CR129
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Powdery mildew (PM) can cause a decrease in strawberry yield by causing a 

decline in photosynthesis (Scholes et al., 1994; Carisse et al., 2013). Severe PM disease 

can cover the flowers with mycelium and make them die before they bear fruit. Pollen can 

also be polluted, reducing pollen retention and creating a poor quality of fruit (Carisse et 

al., 2013). Strawberries that are grown in polyethylene tunnels are particularly vulnerable 

to a major fungal disease such as PM because tunnels could make high humidity and warm 

temperature which is a good condition for infection and the disease can cause up to a 70% 

yield loss by affecting strawberry production all over the world (Liu, 2017).  

Fungicides are the most common and effective way to control crop disease in the 

field, but over-spraying without the precision of detection is not good because of the 

environmental concerns and waste of fungicides. The decision to spray fungicides depends 

on producers observing the distribution and severity of the disease by scouting. This is 

performed to minimise the amount of fungicide use and determine the appropriate spraying 

timing of fungicide (Kobayashi et al., 2001). Detecting and finding out the plant disease at 

an early stage is the key challenge because a bigger problem can arise with the pathogens 

spreading. Wspanialy and Moussa (2016) indicated that field-scouting of the PM should 

be investigated, diagnosed, and treated as often as possible at an early stage. Due to the 

high cost of field-scouting, the inspection of the disease processes on a weekly or bi-weekly 

basis, and this low frequency of detection cannot meet the demand to find early signs of 

disease (Wspanialy & Moussa, 2016). Garud and Devi (2017) reported that the existing 

way of judging disease is normally carried out based on the producer’s own experience 

which would not be accurate. It is also expensive to rely on a large team of experts to 

monitor the field continuously (Kulkarni & Patil, 2012). Hence, an attempt to integrate 
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existing knowledge in new ways and apply them to solve real-world problems is needed. 

Machine vision (MV), which is a technology commonly utilised in imaging-based 

automated inspection and analysis for applications excels at quantitative measurement 

under the structured circumstances with speed, accuracy, and repeatability (Steger et al., 

2018). MV systems are not only able to recognise the size, shape, colour, and texture of an 

object, but also provide numerical properties of an imaged object or scene. Among the 

many steps in MV, machine learning (ML) can be used as one of the developments before 

applying to the hardware as a role of training algorithms that computers can learn how to 

make decisions. ML, which is a subset of artificial intelligence (AI), is an algorithm or 

statistical mode for scientific research to conduct specific work based on the pattern. Deep 

learning (DL), which is a subset of ML, is a more advanced neural network including the 

automatic feature extraction steps. AI helps to produce healthier crops by checking crop 

diseases, defects, and nutrients; hence, AI can increase the overall efficiency in agriculture 

production and agro-business. Therefore, the key of this research is to find the optimal 

algorithms in order to detect PM on the strawberry leaves by using MLs (two non-DLs and 

six DLs) and classify the healthy and infected leaves with high test accuracy (classification 

accuracy; CA) and short computation time. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Powdery mildew (PM) 

The value and production of strawberries have increased for the past five 

consecutive years due to the adoption of new varieties and the increase in yields (Statistics 

Canada, 2017). In Canada, however, strawberry losses range from 9 to 30% of crop yields 

due to various diseases (Carisse et al., 2013). PM disease is a fungal disease that affects 

various plants such as wheat, barley, grape, onions, apples, pears, and strawberries 

(Bushnell & Allen, 1962). Among the various crops, PM commonly happens on the 

strawberry leaves in Nova Scotia due to a big temperature difference in summer. In the 

strawberry market, detecting PM disease at the early stage is one of the crucial factors. If 

producers figure out the existence of PM early, they could prevent it from spreading 

diseases all over their field. A common fungal pathogen is Podosphaera macularis 

(formerly Sphaerotheca macularis) and its symptoms include white clusters of hyphae that 

are often present on the leaves and can infect fruits themselves in the severe stages (Paulus, 

1990) (Figure 2-1). 

 

 

 

 

 

 

(a) (b) (c) 

Figure 2-1. Symptoms of powdery mildew disease on the strawberry leaves, (a) the 
individual infected leaf, (b) the bundle infected leaves, and (c) the infected fruits at 
the severe stage. 
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Zhang et al. (2012) detected the PM disease through spectroscopic measurement 

and analysis, which has had a great influence on the production of wheat. They extracted a 

total of 32 spectral characteristics and suggested that multispectral remote sensing is a cost-

effective way to detect PM in wheat. Wspanialy and Moussa (2016) reported that PM is 

relatively easy to identify with the naked eye and is suitable for automated visual disease 

detection. When a susceptible host plant is born, the asphalt-coloured spores germinate and 

cause an infection. PM is passively dispersed by the wind and mass production of spores 

due to the infection occurs under high humidity and high-temperature conditions. The 

infected leaves are directed upward, with the underside reddish, and in the worst case, the 

colour of the edges appears to be burned. The highest germination rate observes at 25℃, 

relative humidity (RH) 99%, and 1,750 lux light intensity which is a minimal degree and 

starting from the lowest part of the leaves which are the most adjacent to fruit from the 

bundle (Jacob et al., 2008). Disease lowers the productivity of infected crops and makes 

infected strawberries non-marketable, resulting in yield losses of up to 60% in the United 

States (Nelson et al., 1995). 

2.2. Fungicide and spot application (SA) 

Fungicide is an important tool for managing PM disease which is a major problem 

in many crop productions around the world. Unfortunately, these fungicides generally have 

a particular mode of action, so they are at high risk for resistance and PM fungi have a high 

potential for resistance development (McGrath, 2001). Esau et al. (2014) studied automated 

prototype and variable rate in a sprayer for SA of fungicide in a wild blueberry field. 

Inadequate or excessive use of a fungicide is inefficient in terms of cost and has the 

potential to increase the risk of environmental pollution. Therefore, using spot-spray 
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methods with fungicides for diseases in blueberry could maximise farm profitability and 

minimise environmental pollution (Esau et al., 2014).  

According to Statistics Canada (2020a), the number of people who were engaged 

in Canadian agriculture in 1991 was 390,875, however, in 2016 it decreased to 271,935. In 

addition, the average of farm operators was 47.5 years of age in 1991, however, it reached 

55 years of age in 2016. Therefore, accurate and fast methods should be applied for the 

detection of PM disease for the preparation of agricultural workforce declining and aging 

phenomenon in the situation of increasing the world population.  

Xue et al. (2012) developed an MV application that allows farm robots to navigate 

rows with an average error of 1 mm for the distance field of view (FOV) guidance method 

in the cornfield. They showed that field scouting was used as a justification for robotic 

research in the field and the developed method was able to be operated in cornfields without 

damaging the crops. Cubero et al. (2011) showed that MV can detect defects or features 

that are invisible to the human when grading, quality estimation, and monitoring of fruit 

processes when they are stored. Blasco et al. (2003) evaluated the efficiency of MV 

developed for the on-line assessment of fruit quality. The quality of the fruit was assessed 

through a classification used based on size, colour, and location of the stem. When 

collecting fruits in batches, they achieved 86% and 93% of repeatability in blemish 

detection and size estimation, respectively (Blasco et al., 2003). 

2.3. Image processing 

Images are a versatile tool for both qualitative and quantitative information because 

they have dual attributes such as visually analyzable entities with shape elements or large 
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datasets that can be generated (Vidal & Amigo, 2012). Computer vision (CV) is derived 

from computer science that deals with how computers can gain a high level of 

understanding through images. MV is the use of the CV in an industrial or practical 

application that traditionally requires the execution of a specific function or result based on 

image analysis processed by a vision system (Jain et al., 1995). The components of a basic 

CV and MV system are typical: imaging devices, camera sensors and lenses, lighting for 

specific applications, computers, and image processing in software (Jain et al., 1995).  

Image processing is an interesting and dynamic part of CV by visually representing 

the theoretical parts that appeared as writing. Image processing is a way to perform an 

image modification to extract useful information. This is the processing in which the input 

is an image and the output can be an image or property associated with that image. Steward 

and Tian (1999) reported that images taken in sunny areas were more susceptible to pixel 

noise and more variability at the edges when segmenting. Light and other environmental 

parameters could be the hamper factors in image processing; hence, these parameters 

should be generalised through the image processing. The intensity of light, size, and colour 

of the images could affect the classification accuracy (CA) (Li et al., 2010; Rehman et al., 

2019). Patil and Kumar (2011) reported that image processing is helpful when extracting 

the representative features in order to train and test the algorithms to get the CA in disease 

detection. 

2.3.1. Histogram of oriented gradients (HOG) 
 

HOG has gained momentum in human recognition by condensing huge features 

into nine bins of the histogram (Dalal & Triggs, 2005). HOG descriptors have been studied 

to understand the importance of fine-scale gradients, fine orientation binning, relatively 
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coarse spatial binning, and high-quality local contrast normalisation in overlapping 

descriptor blocks. HOG feature extraction is usually used with a linear SVM for robust 

object detection and applied it to human detection. It has considerably better performance 

than existing methodologies for human detection (Dalal & Triggs, 2005). Zhu et al. (2006) 

studied a fast and accurate human detection system by combining cascade of rejectors 

method and HOG and Adaboost to select the representative features and they selected the 

appropriate set of blocks under the good conditions. In terms of the agriculture field, in 

order to increase the productivity of soybean crops, soybean disease detection was achieved 

with an image of a local descriptor and bag of visual words. Pires et al. (2016) got over 98% 

of CA in the detection of soybean disease and they demonstrated that their approach could 

be easily applied to other crops. 

2.3.2. Speeded-up robust features (SURF) 
 

Bay et al. (2006) suggested a new concept called SURF that generates a point of 

interest and descriptor that is robust for variation and rotation of images. SURF has a 

superior performance than scale-invariant feature transform (SIFT), which is the previous 

method introduced by Lowe (1999) with respect to the blurred images, different hue images, 

warp images, and red, green, and blue (RGB) images. Lowe (1999) developed SIFT as an 

object recognition system that uses local image features that are invariant to the 

deformation. The total time extraction for feature detection and matching in SURF showed 

three times faster than the times of SIFT (Mistry & Banerjee, 2017). SURF is based on 

attributes like SIFT and has less complexity than ever before (Bay et al., 2006). Pires et al. 

(2016) indicated that four local descriptors (SURF, HOG, DSIFT, and SIFT) were used for 

soybean disease recognition. The reason for using local descriptors is that they are 
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distinctive and robust to occlusion which usually occurs when detecting features of the leaf 

in the real field. 

2.3.3. Gray level co-occurrence matrix (GLCM) 
 

GLCM, also called the gray level space-dependence matrix is a statistical method 

of texture inspection that takes into account the spatial relationship of pixels. The way to 

obtain GLCM is to calculate the frequency at which a pair of pixels are lying in a 

relationship between a particular value and a specific space. After that, GLCM creates 

features of the image texture by using the statistical measurements (Sebastian et al., 2012). 

Yao et al. (2009) extracted texture features to classify rice diseases by using GLCM among 

colour, shape, and texture features in image processing. GLCM has proved to be an 

effective method to extract textural features from an image by using statistical variables 

(Mohanaiah et al., 2013). Using statistical variables such as the co-occurrence matrix gives 

mathematically valuable information to process a lot of images in an intensive and compact 

way (Eleyan & Demirel, 2011). Depending on the number of pixels, the statistical variables 

are classified into first-order, second-order, and higher-order. The GLCM extracts 

secondary statistical texture features (Albregtsen, 2008). There are six statistical variables: 

energy, contrast, variance, correlation, entropy, and inverse difference moment (Baraldi & 

Parmiggiani, 1995). In this study, four statistical variables will be used. Each variable 

represents the relationship between different pixels in the image, and each variable can be 

extracted using MATLAB R2019a software (The MathWorks Inc., Natick, MA, U.S.A.). 
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2.4. Machine learning (ML) 

ML is a technique that builds a system that learns, predicts and improves its own 

performance based on empirical data and algorithms for realizing functions such as human 

learning ability on a computer (Michie et al., 1994). Iterative aspects are important since 

models can adapt independently when existing data are exposed to the new data (Russel & 

Norvig, 2016). Many technologies have automatically identified and developed rules and 

relationships to simplify the knowledge required from massive and error-prone empirical 

data. These techniques are assessed for completeness based on their ability to understand 

the new data that are totally separated from training data (McQueen et al., 1995). There are 

two types of ML: supervised ML and unsupervised ML. In this study, supervised ML which 

requires labeled data will be carried out. 

2.4.1. Supervised ML (non-deep learning; DL) 
 

Supervised ML is a learning method that predicts values using given data and 

correct answers. It can be classified into two subgroups: regression and classification. 

Regression mainly deals with continuous value; however, classification primarily deals 

with assigning discrete categories rather than sequential quantities. The binary 

classification which will be mainly covered in this research corresponds to a simple 

classification. However, the algorithm is important to perform binary classification 

(Kotsiantis et al., 2007). There are many kinds of supervised ML. SVM is a statistical 

learning theory developed in the 1990s and is one of the fields of supervised ML. It is a 

model for pattern recognition and data analysis by being mainly used as a classification 

and regression analysis (Scholkopf & Smola, 2001). Joachims (1998) used SVM to learn 

text classifiers and the experimental results demonstrated that the SVM method performs 
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consistently better in text classification because SVM could do parameter tuning 

automatically. Ahmed et al. (2012) studied how to effectively classify crops and weeds in 

digital images using SVM algorithms. They have achieved above 97% accuracy of 

classification over a set of 224 test images. Artificial neural network (ANN) is inspired by 

biological neural networks and many researchers are designing ANN to solve various 

problems related to pattern recognition, prediction, and optimisation (Jain et al., 1996). 

Huang (2007) used ANN to detect and classify Phalaenopsis seedling diseases and GLCM 

has been added for texture extraction of lesion sections. The accuracy was 89.6% by 

successfully detecting and classifying the Phalaenopsis seedling diseases. Jhuria et al. 

(2013) monitored not only the time of harvest but also the plant during its growth period 

and detected disease for fruits by using image processing as a tool. Each disease was 

categorised by colour, texture, and morphology, and 90% accuracy was achieved based on 

MATLAB software (Jhuria et al., 2013). 

2.4.2. Unsupervised ML (non-DL) 
 

Unsupervised ML is different from supervised ML because there is only a predictor 

set but no corresponding responses. Unsupervised ML might not be directly applied to a 

regression or classification problem because it does not know what output data are and 

retains a pattern in a dataset without referring to known or labeled results. Clustering is the 

most prominent example in the unsupervised ML. With clustering, the dataset could be 

separated into groups based on similarity. Unsupervised ML might be useful for later 

supervised ML implementations. Behmann et al. (2015) studied biological stress detection 

due to the crop protection and they used k-means clustering and self-organizing maps for 

clustering. The k-means clustering algorithm is an unsupervised ML based on the 
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distribution of data points within the feature space to structure the data. Hu et al. (2014) 

studied how to quantify the damage and aging of the banana surface by using k-means 

clustering algorithms. The result of the experiments showed that this algorithm was suitable 

for defect extraction of bananas hand/bundle and showed the potential of this algorithm for 

segmentation. The k-means clustering can also be used in supervised ML depending on 

whether the input data are labeled.  

2.5. Deep learning (DL) 

 DL has been renamed by deriving from ANN. The multi-layer perceptron used in 

ANN has limitations. The first limitation was the vanishing gradient problem in a process 

of backpropagation by losing data and the second limitation was that the algorithm is 

difficult to process with the new data which were not shown in the training stage. However, 

LeCun et al. (2015) solved two problems by introducing pretraining and by developing a 

dropout technique, respectively. Hence, DL is an ANN that exceeds the limitations of the 

existing ANN. 

2.5.1. AlexNet 

AlexNet is an algorithm that won the first prize in the Imagenet large scale visual 

recognition challenge (ILSVRC) in 2012 on image classification tasks and one of the 

popular convolutional neural networks (CNNs) , already trained with a million images 

(Krizhevsky & Sutskever, 2012; LeCun, 2015). AlexNet consisted of the first five 

convolutional layers, some of them followed by maxpooling layers, and three fully 

connected layers at the end as a totaling of eight layers (Krizhevsky & Sutskever, 2012). 

The convolutional layer/filter stands for each network as a form of a slice through image 
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one by one in a process of the whole architecture and convolutional networks by consisting 

of multiple filters (i.e., kernels) (O'Shea & Nash, 2015). Compared to the previous CNN 

architectures used for CV tasks, AlexNet was much larger by carrying 60 million 

parameters and 650,000 neurons when considering it was developed six years ago. Durmuş 

et al. (2017) used AlexNet and SqueezeNet to classify using ten different tomato leaf 

classes (including healthy tomato leaf). They got an accuracy of 95.65% and 94.30%, 

respectively, on AlexNet and SqueezeNet. The size of the model of SqueezeNet is over 

100 times smaller than AlexNet, so they concluded that SqueezeNet is a good candidate 

for mobile application. Mohanty et al. (2016) used AlexNet and GoogLeNet to detect 14 

crop species and 26 diseases and they got the highest accuracy with 99.35% by using 

GoogLeNet with 80% of the data for training and 20% for the testing combination. 

2.5.2. SqueezeNet 

 Even though many algorithms were developed, large memory requirements in 

deployment are the shortcoming to the use of such models in real-time applications. 

SqueezeNet was developed to reach the needs of smaller neural networks with fewer 

parameters in 2016 while showing still competitive accuracy compared to AlexNet. 

SqueezeNet has 50 times fewer parameters and is 510 times smaller than AlexNet (Iandola 

et al., 2016). However, it does not mean that the processing time of SqueezeNet would be 

faster than AlexNet. Bianco et al. (2018) compared inference time depending on different 

batch sizes in terms of many deep CNN including AlexNet, SqueezeNet, GoogLeNet, 

ResNet-50. For the 64 batch sizes used in our study, the sequences of the short computation 

time were AlexNet, SqueezeNet, GoogLeNet, and ResNet-50. The benefit of SqueezeNet 
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is small model size not the computational complexity. SqueezeNet has more convolutional 

layers where the most of computation costs weight on than AlexNet.  

2.5.3. GoogLeNet 

GoogLeNet, known as Inception, is an algorithm that won the first prize in ILSVRC 

in 2014 on object detection. The main characteristic is that the network utilisation has been 

fully improved by increasing the depth and width of the network. It is much deeper and 

wider architecture than AlexNet by having 22 layers deep CNN (Szegedy et al., 2015); 

however, the number of parameters is reduced from 60 million (AlexNet) to four million. 

This algorithm is close to human-level performance with 6.67% (Top-5 error rate). 

Ramcharan et al. (2017) used CNN architectures to detect cassava disease and concluded 

that even though the performance of Inception V3 is higher than the original Inception due 

to the deeper layers (42 layers), the former has a limitation where memory and 

computational cost is limited. Hence, Inception is recommended to apply for mobile or 

drone devices (Ramcharan et al., 2017). Brahimi et al. (2017) used AlexNet and 

GoogLeNet to solve a task of classification with nine types of tomato leaf diseases. They 

found that the results of GoogLeNet as the highest accuracy of 99.18% are more accurate 

than those of AlexNet with the highest accuracy of 98.66%. 

2.5.4. ResNet-50 

ResNet is an algorithm that won the first prize in 2015 on object detection and the 

main innovative point is this algorithm can successfully train the model with more than 

150 layers. This algorithm achieves 3.57% (Top-5 error rate) which beats human-level 

performance. Among various types of ResNet, ResNet-50 was selected as the last CNN 
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architecture and it has 50 deep layers and can classify images into 1000 object categories. 

Fuentes et al. (2017) compared the results by using ResNet-50 and RexNeXt-50, 

respectively and they got 75.37% from the former and 71.1% from the later. They found 

out that the networks showed better performance when the networks got deeper. 

2.5.5. Overview of DL in agriculture  

Modern technology has given us the ability to produce enough food to meet the 

needs of over seven billion people (Mohanty et al., 2016). CV and object recognition 

technologies have made tremendous progress over the last few years and the PASCAL 

VOC Challenge based on the Imagenet dataset and the recent development of the ILSVRC 

have reduced the error rate of CNNs to 3.57% for the classification of images into 1000 

possible categories (Mohanty et al., 2016). ILSVRC is a benchmark that has been running 

annually since 2010 for object category classification and detection for hundreds of object 

categories and millions of images (Russakovsky et al., 2015). Mohanty et al. (2016) got 

99.35% accuracy in the classification model that distinguishes 26 diseases out of 14 types 

of crops using 54,306 using the CNN approach. They suggested in-depth learning model 

training with increasingly larger, publicly available image data present a clear path to 

diagnosing crop disease with smartphones. Kamilaris and Prenafeta-Boldu (2018) said that 

DL is the latest technology to process images and analyse data, delivering promising results 

and great possibilities. In recent years, DL is one of the latest technologies that help in 

solving some of the food production challenges. Flexible DL due to its highly hierarchical 

structure and large learning ability can be extended by adding depth and complexity to ML 

as well as various functions that can express data in a hierarchical manner through various 

levels of abstraction to convert the data (LeCun & Bengio, 1995; Schmidhuber, 2015). One 
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great advantage of DL is that it simplifies the steps of image processing. DL does not 

require feature extraction steps because it can find important features by itself through 

training (Kamilaris & Prenafeta-Boldu, 2018). The disadvantage of DL is that the training 

time takes longer, but the testing time is faster than ML (non-DL) methods (Chen et al., 

2014). Durmuş et al. (2017) used AlexNet and SqueezeNet to train how to detect various 

diseases of tomato plant leaves and AlexNet performance was slightly better than 

SqueezeNet. Brahimi et al. (2017) carried out the CNNs to detect tomato disease with 

14,828 datasets including healthy and nine types of diseased leaves. As a result, they got 

99.18% accuracy in the detection of tomato diseases. Atole and Park (2018) used an 

AlexNet to determine the health status of rice plants based on the image of the leaves and 

achieved 91.23% accuracy with 600 images. Recently, scene classification in remote 

sensing has been a subject of considerable research; hence, Alhichri et al. (2018) developed 

for remote sensing by running SqueezeNet with three different image sizes and they used 

multi-scale CNNs that can accommodate a softmax layer for classification. They suggested 

a table of CA results for multi-scale classification versus single-scale classification and 

three different trainable layers.  

2.6. Research statement 

Many studies to date have been conducted to detect diseases of crops using ML 

including DL. However, most studies showed a tendency to carry out up to two ML (non-

DL) techniques to derive the results by following the best combination, which was 

suggested from other studies, but only enforcing the best combination suggested might not 

make the researchers find promising methodologies and the best combination when 

detecting the diseases of crops. The goal of this research is to suggest the optimised 
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combination of three image processing techniques and two supervised ML (non-DL), 

comparing five different image sizes. When evaluating the supervised ML (non-DL), the 

highest CA would be prioritised; however, analysis of the results from different angles will 

also be explained in CHAPTER 5. Furthermore, we will compare six DL algorithms with 

respect to test accuracy/CA and computation time. For plentiful evaluation, the 

combination that showed the highest CA in supervised ML (non-DL) will be compared to 

the DL results.  

2.7. Objectives 

The objectives of this research are: 

1. Evaluation of the performance of the two supervised ML algorithms using ANN and 

SVM, to detect powdery mildew using five image resolutions with a combination of image 

processing, 

2. Analysis of data augmentation effects in supervised ML algorithms using ANN and 

SVM, considering various leaf orientation in the real field, and 

3. Comparison of six CNN algorithms for the detection of powdery mildew disease on 

strawberry leaves with augmented data. 
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CHAPTER 3: EFFECTS OF DIRECTIONAL AUGMENTATION WITH 
SUPERVISED MACHINE LEARNING TECHNIQUES – A CASE STUDY OF 

POWDERY MILDEW DETECTION ON THE STRAWBERRY LEAF 

 

The study extracts representative features to train a model with supervised machine 

learning (ML) to detect powdery mildew (Sphaerotheca macularis f. sp. fragariae) on the 

strawberry leaves. Powdery mildew (PM) is a fungal disease that greatly affects the 

production of strawberry and usually infects under conditions of warming temperatures and 

high humidity. In this research, we report robust models to detect PM using image 

processing and ML technologies. Three feature extraction techniques (histogram of 

oriented gradients; HOG, speeded-up robust features; SURF, and gray level co-occurrence 

matrix; GLCM) and two supervised ML (artificial neural network; ANN and support vector 

machine; SVM) were implemented using MATLAB. Images were augmented to 1016 

images using a four different angle rotation technique to simulate strawberry leaf bundles 

in the real field. The classification accuracy (CA) to detect PM was highest at 94.34% with 

a combination of ANN and SURF with 908×908 image resolution and with SVM and 

GLCM at 88.98% with 908×908 image resolution. In terms of the extraction time for real-

time processing, HOG takes the shortest time to extract features in both ANN and SVM. 
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3.1. Introduction 

Strawberries have been cultivated in North America since 1835 and have become 

economically important fruit crops. In Canada, strawberries are grown in all provinces and 

in Nova Scotia, they were the fourth most productive crop (of 13 crops), producing 2,045 

t in 2019 (Statistics Canada, 2020b). Various diseases such as bacterial and fungal 

pathogens have reduced annual strawberry yields by between 9 and 30% (Carisse et al., 

2013; Pan et al., 2014). Fungal diseases have the potential to reduce strawberry yields in 

the field and also infect adjacent healthy strawberries in packaging, thereby reducing their 

overall quality during transportation and marketing (Kovach et al., 2000).  

Among fungal diseases, powdery mildew (PM) in Nova Scotia is enhanced by large 

temperature fluctuations and high humidity during mid to late summer. Early-onset 

indications of PM are typically described as when ten white spots are observed on leaves; 

however, mass production of spores can occur between 4 to7 days after early-onset due to 

the transport of spores by the wind (Adam & Somerville, 1996). Upon infection, the leaf 

edge is directed inwards, and white powdery colonies become visible on both the upper 

surface and underside of the leaves (Jacob et al., 2008). 

To manage PM, producers depend on uniformly spraying the fields with fungicides, 

even though PM exhibits uneven spatial distribution (Bah et al., 2018). However, this 

method of control is not sustainable since PM fungi have a high potential for developing 

resistance to fungicides (McGrath, 2001). Moreover, the fungal disease is easily 

misdiagnosed; hence, incorrect spraying of fungicides may increase the operational costs 

to farms and lead to negative impacts on the natural environment (Mueller, 2006). Another 

solution to treat PM is to hire experts, or disease specialists, to manually monitor and 
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identify diseases, as well as areas of concentration, for targeted application of fungicides 

(Perini & Susi, 2004). These conventional methods are laborious and time-consuming and 

can lead to inaccurate predictions over the entire extent of a field (Kobayashi et al., 2001). 

Due to the limitations of existing methods to control PM on strawberries, a more efficient 

and accurate approach is required to maintain production and reduce chemical use. 

Conventional disease detection methods in agriculture, such as physiological and 

biological laboratory-based methods are complicated, time-consuming, and invasive 

(Khaled et al., 2018). However, the rapid development of advanced agricultural 

technologies provides a unique opportunity to develop non-destructive approaches, using 

a combination of image processing and cutting-edge, computing technologies (e.g., 

machine learning; ML) for detecting plant diseases. 

Interest in image processing techniques exploded in the 1980s and 1990s, and active 

applications in remote sensing, technical diagnostics, and autonomous vehicle guidance are 

currently available (Sonka et al., 2014). Image processing techniques are used to derive a 

group of image attributes such as shape, colour, and texture that can be put into a detection 

algorithm using ML. Image attributes such as shape, spatial information (Vidal & Amigo, 

2012; Cheng et al., 2014), colour, and morphology (Bhange & Hingoliwala, 2015) may be 

extracted to detect the severity of diseases using image analysis techniques. Different 

combinations of feature extraction techniques and supervised ML have been described in 

the literature (Dalal & Triggs, 2005; Bay et al., 2006; Yadav et al., 2013). Popular 

techniques for the determination of representative features are histogram of oriented 

gradients (HOG), speeded-up robust features (SURF), and gray level co-occurrence matrix 

(GLCM). 
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The HOG approach was initially invented to recognise humans (Dalal & Triggs, 

2005) and the HOG descriptors can be used to isolate fine-scale gradients, bin information, 

and high-quality local contrast normalisation in overlapping descriptor blocks. In 

agriculture, HOG has been used to classify healthy and infected leaves with three different 

types of plant leaves (cabbage, citrus, and sorghum) using colour-based features such as 

pixels and statistical features (Rahman et al., 2017). They utilised the artificial neural 

network (ANN), support vector machine (SVM), and random forest ML algorithms after 

extracting the features by using HOG and have achieved the highest F1-score (>95%) in 

damaged sorghum data in a combination with SVM. The SURF algorithm generates a point 

of interest and descriptors, which are robust for variation and rotation of images. The reason 

for using descriptors is that SURF algorithm is distinctive and robust to occlusion, which 

is a possible problem when detecting features of the leaf on the spot. Awate et al. (2015) 

developed a fruit disease detection system for grapes, apples, and pomegranates using 

SURF and detected healthy and high-quality fruit with a classification accuracy (CA) of 

90%. The GLCM is calculated using a statistical method of texture inspection that 

considers the spatial relationship of pixels and has proved to be an effective method to 

extract textural features from the images (Mohanaiah et al., 2013). Using a statistical 

approach, such as the co-occurrence matrix, gives mathematically valuable information 

when processing many images (Eleyan & Demirel, 2011). The preferred set of statistics 

(e.g., contrast, correlation, and entropy) has been shown to improve analytical outcomes 

(Howarth & Rüger, 2004). Gavhale et al. (2014) extracted the features using a GLCM to 

detect disease of citrus fruits with a CA of 96%.  



22 
 

Within the literature that examines the use of ML techniques for disease detection 

in agricultural crops, ANN and SVM have been commonly used. For example, Jhuria et al. 

(2013) used ANN to detect black rot and PM of grape leaves, as well as scab and rot of 

apples with CA of up to 96%. Similarly, for SVM, Yao et al. (2009) achieved a 97.2% CA 

when detecting bacterial leaf blight, sheath blight, and blast on rice crops while Pujari et 

al. (2015) were able to detect symptoms of fungal diseases on various agricultural and 

horticultural crops. As indicated previously, Rahman et al. (2017) tested both ANN and 

SVM for detecting diseases on plant leaves. 

Despite the increasing literature surrounding the use of image processing and ML 

technologies for disease detection, there is still limited information on their application for 

PM detection on strawberry leaves. Hence, the objectives of this research are (1) to extract 

the representative features from the strawberry leaf images by using three feature extraction 

techniques (HOG, SURF, and GLCM), (2) to compare and assess two supervised ML 

(ANN and SVM) among five sizes, and (3) to find the best combination based on the test 

accuracy and processing time with four directional rotation augmentation to accommodate 

real field situations. 

3.2. Materials and methodology 

3.2.1. Experimental method 

 Strawberry leaves were acquired from fields located in central Nova Scotia, Canada 

(45°23'57.6"N, 63°33'31.1"W) during the summer of 2018. This time period was chosen 

as it was an ideal time to find PM infections; the average difference in daily temperature 

was 18.5°C and humidity generally exceeded 90% in the locations where the leaves were 
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acquired (The Weather Network, 2020). After collection, the leaves were stored in an 

icebox and images were taken within 30 minutes of acquiring the leaves. A digital single-

lens reflex (DSLR) camera model: EOS 1300D (Canon Inc., Tokyo, Japan), with 

3456×5184 pixels (Raw CR2 format), a 46 mm focal length, and 1/15 exposure time, was 

used to acquire leaf images. Leaf infections were identified with the assistance of disease 

experts and followed the criteria described in the literature (Adam & Somerville, 1996). 

The total number of images, including both upper surface and underside of the leaves, 

consisted of 254 images, which included 134 healthy leaves and 120 infected leaves. It was 

necessary to take images from both sides of the leaves because PM sometimes appears on 

the underside of the leaves; furthermore, the leaf edge is directed inwards as the disease 

progresses.   

  In computer vision, data augmentation is widely used to improve model accuracy 

and robustness in data-limited situations (Bloice et al., 2017). Here, the dataset was 

increased using a data augmentation method by applying an angular rotation technique. To 

that end, the number of the images (n=254) was increased to make the augmented image 

dataset (n=1016) by rotating to 90°, 180°, and 270° angles to consider the leaf positions 

facing various directions in the field (Mohanty et al., 2016; Sladojevic et al., 2016). Figure 

3-1 shows the detailed procedure of data augmentation process using four different angles. 

Figure 3-1 (a) shows the original image acquired, totalling 254 images, Figure 3-1 (b) 

shows the angle rotation procedure, and Figure 3-1 (c) is the combined dataset after 

augmentation, totalling 1016 images. 
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Figure 3-1. The four different angles used to make augmented dataset, (a) the original 
image dataset (n=254), (b) the process of four different angular images, and (c) the final 
augmented dataset (n=1016). 

   

In this study, MATLAB R2019a software (The MathWorks Inc., Natick, MA, 

U.S.A.) was used to run the models, resize images, and classify the leaves as being healthy 

or infected. An Intel® Core™ i7-8700 CPU @ 3.20GHz with 48.0 GB RAM and 64-bit 

Windows 10 operating system was used for data processing. The original image dimension 

of 3456×5184 pixels was cropped to 3000×3000 pixels, with the leaf in the centre, and 

resized using bicubic interpolation. The cropped images were downscaled to five different 

image resolutions: 227×227, 454×454, 681×681, 908×908, and 1135×1135 pixels. Each 

image resolution was considered as a parameter within the modelling process and the 

respective CA produced at each resolution was compared. The 227×227 pixels size is the 

commonly used image dimension when applied to similar studies using that integrate image 

processing with ML and/or deep learning (DL) (Becherer, 2017). Also, when the size of 

(a) (b) (c) 

 

120 diseased 

134 healthy 
90° 

180° 

270° 
536 healthy 

480 diseased 
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the images was reduced by pixel aggregation, antialiasing was carried out to prevent 

artefacts caused by distortion. Table 3-1 shows all the combinations that were compared. 

Table 3-1. Combinations of machine learning, feature extraction, image resolution, and 
cell size. 

[a] Machine learning 
[b] Cell size parameters are only for a HOG feature extraction  
[c] Classification accuracy 

 

Figure 3-2 shows the methodological framework of the study. Firstly, the imagery 

was acquired in the raw CR2 format then converted into 24-bit red, green, and blue (RGB) 

in the BMP format. Next, HOG, SURF, and GLCM feature extraction were performed by 

combining an image converted from 24-bit BMP image to an 8-bit grey image and an image 

inverted from mask to binary was used to conduct image segmentation (Figure 3-3). The 

outputs from the image processing algorithms provided the feature information used as 

predictors to help train the ML models. In addition, image processing techniques consisted 

of several steps, ranging from the importing, conversion, resizing, analysis, and the 

extraction of output features of the images. 

 

 

 

ML[a] Feature extraction Image resolution Cell size[b] Total CA[c] cases 

 
ANN 
SVM 

 

 
HOG 
SURF 
GLCM 

 

227×227 
454×454 
681×681 
908×908 

1135×1135 

32×32 
64×64 

128×128 
50 
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Figure 3-2. Methodological framework of the proposed method. 
 

[a] The basic metabolic panel 

[b] Histogram of oriented gradients 
[c] Speeded-up robust features  
[d] Gray level co-occurrence matrix 
[e] Image processing 

[f] Machine learning 

[g] 70% for training, 15% for validation, and 15% for testing 

[h] Classification accuracy 
 
 
 
 
 
 
 
 
 
Figure 3-3. Image processing of conversion from RGB to 2-D grayscale image. (a) original 
strawberry leaf image infected by powdery mildew, (b) grayscale intensity image, (c) image 
converted into a binary image, (d) image with converted background and leaf pixels, (e) 
combining (b) and (d) images. 
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3.2.2. Image processing techniques 

3.2.2.1. Histogram of oriented gradients (HOG) 
 

HOG can extract its descriptors at various cell sizes. Here, three different cell sizes 

with five different image resolutions produced a total of 15 comparisons (Table 3-2). The 

total number of features corresponded to the number of features (Table 3-2) multiplied with 

the total number of images (n=1016). The detector window was processed with a grid of 

blocks when the HOG feature vectors were extracted (Figure 3-4). In Figure 3-4, the white 

arrows indicate RGB patches, and represent the direction of the gradients, and the length 

of the arrows indicates the size of the gradients. The advantage of HOG is that it captures 

the gradient information, which is specific to the shape of the leaf; hence, it is not sensitive 

to the orientation of the leaf. The extracted features were used to train, validate, and test 

the ANN and SVM learners. The number of features increased with increasing resolution 

(i.e., decreasing cell size). 
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Table 3-2. Number of features based on three feature extraction techniques.  

Feature extraction Image resolution Cell size Number of features[a] 

HOG 
227×227 

32×32 1296 
64×64 144 

128×128 9 
SURF - 2,408,448 
GLCM - 4 

HOG 
454×454 

32×32 6084 
64×64 1296 

128×128 144 
SURF - 9,980,928 
GLCM - 4 

HOG 
681×681 

32×32 14,400 
64×64 2916 

128×128 576 
SURF - 22,195,200 
GLCM - 4 

HOG 
908×908 

32×32 26,244 
64×64 6084 

128×128 1296 
SURF - 39,923,712 
GLCM - 4 

HOG 
1135×1135 

32×32 41,616 
64×64 9216 

128×128 1764 
SURF - 61,943,808 
GLCM - 4 

[a]The number of features per image. 

 
 

 
 
 
 
 
 

 

 

Figure 3-4. Features extracted with (a) 32×32 cell sizes, (b) 64×64 cell sizes, (c) 128×128 
cell sizes. The arrows indicate the direction of the gradient and the length of the arrow 
indicates the value of the histogram in each direction. The above images were randomly 
selected from the disease folder. 

 (a) (b) (c) 
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3.2.2.2. Speeded-up robust features (SURF) 
 

Bag-of-features, which are visual feature descriptors in SURF, was created by 

assigning healthy leaves a value of 0 and infected leaves a value of 1. The grid method, 

which is a rectangular subset of the given image, was used when selecting feature point 

locations and the SURF features (Bay et al., 2008). Table 3-2 shows the number of features 

that were extracted using SURF at five image resolutions. The optimising the iteration was 

carried out to maximise within-bag homogeneity and between-bag heterogeneity. The 

maximum iteration was set as 100 and the optimised number of iterations among 100 was 

carried out (e.g., 30/100 means 30 times were iterated). 

3.2.2.3. Gray level co-occurrence matrix (GLCM) 
 

In GLCM, the image parameters represent the relationship between different pixels 

within the image using an image that was converted from the original RGB colour space 

to a grayscale intensity image (Figure 3-3). In this study, four image variables were used: 

contrast, correlation, energy, and homogeneity. Contrast measures the difference between 

the highest and the lowest values of a contiguous set of pixels; correlation measures the 

grey tone linear dependencies of the image; energy measures the textural uniformity that is 

pixel pair repetitions; and homogeneity measures the larger values for smaller grey tone 

differences in paired elements (Baraldi & Parmiggiani, 1995; Howarth & Rüger, 2004). In 

Table 3-2, shows the number of features that were extracted using GLCM at five image 

resolutions. 
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3.2.3. Supervised machine learning 

3.2.3.1. Artificial neural network (ANN) 
 

Figure 3-5 shows the ANN training process of the extracted features from 908×908 

image resolution with 32×32 cell size based on 100 hidden neurons, which is the basic unit 

of computation in a neural network. The number of hidden neurons was optimised by 

comparing the accuracies when 10, 20, 50, and 100 neurons were used. Among them, 100 

hidden neurons showed the lowest error and was therefore selected as the best model. Input 

features (26,244) were derived from the 32×32 cell size at 908×908 image resolution (Table 

3-2 & Figure 3-5). It was calculated by MATLAB about how many cell sizes are extracted 

according to the image resolution and a total of nine bins are formulated for each block, 

and the calculated value is the input value. Outputs consist of a binary classification with 

values of 0 representing healthy leaves and values of 1 representing infected leaves. In 

Figure 3-5, w and b represent vectors of weight and bias, respectively. This network was 

assigned w=100 and b=100 in the first layer, and w=100 and b=1 in the second layer with 

100 hidden neurons. The standard network used in this study was a two-layer feedforward 

network, which is the simplest type of ANN, with a sigmoid transfer function in the hidden 

layer and a softmax transfer function in the output layer (Figure 3-5). The sigmoid is an 

activation function and usually attached after the hidden node, while the softmax is attached 

after the output node (Karlik & Olgac, 2011, Jang et al., 2016). The softmax is mostly used 

for multi-classification; however, if two classes wanted to be classified then the softmax 

can be used for binary classification (Liao et al., 2015). 
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Figure 3-5. The procedure for neural network training. 

 

3.2.3.2. Support vector machine (SVM) 
 

In other applications, SVM learners have been shown to be computationally 

demanding when attempting to tune the learner’s hyperparameters using large datasets 

(Heung et al., 2016); however, with the limited size of the training data and number of 

classes, computational limitations were not a concern. This study tested SVM with a linear 

kernel to delineate the decision boundaries between the two classes (i.e., healthy or infected 

leaves). The main hyperparameter of SVM is the linear kernel by generating various groups 

repeatedly and extracting descriptors into k clusters. 

3.2.4. Training models  

3.2.4.1. Training, validation, and testing set 
 

For each model, the full dataset was randomly partitioned into three sets: training 

(70%), validation (15%), and testing set (15%) where the training data was used to calibrate 

each model; the validation data was used to optimise the hyperparameters of each model; 

the testing data was used to calculate the CA (Fira & Goras, 2008; Yadav et al., 2013; 

Aneece & Thenkabail, 2018). The process of training, validation, and testing the models 

Hidden layer Output layer 
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was repeated five times and the overall accuracy metrics were reported as the averaged 

accuracy values of the repetitions. In this study, with a total of 254 images, 178 images 

were used for training the model and 38 images for validation and 38 images for the testing, 

respectively. After data augmentation, 712, 152, and 152 images out of a total of 1016 

images were used for training the model, validation, and testing, respectively. 

3.2.5. Statistical analysis 

3.2.5.1. Factorial analysis of HOG 
 

To determine the combination of image resolution and cell size that resulted in the 

highest CA, the two input factors were set to image resolution and cell size, respectively, 

and the CA was considered as the response (Eq. 3-1). 

The model for factorial analysis is represented as follows: 

Yijk = μ+αi+βj+ (αβ)ij+ εijk                                                  (Eq. 3-1) 

Where; 

Yijk = Classification accuracy (%), 

µ = Overall mean, 

αi = Effect of “Image resolution” on response at ith level, 

βj = Effect of “Cell size” on response at jth level, 

αβij = Interaction between “Image resolution” and “Cell size”, 

εijk = The error terms (uncontrollable & uncontrolled factors), 

i = 1, 2… a; j = 1, 2… b; k = 1, 2… n. 
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In this study, a = 5 (number of image resolution), b = 3 (number of cell size), and n = 5 

(replications). 

3.2.5.2. Factorial analysis of SURF and GLCM 
 

To determine which image resolution resulted in the highest CA, the image 

resolution was considered as an input factor, and the CA was considered as the response 

(Eq. 3-2). 

The model for factorial analysis is represented as follows: 

       Yij = μ+αi+ εij                                                              (Eq. 3-2) 

Where; 

Yij = Classification accuracy (%), 

µ = Overall mean, 

αi = Effect of “Image resolution” on response at ith level, 

εij = The error terms (uncontrollable & uncontrolled factors), 

i = 1, 2… a; j = 1, 2... n. 

In this study, a = 5 (number of image resolution), n = 5 (replications). 

 Normality tests were carried out to ensure that the CA values followed a normal 

distribution. The 95% confidence interval was used in this study. An F-value and a p-value 

were calculated using Minitab 18 (Minitab, LLC, State College, PA, U.S.A). If there is a 

significant difference in both main effects and interaction effect, the data were analysed 

using the multiple means comparison (MMC) for only interaction between image 
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resolution and cell size by using Tukey’s test to compare the difference between each pair 

of means. Tukey’s test was performed with the condition that the magnitude of 

experimental error is low. 

3.3. Results and discussion 

3.3.1. Comparison of the parameters 

Comparisons amongst the five different image resolutions were carried out using 

the augmented dataset because, in future research, we intend to apply the technique for PM 

detection in real-time in a strawberry field. Therefore, the augmented dataset, which 

includes images taken in multiple directions was more realistic and practical for such an 

experiment. A total of 50 CA values were acquired from the combinations of three feature 

extraction techniques and two supervised ML (Table 3-1). A CA value was acquired from 

each test confusion matrix and represents the average from five repetitions. Table 3-3 

indicates the elapsed time based on three feature extraction techniques with the augmented 

dataset (n=1016). 
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Table 3-3. Elapsed time based on three feature extraction techniques. 

Feature extraction Image resolution Cell size Elapsed time (s)[a] 

HOG 
227×227 

32×32 13.78 
64×64 11.47 

128×128 11.84 
SURF -                356.09 
GLCM - 15.94 

HOG 
454×454 

32×32 14.37 
64×64 13.77 

128×128 12.14 
SURF -              1085.94 
GLCM - 40.94 

HOG 
681×681 

32×32 22.24 
64×64 21.41 

128×128 20.22 
SURF -              3871.80 
GLCM - 76.98 

HOG 
908×908 

32×32 26.89 
64×64 26.73 

128×128 25.01 
SURF -              5186.79 
GLCM - 120.04 

HOG 
1135×1135 

32×32 39.28 
64×64 38.09 

128×128 38.00 
SURF -              8867.00 
GLCM - 200.87 

[a] Elapsed time for processing of feature extraction with the augmented dataset (n=1016). 

 

When combining HOG and ANN, the results from the two-way ANOVA indicate 

that image resolution and cell size were both significant factors with p<.001 and p=0.026, 

respectively; furthermore, there is also a significant interaction effect for image resolution 

and cell size with p<.001 (Table 3-4 & Figure 3-6). Using HOG and ANN, the highest CA 

was 79.96% when using an image resolution of 908×908 pixels and a cell size of 32×32. 

With the exception of an image resolution of 227×227 pixels and a cell size of 128×128, 

there was no significant difference in CA between image resolution and cell size. When 

extracting the 128×128 cell size from the 227×227 image resolution, the number of features 
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was decreased because the number of pixels along the image’s width was less than twice 

the width of the HOG cell size of 128 pixels. The smaller the number of features, the lower 

the amount of data that is available to train the ANN. Given the general similarity in CA, 

the most effective approach was determined based on processing time (Table 3-3), where 

the combination of a 227×227 image resolution with a 64×64 cell size required only 11.47s 

with the augmented dataset (n=1016). 

Table 3-4. Analysis of variance of HOG with ANN using the augmented dataset (n=1016). 

Source DF[a] SS[b] MS[c] F-value p-value 
Image Resolution   4   526.7 131.67 9.97 <.001 
Cell Size   2   102.2   51.12 3.87   0.026 
Image Resolution*Cell Size   8   699.3   87.41 6.62 <.001 

Error 60   792.2   13.20   
Total 74 2120.4    

[a] Degree of freedom 

[b] Sum of squares 
[c] Mean square 

 

 

 

 

 

 

Figure 3-6. Classification accuracy by using HOG with ANN in the augmented dataset 
(n=1016). Actual CA values are presented in section 3.3.2.. 
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The statistical model and hypothesis with a combination of HOG and SVM are the 

same as that of ANN. In Table 3-5, the two-way interaction effect for image resolution and 

cell size is considered as significantly different. Figure 3-7 shows the two-way interaction 

effects for image resolution and cell size for HOG with SVM using the augmented dataset. 

Again the 227×227 image resolution at 128×128 cell size showed the lowest CA among all 

the treatment groups. The combination of the HOG and SVM in the augmented dataset 

achieved a maximum CA of 78.36% at 681×681 image resolution with 32×32 cell size. In 

obtaining the maximum CA, image resolution and cell size did not play a role except for 

three cases; hence, the next step, that needed to be considered, was processing time. Table 

3-3 shows the elapsed time to extract features and the 454×454 image resolution with 

64×64 cell size takes the shortest time as 13.77 s with the augmented dataset (n=1016). 

Table 3-5. Analysis of variance of HOG with SVM using the augmented dataset (n=1016). 

Source DF[a] SS[b] MS[c] F-value p-value 
Image Resolution    4   650.10 162.52 35.36 <.001 
Cell Size    2   205.40  102.71 22.35 <.001 
Image Resolution*Cell Size    8 1014.80  126.85 27.60 <.001 

Error 60   275.70     4.59   
Total 74 2146.00    

[a] Degree of freedom 
[b] Sum of squares 

[c] Mean square 
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Figure 3-7. Classification accuracy by using HOG with SVM using augmented dataset 
(n=1016). Actual CA values are presented in section 3.3.2.. 

 

Overall, HOG feature extraction times were faster than other extraction techniques 

such as SURF and GLCM (Table 3-3); hence, it was identified as the best feature extraction 

technique for real-time processing. For applications related to real-time detection of 

pedestrian and human movement,  Xu et al. (2011) and Beiping and Wen (2011) also used 

a combination of HOG and SVM due to their suitability for processing high-resolution 

videos, which requires ample computational resources in terms of feature extraction and 

video processing. 

Unlike the HOG algorithm, SURF and GLCM feature extraction techniques do not 

have a cell size parameter; hence, one-way ANOVA was carried out. The SURF feature 

extraction technique resulted in different outcomes based on the ML models used (Tables 

3-6, 3-7 & Figure 3-8). The combination of SURF and ANN in the augmented dataset 

achieved a maximum CA of 94.34% although, there was no significant difference with 
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image resolutions. Table 3 shows the elapsed time to extract features, where the 227×227 

image resolution took the least amount of time as 356.09 s for the augmented dataset 

(n=1016). Overall, ANN outperformed SVM when coupled with SURF regardless of image 

resolution (Figure 3-8). In contrast, when using an image resolution of 227×227, there was 

a significant decrease in CA when SVM was used. Given the overall similarity in CA when 

ANN and SURF were used, it was determined that an image resolution of 454×454 was 

the most computationally efficient approach with a processing time as 1085.94 s with the 

augmented dataset (n=1016) (Table 3-3). It should be noted, however, that the SURF 

algorithm required a longer feature extraction time when compared to the HOG and the 

GLCM algorithms. 

Table 3-6. Analysis of variance of SURF with ANN using the augmented dataset (n=1016). 

Source DF[a] SS[b] MS[c] F-value p-value 
Image Resolution   4     9.67 2.42 0.45 0.768 

Error 20 106.29 5.31   
Total 24 115.96    

[a] Degree of freedom 
[b] Sum of squares 

[c] Mean square 
 
Table 3-7. Analysis of variance of SURF with SVM using the augmented dataset (n=1016). 

Source DF[a] SS[b] MS[c] F-value p-value 
Image Resolution   4 233.84 58.46 11.79 <.001 

Error 20   99.20   4.96   
Total 24 333.04    

[a] Degree of freedom 
[b] Sum of squares 

[c] Mean square 
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Figure 3-8. Classification accuracy by using SURF and ANN & SURF and SVM using the 
augmented dataset (n=1016). Actual CA values are presented in section 3.3.2.. 

 

In a combination of GLCM and ANN, the main effect of image resolution on CA 

was not significant; however, in a combination of GLCM and SVM, the main effect of 

image resolution was significant (Tables 3-8 & 3-9). Again, the results showed that ANN 

consistently outperformed SVM; furthermore, SVM was shown to be more sensitive to 

image resolution than ANN (Figure 3-9). As a result, the optimal image resolution for 

coupling GLCM and ANN was 227×227 pixels as it yielded the most efficient processing 

time as 15.94 s with the augmented dataset (n=1016) (Table 3-3). Comparing HOG and 

GLCM, which showed the fast feature extraction time, GLCM showed higher accuracies; 

however, the feature extraction time with GLCM increased more than HOG as the image 

resolution increased. This is similar to the result of Rangayyan et al. (2010) who showed 
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that it is hard to get reliable GLCM features with too large image resolution due to the 

excessive number of pixels. 

Table 3-8. Analysis of variance of GLCM with ANN using the augmented dataset 
(n=1016). 

Source DF[a] SS[b] MS[c] F-value  p-value 
Image Resolution  4 17.41 4.35 1.02 0.422 

Error 20 85.59 4.28   
Total 24 103.00    

[a] Degree of freedom 

[b] Sum of squares 
[c] Mean square 
 
 
Table 3-9. Analysis of variance of GLCM with SVM using the augmented dataset 
(n=1016). 

Source DF[a] SS[b]    MS[c] F-value p-value 
Image Resolution 4 1265.95 316.45 109.93 <.001 

Error 20 57.58 2.87   
Total 24 1323.53    

[a] Degree of freedom 

[b] Sum of squares 
[c] Mean square 
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Figure 3-9. Classification accuracy by using GLCM with ANN & GLCM with SVM using 
the augmented dataset (n=1016). Actual CA values are presented in section 3.3.2.. 

 

In terms of the HOG feature extraction technique, ANN and SVM were both 

sensitive to how the image processing techniques were parameterised; for example, CA 

was influenced by image resolution and HOG cell size. In terms of the SURF and GLCM 

feature extraction technique, SVM was far more sensitive to how the image processing 

techniques were parameterised in comparison to ANN. These results were in line with the 

result of Manevitz and Yousef (2001) as they found that SVM kernels were far more 

sensitive to model parameters than ANN, which demonstrated greater model stability.  

In terms of the CA values from ANN, the results after extraction by using SURF 
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might be affected by the orientation parameter more than SURF and GLCM after data 

augmentation (Watanabe et al., 2009). 

3.3.2. Effects of data augmentation on classification accuracy 

Data augmentation is commonly used in image processing and DL to increase the 

diversity of data available for training models and to prevent overfitting problem (Zhang 

et al., 2016; Perez & Wang, 2017; Salamon & Bello, 2017). Methods of data augmentation 

can include horizontal or vertical flipping, random cropping, tilting, and rotation techniques 

(Fadaee et al., 2017). Data augmentation with supervised ML was not normally found in 

the literature. Yao et al. (2009) collected 72 samples of each disease image to classify three 

rice diseases with a CA of 97.2%. Meunkaewjinda et al. (2008) used 497 scab disease 

samples, 489 rust disease samples, and 492 non-disease samples to derive results to classify 

types of grape leaf diseases with the CA of 86.03%. ANN was used for detecting an early 

onset of plant diseases and was used for a variety of plant diseases, where their results 

yielded a CA of 91% when using ANN after extracting the texture and colour features from 

the image segmentation process (Kulkarni & Patil, 2012).   

Unlike existing literature, this study considered the leaf orientation throughout the 

disease detection process. Although CA values may be decreased as a result of data 

augmentation, it more accurately simulates real-world field-conditions whereby leaves 

have a seemingly random orientation. In general, the addition of noise and uncertainty in 

the image processing technique will improve the stability and generalisability of the model; 

furthermore, the conservative estimates of CA are more reflective of the field (Stockwell, 

1997, Peterson & Cohoon, 1999). For example, Pauly and Sankar (2016) reported better 
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results when HOG was applied to a non-augmented dataset-findings that were similar to 

this study (Tables 3-10 & 3-11). 

HOG calculates the occurrence of the gradient direction in the localised part of the 

image. The HOG and SURF share a lot in common: they form descriptors and shape 

contexts. The SURF is robust to rotational invariance, blur, and warp transformations (Bay 

et al., 2006). Since the HOG and the SURF extract orientation-related features, a change in 

four different angles directional can reduce the CA. That could be the reason why the CA 

outcomes with the augmented dataset were lower than those of the original data set. 

Dandawate and Kokare (2015) discussed the various techniques for detecting and 

classifying different diseases of the plants. Most methods included feature extraction to 

detect the diseases as an image processing steps, and then neural network classifiers were 

selected to classify the diseases as a classification tool. Also, they had proven that the co-

occurrence extraction method is helpful to detect many plant diseases based on colour and 

texture. GLCM quantitatively evaluates texture parameters and representations (Soh & 

Tsatsoulis, 1999), which resulted in similar CA values when comparing before and after 

augmentation. Also, when determining co-occurrence factors, it is advisable to use all 

directions, with tests that compare different directions individually. In accordance with 

previous studies, CA values with GLCM did not show a significant difference in CA even 

after data augmentation. 
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Table 3-10. Classification accuracy based on ANN with the original (n=254) and 
augmented (n=1016) datasets. 

ML[a] Feature 
extraction 

Image 
resolution Cell size Original dataset 

(CA%)[b] 
Augmented dataset 

(CA%)[b] 

ANN 

HOG 
227×227 

32×32    88.42±0.48[c] 77.64±1.48 
64×64 84.72±0.80 75.36±1.30 

128×128 85.38±0.94 61.84±1.25 
SURF - 96.32±0.01 92.66±1.35 
GLCM - 90.00±0.04 91.84±1.33 

HOG 
454×454 

32×32 85.24±0.13 79.22±1.13 
64×64 84.20±0.93 77.38±1.53 

128×128 87.38±0.90 79.08±1.10 
SURF - 93.70±0.99 93.28±1.44 
GLCM - 90.54±0.79 90.78±1.49 

HOG 
681×681 

32×32 84.20±0.31 77.64±1.31 
64×64 85.78±0.60 77.88±1.40 

128×128 85.26±0.07 79.08±1.06 
SURF - 94.74±0.15 93.16±1.39 
GLCM - 90.52±0.34 92.90±1.26 

HOG 
908×908 

32×32 84.22±0.20 79.96±1.20 
64×64 84.28±0.84 79.60±1.25 

128×128 81.04±0.09 78.56±1.09 
SURF - 96.84±0.22 94.34±1.69 
GLCM - 90.52±0.34 93.04±1.25 

HOG 
1135×1135 

32×32 80.52±1.77 77.24±1.65 
64×64 85.28±2.00 73.54±1.55 

128×128 85.26±1.43 76.06±1.65 
SURF - 94.72±1.87 92.62±1.35 
GLCM - 93.16±1.99 91.70±1.28 

[a] Machine learning 

[b] Classification accuracy 

[c] The standard deviation of five repetitions 
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Table 3-11. Classification accuracy based on SVM with the original (n=254) and 
augmented (n=1016) datasets. 

[a] Machine learning 
[b] Classification accuracy 

[c] The standard deviation of five repetitions 
 

 

 

 

  

ML[a] Feature 
extraction 

Image 
resolution 

Cell size Original dataset 
(CA%)[b] 

Augmented dataset 
(CA%)[b] 

SVM 

HOG 
227×227 

32×32    83.68±1.52[c] 76.19±1.23 
64×64 86.58±1.77 72.39±1.91 
128×128 52.89±0.59 56.19±1.58 

SURF - 94.09±1.07 77.20±1.49 
GLCM - 71.58±1.35 86.36±1.91 

HOG 
454×454 

32×32 86.58±1.85 74.62±1.68 
64×64 82.36±1.03 77.37±1.16 
128×128 83.16±1.88 73.37±1.65 

SURF - 92.70±1.75 84.20±1.92 
GLCM - 87.37±1.55 76.85±1.55 

HOG 
681×681 

32×32 82.89±1.36 78.36±1.73 
64×64 84.73±1.25 75.01±1.20 
128×128 84.99±1.55 76.59±1.56 

SURF - 87.21±1.53 84.80±1.77 
GLCM - 85.82±1.06 74.66±0.54 

HOG 
908×908 

32×32 83.94±1.85 74.23±1.75 
64×64 85.26±1.16 74.62±1.32 
128×128 81.31±1.69 76.39±1.55 

SURF - 91.30±1.71 84.40±1.71 
GLCM - 82.22±1.62 88.98±1.03 

HOG 
1135×1135 

32×32 82.37±0.30 74.29±1.88 
64×64 86.31±1.68 74.56±0.86 
128×128 83.15±1.85 76.01±1.41 

SURF - 80.09±1.62 85.20±1.28 
GLCM - 81.57±1.63 70.23±2.77 
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3.4. Conclusions 

In this study, a series of experiments were conducted toward the development of a 

supervised ML approach that could reduce labour costs for producers who want to detect 

PM in strawberry fields. This study compared 50 CA values based on three feature 

extraction techniques and two supervised ML in order to determine the optimal approach 

for detecting PM on strawberry leaves. In addition, to analyse the effect of data 

augmentation on the CA, especially in supervised ML, 254 images were rotated with four 

different angles to make an augmented dataset of 1016 images. The CA values typically 

decreased after data augmentation because a directional parameter was added through the 

process of rotating the original image along with four different angles. Considering that 

leaves in the field are not pointing in one direction, the CA results after data augmentation 

are likely to be more reflective of real-world conditions. For ANN, a combination with 

SURF feature extraction showed the highest CA with 94.34% at an image resolution of 

908×908 pixels. For SVM, a combination with GLCM feature extraction showed the 

highest CA with 88.98% at an image resolution of 908×908 pixels. The methods that were 

used in this study showed the potential to detect PM on strawberry leaves in an accurate 

and computationally cost-effective way. Future research may explore the use of alternative 

ML techniques for larger datasets using DL. The findings of this study could facilitate spot-

application of fungicide on infected plants; thereby decreasing overall fungicide 

application and increasing cost-efficiency. 
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CHAPTER 4: DEEP LEARNING FOR IMAGE-BASED POWDERY MILDEW 
DISEASE DETECTION ON STRAWBERRY LEAVES 

 

Deep learning (DL) has recently gained popularity in the field of image 

classification and identification due to its high accuracy and fast learning.  In this research, 

DL was used to detect powdery mildew (PM), a persistent fungal disease in strawberries. 

High accuracy is required to reduce the amount of unnecessary fungicide use and the 

number of observations from the specialists. We proposed the most optimised algorithm in 

accordance with our research goal among AlexNet, SqueezeNet, GoogLeNet, ResNet-50, 

SqueezeNet-MOD1, and SqueezeNet-MOD2. The initial number of images was 1450 

including healthy and infected leaves. Data augmentation was carried out to prevent 

overfitting and to consider the various shapes and direction of the leaves in the field. A 

total of eight clockwise rotations (0°; the original data, 45°, 90°, 135°, 180°, 225°, 270°, 

and 315°) was performed to increase to 11,600 data points. Overall, the six DL algorithms 

that were used in this research showed on average over 92% classification accuracy (CA). 

ResNet-50 gave the highest CA of 98.11% in classifying the healthy and infected leaves. 

However, considering the computation time, we suggested AlexNet which processed 

testing data in 40.73 seconds. Holistically, SqueezeNet-MOD2 would be recommended for 

our further research project to build a hardware system to detect the PM on the strawberry 

leaves.  
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4.1. Introduction 

Fungal diseases are a significant challenge in the strawberry production system of 

which powdery mildew (PM) is a particularly problematic pathogen. PM can easily infect 

strawberry plants in regions with warm temperatures and humid climatic conditions. PM 

sequentially attacks leaves, flowers, and fruits, which can lead to excessive crop loss at the 

severe stages of infection. Here, white mycelium begins to cover the leaf surface, reducing 

the amount of photosynthesis and causing water deficiency. Initially, less than 10 white 

mycelium spots begin to appear with the formation of a white star-shaped dot, and about 

five days later, white fungal groups begin to cover the surface of the strawberry leaves 

(Adam & Somerville, 1996). As the infection progresses, infected leaves turn reddish-

purple or have small purple spots (Jacob et al., 2008). If the fruit is infected by PM, it 

causes a bitter taste that reduces the marketability (Liu, 2017). 

Due to the significance of PM, effective methods for monitoring and managing are 

required to control the PM. The primary method used to suppress PM is to apply fungicides 

as a spray; however, PM is prone to develop a resistance to fungicides (McGrath, 2001). 

Furthermore, the excessive application of fungicides may lead to environmental 

degradation such as erosion of beneficial soil components or accumulation of toxic 

substances in soil (Kalia & Gosal, 2011). 

The conventional method for monitoring plant pathogens is to hire disease 

specialists who can scout a field in order to identify the diseases  However, the conventional 

method is not effective in terms of labour and time, and it is impossible to accurately predict 

the spread of the disease over the field (Kobayashi et al., 2001). Furthermore, these 

challenges are compounded by the decreasing workforce within the agricultural sector. 



50 
 

According to Statistics Canada (2020c), the number of people working in the agriculture 

industry has steadily decreased since 1991 while the average age of workers has gradually 

increased up to 55 years of age in 2016.   

In the 1980s, the concept of precision agriculture (PA) emerged as a major 

component of the third wave of the modern agricultural revolution (Robert, 2002). PA was 

initially used for the targeted allocation of fertilizers to suit different soil conditions. Since 

then, PA has been developed for automatic guidance of agricultural vehicles and tools; 

autonomous machines and processes; research on farms; and automated management of 

agricultural production systems (Zhang et al., 2002). Collecting data using sensors mounted 

on machines (i.e., unmanned ground vehicles (UGV), unmanned aerial vehicles (UAV), 

satellites, and airplanes) is non-destructive and applicable over large geographical areas. 

Ground-based and aerial imagery are often critical components in PA (Liaghat & 

Balasundram, 2010), especially given that image identification and classification 

techniques.  

Machine learning (ML) including deep learning (DL) could be used to detect 

pathogens, pests, nutrient deficiencies, and other abiotic stressors (Teke et al., 2013). In the 

case of non-DL in ML, hereinafter referred to as the “non-DL”,  several feature extraction 

methods (e.g., histogram of oriented gradients, speeded up robust features, and gray level 

co-occurrence matrix) would be used to find the best applicable approach, where the best 

extraction method would then be used as inputs for the learning algorithm. DL is more 

effective in handling additional complexity and hierarchical structure in the data. The key 

aspect in DL is that it extracts by itself the best features in the learning procedure (LeCun 

et al., 2015). In the case of DL, the processing step of DL is more simplified than non-DL 
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because the optimal feature method is applied to the learning algorithm automatically 

(Alom et al., 2018). Furthermore, processing time of DL, especially testing time, is faster 

than non-DL (Chen et al., 2014). Fast processing time is good for algorithms to be applied 

to the hardware (i.e., field programmable gate array; FPGA or mobile application) and it 

could solve the needs of producers who need results as soon as possible. 

DL can be classified into three types according to the method and purpose of the 

research. The first type is unsupervised learning that does not require data labels, and this 

is good to find representative features with little data. As examples of the first type are deep 

belief network and deep auto encoder (Vincent et al., 2010). The second type is a recurrent 

neural network which fits well with sequential data processing, such as protein or polymer 

sequences. The last type is a convolutional neural network (CNN) which has shown the 

precise results in image recognition and natural language processing (Deng & Platt, 2014). 

Among three types of DL, CNN has been used as the most advanced computer vision (CV) 

in various fields since 2014 and is the most popular for detecting disease of the crops due 

to the high classification accuracy (CA) in image recognition (Szegedy et al., 2016). 

Imagenet large scale visual recognition challenge (ILSVRC) is an annual 

competition to foster the latest algorithm using the annotated Imagenet dataset for the 

development of CNN (Deng et al., 2009). Outcomes from the ILSVRC are milestone 

algorithms and techniques in the field of CV and DL. In this study, four state-of-the-art 

CNNs (AlexNet, SqueezeNet, GoogLeNet, and ResNet-50) were selected, and 

SqueezeNet-MOD1 and SqueezeNet-MOD2 developed by the author was carried out 

according to our research goal.  
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AlexNet, SqueezeNet, GoogLeNet, and ResNet-50 used in this study were found to 

be used actively in agriculture research. For example, AlexNet (ILSVRC 2012 winner) and 

SqueezeNet were compared for detecting disease in tomatoes and yielded similar 

accuracies (Durmuş et al., 2017); however, SqueezeNet would be more appropriate for use 

with mobile applications due to small memory requirements. GoogLeNet (ILSVRC 2014 

winner), also known as Inception, has also been used for disease detection purposes; for 

example, Ramcharan et al. (2017) compared the Inception and Inception V3 where it was 

determined that Inception was more effective in detecting diseases on cassava. However, 

Ramcharan et al. indicated that there were limitations related to memory and computing 

power. In studies comparing AlexNet with GoogLeNet, the differences were variable; for 

example, Mohanty et al. (2016) showed that GoogLeNet was more effective than AlexNet 

in detecting an array of 26 diseases found on 14 different crop species whereas the accuracy 

rates for the two algorithms were similar when used to detect nine diseases common to 

tomatoes. Lastly, Fuentes et al. (2017) compared different versions of the ResNet algorithm 

(ILSVRC 2015 winner) for detecting tomato diseases where it was determined that ResNet-

50 outperformed ResNeXt-50 (ILSVRC 2016 winner). 

Despite the application and success of different CNNs for detecting crop diseases, 

there is no existing research for detecting PM on strawberry leaves. Yet, such research is 

needed in order to inform the targeted application of fungicides thereby mitigating 

environmental degradation, as well as reduce the labour requirements by producers. Hence, 

the objectives of this research are (1) to compare the performance between supervised non-

DLs and CNNs, (2) to modify the architectures of four CNNs (AlexNet, SqueezeNet, 

GoogLeNet, and ResNet-50), (3) to develop SqueezeNet-MOD1 and SqueezeNet-MOD2 
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by modifying the SqueezeNet 1.1 version architectures, that have shown hardware 

applicability, to increase the performance with respect to the CA and computation time, (4) 

to evaluate and compare their performance with respect to CA, computational efficiency, 

and computation time.  

4.2. Materials and methodology 

4.2.1. Image datasets 

Healthy and infected strawberry leaves were collected from Balamore Farm Ltd. 

(45°24'35.4"N, 63°34'26.3"W) and Millen Farms Ltd. (45°23'57.6"N, 63°33'31.1"W) in 

the summers of 2018 and 2019. After collecting the leaves, they were brought to the lab as 

preserved in an icebox within 30 minutes. Images were taken with a digital single-lens 

reflex (DSLR) camera: EOS 1300D (Canon Inc., Tokyo, Japan), with 3456×5184 pixels 

(Raw CR2 format). The computational environment was implemented in MATLAB 

R2019a (The MathWorks Inc., Natick, MA, U.S.A.) using an Intel® Core™ i7-8700 CPU 

@ 3.20GHz with 48.0 GB RAM and 64-bit Windows 10 operating system. All images were 

cropped to 908×908 pixels first then resized to 227×227 pixels or 224×224 pixels 

depending on the requirement of the architectures to ensure that the relative size of the 

leaves on all images was consistent and to reduce the computational demand. The required 

input size in AlexNet, SqueezeNet, SqueezeNet-MOD1, and SqueezeNet-MOD2 was 

227×227 pixels and in GoogLeNet and ResNet-50 was 224×224 pixels. Images were 

adjusted to make the relative portions of PM uniform across all images and to reduce the 

computational burden and improve the efficiency of the results. 



54 
 

The total number of images collected from 2018 to 2019 consisted of 677 healthy 

and 773 infected leaves for a total of 1450 leaves. Data augmentation in DL is essential for 

models to be generalised so that it could be applied more easily to real field situations 

(Taylor & Nitschke, 2017). In addition, Rasti et al. (2019) identified that at least 10,000 

observations are required to improve the overall performance of DL algorithms and 

minimize the problems of overfitting. Hence, data augmentation was performed with the 

whole dataset to improve the robustness of the architectures and increase the number of 

observations (Liu et al., 2018). There are two aspects of data augmentation: geometrical 

transformation (rotating, flipping, cropping, and resizing the images) (Fadaee et al., 2017) 

and intensity transformation (noise, colour change, brightness enhancement) (Fuentes et 

al., 2017). Among them, the rotation technique was performed considering the different 

shape and direction of the leaves in the field. Hence, data augmentation was carried out 

using clockwise rotation technique along the 0° (the original images), 45°, 90°, 135°, 180°, 

225°, 270°, and 315°. Therefore, the original 1450 observations were increased by eight 

times with 5416 observations representing healthy leaves and 6184 observations 

representing infected leaves with a total of 11,600 observations.  

4.2.2. Comparison of non-DLs and CNNs 

 In this section, performances with respect to CA in non-DL and CNN techniques 

will be compared with the original image dataset (n=1450). Shin et al. (2020) compared 

the classification accuracies between three feature extraction techniques (histogram of 

oriented gradients; HOG, speeded-up robust features; SURF, and gray level co-occurrence 

matrix; GLCM) and two supervised non-DLs (artificial neural network; ANN and support 

vector machines; SVM). According to the results in Shin et al. (2020), the combination 
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between SURF and ANN, and GLCM and SVM were chosen as the optimal techniques to 

detect PM on strawberry leaves. 

4.2.3. Architectures of CNNs 

A CNN has convolutional layers that extract features from input images. The 

convolutional layers consist of a filter and an activation function and images of the leaves 

will classify into healthy or infected leaves by using the conventional neural networks 

based on the extracted features. AlexNet, SqueezeNet, GoogLeNet, and ResNet-50 have 

all different properties regarding depth, size, a number of parameters, and an image input 

size (Table 4-1). 

Table 4-1. Depth, size, parameters, and image input size per each deep learning 
architectures. 

Network Depth Size Parameters (millions) Image input size 
AlexNet 8 227 MB  61.0 227-by-227 

SqueezeNet 18  4.6 MB    1.2 227-by-227 
GoogLeNet 22   27 MB    7.0 224-by-224 
ResNet-50 50   96 MB  25.6 224-by-224 

 

In this section, four CNNs were introduced in terms of various evaluation metrics 

to find the best way to detect PM on the strawberry leaves. CNNs consist of a number of 

hyperparameters that needed to be tuned. Through many optimisation trials, the optimal 

hyperparameter combination was determined to be as follows: iterations = 5, base learning 

rate = 0.001, max epochs = 10, mini batch size = 64. This combination of parameters was 

applied to all CNN algorithms. To find and optimize the best classifier models, randomised 

hold-back validation was carried out, whereby the dataset was randomly partitioned into 
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80% (8120 images) for model training and 20% (3480 images) for model testing. The hold-

back procedure was repeated five times and the average accuracy metrics were reported. 

The learning rate is one of the most important hyperparameters to tune for training 

CNN and tells the optimizer how much weight to move in the opposite direction from the 

mini-batch since DL models are primarily trained by stochastic gradient descent optimizers. 

According to the rate of learning, the benefit of the model would be different. If the learning 

rate is low, although the optimisation takes a long time by moving forward with the small 

steps of the minimum loss function, the training process is more stable. On the other hand, 

if the learning rate is high, the training might not converge but diverge (Sutskever et al., 

2013). The number of epochs is also a crucial hyperparameter that defines the times that 

the learning algorithm will work through the entire training dataset. An epoch can be 

comprised of one or more batches and mini-batch can be determined according to the size 

of data. Usually, a batch size of 32 is a good starting point and batches of 62, 128, and 256 

can be applied as well (Keskar et al., 2016), and finding the optimised batch size in the 

given range would be suggested. In this experiment, training and testing division was set 

as 80% of the whole dataset used for training and 20% for testing. A total of 9280 images 

out of the 11,600 were used for training the model and the remaining 2320 images were 

used for testing the model. 

4.2.3.1. AlexNet  
 

AlexNet consists of five convolution layers, three fully connected layers, and 

softmax. In the first convolutional layer, 96 kernels (i.e., filters) of size 11×11×3 can be 

calculated with a stride of four on 227×227 input images. Among the five convolution 

layers, the first and second convolution layers are followed by the overlapping max pooling; 



57 
 

however, the remaining convolutional layers are connected directly each other. The last 

convolutional layers are followed by overlapping max pooling before connecting to the 

two fully connected layers. The second fully connected layers are linked to the softmax 

classifiers with two class labels. The architecture of AlexNet in this study was changed 

from 1×1×1000 into 1×1×2 in the last fully connected layer that classifies them into two 

(healthy and infected) (Figure 4-1). 

 

 

 

 

 

 

 
 

[a] Conv: Convolutional layer 
[b] MXP: Max Pooling layer 
[c] FC: Fully Connected layer 
 
 
4.2.3.2. GoogLeNet 
 

 GoogLeNet has 22 layers that were designed as a deep network which has more 

than 2 hidden layers and 12 times fewer parameters than AlexNet with higher accuracy. 

The major characteristic of GoogLeNet is the first CNN to introduce the Inception module. 

Inception layers keep a high resolution for small information on the images by covering a 

bigger area. Hence, the concept of inception runs parallel from 1×1 which is the 

sophisticated convolutional filter to the 5×5 convolutional filter which is a big size of layer 
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Figure 4-1. Architecture of AlexNet used in this study. 
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compared to 1×1 and 3×3 (Figure 4-2). Then, these different sizes of filters can process the 

better multiple objects scale according to the needs.   

 

 

 

 

 

 

 

4.2.3.3. ResNet-50 
 

The original ResNet has 152 layers and ResNet-50 is a smaller version of ResNet-

152. ResNet-50 is a CNN that is trained on more than a million images from the Imagenet 

database and stands for 50 layers deep (He et al., 2016). Each ResNet block is either two 

layers deep or three layers deep. The input images for the network are 224×224 pixels and 

each convolution which has three convolution layers and identity block which also has 

three convolution layers consists of five stages (Figure 4-3).  

 

 

 

 

 

Figure 4-3. ResNet-50 architecture used in this study. 
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Figure 4-2. Inception module in GoogLeNet. 
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[a] Conv: Convolutional layer 
[b] Avgpool: Average pool 
[c] FC: Fully Connected layer 
 
4.2.3.4. SqueezeNet and SqueezeNet modifications 
 

 SqueezeNet can achieve AlexNet level of accuracy with only 0.5 MB which is 510 

times smaller than AlexNet (Iandola et al., 2016). According to Iandola et al., it is 

considered a feasible CNN for deployment to a FPGA or other hardware due to limited 

memory. Three points are different from the previous big CNN; firstly, nine times of 

parameters in the convolutional layer are fewer than existing big CNN by replacing 3×3 

filter with 1×1 filter. Secondly, the number of channel inputs is decreased to 3×3 filter. 

Lastly, downsampling late in the network to convolution layers have large activation maps. 

The key layer introduced in the SqueezeNet is a fire module that consists of a squeeze layer 

and an expand layer and SqueezeNet constitutes a lot of fire modules and a few pooling 

layers (Figure 4-4). The role of the squeeze layer shrinks the features down consisting of 

1×1 convolutional layer and it can be expanded with a combination of 1×1 and 3×3 

convolutional layers. Hence, the feature map would go from small by using squeeze layer 

to big by using the expand layer. The fire module is made up of these three parameters (e.g., 

the number of 1×1 convolutional layers used in the squeeze, the number of 1×1 

convolutional layers used in the expand, and the number of 3×3 convolutional layers used 

in the expand) (Figure 4-5). The modified part in SqueezeNet is the activations are changed 

from 1×1×1000 to 1×1×2. SqueezeNet in this study was developed based on the 

SqueezeNet 1.1 version which is akin to the SqueezeNet 1.0 version but different in the 

places of the maxpool. SqueezeNet 1.1 version requires 2.4 times less computation than 

1.0 version without negatively impacting accuracy (Bressem et al., 2020).  
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Figure 4-4. The architectures of SqueezeNet and SqueezeNet modifications, (a) 
SqueezeNet (version 1.1), (b) SqueezeNet-MOD1 with bypassing of Fire 7, (c) 
SqueezeNet-MOD2 with bypassing of Fire 2, 5, and 7. 
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[c] Avgpool: Average pool 
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 [a] ReLu: Rectified Linear Unit which is an activation function 

 
The purpose of modifications in SqueezeNet was to improve the performance with 

respect to CA and testing time. Besides modifying the end architecture like AlexNet, 

GoogLeNet, and ResNet-50, SqueezeNet was modified by changing the whole architecture 

to make this algorithm more applicable to hardware. SqueezeNet-MOD1 was developed 

by bypassing the seventh fire module in Figure 4-4 (b). SqueezeNet-MOD2 was developed 

by bypassing the second, fifth, and seventh fire modules in Figure 4-4 (c). 

4.2.4. Evaluation of CNNs 

Healthy leaves indicate as negative (N and 0) and infected leaves mark as positive 

(P and 1) (Figure 4-6).  FN is classified as Type Ⅱ error which is related to recall/sensitivity 

and FP is considered as Type Ⅰ error which is related to precision. If FN values are high, 

that means the infected leaves are not identified correctly; on the other hand, if FP values 

are high, that means the healthy leaves are wrongly identified as infected leaves. By using 

1x1convolution filter 

1x1 and 3x3 convolution filters 

ReLU[a] 

ReLU 

 

 Figure 4-5. Fire module in the SqueezeNet architecture. 
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a confusion matrix, test accuracy, precision, sensitivity/recall, specificity, and F1-score will 

be compared. The matrix used to assess the CA values in models included test accuracy, 

specificity, and the harmonic mean of precision and recall (F1-score). Here, we defined test 

accuracy/CA as the following: 

 

 

 

 

 

 

 

 

 

 

 

Test accuracy =  TP + TN
TP + FP + TN + FN

     (Eq. 4-1) 

 

 

Where TP represents the number of leaves that were correctly classified as being 

infected and TN represents the number of leaves that were correctly classified as being 

non-infected. FP, which is considered as a Type Ⅰ error, reflects the number of leaves that 

were incorrectly classified as being infected, while FN, which is considered as a Type Ⅱ 

error, reflects the number of leaves that were incorrectly classified as being non-infected. 

The test accuracy is the most intuitive evaluation metric to check the performance 

of the model (Eq. 4-1); however, this is useful only in the situation when the values of FP 
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Figure 4-6. Test confusion matrix for evaluation. The rows of the confusion matrix 
correspond to the predicted class the columns correspond to the actual class. 0: healthy 
leaves (negative) and 1: infected leaves (positive). 
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and FN are balanced. In addition to test accuracy, we also calculated precision which is the 

fraction of correctly predicted infected leaves among the positively predicted observations 

(TP+FP) (Eq. 4-2).  

Precision =  TP
TP + FP

       (Eq. 4-2) 

 

Next, we calculated sensitivity/recall and specificity, which provides a magnitude 

of the mistakes and a measure of effectiveness of the first treatment respectively. 

Sensitivity/recall is the fraction of correctly predicted infected leaves among the positively 

actual observations (TP+FN) (Eq. 4-3). Specificity is the fraction of correctly predicted 

healthy leaves among the negatively actual observations (TN+FP) (Eq. 4-4). Lastly, we 

calculated F1-score which considers both FP and FN as a function of precision and 

sensitivity/recall (Eq. 4-5). 

Recall =  TP
TP + FN

       (Eq. 4-3) 

Specificity =  TN
TN + FP

       (Eq. 4-4) 

F1-score =  2∗Precision∗Recall
Precision+Recall

      (Eq. 4-5) 

 

4.2.5. Statistical analysis 

4.2.5.1. Methods for factorial analysis 
 

To determine which algorithm provides the highest CA and shortest testing time 

respectively, each CNN algorithm was considered as an input factor, and the test accuracy 

and computation time were considered as a response (Eq. 4-6). It should be noted that the 

statistical analysis of test accuracy/CA and testing time were performed separately. This 
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statistical experiment was performed in Minitab 18 (Minitab, LLC, PA, State College, PA. 

U.S.A). The normality test of the data was carried out before doing a one-way ANOVA.  

The model for factorial analysis is represented as follows: 

              Yij = μ+αi+ εij                                                    (Eq. 4-6) 

Where; 

Yij = Classification accuracy (%), 

µ = Overall mean, 

αi = Effect of “Deep learning algorithms” on response at ith level, 

εij = The error terms (uncontrollable & uncontrolled factors), 

i = 1, 2…, a; j = 1, 2..., n. 

In this study, a = 6 (number of algorithms) and n = 5 (replications). 

4.2.5.2. Hypothesis  
 

Ho: α1 = α2 = α3 = α4 = α5 = α6 = 0  

       Ha: at least one of the test accuracies is ≠ 0  

         

The null hypothesis for test accuracy/CA (or computation time) is there are no 

significant differences in six CNN algorithms. The alternative hypothesis is at least one test 

accuracy/CA (or computation time) has a significant difference in six CNN algorithms. If 

the p-value is less than 0.05, the null hypothesis is rejected and a multiple mean comparison 

(MMC) was conducted to determine the significant difference among groups. Tukey’s test 
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was selected due to the consideration of the magnitude of experimental error and was used 

to compare the differences between groups. Since the experiment was carried out in the 

laboratory, the magnitude of experimental error was low, suggesting that Tukey’s test was 

used as a method for MMC.  

4.3. Results and discussion 

In this section, six CNN algorithms were compared in terms of the various 

evaluation metrics and testing time to find the best way to detect PM on the strawberry 

leaves. The optimised algorithm depended on performances with respect to high test 

accuracy/CA value, short testing time, and small memory for an application to hardware. 

4.3.1. Comparison of non-DLs and CNNs 
 

In ANN, SURF feature extraction was selected as the best combination; In SVM, 

GLCM feature extraction was selected as the best combination (Shin et al., 2020). With the 

dataset in this research, both SURF and GLCM feature extraction showed the better 

performance in terms of ANN. Non-DL techniques showed an underfitting problem due to 

the added another summer season data in a process of data augmentation and showed an 

overfitting problem with a small dataset (Shin et al., 2020). 

According to the statistical analysis, there was a significant difference (p<.001) 

between test accuracies/CA results from 10 ML techniques (Table 4-2). Among 10 

techniques including non-DL and CNN, pre-trained CNN models (AlexNet, SqueezeNet, 

GoogLeNet, and ResNet-50) showed the highest CA when considering the statistical 

analysis. Next, SqueezeNet modifications and non-DLs showed good performances in 

order. CA values are lower than results in Shin et al. (2020) due to an increasing dataset 
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and adding new parameters as a different season. In conclusion, Table 4-2 shows CNNs 

are better than non-DLs when various parameters are included in the dataset.  

Table 4-2. Performance of non-DLs and CNNs using the original dataset (n=1450). 

Type Techniques Classification accuracy (%) Grouping 

non-DLs 

SURF+ANN   85.44±1.12[a] D 
GLCM+ANN 69.28±0.92 E 
SURF+SVM 55.20±2.28 G 
GLCM+SVM 62.28±2.42 F 

CNNs 

AlexNet 96.55±0.81  AB 
SqueezeNet 94.62±0.79 ABC 
GoogLeNet 94.42±0.47 ABC 
ResNet-50 98.01±0.47 A 

SqueezeNet-MOD1 93.72±2.75 BC 
SqueezeNet-MOD2 91.01±0.90  C 

[a] The standard deviation of five repetitions  
 
4.3.2. Experimental performance 
 

All CA values of six CNN algorithms were over 92%; hence, CNN algorithms 

proved promising in detecting PM on the strawberry leaves. ResNet-50 had the highest test 

accuracy/CA (98.11%) and gave the best performance in precision of 98.46% (Table 4-3). 

Next, SqueezeNet-MOD1 developed by the author had a test accuracy/CA of 96.38% 

which is slightly higher than CA of GoogLeNet (Table 4-3). ResNet-50 outperformed the 

other CNN algorithms for various other evaluation metrics, including precision, 

sensitivity/recall, specificity, and F1-score. High precision means a low FP which means 

that it is good for saving the costs of fungicides. Regardless of the processing time, if the 

cost is the most important consideration, then ResNet-50 would be suggested due to the 

highest precision with CA of 98.46%. In binary classification, recall is expressed as 

sensitivity/recall and ResNet-50 showed the highest sensitivity/recall value of 97.99%. 

High sensitivity/recall means that there are a few FN results, which means there are fewer 
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cases of PM detection mistakes. In the early stages of diagnosis, sensitivity/recall could be 

considered when trying to find the maximum possible PM leaves. In fact, if PM detection 

is the most important factor, the values of FN should be reduced. Specificity is encouraged 

to be considered in the final diagnosis stage or when the effectiveness of treatment is low 

even after spraying the primary fungicide. Hence, existing in a state of balance with 

sensitivity/recall and specificity is important. F1-score is useful to understand the results 

with the uneven class distribution. If the gap between FP and FN values is big, then F1-

score would be considered the most. Of the compared CNN techniques, ResNet-50 

received the highest F1-score of 98.23% (Table 4-3).   

Table 4-3. Performance of six CNN algorithms using the augmented dataset (n=11,600). 

 AlexNet  
(%) 

SqueezeNet 
(%) 

GoogLeNet 
(%) 

ResNet-50 
(%) 

SqueezeNet
-MOD1 (%) 

SqueezeNet
-MOD2 (%) 

Test 
accuracy 

95.59±0.49 
[a] 

95.80±0.72 96.36±1.16 98.11±0.28 96.38±0.57 92.61±0.84 

Precision 96.14±1.93 96.90±1.20 96.94±2.12 98.46±0.37 97.00±1.21 92.96±1.21 

Sensitivity/
recall 

95.64±1.83 95.29±1.64 96.31±2.64 97.99±0.42 95.84±1.77 93.48±2.49 

Specificity 95.54±2.34 96.49±1.41 96.74±2.61 98.25±0.37 96.30±2.30 92.52±1.96 

F1-score 95.86±0.44 96.07±0.73 96.56±1.18 98.23±0.26 96.29±0.26 94.10±1.18 
[a] The standard deviation of five repetitions  
* The bold font shows the highest CA among the values 
 

The findings from this study are consistent with other studies that compared a 

variety of DL algorithms. For example, Wang et al. (2017) compared AlexNet, GoogLeNet, 

VGG, and ResNet-50 for classifying eight different disease types. Wang et al. achieved the 

best results by using ResNet-50 to classify eight different pathology classes. Asad and Bais 

(2019) compared SegNet, UNET, VGG16, and ResNet-50 for predicting weed density in 

canola fields. Among four CNN algorithms, ResNet-50 showed the best performance with 
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82.88% mean intersection over union (IOU), 98.69% frequency weighted IOU, and 99.48% 

accuracy. Cruz et al. (2019) evaluated the performance of six CNN algorithms (e.g., 

AlexNet, GoogLeNet, Inception V3, ResNet-50, ResNet-101, and SqueezeNet) to detect 

grapevine yellows disease in a red grapevine and found that ResNet-50 is the most optimal 

algorithm with CA of 99.18% and training cost. Ashqar and Abu-Naser (2019) reported 

the potential of DL training by showing CA of 99.84% regarding the tomato leaf disease.  

Using ANOVA, there was a significant difference (p<.001) between the test 

accuracies/CA results from the CNN algorithms (Table 4-4); hence, MMC was carried out. 

Here, it was determined that there was no significant difference between the different 

algorithms with the exception of ResNet-50. ResNet-50 showed the significantly highest 

CA of 98.11% and this is aligned with our expectation based on similar results reported by 

Bianco et al. (2018) (Table 4-5). However, the magnitude of the difference was small. To 

distinguish performance beyond the CA of the algorithms other than ResNet-50, 

computation time and memory should be considered. The result analysis of SqueezeNet-

MOD1, SqueezeNet-MOD2, GoogLeNet, SqueezeNet, and AlexNet was explained in 

section 4.3.3.. 

Table 4-4. Analysis of variance of test accuracy of six CNN algorithms using the 
augmented dataset (n=11,600). 

Source DF[a] SS[b] MS[c] F-value p-value 
Algorithms 5 81.12 16.22 30.30 <.001 

Error 24 12.85   0.53   
Total 29 93.98    

[a] Degrees of freedom 
[b] Sum of squares 

[c] Mean square 
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Table 4-5. Multiple means comparison for only interaction between algorithms and test 
accuracy using the augmented dataset (n=11,600). 

Source Mean Grouping 
ResNet-50    98.11±0.28[a] A 

SqueezeNet-MOD1 96.38±0.57 B 
GoogLeNet 96.36±1.16 B 
SqueezeNet 95.80±0.72 B 

AlexNet 95.59±0.49 B 
SqueezeNet-MOD2 92.61±0.84 C 

[a] The standard deviation of five repetitions  
Means that do not share a letter are significantly different 

 

4.3.3. Computation time 
 

 Computation time is a crucial that needs to be considered in order to move real-

time processing forward. Even though the popularity of DL and computational power is 

increasing, the amount of time required to train the algorithms still needs to be a 

consideration (Justus et al., 2018). The training and testing time in Table 4-6 were 

calculated as the training time per epoch and the number of epochs that should be 

performed to reach the desired level of accuracy. Training time is the time taken to train 

the algorithms with 9280 images, which were 80% of the total dataset, and the testing time 

of 2330 images, which were 20% of the total dataset.  

 In 4.3.2., ResNet-50 was recommended giving the best test accuracy/CA; however, 

in terms of computation time, it took an incredibly long time compared to other algorithms 

(Table 4-6). Therefore, when considering computation time, AlexNet performed fastest to 

detect PM on strawberry leaves. The training time of 80% data with AlexNet was 3451.88 

seconds and the testing time of 20% data with AlexNet was 40.73 seconds (Table 4-6). 

Both training time and testing time in AlexNet were excelled as the fastest computation 
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time among six DL algorithms. As shown in Table 4-6, the order of CNN algorithms with 

the time taken is the accordance with the results in Bianco et al. (2018). 

Shafiee et al. (2017) indicated that SqueezeNet is good for deployment on mobile 

hardware applications (Table 4-1). The results of the processing time with ResNet-50 is 

consistent with our expectation that it took a long time due to the model complexity. Due 

to the many layers and parameters, DL might require much longer training time compared 

to non-DL; however, the testing time is shorter than that of non-DL (Busseti et al., 2012). 

Holistically, considering the test accuracy/CA, computation time, and memory for 

a hardware implementation, SqueezeNet-MOD1 and SqueezeNet-MOD2 would be 

recommended. Both have the smallest memory among other CNN algorithms presented in 

this study. Here, SqueezeNet-MOD1 was presented for high test accuracy/CA and 

SqueezeNet-MOD2 for short testing time with small memory respectively.  

Table 4-6. Computation time of six CNN algorithms using the augmented dataset 
(n=11,600). 

Deep learning algorithms  Training time (s)[a] Testing time (s)[b] 
AlexNet 3451.88±40.22 40.73±0.33 

SqueezeNet 3555.40±261.15 73.40±3.81 
GoogLeNet 9365.25±41.61 87.13±2.38 
ResNet-50 21,738.29±420.16 178.20±8.51 

SqueezeNet-MOD1 5141.80±27.31 68.55±3.99 
SqueezeNet-MOD2 3832.87±95.46 45.70±0.85 

[a] Testing time (seconds) for processing with 9280 data 
[b] Testing time (seconds) for processing with 2320 data 
* The bold font shows the short computation time among the values which has no 
significant difference. 
 

Using ANOVA, there was a significant difference (p<.001) between the testing 

time from CNN algorithms (Table 4-7); hence MMC was carried out. As a result of MMC, 
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there was a significant difference in terms of testing time among six CNN algorithms. In 

that case, AlexNet and SqueezeNet-MOD2 show the shortest computation time (Table 4-

8). The recommended CNN algorithm varies depending on whether the purpose of the 

study is to use a small memory with higher test accuracy/CA or small memory with shorter 

testing time.  

Table 4-7. Analysis of variance of computation time of six CNN algorithms using the 
augmented dataset (n=11,600). 

Source DF[a] SS[b] MS[c] F-value p-value 
Algorithms 5 62771 12554.2 127.64 <.001 

Error 24 2361 98.4   
Total 29 65131    

[a] Degrees of freedom 
[b] Sum of squares 

[c] Mean square 
 
 
Table 4-8. Multiple means comparison for only interaction between algorithms and testing 
time using the augmented dataset (n=11,600). 

Source Mean Grouping 
ResNet-50     178.20±8.51[a] A 
GoogLeNet   87.13±2.38 B 
SqueezeNet    73.40±3.81 B 

SqueezeNet-MOD1   68.55±3.99 B 
SqueezeNet-MOD2   45.70±0.85 C 

AlexNet   40.73±0.33 C 
[a] The standard deviation of five repetitions  
Means that do not share a letter are significantly different 

 

4.4. Conclusions 

This study began with a comparison of non-DLs and CNNs with the original dataset 

(n=1450). As we expected, CNNs showed the better performance than non-DLs when the 

dataset increased and parameters were added. With CNN’s superior justification, we 
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decided to focus on CNN algorithms. The best CNN algorithm was suggested in 

accordance with our research to develop a hardware system to detect PM and to spray 

fungicides on infected areas of strawberry leaves. The 11,600 data were constructed using 

eight different angles of rotation technique based on the original number of 1450 leaves. 

ResNet-50 showed the highest CA of 98.11% and as a result of statistical analysis, the test 

accuracy in the rest of the algorithms was not significantly different and was comparable 

to ResNet-50. When considering the high accuracy with small memory, SqueezeNet-

MOD2 would be recommended. In terms of testing time, ResNet-50 required the most time 

with 178.20 seconds and AlexNet took the least time with 40.73 seconds. The testing time 

showed a significant difference among CNN algorithms. Hence, AlexNet and SqueezeNet-

MOD2 would be recommended in order to process in a short time; however, when 

considering the small memory, the latter would be suggested. 

The experimental results showed that the CNN technique is a promising tool and 

an easily deployable strategy for detecting PM on the strawberry leaves. Furthermore, this 

research could be further extended to develop a fully automated hardware (i.e., FPGA or 

mobile application) in order to help millions of producers who are struggling with PM 

disease. Future work will be on connecting these CNN algorithms with the hardware and 

developing the disease management platforms, that are easy for producers to use by 

providing accurate and fast results.  
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CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

5.1. Conclusions 

 The overall goal of this study was to detect powdery mildew (PM) on strawberry 

leaves with the highest classification accuracy (CA) and shortest computation time. In 

order to reach the final goal, three objectives were presented step by step. The first objective 

was to detect PM by using image processing and supervised machine learning (ML). The 

combination of three image processing techniques (histogram of oriented gradients; HOG, 

speeded up robust features; SURF, and gray level co-occurrence matrix; GLCM) and two 

supervised ML (artificial neural network; ANN and support vector machine; SVM) was 

tested and compared in different image resolutions (227×227, 454×454, 681×681, 908×908, 

and 1135×1135) and cell sizes (32×32, 64×64, and 128×128; only for HOG). As a result 

of the first objective, the combination of SURF and ANN showed the highest CA of 94.34% 

with 908×908 image resolution and the combination of GLCM and SVM showed the 

highest CA of 88.98% with 908×908 image resolution when considering only highest CA. 

Also, there was a significant difference between image resolutions that were seen only in 

a combination of HOG and ANN, HOG and SVM, SURF and SVM, GLCM and ANN. 

Therefore, an additional result analysis was performed to reduce computational complexity 

by selecting the smallest image resolution among the combinations that do not have a 

significant difference in CA. The combination of SURF and ANN showed the highest CA 

of 92.66% with 227×227 image resolution and the combination of GLCM and SVM 

showed the highest CA of 86.36% with 227×227 image resolution. 
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The second objective was to evaluate the effects of data augmentation in supervised 

ML by rotating the images by using 90°, 180°, and 270°. The 254 images were increased 

to 1016 by applying an angular rotation technique. The number of data is important in 

training the image data due to the overfitting problem and data normalisation. To simulate 

strawberry leaf bundles in the real field, data augmentation with various directions was 

necessary. As a result of the second objective, the effects on data augmentation were 

challenging in accordance with the tendency not to show improvement after a certain point 

even if data increases in traditional ML unlike deep learning (DL).  

For a plentiful results analysis, a comparison between supervised non-DLs and 

CNNs was carried out. CA values were compared by using an original dataset (n=1450) in 

CHAPTER 4  in 10 ML techniques including non-DLs and CNNs. Non-DLs were decided 

on the combinations that were chosen as the optimized feature extraction techniques and 

supervised ML in CHAPTER 3. For the uniformity of image resolution, it will be compared 

with the combination considering statistical analysis and computational complexity, not 

the combination just showing the highest CA. The combination of SURF and ANN showed 

the CA of 85.44% with 227×227 image resolution and the combination of GLCM and ANN 

showed the CA of 69.28% with 227×227 image resolution. Compared to non-DLs, CNNs 

results showed much higher CA. As we learned from section 3.3.2., the performance of 

non-DLs tended to decrease as the dataset increased. Results were overfitting with a small 

dataset and results were underfitting with a larger dataset. In conclusion, CNN techniques 

were much superior and robust in added parameters than non-DLs with large datasets. 
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The third objective was the detection of PM on the strawberry leaves by using six 

CNN algorithms based on an augmented dataset(n=11,600) to increase the CA and to 

reduce the testing time. Image dataset was acquired during the summer in 2018 and 2019, 

and DL normally required a huge dataset of at least 10,000; hence, the total number of 

images was increased by eight different angles of rotation technique. The four famous 

algorithms (AlexNet, SqueezeNet, GoogLeNet, and ResNet-50) with a low error rate were 

used in this study. Also, SqueezeNet-MOD1 and SqueezeNet-MOD2 were developed by 

the author to improve the performance compared to SqueezeNet 1.1 version. The CA was 

acquired as the average value from the five repetitions with data that were selected 

randomly each time. Among six CNN algorithms, ResNet-50 showed the best performance 

in terms of all evaluation metrics (test accuracy, precision, sensitivity, specificity, and F1-

score). After ResNet-50, the performance was good in the order of SqueezeNet-MOD1, 

GoogLeNet, SqueezeNet, AlexNet, and SqueezeNet-MOD2. As a result of the statistical 

analysis, except for ResNet-50, there was no significant difference in SqueezeNet-MOD1, 

GoogLeNet, SqueezeNet, and AlexNet. The next thing to consider was the computation 

time. ResNet-50 took the longest time and AlexNet took the shortest time. There was no 

significant difference in testing time between GoogLeNet, SqueezeNet, and SqueezeNet-

MOD1. Also, there was no significant difference in testing time between SqueezeNet-

MOD2 and AlexNet. When considering applying algorithms to hardware, SqueezeNet-

MOD2 would be recommended due to shorter testing time and smaller memory than 

AlexNet. 

  



76 
 

5.2. Future recommendations 

 The overall study was designed to reduce the burden on producers of strawberries.  

As a starting point for this big project, we developed advanced algorithms to detect PM 

and classify healthy and infected leaves using image processing, non-DL and CNN 

techniques. Future work will be to combine the algorithm (SqueezeNet-MOD2) that was 

suggested in conclusions with hardware (i.e., FPGA or mobile applications) and implement 

it in the actual field. To conduct the spot application, real-time kinematics-global 

positioning system (RTK-GPS) would be applied to carry out mapping PM points on the 

field. Furthermore, a connecting nozzle with this system could be a great help to control 

the PM on the strawberry leaves.  

 In addition to PM detection, the development of the algorithms in detection on 

flowers which will turn into strawberries and crown rot would be recommended. The 

degree of flowering can be used as an indication to predict strawberry yields for the season 

and to prepare for how much labour producers need. Therefore, the development of 

algorithms that detect flowering is recommended. The strawberry farms in Nova Scotia 

also have a large export business to the United States of daughter strawberry stems, which 

grows from mother strawberry. The red colour of the daughter strawberry stem stands for 

malnutrition or burning due to the black colour of the plastic mulch. It is anticipated that 

more effective and efficient farm operations would be possible if the recommended 

algorithms are integrated into hardware. 
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