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Abstract

A polynomial f(x) ∈ Q[x] is called integer-valued if f(n) ∈ Z for all n ∈ Z. Bhar-

gava’s p-orderings and p-sequences have been helpful tools in the study of integer-

valued polynomials over subsets of Z and arbitrary Dedekind domains, and similar

useful definitions exist of ν-orderings and ν-sequences in the case of certain noncom-

mutative rings. In a 2015 paper by Evrard and Johnson, these ν-sequences are used

to construct a regular p-local basis for the rational integer-valued polynomials over

the ring of 2 × 2 integer matrices M2(Z) by way of moving the problem to maximal

orders within an index 2 division algebra over Qp. In this work, we will demonstrate

how the construction used there extends nicely to maximal orders in index p division

algebras over Q2, where p is an odd prime, thereby giving the construction for a

regular basis for polynomials that are integer-valued over this maximal order.
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Chapter 1

Introduction

The goal of this research is to study the ring of integer-valued polynomials on p× p
matrices for p a prime, and its integral closure, extending results for 2 × 2 matrices

given in [11] and [6]. This introductory chapter seeks to introduce the reader to

integer-valued polynomials over Z, before discussing computational tools in Int(Z)

and extending the results to integer-valued polynomials over a domain D.

Definition of ring of integer-valued polynomials

The ring of integer-valued polynomials Int(Z) is defined as the set of rational poly-

nomials taking integer values over the integers:

Int(Z) = {f ∈ Q[x] : f(Z) ⊆ Z} ,

which carries the structure of a subring of Q[x]. The ring Int(Z) has a number of

interesting properties, such as the fact that it is a polynomial ring with regular basis

as a Z-module comprised of the binomial polynomials{(
x

k

)
=
x(x− 1) · · · (x− (k − 1))

k!
: k ∈ Z>0

}
,

with convention that
(
x
0

)
= 1 and

(
x
1

)
= x. This means that every f ∈ Int(Z) can

be expressed uniquely as a Z-linear combination of the
(
x
k

)
, the set of which contains

exactly one polynomial of degree k for k ≥ 1. [4]

We can also consider integer-valued polynomials on a subset S ⊆ Z, which is

defined by

Int(S,Z) = {f ∈ Q[x] : f(S) ⊆ Z} .

1



Note that Int(S,Z) is also a ring contained in Q[x].

The binomial polynomials
(
x
n

)
have been long used in interpolation problems, but

it was not until 1919 that separate papers by Pólya and Ostrowski studied integer-

valued polynomials as a topic of their own. These polynomials are the subject of

a monograph from 1997 by Cahen and Chabert [3], but the nature of the study of

integer-valued polynomials changed in 2000 with the introduction of p-orderings and

p-sequences by Bhargava [2].
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Chapter 2

Summary of Known Results

2.1 Results over Z

2.1.1 p-orderings and p-sequences

The notion of a p-ordering of a subset of Z and its application to the study of integer-

valued polynomials was first introduced by Bhargava in [2].

Let S be any subset of Z, and let p be a fixed prime. A p-ordering of S is

a sequence {ai}∞i=0 of elements in S defined as follows: choose an element a0 ∈ S

arbitrarily. Further elements are defined inductively where, given a0, a1, . . . , ak−1, the

element ak ∈ S is chosen so as to minimize the highest power of p dividing

k−1∏
i=0

(ak − ai) .

The choice of p-ordering of S ⊆ Z gives an associated integer sequence, the associ-

ated p-sequence of S, denoted {αS,p(k)}∞k=0. The kth element αS,p(k) of this monotone

increasing sequence is the power of p minimized at the kth step of the process of

defining a p-ordering.

If we let νp denote the p-adic valuation on Z, where νp(x) = max{t ∈ N : pt|x} if

x 6= 0 and νp(0) =∞, then

αS,p(k) = νp

(
k−1∏
i=0

(ak − ai)

)
=

k−1∑
i=0

νp(ak − ai) .

Though the choice of a p-ordering of S is not unique, we do get the following nice

result:

3



Theorem 2.1.1 ([2], Thm 5). The associated p-sequence of a subset S ⊆ Z is inde-

pendent of the choice of p-ordering.

In order to give a proof of Theorem 2.1.1, we need a bit more machinery. Let {ai}
be a fixed p-ordering of a set S ⊆ Z. We can define the falling factorials x(n)S,p by

x(n)S,p = (x− a0)(x− a1) · · · (x− an−1) .

Lemma 2.1.2 ([2], Lemma 12). A polynomial f over the integers, written in the

form

f(x) =
k∑
i=0

cix
(i)S,p =

k∑
i=0

ci(x− a0)(x− a1) · · · (x− ai−1) , (2.1)

vanishes on S modulo pe if and only if cix
(i)S,p does for each 0 ≤ i ≤ k.

Proof. Suppose f vanishes on S (mod pe), but that some term on the right side of

Equation (2.1) does not. Let j be the smallest index for which cjx
(j)S,p does not

vanish on S (mod pe). By setting x = aj, all terms on the right side with i > j vanish

identically, while the minimality of j tells us that all terms with i < j vanish modulo

pe. Therefore cja
(j)S,p
j must also vanish modulo pe, from which we see that cjx

(j)S,p

vanishes on all of S (mod pe), since {ai} is a p-ordering. This contradiction gives the

desired result.

Proof of Theorem 2.1.1, [2]. Given a set S ⊆ Z, let d be a positive integer, choose a

large positive integer e such that e > αS,p(d). Consider the set Gd of all polynomials

in (Z/peZ)[x] that vanish on S modulo p and have degree at most d – this set forms

an additive group. By Lemma 2.1.2, the polynomials x(i)S,p form a basis for the

polynomials f which vanish on S modulo pe. Since the {ai} are a p-ordering for S,

we know these elements are chosen in such a way that minimizes αS,p(k), and hence

every falling factorial x(i)S,p is divisible by pαS,p(i). This shows that as an abelian

group, Gd is isomorphic to
d⊕

k=0

Z/pαS,p(k)Z .

Therefore the numbers pαS,p(k), for 0 ≤ k ≤ d, form the structure coefficients for the

abelian group Gd. By the structure theorem for finitely generated abelian groups,

these constants depend only on Gd itself, which gives the result of Theorem 2.1.1.

4



2.1.2 Generalized factorial

Bhargava’s motivating question in [2] is not explicitly on the topic of integer-valued

polynomials, but instead on extending the idea of the factorial (which relies on the

fact that we are working over all of Z) to subsets of the integers. Given the fact that

the natural ordering of nonnegative integers 0, 1, 2, 3, . . . gives a p-ordering of Z for all

primes p simultaneously (see [2], Prop 6), Bhargava notes that using the definitions

made in Section 2.1.1, we can define the usual factorial function over the integers just

in terms of the invariants αZ,p(k) as

k! =
∏
p

pαZ,p(k)

and the use of these invariants allows for the following definition.

Definition 2.1.3. Let S be a subset of Z. Then the factorial function of S, denoted

k!S, is defined as

k!S =
∏
p

pαS,p(k) .

Note that though the product is over the infinite set of all primes in Z, for a fixed

k only finitely many of the αS,p(k) are not equal to 0. Thus this definition makes

sense for all choices of S and k.

As referred to in the Introduction, we have the following result.

Theorem 2.1.4 (Pólya). A polynomial is integer-valued on Z if and only if it can

be written as a Z-linear combination of the polynomials(
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!

with k = 0, 1, 2, . . .

As this conveniently characterizes all elements of Int(Z), we would like to be able

to do the same for Int(S,Z). To do so, we first need the notion of the “global falling

factorial” described in [2].

Definition 2.1.5. The global falling factorial polynomials Bk,S are defined by

Bk,S(x) = (x− a0,k)(x− a1,k) · · · (x− ak−1,k) , (2.2)

where {ai,k}∞i=0 is a sequence in Z that, for some prime p dividing k!S, is termwise

congruent modulo pαS,p(k) to some p-ordering of S.

5



Note. Such a sequence {ai,k}∞i=0 as in Definition 2.1.5 exists by the Chinese Remainder

Theorem.

This definition allows for the analogous result to Theorem 2.1.4 for subsets of the

integers.

Theorem 2.1.6 ([2], Thm 23). A polynomial is integer-valued on a subset S ⊆ Z if

and only if it can be written as a Z-linear combination of the polynomials

Bk,S

k!S
=

(x− a0,k)(x− a1,k) · · · (x− ak−1,k)

k!S

with k = 0, 1, 2, . . . and with Bk,S defined as in Equation (2.2).

The study of integer-valued polynomials of subsets has long since extended to that

of other commutative domains, which we discuss in Section 2.2.

2.2 Extensions of Results over Z

The notion of rings of integer-valued polynomials can be generalized from Z to the

following. Let D be a commutative integral domain with quotient field K. Then the

integer-valued polynomials on D form a ring

Int(D) = {f ∈ K[x] : f(D) ⊆ D} .

If E is a subset of D, we can also consider the integer-valued polynomials of E, defined

as

Int(E,D) = {f ∈ K[x] : f(E) ⊆ D} ,

and we note that Int(E,D) is also a ring contained in K[x].

For a subset E of a domain D having quotient field K, we have the following chain

of inclusions of rings:

D[x] ⊆ Int(D) ⊆ Int(E,D) ⊆ K[x] . (2.3)

A common question in this area of study is under which conditions we have equality

within this chain.

When considering integer-valued polynomials of a subset, it is possible that for

two different subsets E and F of K, we have Int(E,D) = Int(F,D).

6



Lemma 2.2.1 ([3], IV.1.1). For each subset E of K, the subset

F = {x ∈ K : f(x) ∈ D for all f ∈ Int(E,D)}

is the largest subset of K such that Int(E,D) = Int(F,D).

Definition 2.2.2 ([3], IV.1.2).

i) Two subsets E and F of K are called polynomially equivalent if Int(E,D) =

Int(F,D).

ii) The largest subset of K that is D-equivalent to E is the polynomial closure of

E.

iii) If E is equal to its polynomial closure, then E is polynomially closed.

iv) If E is a subset of the domain D which is polynomially equivalent to D, then

E is a polynomially dense subset of D.

By this definition, the subset F of K in Lemma 2.2.1 is the polynomial closure of

E. We also see that Int(D) = Int(E,D) in the chain of rings in Equation (2.3) if E

is a polynomially dense subset of D. [3]

2.2.1 Regular bases of Int(E,D)

Definition 2.2.3. Let D be a domain and E a subset of D. Let In(E,D) denote the

set formed by the leading coefficients of all degree n polynomials in Int(E,D), with

0 also adjoined. Then each In(E,D) is a fractional ideal of D, and we call them the

characteristic ideals of Int(E,D). By In(D), we denote the characteristic ideals of

Int(D).

Proposition 2.2.4 ([3], II.1.4). Let E be an infinite subset of the domain D. Then

the D-module Int(E,D) admits a regular basis if and only if all the fractional ideals

In(E,D) are principal. In this case, a sequence {fn}n≥0 of polynomials in Int(E,D)

where deg(fn) = n forms a regular basis if and only if, for each n, the leading

coefficient of fn generates In(E,D).

In the case where D is a discrete valuation domain with uniformizing parameter

t, then all fractional ideals of D are of the form tkD for some k ∈ Z>0. Since D

is principal, every subring B of Int(D) admits a regular basis ([3], II.1.6), and to

determine this basis we consider the characteristic ideals In(B), which are of the
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form In(B) = t−αB(n)D. We call the sequence {αB(n)} the characteristic sequence of

the ring B. By Proposition 2.2.4, a sequence {fn} of polynomials is a regular basis for

B if and only if for each n, deg(fn) = n and the leading coefficient of fn has valuation

−αB(n) ([3], IX.3 pg. 241).

Definition 2.2.5. Let {an}n≥0 be a sequence of distinct elements of a subset E of a

domain D. We define the generalized binomials

(
x

an

)
by

(
x

a0

)
= 1

(
x

an

)
=

n−1∏
k=0

x− ak
an − ak

, for n ≥ 1 .

Proposition 2.2.6 ([4], 20). Let E be an infinite subset of a domain D and {an}n≥0

be a sequence of distinct elements of E. Then the following are equivalent:

i) The generalized binomials

(
x

an

)
are integer-valued on E.

ii) The generalized binomials

(
x

an

)
form a basis of the D-module Int(E,D).

iii) A polynomial f ∈ K[x] of degree at most n is integer-valued on E if and only

if it is integer-valued on the first n+ 1 terms of the sequence {an}n≥0.

It may be the case that there exists no such sequence as in Proposition 2.2.6, but

for subsets of Z one can obtain such a sequence locally, namely by constructing a

p-ordering (see Section 2.1.1).

2.2.2 Regular bases of subsets of Dedekind domains

In the case where D is a Dedekind domain with quotient field K, and E is any subset

of D, it is possible to give an explicit description of Int(E,D). Due to Bhargava [1],

there also exist necessary and sufficient conditions for the existence of a regular basis

for Int(E,D), as well as a construction for the case where a regular basis exists. We

discuss these results below.

First we will define what is meant by a P -ordering of a subset of a Dedekind

domain in a fashion analogous to that in Section 2.1.1.

Definition 2.2.7. Let D be a Dedekind domain, E any nonempty subset of D, and

P be a fixed nonzero prime ideal of D. We define a P -ordering of E as follows: let

8



a0 ∈ E be any element, and for k = 1, 2, . . . choose ak ∈ E to be an element which

minimizes the exponent of the highest power of P containing

k−1∏
i=0

(ak − ai) .

We denote by νP (a) the exponent of the highest power of P containing a ∈ D, called

the P -adic valuation of a. Then given such a P -ordering {ai}∞i=0, we can define the

associated P -sequence of E corresponding to the P -ordering {ai} as {αE,P (k)}∞k=0,

with each term of the sequence being defined by

αE,P (k) = νP

(
k−1∏
i=0

(ak − ai)

)
=

k−1∑
i=0

νP (ak − ai) .

Also analogous to our discussion for subsets of the integers, we can define a fac-

torial function.

Definition 2.2.8. For D a Dedekind domain and E an arbitrary subset, we define

νE(k) =
∏

P prime

PαE,P (k)

where the product above is taken over all proper prime ideals P of D for which

PαE,P (k) 6= D.

With these definitions, we may now relay some useful results.

Theorem 2.2.9 ([1], Theorem 11). Let E be a subset of a Dedekind domain D, and

let f(x) ∈ D[x] be such that deg(f) = k and the coefficients of f generate D. If

I ⊆ D is the smallest ideal such that f maps E into I, then

νE(k) ⊆ I .

Moreover, for any k ∈ Z>0, the case where νE(k) = I is achieved by the polynomial

Sk = (x− a0,k)(x− a1,k) · · · (x− ak−1,k)

where {ai,k}∞i=0 is a sequence in D which, for each prime ideal P ⊇ νE(k), is termwise

congruent modulo PαE,P (k) to some P -ordering of E.

Theorem 2.2.10 ([1], Theorem 12). The set of all leading coefficients of polynomials
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of degree k in Int(E,D) is the fractional ideal given by νE(k)−1, with the convention

that the inverse of the zero ideal is the quotient field K.

The following theorem shows that elements of Int(E,D) can be written in terms

of the sequences {ai,k}∞i=0 and the polynomials Sk described in Theorem 2.2.9. It also

describes the structure of Int(E,D) as a D-module.

Theorem 2.2.11 ([1], Theorem 13). Let f(x) ∈ Int(E,D). Then f can be repre-

sented in the form

n∑
k=0

bk(x− a0,k)(x− a1,k) · · · (x− ak−1,k) ,

where n ∈ Z and the bk ∈ νE(k)−1 are uniquely determined by f . Conversely, any

polynomial of the form above is an element of Int(E,D).

It follows that, as a D-module, Int(E,D) is isomorphic to the direct sum

∞⊕
k=0

νE(k)−1 .

Now that the description of the D-module structure of Int(E,D) has been estab-

lished, we can provide a criterion for the existence of a regular basis, as well as a

construction for this regular basis when it exists.

Theorem 2.2.12 ([1], Theorem 14). The ring Int(E,D) has a regular basis if and

only if νE(k) is a nonzero principal ideal for all k ≥ 0. In this case, a regular basis of

Int(E,D) is given by the polynomials

(x− a0,k)(x− a1,k) · · · (x− ak−1,k)

βk

for k = 0, 1, 2, . . . , where βk is a generator of the ideal νE(k).

Corollary 2.2.13 ([1], Corollary 3). If D is a principal ideal domain, then for any

infinite subset E ⊆ D the ring Int(E,D) has a regular basis.

In particular, this means that for every infinite subset E of a discrete valuation

ring D, the ring Int(E,D) has a regular basis. If we let ν denote the valuation in D

and P the uniformizing parameter, then a P -ordering of E is a sequence {ai}∞i=0 of

elements in S such that for each k > 0, the element ak minimizes ν(
∏k−1

i=0 (a − ai))

10



over a ∈ E. In particular, the set of polynomials{
k−1∏
i=0

x− ai
ak − ai

: k = 0, 1, 2, . . .

}

provides a regular basis for Int(E,D).

We now have a number of results regarding rings of polynomials of subsets over

commutative domains. We would like to extend these results to noncommutative

rings, which leads us to the description of the differences between polynomials in

commutative and noncommutative rings.

2.3 Polynomials over Noncommutative Rings

As the goal of this research is to better understand the integer-valued polynomials

over matrix rings Mn(Z), it is important to comprehend the differences between

polynomials over commutative rings and their noncommutative counterparts.

Let R be any ring, and let R[x] be the polynomial ring in a single variable x over

R, where x commutes elementwise with all of R. Given a polynomial

f(x) =
n∑
i=0

aix
i ∈ R[x]

and some element r ∈ R, we define the evaluation of f at r by f(r) =
∑n

i=0 air
i ∈ R.

It is important to note that while

n∑
i=0

aix
i =

n∑
i=0

xiai

in the ring R[x], the two elements
∑n

i=0 air
i and

∑n
i=0 r

iai in R may be different if

r does not commute with with all the coefficients ai. Thus the standard definition

of evaluation of f at r requires f(x) to be expressed in the form
∑n

i=0 aix
i, and then

substituting r for x. Another important difference between polynomials in general

rings and in the commutative case is that evaluation at r is not generally a ring

homomorphism from R[x] to R, meaning that if f(x) = g(x)h(x) ∈ R[x] it does not

follow that f(r) = g(r)h(r) for r ∈ R.

An element r ∈ R is a right root of a polynomial f(x) ∈ F [x] if f(r) = 0, but

since we will only consider right roots, we will drop this defining adjective from what

follows.
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Proposition 2.3.1 ([12], 16.2). An element r ∈ R is a root of a nonzero polynomial

f(x) ∈ R[x] if and only if the linear factor x − r is a right divisor of f(x) in R[x].

The set of polynomials in R[x] which have r as a root is the left ideal R[x] · (x− r).

2.3.1 Polynomials over division rings

Rather than considering general rings R, we now focus particularly on division rings,

which will be the type of ring of interest for much of this thesis.

Proposition 2.3.2 ([12], 16.3). Let D be a division ring, and let f(x) = g(x)h(x) ∈
D[x]. Let d ∈ D be such that a := h(d) 6= 0. Then

f(d) = g(ada−1)h(d) .

In particular, if d is a root of f but not h, then ada−1 is a root of g.

Proof. Let g(x) =
∑
bix

i, then f(x) =
∑
bih(x)xi. Evaluating at d ∈ D,

f(d) =
∑

bih(d)di

=
∑

biad
i =

∑
biad

ia−1a

=
∑

bi(ada
−1)ia

= g(ada−1)h(d) .

The last statement follows because D has no zero-divisors.

Over a field, polynomials of degree n have at most n distinct roots, but this is not

the case over division rings. However, there is an analogue to this fact:

Theorem 2.3.3 (Gordon-Motzkin, [12] 16.4). Let D be a division ring, and let f be

a polynomial of degree n in D[x]. Then the roots of f lie in at most n conjugacy

classes of D. This means that if f(x) = (x−a1) · · · (x−an) with a1, . . . , an ∈ D, then

any root of f is conjugate to some ai.

Let F be the centre of a division ring D. Suppose that a ∈ D is a root of the

polynomial f(x) ∈ F [x], then every conjugate of a is also a root of f(x), which we

can see by conjugating the equation f(a) = 0 by all nonzero elements of D.

Definition 2.3.4. Let D be a division ring, F its centre, and A a conjugacy class

of D. We call the conjugacy class A algebraic over F if one (and therefore all) of its

elements are algebraic over F .
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In the case that the conjugacy class A is algebraic, then the elements of S have

the same minimal polynomial over F , which we call the minimal polynomial of A.

Lemma 2.3.5 ([12], 16.5). Let D be a division ring with centre F , and let A be a

conjugacy class of D which is algebraic over F with minimal polynomial f(x) ∈ F [x].

If a nonzero polynomial h(t) ∈ D[t] vanishes identically on A, then deg h ≥ deg f .

A classical result about polynomials over division rings is given by Dickson, to

which we will make future reference.

Theorem 2.3.6 (Dickson’s Theorem, [12] 16.8). Let D be a division ring and F its

centre. Let a, b ∈ D be two elements that are algebraic over F . Then a and b are

conjugate in D if and only if they have the same minimal polynomial over F .

Proof. Suppose a and b are conjugate in D, and let fa and fb denote their minimal

polynomials, respectively. Since a is a root of fa, so too are all its conjugates, so

fa(b) = 0 from which we obtain deg(fa) ≥ deg(fb). Switching a and b gives deg(fa) =

deg(fb), and since both are monic the uniqueness of minimal polynomials shows that

fa = fb.

Conversely, let A be the conjugacy class determined by a, and assume that a, b

have the same minimal polynomial f(x) ∈ F [x]. Since f(b) = 0, we know x − b is a

factor of f(x) in the polynomial over the field F (b). Then there exists h(x) ∈ F (b)[x]

for which

f(x) = h(x)(x− b) = (x− b)h(x) .

By Lemma 2.3.5, h(x) is not identically zero on A and thus there exists a′ ∈ A for

which h(a′) 6= 0. Since f(a′) = 0, this implies that a conjugate of a′ is a root of t− b,
so that b is a conjugate of a′. Hence b ∈ A, and b is a conjugate of a.

So far we have some results for the minimal polynomial of a single element, but

would like to define the minimal polynomial of a finite list of elements (see Defini-

tion 2.5.7). The following theorem offers justification that such a polynomial should

exist.

Theorem 2.3.7 (Bray-Whaples, [12] 16.13). Let D be a division ring and c1, . . . , cn

be n pairwise nonconjugate elements of D. Then there exists a unique polynomial

g(x) ∈ D[x] with deg(g) = n that is monic and such that g(c1) = · · · = g(cn) = 0.

Moreover, g(x) has the following properties:

i) c1, . . . , cn are all the roots of g ∈ D.
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ii) If h(x) ∈ D[x] vanishes on all ci with 1 ≤ i ≤ n, then h(x) ∈ D[x] · g(x).

We can explicitly describe this minimal polynomial of a set, as given below.

Proposition 2.3.8 ([11], 2.4). Let D be a subring of a division algebra, and c1, . . . , cn

be n pairwise nonconjugate elements ofD. Then the minimal polynomial of {c1, . . . , cn}
is given inductively by

f(c1)(x) = (x− c1)

f(c1, c2)(x) = (x− [f(c1)(c2)]c2[f(c1)(c2)]−1)(x− c1)

...

f(c1, . . . , cn)(x) = (x− [f(c1, . . . , cn−1)(cn)]cn[f(c1, . . . , cn−1)(cn)]−1) · f(c1, . . . , cn−1)(x)

= (x− [f(c1, . . . , cn−1)(cn)]cn[f(c1, . . . , cn−1)(cn)]−1)

(x− [f(c1, . . . , cn−2)(cn−1)]cn−1[f(c1, . . . , cn−2)(cn−1)]−1) · · · (x− c1) .

We would ultimately like to describe rings of integer-valued polynomials on n×n
matrices. To do this, we will look at integer-valued polynomials over the maximal

order of a division ring.

2.4 Maximal Orders

As there is a strong link between the sets of integer-valued polynomials of algebraic

integers and that of maximal orders (described in more detail in Section 2.5.1), we

first introduce some theory behind maximal orders before discussing integer-valued

polynomials of matrices.

Definition 2.4.1 ([14], Section 8). Let R be a Noetherian integral domain with

quotient field K, and A a finite-dimensional K-algebra.

i) Let V be a finite-dimensional K-space. A full R-lattice in V is a finitely-

generated R-submodule M in V such that K ·M = V , where we define

K ·M =
{∑

αimi : αi ∈ K,mi ∈M, sum is finite
}
.

ii) An R-order in A is a subring Λ of A which has the same unit element as A,

and is such that Λ is a full R-lattice in A.
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Note that every finite-dimensional K-algebra A contains R-orders, since there

exist y1, y2, . . . , yn ∈ A such that A =
∑n

i=1 Kyi, and so Λ =
∑n

i=1 Ryi is a full

R-lattice in A, and hence an R-order.

Given that A =
∑n

i=1 Kyi, for α ∈ A we may write

α · yj =
m∑
i=1

aijyj

with aij ∈ K and 1 ≤ j ≤ m. Then we can define the characteristic polynomial for α

over K by

char. pol.Kα = det(δijx− aij)

= xm − (TA/Kα)xm−1 + · · ·+ (−1)mNA/Kα

where we call TA/K the trace and NA/K the norm of α. The subscript A/K here

(and in Theorem 2.4.2 for the characteristic polynomial) simply denotes the fact that

these expressions are computed using a K-basis for A. The monic polynomial of least

degree for which f(α) = 0 divides the characteristic polynomial, and is called the

minimal polynomial of α ∈ A, denoted min. pol.Kα.

Theorem 2.4.2 ([14], 8.6). Every element of an R-order Λ is integral over R. More-

over, if R is integrally closed, then for every a ∈ Λ both the minimal polynomial and

characteristic polynomial for a over K are in R[x], i.e.

min. pol.Ka ∈ R[x] char. pol.A/Ka ∈ R[x] .

Definition 2.4.3. A maximal R-order in A is an R-order which is not properly

contained in any other R-order in A.

We will see in Section 2.4.1 that there are some cases where there is a unique

maximal R-order. Finally, as we are ultimately concerned about matrices, we note

the following result.

Theorem 2.4.4 ([14], 8.7). If Λ is a maximal R-order in A, then for each n, Mn(Λ)

is a maximal R-order in Mn(A). If R is integrally closed, then Mn(R) is a maximal

R-order in Mn(K).
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2.4.1 Maximal orders of division rings, local case

When R is a complete discrete valuation ring (i.e. R is a principal ideal domain with

unique maximal ideal P = πR 6= 0, and R is complete with respect to the P -adic

valuation), K is the quotient field of R, and D is a division ring whose centre contains

K and is such that [D : K] = m is finite, then D contains a unique maximal R-order

∆. This fact is shown below.

Let ν denote the P -adic valuation defined on K and let ND/K be the norm map,

defined by

char. pol.D/Ka = xm − (TD/Ka)xm−1 + · · ·+ (−1)mND/Ka

for a ∈ A. We define a new function

w(a) = m−1 · ν(ND/Ka)

for a ∈ D. This new map w is a discrete valuation on D extending ν, meaning that

w(α) = ν(α) for α ∈ K ([14] Theorem 8.7).

We also define

∆ = {a ∈ D : w(a) ≥ 0}

= {a ∈ D : ND/Ka ∈ R} .

Then ∆ is a ring containing R, and is finitely generated as an R-module. We call ∆

the valuation ring of w, and

Theorem 2.4.5 ([14], 12.8). ∆ is the unique maximal R-order in D, and is the

integral closure of R in D.

Theorem 2.4.6 ([14], 12.10). The valuation w is the unique extension of ν to D

that maintains the properties of a valuation, and has infinite cyclic value group (i.e.

{w(a) : a ∈ D, a 6= 0} is infinite cyclic).

2.4.2 Maximal orders of division rings, local case with finite

residue class field

Now that it has been established that a division ring D contains a unique maximal

R-order ∆ when R is a complete discrete valuation ring with unique maximal ideal
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P , K is the quotient field of R, and D has centre containing K such that [D : K] is

finite, we can look specifically at the case where the residue class field R = R/P is

finite.

Assume the above with R a finite field containing q elements. Assume also that

[D : K] = n2; we call n the index of D. Let ∆ be the unique maximal R-order in

D. Then the structures of the division ring D and maximal order ∆ can be described

explicitly, and can be chosen to depend only on the index n.

The proof of Theorem 14.6 in [14] gives a construction1 for D. Suppose, as we

have been doing, that K is a complete field. Let the inertia field be W = K(ω),

where ω is a primitive (qn − 1)th root of unity. If a division ring D exists with

centre K and index n, then W is a maximal subfield of D and hence splits D, so

that W ⊗K D ∼= Mn(W ). Thus every element d ∈ D is representable by a matrix

d∗ ∈ Mn(W ). We can therefore represent D by a set of matrices in Mn(W ) which

constitute a division ring with the desired properties.

Let θ be the automorphism of W for which θ(ω) = ωq, and let π ∈ R be a prime

element. For α ∈ W , define

α∗ =



α 0 0 · · · 0

0 θ(α) 0 · · · 0

0 0 θ2(α) · · · 0
...

...
...

. . .
...

0 0 0 · · · θn−1(α)


, π∗D =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

π 0 0 · · · 0


.

For each α ∈ W , the map α → α∗ gives a K-isomorphism of W onto the field

W ∗ = K(ω∗) ⊆ Mn(W ), where each λ ∈ K is identified with the diagonal matrix

λIn ∈Mn(W ). This identification gives us the properties

(π∗D)n = πIn π∗D · ω∗ · (π∗D)−1 = (ω∗)q .

Setting

D = K[ω∗, π∗D]

gives a K-subalgebra of Mn(W ) which is the desired division ring (this is justified in

1The proof shows that there exists a division ring D with any Hasse invariant r/n for any choice
of r ∈ Z such that 1 ≤ r ≤ n and gcd(r, n) = 1. Since we only care about the existence of a division
ring of index n and not a specific one, the description of the construction has been simplified slightly
to the case where r = 1.
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Section 14 of [14] but will not be done here). The unique maximal R-order of D is

∆ = R[ω∗, π∗D] .

Since Fpn is a splitting field for the polynomial xp
n − x over Fp with p prime and

[Fpn : Fp] = n, it follows that as ω is a (qn − 1)th root of unity and hence a root of

xq
n − x, that [W : K] = [K(ω) : K] = n. As π∗D satisfies the polynomial xn − π,

the extension [D : W ] ≤ n and hence [D : K] ≤ n2, and so any element a ∈ D is

expressible as a K-linear combination of the n2 elements {(ωi)∗ · (π∗D)j}. Because

(ω∗)i = (ωi)∗, we can also express a in the form

a =
n−1∑
j=0

α∗j (π
∗
D)j

with aj ∈ W and (π∗D)j =

(
0 In−j

πIj 0

)
.

In doing so, we can write an element a as

a =



α0 α1 α2 · · · αn−1

πθ(αn−1) θ(α0) θ(α1) · · · θ(αn−2)

πθ2(αn−2) πθ2(αn−1) θ2(α0) · · · θ2(αn−3)
...

...
...

. . .
...

πθn−2(α2) πθn−2(α3) πθn−2(α4) · · · θn−2(α1)

πθn−1(α1) πθn−1(α2) πθn−1(α3) · · · θn−1(α0)


and hence if a = 0, we must have all αi = 0 as well. This shows that D is a vector

space over W with basis {(π∗D)j : 0 ≤ j ≤ n − 1}, and hence [D : W ] = n and

therefore [D : K] = n2.

2.4.3 Constructing a division ring of index 3 with p = 2

Let our complete field K be Q2, the complete field of 2-adic numbers, and let ω = ζ7

be a primitive (23−1)th root of unity. Then we can let W = Q2(ω), and if there exists

a division ring D with centre Q2 and index 3, then W must be a maximal subfield of

D, and so W ⊗Q2 D
∼= M3(W ).

Let θ ∈ Aut(W ) be the automorphism for which θ(ω) = ω2. We need to pick a

prime element in Z2, the 2-adic integers, and we can choose π = 2. For an element
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α ∈ W , we can define

α∗ =

α 0 0

0 θ(α) 0

0 0 θ2(α)

 π∗D =

0 1 0

0 0 1

2 0 0


so that

ω∗ =

ω 0 0

0 θ(ω) 0

0 0 θ2(ω)

 =

ω 0 0

0 ω2 0

0 0 ω4


The map α 7→ α∗ gives a Q2-isomorphism W → W ∗ = Q2(ω∗) ⊆ M3(Q2) under

which we identify scalars λ ∈ Q2 with the scalar matrix λI3 ∈ M3(Q2). We observe

the following relations involving ω∗ and π∗D:

(π∗D)3 = 2I3 π∗D · ω∗ = (ω∗)2 · π∗D .

Given this, we define

D = Q2[ω∗, π∗D] = Q2


ω 0 0

0 ω2 0

0 0 ω4

 ,

0 1 0

0 0 1

2 0 0




and the maximal order is similarly defined by ∆ = Z2[ω∗, π∗D].

Each element a ∈ D may be expressed as a Q2-linear combination of the elements

{(ω∗)i · (π∗D)j : 0 ≤ i, j ≤ 2}. Explicitly, these basis elements are

I3 =

1 0 0

0 1 0

0 0 1

 π∗D =

0 1 0

0 0 1

2 0 0

 (π∗D)2 =

0 0 1

2 0 0

0 2 0



ω∗ =

ω 0 0

0 ω2 0

0 0 ω4

 ω∗π∗D =

 0 ω 0

0 0 ω2

2ω4 0 0

 ω∗(π∗D)2 =

 0 0 ω

2ω2 0 0

0 2ω4 0



(ω∗)2 =

ω
2 0 0

0 ω4 0

0 0 ω

 (ω∗)2π∗D =

 0 ω2 0

0 0 ω4

2ω 0 0

 (ω∗)2(π∗D)2 =

 0 0 ω2

2ω4 0 0

0 2ω 0


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We will make use of this construction in Chapter 3. In future, for ease of notation,

we will identify ω and ω∗, and π and π∗.

2.5 Integer-Valued Polynomials over Matrix Rings

As in our prior discussion, if we denote by Mn(Z) the ring of n × n matrices with

integer entries, then we can denote by

IntQ(Mn(Z)) = {f ∈ Q[x] : f(M) ∈Mn(Z) for all M ∈Mn(Z)}

the set of rational polynomials mapping integer matrices to integer matrices. This is

a Z-module for which we have the inclusion

Z[x] ⊆ IntQ(Mn(Z)) ⊆ Int(Z) . (2.4)

To justify the existence of a regular basis for IntQ(Mn(Z)), we require the following

result:

Corollary 2.5.1 (II.1.6, [3]). Let B be a domain such that D[x] ⊆ B ⊆ Int(E,D)

for some infinite fractional subset E of D. If D is a principal ideal domain, then B

has a regular basis.

Since Z is a principal ideal domain, and is an infinite fractional subset of itself, we

may conclude from this corollary and Equation 2.4 that IntQ(Mn(Z)) has a regular

basis. Unlike for Int(Z), however, it turns out that this regular basis is not easy to

describe using a formula in closed form. [6]

2.5.1 The integral closure of IntQ(Mn(Z))

Recall the following standard definition from abstract algebra:

Definition 2.5.2. Let A and B be commutative unital rings, and let A be a subring

of B. The set of elements of B that are integral over A is called the integral closure

of A in B.

In particular we will see that for our interests, the integral closure of IntQ(Mn(Z)),

the set of all polynomials f(x) ∈ Q[x] which are integral over IntQ(Mn(Z)), is a very

useful object. We can learn information about computing regular bases for both

of these rings by making use of the following two results of Frisch, and Loper and

Werner, respectively.
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Theorem 2.5.3 ([7], Lemma 3.4). Let f(x) = g(x)
c

with g(x) ∈ Z[x] and c ∈ Zr{0}.
Then f(x) maps Mn(Z) to itself if and only if g(x) is divisible modulo cZ[x] by all

monic polynomials in Z[x] of degree n.

Theorem 2.5.4 ([13], 3.8 and 4.6). Let On denote the set of all algebraic integers in

number fields Q(θ) with [Q(θ) : Q] = n. Then the integral closure of IntQ(Mn(Z)) is

equal to ⋂
θ∈On

IntQ(Oθ) ,

where Oθ denotes the ring of algebraic integers in Q(θ), and IntQ(Oθ) denotes the

algebra of rational polynomials preserving Oθ.

To study the integral closure of IntQ(Mn(Z)) we would like to describe its local-

izations at rational primes, which can be done using the localizations of the algebras

IntQ(Oθ) from Theorem 2.5.4. Loper and Werner [13] suggest that a basis for the

integral closure of Int(Mn(Z)) can be found by computing IntQ(Oθ)(p) for all possible

Oθ and a given rational prime p, and then intersect, but computing the intersection

becomes complicated.

Another way by which we can study the integral closure of IntQ(Mn(Z)) is by

using results about division algebras over local fields.

Theorem 2.5.5 (Embedding Theorem, in appendix of [16]). If D is a division algebra

of degree n2 over a local field K and F is a field extension of degree n of K, then F

can be embedded as a maximal commutative subfield of D.

From this theorem, it follows that if Rn is the maximal order of D, then by

inclusion IntQ(Rn) lies in the intersection of all the rings IntQ(Oθ) (since each Q(θ)

can be embedded as a maximal commutative subfield of D). The rings IntQ(Rn) and⋂
θ∈On

IntQ(Oθ) are, in fact, equal, and so constructing an Rn basis for IntQ(Rn) via

p-orderings (see Section 2.5.2) will give the means to describe the integral closure of

IntQ(Mn(Z)).

Let p be a fixed prime, let D be a division algebra of degree n2 over K a local

field, and let Rn denote the maximal order in D (see Section 2.4). In all applications,

we will take K = Qp the p-adic numbers, equipped with the usual p-adic valuation.

Proposition 2.5.6 ([13] 4.6, [6], 2.1). The integral closure of IntQ(Mn(Z)(p)) is

IntQ(Rn)

Proof. Suppose f ∈ IntQ(Rn). Let F be a degree n extension of Qp, then by Theo-

rem 2.5.5 F is a maximal commutative subfield of D, hence its ring OF of algebraic
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integers is a subring of the maximal order Rn. By restriction, f ∈ IntQ(OF ) so by

Theorem 2.5.4, f is in the integral closure of IntQ(Mn(Z)) and hence f is in the

integral closure of IntQ(Mn(Z)(p)).

Conversely, suppose that f ∈ Q[x] and that f ∈ Int(Oθ) for all θ ∈ On. Let

z ∈ Rn. Then z is an integral element of Qp(z) (by Theorem 2.4.2), a commutative

subfield of D (by Theorem 2.5.5). Therefore f(z) ∈ Oz and so f ∈ Rn.

Proposition 2.5.6 demonstrates that the problem of describing the integral closure

of IntQ(Mn(Z)(p)) is exactly that of describing IntQ(Rn), so we move our attention

towards studying integer-valued polynomials over maximal orders.

2.5.2 ν-orderings of subsets of maximal orders in division

algebras

To describe IntQ(Rn), we establish results analogous to the p-orders of Section 2.1.1,

extending to maximal orders of division algebras over a local field. While in the pre-

vious case we referred to p-orderings, since the p-adic valuation is a natural valuation

defined over Z, in a general local field we will consider an associated valuation ν, and

hence may establish the definition of a ν-ordering.

Definition 2.5.7. ([11], 1.1) Let K be a local field with valuation ν, D be a division

algebra over K to which ν extends, R the maximal order in D, and S a subset of R.

Then a ν-ordering of S is a sequence {ai : i = 0, 1, 2, . . . } ⊆ S such that for each

k > 0, the element ak minimizes the quantity ν(fk(a0, . . . , ak−1)(a)) over a ∈ S, where

fk(a0, . . . , ak−1)(x) is the minimal polynomial of the set {a0, a1, . . . , ak−1}, with the

convention that f0 = 1. We call the sequence of valuations {ν(fk(a0, . . . , ak−1)(ak)) :

k = 0, 1, . . . } the ν-sequence of S.

Proposition 2.5.8 ([11], 1.2). As in Definition 2.5.7, let K be a local field with

valuation ν, D be a division algebra over K to which ν extends, R the maximal order

in D, and S a subset of R. Additionally, let π ∈ R be a uniformizing element, meaning

an element for which (πn) = (p), let {ai : i = 0, 1, 2, . . . } ⊆ S be a ν-ordering, and let

fk(a0, . . . , ak−1) be the minimal polynomial of {a0, a1, . . . , ak−1}. Then the sequence

{αS(k) = ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, 2, . . . } depends only on the set S, and

not on the choice of ν-ordering. The sequence of polynomials

{π−αS(k)fk(a0, . . . , ak−1)(x) : k = 0, 1, 2, . . . }
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forms a regular R-basis for the R-algebra of polynomials which are integer-valued on

S.

To utilize Proposition 2.5.8, we first need to be able to construct a ν-ordering of

our maximal order Rn. A recursive method for constructing ν-orderings for elements

of a maximal order is based on two lemmas.

Lemma 2.5.9 (see [11], 6.2). Let {ai : i = 0, 1, 2, . . . } be a ν-ordering of a subset S

of R with associated ν-sequence {αS(i) : i = 0, 1, 2, . . . } and let b be an element in

the centre of R. Then:

i) {ai + b : i = 0, 1, 2, . . . } is a ν-ordering of S + b, and the ν-sequence of S + b is

the same as that of S

ii) If p is the characteristic of the residue field of K (so that (p) = (π)n in R),

then {pai : i = 0, 1, 2, . . . } is a ν-ordering for pS and the ν-sequence of pS is

{αS(i) + in : i = 0, 1, 2, . . . }

Definition 2.5.10. The shuffle of two nondecreasing sequences of integers is their

disjoint union sorted into nondecreasing order. If the sequences are {bi} and {ci},
their shuffle is denoted {bi} ∧ {ci}.

Lemma 2.5.11 ([11], 5.2). Let S1 and S2 be disjoint subsets of S with the property

that there is a non-negative integer k such that ν(s1 − s2) = k for any s1 ∈ S1 and

s2 ∈ S2, and that S1 and S2 are each closed with respect to conjugation by elements

of R, by which we mean rsr−1 ∈ S1 for all r ∈ R and s ∈ S1, and respectively for S2.

If {ai} is a ν-ordering of S1 ∪ S2 then the subsequence of this ordering consisting of

those elements in S1 is a ν-ordering of S1 and similarly for S2.

Conversely, if {bi} and {ci} are ν-orderings of S1 and S2 respectively with associ-

ated ν-sequence {αS1(i)} and {αS2(i)}, then the ν-sequence of S1 ∪ S2 is the sum of

the linear sequence {ki : i = 0, 1, 2, . . . } with the shuffle {αS1(i)−ki}∧{αS2(i)−ki},
and this shuffle applied to {bi} and {ci} gives a ν-ordering of S1 ∪ S2.

As the linear sequence mentioned in the above Lemma will come up many times

in this document, we formalize its notation here:

Definition 2.5.12. The sequence (kn) denotes the linear sequence {kn : n = 0, 1, 2, . . . },
whose nth term is kn.

The case where n = 2, in which D is a division algebra of degree 4, has been

described for the case where p = 2 in [11] and extended to the case where p is an odd

prime in [6]. As all results extend to the latter case, we will describe the results as

given in [6].
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2.5.3 Constructing a ν-order for R2

Using the construction described in Section 2.4.2, we can build the division algebra D2

and hence the maximal order R2, and decompose R2 into a disjoint union of subsets

to which Lemma 2.5.11 applies.

Let K = Qp the p-adic numbers, let ω be a primitive (p2−1)th root of unity, and let

W = Qp(ω), an unramified extension of Qp of degree 2. Let θ be the automorphism of

W for which θ(ω) = ωp, and let π be a uniformizing element of R2, so that (π2) = (p).

Commutativity relations within D2 are determined by πωπ−1 = ωp (or πω = ωpπ),

and an element z ∈ D2 can be expressed uniquely in the form z = α0 + α1π with

α0, α1 ∈ W . R2 consists of those elements z for which α0, α1 are integers in W , so

that ν(α0), ν(α1) ≥ 0.

With this presentation, the trace and norm of an element z ∈ D2 are given by

Tr(z) = α0 + θ(α0) N(z) = α0θ(α0)− α1θ(α1)p .

The characteristic polynomial for z is given by chz(x) = x2 − T (z)x+N(z).

The ideal (π) in R2 is a two-sided prime ideal, and z ∈ R2 is in (π) if and only

if N(z) ≡ 0 (mod p). We have R2/(π) ∼= Fp2 , and the powers of ω provide a set of

representatives for the nonzero residue classes mod π. In particular powers of ωp+1

gives representatives of the residue classes of the subfield Fp.
We can decompose R2 into the following sets:

Definition 2.5.13 ([6], 2.6).

i) Let S0 = {z ∈ R2 : z ≡ 0 (mod π)}.

ii) For i = 1, 2, . . . , p − 1, let Si = S0 + i. Note that each 1 ≤ i ≤ p − 1 is an

element of the centre of R2 and so this addition makes sense.

iii) For a, b ∈ Fp such that x2 − ax + b is irreducible in Fp[x], let Sa,b = {z ∈ R2 :

Tr(z) ≡ a (mod p), N(z) ≡ b (mod p)}.

With these sets Si and Sa,b defined, we have the following result.

Lemma 2.5.14 ([6], 2.7).

i) If z ∈ Si, then chz(x) ≡ (x− i)2 (mod p).

ii) If z ∈ Sa,b, then chz(x) ≡ x2 − ax+ b (mod p).

iii) There are (p2 − p)/2 distinct sets Sa,b.
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iv) Each of the sets Si, Sa,b is closed with respect to conjugation by elements of R2.

v) The disjoint union of all Si and Sa,b is equal to R2.

Proof.

i) If z ∈ S0, then z2 ≡ 0 (mod π2), so z is a root of the polynomial x2 modulo

π2 = p. The same argument applied to z − i demonstrates that if z ∈ Si, then

z is a root of (x− i)2 modulo π2 = p.

ii) Follows from the definition of a characteristic polynomial.

iii) Follows from a well-known formula for the number of irreducible quadratics

modulo p.

iv) Follows from Dickson’s Theorem (Theorem 2.3.6), which states that conjugate

elements share a characteristic polynomial.

v) Is implied by the uniqueness of the characteristic polynomial.

By the results of Lemma 2.5.14, the sets Si, Sa,b satisfy the hypotheses of Lemma 2.5.11,

and therefore it suffices to find the ν-orderings for each separately. We do this for

each set Sa,b in Proposition 2.5.20. Each of the sets Si for i = 1, 2, . . . , p − 1 is a

translate of S0 by elements in the centre of R2, so by Lemma 2.5.9 it suffices to just

order S0. We further decompose the set S0 to aid in finding the ν-ordering.

Definition 2.5.15 ([6], 2.8). For i = 0, . . . , p − 1, let Ti = {z ∈ R2 : N(z) ≡
ip (mod p2)}.

Lemma 2.5.16 ([6], 2.9).

i) Each element of S0 is in exactly one of the sets Ti.

ii) Each set Ti is closed with respect to conjugation by elements of R2.

iii) If z ∈ Ti, w ∈ Tj with i 6= j, then ν(z − w) = 1.

iv) For each z ∈ Ti with i 6= 0, the characteristic polynomial Cz(x) ≡ x2 − jpx +

ip (mod p2) for some j.

v) T0 = pR.
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Proof.

i) Follows from the definition of the sets Ti.

ii) Follows from the multiplicativity of the norm.

iii) Since z, w ∈ S0 we know that ν(z − w) ≥ 1. If we had ν(z − w) > 1, then z

and w would be in the same residue class modulo π2, in which case their norms

would be congruent modulo p2. Therefore we must have ν(z − w) = 1.

iv) Follows from the definition of Ti along with the fact that Tr(z) ≡ 0 (mod p)

for z ∈ S0.

v) We have T0 = {z ∈ R2 : N(z) ≡ 0 (mod p2)}, so z ∈ T0 if and only if z is

divisible by π2 = p in R2, and since p is in the centre of R2, the result follows.

Between Lemmas 2.5.16 and 2.5.11, we know that we can express a ν-ordering

for S0 as a shuffle of those for the sets Ti with i > 0 and the set T0. Note that by

Lemmas 2.5.9 and 2.5.16 v), we can express the ν-ordering of T0 in terms of that of

R2.

The decomposition of R2 into a disjoint union of sets Sa,b and Ti, i > 0, combined

with the results of Lemmas 2.5.9 and 2.5.11, yield a recursive formula for a ν-ordering

of R2.

It is shown in Proposition 2.5.20 that all the ν-sequences for the sets Sa,b are the

same, and likewise for the Tis with i > 0. We denote these ν-sequences by αS and αT ,

respectively, and recall the notation for a linear sequence given in Definition 2.5.12.

This gives us the following result.

Proposition 2.5.17 ([6] 2.10). The ν-sequence of R2, denoted αR, satisfies and is

determined by the formula

αR = [[(αR + (n)) ∧ (αT − (n))∧p−1] + (n)]∧p ∧ (α
∧(p2−p)/2
S ) (2.5)

Given the ν-sequences αS and αT , Equation (2.5) uniquely determines αR(n) for

all n. It now remains to compute the ν-sequences and ν-orderings for the sets Sa,b

and Ti. The method from [6] given below for p a prime in general is an extension of

the p = 2 case given in [11].
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Definition 2.5.18 ([6], 2.11).

i) Let a, b ∈ Fp be given and let n =
∑

i≥0 nip
i be the expansion of n in base p.

Define the map

φ = (φ1, φ2) : Z≥0 → (a+ pZ≥0)× (b+ pZ≥0)

φ(n) =

(
a+ p

∑
i≥0

n2ip
i, b+ p

∑
i≥0

n2i+1p
i

)

Additionally, let the polynomial fn(x) be defined by

fn(x) =
n−1∏
i=0

(x2 − φ1(i)x+ φ2(i)) .

ii) Let 0 < j < p be given and let n =
∑

i≥0 nip
i be the expansion of n in base p.

Define the map

ψ = (ψ1, ψ2) : Z≥0 → (pZ≥0)× (jp+ p2Z≥0)

ψ(n) =

(
p
∑
i≥0

n2ip
i, jp+ p2

∑
i≥0

n2i+1p
i

)

Additionally, let the polynomial gn(x) be defined by

gn(x) =
n−1∏
i=0

(x2 − ψ1(i)x+ ψ2(i)) .

Note. To remain consistent with [6], here we have ordered our component polynomials

φ and ψ so that φ2, ψ2 correspond to the constant terms of quadratic polynomials in fn

and gn. For ease of notation in future chapters, we will let the polynomial component

φi denote the coefficient of xi.

Lemma 2.5.19 ([6], 2.12).

i) If z ∈ Sa,b then ν(fn(z)) ≥ 2n + 2
∑

k>0

⌊
n
p2k

⌋
with equality if Tr(z) = φ1(n)

and N(z) = φ2(n).

ii) If z ∈ Tj for j > 0 then ν(gn(z)) ≥ 3n +
∑

k>0

⌊
n
pk

⌋
with equality if Tr(z) =

ψ1(n) and N(z) = ψ2(n).
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The proof of Lemma 2.5.19 is omitted from this section as a similar computation

is presented in Section 3.3 for the case of 3× 3 matrices.

From the embedding theorem (Theorem 2.5.5), for any choice of n there are

elements an, bn ∈ R2 that are roots of the polynomials x2 − φ1(n)x + φ2(n) and

x2−ψ1(n)x+ψ2(n), respectively. The definition of fn and gn given in Definition 2.5.18

imply that f2n(x) is the minimal polynomial of the set

{a0, θ(a0), a1, θ(a1), . . . , an, θ(an)}

while gn(x) is the minimal polynomial of

{b0, θ(b0), b1, θ(b1), . . . , bn, θ(bn)} .

This result suggests that

Proposition 2.5.20 ([6], 2.13).

i) The sequence {a0, θ(a0), a1, θ(a1), . . . } is a ν-ordering of Sa,b and the associated

ν-sequence is

αS(2n) = αS(2n+ 1) = 2n+ 2
∑
k>0

⌊
n

p2k

⌋
.

ii) The sequence {b0, θ(b0), b1, θ(b1), . . . } is a ν-ordering of Tj and the associated

ν-sequence is

αT (2n) = αT (2n+ 1)− 1 = 3n+
∑
k>0

⌊
n

pk

⌋
.

Corollary 2.5.21 (to Prop 2.5.20, see [6], 2.14).

i) The sequence of polynomials

{π−αS(2n)fn(x), π−αS(2n+1)xfn(x) : n = 0, 1, 2, . . . }

forms a regular R2-basis for Int(Sa,b).

ii) The sequence of polynomials

{π−αT (2n)gn(x), π−αT (2n+1)xgn(x) : n = 0, 1, 2, . . . }

forms a regular R2-basis for Int(Tj).
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We have now established that the ring of integer-valued polynomials of each com-

ponent in our disjoint union characterizing R2 has a regular basis, and we would like

to put these together to obtain a regular R2-basis for IntQ(R2) itself. The following

lemma provides the means of doing so with basis elements of a convenient form.

Lemma 2.5.22 ([6], 2.15). If two subsets ofR2 satisfying the hypotheses of Lemma 2.5.11

each has a regular basis whose elements are each quotients of polynomials in Z[x] by

powers of π, then their union also has a regular basis of this form.

Proof. Let {π−α1(n)hn(x) : n = 0, 1, 2 . . . } and {π−α2(n)kn(x) : n = 0, 1, 2 . . . } be the

two bases in question, with hn(x), kn(x) ∈ Z[x]. Since by assumption the sets satisfy

the hypotheses of Lemma 2.5.11, we already know that the ν-sequence α of their

union is the shuffle of the sequences α1 and α2.

For each n, there is a pair of integers ` and m such that `+m = n, and either

α(n) = α1(`) and α(n) ≥ α2(m) or α(n) = α1(m) and α(n) ≥ α2(`)

or both. This implies that π−α(n)h`(x)km(x) is a polynomial of degree n which is R2-

valued on the union of the two sets, and has the same denominator as the polynomial

of degree n in a regular basis for the ring of polynomials that are R2-valued on the

union. By choosing one of these polynomials for each degree n, we obtain a regular

basis of the desired form.

Since each of the polynomials fn(x), gn(x) have integer coefficients, we can apply

Lemma 2.5.22 to our maximal order to obtain:

Corollary 2.5.23 ([6], 2.16). Int(R2) has a regular basis whose elements are each a

quotient of a polynomial in Z[x] by a power of π.

Corollary 2.5.24 ([6], 2.17). The p-sequence of IntQ(R2) is {bαR2(n)/2c : n =

0, 1, 2, . . . }.

2.5.4 Valuative capacity

One thing that is of interest to describe is the asymptotic behaviour of a ν-sequence

α(n).

Definition 2.5.25 ([5], §4). The valuative capacity of a set S is described by

lim
n→∞

αS(n)

n
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if this limit exists, where αS(n) is the characteristic sequence of S.

Proposition 2.5.26 ([10], Prop 7). If α, β are nondecreasing unbounded sequences

with

lim
n→∞

α(n)

n
= a > 0 and lim

n→∞

β(n)

n
= b > 0

then

lim
n→∞

(α ∧ β)(n)

n
=
(
a−1 + b−1

)−1
.

Continuing the example given for R2 over Qp from earlier in this section, we obtain

the following result for the valuative capacity of R2.

Proposition 2.5.27. The valuative capacity of R2 over Qp is given by

lim
n→∞

αR2(n)

n
=

2

p2 + p− 2
.

Proof. Since we have

αR2 = [[(αR2 + (n)) ∧ (αT − (n))∧p−1] + (n)]∧p ∧
(
α
∧(p2−p)/2
S

)
,

we see from Proposition 2.5.26 that

lim
n→∞

αR2(n)

n
=

1

(p2 − p)/2
limn→∞

αS(n)
n

+
p

1 +
1

p− 1

limn→∞
αT (n)

(n)
− 1

+
1

limn→∞
αR2

(n)

n
+ 1

.

Since

αS(2n) = αS(2n+ 1) = 2n+ 2
∑
k>0

⌊
n

p2k

⌋
αT (2n) = αT (2n+ 1)− 1 = 3n+

∑
k>0

⌊
n

pk

⌋

it can be directly computed that

lim
n→∞

αS(n)

n
=

p2

p2 − 1
and lim

n→∞

αT (n)

n
=

3

2
+

1

2(p− 1)
,
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from which it becomes clear that the valuative capacity of R2 is the positive solution

to the quadratic equation

x =
1

(p2 − p)/2
p2/(p2 − 1)

+
p

1 +
1

p− 1

1/2 + 1/2(p− 1)
+

1

x+ 1

=
1

(p+ 1)(p− 1)2

2p
+

p

1 +
1

2(p− 1)2

p
+

1

x+ 1

from which we obtain

lim
n→∞

αR2(n)

n
=

2

p2 + p− 2
.
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Chapter 3

The Index 3, 2-local Case

3.1 Notation

We are working within the division algebra D3 and its maximal order ∆3, represented

as subsets of the 3× 3 matrices as described in Section 2.4.3:

D3 = Q2[ω, π] ∆3 = Z2[ω, π]

where Q2,Z2 denote the 2-adic numbers and integers, respectively, and

ω =

ζ7 0 0

0 ζ2
7 0

0 0 ζ4
7

 π =

0 1 0

0 0 1

2 0 0


with ζ7 a primitive 7th root of unity. Note that we have the relations π3 = 2I3 and

π · ω · π−1 = ω2, and also a valuation ν in ∆3 described by ν(z) = ν2(det(z)) for

z ∈ ∆3 realized as a matrix, where ν2 denotes the 2-adic valuation.

3.2 Subsets Closed Under Conjugation in ∆3

3.2.1 Conjugacy classes of ∆3 modulo π

Each element in ∆3 is expressible as a Z2-linear combination of the nine elements

{ωi · πj : 0 ≤ i, j ≤ 2}. The quotient ∆3/(π) is isomorphic to the finite field F23 = F8

with nonzero residue classes modulo π represented by powers of ω. We would like to

decompose ∆3 using the conjugacy classes of ∆3 modulo π, and denote these classes

as follows:
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Definition 3.2.1. Define the sets

T = {z ∈ ∆3 : z ≡ 0 (mod π)} = π∆

T + 1 = {z ∈ ∆3 : z ≡ I3 (mod π)}

S = {z ∈ ∆3 : z ≡ ω or ω2 or ω4 (mod π)}

S + 1 = {z ∈ ∆3 : z ≡ ω3 or ω6 or ω5 (mod π)}

= {z ∈ ∆3 : z ≡ ω + I3 or ω2 + I3 or ω4 + I3 (mod π)} .

Lemma 3.2.2.

i) If z ∈ T , then the characteristic polynomial of z is congruent to x3 (mod 2).

ii) If z ∈ T + 1, then the characteristic polynomial of z is congruent to

(x− 1)3 (mod 2).

iii) if z ∈ S, then the characteristic polynomial of z is congruent to

x3 + x+ 1 (mod 2).

iv) if z ∈ S + 1, then the characteristic polynomial of z is congruent to

x3 + x2 + 1 (mod 2).

v) Each of the sets T, T + 1, S, S + 1 is closed with respect to conjugation by

elements of ∆3, where “a conjugated by b” is the element bab−1.

vi) Each element of ∆3 lies in exactly one of the sets T, T +1, S, S+1, so that their

disjoint union is all of ∆3.

vii) If z, w ∈ ∆3 are not both simultaneously in one of T , T + 1, S, or S + 1, then

ν(z − w) = 0.

Proof.

i) If z ∈ T , then z3 ≡ 0 (mod π3) so z3 ≡ 0 (mod 2), and hence z is a root of

x3 (mod 2).

ii) If z ∈ T + 1, then (z − I3)3 ≡ 0 (mod π3) so (z − I3)3 ≡ 0 (mod 2), and hence

z is a root of (x− 1)3 (mod 2).

iii) When viewed as a matrix, ω has characteristic polynomial x3 + x+ 1 (mod 2).

As it is a diagonal matrix, it is easily seen that ω has the same eigenvalues as

ω2 and ω4, so all three elements of ∆3 have the same characteristic polynomial.

33



If instead z ≡ ω, ω2, or ω4 (mod π) then z is still a root of the polynomial

x3 + x + 1 (mod 2). Since this is an irreducible cubic polynomial, we can be

certain that this is actually the characteristic polynomial of z.

iv) When viewed as a matrix, ω + I3 has characteristic polynomial x3 + x2 +

1 (mod 2). This matrix is diagonal and it is easily seen that ω2 + I3 and ω4 + I3

have the same entries as ω+ I3, only permuted, and hence all three elements of

∆3 have the same characteristic polynomial. If instead z ≡ ω + I3, ω
2 + I3, or

ω4 +I3 (mod π) then z is still a root of the polynomial x3 +x2 +1 (mod 2). Since

this is an irreducible cubic polynomial, we can be certain that this is actually

the characteristic polynomial of z.

v) This follows from Dickson’s Theorem (Theorem 2.3.6).

vi) It is easy to see, since all nonzero residue classes of ∆3 (mod π) are represented

by powers of ω, that T ∪ (T + 1) ∪ S ∪ (S + 1) = ∆3. The fact that each

element of ∆3 lies in exactly one of these four sets follows by the uniqueness of

the characteristic polynomial.

vii) If z, w are in different sets T, T + 1, S, S + 1, then z and w are by definition

in different residue classes modulo π. Therefore z − w 6≡ 0 (mod π) and hence

ν(z−w) = 0 for all choices of z, w ∈ ∆3 such that z and w are not in the same

subset of ∆3 given in Definition 3.2.1.

Knowing this decomposition of ∆3 into the union of disjoint sets, we can apply

Lemma 2.5.11 to determine a recursive definition for the ν-ordering of ∆3. Also

by Lemma 2.5.9, we need only concern ourselves with the ν-sequences of the sets

T and S, as T + 1 and S + 1 are simply translates, under which ν-sequences are

invariant. However, we can further decompose ∆3 by examining the subsets closed

under conjugation modulo higher powers of π within the set T .

3.2.2 Decomposition of T

Definition 3.2.3. Let

T1 = {z ∈ ∆3 : z ≡ 0 (mod π2)} = π2∆

T2 = {z ∈ ∆3 : z ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 6}
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Lemma 3.2.4.

i) Every element in T is in exactly one of T1 and T2.

ii) Each of T1 and T2 is closed with respect to conjugation by elements of ∆3.

iii) If z ∈ T1 and w ∈ T2, then ν(z − w) = 1.

Proof.

i) As all z ∈ T are such that z ≡ 0 (mod π), the fact that either z ∈ T1 or z ∈ T2

follows from the definition of these sets.

ii) The fact that T1 is closed under conjugation is clear from its definition. In

the case of T2, we can write any element of ∆ as a linear combination of the

elements ωkπ` with 0 ≤ k ≤ 6, 0 ≤ π ≤ 2. Using the known relations between

ω and π, it follows that conjugating π ∈ ∆3 by an arbitrary element ωkπ` of ∆3

gives ωkπ` · π · π−`ω−k = ω7−kπ. Thus every element ωiπ is in the same orbit

as π under the action of conjugation, hence T2 is closed under conjugation by

elements of ∆3.

iii) If z ∈ T1 and w ∈ T2 then z−w ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 6. Therefore

ν(z − w) = ν(ωiπ) = 1 for any choice of z ∈ T1 and w ∈ T2.

We can, in fact, break the set T1 into components even further.

Definition 3.2.5. Let

T3 = {z ∈ ∆3 : z ≡ 0 (mod π3)} = 2∆3

T4 = {z ∈ ∆3 : z ≡ ωiπ2 (mod π3) for some 0 ≤ i ≤ 6}

Lemma 3.2.6.

i) Every element of T1 is in exactly one of T3 and T4.

ii) Each of T3 and T4 is closed with respect to conjugation by elements of ∆3.

iii) If z ∈ T3 and w ∈ T4, then ν(z − w) = 2.
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Proof.

i) As all z ∈ T1 are such that z ≡ 0 (mod π2), the fact that either z ∈ T3 or z ∈ T4

follows from the definition of these sets.

ii) The fact that T3 is closed under conjugation is clear from its definition. In

the case of T4, we can write any element of ∆3 as a linear combination of the

elements ωkπ` with 0 ≤ k ≤ 6, 0 ≤ π ≤ 2. Using the known relations between

ω and π, it follows that conjugating π2 ∈ ∆3 by an arbitrary element ωkπ` of

∆3 gives ωkπ` · π2 · π−`ω−k = ω4kπ2. Since the equation 4k ≡ n (mod 7) has a

solution for every n ∈ Z/(7), it follows that every element ωiπ2 is in the same

orbit as π2 under the action of conjugation, hence T4 is closed under conjugation

by elements of ∆3.

iii) If z ∈ T3 and w ∈ T4, then z−w ≡ ωiπ2 (mod π3) for some 0 ≤ i ≤ 6. Therefore

ν(z − w) = ν(ωiπ2) = 2 for any choice of z ∈ T3 and w ∈ T4.

From this analysis, it follows that

T = T1 ∪ T2

= (T3 ∪ T4) ∪ T2

= 2∆3 ∪ T4 ∪ T2

with all unions disjoint, and with all sets fulfilling the conditions of Lemma 2.5.11.

The decomposition of ∆3 into sets is demonstrated graphically in Figure 3.1. By

Lemma 2.5.9, the ν-sequence of T3 = 2∆3 can be written in terms of the ν-sequence

for ∆3, which provides the eventual recursive definition of α∆3 we seek, given in

Proposition 3.2.7. Thus, to define the ν-sequence of T , it is sufficient to determine

the ν-sequences of T2 and T4.

3.2.3 The ν-sequence of ∆3

From the description of the decomposition of ∆3 into appropriate disjoint sets as in

Section 3.2.2, coupled with the results of Lemmas 2.5.9 and 2.5.11, we obtain the

following result.
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∆3

T = π∆3 T + 1 S S + 1

T1 = π2∆3 T2

T3 = 2∆3 T4

Figure 3.1: Tree summarizing decomposition of ∆3.

Proposition 3.2.7. The ν-sequence of ∆3, denoted α∆3 , satisfies and is determined

by the formula

α∆3 =
([

([(α∆3 + (n)) ∧ (αT4 − (2n))] + (n)) ∧ (αT2 − (n))
]

+ (n)
)∧2 ∧ (αS)∧2 ,

where (kn) denotes the linear sequence whose nth term is kn.

Proof. This formula follows from Lemmas 2.5.9, 2.5.11, 3.2.2, 3.2.4, and 3.2.6.

Since T3 = 2∆3, we have αT3 = α∆3 + (3n). We then know that

αT1 = [(α∆3 + (3n)− (2n)) ∧ (αT4 − (2n))] + (2n)

= [(α∆3 + (n)) ∧ (αT4 − (2n))] + (2n)

and therefore

αT = [(αT1 − (n)) ∧ (αT2 − (n))] + (n)

= [([(α∆3 + (n)) ∧ (αT4 − (2n))] + (2n)− (n)) ∧ (αT2 − (n))] + (n)

= [([(α∆3 + (n)) ∧ (αT4 − (2n))] + (n)) ∧ (αT2 − (n))] + (n) .

We know that T + 1 is a translate of T and S + 1 of S, so that αT = αT+1 and

αS = αS+1. Therefore

α∆3 = αT ∧ αT+1 ∧ αS ∧ αS+1

= (α∧2
T ) ∧ (α∧2

S )

= ([([(α∆3 + (n)) ∧ (αT4 − (2n))] + (n)) ∧ (αT2 − (n))] + (n))∧2 ∧ (αS)∧2
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as claimed.

Once we have determined the ν-sequences for S, T2, and T4, this formula will

uniquely determine α∆3(i) for all i. For every i > 0, the ith term on the right-hand

side consists of terms from αS, αT2 , and αT4 , and also terms α∆3(j) for some j < i.

As the first term of any ν-sequence is always 0, this formula gives an expression of

α∆3 for all i.

3.2.4 Characteristic polynomials of subsets of ∆3

We would like to be able to completely describe the subsets of ∆3 in terms of the

2-adic valuation of coefficients in their characteristic polynomials. First, we show that

these polynomials are irreducible.

Lemma 3.2.8. Let z ∈ ∆3 be a non-constant element. The characteristic polynomial

of z is irreducible over Q2.

Proof. Since z ∈ ∆3 ⊆ Q2[ω, π] then Q2 ≤ Q2[z] ≤ Q2[ω, π] as field extensions.

The characteristic polynomial of z ∈ ∆3 over Q2 has degree 3, so [Q2[z] : Q2] ≤ 3.

Since [Q2[z] : Q2] divides [Q2[ω, π] : Q2] = 9 we therefore have [Q2[z] : Q2] = 3 or

[Q2[z] : Q2] = 1. Since z is non-constant, z 6∈ Q2 and thus [Q2[z] : Q2] = 3. Since this

is equal to the degree of the characteristic polynomial of z, it is therefore the minimal

polynomial of z over Q2 and hence is irreducible.

The fact that characteristic polynomials of non-constant elements of ∆3 are irre-

ducible allows us to make use of the following result, which has been restated for the

degree 3 case with the convention of writing general polynomials as f(x) =
∑n

i=0 aix
i.

Lemma 3.2.9 ([14], 12.9 restated). Let f(x) = a0 + a1x + a2x
2 + x3 ∈ K[x] be

irreducible. Then

ν(aj) ≥
3− j

3
ν(a0) , 0 ≤ j ≤ 2 .

This lemma does not give us much information when it comes to the set S, as

here ν(a0) = 0. In the case of this set, we do know definitively that the characteristic

polynomial of z ∈ S is equivalent to x3 + x+ 1 (mod 2). This gives the result that if

f(x) = a0 + a1x+ a2x
2 + x3 the minimal polynomial of z ∈ S, then

ν2(a0) = 0 ν2(a1) = 0 ν2(a2) ≥ 1 . (3.1)

However, the aforementioned lemma does give us useful information for determin-

ing coefficients of the characteristic polynomial for elements in T2 and T4.
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Proposition 3.2.10.

i) Let z ∈ T2, with f(x) = a0+a1x+a2x
2+x3 the minimal polynomial of z ∈ Q2[x].

Then

ν2(a0) = 1 ν2(a1) ≥ 1 ν2(a2) ≥ 1

ii) Let z ∈ T4, with f(x) = a0+a1x+a2x
2+x3 the minimal polynomial of z ∈ Q2[x].

Then

ν2(a0) = 2 ν2(a1) ≥ 2 ν2(a2) ≥ 1

Proof.

i) We can write T2 = π∆3 r π2∆3, so that every element z ∈ T2 has ν(z) = 1.

Therefore ν(a0) = ν2(det(z)) = ν(z) = 1. Since a0 ≡ 0 (mod 2) but a0 6≡
0 (mod 4), it must be the case that a0 ≡ 2 (mod 4). Lemma 3.2.9 gives the

result.

ii) We can write T4 = π2∆3 r 2∆3, so that every element z ∈ T4 has ν(z) = 2.

Therefore ν(a0) = ν2(det(z)) = ν(z) = 2. Since a0 ≡ 0 (mod 4) but a0 6≡
0 (mod 8), it must be the case that a0 ≡ 4 (mod 8). Lemma 3.2.9 gives the

result.

With this knowledge of the 2-adic valuations of coefficients of the characteristic

polynomials, we can begin to construct elements that will feature in the integer-valued

polynomials for these sets.

3.3 Towards Computing ν-sequences

Given the expression of our sets in terms of characteristic polynomials given in Equa-

tion (3.1) and Lemma 3.2.10, we can compute the ν-orderings and ν-sequences for

S, T2, and T4. In this section, we establish some facts about the valuation of cer-

tain polynomials, with the goal of establishing these as the minimal polynomials of

elements within their respective sets.
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3.3.1 Characteristic polynomials for elements in S

For elements z ∈ S, we have

Tr(z) ≡ 0 (mod 2) β(z) ≡ 1 (mod 2) det(z) ≡ 1 (mod 2)

Let us define the function

φ = (φ2, φ1, φ0) : Z≥0 → 2Z≥0 × (1 + 2Z≥0)× (1 + 2Z≥0)

φ(n) =

(
2
∑
i≥0

n3i2
i, 1 + 2

∑
i≥0

n3i+12i, 1 + 2
∑
i≥0

n3i+22i

)

where n =
∑

i≥0 ni2
i is the expansion of n in base 2. Let

fn(x) =
n−1∏
k=0

(
x3 − φ2(k)x2 + φ1(k)x− φ0(k)

)
.

Lemma 3.3.1. If z ∈ S then

ν(fn(z)) ≥ 3n+ 3
∑
k>0

⌊ n
8k

⌋
with equality if Tr(z) = φ2(n), β(z) = φ1(n), and det(z) = φ0(n).

Proof. Let z ∈ S, and let Tr(z) = 2
∑

k≥0 ak2
k be the expansion of Tr(z) in base

2. Similarly, let β(z) = 1 + 2
∑

k≥0 bk2
k and det(z) = 1 + 2

∑
k≥0 ck2

k be the base

2 expansions of β(z), det(z). Define m :=
∑

k≥0 ak2
3k + bk2

3k+1 + ck2
3k+2, so that

φ(m) = (Tr(z), β(z), det(z)).

For any 0 ≤ k ≤ n,

z3 − φ2(k)z2+φ1(k)z − φ0(k)

= z3 − φ2(k)z2 + φ1(k)z − φ0(k)− (z3 − Tr(z)z2 + β(z)z − det(z))

= (Tr(z)− φ2(k))z2 + (φ1(k)− β(z))z + (det(z)− φ0(k))

= (φ2(m)− φ2(k))z2 + (φ1(k)− φ1(m))z + (φ0(m)− φ0(k)) .

Since the characteristic polynomial for z ∈ S is x3+x+1 (mod 2) and is irreducible

over F2, it follows by Hensel’s lemma that if az2 + bz + c ≡ 0 (mod π) in ∆3 then

a ≡ b ≡ c ≡ 0 (mod 2). Because z ∈ S we have ν(z) = 0, and so we obtain

that ν(az2 + bz + c) = 3 min(ν2(a), ν2(b), ν2(c)). We abuse notation and let ν2(φj) =
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ν2(φj(m)− φj(k)) for j = 0, 1, 2 and so that

ν(z3 − φ2(k)z2 + φ1(k)z − φ0(k)) = 3 min(ν2(φ2), ν2(φ1), ν2(φ0))

which gives

ν(fn(z)) = 3
n−1∑
k=0

min(ν2(φ2), ν2(φ1), ν2(φ0)) .

If k =
∑
ki2

i, m =
∑
mi2

i denote the expansions of k and m in base 2, then

ν2(m− k) = min(i : ki 6= mi)

ν2(φ2) = min(i : k3i 6= m3i) + 1

ν2(φ1) = min(i : k3i+1 6= m3i+1) + 1

ν2(φ0) = min(i : k3i+2 6= m3i+2) + 1

Thus, we have

min(ν2(φ2), ν2(φ1), ν2(φ0)) =

⌊
ν2(m− k)

3

⌋
+ 1 .

Since
⌊
ν2(m−k)

3

⌋
is the highest power of 8 dividing m− k, for simplicity let us denote

ν8(m− k) :=
⌊
ν2(m−k)

3

⌋
.

Using the fact that νp(n!) =
∑n

i=1 νp(i) =
∑

i>0

⌊
n
pi

⌋
= n−

∑
ni

p−1
with n =

∑
nip

i

for any prime p extends also to powers of primes, we obtain the result

n∑
i=1

ν8(i) =
∑
i>0

⌊ n
8i

⌋
=
n−

∑
ni

7

where n =
∑
ni8

i is the expansion of n in base 8. Thus, we have

ν(fn(z)) = 3
n−1∑
k=0

(⌊
ν2(m− k)

3

⌋
+ 1

)

= 3n+ 3

(
m∑
k=1

⌊
ν2(k)

3

⌋
−

m−n∑
k=1

⌊
ν2(k)

3

⌋)

= 3n+ 3

(∑
i>0

⌊m
8i

⌋
−
∑
i>0

⌊
m− n

8i

⌋)
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= 3n+ 3

(
m−

∑
mi

7
− (m− n)−

∑
(m− n)i

7

)
with m =

∑
mi8

i, m− n =
∑

(m− n)i8
i as expansions base 8.

Noting that

m−
∑
mi

7
− (m− n)−

∑
(m− n)i

7
− n−

∑
ni

7
=

∑
(m− n)i +

∑
ni −

∑
mi

7
≥ 0

since this is the number of carries in adding n and m− n in base 8, and so is always

non-negative and equals zero only if n = m, we see that

ν(fn(z)) ≥ 3n+ 3
∑
k>0

⌊ n
8k

⌋
for z ∈ S, with equality if φ(n) = (Tr(z), β(z), det(z)).

Lemma 3.3.2. Let a be a root of the polynomial f(x) = x3−φ2(n)x2+φ1(n)x−φ0(n)

in S, with θ the automorphism in ∆3 given by θ(t) = πtπ−1. The set of roots

a, θ(a), θ2(a) are distinct modulo π, so that ν(θi(a)− θj(a)) = 0 for i 6= j.

Proof. By Theorem 2.3.6, if a is a root of f(x) then so too are θ(a) and θ2(a). The

element a ≡ ωj (mod π) for some choice of 1 ≤ j ≤ 7, and since θ(ωj) = ω2j, it

follows that the set of roots {a, θ(a), θ2(a)} ≡ {ωj, ω2j, ω4j} (mod π) and that these

roots are distinct modulo π, as gcd(j, 7) = gcd(2j, 7) = gcd(4j, 7) = 1. The result

ν(θi(a)− θj(a)) = 0 for i 6= j follows.

Lemma 3.3.3. The ν-sequence of αS of S ⊆ ∆3 is given by

αS(3n) = αS(3n+ 1) = αS(3n+ 2) = 3n+ 3
∑
i>0

⌊ n
8i

⌋
Proof. Via Theorem 2.5.5, for any n ∈ Z≥0 there exists an element an ∈ ∆3 which is

a root of the polynomial x3 − φ2(n)x2 + φ1(n)x− φ0(n). Recalling that

fn(x) =
n−1∏
k=0

(
x3 − φ2(k)x2 + φ1(k)x− φ0(k)

)
we can see that fn(x) is the minimal polynomial of the set

{a0, θ(a0), θ2(a0), a1, θ(a1), θ2(a1), . . . , an−1, θ(an−1), θ2(an−1)}

where θ is a non-trivial automorphism in ∆3. This shows that
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{a0, θ(a0), θ2(a0), a1, θ(a1), θ2(a1), . . . } forms a ν-ordering for S, and since the minimal

polynomials of {a0, . . . , θ
2(an−1), an} and {a0, . . . , θ

2(an−1), an, θ(an)} are fn(x)(x −
an) and fn(x)(x−an)(x− θ(an)) respectively, and ν(an− θ(an)) = 0 by Lemma 3.3.2,

by Lemma 3.3.1 we have

αS(3n) = αS(3n+ 1) = αS(3n+ 2) = 3n+ 3
∑
i>0

⌊ n
8i

⌋
.

3.3.2 Characteristic polynomials for elements in T2

For elements z ∈ T2, we have

Tr(z) ≡ 0 (mod 2) β(z) ≡ 0 (mod 2) det(z) ≡ 2 (mod 4)

Let us define the function

ψ = (ψ2, ψ1, ψ0) : Z≥0 → 2Z≥0 × 2Z≥0 × (2 + 4Z≥0)

ψ(n) =

(
2
∑
i≥0

n3i+12i, 2
∑
i≥0

n3i2
i, 2 + 4

∑
i≥0

n3i+22i

)

where n =
∑

i≥0 ni2
i is the expansion of n in base 2. Let

gn(x) =
n−1∏
k=0

(
x3 − ψ2(k)x2 + ψ1(k)x− ψ0(k)

)
.

Lemma 3.3.4. If z ∈ T2 then

ν(gn(z)) ≥ 4n+
∑
i>0

⌊ n
2i

⌋
.

Proof. Let z ∈ T2, and let Tr(z) = 2
∑

k≥0 ak2
k be the expansion of Tr(z) in base

2. Similarly, let β(z) = 2
∑

k≥0 bk2
k and det(z) = 2 + 4

∑
k≥0 ck2

k be the base 2

expansions of β(z), det(z). Define m :=
∑

k≥0 ak2
3k+1 + bk2

3k + ck2
3k+2, so that

ψ(m) = (Tr(z), β(z), det(z)).
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For any 0 ≤ k ≤ n,

z3 − ψ2(k)z2+ψ1(k)z − ψ0(k)

= z3 − ψ2(k)z2 + ψ1(k)z − ψ0(k)− (z3 − Tr(z)z2 + β(z)z − det(z))

= (ψ2(m)− ψ2(k))z2 + (ψ1(k)− ψ1(m))z + (ψ0(m)− ψ0(k))

Since z ∈ T2 we have ν(z) = 1, and therefore ν(az2) = 2 + 3ν2(a), ν(bz) =

1 + 3ν2(b), and ν(c) = 3ν2(c). Because these have different residues modulo 3, we

have

ν(az2 + bz + c) = min(2 + 3ν2(a), 1 + 3ν2(b), 3ν2(c)) .

For the sake of simplicity, we abuse notation and let ν2(ψj) = ν2(ψj(m)− ψj(k)) for

j = 0, 1, 2 and so

ν(z3 − ψ2(k)z2 + ψ1(k)z − ψ0(k)) = min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) ,

giving

ν(gn(z)) =
n−1∑
k=0

min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) .

If k =
∑
ki2

i, m =
∑
mi2

i denote the expansions of k and m in base 2, then

ν2(m− k) = min(i : ki 6= mi)

ν2(ψ2) = min(i : k3i+1 6= m3i+1) + 1

ν2(ψ1) = min(i : k3i 6= m3i) + 1

ν2(ψ0) = min(i : k3i+2 6= m3i+2) + 2

In this case, we find that the lower bounds on the ν(ψj) change depending on the

residue of ν2(m− k) (mod 3). We summarize the results in Table 3.1.

ν2(m− k) (mod 3) : 0 1 2
2 + 3ν2(ψ2) ≥ 5 + ν2(m− k) = 4 + ν2(m− k) ≥ 6 + ν2(m− k)
1 + 3ν2(ψ1) = 4 + ν2(m− k) ≥ 6 + ν2(m− k) ≥ 5 + ν2(m− k)

3ν2(ψ0) ≥ 6 + ν2(m− k) ≥ 5 + ν2(m− k) = 4 + ν2(m− k)

Table 3.1: Summary of lower bounds in T2

44



From the table, we see that

min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) = 4 + ν2(m− k) ,

giving

ν(gn(z)) =
n−1∑
k=0

(4 + ν2(m− k))

= 4n+
n−1∑
k=0

ν2(m− k)

= 4n+
m∑
k=1

ν2(k)−
m−n∑
k=1

ν2(k)

= 4n+
∑
i>0

⌊m
2i

⌋
−
⌊
m− n

2i

⌋
≥ 4n+

∑
i>0

⌊ n
2i

⌋
for z ∈ T2, with equality if ψ(n) = (Tr(z), β(z), det(z)).

Lemma 3.3.5. Let b be a root of the polynomial g(x) = x3−ψ2(n)x2+ψ1(n)x−ψ0(n)

in T2, with θ the automorphism in ∆3 given by θ(t) = πtπ−1. The set of roots

b, θ(b), θ2(b) are distinct modulo π2, so that ν(θi(b)− θj(b)) = 1 for i 6= j.

Proof. If b ≡ π (mod π2), take instead b ≡ ωπ (mod π2) – this choice can be made

since π and ωπ are conjugates: ω−1πω = ωπ. By Theorem 2.3.6, if b is a root of

g(x) then so too are θ(b) and θ2(b). The element b ≡ bπ (mod π2) for some choice of

b 6≡ 0 (mod π). Applying our automorphism, we obtain modulo π2

θ(b) = θ(bπ) = θ(b)θ(π) = θ(b)π .

As in the proof of Lemma 3.3.2, the collection of elements {b, θ(b), θ2(b)} are distinct

modulo π, and hence {b, θ(b), θ2(b)} are distinct modulo π2. The result ν(θi(b) −
θj(b)) = 1 for i 6= j follows.

Lemma 3.3.6. The ν-sequence αT2 of T2 ⊆ ∆3 is given by

αT2(3n) = αT2(3n+ 1)− 1 = αT2(3n+ 2)− 2 = 4n+
∑
i>0

⌊ n
2i

⌋
Proof. Via Theorem 2.5.5, for any n ∈ Z≥0 there exists an element bn ∈ ∆3 which is
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a root of the polynomial x3 − ψ2(n)x2 + ψ1(n)x− ψ0(n). Recalling that

gn(x) =
n−1∏
k=0

(
x3 − ψ2(k)x2 + ψ1(k)x− ψ0(k)

)
we can see that gn(x) is the minimal polynomial of the set

{b0, θ(b0), θ2(b0), a1, θ(b1), θ2(b1), . . . , bn−1, θ(bn−1), θ2(bn−1)}

where θ is a non-trivial automorphism in ∆3. This shows that

{b0, θ(b0), θ2(b0), b1, θ(b1), θ2(b1), . . . } forms a ν-ordering for T2, and since ν(bn −
θ(bn)) = 1 by Lemma 3.3.5, by Lemma 3.3.4 we have

αT2(3n) = αT2(3n+ 1)− 1 = αT2(3n+ 2)− 2 = 4n+
∑
i>0

⌊ n
2i

⌋
.

3.3.3 Characteristic polynomials for elements in T4

For elements z ∈ T4, we have

Tr(z) ≡ 0 (mod 2) β(z) ≡ 0 (mod 4) det(z) ≡ 4 (mod 8)

Let us define the function

σ = (σ2, σ1, σ0) : Z≥0 → 2Z≥0 × 4Z≥0 × (4 + 8Z≥0)

σ(n) =

(
2
∑
i≥0

n3i2
i, 4
∑
i≥0

n3i+12i, 4 + 8
∑
i≥0

n3i+22i

)

where n =
∑

i≥0 ni2
i is the expansion of n in base 2. Let

hn(x) =
n−1∏
k=0

(
x3 − σ2(k)x2 + σ1(k)x− σ0(k)

)
.

Lemma 3.3.7. If z ∈ T4 then

ν(hn(z)) ≥ 7n+
∑
i>0

⌊ n
2i

⌋
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with equality if Tr(z) = σ2(n), β(z) = σ1(n), and det(z) = σ0(n).

Proof. Let z ∈ T4, and let Tr(z) = 2
∑

k≥0 ak2
k be the expansion of Tr(z) in base

2. Similarly, let β(z) = 4
∑

k≥0 bk2
k and det(z) = 4 + 8

∑
k≥0 ck2

k be the base 2

expansions of β(z), det(z). Define m :=
∑

k≥0 ak2
3k + bk2

3k+1 + ck2
3k+2, so that

σ(m) = (Tr(z), β(z), det(z)).

For any 0 ≤ k ≤ n,

z3 − σ2(k)z2+σ1(k)z − σ0(k)

= z3 − σ2(k)z2 + σ1(k)z − σ0(k)− (z3 − Tr(z)z2 + β(z)z − det(z))

= (σ2(m)− σ2(k))z2 + (σ1(k)− σ1(m))z + (σ0(m)− σ0(k))

Since z ∈ T4 we have ν(z) = 2, and therefore ν(az2) = 4 + 3ν2(a), ν(bz) =

2 + 3ν2(b), and ν(c) = 3ν2(c). Because these have different residues modulo 3, we

have

ν(az2 + bz + c) = min(4 + 3ν2(a), 2 + 3ν2(b), 3ν2(c)) .

For the sake of simplicity, we abuse notation and let ν2(σj) = ν2(σj(m) − σj(k)) for

j = 0, 1, 2 and so

ν(z3 − σ2(k)z2 + σ1(k)z − σ0(k)) = min(4 + 3ν2(σ2), 2 + 3ν2(σ1), 3ν2(σ0)) ,

giving

ν(hn(z)) =
n−1∑
k=0

min(4 + 3ν2(σ2), 2 + 3ν2(σ1), 3ν2(σ0)) .

If k =
∑
ki2

i, m =
∑
mi2

i denote the expansions of k and m in base 2, then

ν2(m− k) = min(i : ki 6= mi)

ν2(σ2) = min(i : k3i 6= m3i) + 1

ν2(σ1) = min(i : k3i+1 6= m3i+1) + 2

ν2(σ0) = min(i : k3i+2 6= m3i+2) + 3

In this case, we find that the lower bounds on the ν(σj) change depending on the

residue of ν2(m− k) (mod 3). We summarize the results in Table 3.2.

From the table, we see that

min(4 + 3ν2(σ2), 2 + 3ν2(σ1), 3ν2(σ0)) = 7 + ν2(m− k) ,
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ν2(m− k) (mod 3) : 0 1 2
4 + 3ν2(σ2) = 7 + ν2(m− k) ≥ 9 + ν2(m− k) ≥ 8 + ν2(m− k)
2 + 3ν2(σ1) ≥ 8 + ν2(m− k) = 7 + ν2(m− k) ≥ 9 + ν2(m− k)

3ν2(σ0) ≥ 8 + ν2(m− k) ≥ 9 + ν2(m− k) = 7 + ν2(m− k)

Table 3.2: Summary of lower bounds in T4

giving

ν(hn(z)) =
n−1∑
k=0

(7 + ν2(m− k))

= 7n+
n−1∑
k=0

ν2(m− k)

= 7n+
m∑
k=1

ν2(k)−
m−n∑
k=1

ν2(k)

= 7n+
∑
i>0

⌊m
2i

⌋
−
⌊
m− n

2i

⌋
≥ 7n+

∑
i>0

⌊ n
2i

⌋
for z ∈ T4, with equality if σ(n) = (Tr(z), β(z), det(z)).

Lemma 3.3.8. Let c be a root of the polynomial h(x) = x3−σ2(n)x2+σ1(n)x−σ0(n)

in T4, with θ the automorphism in ∆3 given by θ(t) = πtπ−1. The set of roots

c, θ(c), θ2(c) are distinct modulo π3, so that ν(θi(c)− θj(c)) = 2 for i 6= j.

Proof. If c ≡ π2 (mod π3), take instead c ≡ ωπ2 (mod π3) – this choice can be made

since π2 and ωπ2 are conjugates: ω−1π2ω = ωπ. By Theorem 2.3.6, if c is a root of

h(x) then so too are θ(c) and θ2(c). The element c ≡ cπ2 (mod π3) for some choice

of c 6≡ 0 (mod π). Applying our automorphism, we obtain modulo π3

θ(c) = θ(cπ) = θ(c)θ(π) = θ(c)π .

As in the proof of Lemma 3.3.2, the collection of elements {c, θ(c), θ2(c)} are distinct

modulo π, and hence {c, θ(c), θ2(c)} are distinct modulo π3. The result ν(θi(c) −
θj(c)) = 2 for i 6= j follows.
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Lemma 3.3.9. The ν-sequence αT4 of T4 ⊆ ∆3 is given by

αT4(3n) = αT4(3n+ 1)− 2 = αT4(3n+ 2)− 4 = 7n+
∑
i>0

⌊ n
2i

⌋
Proof. Via Theorem 2.5.5, for any n ∈ Z≥0 there exists an element cn ∈ ∆3 which is

a root of the polynomial x3 − σ2(n)x2 + σ1(n)x− σ0(n). Recalling that

hn(x) =
n−1∏
k=0

(
x3 − σ1(k)x2 + σ2(k)x− σ3(k)

)
we can see that hn(x) is the minimal polynomial of the set

{c0, θ(c0), θ2(c0), c1, θ(c1), θ2(c1), . . . , cn−1, θ(cn−1), θ2(cn−1)}

where θ is a non-trivial automorphism in ∆3. This shows that

{c0, θ(c0), θ2(c0), c1, θ(c1), θ2(c1), . . . } forms a ν-ordering for T4, and since ν(cn −
θ(cn)) = 2 by Lemma 3.3.5, by Lemma 3.3.7 we have

αT4(3n) = αT4(3n+ 1)− 2 = αT4(3n+ 2)− 4 = 7n+
∑
i>0

⌊ n
2i

⌋
.

3.4 Valuative Capacity of ∆3

As introduced in Section 2.5.4, we are interested in the valuative capacity of ∆3,

given by limn→∞
α∆3

(n)

n
. To describe this value, we must first determine the valuative

capacities of the subsets S, T2, and T4 of ∆3.

Lemma 3.4.1. For the set S ⊆ ∆p,

lim
n→∞

αS(n)

n
=

8

7
.

Proof. By Lemma 3.3.3, we have αS(3n) = 3n+ 3
∑

i>0

⌊
n
8i

⌋
. Therefore

lim
n→∞

αS(n)

n
= lim

3n→∞

αS(3n)

3n
= 1 + lim

3n→∞

1

n

∑
i>0

⌊ n
8i

⌋
.
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Since
∑

i>0
1
8i

= 1
7
,

∑
i>0

n− 1

8i
≤
∑
i>0

⌊ n
8i

⌋
≤
∑
i>0

n

8i

n− 1

7
≤
∑
i>0

⌊ n
8i

⌋
≤ n

7

lim
3n→∞

n− 1

7n
≤ lim

3n→∞

1

n

∑
i>0

⌊ n
8i

⌋
≤ lim

3n→∞

1

7

1

7
≤ lim

3n→∞

1

n

∑
i>0

⌊ n
8i

⌋
≤ 1

7

so that

lim
n→∞

αS(n)

n
= 1 + lim

3n→∞

1

n

∑
i>0

⌊ n
8i

⌋
= 1 +

1

7
=

8

7
.

Lemma 3.4.2. For T2 ⊆ ∆3,

lim
n→∞

αT2(n)

n
=

5

3
.

Proof. By Lemma 3.3.6, we have αT2(3n) = 4n+
∑

i>0

⌊
n
2i

⌋
. Therefore

lim
n→∞

αT2(n)

n
= lim

3n→∞

αT2(3n)

3n
=

4

3
+ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
.

Since
∑

i>0
1
2i

= 1,

∑
i>0

n− 1

2i
≤
∑
i>0

⌊ n
2i

⌋
≤
∑
i>0

n

2i

n− 1 ≤
∑
i>0

⌊ n
2i

⌋
≤ n

lim
3n→∞

n− 1

3n
≤ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
≤ lim

3n→∞

1

3

1

3
≤ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
≤ 1

3

so that

lim
n→∞

αT2(n)

n
=

4

3
+ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
=

4

3
+

1

3
=

5

3
.
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Lemma 3.4.3. For T4 ⊆ ∆3,

lim
n→∞

αT4(n)

n
=

8

3
.

Proof. By Lemma 3.3.9, we have αT4(3n) = 7n+
∑

i>0

⌊
n
2i

⌋
. Therefore

lim
n→∞

αT4(n)

n
= lim

3n→∞

αT4(3n)

3n
=

7

3
+ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
.

By the result for the valuative capacity of T2, lim3n→∞
1

3n

∑
i>0

⌊
n
2i

⌋
= 1

3
so that

lim
n→∞

αT4(n)

n
=

7

3
+ lim

3n→∞

1

3n

∑
i>0

⌊ n
2i

⌋
=

7

3
+

1

3
=

8

3
.

Proposition 3.4.4. The valuative capacity of ∆3 is given by

lim
n→∞

α∆3(n)

n
=
−439 +

√
469 921

770
≈ 0.32014 .

Proof. Recall by Proposition 3.2.7 that the ν-sequence of ∆3 is given by the expression

α∆3 =
([

([(α∆3 + (n)) ∧ (αT4 − (2n))] + (n)) ∧ (αT2 − (n))
]

+ (n)
)∧2 ∧ (αS)∧2 .

Using Proposition 2.5.26, we obtain

lim
n→∞

α∆3(n)

n
=

1

2

limn→∞
αS(n)
n

+
2

1 +
1

1

limn→∞
αT2

(n)

n − 1
+

1

1 +
1

1

limn→∞
αT4

(n)

n − 2
+

1

limn→∞
α∆3

(n)

n + 1
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so that the valuative capacity of ∆3 is the positive solution to the expression

x =
1

2

8/7
+

2

1 +
1

1

5/3− 1
+

1

1 +
1

1

8/3− 2
+

1

x+ 1

=
1

7

4
+

2

1 +
1

3

2
+

1

1 +
1

3

2
+

1

x+ 1

=
4(45 + 31x)

563 + 385x

⇒ 385x2 + 439x− 180 = 0

and so

lim
n→∞

α∆3(n)

n
=
−439 +

√
469 921

770
.
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Chapter 4

The Prime Index, 2-local Case

4.1 Sets Closed Under Conjugation in ∆p

We observed that in the index 3 case, the elements of ∆3 can be divided into the sets

T , T + 1, S, and S + 1, where T consists of all elements z ∈ ∆3 with z ≡ 0 (mod π),

T + 1 consists of all z ∈ ∆3 with z ≡ 1 (mod π), and S and S + 1 are conjugacy

classes represented by irreducible polynomials of degree 3 modulo 2. Each of these

polynomials has three distinct roots of the form ωi with 1 ≤ i ≤ 6, and together these

four sets T , T + 1, S, and S + 1 account for all elements of ∆3 modulo π.

We now extend this reasoning to the index p case, with p an odd prime. The

maximal order ∆p will be the extension of Z2 generated by the p× p matrices

ω =



ζ 0 0 · · · 0

0 ζ2 0 · · · 0

0 0 ζ4 · · · 0
...

...
...

. . . · · ·
0 0 0 · · · ζ2p−1


π =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0 · · · 1

2 0 0 · · · 0


where ζ is a primitive (2p− 1)th root of unity. The following relations hold for ω and

π:

πp = 2Ip πωπ−1 = ω2 ω2p−1 = Ip .

The conjugacy class containing ωi in ∆p consists of the p elements

ωi, ω2i, ω22i, . . . , ω2p−1i
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since πωiπ−1 = ω2i and ω2p = ω · ω2p−1 = ω · Ip = ω, hence ω2pi = ωi. We will

show that each conjugacy class of elements ωi (mod π) corresponds to an irreducible

polynomial of degree p modulo 2.

How many such polynomials are there? In general, the number of monic irre-

ducible polynomials of degree n over a finite field of size q is expressed by the following

formula, given as a corollary in §7.2 of [9],

Iq(n) =
1

n

∑
d|n

µ(d)qn/d ,

where µ is the Möbius function. In our case, n = p a prime, and q = 2, so that

I2(p) =
1

p

∑
d|p

µ(d)2p/d

=
1

p
(µ(1)2p + 2µ(p))

=
1

p
(2p − 2)

This agrees with the earlier observation that the 2p − 2 elements ω, ω2, ω3, . . . , ω2p−2

modulo π will be divided into conjugacy classes each of size p.

Therefore, the maximal order ∆p is divided into conjugacy classes T , T + 1,

and a collection of 1
p
(2p − 2) sets {Si}, where T = {z ∈ ∆p : z ≡ 0 (mod π)},

T + 1 = {z ∈ ∆p : z ≡ Ip (mod π)}, and the sets {Si} are each determined by a

monic irreducible polynomial f(x) of degree p.

As in the 3 × 3 case, we would now like to verify that our tree of sets closed

under conjugation below T is binary, namely that our sets are of the form πj∆p and

πj−1∆p r πj∆p.

Lemma 4.1.1. The set πj∆p = {z ∈ ∆p : z ≡ 0 (mod πj)} splits, modulo πj+1, into

the sets πj+1∆p = {z ∈ ∆p : z ≡ 0 (mod πj+1)} and πj∆p r πj+1∆p = {z ∈ ∆p :

z ≡ ωiπj (mod πj+1), 1 ≤ i ≤ 2p− 1}, both of which are closed under conjugation by

elements of ∆p.

Proof. It is clear that {z ∈ ∆p : z ≡ 0 (mod πj+1)} is closed under conjugation. Let

z = πj (mod πj+1) ∈ ∆p. Then, conjugating z by an element of the form ωkπ`, we

obtain
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ωkπ` · πj · π−`ω−k = ωkπjω−k

= ωkω2j(−k)πj

= ωk(1−2j)πj

with j fixed such that 1 ≤ j ≤ p− 1, and 1 ≤ ` ≤ p− 1, 1 ≤ k ≤ 2p − 1. This set of

elements will be all of πj∆p r πj+1∆p if and only if k(1− 2j) forms a complete set of

residues modulo 2p − 1, with j fixed and k variable.

We note the following result about Mersenne numbers, listed as Fact 13 in Section

4.2 of [15]:

If a, b ∈ Z>0 then gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

Since 1 ≤ j ≤ p−1 is fixed, we must have gcd(j, p) = 1 and therefore gcd(2j−1, 2p−
1) = gcd(1 − 2j, 2p − 1) = 1. Since 1 − 2j and 2p − 1 are relatively prime, and k is

an integer in the range [1, 2p − 1], it follows that k(1 − 2j) forms a complete set of

residues modulo 2p − 1.

Therefore the set {ωk(1−2j)πj (mod πj+1) : 1 ≤ k ≤ 2p− 1} is equivalent to the set

{ωiπj (mod πj+1) : 1 ≤ i ≤ 2p − 1}.

4.2 Characteristic Polynomials of the Subsets of

∆p

As done in Chapter 3, we would like to be able to completely describe the subsets of

∆p in terms of the 2-adic valuation of coefficients in their characteristic polynomials.

To do this, we would like to use a result from [14], but first need to know that such

characteristic polynomials are irreducible.

Lemma 4.2.1. Let z ∈ ∆p be a non-constant element. The characteristic polynomial

of z is irreducible over Q2.

Proof. Since z ∈ ∆p ⊆ Q2[ωp, πp] then Q2 ≤ Q2[z] ≤ Q2[ωp, πp] as field extensions.

The characteristic polynomial of z ∈ ∆p over Q2 has degree p, so [Q2[z] : Q2] ≤ p.

Since [Q2[z] : Q2] divides [Q2[ωp, πp] : Q2] = p2 we therefore have [Q2[z] : Q2] = p or

[Q2[z] : Q2] = 1. Since z is non-constant, z 6∈ Q2 and thus [Q2[z] : Q2] = p. Since this

is equal to the degree of the characteristic polynomial of z, it is therefore the minimal

polynomial of z over Q2 and hence is irreducible.
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Knowing that the characteristic polynomials of all non-constant elements in ∆p

are irreducible allows us to make use of the following result (which has been restated

to adhere to the usual convention of writing general polynomials as f(x) =
∑n

i=0 aix
i).

Lemma 4.2.2 ([14], 12.9 restated). Let f(x) = a0 +a1x+ · · ·+an−1x
n−1 +xn ∈ K[x]

be irreducible. Then

ν(aj) ≥
n− j
n

ν(a0) , 0 ≤ j ≤ n− 1 .

In order to say more about the 2-adic valuation of the coefficients of the character-

istic polynomial of non-constant elements in ∆p, we need to know more information

about ν2(a0).

Lemma 4.2.3. Let ∆p denote the maximal order of dimension p2 over Q2, and let

z ∈ πk∆p, with f(x) = a0 + a1x + · · · + ap−1x
p−1 + xp the minimal polynomial of

z ∈ Q2[x]. Then ν2(a0) ≥ k.

Proof. We have a0 = det(z), so that ν2(a0) = ν2(det(z)) = ν(z) by definition of

the valuation in ∆p. Since ν(z) simply counts the lowest power of π found in the

expression for z, and z ∈ πk∆p, we have ν2(a0) = ν(z) ≥ k.

Lemma 4.2.4. Let ∆p denote the maximal order of dimension p2 over Q2, and let

z ∈ πk∆prπk+1∆p, with f(x) = a0 +a1x+· · ·+ap−1x
p−1 +xp the minimal polynomial

of z ∈ Q2[x]. Then ν2(a0) = k and a0 ≡ 2k (mod 2k+1).

Proof. As before, ν2(a0) = ν2(det(z)) = ν(z) and since z ∈ πk∆p r πk+1∆p, the

lowest power of π appearing in the expression for z must be πk and hence ν2(a0) =

ν(z) = k. Since a0 ≡ 0 (mod 2k) but a0 6≡ 0 (mod 2k+1), it must be the case that

a0 ≡ 2k (mod 2k+1).

These lemmas lead to the following result.

Proposition 4.2.5.

i) Let T2k−3 = πk∆p = {z ∈ ∆p : z ≡ 0 (mod πk)} for k ≥ 2. Then for z ∈ T2k−3,

the coefficients of the characteristic polynomial fz(x) = a0+a1x+· · ·+ap−1x
p−1+

xp satisfy

ν2(aj) ≥ k

(
p− j
p

)
= k

(
1− j

p

)
.

ii) Let T2k = πk∆p r πk+1∆p = {z ∈ ∆p : z ≡ ωiπk (mod πk+1), 1 ≤ i ≤ 2p − 1}
for k ≥ 1. Then for z ∈ T2k, the coefficients of the characteristic polynomial

fz(x) = a0 + a1x+ · · ·+ ap−1x
p−1 + xp satisfy
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ν2(a0) = k

a0 ≡ 2k (mod 2k+1)

ν2(aj) ≥ k

(
p− j
p

)
= k

(
1− j

p

)
and, conversely, any element z ∈ ∆p with characteristic polynomial satisfying

the above conditions is an element of T2k.

Proof.

i) This result follows from the definition of T2k−3 along with Lemmas 4.2.2, 4.2.3,

and 4.2.4.

ii) The first part of the proof follows from the definition of T2k along with Lem-

mas 4.2.2, 4.2.3, and 4.2.4.

For the converse, we note that T2k = πk∆prπk+1∆p can be described precisely

as T2k = {z ∈ ∆p : ν(z) = k}. We claim that

T2k = {z ∈ ∆p : chz(x) = xp + ap−1x
p−1 + · · ·+ a1x+ a0

with a0 ≡ 2k (mod 2k+1), aj ≡ 0 (mod 2d
p−j
p
ke)} .

By the above remark, we have already demonstrated the containment

{z ∈ ∆p : ν(z) = k} ⊇ {z ∈ ∆p : chz(x) = xp +

p−1∑
i=0

aix
i

with a0 ≡ 2k (mod 2k+1), aj ≡ 0 (mod 2d
p−j
p
ke)}

For the opposite conclusion, suppose an element z ∈ ∆p has characteristic

polynomial with the properties above, namely a0 ≡ 2k (mod 2k+1). Since a0 =

det(z) and by definition, ν(z) = ν2(det(z)), we will have ν(z) = ν2(a0) = k.

This completes the proof.

With this knowledge of the 2-adic valuations of coefficients of the characteristic

polynomials, we can begin to construct elements that will feature in the integer-valued

polynomials for these sets.
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4.3 Towards Constructing Integer-Valued Polyno-

mials

4.3.1 The Sets Si

As discussed in Section 4.1, among the conjugacy classes of ∆p are a collection of sets

{Si} which are defined by monic irreducible polynomials f(x) of degree p, and there

are 1
p
(2p − 2) such sets.

Let S be one of the sets in the collection {Si}. Such a set S has an associated

monic irreducible polynomial f(x) = a0 + a1x+ · · ·+ ap−1x
p−1 + xp. Define a binary

sequence {δj}p−1
j=0 by

a0 ≡ 1 (mod 2) aj ≡ δj (mod 2)

where either δj ≡ 0 or δj ≡ 1, depending on the value of j (and at least one δj ≡
0 (mod 2)), and define a function φ = (φ0, φ1, . . . , φp−1) by

φ : Z→
p−1∏
i=0

(δj + 2Z)

φj(b) = δj + 2
∑
i≥0

bpi+(p−j)2
i ,

where δ0 = 1, and b =
∑

i≥0 bi2
i is the expansion of b in base 2. Let

fn(x) =
n−1∏
b=0

(xp − φp−1(b)xp−1 + φp−2(b)xp−2 − · · ·+ (−1)pφ0(b)) .

We will determine a lower bound on ν(fn(z)) for z ∈ S. In order to do this, it is

helpful to note the following results regarding valuations of polynomials of degree at

most p− 1.

Lemma 4.3.1. If z ∈ S and ci ∈ Z2 are such that

cp−1z
p−1 + cp−2z

p−2 + · · ·+ c0 ≡ 0 (mod π)

in ∆p, then we have ci ≡ 0 (mod 2) for all 0 ≤ i ≤ p− 1.

Proof. The polynomial
∑p−1

i=0 cix
i has z as a root modulo π, and since z is a root of

f(x) modulo 2, it so too must be a root of f(x) modulo π. Since z is a root of both
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polynomials, it must be the case that
∑p−1

i=0 cix
i divides f(x). But f(x) is irreducible,

and therefore
∑p−1

i=0 cix
i must be identically zero modulo 2.

Lemma 4.3.2. If z ∈ S and ci ∈ Z2 for 0 ≤ i ≤ p− 1, then

ν

(
p−1∑
i≥0

ciz
i

)
= min

0≤i≤p−1
ν(ciz

i) = p min
0≤i≤p−1

ν2(ci) .

Proof. Since each ci ≡ 0 (mod 2), write ci = 2γi ĉi with ĉi odd, γi ≥ 0. Then

p−1∑
i≥0

ciz
i =

p−1∑
i≥0

2γi ĉiz
i = 2minj γj

p−1∑
i≥0

2γi−minj γj ĉiz
i

with at least one of the γi −minj γj = 0. Therefore the expression

p−1∑
i≥0

2γi−minj γj ĉiz
i

has at least one odd coefficient, and by Lemma 4.3.1 it follows that

ν

(
p−1∑
i≥0

2γi−minj γj ĉiz
i

)
= 0 .

From this, we see that

ν

(
p−1∑
i≥0

ciz
i

)
= ν

(
2minj γj

p−1∑
i≥0

2γi−minj γj ĉiz
i

)

= pν2(2minj γj) + ν

(
p−1∑
i≥0

2γi−minj γj ĉiz
i

)
= pν2(2minj γj)

= pmin
j
γj

= pmin
j
ν2(cj)

which gives the result.

With these lemmas in hand, we can now establish the following result for ν(fn(z)).
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Lemma 4.3.3. If z ∈ S then

ν(fn(z)) ≥ pn+ p
∑
i>0

⌊ n
2pi

⌋
with equality if φ(n) = (φ0(n), . . . , φp−1(n)) gives the tuple of coefficients a0, . . . , ap−1

of the characteristic polynomial for z ∈ S.

Proof. Let z ∈ S, and let m ∈ Z be such that φ(m) gives a tuple consisting of the

coefficients of the characteristic polynomial of z, with φj(m) being the coefficient of

xj. Then for any 0 ≤ b ≤ n,

zp − φp−1(b)zp−1+φp−2(b)zp−2 − · · ·+ (−1)pφ0(b)

= zp − φp−1(b)zp−1 + φp−2(b)zp−2 − · · ·+ (−1)pφ0(b)− (chz(z))

= (φp−1(m)− φp−1(b))zp−1 + (φp−2(b)− φp−2(m))zp−2

+ · · ·+ (−1)p(φ0(b)− φ0(m))

Since for any z ∈ S we have ν(z) = 0, the results of Lemmas 4.3.1 and 4.3.2 give that

ν(zp − φp−1(b)zp−1 + φp−2(b)zp−2 − · · ·+ (−1)pφ0(b)) = min
0≤j≤p−1

ν(φjz
j)

= min
0≤j≤p−1

[pν2(φj) + jν(z)]

= p min
0≤j≤p−1

ν2(φj)

where ν2(φj) := ν2(φj(m)− φj(b)) for 0 ≤ j ≤ p− 1.

Let b =
∑
bi2

i, m =
∑
mi2

i denote the expansions of b and m in base 2. Then

ν2(m− b) = min(i : bi 6= mi)

ν2(φj) = min(i : bpi+(p−j) 6= mpi+(p−j)) + 1

for each 0 ≤ j ≤ p− 1. Thus, we have

min
0≤j≤p−1

ν2(φj) =

⌊
ν2(m− b)

p

⌋
+ 1 .

Since
⌊
ν2(m−b)

p

⌋
is the highest power of 2p dividing m − b, for simplicity let us
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denote ν2p(m− b) =
⌊
ν2(m−b)

p

⌋
. The fact that

νp(n!) =
n∑
i=1

νp(i) =
∑
i>0

⌊
n

pi

⌋
=
n−

∑
ni

p− 1

extends to powers of primes as well, so that

n∑
i=1

ν2p(i) =
∑
i>0

⌊ n
2pi

⌋
=
n−

∑
ni

2p − 1

where n =
∑
ni2

pi is the expansion of n in base 2p. Thus, we have

ν2(fn(z)) = p
n−1∑
b=0

(⌊
ν2(m− k)

p

⌋
+ 1

)

= pn+ p

(
m∑
b=1

⌊
ν2(b)

p

⌋
−

m−n∑
b=1

⌊
ν2(b)

p

⌋)

= pn+ p

(
m∑
b=1

ν2p(b)−
m−n∑
b=1

ν2p(b)

)

= pn+ p

(∑
i>0

⌊m
2pi

⌋
−
∑
i>0

⌊
m− n

2pi

⌋)

= pn+ p

(
m−

∑
mi

2p − 1
− (m− n)−

∑
(m− n)i

2p − 1

)
with m =

∑
mi2

pi, m− n =
∑

(m− n)i2
pi as expansions base 2p.

Noting that

m−
∑
mi

2p − 1
− (m− n)−

∑
(m− n)i

2p − 1
− n−

∑
ni

2p − 1
=

∑
(m− n)i +

∑
ni −

∑
mi

2p − 1
≥ 0

since this is the number of carries in adding n and m− n in base 2p, and so is always

non-negative and equals zero only if n = m, we see that

ν(fn(z)) ≥ pn+ p
∑
i>0

⌊ n
2pi

⌋
for z ∈ S, with equality if φ(n) = (φ0(n), . . . , φp−1(n)) gives the tuple containing

coefficients a0, . . . , ap−1 of the characteristic polynomial for z ∈ S.

Corollary 4.3.4. All conjugacy classes S ⊆ ∆p determined by a monic irreducible

polynomial of degree p have the same ν-sequence.
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Proof. Nowhere in the proof of Lemma 4.3.3 did we rely on the irreducible polynomial

defining S in question (namely, the choices of δj). Therefore we obtain the same result

for all such conjugacy classes S in ∆p, which gives the same ν-sequence for all 1
p
(2p−2)

such sets.

4.3.2 The Sets T2k

Recall from Proposition 4.2.5 ii) that we have the following characterization for the

sets T2k, for which we require a description of the ν-sequence in order to determine

the ν-sequence of ∆p itself:

T2k =
{
z ∈ ∆p : chz(x) = xp + ap−1x

p−1 + · · ·+ a1x+ a0

with a0 ≡ 2k (mod 2k+1), aj ≡ 0 (mod 2d
p−j
p
ke)
}
.

Let

ψ : Z→ (2k + 2k+1Z)×
p−1∏
j=1

2d
(p−j)k

p eZ

ψ = (ψ0, ψ1, . . . , ψp−1)

be defined on Z so that

ψ0(b) = 2k + 2k+1
∑
i≥0

bpi+p−12i (4.1)

ψj(b) = 2d
(p−j)k

p e
∑
i≥0

bpi+((jk−1) (mod p))2
i (4.2)

where 1 ≤ j ≤ p− 1 and b =
∑

i≥0 bi2
i is the expansion of b ∈ Z in base 2. For n ≥ 0,

define polynomials

g(k)
n (x) =

n−1∏
b=0

(xp − ψp−1(b)xp−1 + ψp−2(b)xp−2 − · · ·+ (−1)pψ0(b)) .

Let z ∈ T2k, and let m ∈ Z be such that ψ(m) gives a tuple consisting of the

coefficients of the characteristic polynomial of z, with ψj(m) being the coefficient of

xj. Then for any 0 ≤ b ≤ n,
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zp − ψp−1(b)zp−1+ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b)

= zp − ψp−1(b)zp−1 + ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b)− (chz(z))

= (ψp−1(m)− ψp−1(b))zp−1 + (ψp−2(b)− ψp−2(m))zp−2 + · · ·
+ (−1)p(ψ0(b)− ψ0(m))

We would like to take the valuation of this expression. Recall that for any valuation

ν defined on a field K with a, b ∈ K, that ν(a + b) ≥ min(ν(a), ν(b)) with equality

if ν(a) 6= ν(b). In particular, if in a sum of n components each has a unique residue

modulo p, then the valuation of the sum is the minimum of the valuations of the

components.

Notice that for any 0 ≤ j ≤ p− 1,

ν((ψj(m)− ψj(k))zj) = pν2(ψj(m)− ψj(k)) + ν(zj)

= pν2(ψj(m)− ψj(k)) + jν(z)

≡ jν(z) (mod p) (4.3)

so as j varies we will have a complete set of residues modulo p, and hence

ν(zp − ψp−1(b)zp−1 + ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b))

= min((p− 1)ν(z) + pν2(ψp−1), (p− 2)ν(z) + pν2(ψp−2), . . . ,

ν(z) + pν2(ψ1), pν(ψ0))

= min((p− 1)k + pν2(ψp−1), (p− 2)k + pν2(ψp−2), . . . ,

k + pν2(ψ1), pν(ψ0))

here, as before, we write ν2(ψj) = ν2(ψj(m)− ψj(b)) for 0 ≤ j ≤ n− 1.

The ψi are ordered in such a way that

ν2(m− b) = min(i : bi 6= mi)

ν2(ψp−1) = min(i : bpi+(((p−1)k−1) (mod p)) 6= mpi+(((p−1)k−1) (mod p))) +

⌈
p− (p− 1)

p
k

⌉
ν2(ψp−2) = min(i : bpi+(((p−2)k−1) (mod p)) 6= mpi+(((p−2)k−1) (mod p))) +

⌈
p− (p− 2)

p
k

⌉
...
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ν2(ψ1) = min(i : bpi+((k−1) (mod p)) 6= mpi+((k−1) (mod p))) +

⌈
p− 1

p
k

⌉
ν2(ψ0) = min(i : bpi+(p−1) 6= mpi+(p−1)) + (k + 1)

where b =
∑

i≥0 bi2
i and m =

∑
i≥0 mi2

i are the expansions of b and m in base 2.

Proposition 4.3.5. With the above notation for the set T2k ⊆ ∆p, we have

ν(zp − ψp−1(b)zp−1 + ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b)) = pk + 1 + ν2(m− b) .

Proof. The value of jk + pν2(ψj) will depend on the residue of ν2(m− b) modulo p.

Considering all residues of ν2(m− b) (mod p), we will have:

pν2(ψ0)

≥ p
(
ν2(m−b)−i

p + (k + 1)
)

for ν2(m− b) ≡ i (mod p), 0 ≤ i ≤ p− 2

= p
(
ν2(m−b)−(p−1)

p + (k + 1)
)

for ν2(m− b) ≡ p− 1 (mod p)

jk + pν2(ψj)



≥ jk + p
(
ν2(m−b)−i

p +
⌈
p−j
p k
⌉)

for ν2(m− b) ≡ i (mod p),

0 ≤ i ≤ (jk − 2 (mod p))

= jk + p
(
ν2(m−b)−(jk−1 (mod p))

p +
⌈
p−j
p k
⌉)

for ν2(m− b) ≡ jk − 1 (mod p)

≥ jk + p
(
ν2(m−b)−i

p +
⌈
p−j
p k
⌉

+ 1
)

for ν2(m− b) ≡ i,
(jk (mod p)) ≤ i ≤ p− 1

Simplified, these expressions become:

pν2(ψ0)

≥ p(k + 1)− i+ ν2(m− b) for ν2(m− b) ≡ i (mod p), 0 ≤ i ≤ p− 2

= pk + 1 + ν2(m− b) for ν2(m− b) ≡ p− 1 (mod p)

jk + pν2(ψj)



≥ jk + p
⌈
p−j
p k
⌉
− i+ ν2(m− b) for ν2(m− b) ≡ i (mod p),

0 ≤ i ≤ (jk − 2 (mod p))

= jk + p
⌈
p−j
p k
⌉
− (jk − 1 (mod p)) + ν2(m− b) for ν2(m− b) ≡ jk − 1 (mod p)

≥ jk + p
⌈
p−j
p k
⌉

+ p− i+ ν2(m− b) for ν2(m− b) ≡ i,
(jk (mod p)) ≤ i ≤ p− 1

It is straightforward to observe that, across all residues of ν2(m− b) (mod p),

min(jk+pν2(ψj)) =

pk + 1 + ν2(m− b) if j = 0

jk + p
⌈
p−j
p
k
⌉
− (jk − 1 (mod p)) + ν2(m− b) if 1 ≤ j ≤ p− 1

with this minimum occurring precisely when ν2(m− b) ≡ jk − 1 (mod p).
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Note that for 1 ≤ j ≤ p − 1, since 1 ≤ k ≤ p − 1, we know that jk 6≡ 0 (mod p)

so that

(jk − 1) (mod p) = (jk (mod p))− 1 ,

and note also that

jk − (jk (mod p)) = p

⌊
jk

p

⌋
.

Therefore

jk + p

⌈
p− j
p

k

⌉
− (jk − 1 (mod p)) + ν2(m− b)

= jk − (jk (mod p)) + p

⌈
p− j
p

k

⌉
+ 1 + ν2(m− b)

= p

⌊
jk

p

⌋
+ p

⌈
k − jk

p

⌉
+ 1 + ν2(m− b)

= p

⌊
jk

p

⌋
+ p

(
k −

⌊
jk

p

⌋)
+ 1 + ν2(m− b)

= pk + 1 + ν2(m− b)

Hence

min
0≤j≤p−1

(jk + pν2(ψj)) = pk + 1 + ν2(m− b) ,

and we obtain the result

ν(zp − ψp−1(b)zp−1 + ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b))

= min((p− 1)k + pν2(ψp−1), (p− 2)k + pν2(ψp−2), . . . ,

k + pν2(ψ1), pν(ψ0))

= pk + 1 + ν2(m− b)

Lemma 4.3.6. If z ∈ T2k then

ν(g(k)
n (z)) ≥ (pk + 1)n+

∑
i>0

⌊ n
2i

⌋
with equality if ψ(n) = (ψ0(n), . . . , ψp−1(n)) gives the tuple of coefficients a0, . . . , ap−1

of the characteristic polynomial for z ∈ T2k.
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Proof. As g
(k)
n (z) is defined by

g(k)
n (x) =

n−1∏
b=0

(xp − ψp−1(b)xp−1 + ψp−2(b)xp−2 − · · ·+ (−1)pψ0(b))

and

ν(zp − ψp−1(b)zp−1 + ψp−2(b)zp−2 − · · ·+ (−1)pψ0(b)) = pk + 1 + ν2(m− b)

by Proposition 4.3.5, it follows that

ν(g(k)
n (z)) =

n−1∑
b=0

(pk + 1 + ν2(m− b))

= (pk + 1)n+
n−1∑
b=0

ν2(m− b)

= (pk + 1)n+
n∑
b=1

ν2(b)−
m−n∑
b=1

ν2(b)

= (pk + 1)n+
∑
i>0

(⌊m
2i

⌋
−
⌊
m− n

2i

⌋)
≥ (pk + 1)n+

∑
i>0

⌊ n
2i

⌋
with equality if ψ(n) = (ψ0(n), . . . , ψp−1(n)) gives the tuple of coefficients a0, . . . , ap−1

of the characteristic polynomial for z ∈ T2k.

4.3.3 ν-sequences of S and T2k

Given the inequalities for ν(fn(z)) and ν(g
(k)
n (z)) that we have determined, we now

wish to establish a formula for the ν-sequences αS and αT2k
. By the embedding

theorem (Theorem 2.5.5), for any n there exist elements an, bn ∈ ∆p which are roots

of the polynomials

xp − φp−1(n)xp−1 + φp−2(n)xp−2 − · · ·+ (−1)pφ0(n)

xp − ψp−1(n)xp−1 + ψp−2(n)xp−2 − · · ·+ (−1)pψ0(n)

respectively. This observation leads to the following results.
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Lemma 4.3.7. Let a be a root of the polynomial f(x) = xp − φp−1(n)xp−1 +

φp−2(n)xp−2 − · · · + (−1)pφ0(n) in Si as given in Section 4.3.1, with θ the automor-

phism in ∆p given by θ(t) = πtπ−1. The set of roots a, θ(a), . . . , θp−1(a) are distinct

modulo π, so that ν(θi(a)− θj(a)) = 0 for i 6= j.

Proof. By Theorem 2.3.6, if a is a root of f(x) then so too are all θi(a). The element

a ≡ ωj (mod π) for some choice of 1 ≤ j ≤ 2p − 1, and since θ(ωj) = ω2j, it follows

that the set of roots {θi(a)}p−1
i=0 ≡ {ω2ij}p−1

i=0 (mod π), and that these roots are distinct

modulo π. Since conjugate elements θi(a) and θj(a) will lie in different cosets modulo

π, the result ν(θi(a)− θj(a)) = 0 for i 6= j follows.

Lemma 4.3.8. The ν-sequence αS of S ⊆ ∆p is given by

αS(pn) = αS(pn+ 1) = · · · = αS(pn+ (p− 1)) = pn+ p
∑
i>0

⌊ n
2pi

⌋
.

Proof. Recalling that

fn(x) =
n−1∏
b=0

(xp − φp−1(b)xp−1 + φp−2(b)xp−2 − · · ·+ (−1)pφ0(b)) ,

we can see that fn(x) is the minimal polynomial of the set

{a0, θ(a0), θ2(a0), . . . , θp−1(a0), a1, θ(a1), . . . , θp−1(a1), . . . , an−1, θ(an−1), . . . , θp−1(an−1)}

where θ is the automorphism θ(t) = πtπ−1 in ∆p. By Definition 2.5.7, this shows that

{a0, θ(a0), θ2(a0), . . . , θp−1(a0), a1, θ(a1), . . . , θp−1(a1), . . . }

forms a ν-ordering for S. By Lemma 4.3.7, each set of p elements ai, θ(ai), . . . , θ
p−1(ai)

will give rise to the same value in the ν-sequence for S, and so by the inequality given

in Lemma 4.3.3,

αS(pn) = αS(pn+ 1) = · · · = αS(pn+ (p− 1)) = pn+ p
∑
i>0

⌊ n
2pi

⌋
.

Lemma 4.3.9. Let b be a root of the polynomial g(x) = xp − ψp−1(n)xp−1 +

ψp−2(n)xp−2 − · · ·+ (−1)pψ0(n) in T2k as given in Section 4.3.2, with θ the automor-

phism in ∆p given by θ(t) = πtπ−1. The set of roots b, θ(b), . . . θp−1(b) are distinct

modulo πk+1, so that ν(θi(b)− θj(b)) = k for i 6= j.

67



Proof. If b ≡ πk (mod πk+1), take instead b ≡ ωπk (mod πk+1) – this choice can be

made since πk and ωπk are conjugates: ω−1πkω = ωπk. By Theorem 2.3.6, if b is

a root of g(x) then so too are all θi(b). The element b ≡ bπk (mod πk+1) for some

choice of b 6≡ 0 (mod π). Applying our automorphism, we obtain modulo πk+1

θ(b) = θ(bπk) = θ(b)θ(πk) = θ(b)πk .

As in the proof of Lemma 4.3.7, the collection of elements {θi(b)}p−1
i=0 are distinct

modulo π, and hence {θi(b)}p−1
i=0 are distinct modulo πk+1. Since conjugate elements

θi(b) and θj(b) will lie in different cosets modulo πk+1, the result ν(θi(b)− θj(b)) = k

for i 6= j follows.

Lemma 4.3.10. The ν-sequence αT2k
of T2k ⊆ ∆p is given by

αT2k
(pn) = αT2k

(pn+ 1)− k = αT2k
(pn+ 2)− 2k = · · ·

= αT2k
(pn+ (p− 1))− (p− 1)k = (pk + 1)n+

∑
i>0

⌊ n
2i

⌋
.

Proof. Similar to the previous proof,

g(k)
n (x) =

n−1∏
b=0

(xp − ψp−1(b)xp−1 + ψp−2(b)xp−2 − · · ·+ (−1)pψ0(b))

is the minimal polynomial of the set

{b0, θ(b0), θ2(b0), . . . , θp−1(b0), b1, θ(b1), . . . , θp−1(b1), . . . , bn−1, θ(bn−1), . . . , θp−1(bn−1)}

where θ is the automorphism θ(t) = πtπ−1 in ∆p.Therefore

{b0, θ(b0), θ2(b0), . . . , θp−1(b0), b1, θ(b1), . . . , θp−1(b1), . . . }

forms a ν-ordering for T2k. By Lemma 4.3.9, the difference in valuation associated

with elements ai, θ(ai), . . . , θ
p−1(ai) will be an increase of k each time. By the in-

equality given in Lemma 4.3.10,

αT2k
(pn) = αT2k

(pn+ 1)− k = αT2k
(pn+ 2)− 2k = · · ·

= αT2k
(pn+ (p− 1))− (p− 1)k = (pk + 1)n+

∑
i>0

⌊ n
2i

⌋
.
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4.4 The ν-sequence of ∆p

In Section 4.1, we described the various conjugacy classes in ∆p. This information

is summarized in the form of the tree shown in Figure 4.1, together with the binary

tree in Figure 4.2.

∆p

T−1 = T = π∆p T + 1 {Si}

Figure 4.1: Tree summarizing the first level of decomposition of ∆p into conjugacy
classes.

T−1 = T = π∆p

T1 = π2∆p T2 = π∆p r π2∆p

T3 = π3∆p T4 = π2∆p r π3∆p

T6 = π3∆p r π4∆p

T2p−5 = πp−1∆p

T2p−3 = πp∆p = 2∆p T2p−2 = πp−1∆p r 2∆p

Figure 4.2: Tree summarizing decomposition of T ⊆ ∆p.

Given this information, it is apparent that the ν-sequence of ∆p will be recursively

defined, and will furthermore depend on the ν-sequences of T and the collection {Si}.
The ν-sequence for T will itself be dependent on that of ∆p and all of the sets T2k

with 1 ≤ k ≤ p− 1.
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To determine the ν-sequence of the set T , we will use downward induction to

determine the ν-sequence of T2k−3, with T corresponding to the case that k = 1.

Proposition 4.4.1. Let 1 ≤ k ≤ p−1. Then the ν-sequence of T2k−3, denoted αT2k−3

is given by the expression

αT2k−3
=
[
· · ·
[[

(α∆p + (n)) ∧
(
αT2(p−1)

− ((p− 1)n)
)

+ (n)
]

∧
(
αT2(p−2)

− ((p− 2)n)
)

+ (n)
]
∧ · · ·

]
∧ (αT2k

− (kn)) + (kn)

where T−1 = T = π∆p.

Proof. By Lemmas 2.5.9 and 2.5.11 and the tree diagram for the decomposition of

∆p given in Figure 4.1, we see that

αT2k−3
= αT2k−1∪T2k

= (αT2k−1
− (kn)) ∧ (αT2k

− (kn)) + (kn)

αT2p−3 = α∆p + (pn)

We proceed with the proof using downward induction, starting with the base case

where k = p− 1. In this case, we are computing the ν-sequence for T2p−5.

αT2p−5 = (αT2p−3 − ((p− 1)n)) ∧ (αT2p−2 − ((p− 1)n)) + ((p− 1)n)

= (α∆p + (pn)− ((p− 1)n)) ∧ (αT2p−2 − ((p− 1)n)) + ((p− 1)n)

= (α∆p + (n)) ∧ (αT2p−2 − ((p− 1)n)) + ((p− 1)n)

= (α∆p + (n)) ∧ (αT2(p−1)
− ((p− 1)n)) + ((p− 1)n)

which is what we expect from the Proposition statement.

Suppose the statement is true for some 1 < k ≤ p − 1, we want to show that it

is also true for k − 1, namely for the set T2k−5. For ease of notation, let us denote

α = αT2k−3
− (kn).

αT2k−5
= (αT2k−3

− ((k − 1)n)) ∧ (αT2k−2
− ((k − 1)n)) + ((k − 1)n)

= (α + (kn)− ((k − 1)n)) ∧ (αT2(k−1)
− ((k − 1)n)) + ((k − 1)n)

= (α + (n)) ∧ (αT2(k−1)
− ((k − 1)n)) + ((k − 1)n)
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so that

αT2k−5
=
[[
· · ·
[[

(α∆p + (n)) ∧
(
αT2(p−1)

− ((p− 1)n)
)

+ (n)
]

∧
(
αT2(p−2)

− ((p− 2)n)
)

+ (n)
]
∧ · · ·

]
∧ (αT2k

− (kn)) + (n)
]

∧
(
αT2(k−1)

− ((k − 1)n)
)

+ ((k − 1)n)

proving the Proposition.

From this, we easily obtain the following corollary.

Corollary 4.4.2. The ν-sequence αT of the set T = π∆p is given by

αT =
[
· · ·
[[

(α∆p + (n)) ∧
(
αT2(p−1)

− ((p− 1)n)
)

+ (n)
]

∧
(
αT2(p−2)

− ((p− 2)n)
)

+ (n)
]
∧ · · ·

]
∧ (αT2 − (n)) + (n)

Proof. The result immediately follows from Proposition 4.4.1 with k = 1 and the

understanding that T−1 = T = π∆p.

Having determined a formula for αT , we can now give an expression for the ν-

sequence of ∆p that depends only on itself, the ν-sequence of S, and that of each set

T2k, 1 ≤ k ≤ p− 1.

Proposition 4.4.3. The ν-sequence α∆p of the maximal order ∆p is determined by

the recursive formula

α∆p =
[[
· · ·
[[

(α∆p + (n)) ∧
(
αT2(p−1)

− ((p− 1)n)
)

+ (n)
]

∧
(
αT2(p−2)

− ((p− 2)n)
)

+ (n)
]
∧ · · ·

]
∧ (αT2 − (n)) + (n)

]∧2

∧ α
∧ 1

p
(2p−2)

S

Proof. By the observation in Corollary 4.3.4 all conjugacy classes in ∆p that are

defined by a monic irreducible polynomial of degree p have the same ν-sequence, of

which there are 1
p
(2p−2) such sets. We also note that by Lemma 2.5.9 the ν-sequences

of T and T + 1 are equal. This gives

α∆p = α∧2
T ∧ α

∧ 1
p

(2p−2)

S ,

which, given the result for αT in Corollary 4.4.2, provides the result.
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Corollary 4.4.4.

The first 200 terms of α∆3 are

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 6,

6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 12, 12,

12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 15,

15, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 21, 21, 21, 21,

21, 21, 21, 21, 23, 23, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27, 27,

27, 28, 28, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33,

33, 33, 33, 33, 33, 33, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 38,

38, 39, 39, 39, 39, 39, 39, 39, 39, 41, 41, 42, 42, 42, 42, 42, 42,

42, 42, 43, 43, 45, 45, 45, 45, 45, 45, 45, 45, 47, 47, 48, 48, 48,

48, 48, 48, 49, 49, 51, 51, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54,

54, 54, 56, 56, 57, 57, 57, 57, 57, 57, 57, 57, 58, 58, 60, 60, 60,

60, 60, 60

The first 200 terms of α∆5 are

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 6, 6, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 15, 15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 18, 18, 19, 19, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 22, 22,

24, 24, 25, 25, 25, 25, 25, 25, 25, 25

Note. The above results were generated using Mathematica. The code for the al-

gorithms used to compute α∆3 and α∆5 can be found in Appendices A.1 and A.2,

respectively.
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4.5 A Regular Basis for ∆p

Following the results of Lemmas 4.3.8 and 4.3.10, we obtain the following result as a

corollary of Proposition 2.5.8.

Corollary 4.5.1.

i) The sequence of polynomials

{
π−αS(pn)fn(x), π−αS(pn+1)xfn(x), . . . , π−αS(pn+(p−1))xp−1fn(x) : n = 0, 1, 2 . . .

}
forms a regular ∆p-basis for Int(Si,∆p).

ii) The sequence of polynomials

{
π−αT2k

(pn)g(k)
n (x), π−αT2k

(pn+1)xg(k)
n (x), . . . , π−αT2k

(pn+(p−1))xp−1g(k)
n (x) : n = 0, 1, 2 . . .

}
forms a regular ∆p-basis for Int(T2k,∆p).

The result of Lemma 2.5.22 ([6], 2.15) regarding regular bases for subsets of ∆2 in

no way relies on the fact that our maximal order is of index 2, and can be extended

without any trouble to ∆p.

Lemma 4.5.2 (c.f. [6], 2.15). If two subsets of ∆p satisfying the hypotheses of

Lemma 2.5.11 each have a regular basis whose elements are each quotients of poly-

nomials in Z[x] by powers of π then their union has a basis of this form also.

Corollary 4.5.3 (c.f. [6], 2.16). Int(∆p) has a regular basis whose elements are each

a quotient of a polynomial in Z[x] by a power of π.

4.6 Valuative Capacity

As introduced in Section 2.5.4, of some interest is the valuative capacity of the set

∆p. This section seeks to establish an explicit formula for the valuative capacity

limn→∞
α∆p (n)

n
. To understand this quantity, we must first describe the valuative

capacities of subsets S and T2k of ∆p.

Lemma 4.6.1. For S ⊆ ∆p characterized by an irreducible monic polynomial,

lim
n→∞

αS(n)

n
=

2p

2p − 1
.
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Proof. By Lemma 4.3.8, we have αS(pn) = pn+ p
∑

i>0

⌊
n

2pi

⌋
. Therefore

lim
n→∞

αS(n)

n
= lim

pn→∞

αS(pn)

pn
= 1 + lim

pn→∞

1

n

∑
i>0

⌊ n
2pi

⌋
.

Since
∑

i>0
1

2pi
= 1

2p−1
,

∑
i>0

n− 1

2pi
≤
∑
i>0

⌊ n
2pi

⌋
≤
∑
i>0

n

2pi

n− 1

2p − 1
≤
∑
i>0

⌊ n
2pi

⌋
≤ n

2p − 1

lim
pn→∞

n− 1

n(2p − 1)
≤ lim

pn→∞

1

n

∑
i>0

⌊ n
2pi

⌋
≤ lim

pn→∞

1

2p − 1

1

2p − 1
≤ lim

pn→∞

1

n

∑
i>0

⌊ n
2pi

⌋
≤ 1

2p − 1

so that

lim
n→∞

αS(n)

n
= 1 + lim

pn→∞

1

n

∑
i>0

⌊ n
2pi

⌋
= 1 +

1

2p − 1
=

2p

2p − 1
.

Lemma 4.6.2. For T2k ⊆ ∆p,

lim
n→∞

αT2k
(n)

n
=
pk + 2

p
.

Proof. By Lemma 4.3.10, we have αT2k
(pn) = (pk + 1)n+

∑
i>0

⌊
n
2i

⌋
. Therefore

lim
n→∞

αT2k
(n)

n
= lim

pn→∞

αT2k
(pn)

pn
=
pk + 1

p
+ lim

pn→∞

1

pn

∑
i>0

⌊ n
2i

⌋
.

Since
∑

i>0
1
2i

= 1,

∑
i>0

n− 1

2i
≤
∑
i>0

⌊ n
2i

⌋
≤
∑
i>0

n

2i

n− 1 ≤
∑
i>0

⌊ n
2i

⌋
≤ n

lim
pn→∞

n− 1

pn
≤ lim

pn→∞

1

pn

∑
i>0

⌊ n
2i

⌋
≤ lim

pn→∞

1

p

1

p
≤ lim

pn→∞

1

pn

∑
i>0

⌊ n
2i

⌋
≤ 1

p
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so that

lim
n→∞

αT2k
(n)

n
=
pk + 1

p
+ lim

pn→∞

1

pn

∑
i>0

⌊ n
2i

⌋
=
pk + 1

p
+

1

p
=
pk + 2

p
.

Corollary 4.6.3. For T2k ⊆ ∆p,

lim
n→∞

αT2k
(n)

n
− k =

2

p
.

Proposition 4.6.4. The valuative capacity of the set T = π∆p is given by the finite

continued fraction

lim
n→∞

αT (n)

n
=

〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + lim
n→∞

α∆p(n)

n

〉
.

Proof. By Corollary 4.4.2,

αT =
[
· · ·
[[

(α∆p + (n)) ∧
(
αT2(p−1)

− ((p− 1)n)
)

+ (n)
]

∧
(
αT2(p−2)

− ((p− 2)n)
)

+ (n)
]
∧ · · ·

]
∧ (αT2 − (n)) + (n)

Using Proposition 2.5.26, we have

lim
n→∞

αT (n)

n
= 1 +

1

1

limn→∞
αT2

(n)

n
− 1

+
1

limn→∞
αT1

(n)

n
− 1

= 1 +
1

1

limn→∞
αT2

(n)

n
− 1

+
1

1 +
1

1

limn→∞
αT4

(n)

n
− 2

+
1

limn→∞
αT3

(n)

n
− 2

...
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=

〈
1;

1

limn→∞
αT2

(n)

n
− 1

, 1,
1

limn→∞
αT4

(n)

n
− 2

, 1, . . . ,

1,
1

limn→∞
αT2(p−1)

(n)

n
− (p− 1)

,
1

1 + limn→∞
α∆p (n)

n

〉

By Corollary 4.6.3, we can simplify this expression to

lim
n→∞

αT (n)

n
=

〈
1;

1

limn→∞
αT2

(n)

n
− 1

, 1,
1

limn→∞
αT4

(n)

n
− 2

, 1, . . . ,

1,
1

limn→∞
αT2(p−1)

(n)

n
− (p− 1)

,
1

1 + limn→∞
α∆p (n)

n

〉

=

〈
1;

1

2/p
, 1,

1

2/p
, . . . , 1,

1

2/p︸ ︷︷ ︸
p−1 times

, 1 + lim
n→∞

α∆p(n)

n

〉

=

〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + lim
n→∞

α∆p(n)

n

〉
.

Given a closed-form expression for the valuative capacity of T , we can now deter-

mine a formula for the valuative capacity of ∆p.

Theorem 4.6.5. The valuative capacity of ∆p, denoted by limn→∞
α∆p (n)

n
, is the

positive solution to the quadratic equation

1

x
=

(2p−1 − 1)(2p − 1)

p2p−1
+

2〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + x

〉 .

Proof. By Proposition 2.5.26 and the fact that α∆p = α∧2
T ∧ α

∧ 1
p

(2p−2)

S , we have

lim
n→∞

α∆p(n)

n
=

1

(2p − 1)/p

limn→∞
αS(n)
n

+
2

limn→∞
αT (n)
n

.
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By Lemma 4.6.1 and Proposition 4.6.4, this can be written as

lim
n→∞

α∆p(n)

n
=

1

(2p − 1)/p

2p/2p − 1
+

2〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + limn→∞
α∆p (n)

n

〉

=
1

(2p−1 − 1)(2p − 1)

p2p−1
+

2〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + limn→∞
α∆p (n)

n

〉

so that

1

limn→∞
α∆p (n)

n

=
(2p−1 − 1)(2p − 1)

p2p−1
+

2〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + limn→∞
α∆p (n)

n

〉 .

Letting x = limn→∞
α∆p (n)

n
, we see that this value is equivalent to the positive root of

the quadratic

1

x
=

(2p−1 − 1)(2p − 1)

p2p−1
+

2〈
1;
p

2
, 1,

p

2
, . . . , 1,

p

2︸ ︷︷ ︸
p−1 times

, 1 + x

〉 ,

proving the theorem.

Example 1. When p = 2, the valuative capacity limn→∞
α∆2

(n)

n
of ∆2 is the positive

solution to the expression

1

x
=

(22−1 − 1)(22 − 1)

2 · 22−1
+

2〈
1; 2

2
, 1 + x

〉
=

3

4
+

2

〈1; 1, 1 + x〉

which has positive solution x = 1
2
. This agrees with the result in [11] presented in
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Section 2.5.4.

Example 2. When p = 3, the valuative capacity limn→∞
α∆2

(n)

n
of ∆3 is the positive

solution to the expression

1

x
=

(23−1 − 1)(23 − 1)

3 · 23−1
+

2〈
1; 3

2
, 1, 3

2
, 1 + x

〉
=

7

4
+

2〈
1; 3

2
, 1, 3

2
, 1 + x

〉

which has positive solution

x =
−439 +

√
469 921

770
≈ 0.32014 .
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Chapter 5

Conclusion

5.1 Summary

In this text, we examined explicitly a construction to describe the integer-valued

polynomials on the maximal order in a division algebra of index 3 over Q2. We then

successfully extended this to the index p case, when p is an odd prime. This was

done using a method analogous to that used by Evrard and Johnson in [6] and [11]

in the index 2 case, by way of representing the maximal order ∆p as an extension of

Z2 by p× p matrices, splitting ∆p into sets closed under conjugation modulo powers

of π, determining characteristic polynomials which describe these sets, and using ν-

orderings and ν-sequences to establish a regular basis for integer-valued polynomials

over these sets.

5.2 Future Work

We have learned much about describing the integer-valued polynomials of maximal

orders over division algebras of prime index over Q2, but there remain some natural

questions.

5.2.1 The index n, 2-local case

What happens if we drop the restriction that the index of the division

algebra is prime?

In the case that n > 1 is composite, there are two places where we will see problems

arising in the decomposition of ∆n into sets that are closed under conjugation. The

first is in the fact that there will be some ωi for 1 ≤ i ≤ 2n−2, with ω a (2n−1)th root
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of unity, that do not lie in a set determined by an irreducible polynomial modulo 2.

Recall from Section 4.1 that the number of monic irreducible polynomials of degree

n over F2 is given by

I2(n) =
1

n

∑
d|n

µ(d)2n/d ,

where µ is the Möbius function. The sequence I2(n) is A001037 in the OEIS [8].

Note that under the conjugation πωiπ−1 = ω2i and because ω2n = ω · ω2p−1 = ω, the

collection {ω2ki}n−1
i=0 of at most n elements will constitute a conjugacy class modulo

π, though these elements may not be distinct.

If n = p a is prime, then I2(p) = 1
p
(2p−2) polynomials with p corresponding roots

each means that all 2p − 2 elements ω, ω2, . . . , ω2p−2 are accounted for. However, it

appears that if n ∈ Z>1 is composite, then

nI2(n) < 2n − 2 .

This holds up to n = 100, 000, as shown by the Mathematica code in Appendix A.3,

and we conjecture that it holds true in general. If this statement is true, then conse-

quently there exists some element ωi which is not the root of an irreducible polynomial

of degree n – and of course, because n is composite, this ωi can (and will) instead be

the root of an irreducible polynomial of degree dividing n. As a result, we will need

to devise a way of determining the ν-sequence for a set S for which all z ∈ S satisfy

ν(z) = 0, but S is determined by a polynomial which is reducible modulo 2.

Another problem will arise when splitting the set πd∆n into sets closed under

conjugation modulo πd+1 for 1 ≤ d < n such that gcd(d, n) > 1. Consider an element

ωkπd ∈ πd∆n r πd+1∆n, conjugated by an arbitrary element ωiπj:

(ωiπj)ωkπd(π−jω−i) = ωiπjωkπd−jω−i

= ωiπjωkω−2d−jiπd−j

= ωiπjωk−2d−jiπd−j

= ωiω2j(k−2d−ji)πd

= ω2j(k−2d−ji)+iπd

= ω2jk−(2d−1)iπd

Note that the elements ωkπd with k ≡ 0 (mod 2d − 1) will form their own set that

is closed under conjugation, so that πd∆n will split into at least three subsets closed

under conjugation: πd+1∆n, {z ≡ ω(2d−1)`πd (mod πd+1)}, and a collection of sets

80



(possibly only one) whose union is {z ≡ ωkπd (mod πd+1), k 6≡ 0 (mod 2d − 1)}. It

may prove difficult to describe these sets in terms of the residues of coefficients of

their characteristic polynomials, posing yet another challenge in our goal of finding

an analogous construction to that in the index p case.

Even if we are able to describe these sets in terms of characteristic polynomials, in

a similar vein to Equation 4.3 in Section 4.3.2, we will see that if we try to apply our

previous construction to obtain the valuation of such a polynomial, we will obtain

ν((ψj(m)− ψj(k))zj) = nν2(ψj(m)− ψj(k)) + ν(zj)

= nν2(ψj(m)− ψj(k)) + jν(z)

≡ jν(z) (mod n)

which will not result in a complete set of residues modulo n as j varies in the case that

gcd(ν(z), n) > 1. Computational results in index 4 show that the original construc-

tion will result in the minimum valuation of a polynomial with coefficients satisfying

the same congruences as the characteristic polynomial having two possible values, de-

pending on a valuation that involves an arbitrary quantity. It seems that an alternate

approach may be necessary to come up with an analogous construction for sets when

gcd(ν(z), n) > 1.

5.2.2 The prime index case, localized at an odd prime q

What happens if our division algebra is over Qq, with q an odd prime?

In [11], Johnson established a description for the integer-valued polynomials in the 2-

local case for index 2, and these results were later generalized by Evrard and Johnson

in [6] for the p-local case for index 2 – one may be interested in such an extension in

the index p case, q-locally (with q an odd prime).

The construction of minimal polynomials as discussed in Section 4.3.2 can be

extended to the q-local case, as shown in Appendix B. This result does not assume

any knowledge of the structure of ∆p over Qq such as the structure of its subsets

that are closed under conjugation or the corresponding characteristic polynomial,

but instead works very generally and may be specified upon further study of the

decomposition of the maximal order in the q-local case.
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Appendix A

Mathematica Code
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A.1 Generating α∆3

The following code generates the ν-sequence α for Δ3.
Generate elements of αS, wedge with self to obtain αS2

In[194]:= αS = {}; For[n = 0, n < 20, n++,

For[j = 0, j < 3, j++,

AppendTo[αS,

3 * n + 3 * Sum[Floor[n / 8^i], {i, 1, 3}]]]];

αS2 = Sort[Join[αS, αS]];

Generate elements of αT2

In[195]:= αT2 = {}; For[n = 0, n < 30, n++,

For[j = 0, j < 3, j++,

AppendTo[αT2,

j + 4 * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Generate elements of αT4

In[196]:= αT4 = {}; For[n = 0, n < 30, n++,

For[j = 0, j < 3, j++,

AppendTo[αT4,

2 * j + 7 * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Compute αT2 - (n) and αT4 - (2n)

In[197]:= nn = {}; For[n = 0, n < 100, n++, AppendTo[nn, n]];

αT2n = αT2 - Take[nn, Length[αT2]];

αT4n = αT4 - 2 * Take[nn, Length[αT4]];

Initialize α and α + (n) by taking first element of αS2

In[198]:= α = {};

αn = {};

a = TakeDrop[αS2, 1];

α = Join[α, a[[1]]];

αn = Join[αn, a[[1]]];

αS2 = a[[2]];

Initialize (α + (n)) ∧ (αT4 - (2n)) and [(α + (n)) ∧ (αT4 - (2n))] + (n) by taking first element 
of αT4 - (2n)

In[199]:= αnT4 = {};

αnT4n = {};

b = TakeDrop[αT4n, 1];

αnT4 = Join[αnT4, b[[1]]];

αnT4n = Join[αnT4n, b[[1]]];

αT4n = b[[2]];

Initialize [[[(α + (n)) ∧ (αT4 - (2n))] + (n)] ∧ (αT2 - (n))] + (n) by taking first element of αT2 
- (n); initialize the wedge of this sequence with itself
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In[200]:= αnT4T2n = {};

b = TakeDrop[αT2n, 1];

αnT4T2n = Join[αnT4T2n, b[[1]] + Length[αnT4T2n]];

αT2n = b[[2]];

αnT4T2n2 = Sort[Join[αnT4T2n, αnT4T2n]];

Loop through elements of sequences to generate α

Printed by Wolfram Mathematica Student Edition
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In[201]:= While[αS2 ≠ {} && αT2n ≠ {} && αT4n ≠ {},

(* append an element to α *)

If[First[αS2] ≤ First[αnT4T2n2],

(* if first element of αS2 is smaller, pick that one *)

a = TakeDrop[αS2, 1];

α = Join[α, a[[1]]];

αS2 = a[[2]];

AppendTo[αn, Last[α] + Length[α] - 1],

(**)

(* otherwise take first element of αnT4T2n2 *)

a = TakeDrop[αnT4T2n2, 1];

α = Join[α, a[[1]]];

αnT4T2n2 = a[[2]];

AppendTo[αn, Last[α] + Length[α] - 1]];

(* update αnT4T2n based on new α value *)

(* first update αnT4n by appending

appending the smallest element of αT4n or αn *)

If[First[αT4n] ≤ First[αn],

(* if first element of αT4n is smaller, pick that one *)

b = TakeDrop[αT4n, 1];

αnT4 = Join[αnT4, b[[1]]];

αT4n = b[[2]];

AppendTo[αnT4n, Last[αnT4] + Length[αnT4] - 1],

(**)

(* otherwise take first element of αn *)

b = TakeDrop[αn, 1];

αnT4 = Join[αnT4, b[[1]]];

αn = b[[2]];

AppendTo[αnT4n, Last[αnT4] + Length[αnT4] - 1]];

(* update αnT4T2n by appending

appending the smallest element of αT2n or αnT4n *)

If[First[αT2n] ≤ First[αnT4n],

(* if first element of αT2n is smaller, pick that one *)

c = TakeDrop[αT2n, 1];

αnT4T2n = Join[αnT4T2n, c[[1]] + Length[αnT4T2n]];

αT2n = c[[2]],

(**)

(* otherwise take first element of αnT4n *)

c = TakeDrop[αnT4n, 1];

αnT4T2n = Join[αnT4T2n, c[[1]] + Length[αnT4T2n]];

αnT4n = c[[2]]];

(* append last element of αnT4T2n

to αnT4T2n2 twice to get wedge with self *)

AppendTo[αnT4T2n2, Last[αnT4T2n]];

AppendTo[αnT4T2n2, Last[αnT4T2n]]]

Printed by Wolfram Mathematica Student Edition
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In[202]:= α

Out[202]= {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 6, 6, 6, 6, 6, 6, 6,

6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13,

14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18,

19, 19, 21, 21, 21, 21, 21, 21, 21, 21, 23, 23, 25, 25, 26, 26, 27, 27, 27,

27, 27, 27, 27, 27, 28, 28, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32,

33, 33, 33, 33, 33, 33, 33, 33, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 38}

Printed by Wolfram Mathematica Student Edition
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A.2 Generating α∆5

The following code generates the ν-sequence α for Δ5.
Generate elements of αS, wedge with self six times to obtain αS6

In[365]:= αS = {}; For[n = 0, n < 10, n++,

For[j = 0, j < 5, j++,

AppendTo[αS,

5 * n + 5 * Sum[Floor[n / 32^i], {i, 1, 3}]]]];

αS6 = Sort[Join[αS, αS, αS, αS, αS, αS]];

Generate elements of αT2

In[366]:= αT2 = {}; For[n = 0, n < 40, n++,

For[j = 0, j < 5, j++,

AppendTo[αT2,

1 * j + (5 * 1 + 1) * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Generate elements of αT4

In[367]:= αT4 = {}; For[n = 0, n < 40, n++,

For[j = 0, j < 5, j++,

AppendTo[αT4,

2 * j + (5 * 2 + 1) * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Generate elements of αT6

In[368]:= αT6 = {}; For[n = 0, n < 40, n++,

For[j = 0, j < 5, j++,

AppendTo[αT6,

3 * j + (5 * 3 + 1) * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Generate elements of αT8

In[369]:= αT8 = {}; For[n = 0, n < 40, n++,

For[j = 0, j < 5, j++,

AppendTo[αT8,

4 * j + (5 * 4 + 1) * n + Sum[Floor[n / 2^i], {i, 1, 5}]]]]

Compute αT2 - (n) , αT4 - (2n) , αT6 - (3n) , αT8 - (4n)

In[370]:= nn = {}; For[n = 0, n < 250, n++, AppendTo[nn, n]];

αT2n = αT2 - Take[nn, Length[αT2]];

αT4n = αT4 - 2 * Take[nn, Length[αT4]];

αT6n = αT6 - 3 * Take[nn, Length[αT6]];

αT8n = αT8 - 4 * Take[nn, Length[αT8]];

Initialize α and α + (n) by taking first element of αS6
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In[372]:= α = {};

αn = {};

a = TakeDrop[αS6, 1];

α = Join[α, a[[1]]];

αn = Join[αn, a[[1]]];

αS6 = a[[2]];

Initialize (α + (n)) ∧ (αT8 - (4n)) and [(α + (n)) ∧ (αT8 - (4n))] + (n) by taking first element 
of αT8 - (4n)

In[373]:= αnT8 = {};

αnT8n = {};

b = TakeDrop[αT8n, 1];

αnT8 = Join[αnT8, b[[1]]];

αnT8n = Join[αnT8n, b[[1]]];

αT8n = b[[2]];

Initialize [[(α + (n)) ∧ (αT8 - (4n))] + (n)] ∧ (αT6 - (3n)) and [[[(α + (n)) ∧ (αT8 - (4n))] + (n)] ∧ 
(αT6 - (3n))] + (n) by taking first element of αT6 - (3n)

In[374]:= αnT8T6 = {};

αnT8T6n = {};

b = TakeDrop[αT6n, 1];

αnT8T6 = Join[αnT8T6, b[[1]]];

αnT8T6n = Join[αnT8T6n, b[[1]]];

αT6n = b[[2]];

Initialize [[[[(α + (n)) ∧ (αT8 - (4n))] + (n)] ∧ (αT6 - (3n))] + (n)] ∧ (αT4 - (2n)) and [[[[[(α + 
(n)) ∧ (αT8 - (4n))] + (n)] ∧ (αT6 - (3n))] + (n)] ∧ (αT4 - (2n))] + (n) by taking first element of 
αT4 - (2n)

In[375]:= αnT8T6T4 = {};

αnT8T6T4n = {};

b = TakeDrop[αT4n, 1];

αnT8T6T4 = Join[αnT8T6T4, b[[1]]];

αnT8T6T4n = Join[αnT8T6T4n, b[[1]]];

αT4n = b[[2]];

Initialize [[[[[[[(α + (n)) ∧ (αT8 - (4 n))] + (n)] ∧ (αT6 - (3 n))] + (n)] ∧ (αT4 - (2 n))] + (n)] ∧ 
(αT2 - (n))] + (n) by taking first element of αT2 - (n);  initialize the wedge of this 
sequence with itself

In[376]:= αnT8T6T4T2n = {};

b = TakeDrop[αT2n, 1];

αnT8T6T4T2n = Join[αnT8T6T4, b[[1]] + Length[αnT8T6T4T2n]];

αT2n = b[[2]];

αnT8T6T4T2n2 = Sort[Join[αnT8T6T4T2n, αnT8T6T4T2n]];

Loop through elements of sequences to generate α

In[377]:= While[αS6 ≠ {} && αT2n ≠ {} && αT4n ≠ {} && αT6n ≠ {} && αT8n ≠ {},

(* append an element to α *)

Printed by Wolfram Mathematica Student Edition
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If[First[αS6] ≤ First[αnT8T6T4T2n2],

(* if first element of αS6 is smaller, pick that one *)

a = TakeDrop[αS6, 1];

α = Join[α, a[[1]]];

αS6 = a[[2]];

AppendTo[αn, Last[α] + Length[α] - 1],

(**)

(* otherwise take first element of αnT8T6T4T2n2 *)

a = TakeDrop[αnT8T6T4T2n2, 1];

α = Join[α, a[[1]]];

αnT8T6T4T2n2 = a[[2]];

AppendTo[αn, Last[α] + Length[α] - 1]];

(* update αnT8T6T4T2n based on new α value *)

(* first update αnT8n by appending

appending the smallest element of αT8n or αn *)

If[First[αT8n] ≤ First[αn],

(* if first element of αT8n is smaller, pick that one *)

b = TakeDrop[αT8n, 1];

αnT8 = Join[αnT8, b[[1]]];

αT8n = b[[2]];

AppendTo[αnT8n, Last[αnT8] + Length[αnT8] - 1],

(**)

(* otherwise take first element of αn *)

b = TakeDrop[αn, 1];

αnT8 = Join[αnT8, b[[1]]];

αn = b[[2]];

AppendTo[αnT8n, Last[αnT8] + Length[αnT8] - 1]];

(* update αnT8T6n by appending

appending the smallest element of αT6n or αnT8n *)

If[First[αT6n] ≤ First[αnT8n],

(* if first element of αT6n is smaller, pick that one *)

c = TakeDrop[αT6n, 1];

αnT8T6 = Join[αnT8T6, c[[1]]];

αT6n = c[[2]];

AppendTo[αnT8T6n, Last[αnT8T6] + Length[αnT8T6] - 1],

(**)

(* otherwise take first element of αnT8n *)

c = TakeDrop[αnT8n, 1];

αnT8T6 = Join[αnT8T6, c[[1]]];

αnT8n = c[[2]];

AppendTo[αnT8T6n, Last[αnT8T6] + Length[αnT8T6] - 1]];

(* update αnT8T6T4n by appending

appending the smallest element of αT4n or αnT8T6n *)

If[First[αT4n] ≤ First[αnT8T6n],

(* if first element of αT4n is smaller, pick that one *)

d = TakeDrop[αT4n, 1];

Printed by Wolfram Mathematica Student Edition
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αnT8T6T4 = Join[αnT8T6T4, d[[1]]];

αT4n = d[[2]];

AppendTo[αnT8T6T4n, Last[αnT8T6T4] + Length[αnT8T6T4] - 1],

(**)

(* otherwise take first element of αnT8T6n *)

d = TakeDrop[αnT8T6n, 1];

αnT8T6T4 = Join[αnT8T6T4, d[[1]]];

αnT8T6n = d[[2]];

AppendTo[αnT8T6T4n, Last[αnT8T6T4] + Length[αnT8T6T4] - 1]];

(* update αnT8T6T4T2n by appending

appending the smallest element of αT2n or αnT8T6T4n *)

If[First[αT2n] ≤ First[αnT8T6T4n],

(* if first element of αT2n is smaller, pick that one *)

e = TakeDrop[αT2n, 1];

αnT8T6T4T2n = Join[αnT8T6T4, e[[1]] + Length[αnT8T6T4T2n]];

αT2n = e[[2]],

(**)

(* otherwise take first element of αnT8T6T4n *)

e = TakeDrop[αnT8T6T4n, 1];

αnT8T6T4T2n = Join[αnT8T6T4, e[[1]] + Length[αnT8T6T4T2n]];

αnT8T6T4n = e[[2]]];

(* append last element of αnT4T2n

to αnT4T2n2 twice to get wedge with self *)

AppendTo[αnT8T6T4T2n2, Last[αnT8T6T4T2n]];

AppendTo[αnT8T6T4T2n2, Last[αnT8T6T4T2n]]]

In[378]:= α

Out[378]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 8, 8, 9,

9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 12, 12,

13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17,

18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

21, 21, 22, 22, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,

25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,

25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30,

30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}

Printed by Wolfram Mathematica Student Edition
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A.3 The Number of Monic Irreducible Polynomi-

als of Degree n

The following code supports the assertion that nI_2(n) < 2^n - 2 up 
to n=100,000.

Generate the first 10 elements in the sequence I_2(n), starting at n=1.

In[1]:= f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu[n / d] * 2^d / n)];

l = Array[f, 10]

Out[1]= {2, 1, 2, 3, 6, 9, 18, 30, 56, 99}

Populate the list m with the values n*I_2(n) - 2^n + 2 for n not prime, which we conjec-
ture to be strictly less that 0 when n is composite. Note that the first element of the list, 
corresponding to n=1, remains positive.

In[2]:= m = {};

For[i = 1, i ≤ Length[l], i++,

If[PrimeQ[i]  False, AppendTo[m, i * l[[i]] - 2^i + 2], 0]];

m

Out[2]= {2, -2, -8, -14, -6, -32}

Generate the first 100,000 elements in the sequence I_2(n), starting at n=1.

In[3]:= f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu[n / d] * 2^d / n)];

l = Array[f, 100 000];

Populate the list m with the values n*I_2(n) - 2^n + 2 for n not prime. Sort this list in 
increasing order, and print the last five elements in this sorted list.

In[4]:= m = {};

For[i = 1, i ≤ Length[l], i++,

If[PrimeQ[i]  False, AppendTo[m, i * l[[i]] - 2^i + 2], 0]];;

Take[Sort[m], -5]

Out[4]= {-14, -8, -6, -2, 2}

Since the only non-prime positive integer which results in a positive entry in m is n=1, 
we can conclude that our conjecture holds for all composite n up to 100,000.
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Appendix B

Results on the prime index, q-local

case

Let q be an odd prime, and Mp(Qq) be the ring of p × p matrices over the q-adic

numbers. Additionally, let S be a subset of a maximal order ∆p that is closed under

conjugation by elements of ∆p. Let z ∈ S have characteristic polynomial

chz(x) = xp + ap−1x
p−1 + · · ·+ a1x+ a0 .

For 0 ≤ j ≤ p− 1, let cj, rj ∈ Z with rj ≥ 1 and 0 ≤ cj ≤ qrj − 1 be defined so that

aj ≡ cj (mod qrj)

where rj is the largest power of q for which we can ensure that the coefficient of xj

in the characteristic polynomial for any z ∈ S is the same modulo qrj .

Let φ = (φ0, φ1, . . . , φp−1) be defined on Z so that

φj(k) = cj + qrj
∑
i≥0

kpi+(p−1)−jq
i (B.1)

where k =
∑

i≥0 kiq
i is the expansion of k in base q. Define a function

fn(x) =

p−1∏
k=0

(xp − φp−1(k)xp−1 + φp−2(k)xp−2 + · · ·+ (−1)pφ0(k)) .

Let z ∈ S, and let m ∈ Z be such that φ(m) gives a tuple consisting of the coefficients

of the characteristic polynomial of z, with φj(m) being the coefficient of xj. Then for
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any 0 ≤ k ≤ p,

zp − φp−1(k)zp−1+φp−2(k)zp−2 + · · ·+ (−1)pφ0(k)

= zp − φp−1(k)zp−1 + φp−2(k)zp−2 + · · ·+ (−1)pφ0(k)− (chz(z))

= (φp−1(m)− (φp−1(k))zp−1 + (φp−2(k)− φp−2(m))zp−2 + · · ·
+ (−1)p(φ0(k)− φ0(m))

We would like to take the valuation of this expression. Recall that for any valuation

ν defined on a field K with a, b ∈ K, that ν(a + b) ≥ min(ν(a), ν(b)) with equality

if ν(a) 6= ν(b). In particular, if in a sum of p components each has a unique residue

modulo p, then the valuation of the sum is the minimum of the valuations of the

components.

Notice that for any 1 ≤ j ≤ p,

ν((φj(m)− φj(k))zj) = pνq(φj(m)− φj(k)) + ν(zj)

= pνq(φj(m)− φj(k)) + jν(z)

≡ jν(z) (mod p)

Since p is prime, as j varies this expression will give a complete set of residues

modulo p. We then have

ν(zp − φp−1(k)zp−1 + φp−2(k)zp−2 + · · ·+ (−1)pφ0(k))

= min((p− 1)ν(z) + pνq(φp−1), (p− 2)ν(z) + pνq(φp−2), . . . ,

ν(z) + pνq(φ1), pν(φ0))

where νq(φj) := νq(φj(m)− φj(k)) for 0 ≤ j ≤ p− 1.

Let the φi be ordered in such a way that

νq(m− k) = min(i : ki 6= mi)

νq(φp−1) = min(i : kpi 6= mpi) + rp−1

νq(φp−2) = min(i : kpi+1 6= mpi+1) + rp−2

...

νq(φ0) = min(i : kpi+(p−1) 6= mpi+(p−1)) + r0

where k =
∑

i≥0 kiq
i and m =

∑
i≥0 miq

i are the expansions of k and m in base q,

and the rj are defined as in Equation (B.1).
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Lemma B.0.1. With the above notation, if the components φ0, φ1, . . . , φp−1 are

ordered in such a way that

(p− 1)ν(z) + prp−1 ≤ (p− 2)ν(z) + prp−2 ≤ · · · ≤ ν(z) + pr1 ≤ pr0

with

(p− 1)ν(z) + prp−1 = jν(z) + prj − p+ (j + 1)

for each 0 ≤ j ≤ p− 2, then

ν(zp− φ1(k)zp−1 + φ2(k)zp−2 + · · ·+ (−1)pφp(k)) = (p− 1)ν(z) + prp−1 + νq(m− k) .

Proof. The value of jν(z) + pνq(φj) will depend on the residue of νq(m− k) modulo

p.

If νq(m− k) ≡ 0 (mod p), then

(p− 1)ν(z) + pνq(φp−1) = (p− 1)ν(z) + p

(
νq(m− k)

p
+ rp−1

)
= (p− 1)ν(z) + prp−1 + νq(m− k)

(p− 2)ν(z) + pνq(φp−2) ≥ (p− 2)ν(z) + p

(
νq(m− k)

p
+ rp−2

)
= (p− 2)ν(z) + prp−2 + νq(m− k)

...

pνq(φ0) ≥ p

(
νq(m− k)

p
+ r0

)
= pr0 + νq(m− k)

In general, if νq(m− k) ≡ j (mod p), then

(p− 1)ν(z) + pνq(φp−1) ≥ (p− 1)ν(z) + p

(
νq(m− k)− j

p
+ rp−1 + 1

)
= (p− 1)ν(z) + prp−1 + p− j + νq(m− k)

...

(p− j)ν(z) + pνq(φp−j) ≥ (p− j)ν(z) + p

(
νq(m− k)− j

p
+ rp−j + 1

)
= (p− j)ν(z) + prp−j + p− j + νq(m− k)

(p− (j + 1))ν(z) + pνq(φp−(j+1)) = (p− (j + 1))ν(z) + p

(
νq(m− k)− j

p
+ rp−(j+1)

)
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= (p− (j + 1))ν(z) + prp−(j+1) − j + νq(m− k)

(p− (j + 2))ν(z) + pνq(φp−(j+2)) ≥ (p− (j + 2))ν(z) + p

(
νq(m− k)− j

p
+ rp−(j+2)

)
= (p− (j + 2))ν(z) + prp−(j+2) − j + νq(m− k)

...

pνq(φ0) ≥ p

(
νq(m− k)− j

p
+ r0

)
= pr0 − j + νq(m− k)

Continuing in this way, the minimum value for the expression jν(z)+pνq(φj) over

all residues of νq(m− k) (mod p) is equal to

jν(z) + prj − p+ (j + 1) + νq(m− k) ,

and this minimum occurs precisely when νq(m−k) ≡ −(j+ 1) (mod p). Therefore, if

we would like to attain a strict minimum for ν(zp−φp−1(k)zp−1 +φp−2(k)zp−2 + · · ·+
(−1)pφ0(k)) for a general k without having an inequality, we would like to attain this

minimum for each residue.

If indeed it is the case that

min((p− 1)ν(z) + pνq(φp−1), (p− 2)ν(z) + pνq(φp−2), . . . , pνq(φ0))

= (p− j)ν(z) + prj − p+ (j + 1) + νq(m− k)

when νq(m−k) ≡ −(j+1), then comparing each minimum expression to all inequali-

ties in the expressions for (p− `)ν(z) +pνq(φ`) where ` 6= j and considering the result

for all j together, we easily obtain the chain of inequalities

(p− 1)ν(z) + prp−1 ≤ (p− 2)ν(z) + prp−2 ≤ · · · ≤ ν(z) + pr1 ≤ pr0 .

Additionally, to have a minimum that is consistent and holds for all choices of k, we

must also require that all the minimums are equal, meaning that

jν(z) + prj − p+ (j + 1) + νq(m− k) = `ν(z) + pr` − p+ (`+ 1) + νq(m− k)

for j 6= `, or, equivalently,

(p− 1)ν(z) + prp−1 = jν(z) + prj − p+ (j + 1)
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for all 0 ≤ j ≤ p− 2. With this condition, we see that

ν(zp − φ1(k)zp−1 + φ2(k)zp−2 + · · ·+ (−1)pφp(k))

= min
1≤j≤p

(jν(z) + pνq(φj))

= min
1≤j≤p

(jν(z) + prj − p+ (j + 1) + νq(m− k))

= (p− 1)ν(z) + prp−1 + νq(m− k) ,

giving the desired result.
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