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Abstract

Competing risks refers to the phenomenon where an object or individual is subject to

multiple risks that are competing to destroy the object or individual, where the oc-

currence of one of these risks precludes the occurrence of any other risk. In this thesis,

we use some useful lifetime distributions to model the risks, and parametric meth-

ods to estimate the unknown parameters of these risk models. Maximum likelihood

method is used to estimate the model parameters. As expected, there were no analytic

solutions for the maximum likelihood estimators, therefore numerical methods are im-

plemented. Bayesian method is also used to estimate the model parameters. Since

the posterior probability density function of the vector of unknown parameters is not

in a standard form of a known distribution, MCMC using the Metropolis-Hastings

algorithm is performed to obtain the Bayes estimates. Non-parametric techniques are

also used to estimate the main characteristics of the competing risks model. Two

competing risks models are studied in this thesis: homogeneous and regression mod-

els. Data analysis is done on bone marrow transplant patients in which there were

two risks: leukemia relapse and death in remission. The cumulative incidence func-

tion estimates the probability of a specific risk in the presence of all other risks. We

also estimate the cumulative incidence function for every risk at different times us-

ing the parametric and non-parametric methods applied in this thesis. Testing on

the significance of covariates, patient’s age and donor’s age, found that at least one of

them were significant for patients with acute lymphoblastic leukemia (ALL) and acute

myelocytic leukemia low-risk (AML-LR), but not for patients with acute myelocytic

leukemia high-risk (AML-HR). A comparison between the homogenous and regression

competing risks models, using the bone marrow data, is performed. Further investi-

gation is needed on modelling the risks where each risk is assumed to follow different

lifetime distributions.
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Chapter 1

Introduction

1.1 Background and Motivation

Survival analysis is a branch of statistics that analyses time-to-event data. The time-

to-event may be known as a failure time, survival time, or an event time [5, p. 399].

For example, the time-to-event may be time to death, relapse of a disease, or the

occurrence of a heart attack. A common attribute of time-to-event data is censored

observations. Censoring prevents us from observing the time an event of interest has

occurred. A common form of censoring is right censored, which implies the object is

event-free until some censored time [11, p. 30]. For example, consider n patients on

a life time. Some of these patients being studied may be lost for follow-up, or may

have not experienced the event of interest before the researchers stop the test. As a

consequence, these patients are right censored and it is unknown whether the patient

has experienced the event of interest after the recorded time. In Figure 1.1, we

Figure 1.1: A lifetime of n patients with some being right censored.
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illustrate this idea. We see that patients 2, 3, and n have experienced the event of

interest, however, patients 1, 4, and 5 did not experience the event of interest for

reasons listed above and were censored.

Many survival techniques have been implemented and developed to analyse sit-

uations where an object or individual may fail or die by one particular cause or risk;

however, in reality, objects or individuals are subject to multiple risks that may cause

fatality. Competing risks occurs when an object is subject to multiple risks that

compete to destroy the object, and the occurrence of one of these risks precludes the

occurrence of all other risk [11, p. 39], [6, p. 50]. Common approaches to modelling

competing risks consist of looking at one specific cause of failure and treating the

observations of all other causes as right-censored observations [3]. However, standard

survival analysis techniques, such as the complement of the Kaplan-Meier estimator,

does not provide practical probabilities in the presence of competing risks, and require

specific inference when dealing with competing risks [3], [6, p. 127].

Competing risks models have many applications to the real life world. Examples

branch out to the fields of engineering, economics, finance, sociology, medical sciences

and so on. In engineering, one may be interested in examining the presence of multiple

failures within a series system, or in medical sciences, a health professional may be

interested in the chances of patients dying from cancer with the presence of heart

disease acting as a competing risk. To discuss the importance of competing risks, this

thesis looks at the concept of competing risks in the field of medical sciences. With

the previous example, we looked at patients who may experience death by cancer

or death by heart disease. In this case, the medical examiner must determine the

survival probability of cancer and heart disease in the presence of one another, and the

patients must use this information to determine the best choice of treatment or action

for themselves. The examiner may also be interested in what factors may influence

the rate of death by cancer or death by heart disease. For the examiner to answer

any of these questions, a competing risks model must be used. As we mentioned

previously, the typical survival analysis techniques are not suitable to answer these

2



questions. To fully explore the competing risks model, we present the key quantities

used to model the data.

1.2 Quantities for Modelling Lifetime Data

Let the non-negative, continuous, random variable X denote the time-to-event. Here,

the event may be fatality, the occurrence of cancer, the failure of a laptop, and so

on. The main quantities, or reliability measures, that describe the distribution of X

are the hazard rate function, the survival function and the mean residual life. The

relationship between the reliability measures will be discussed in this section.

The Survival Function

The survival function, also known as the survivor function and the reliability function

in engineering, is the probability of an individual or object surviving past time x, and

is the complement of the cumulative distribution function [5, p. 401]. It is given by

S(x) = P (X > x) =

Z ∞

x

f(t) dt = 1 − F (x), (1.1)

where f(x) is the probability density function of X, and F (x) is the cumulative

distribution function of X. The survival function is a non-increasing and non-negative

function, that satisfies

lim
x→0

S(x) = 1 and lim
x→∞

S(x) = 0.

The Hazard Function

The hazard function, also known as the force of mortality or the failure rate function,

is the instantaneous event rate for an individual who has not yet experienced the event

at time x [5, p. 404]. It is worth noting that the hazard function does not represent

a density function. It is given by
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h(x) = lim
∆x→0

P (x < X ≤ x+ ∆x|X > x)

∆x
. (1.2)

Using the law of conditional probability, we can rewrite this as

h(x) = lim
∆x→0

P (x < X ≤ x+ ∆x)/P (X > x)

∆x
(1.3)

= lim
∆x→0

[F (x+ ∆x) − F (x)]/∆x

S(x)

=
∂F (x)/∂x

S(x)

h(x) =
f(x)

S(x)
.

Thus, by knowing any one of the survival function, hazard function, cumulative hazard

function, or probability density function, the other reliability measures can always be

derived [5, p. 405].

If the event of interest is death, then the hazard function represents the instan-

taneous death rate for individuals who are still alive at time x. The hazard function

is non-negative, and its shape may be constant, increasing, decreasing, bathtub, uni-

modal, or any other shape that may describe the rate of the phenomenon of interest.

Some examples of the hazard function taking on these shapes can be seen in Figure

1.2. If the shape of the hazard function is increasing (or decreasing) for an individual

or object, then this suggests that the rate of failure for an individual or object is

increasing (or decreasing) as it ages. If the shape of the hazard function is bathtub,

then this suggests that the rate of failure is decreasing at earlier ages, constant at

middle ages, and increasing at later ages. An example of a process that would exhibit

a bathtub shape would be a human at birth.

The cumulative hazard function is given as

H(x) =

Z x

0

h(t)dt (1.4)

= − log(S(x)). (1.5)
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The cumulative hazard function is an increasing, non-negative function that satisfies

lim
x→0

H(x) = 0 and lim
x→∞

H(x) = ∞.

Since the hazard function is not a density function, the cumulative hazard function

does not represent a probability, but rather describes a measure of risk. For example,

assume the event of interest is death. Then, for some time x, the larger the value of

H(x), the larger the risk of death by time x.

Figure 1.2: Different shapes of the hazard function.

Mean Residual Life

The mean residual life, also known as the mean restricted life [5, p. 406], at time x,

is the expected remaining lifetime at time x . It is given by

mrl(x) = E(X − x|X > x) =

R∞
x

(t− x)f(t) dt

S(x)
=

R∞
x
S(t) dt

S(x)
. (1.6)
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The expected value of X, or expected failure time, is given by

mrl(0) = µ = E(X) =

Z ∞

0

tf(t) dt =

Z ∞

0

S(t) dt. (1.7)

1.3 Some Useful Lifetime Distributions

In this section, we present the properties of some useful lifetime distributions. Quan-

tities from the previous section may be estimated non-parametrically, or using para-

metric assumptions. For example, the survival function may be estimated using the

Kaplan Meier (Chapter 3), or it may be estimated by assuming a parametric form.

In the case of the latter, the survival function can take any form of those given by

Table 1.1. The hazard function and probability density function can also take on a

parametric form. Each distribution, or model, have unique characteristics from one

another. By assuming the lifetime data follows a suitable parametric form, then a

more accurate and precise analysis may be performed. In this thesis, we examine

seven different lifetime distributions that are listed in Table 1.1.

The behaviour of the hazard rate function may vary among the distributions.

The exponential distribution is unique as the shape of the hazard rate function can

only be constant. For the STH-1 distribution [17], the shape can be increasing,

decreasing, and unimodal. For the Lindley distribution, the shape is always increas-

ing. For the STH-2 distribution [17], the shape can be increasing, decreasing, uni-

modal, decreasing-increasing-decreasing (DID), and increasing-decreasing-increasing

(IDI). For the Power Lindley distribution [4], the shape can be increasing, decreas-

ing, and DID. For the Weibull distribution, the shape can be constant, increasing, or

decreasing. For the Bathtub distribution, the shape can be bathtub or increasing.

Assuming the lifetime data follows a suitable parametric model, the next goal is to

estimate the values of the unknown parameters of the model. The two main methods

for the parameter estimation in this thesis are maximum likelihood estimation and

Bayesian estimation. These techniques are presented in the next sections.
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Dist.
Hazard
Rate
h(x)

Survival
Function
S(x)

Probability
Density Function

f(x)
Exp
x ≥ 0
α > 0

α e−αx αe−αx

STH-1
x ≥ 0
α > 0

α [α + (1 + 2αx)e−α]

α + (1 + αx)e−αx

1

1 + α
[α + (1 + αx)e−αx] e−αx α

1 + α
[α + (1 + 2αx)e−αx] e−αx

Lindley
x ≥ 0
α > 0

α2(1 + x)

αx,+α + 1

αx+ α + 1

α + 1
e−αx α2(1 + x)

α + 1
e−αx

STH-2
x ≥ 0
α, β > 0

αβ β + (1 + 2βxα)e−βxα

β + (1 + βxα)e−βxα

1

1 + β
β + (1 + βxα)e−βxα e−βxα αβxα−1

1 + β
β + (1 + 2βxα)e−βxα e−βxα

PL
x ≥ 0
α, β > 0

αβ2 (1 + α)xα−1

β + 1 + βxα
1 +

β

1 + β
xα e−βxα αβ2

β + 1
xα−1(1 + xα)e−βxα

Weibull
x ≥ 0
α, β > 0

αβxβ−1 e−αxβ αβxβ−1e−αxβ

Bathtub
x ≥ 0
α, β > 0

αβxβ−1ex
β

eα(1−ex
β

) αβxβ−1e(α(1−ex
β

)+xβ)

Table 1.1: The hazard rate, survival function, and probability density function for each distribution.
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Dist.
Mean
E(X)

Exp
x ≥ 0
α > 0

1

α

STH-1
x ≥ 0
α > 0

α

1 + α

1

α
+

1

4α
+

1

4α2

Lindley
x ≥ 0
α > 0

α + 2

α(α + 1)

STH-2
x ≥ 0
α, β > 0

Γ
1

α
[2α(1 + 2

1
αβ) + 1][2α2(1 + β)(2β)

1
α ]−1

PL
x ≥ 0
α, β > 0

Γ
1

α
[α(β + 1) + 1]

α2β
1
α (β + 1)

Weibull
x ≥ 0
α, β > 0

α
−1
β Γ 1 +

1

β

Bathtub
x ≥ 0
α, β > 0

−

Table 1.2: The mean of the lifetime distributions.

1.4 Maximum Likelihood Estimation

Maximum likelihood estimation is a technique of estimating the parameters of a prob-

ability model by maximizing the likelihood function. Assume that x = (x1, x2, ..., xn)

are independent and identically distributed (i.i.d.) from a distribution f(x;θ), where

θ = (θ1, θ2, ..., θp) is a vector of unknown parameters. Then, the likelihood function

for θ, given x, is

L(θ|x) =
nY

i=1

f(xi;θ). (1.8)

The vector θ is said to be the maximum likelihood estimates (MLEs) if it is the set

of parameters that maximizes the likelihood function (1.8) and can be denoted θ̂MLE.

In most cases, the log-likelihood function is used to determine the MLEs as it is often

8



easier and computationally quicker to work with a sum of functions, rather than a

product of functions. The log-likelihood function for θ, given x, is

L(θ|x) =
nX

i=1

log(f(xi;θ)). (1.9)

It can be shown that if θ̂MLE maximizes L(θ|x), then it also maximizes L(θ|x). In

most cases, to determine the MLEs, the following system of equations, known as

likelihood equations, are solved:

∂L
∂θi

= 0 for i = 1, 2, ..., p. (1.10)

Solving for θi in the likelihood equations will determine the MLE for the ith parameter.

A problem that often arises with maximum likelihood estimation is the complexity of

the likelihood equations, and results in no analytic solution being found. To overcome

this problem, numerical methods to maximize the likelihood are conducted with the

use of statistical software such as R.

Asymptotic Confidence Intervals

A confidence interval can be constructed to determine plausible values of the true

but unknown model parameters. To construct an asymptotic confidence interval, the

Fisher information matrix is needed to obtain the asymptotic standard error of each

parameter. The Fisher information matrix is given as

Iij(θ̂MLE) = −Eθ

h∂L(θ)

∂θi∂θj

i
θ=θ̂MLE

i, j = 1, 2, .., k. (1.11)

Then, the estimates of the unknown parameters are asymptotically normal with mean

equal to the true parameters, and variance-covariance equal to the inverse of the Fisher

information matrix. That is,

θ̂MLE ∼ N(θ, I(θ̂MLE)−1). (1.12)
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The ijth entry of the inverse matrix provides the covariance between the ith and jth

parameters, and the iith entry provides the variance for the ith parameter. Then the

(1 − γ)100% asymptotic confidence interval of the ith parameter is

θ̂i ± Zγ/2

q
I−1
ii , (1.13)

where Zγ/2 is the γ/2th upper percentile of the standard normal distribution.

1.5 Bayesian Estimation

Bayesian methods, unlike frequentist approaches, view the unknown parameters of

a model as random variables, and express all uncertainty (including the uncertainty

of the model’s unknown parameters) in terms of a posterior probability [14]. In a

Bayesian framework, assume we have a data set x, and the data set follows a proba-

bilistic model which is described by θ (a vector of unknown parameters). Our belief

about the uncertainty of θ which is decided before viewing the data, is represented

by p(θ), the prior -probability density function. With the use of Bayes’ theorem, the

beliefs of θ are updated with the use of the likelihood function, L(x|θ), and provides

us with the posterior probability density function of θ, given the data, as

p(θ|x) =
p(θ) · L(x|θ)R
p(θ) · L(x|θ)dθ

. (1.14)

For certain purposes, the posterior probability density function may only need to be

defined up to a constant of proportionality, namely a normalizing constant. Therefore,

the previous result can be defined as

p(θ|x) ∝ p(θ) · L(x|θ). (1.15)

Therefore, the posterior distribution is proportional to the product of likelihood func-

tion and prior probability density function. According to Raftery, the most useful
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summaries of the posterior are the posterior mean, posterior mode, and the Bayesian

analogue of the frequentist confidence intervals, credible intervals [14].

Loss Function

Another important concept in Bayesian analysis is the loss function. The loss function,

Loss(θ̂,θ|x), measures the cost of making an estimate θ̂ if the true value is θ, given x.

Some examples of the loss function are squared-error loss, binary loss, and absolute

loss function. For the thesis, we will look into the squared-error loss function. The

squared-error loss function is given as

Loss(θ̂,θ|x) = (θ̂(x) − θ)2. (1.16)

The estimate θ̂ can be chosen to minimize the posterior expected loss,

E(Loss(θ̂,θ|x)) =

Z
Loss(θ̂,θ|x) × p(θ|x)dθ (1.17)

If θ̂ is the value that minimizes the posterior expected loss over all other values, then

it is the Bayes estimate and is denoted θ̂Bayes. Under squared-error loss, the posterior

mean is the Bayes estimate,

θ̂Bayes =

Z
θ × p(θ|x)dθ. (1.18)

A problem in Bayesian analysis arises when there is no closed-form expression

for the normalizing constant and therefore the posterior distribution. To overcome

this barrier, the implementation of Markov Chain Monte Carlo (MCMC) is used to

approximate the posterior distribution and draws from this approximated posterior

distribution are used to determine the posterior mean, credible intervals, and other

characteristics.
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1.6 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a technique in which values are randomly

generated and drawn from a probability distribution function. A common approach

to MCMC is the Metropolis-Hastings algorithm. A special trait of the Markov chain

is Markov’s property which states that the future state of a process depends only

upon the present state. A key ingredient for MCMC is the proposal density. The

proposal must be chosen such that it is easy to simulate from, and it mimics the tar-

geted distribution. The algorithm may differ depending on the choice of the proposal

distribution. The two main approaches to the Metropolis-Hastings are the random

walk chain and the independent chain. In this thesis, we will consider the random

walk chain.

Metropolis-Hastings

In Bayesian estimation, the Metropolis-Hastings algorithm is used to simulate draws

of θ which are sequentially drawn and simulated from an approximate posterior dis-

tribution, p(θ|x). The Metropolis-Hastings algorithm has the following procedure:

1. Determine the number of steps or draws M .

2. Determine the initial value θ0.

3. For m = 1, 2, ...,M ,

(a) Simulate a candidate value θ∗ from a proposal density g(θ∗|θm−1).

(b) Compute the following ratio

R =
p(θ∗|x)g(θm−1|θ∗)
p(θm−1|x)g(θ∗|θm−1)

.

(c) Compute the acceptance probability P = min{1, R}.
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(d) Set

θt =

θ
∗ with probability P

θm−1 with probability 1 − P

If we consider a random walk chain, then the proposal density satisfies

g(θ∗|θm−1) = h(θ∗ − θm−1),

where h is a symmetric density about the origin. Since we are using the random walk

chain, then the ratio from step 3(b) simplifies to

R =
p(θ∗|x)

p(θm−1|x)

Possible choices for the proposal density could be a multivariate Gaussian distribution

or a multivariate t-distribution. In this thesis, we will consider a multivariate t-

distribution as a proposal density. A multivariate t-distribution has an advantage

over the Gaussian distribution in that the tails are heavier on the t-distribution,

allowing the chain to more freely explore a broader range of values.

1.7 Outline of Thesis

In this thesis, different parametric and non-parametric methods will be implemented

to model the competing risks. Chapter 1 served as relevant background information

needed to model the competing risks, as well as discussing the techniques needed to

estimate the parameters of the competing risks models. In Chapter 2, a mathematical

definition of competing risks model is stated, as well as the notation used throughout

the thesis. The assumptions of the competing risks model are discussed and the

relations between the reliability measures are also shown in this chapter. In Chapter

3, the non-parametric methods such as the Kaplan-Meier and the estimator of the

cumulative incidence function are outlined. In Chapter 4, parameter estimation of
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a homogeneous competing risks model is discussed. By a homogeneous model, we

discuss the competing risks framework in which no covariates are assumed. Parameter

estimation is conducted using the maximum likelihood method, and Bayesian method

by implementing a Markov Chain Monte Carlo algorithm, Metropolis-Hastings. The

Metropolis-Hastings algorithm is used to simulate draws from a targeted posterior

density to obtain the Bayes estimate, as well as other characteristics of the posterior

density. In Chapter 5, we incorporate the additional information on the objects

by means of a competing risks regression model. The typical approach for regression

modelling is the proportional hazards. Parameter estimation is conducted using Cox’s

partial likelihood function, maximum likelihood estimation and Bayesian estimation.

In Chapter 6, a data analysis on bone marrow transplant patients using the ideologies

from Chapter 2 to 5 is conducted. The data set considers two risks, leukemia relapse

and death in remission. In Chapter 7, conclusion of the results are made and future

work for competing risks models are stated.
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Chapter 2

Model Assumptions and Notation

Consider an object that can experience multiple causes of failures (risks). The object

here can be any organism such as a human, or a cancer cell, or the object could be

inanimate such as a computer. Assume that when the risk occurs, it causes fatality

or failure to the object. If a human is considered as the object, then the risks could

consist of any risks that causes fatality such as cancer or HIV. The object will fail by

only one of the k causes of failures, with k ≥ 2. Let X be the lifetime of the object.

Let Tj be the time at which risk j occurs to the object. The lifetime of the object

is the time of the first occurring risk to the object. That is, X = min{T1, ..., Tk}.

The goal is to model the risks of the objects using parametric and non-parametric

techniques. To do this, assume there are n independent and identical objects on a life

test. Let Xi be the lifetime of the ith object, and let Tij be the time of which risk j

occurs to object i. Then, for object i, the lifetime of the object is the time of the first

occurring risk to the object. That is, Xi = min{Ti1, ..., Tik}. There are three possible

cases when testing each object. In the first case, the object is failed due to a known

cause of failure. Here, there are two observable quantities being X (the object’s life

time) and δ (the object’s cause of failure). In the second case, the object does not

experience a risk during the study period so the object reaches a censoring time. In

this case, there is only one observable quantity being X. The notation δ = 0 is used

when the object reaches a censoring time. In the last case, the object is failed due

to an unknown cause of failure. Here, there is only one observable quantity being X.

The notation δ = ∗ is used when the cause of failure is unknown.

In summary, competing risks data can be described as a bivariate random variable

(X, δ), where X is the time-to-event and δ will:

1. Equal an element from the set {1, ..., k} if the object has failed due to a known
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risk, and thus X will represent the time at which fatality has occurred by an

event in the set.

2. Equal ∗ if the object has failed due to an unknown cause, and thus X will

represent the time at which fatality has occurred.

3. Equal 0 if the object does not experience a cause of failure during the study

period and thus X represents the censoring time observed.

In Figure 2.1 and 2.2, we illustrate two different representation of the competing risks

model. Figure 2.1 shows the model as a fatal-shock model with k risks, where fatality

is delivered to the object once the shock (risk) hits the object. Figure 2.2 shows the

model as a series system of k components, where the system fails if any one of the k

components fail.

Figure 2.1: Competing risks model with k fatal causes of failure.

Figure 2.2: The object can also be interpreted as a series system with k indepen-
dent but not identical components. Tj can be interpreted as the lifetime of the jth

component.
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The following notation will be used in the thesis:

• n: the number of objects on the life test

• k: the number of independent competing risks

• X: the lifetime of an object

• Tj: the time of which risk from cause j occurs to the object

• Xi: the lifetime of object i (i = 1, ..., n)

• Tij: the lifetime of cause j (j = 1, ..., k) of object i

• f(·): probability density function of Xi

• G(·): cumulative distribution function (CDF) of Xi

• S(·): survival function of Xi

• fj(·): probability density function (PDF) of Tij

• Gj(·): cumulative distribution function of Tij

• Sj(·): survival function of Tij

• hj(·): hazard function of Tij

• mrl(·): mean residual life at a specified time

• δi: indicator variable denoting known or unknown cause of failure or censored
for object i

In Chapter 1, the reliability measures of X were discussed and defined. In the follow-

ing, we further discuss the functions used to characterize the competing risks. Using

the marginal survival function, Sj(x), the marginal hazard function can be derived

when assuming independent competing risks. The marginal hazard function is

hMj (x) = lim
∆x→0

P (x < Tj ≤ x+ ∆x|Tj > x)

∆x
. (2.1)

The cause-specific hazard rate for cause j is given as

hj(x) = lim
∆x→0

P (x < X ≤ x+ ∆x, δ = j|X > x)

∆x
(2.2)

= lim
∆x→0

P (x < Tj ≤ x+ ∆x, δ = j|Tj > x, j = 1, . . . , k)

∆x
. (2.3)
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The cause-specific hazard function calculates the instantaneous rate at which individ-

uals who have yet to experience any of the causes are experiencing the jth cause of

failure. Therefore, the cause-specific hazard is the instantaneous rate of occurrence

of experiencing cause j for individuals who are currently event-free [2]. The sum of

the k cause-specific hazard gives us the overall hazard rate

h(x) =
kX

j=1

hj(x). (2.4)

When the competing risks are independent, the marginal hazard and cause-specific

hazard function are equivalent to one another. However, this is not the case when the

competing risks are dependent [6, p. 51]. Furthermore, we can estimate the cause-

specific hazard function regardless of if the risks are dependent or independent, but

the marginal hazard function cannot be identified without knowing the dependence

structure of the risks [6, p. 51]. Often, one is interested in the probability of a com-

peting risk occurring rather than the hazard rate function. A characteristic function

that estimates this probability is the cumulative incidence function (CIF), also known

as the sub-distribution function or crude cumulative incidence function. The CIF for

cause j is defined as

Fj(x) = P (X ≤ x, δ = j) (2.5)

=

Z x

0

hj(u)
kY

j=1

Sj(u) du (2.6)

=

Z x

0

hj(u) exp

 
−

kX
j=1

Hj(u)

!
du (2.7)

=

Z x

0

hj(u)S(u) du j = 1, 2, ..., k. (2.8)

The CIF calculates the probability of failure by time x due to a specific cause in the

presence of all other causes. It is a non-decreasing function with Fj(0) = 0. The CIF

is also not a probability distribution since Fj(∞) = P (X ≤ ∞, δ = j) < 1 [6, p. 52].
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The relative risk from cause j, or probability of failure by cause j, is defined as

πj = lim
x→∞

Fj(x) =

Z ∞

0

hj(x)S(x)dx, j = 1, 2, ..., k. (2.9)

It is worthwhile to state that the CIF can be estimated without knowing the de-

pendence structure of the risks [6, p. 53], however, Equations (2.6) and (2.7) are

formulated with the assumption of independent competing risks. Overall, the thesis

will consider independent causes of failures (risks). With the assumption of indepen-

dent competing risks, we can define the reliability measures as follows. The overall

survival function of X is

S(x) = P (X > x) (2.10)

=

Z ∞

x

f(u)du (2.11)

= P (min (T1, ..., Tk) > x) (2.12)

= P (T1 > x) · P (T2 > x) · ... · P (Tk > x) (2.13)

=
kY

j=1

P (Tj > x) (2.14)

=
kY

j=1

Sj(x) (2.15)

= exp

 
−

kX
j=1

Hj(x)

!
, (2.16)

where Hj(x), the cumulative hazard rate function for cause j, is

Hj(x) =

Z x

0

hj(u)du. (2.17)

The overall survival function can be interpreted as the probability of not failing from

any cause by time x [12]. The cumulative distribution function of X is

G(x) = P (X ≤ x) (2.18)

=

Z x

0

f(u)du (2.19)

= 1 − exp

 
−

kX
j=1

Hj(x)

!
. (2.20)
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The probability density function of X is

f(x) =
d

dx
F (x) (2.21)

=
kX

j=1

fj(x)
kY

l=1,l 6=j

Sl(x)

=
kX

j=1

hj(x)Sj(x)
kY

l=1,l 6=j

Sl(x)

=
kX

j=1

hj(x)
kY

l=1

Sl(x) (2.22)

=
kX

j=1

hj(x)S(x). (2.23)

The mean residual life at time x is

mrl(x) = E(X − x|X > x) (2.24)

=

R∞
x

Qk
j=1 Sj(t)dtQk

j=1 Sx(t)dx
. (2.25)

The next goal is to model the competing risks with the help of the quantities

above. If we assume no parametric assumptions in the model, we consider the non-

parametric estimation techniques as discussed in the following chapter. However, if we

assume the risks follow parametric forms, then we consider the parametric estimation

as discussed in Chapter 4.
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Chapter 3

Non-Parametric Estimation

In this section, the main goals are to model the competing risks using only the observa-

tional data. In other words, we assume no parametric form or assumptions. Typically,

when competing risks are present, the two main approaches of analysing the data are

by firstly, ignoring the competing risks, and secondly, by acknowledging the compet-

ing risks [11, p. 5]. The techniques presented in this section are the Kaplan-Meier

and the empirical cumulative incidence function. The Kaplan-Meier is an approach

that ignores the competing risks, where the cumulative incidence function accounts

for the competing risks.

3.1 Kaplan-Meier Estimator

As mentioned in Chapter 1, the survival function is the probability of surviving an

event beyond a specified time. A non-parametric estimator of the survival function

is the Kaplan-Meier (KM) estimator, also known as the Product-Limit estimator

[11, p. 31]. The Kaplan-Meier estimates the probability of objects or individuals who

have not experienced an event within a specified time. In other words, it estimates the

event-free survival over time. Inversely, we can estimate the proportion of individuals

who have experienced an event within a specified time by calculating one minus the

event-free survival (1−KM). By inversely using the KM, we estimate the probability

of practicing an event. The KM provides accurate probabilities for all values of x

within the range of the data; however, not for values beyond the largest observation

(xmax) in the data. The KM estimator is given by
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Ŝ(x) =


1 x < x1Q

xi≤x 1 − di
ni

x1 ≤ x,

where xi are distinct event times, di denotes the number of events by time xi, and ni

are the number of subjects at risk by time xi [5, p. 411]. More specifically, ni denotes

the number of subjects who have not yet experienced the event or are not censored

by time xi. In the case of no censored observation, the KM estimator becomes the

empirical survival function, which is the proportion of failure times that are larger

than time x. That is,

Ŝ(x) =
Number of xi > x

n
. (3.1)

The KM estimator of the cumulative hazard function, H(x) is defined as

Ĥ(x) = − log(Ŝ(x)).

To model the competing risks using the KM estimator, we must make the following as-

sumptions. Consider the data (X1, δ1), (X2, δ2), ..., (Xn, δn), where δi = 0 for censored

times, δi equals 1, 2, ..., k for known causes of failure, and δi = ∗ for unknown causes

of failure, for i = 1, 2, ..., n. Then, the KM estimator for the jth cause (j = 1, 2, ..., k)

is given by treating all Xi in which δi 6= j as censored observations. This simply

implies that all observations other than the primary risk of interest are treated as

right-censored observations. The probability from this estimator can be intepreted as

the probability of dying from one specific cause of failure in a hypothetical world in

which the object can not die from any other causes [6, p. 52].
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3.2 Cumulative Incidence Function

As mentioned previously, the cumulative incidence function calculates the probability

of failure by time x due to a specific risk in the presence of all other risks. To define the

empirical CIF, consider the following. Let x1 < x2 < ... < xm be distinct event times.

Let n‘ be the number of subjects at risk at time x‘, dj‘ be the number of subjects

experiencing cause j at time x‘, and y‘ be the number of subjects experiencing from

any other cause than cause j at time x‘. Then, the estimator for the CIF of cause j

is defined as

F̂j(x) =


0 x < x1P

xl≤x

Ql−1
j=1

1 − (yj + djl)

nj

djl
nl

x1 ≤ x.
(3.2)

The estimator of the CIF can also be expressed in terms of the Kaplan-Meier estima-

tor:

F̂j(x) =
X
xl≤x

djl
nl

Ŝ(xl−1) for x1 ≤ x, (3.3)

where Ŝ(x) is the Kaplan-Meier estimate of the overall survival function [5, p. 415].
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Chapter 4

Homogeneous Competing Risks Model

The main goal for this chapter is to estimate the unknown parameters of the distri-

butions modelling the competing risks data. We assume a homogeneous model by

considering no covariates. The parameter estimation will consist of using classical

techniques such as the maximum likelihood method, as well as Bayesian method by

using MCMC, to estimate the unknown parameters. The results of the classical and

Bayesian methods will be further discussed using the STH-2 distribution.

4.1 Maximum Likelihood Method

In this section, the unobservable random variables Tij are assumed to be independent

and identically distributed over objects i = 1, 2, ..., n, and independent but not iden-

tically distributed over causes j = 1, 2, ..., k. With this assumption, our data have

the form (X1, δ1), (X2, δ2), ..., (Xn, δn), where Xi = min(Ti1, Ti2, · · · , Tik), δi = 0 for

censored data, δi equals 1, 2, ..., k for known causes of failure, and δi = ∗ for unknown

causes of failure. The likelihood function given by Equation (1.8) must be adjusted

to allow for censored observations. If the observation xi is a failure time, then its

contribution to the likelihood function is given by the probability density function

f(xi). If the observation xi is censored, then its contribution to the likelihood func-

tion is given by the survival function S(xi). Then, the joint likelihood function over

all observations is given as

L(θ|x) =
nY

i=1

h
f(xi;θ)

iI(δi 6=0)h
S(xi;θ)

iI(δi=0)

, (4.1)

where θ is a vector of parameters included in the model. The length of this vector

is based on which distribution is considered for the risks. If the risks are assumed to

24



follow a one-parameter distribution, then θ has length given by (4.2). If the risks are

assumed to follow a two-parameter distribution, then θ has length given by (4.3).

θ = (α1, ..., αk) (4.2)

θ = (α1, ..., αk, β1, ..., βk) (4.3)

In general, if the risks follow a p-parameter distribution, then the length of the vector

of unknown parameters is p× k.

Using the relationship between the hazard rate, survival function, and probability

density function, the likelihood function (4.1) can be rewritten as shown below. The

first part of equation 4.1 is rewritten as follows:

h
f(xi;θ)

iI(δi 6=0)

=
kY

j=1

"
fj(xi;θ)

kY
l=1,l 6=j

Sl(xi;θ)

#I(δi=j) " kX
j=1

fj(xi;θ)
kY

l=1,l 6=j

Sl(xi;θ)

#I(δi=∗)

=
kY

j=1

"
hj(xi;θ)

kY
l=1

Sl(xi;θ)

#I(δi=j) " kX
j=1

hj(xi;θ)
kY

l=1

Sl(xi;θ)

#I(δi=∗)

=
kY

j=1

h
hj(xi;θ)

iI(δi=j)
kY

j=1

h
S(xi;θ)

iI(δi=j)h kX
j=1

hj(xi;θ)
iI(δi=∗)h

S(xi;θ)
iI(δi=∗)

=
kY

j=1

(h
hj(xi;θ)

iI(δi=j)h kX
j=1

hj(xi;θ)
iI(δi=∗)

)h
S(xi;θ)

iPk
j=1 I(δi=j)+I(δi=∗)

.

When we combine this with the second half of expression 4.1, the exponents on both

survival function are grouped together, which results in

kX
j=1

I(δi = j) + I(δi = ∗) + I(δi = 0) =
kX

j=0

I(δi = j) + I(δi = ∗) = 1.

Then, the likelihood function can be written as

L(θ|x) =
nY

i=1

"
kY

j=1

h
hj(xi;θ)

iI(δi=j)h kX
j=1

hj(xi;θ)
iI(δi=∗)

S(xi;θ)

#
. (4.4)
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Therefore the log-likelihood function is

L(θ|x) =
nX

i=1

 kX
j=1

h
I(δi = j) log(hj(xi;θ))

i
+ I(δi = ∗) log

kX
j=1

hj(xi;θ) + log(S(xi;θ))

 .
Using Equation (2.16), the log-likelihood function can also be expressed as

L(θ|x) =
nX

i=1

 kX
j=1

[I(δi = j) log(hj(xi;θ))−Hj(xi;θ)] + I(δi = ∗) log

 kX
j=1

hj(xi;θ)

 .
(4.5)

which is strictly dependent on hj(xi). Equation (4.5) gives the log-likelihood function

for a competing risks model in terms of the hazard rate functions of the individual

risks. This equation can be used to determine the log-likelihood function for any of

the cases with the risks distributions listed in Table 4.1. To determine the MLEs, the

likelihood function, or log-likelihood function, should be maximized using methods

discussed in Chapter 1. To further discuss this procedure, we examine the STH-2

case.

4.1.1 Maximum Likelihood for STH-2 Case

In this subsection, we assume that the random variable Tij follows the STH-2 distri-

bution with parameters αj and βj, for i = 1, 2, ..., n and j = 1, 2, ..., k. The survival

function and hazard rate function of cause j are respectively as

Sj(x) =
αjβj [βj + (1 + 2βjx

αj) exp(−βjxαj)]
βj + (1 + βjxαj) exp(−βjxαj)

, (4.6)

hj(x) =
1

1 + βj
[βj + (1 + βjx

αj) exp(−βjxαj)] exp(−βjxαj), (4.7)

where αj, βj > 0 and x > 0. Substituting Equations (4.6) and (4.7) into the log-

likelihood from Equation (4.5) results in
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L(θ|x) =
NX
i=1

kX
j=1

h
I(δi = j) − log 1 + βj) + log(βj + (1 + βjx

αj ) exp(−βjxαj )

− βjx
αj
i
+ I(δi = ∗)

h kX
j=1

log
1

1 + βj
[βj + (1 + βjx

αj ) exp(−βjxαj )] exp(−βjxαj )
i

+ log(αjβj) + log βj + (1 + 2βjx
αj ) exp(−βjxαj )

− log βj + (1 + βjx
αj ) exp(−βjxαj ) ,

(4.8)

where θ = (α1, ..., αk, β1, ..., βk). In this case, there is no general analytic solution

for the maximum likelihood estimators. Therefore, numerical methods are needed

to maximize the log-likelihood function. To perform this task, we implement the

Nelder-Mead method in R by using optim. This function is provided the negative log-

likelihood to minimize, which equivalently maximizes the log-likelihood. The output

of this function will return the MLEs, as well as the hessian matrix. There were also

no analytic solutions for the maximum likelihood estimators when the risks followed

the other useful lifetime distributions. Therefore, numerical methods are required for

all cases to estimate the unknown parameters of the models.
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Distribution hj(xi) Hj(x)

Exponential αj αjx

STH-1
αj [αj + (1 + 2αx)e−αjx]

αj + (1 + αjx)e−αjx
log(αj + 1) − log(αj + (1 + αjx)e−αjx) + αjx

Lindley
α2
j (1 + x)

αjx+ αj + 1
− log(αjx+ αj + 1) + log(αj + 1) + αjx

STH-2
αjβj βj + (1 + 2βjx

αj)e−βjx
αj

βj + (1 + βjxαj)e−βjx
αj

log(1 + βj) − log(βj + (1 + βjx
αj)e−βjx

−αj
) + βjx

−αj

Power Lindley αjβ
2
j

(1 + αj)x
αj−1

βj + 1 + βjxαj
− log(αjx+ αj + 1) + log(αj + 1) + αjx

Weibull αjβjx
βj−1 αjx

βj−1

Bathtub αjβjx
βj−1ex

βj −αj(1 − ex
βj

)

Table 4.1: The hazard rate and cumulative hazard rate of risk j for each distribution.
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4.2 Bayesian Estimation

In this section, θ still denotes a vector containing the parameters of the risk model,

where the length is given by (4.2) or (4.3). However, we treat the model parameters

as random variables and assume these random variables follow some distribution.

Here, we assume each parameter follows a Gamma distribution with a set of non-

negative hyperparameters, where all hyperparameters are assumed to be known. For

the one-parameter models, we have

αj ∼ Gamma(aj1, aj2), j = 1, 2, · · · , k. (4.9)

For the two-parameter models (TPM), we have

αj ∼ Gamma(aj1, aj2), j = 1, 2, · · · , k, (4.10)

βj ∼ Gamma(bj1, bj2), j = 1, 2, · · · , k.

The joint prior probability density function of θ is given as

p(θ) =
kY

j=1

"
α
aj1−1
j exp

−αj

aj2
β
bj1−1
j exp

−βj
bj2

I(TPM)
#
, (4.11)

where I(TPM) is an indicator variable that equals 1 if the risk model is a two-

parameter model, and 0 otherwise. The logarithm of the joint prior distribution

of θ is

log(p(θ)) =
kX

j=1

(aj1 − 1) log(αj) −
αj

aj2
+ I(TPM) (bj1 − 1) log(βj) −

βj
bj2

.(4.12)

The joint posterior probability density function of θ, given the data, up to a normal-

izing constant, is a product of the likelihood function and joint prior distribution, and
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is given by

p(θ|x) = cp(θ) · L(x|θ),

where c is a constant. Then taking the logarithm of the joint posterior probability

density function, the log-posterior is simply proportional to a sum of the log-likelihood

function (4.5) and log-prior distribution (4.12). That is,

log(p(θ|x)) ∝ log(p(θ)) + L(x|θ).

Then, the log-posterior probability density function of θ, given x, up to a constant,

is given by

=

nX
i=1

 kX
j=1

[I(δi = j) log(hj(xi;θ))−Hj(xi;θ)] + I(δi = ∗) log

 kX
j=1

hj(xi;θ)

 (4.13)

+
kX

j=1

(aj1 − 1) log(αj)−
αj

aj2
+ I(TPM) (bj1 − 1) log(βj)−

βj
bj2

.

Since the posterior probability density function is not in a standard form of a known

distribution, numerical methods are required to determine the estimation of the pa-

rameters. The Metropolis-Hastings algorithm is used to simulate a random sam-

ple from a distribution that converges to the true log-posterior distribution. Under

squared-error loss, the Bayes estimate is equal to the posterior mean. Therefore, the

Bayes estimate for each parameter can be calculated by determining the mean of the

simulated draws. Other characteristics of the model parameters can be determined

using the simulated draws as well, such as (1 − γ)% credible intervals. To apply the

discussions of this section, we consider the STH-2 case. However, without a loss of

generality, the procedure in the subsection may be applied to any of the risks models.
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4.2.1 Bayesian Estimation for STH-2 Case

In this subsection, we assume that the random variable Tij follows a STH-2 distribu-

tion with parameters αj and βj, for i = 1, 2, ..., n and j = 1, 2, ..., k. Then, the joint

prior and log-prior probability density function, respectively, are given as

p(θ) =
kY

j=1

α
aj1−1
j exp

−αj

aj2
β
bj1−1
j exp

−βj
bj2

,

log(p(θ)) =
kX

j=1

(aj1 − 1) log(αj) −
αj

aj2
+ (bj1 − 1) log(βj) −

βj
bj2

.

The log-posterior is given by adding the log-prior and the log-likelihood (4.8) together.

The result for the log-posterior has no closed form expression, and thus requires nu-

merical methods. To do this, we use implement MCMC using the Metropolis-Hastings

random walk algorithm. Using this algorithm will require the parameter to be on the

real number line. To convert the non-negative parameters of STH-2, a transformation

of variable is applied. Let ζ = log(θ) = (log(α1), ..., log(αk), log(β1), ..., log(βk)) and

is of length 2k. The posterior of the transformed posterior will then be multiplied by

the determinant of Jacobian matrix. The determinant of the Jacobian is

|J | =


exp(ζ1) 0 · · · 0

0 exp(ζ2) · · · 0
...

...
. . .

...

0 0 · · · exp(ζ2k)

 = exp

 
2kX
u=1

ζu

!
(4.14)

Then, the log-posterior of the transformed vector of unknown parameter, is given as

log p(ζ|x) = log p(θ = exp(ζ)|x) +
2kX
u=1

ζu. (4.15)

The draws from the Metropolis-Hastings algorithm can be converted back to non-

negative values by using the inverse of the transformation, θ = exp(ζ).
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Chapter 5

Competing Risks Regression Model

In the previous chapter, we discussed a competing risks model with only the use of

the time-to-event data (homogeneous model). In this chapter, we incorporate the

additional information on the objects by presenting a model that quantifies the rela-

tionship between the time-to-event and a set of covariates by introducing a competing

risks regression model. The traditional approach for regression modelling to analyse

time-to-event data with covariates is the proportional hazards model. When includ-

ing covariates, the observations for the ith object would be (Xi, δi,Zi), where Xi and

δi are still defined as previously, and Zi is the covariate, or similarly risk factor, for

object i. For simplicity, we use Di to represent the available data set that consists of

(Xi, δi,Zi), for i = 1, 2, · · · , n. The main goals of this chapter are to estimate the pa-

rameters and other characteristics of the regression model by Cox’s partial likelihood

function, maximum likelihood estimation and Bayesian estimation. The vector of the

model parameters θ will contain the original vector of unknown parameters, as well

as the regression coefficients γ.

5.1 Proportional Hazards Model

Before examining the competing risks regression model, we present the proportional

hazards model that is commonly used in survival analysis. Let h(x; Z) represent the

hazard rate at time x with covariate vector Z. The proportional hazard model is
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defined as

h(x; Z) = h0(x) exp(γ
0
Z) (5.1)

= h0(x) exp

pX
q=1

γqZq , (5.2)

where h0(x) is a baseline hazard function that may take any parametric form, for

example, a form from Table 1.1, and γ is the vector of coefficients for the covariates.

The baseline hazard function is also known as the underlying hazard function or

as the hazard function for a standard subject, which is a subject with γ = 0 [5,

p. 428]. The baseline hazard function may also be left unspecified by implementing

Cox’s proportional hazard model. The portion exp(γ
0
Z) is also known as the relative

hazard function and is often the primary interest as it describes the relative effects of

the covariates [5, p. 428]. The model is stated as a proportional hazard model because

when comparing two individuals with covariates Za and Zb, the ratio of their hazard

rates is

h(x;Za)

h(x;Zb)
=
h0(x) exp

Pp
k=1 γkZak

h0(x) exp
Pp

k=1 γkZbk

= exp

pX
k=1

γk(Zak − Zbk)

and is independent of time x. This implies that the hazard for any objects must

be proportional and cannot cross. Assuming a parametric form for the hazard, the

proportional hazard model may also be expressed in terms of the cumulative hazard

function and survival function, respectively, as

H(x;Z) = H0(x) exp(γ
0
Z), (5.3)

S(x;Z) = exp[−H0(x) exp(γ
0
Z)]

= exp[−H0(x)]exp(γ
0
Z)

= [S0(x)]exp(γ
0
Z), (5.4)
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where H0(x) is a baseline cumulative hazard function and S0(x) is a baseline survival

function. The proportional hazard model assumes a linear relationship between the

covariates and log baseline hazard. That is,

log(h(x;Z)) = log(h0(x)) + γ
0
Z. (5.5)

In the presence of competing risks, an adjustment to the proportional hazard model is

needed to model the cause-specific hazard function. In the next sections, we present

the adapted model and discuss parameter estimation by methods of Cox’s partial

likelihood function, maximum likelihood estimation, and Bayesian estimation.

5.2 Estimation using Cox’s Cause-Specific Hazard Model

The cause-specific hazard model using Cox’s method is given as

hj(x;Z) = h0j(x) exp(γ
0

jZ), (5.6)

where h0j(x) is an unspecified baseline cause-specific hazard function. This model

is known as a semi-parametric model as the baseline cause-specific hazard is treated

non-parametrically, and the parametric assumption is made on the covariate effect

on the hazard rate [6, p. 244]. More specifically, the model assumes that the log

cause-specific hazard is linearly related to the covariates. If one is interested in the

inference about about γ rather than the shape of h0j(x), then the Cox model is ideal

as it allows us to ignore h0j(x) and treats it as a nuisance function [5, p. 475]. The

Cox model is also preferable when the true cause-specific hazard model is complex [5,

p. 475].

The coefficients of cause j, γj, are estimated by using a partial likelihood function

for γj . Since the cause-specific hazard function is left unspecified, no parameter

estimates for the underlying hazard are made using this method. Let xj1 < xj2 <

... < xjr denote the r times of cause j failures, for j = 1, 2, ..., k. Let Zji denote the
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risk factors for individuals that fail at time xji. Then, the partial likelihood function

is given as

L(γ1, ..., γk) =
kY

j=1

rY
i=1

exp(γ
0
jZji)P

Rji
exp(γ

0
jZji)

, (5.7)

where Rji is the risk set (individuals still at risk for cause j at time xji) [13].

5.3 Estimation using Maximum Likelihood

The proportional hazard model has been adapted to model the cause-specific hazard

function. The model for the cause-specific hazard for cause j is defined as

hj(x; Z) = hj0(x) exp(γ
0

jZ) (5.8)

= hj0(x) exp

pX
q=1

γqjZq (5.9)

where hj0(x) is the baseline cause-specific hazard for cause j and γj is the vector

of coefficients for the covariates of the jth cause. Assuming a parametric form for

the baseline cause-specific hazard, then we can define the cumulative hazard, survival

function, and probability density function of cause j as

Hj(x; Z) = H0j(x) exp(γ
0

jZ), (5.10)

Sj(x; Z) = exp{−Hj(x; Z)}, (5.11)

fj(x; Z) = hj0(x) exp(γ
0

jZ) exp{−Hj(x; Z). (5.12)

To determine the likelihood function, we adjust Equation (4.1) to account for the

covariates. The likelihood function, including the coefficients of the covariates, is

L(θ|D) =
NY
i=1

h
f(xi;Zi)

iI(δi 6=0)h
S(xi;Zi)

iI(δi=0)

, (5.13)
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where θ contains the unknown parameters of the risks model and the unknown coef-

ficients of the regression (covariates). Combining Equations (5.10), (5.11), and (5.12)

into Equation (5.13), the likelihood can be written as

L(θ|D) =
NY
i=1

"
kY

j=1

h
hj(xi;Zi)

iI(δi=j)h kX
j=1

hj(xi;Zi)
iI(δi=∗)

S(xi;Zi)

#
(5.14)

Then, using the relation between the survival function and cumulative hazard func-

tion, the log-likelihood function is

L(θ|D) =
NX
i=1

"
kX

j=1

h
I(δi = j) log h0j(xi) + γ

0

jZi −H0j(xi) exp(γ
0

jZi)
i

+ I(δi = ∗) log
kX

j=1

hj0(xi) exp(γ
0

jZi)

#
. (5.15)

The estimates are typically found for the parameters of the cause-specific hazard

and for the coefficients γj by maximizing the likelihood function, or similarly, the log-

likelihood function. However, there is no analytic solution for the maximum likelihood

estimators. Therefore, numerical methods should be used.

5.4 Estimation using Bayesian Methods

In this section, let θ be a vector of the unknown parameters of the risks model, as

well as the unknown coefficients for the covariates. Let p denote the total number of

covariates. For the one-parameter risks models, we assume

αj ∼ Gamma(aj1, aj2), j = 1, 2, ..., k, (5.16)

γqj ∼ N(µqj, σ
2
qj), j = 1, 2, ..., k, q = 1, 2, ..., p.
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For the two-parameter risks models, we assume

αj ∼ Gamma(aj1, aj2), j = 1, 2, ..., k, (5.17)

βj ∼ Gamma(bj1, bj2), j = 1, 2, ..., k,

γqj ∼ N(µqj, σ
2
qj), j = 1, 2, ..., k, q = 1, 2, ..., p,

where all the hyperparameters aj1, aj2, bj1, bj2, µqj, and σ2
qj are assumed to be known.

Then the joint prior probability density function of θ is

p(θ) =
kY

j=1

"
α
aj1−1
j exp

−αj

aj2
β
bj1−1
j exp

−βj
bj2

I(TPM)

exp

 
−

pX
q=1

(γqj − µqj)

2σ2
qj

!#
,

where I(TPM) is an indicator variable that equals 1 if it is a two-parameter risks

model, and 0 otherwise. Taking the logarithm of this equation, we find the log-prior

probability density function as

log(p(θ)) =
kX

j=1

"
(aj1 − 1) log(αj) −

αj

aj2
+ I(TPM) (bj1 − 1) log(βj) −

βj
bj2

−
pX

q=1

(γqj − µqj)

2σ2
qj

#
(5.18)

The log-posterior, up to a normalizing constant, is then determined by adding the

log-likelihood function (Equation (5.15)) and log-prior probability density function

(Equation (5.18)) together. As we seen in Chapter 4, a transformation of variable

was applied to convert the non-negative parameters to be real valued. The same

transformation is applied in this section, however, the transformation is only applied

to the parameters of the baseline cause-specific hazard and not the coefficients of

the regression. Therefore, the log-posterior probability density function of the trans-

formed vector of model parameters is given as

log p(θ, ζ|D) ∝ log p(θ = exp(ζ),γ|x) +
2kX
u=1

ζu. (5.19)
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Here, θi for i = 1, 2, ..., 2k, are transformed using ζi = log(θi). However, θi for

i = 2k + 1, ..., 2k + p, will remain the same. That is, the transformed vector of

unknown parameters ζ satisfies:

ζ =

ui(θi) = log(θi) i = 1, 2, ..., 2k

ui(θi) = θi i = 2k + 1, ..., 2k + p

where θi = u−1
i (ζi).
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Chapter 6

Data Analysis

In this chapter, we illustrate the competing risks model by analysing a real life data

set of bone marrow transplant patients. The analysis will implement the techniques

discussed in the previous chapters.

6.1 Bone Marrow Transplant Data

With the analysis, we will find answers to the following questions:

• What is the probability of surviving a specific risk in the presence of other risks

at a given time?

• Are the failure probabilities equal among the group?

• If we assume a parametric form, then what is the best fit model for the competing

risks data?

• Do the covariates have a significant effect on the cause-specific hazard?

However, before investigating the questions above, we must explore the data

set. The data set consists of 137 bone marrow transplant patients collected from

four different hospitals [6]. The data set has two independent causes of failures, or

risks, which are the patient experiences leukemia relapse (δ = 1) or the patient dies

in remission (δ = 2). If the failure time is censored, it is denoted by δ = 0. This

data set did not contain any unknown causes of failures (δ = ∗). In this situation, if

the patient relapses, then they are no longer in remission, and if the patient dies in

remission, then they can no longer relapse since they have died. Thus, the occurrence

of one of these risks precludes the occurrence of the other risk. The data is sorted
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into three groups. The groups consists of acute lymphoblastic leukemia (ALL), acute

myelocytic leukemia low risk (AML-LR) and acute myelocytic leukemia high risk

(AML-HR). The groups are all forms of leukemia, which is the cancer of the body’s

bone marrow. Furthermore, ALL starts in cells that become lymphocytes where AML

starts in early myeloid cells. Some of the notation for the following data set are k = 2,

N = 137, and g = 3. The notation nl is used to indicate the number of observations

in the lth group. Thus, n1 = 38, n2 = 54, and n3 = 45.

Group 1
Risk 1 54 74 104 109 110 122 129 192 230 383

609 662
Risk 2 1 86 107 122 172 194 276 332 418 466

487 526
Censored 226 530 996 1111 1167 1182 1199 1330 1377 1433

1462 1496 1602 2081
Group 2
Risk 1 211 219 272 381 421 486 748
Risk 2 10 35 48 53 79 80 105 288 390 414

481 641 704 1063 1074 2204
Censored 248 606 847 848 860 932 957 1030 1258 1324

1363 1384 1447 1470 1527 1535 1562 1674 1709 1799
1829 1843 1850 1857 1870 2218 2246 2409 2506 2569

Group 3
Risk 1 32 47 47 48 64 76 84 93 100 113

115 120 157 242 268 273 390 422 456 467
625

Risk 2 2 16 63 74 80 105 162 164 183 318
363 677

Censored 845 1136 1238 1345 1631 2024 2133 2140 2252 2430
2640

Table 6.1: The survival times of the bone marrow patients.

Group Censored Cause 1 Cause 2 Total
ALL 14 12 12 38

AML-LR 31 7 16 54
AML-HR 11 21 13 45

Total 56 40 41 137

Table 6.2: The number of events for each status by their respective group.
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Group Censored Risk 1 Risk 2
ALL 1228.00 253.58 265.58
AML-LR 1520.81 391.14 479.31
AML-HR 1801.27 201.86 182.69

Table 6.3: Mean follow-up in days for each status by their respective group.

Figure 6.1: A bone marrow transplant patient experiencing two competing risks.

6.2 Non-Parametric Estimation

In this section, we model the competing risks data using only the observational data.

The following will be done by using the Kaplan-Meier method, as well as using the em-

pirical cumulative incidence function (CIF). These techniques will provide us insight

on the failure probability of each cause over a range of time.

6.2.1 Kaplan-Meier Estimator

The KM for the BMT data shows the proportion of individuals who have yet to

experience one of the two causes of death. Inversely using the KM (1−KM), we can

calculate the proportion of patients who have experienced one of the risks over time.

To use the KM estimator to model the BMT data, we must treat the observations

of one of the two causes of death as censored observations. For example, if relapse

is the primary concern, then we find the proportion of patients relapsing by treating

remission as censored observations.

In Figure 6.2, the 1−KM curves in the top plot indicates that patients with

AML-HR have the highest probability of experiencing relapse, where patients with
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AML-LR have the lowest probability of experiencing relapse. Therefore, we find

that patients with AML-LR have the best odds to not experience relapse during the

entire duration of the study. The 1−KM curves for remission in the bottom plot are

more tightly packed compared to the relapse curves. We find patients with AML-LR

have the lowest probability of experiencing remission for most of the duration. The

probability for remission after 500 days is approximately equal for patients with ALL

and AML-HR.

Overall, these probabilities are estimated by assuming the observations of the

secondary risk are right-censored. If we consider relapse as the primary interest, then

the complement of the KM provides the probability of relapse in a hypothetical world

where it is impossible to die in remission, and rarely useful in a clinical setting [6,

p. 127]. To account for the competing risk without treating it as censored observations,

we examine the estimator for the cumulative incidence function (CIF).

42



Figure 6.2: The 1−KM curves for relapse (top) and death in remission (bottom).
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6.2.2 Cumulative Incidence Function

At any time x, the CIF calculates the probability of risk j in the presence of all

other risks. In this technique, the secondary risks are not considered to be censored.

Therefore, the CIF is the more appropriate choice compared to the KM method.

In Figure 6.3, 6.4, and 6.5, stacked probabilities are shown, in which probabilities of

being event-free, relapsing, and remission can be determined. For example, the height

from the base to the first curve is the probability of relapsing, the height between the

first and second curve is the probability of death in remission, and the height between

the second curve and horizontal line at 1 is the probability of being event-free. To

demonstrate this idea, we determine the probability of a specific risk and being event-

free at 500 days for each group. In Figure 6.3, the probability of relapsing at 500

days after transplant is approximately 0.2654, the probability of dying in remission

is approximately 0.2952, and the probability of being event-free is approximately

0.4394. In Figure 6.4, the probability of relapsing at 500 days after transplant is

approximately 0.0938, the probability of dying in remission is approximately 0.2054,

and the probability of being event-free is approximately 0.7008. In Figure 6.5, the

probability of relapsing at 500 days after transplant is approximately 0.4444, the

probability of dying in remission is approximately 0.2667, and the probability of

being event-free is approximately 0.2889. Thus, death in remission and relapsing are

approximately likely at 500 days post transplant for ALL patients. However, death in

remission is a higher risk than relapsing for patients with AML-LR, where relapsing is

a higher risk than death in remission for patients with AML-HR. Patients with AML-

LR also have the greatest survival probability after transplant compared to patients

with ALL and AML-HR.

In the previous section, we estimated the probabilities for each risk using the

KM method. To explore the difference between estimation in the two methods, we

plot the KM curves with the CIF curves in Figure 6.6. As expected, the figure shows

higher failure probabilities when using the complement of the KM versus the CIF.
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Figure 6.3: The CIF for patients with ALL (group 1).

Figure 6.4: The CIF for patients with AML-LR (group 2).
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Figure 6.5: The CIF for patients with AML-HR (group 3).

In Figure 6.6, and as we mentioned in the previous section, we observe a differ-

ence in relapse probability among the groups, and almost equal death in remission

probability among the groups. We can see that the results from the CIF are consis-

tent with this idea. To formally investigate whether the probability of each cause are

equal among the groups, a hypothesis test using the CIF is performed.
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Figure 6.6: A comparison between 1−KM and CIF for the three groups, where the
top figure is for relapse and the bottom figure is for remission.
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6.2.3 Comparison of CIF Among the Groups

To determine whether there is a difference between the probability of a risk occurring

among the groups, we conduct a hypothesis test using the CIF. Let F g
j represent the

CIF of risk j for group g, for j = 1, 2 and g = 1, 2, 3. Thus, we have the following

hypotheses:

• H0 : F 1
1 = F 2

1 = F 3
1 Ha: At least one F g

1 differs for risk 1 (relapse)

• H0 : F 1
2 = F 2

2 = F 3
2 Ha: At least one F g

2 differs for risk 2 (death in remission)

To test this, we implement Gray’s Test in R, and present the results in Table 6.4.

Test Statistic DF P-Value
Risk 1 14.716 2 0.0006
Risk 2 0.122 2 0.9411

Table 6.4: Gray’s Test for testing equality among groups.

The results from Gray’s Test shows statistically significant results for risk 1, and

can reject the null hypothesis that the CIF are equal for the groups at any significance

level greater than 0.0006, and conclude in favour for the alternative that there is a

difference among the CIF for relapse. However, the test did not show significant

results for cause 2 and thus we fail to reject the null hypothesis and conclude that we

cannot reject the claim that the CIF are equal among the groups. Thus, Gray’s test

is consistent with Figure 6.6 as we observe the curves separated in the relapse plot,

and tightly together in the remission plot.
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6.3 Parametric Estimation

In this section, we use maximum likelihood methods and Bayesian methods to esti-

mate the unknown parameters for the competing risks model using the BMT data.

The MLEs and Bayes estimates are then used to calculate some of the reliability

measures.

6.3.1 Model Selection using the Behaviour of the Hazard

To help with our model selection, we first analyse the behaviour of the hazard function

for each group to determine which distribution can take on this behaviour. To do this,

we plot the total time on test (TTT) for each group and risk (Figure 6.7). In this

figure, we characterize each plot by abbreviating the increasing-decreasing pattern in

the plot. For example, IDI would indicate an increasing-decreasing-increasing hazard

function. The top-left plot would be characterized as IDI, the top-right and middle-

left plot is strictly increasing, the middle-right is strictly decreasing, the bottom-left

is IDI, and the bottom-right is DID. Based on these characteristics, the following

distributions may be appropriate to model the causes for each group:

1. Group 1 (ALL)

(a) Lindley (Remission)

(b) STH-1 (Remission)

(c) Weibull (Remission)

(d) Bathtub (Remission)

(e) Power Lindley (Remission)

(f) STH-2 (Relapse and Remission)

2. Group 2 (AML-LR)

(a) Lindley (Relapse)

49



(b) Bathtub (Relapse)

(c) STH-1 (Relapse and Remission)

(d) STH-2 (Relapse and Remission)

(e) Power Lindley (Relapse and Remission)

(f) Weibull (Relapse and Remission)

3. Group 3 (AML-HR)

(a) STH-2 (Relapse)

(b) Power Lindley (Remission)

The only model that did not appear to be appropriate for any causes in any group

was the exponential distribution as it can only take on a constant hazard rate.
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Figure 6.7: The total time on test (TTT) for cause 1 and cause 2 of all three groups.
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6.3.2 Maximum Likelihood Estimates

In Table 6.6, we present the MLEs for the lifetime distributions. To help with our

model selection, we calculate the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) for each model, defined as

AIC = −2L + 2p and BIC = −2L + p ln(n),

where L is the value of the log-likelihood evaluated at the MLEs, p is the number of

parameters, and n is the number of observations. When comparing AIC values, the

model with the smallest AIC value is the model that minimizes the information lost,

and thus the best choice candidate model to represent the true model. For BIC values,

we also look for the smallest value when comparing models. For group 1 (ALL), the

AIC and BIC values support that the Power Lindley is the best choice model. For

group 2 (AML-LR), the AIC and BIC values support that the Weibull is the best

choice model. For group 3 (AML-HR), the AIC and BIC values support that the

Power Lindley is the best choice model. However, since the difference between the

AIC and BIC in the top three models are small in each group, any of the three model

could be deemed well suited to model the data. In Figure 6.8, 6.9, and 6.10, the

CIF for every model is shown for the respective group in the top plot, with the three

best suited model in the bottom plot. The CIF was constructed using the invariant

property of maximum likelihood . The top three models are shown in Table 6.5. Both

group 1 and 3 had the same models in the same ranking order, where group 2 had a

slightly different order with one different model.

Model Group 1 Group 2 Group 3
1st Power Lindley Weibull Power Lindley
2nd Weibull STH-2 Weibull
3rd STH-2 Power Lindley STH-2

Table 6.5: The model ranks for each group, where the parameters of the models were
estimated using maximum likelihood estimation.
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Model MLE L AIC BIC
Cause 1 Cause 2

Group 1
Exp α1 = 5.180 × 10−4 α2 = 5.182 × 10−4 -205.565 415.129 417.486
Lindley α1 = 1.553 × 10−3 α2 = 1.533 × 10−3 -223.323 450.660 453.002
STH-1 α1 = 4.233 × 10−4 α2 = 4.269 × 10−4 -207.395 418.789 421.146
PL α1 = 0.4467 α2 = 0.4285 -201.859 411.719 416.430

β1 = 0.0602 β2 = 0.0659
STH-2 α1 = 0.6171 α2 = 0.5933 -202.519 413.038 417.750

β1 = 5.850 × 10−3 β2 = 6.800 × 10−3

Weibull α1 = 4.609 × 10−3 α2 = 5.689 × 10−3 -202.162 412.323 417.036
β1 = 0.6748 β2 = 0.6435

Bathtub α1 = 0.0119 α2 = 0.0111 -204.689 417.379 422.090
β1 = 0.1894 β2 = 0.1925

Group 2
Exp α1 = 1.216 × 10−4 α2 = 2.780 × 10−4 -217.107 438.215 440.485
Lindley α1 = 5.178 × 10−4 α2 = 8.827 × 10−4 -236.162 476.324 478.595
STH-1 α1 = 1.101 × 10−4 α2 = 2.343 × 10−4 -218.208 440.416 442.687
PL α1 = 0.3170 α2 = 0.4190 -214.240 436.480 441.022

β1 = 0.0633 β2 = 0.0531
STH-2 α1 = 0.8330 α2 = 0.5067 -213.644 435.287 439.830

β1 = 3.705 × 10−4 β2 = 8.373 × 10−3

Weibull α1 = 1.469 × 10−3 α2 = 4.119 × 10−3 -213.473 434.946 439.488
β1 = 0.6532 β2 = 0.6243

Bathtub α1 = 2.837 × 10−3 α2 = 9.947 ×−3 -215.392 438.785 443.326
β1 = 0.1939 β2 = 0.1785

Group 3
Exp α1 = 7.942 × 10−4 α2 = 4.920 × 10−4 -282.915 569.830 572.883
Lindley α1 = 2.020 × 10−3 α2 = 1.435 × 10−3 -319.017 642.039 645.087
STH-1 α1 = 5.937 × 10−4 α2 = 3.838 × 10−4 -287.692 579.383 582.437
PL α1 = 0.4288 α2 = 0.3650 -271.890 547.780 557.885

β1 = 0.0912 β2 = 0.0986
STH-2 α1 = 0.5501 α2 = 0.4896 -273.157 550.319 560.419

β1 = 0.0137 β2 = 0.0135
Weibull α1 = 0.0120 α2 = 0.0122 -272.363 548.725 558.831

β1 = 0.6041 β2 = 0.5283
Bathtub α1 = 0.0252 α2 = 0.0186 -277.583 559.167 569.271

β1 = 0.1770 β2 = 0.1691

Table 6.6: The MLEs estimate for cause 1 and cause 2 for each group. The value of
log-likelihood evaluated at the MLEs is given, as well as the AIC and BIC values.
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Model Par. 95% CI Par. 95% CI
Group 1
Exp α1 [4.643 × 10−4, 5.772 × 10−4] α2 [4.645 × 10−4, 5.774 × 10−4]
Lindley α1 [1.462 × 10−3, 1.650 × 10−3] α2 [1.422 × 10−3, 1.651 × 10−3]
STH-1 α1 [3.819 × 10−3, 4.675 × 10−4] α2 [3.585 × 10−3, 4.713 × 10−4]
PL α1 [0.4153, 0.4806] α2 [0.4009, 0.4581]

β1 [0.0489, 0.0732] β2 [0.0550, 0.0791]
STH-2 α1 [0.5817, 0.6547] α2 [0.5584, 0.6346]

β1 [4.572 × 10−3, 7.486 × 10−3] β2 [5.255 × 10−3, 8.804 × 10−3]
Weibull α1 [3.698 × 10−3, 5.745 × 10−3] α2 [4.430 × 10−3, 7.298 × 10−3]

β1 [0.6416, 0.7097] β2 [0.6068, 0.6824]
Bathtub α1 [9.751 × 10−3, 0.0146] α2 [9.007 × 10−3, 0.0136]

β1 [0.1821, 0.1970] β2 [0.1852, 0.2000]
Group 2
Exp α1 [1.023 × 10−4, 1.448 × 10−4] α2 [2.540 × 10−4, 3.036 × 10−4]
Lindley α1 [4.835 × 10−4, 5.533 × 10−4] α2 [8.432 × 10−4, 9.227 × 10−4]
STH-1 α1 [9.420 × 10−5, 1.295 × 10−4] α2 [2.161 × 10−4, 2.547 × 10−4]
PL α1 [0.2904, 0.3461] α2 [0.3986, 0.4405]

β1 [0.0524, 0.0764] β2 [0.0460, 0.0614]
STH-2 α1 [0.8018, 0.8654] α2 [0.4807, 0.5341]

β1 [2.999 × 10−4, 4.576 × 10−4] β2 [5.459 × 10−3, 0.0113]
Weibull α1 [8.280 × 10−4, 2.609 × 10−3] α2 [3.356 × 10−3, 5.055 × 10−3]

β1 [0.6271, 0.6804] β2 [0.5982, 0.6515]
Bathtub α1 [2.469 × 10−3, 3.258 × 10−3] α2 [8.524 × 10−3, 0.0116]

β1 [0.1889, 0.1991] β2 [0.1732, 0.1841]
Group 3
Exp α1 [7.393 × 10−4, 8.530 × 10−4] α2 [4.446 × 10−4, 5.413 × 10−4]
Lindley α1 [1.934 × 10−3, 2.109 × 10−3] α2 [1.358 × 10−3, 1.514 × 10−3]
STH-1 α1 [5.547 × 10−4, 6.344 × 10−4] α2 [3.499 × 10−4, 4.201 × 10−4]
PL α1 [0.4105, 0.4482] α2 [0.3445, 0.3866]

β1 [0.0809, 0.1028] β2 [0.0866, 0.1124]
STH-2 α1 [0.5270, 0.5742] α2 [0.4594, 0.5218]

β1 [0.0116, 0.0160] β2 [0.0109, 0.0168]
Weibull α1 [9.811 × 10−3, 0.0146] α2 [9.659 × 10−3, 0.0153]

β1 [0.5758, 0.6338] β2 [0.4956, 0.5632]
Bathtub α1 [0.02220.0286] α2 [0.0159, 0.0218]

β1 [0.1722, 0.1819] β2 [0.1628, 0.1755]

Table 6.7: The asymptotic 95% CI for the true model parameters.
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Figure 6.8: The CIF (using MLE) for all models (top) and the top three models for
ALL.
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Figure 6.9: The CIF (using MLE) for all models (top) and the top three models for
AML-LR.
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Figure 6.10: The CIF (using MLE) for all models (top) and the top three models for
AML-HR.
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The expected failure time at time 0 for each risk among the groups is given in

Table 6.8. The expected failure time at time 0 gives the mean time of a specific

risk occurring to a patient. For example, consider a patient with ALL. Based on

the risks model following a Power Lindley distribution, then the average time for

leukemia relapse and death in remission at time 0 are approximately 4219 days and

5049 days, respectively. As expected, patients with AML-LR have a much larger

expected failure time for leukemia relapse than patients in the other disease groups.

Based on the relative risk for relapse in group 2 (Table 6.9), these patients had the

lowest relapse probability compared to patients with ALL and ALL-HR, and therefore

would be expected to experience relapse at a much later time.

Model E(X)
Group 1 Risk 1 Risk 2
Exp 1930.56 1929.72
Lindley 1286.99 1303.93
STH-1 591.55 586.64
PL 4218.61 5048.75
STH-2 3564.09 3839.26
Weibull 3805.72 4261.47
Bathtub - -
Group 2 Risk 1 Risk 2
Exp 8220.87 3597.51
Lindley 3861.40 2264.86
STH-1 2272.32 1068.08
PL 175328.50 10570.19
STH-2 10091.8 12509.43
Weibull 29508.60 9476.36
Bathtub - -
Group 3 Risk 1 Risk 2
Exp 1259.12 2032.42
Lindley 989.11 1393.09
STH-1 422.10 652.42
PL 2311.42 8697.98
STH-2 2286.46 6785.79
Weibull 2264.70 7650.69
Bathtub - -

Table 6.8: The expected failure time in days.
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Dist. Group 1 Group 2 Group 3
π1 π2 π1 π2 π1 π2

Exp 0.500 0.500 0.304 0.696 0.617 0.383
STH-1 0.497 0.502 0.300 0.700 0.620 0.380
Lindley 0.505 0.495 0.309 0.691 0.626 0.374
STH-2 0.504 0.496 0.215 0.785 0.641 0.359
PL 0.515 0.484 0.257 0.743 0.624 0.376
Weibull 0.507 0.493 0.316 0.684 0.630 0.370
Bathtub 0.494 0.506 0.356 0.644 0.627 0.373

Table 6.9: The estimated relative risk for each distribution.

The relative risk for each risk in the three groups using each distribution is given

in Table 6.9. In terms of the BMT data, the relative risk calculates the probability of

relapsing or death in remission if the individual’s age could hypothetically approach

infinity. For group 1, both risk 1 and risk 2 have approximately the same probability.

In group 2, the probability of risk 2 is much greater than the probability of risk 1.

For group 3, the probability of risk 1 is much greater than the probability of risk 2.

The Kolmogorov-Smirnov (KS) statistics are shown in Table 6.10. The KS

statistics are used to quantify the distance between two curves (parametric and non-

parametric). For a particular model, we calculate the distance between the CIF using

the parameter estimates from the maximum likelihood method with the empirical

CIF for a set of time points, and the maximum distance is recorded. The bold value

represents the minimum value for the respective group and cause, or simply indicates

the best fit model among the list of models used. For group 1, we find PL had the

smallest KS compared to all other distributions for risk 1, where Weibull had the

smallest KS for risk 2. In group 2, Weibull had the smallest KS for risk 1 and Bath-

tub had the smallest KS for risk 2. For group 3, PL had the smallest KS for risk 1,

and PL and Weibull both had the same smallest KS for risk 2. The results from the

KS statistics shows some support of the conclusions drawn from the AIC/BIC scores.

These results may also indicate that each cause may need to be modelled using dif-

ferent distributions. For example, modelling ALL patients where risk 1 follows PL

distribution and risk 2 follows Weibull distribution.
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Model Group 1 Group 2 Group 3
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Exp 0.1320 0.1125 0.05906 0.1010 0.1784 0.1420
STH-1 0.1460 0.1279 0.06239 0.1052 0.2044 0.1560
Lindley 0.1884 0.1479 0.0868 0.1378 0.2518 0.1938
STH-2 0.0873 0.0868 0.1170 0.0766 0.1239 0.0706
PL 0.0828 0.0858 0.0787 0.0620 0.1072 0.0686
Weibull 0.0871 0.0847 0.0400 0.0582 0.1110 0.0686
Bathtub 0.0832 0.0975 0.0468 0.0457 0.1208 0.0750

Table 6.10: The Kolmogorov-Smirnov (KS) statistics are shown for each risk among
groups. Bold values denote the smallest value.

6.3.3 Bayesian Estimation

To determine the Bayes estimate, we used an MCMC algorithm (Metropolis-Hastings)

to simulate the log-posterior distribution to obtain draws from it. The algorithm is

used twice. First, a Gamma prior is used with all hyper-parameters set equal to 0.001,

in which we refer to this as a poor prior. Using the mean and variance of the draws,

the hyper-parameters a and b are solved for from each parameter and used as the

hyper-parameters for the prior (Table 6.14) in a second iteration of MCMC, in which

we refer to this as a good prior. The Bayes estimate using a poor prior and good prior,

along with the variance, can be seen in Table 6.12 and 6.13, respectively. The Bayes

estimate in both iterations are consistent with one another, however, as expected,

the variance of the second iteration is much smaller. The Bayes estimates for each

distribution are also consistent with the results of the maximum likelihood estimates.

For example, the estimates for modelling group 1 with the Power Lindley distribution

using maximum likelihood estimation and Bayesian estimation, respectively, were

θ̂MLE = (0.4467, 0.0602, 0.4285, 0.0659)

θ̂Bayes = (0.4986, 0.0433, 0.4726, 0.0504)
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Figure 6.11: The trace plots for the simulated draws using the Metropolis-Hastings
algorithm for Power Lindley (group 1).
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Figure 6.12: The autocorrelation plots of the simulated draws using the Metropolis-
Hastings algorithm for Power Lindley (group 1).
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Figure 6.13: The marginal posterior densities for α1 (top left), β1 (top right), α2

(bottom left), and β2 (bottom right), for Power Lindley (group 1).

To determine the performance of the Metropolis-Hastings algorithm, diagnostic

plots for the PL case (group 1) are shown in Figure 6.11 and 6.12. The trace plot

appears to show randomness in the simulation and does not produce any visible

patterns. The ACF plot shows correlation in the simulation process, however, goes

to 0 after a few lags. In Figure 6.13, the marginal density for each parameter is

shown. The red curves are the parameters for cause 1, where the blue curves are

the parameters for cause 2. Diagnostic and marginal density plots are available for

groups of all other models upon request. Furthermore, the acceptance rates for the
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algorithm for all models are given in Table 6.11, which indicates good evidence about

the sampling method used in the MCMC algorithm.

Acceptance Rate
Model Group 1 Group 2 Group 3
Exponential 43.37 44.42 43.65
STH-1 43.36 44.46 43.46
Lindley 43.93 44.43 43.77
STH-2 23.95 24.28 24.97
Power Lindley 24.96 25.05 26.83
Weibull 24.04 23.26 21.59
Bathtub 24.91 24.01 26.17

Table 6.11: The acceptance rate for the Metropolis-Hastings algorithm using the good
prior for all risks model used.

To contrast with the confidence intervals used in the maximum likelihood section,

95% credible intervals are calculated for the parameters (Table 6.15). However, the

credible intervals are not interpreted in the same way as the confidence intervals are.

Given a 95% credible interval, we can say that there is a 95% probability that an

unobserved parameter will fall within this interval. For example, consider the 95%

credible for β1 in the Weibull model for group 2 is [0.5644, 0.7436]. Then, for some

unobserved value of β1, we can say that there is a 95% probability that this value will

fall within the interval. By definition, the credible interval is given by determining

the interval such that the integral of the posterior, over the limits of this interval, is

0.95. Since we do not have a closed form for the posterior, we calculate the credible

intervals by using the simulated draws from the Metropolis-Hastings algorithm.

We also calculate the CIF using Bayesian methods to contrast with the CIF using

maximum likelihood methods. Figure 6.14, 6.15, and 6.16 show the empirical CIF, the

estimated CIF using maximum likelihood estimation, and the estimated CIF using

Bayesian estimation together. From these figures, the estimated CIF using maximum

likelihood and Bayesian estimation are consistent with one another.
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Model Bayes’ Estimate Variance
Cause 1 Cause 2 Cause 1 Cause 2

Group 1
Exp α1 = 4.744 × 10−4 α2 = 4.775 × 10−4 1.255 × 10−8 1.233 × 10−8

Lindley α1 = 1.508 × 10−3 α2 = 1.483 × 10−3 1.777 × 10−8 1.912 × 10−8

STH-1 α1 = 3.930 × 10−4 α2 = 3.978 × 10−4 7.732 × 10−9 7.473 × 10−9

PL α1 = 0.5050 α2 = 0.4787 5.611 × 10−3 5.455 × 10−3

β1 = 4.513 × 10−2 β2 = 5.611 × 10−2 5.916 × 10−4 6.618 × 10−4

STH-2 α1 = 0.5968 α2 = 0.6269 1.083 × 10−2 1.147 × 10−2

β1 = 8.685 × 10−3 β2 = 7.255 × 10−3 4.354 × 10−5 3.507 × 10−5

Weibull α1 = 4.554 × 10−3 α2 = 5.742 × 10−3 4.546 × 10−7 6.693 × 10−7

β1 = 0.6735 β2 = 0.6386 1.989 × 10−3 1.762 × 10−3

Bathtub α1 = 9.460 × 10−3 α2 = 8.477 × 10−3 2.854 × 10−5 2.478 × 10−5

β1 = 0.2001 β2 = 0.2043 3.248 × 10−4 3.370 × 10−4

Group 2
Exp α1 = 1.066 × 10−4 α2 = 2.607 × 10−4 1.154 × 10−9 2.803 × 10−9

Lindley α1 = 4.096 × 10−4 α2 = 8.660 × 10−4 3.125 × 10−9 4.912 × 10−9

STH-1 α1 = 9.842 × 10−5 α2 = 2.227 × 10−4 8.898 × 10−10 1.771 × 10−9

PL α1 = 0.6486 α2 = 0.4089 1.443 × 10−2 3.371 × 10−3

β1 = 8.808 × 10−3 β2 = 6.006 × 10−2 6.118 × 10−5 6.010 × 10−4

STH-2 α1 = 0.7164 α2 = 0.5652 2.464 × 10−2 8.444 × 10−3

β1 = 1.584 × 10−3 β2 = 6.920 × 10−3 4.415 × 10−6 2.497 × 10−5

Weibull α1 = 1.439 × 10−3 α2 = 4.175 × 10−3 4.138 × 10−8 3.386 × 10−7

β1 = 0.6567 β2 = 0.6204 2.103 × 10−3 1.310 × 10−3

Bathtub α1 = 1.353 × 10−3 α2 = 8.331 × 10−3 1.569 × 10−6 1.908 × 10−5

β1 = 0.2198 β2 = 0.1868 4.292 × 10−4 2.524 × 10−4

Group 3
Exp α1 = 7.621 × 10−4 α2 = 4.591 × 10−4 1.728 × 10−8 1.085 × 10−8

Lindley α1 = 1.983 × 10−3 α2 = 1.396 × 10−3 5.047 × 10−8 4.011 × 10−8

STH-1 α1 = 5.689 × 10−4 α2 = 3.616 × 10−4 9.031 × 10−9 5.864 × 10−9

PL α1 = 0.4483 α2 = 0.3876 2.411 × 10−3 2.976 × 10−3

β1 = 8.429 × 10−2 β2 = 8.899 × 10−2 7.107 × 10−4 1.018 × 10−3

STH-2 α1 = 0.5302 α2 = 0.4989 4.442 × 10−3 6.838 × 10−3

β1 = 1.827 × 10−2 β2 = 1.515 × 10−2 7.857 × 10−5 7.764 × 10−5

Weibull α1 = 1.186 × 10−2 α2 = 1.223 × 10−2 2.855 × 10−6 3.622 × 10−6

β1 = 0.6043 β2 = 0.5273 1.155 × 10−3 1.320 × 10−3

Bathtub α1 = 2.278 × 10−2 α2 = 1.614 × 10−2 7.318 × 10−5 5.157 × 10−5

β1 = 0.1812 β2 = 0.1750 1.741 × 10−4 2.890 × 10−4

Table 6.12: The Bayes estimate and respective variance for each model using a poor
choice of hyper-parameters for the prior distribution (all hyper-parameters are set to
0.001).
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Model Bayes Estimate Variance
Cause 1 Cause 2 Cause 1 Cause 2

Group 1
Exp α1 = 4.792 × 10−4 α2 = 4.767 × 10−4 4.769 × 10−9 4.998 × 10−9

Lindley α1 = 1.506 × 10−3 α2 = 1.488 × 10−3 2.013 × 10−9 1.894 × 10−9

STH-1 α1 = 3.941 × 10−4 α2 = 3.995 × 10−4 2.907 × 10−9 2.957 × 10−9

PL α1 = 0.4986 α2 = 0.4726 1.578 × 10−3 1.331 × 10−3

β1 = 4.325 × 10−2 β2 = 5.042 × 10−2 1.295 × 10−3 1.492 × 10−4

STH-2 α1 = 0.6012 α2 = 0.6173 5.357 × 10−3 1.222 × 10−2

β1 = 7.328 × 10−3 β2 = 7.929 × 10−3 1.478 × 10−5 4.333 × 10−5

Weibull α1 = 4.544 × 10−3 α2 = 5.741 × 10−3 1.896 × 10−7 6.246 × 10−7

β1 = 0.6742 β2 = 0.6391 1.519 × 10−3 1.651 × 10−3

Bathtub α1 = 8.826 × 10−3 α2 = 7.994 × 10−3 9.075 × 10−6 7.882 × 10−6

β1 = 0.2000 β2 = 0.2032 1.187 × 10−4 1.162 × 10−4

Group 2
Exp α1 = 1.067 × 10−4 α2 = 2.616 × 10−4 4.692 × 10−10 1.115 × 10−9

Lindley α1 = 4.927 × 10−4 α2 = 8.665 × 10−4 3.142 × 10−9 4.465 × 10−9

STH-1 α1 = 9.846 × 10−5 α2 = 2.227 × 10−4 3.511 × 10−10 6.810 × 10−10

PL α1 = 0.6352 α2 = 0.4036 3.886 × 10−3 8.655 × 10−4

β1 = 7.461 × 10−3 β2 = 5.861 × 10−2 1.232 × 10−5 1.440 × 10−4

STH-2 α1 = 0.7104 α2 = 0.5723 1.300 × 10−2 9.047 × 10−3

β1 = 1.304 × 10−3 β2 = 6.705 × 10−3 1.839 × 10−6 2.462 × 10−5

Weibull α1 = 1.454 × 10−3 α2 = 4.155 × 10−3 1.968 × 10−8 3.022 × 10−7

β1 = 0.6556 β2 = 0.6185 1.852 × 10−3 1.157 × 10−3

Bathtub α1 = 1.258 × 10−3 α2 = 7.736 × 10−3 4.553 × 10−7 5.132 × 10−6

β1 = 0.2179 β1 = 0.1865 2.012 × 10−4 9.569 × 10−5

Group 3
Exp α1 = 7.612 × 10−4 α2 = 4.599 × 10−4 7.150 × 10−9 4.409 × 10−9

Lindley α1 = 1.986 × 10−3 α2 = 1.398 × 10−3 1.968 × 10−8 1.438 × 10−8

STH-1 α1 = 5.705 × 10−4 α2 = 3.617 × 10−4 3.367 × 10−9 2.125 × 10−9

PL α1 = 0.4986 α2 = 0.4726 1.578 × 10−3 1.331 × 10−3

β1 = 4.325 × 10−2 β2 = 5.042 × 10−2 1.295 × 10−4 1.492 × 10−4

STH-2 α1 = 0.5296 α2 = 0.4939 2.390 × 10−3 6.808 × 10−3

β1 = 1.710 × 10−2 β2 = 1.533 × 10−2 3.833 × 10−5 7.720 × 10−5

Weibull α1 = 1.179 × 10−2 α2 = 1.226 × 10−2 1.133 × 10−6 2.761 × 10−6

β1 = 0.6033 β2 = 0.5258 8.910 × 10−4 1.269 × 10−3

Bathtub α1 = 2.189 × 10−2 α2 = 1.510 × 10−2 2.132 × 10−5 1.721 × 10−5

β1 = 0.1815 β2 = 0.1764 5.488 × 10−5 9.583 × 10−5

Table 6.13: The Bayes estimate and respective variance for each model using the
hyper-parameters from Table 6.14 for the prior distribution (good prior).
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Model Hyperparameters
Cause 1 Cause 2

Group 1 α1 α2

Exp a1 = 18 b1 = 37796 a2 = 19 b2 = 38726
Lindley a1 = 48 b1 = 31748 a2 = 47 b2 = 31503
STH-1 a1 = 20 b1 = 50832 a2 = 21 b2 = 52233
Group 1 α1 β1 α2 β1

PL a11 = 45 b11 = 4 a21 = 42 b21 = 4
a12 = 90 b12 = 87 a22 = 88 b22 = 80

STH-2 a11 = 32 b11 = 2 a21 = 34 b21 = 2
a12 = 55 b12 = 199 a22 = 55 b22 = 207

Weibull a11 = 50 b11 = 48 a21 = 258 b21 = 249
a12 = 11061 b12 = 8320 a22 = 383 b22 = 390

Bathtub a11 = 3 b11 = 123 a21 = 3 b21 = 124
a12 = 331 b12 = 616 a22 = 342 b22 = 606

Group 2 α1 α2

Exp a1 = 10 b1 = 92330 a2 = 24 b2 = 92978
Lindley a1 = 30 b1 = 61483 a2 = 66 b2 = 76097
STH-1 a1 = 11 b1 = 110605 a2 = 28 b2 = 125781
Group 2 α1 β1 α2 β2

PL a11 = 29 b11 = 1 a21 = 50 b21 = 6
a12 = 45 b12 = 144 a22 = 121 b22 = 100

STH-2 a11 = 21 b11 = 1 a21 = 38 b21 = 2
a12 = 29 b12 = 359 a22 = 67 b22 = 277

Weibull a11 = 47 b11 = 191 a21 = 50 b21 = 310
a12 = 32531 b12 = 293 a22 = 12044 b22 = 502

Bathtub a11 = 1 b11 = 113 a21 = 4 b21 = 138
a12 = 863 b12 = 512 a22 = 437 b22 = 740

Group 3 α1 α2

Exp a1 = 34 b1 = 44116 a2 = 19 b2 = 42308
Lindley a1 = 78 b1 = 32924 a2 = 49 b2 = 34800
STH-1 a1 = 36 b1 = 62989 a2 = 21 b2 = 53233
Group 3 α1 β1 α2 β2

PL a11 = 83 b11 = 10 a21 = 50 b21 = 8
a12 = 186 b12 = 119 a22 = 130 b22 = 87

STH-2 a11 = 63 b11 = 4 a21 = 36 b21 = 3
a12 = 119 b12 = 232 a22 = 73 b22 = 195

Weibull a11 = 44 b11 = 299 a21 = 46 b21 = 205
a12 = 3733 b12 = 496 a22 = 3765 b22 = 390

Bathtub a11 = 8 b11 = 200 a21 = 5 b21 = 120
a12 = 351 b12 = 1099 a22 = 326 b22 = 678

.

Table 6.14: The hyperparameters used in the good prior distribution to calculate the
Bayes’ estimate in Table 6.13
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Model Par. 95% Cred. Int. Par. 95% Cred. Int.
Group 1
Exp α1 [3.484 × 10−4, 6.206 × 10−4] α2 [3.486 × 10−4, 6.355 × 10−4]
Lindley α1 [1.259 × 10−3, 1.803 × 10−3] α2 [1.240 × 10−3, 1.761 × 10−3]
STH-1 α1 [2.446 × 10−4, 5.834 × 10−4] α2 [2.472 × 10−4, 5.770 × 10−4]
PL α1 [0.3594, 0.5309] α2 [0.3156, 0.5828]

β1 [0.0344, 0.1117] β2 [0.0252, 0.1444]
STH-2 α1 [0.4746, 0.7457] α2 [0.4354, 0.8525]

β1 [2.527 × 10−3, 0.0166] β2 [1.270 × 10−3, 0.0227]
Weibull α1 [3.780 × 10−3, 5.504 × 10−3] α2 [4.205 × 10−3, 7.456 × 10−3]

β1 [0.5941, 0.7463] β2 [0.5649, 0.7198]
Bathtub α1 [3.749 × 10−3, 0.0155] α2 [3.925 × 10−3, 0.0278]

β1 [0.1746, 0.2290] β2 [0.1563, 0.2264]
Group 2
Exp α1 [6.826 × 10−5, 1.525 × 10−4] α2 [2.002 × 10−4, 3.329 × 10−4]
Lindley α1 [3.869 × 10−4, 6.082 × 10−4] α2 [7.370 × 10−4, 1.013 × 10−3]
STH-1 α1 [4.810 × 10−5, 1.637 × 10−4] α2 [1.514 × 10−4, 3.176 × 10−4]
PL α1 [0.3488, 0.5659] α2 [0.2814, 0.4963]

β1 [0.0116, 0.0568] β2 [0.0322, 0.1393]
STH-2 α1 [0.5342, 0.9276] α2 [0.4147, 0.7600]

β1 [1.806 × 10−4, 4.143 × 10−3] β2 [1.400 × 10−3, 0.0181]
Weibull α1 [1.186 × 10−3, 1.723 × 10−3] α2 [3.154 × 10−3, 5.717 × 10−3]

β1 [0.5644, 0.7436] β2 [0.5432, 0.6926]
Bathtub α1 [3.334 × 10−4, 2.917 × 10−3] α2 [4.012 × 10−3, 0.0233]

β1 [0.1909, 0.2493] β2 [0.1480, 0.2076]
Group 3
Exp α1 [6.069 × 10−5, 9.421 × 10−4] α2 [3.413 × 10−5, 5.935 × 10−4]
Lindley α1 [1.711 × 10−3, 2.283 × 10−3] α2 [1.161 × 10−3, 1.644 × 10−3]
STH-1 α1 [4.082 × 10−4, 7.696 × 10−4] α2 [2.239 × 10−4, 5.271 × 10−4]
PL α1 [0.3632, 0.4805] α2 [0.2661, 0.4728]

β1 [0.0638, 0.1450] β2 [0.0517, 0.1886]
STH-2 α1 [0.4522, 0.6126] α2 [0.3493, 0.6613]

β1 [8.614 × 10−3, 0.0307] β2 [4.300 × 10−3, 0.0397]
Weibull α1 [9.790 × 10−3, 0.0139] α2 [9.552 × 10−3, 0.0157]

β1 [0.5415, 0.6661] β2 [0.4552, 0.5982]
Bathtub α1 [0.0142, 0.0320] α2 [8.213 × 10−3, 0.0403]

β1 [0.1642, 0.1988] β2 [0.1381, 0.1981]

Table 6.15: The 95% credible intervals for the parameters.

68



Figure 6.14: A comparison of the estimated CIF for group 1 (ALL patients) using
Bayes’, MLE and empirical methods, where the risks follow the Power Lindley distri-
bution.

69



Figure 6.15: A comparison of the estimated CIF for group 2 (AML-LR patients)
using Bayes’, MLE and empirical methods, where the risks follow the Power Lindley
distribution.
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Figure 6.16: A comparison of the estimated CIF for group 3 (AML-HR patients)
using Bayes’, MLE and empirical methods, where the risks follow the Power Lindley
distribution.
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6.4 Competing Risks with Covariates

The BMT data consist of 10 covariates. The effects on relapse and remission from

covariates such as patient’s and donor’s age, sex, CMV status, waiting time for trans-

plant, FAB indicator, location of hospital, and MTX indicator may be analysed de-

pending on the goals of the researcher. The summary for each variable can be seen in

Table 6.16. Table 6.16 provides count data for each indicator for categorical variables,

and the mean for quantitative variables.

For the purpose of the thesis and the questions we wish to explore, an analysis

solely based on the patient’s age and donor’s age will be conducted. This simplification

of covariates will also reduce the complexity of estimating 2 × 10 (k × p) coefficients

of the covariates, which will ultimately affect the accuracy and computational time of

the algorithms used for estimation. However, other researchers may still have different

research questions and may want to study the effects using additional covariates or a

set of different covariates, which we will consider in future work.

6.4.1 Cox Regression

The results of the cause-specific hazard regression are presented in this section. To

perform the regression, we construct two regression models for each group in which

the competing risks are treated as censored observations. For example, the regres-

sion model for relapse considered observations from remission as censored, and the

regression model for remission considered observations from relapse as censored.

For each group, we only consider the patient’s age (Z1) and donor’s age (Z2)

as the risk factors for the patients. The results of the cause-specific cox regression

for all three groups are seen in Table 6.17. For group 1, the patient’s age is found

to be significant for the relapse hazard model, where the donor’s age is found to be

significant for the remission hazard model at a 10% significance level.
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Variable Description Data Summary

Z1 Age of Patient (years)
Group 1: 24.42
Group 2: 29.41
Group 3: 30.44

Z2 Age of Donor (years)
Group 1: 26.79
Group 2: 28.07
Group 3: 29.93

Z3 Patient Sex
Group 1: M (26), F (12)
Group 2: M (30), F (24)
Group 3: M (24), F (21)

Z4 Donor Sex
Group 1: M (26), F (12)
Group 2: M (34), F (20)
Group 3: M (28), F (17)

Z5 Patient CMV Status
Group 1: CMV + (15), CMV − (23)
Group 2: CMV + (26), CMV − (28)
Group 3: CMV + (27), CMV − (18)

Z6 Donor CMV Status
Group 1: CMV + (17), CMV − (21)
Group 2: CMV + (22), CMV − (34)
Group 3: CMV + (19), CMV − (26)

Z7 Waiting Time for Transplants (days)
Group 1: 477.18
Group 2: 138.06
Group 3: 268.87

Z8

FAB Indicator:
1 - FAB Grade 4 or 5 and AML
0 - Otherwise

Group 1: 1 (0), 0 (45)
Group 2: 1 (18), 0 (36)
Group 3: 1 (27), 0 (18)

Z9

Location of Hospital:
1 - Ohio State, 2 - Alferd
3 - St. Vincent, 4 - Hahnemann

Group 1: 1 (21), 2 (8), 3 (9), 4 (0)
Group 2: 1 (27), 2 (5), 3 (7), 4 (15)
Group 3: 1 (28), 2 (4), 3 (7), 4 (6)

Z10 MTX Used as a Graft-Versus-Host-Prophylactic
Group 1: Yes (17), No (21)
Group 2: Yes (12), No (42)
Group 3: Yes (11), No (34)

Table 6.16: A description of the covariates (risk factors) for the patients.
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Covariates Cause 1 Cause 2
Coef. exp(Coef.) P-Value Coef. exp(Coef.) P-Value

Group 1
Z1 0.1155 1.1224 0.029 0.0939 1.0984 0.1309
Z2 -0.0361 0.9645 0.451 -0.0871 0.9166 0.0606

Group 2
Z1 -0.0226 0.9777 0.735 -0.0297 0.9707 0.496
Z2 -0.0448 0.9562 0.522 0.1391 1.1493 0.010

Group 3
Z1 -0.0390 0.9618 0.310 -0.0540 0.9475 0.289
Z2 0.0332 1.0338 0.358 0.0298 1.0302 0.527

Table 6.17: The results of Cox’s cause-specific hazard model.

For group 2, no covariates are found to be significant for the relapse model, however,

the donor’s age was found significant for the remission model at a 1% significance

level. For group 3, both models showed no significant covariates. To discuss the

interpretation of the results, we discuss the meaning of the regression coefficient. A

coefficient greater than 0 is known as a bad prognostic factor, and is associated to

an increase of the hazard for the underlying risk. A coefficient less than 0 is known

as a good prognostic factor, and is associated to a reduction of the hazard for the

underlying risk. For example, in group 1, the relapse model found that the patient’s

age was significant. Since the coefficient was greater than 0, then we find the that

patients’ age is a bad prognostic factor. Assuming the donor’s age is kept constant,

then an additional year in the patient’s age is associated to an increase of the hazard

for relapse by a factor of 1.224. In the remission model for the same group, the

donor’s age was found significant. The coefficient is less than 0, and is seen as a good

prognostic factor. Assuming that the patient’s age is kept constant, then an additional

year in the donor’s age is associated to a reduction of the hazard for remission by a

factor of 0.9166.

In this section, we left the baseline cause-specific hazard unspecified and assumed

no parametric form. In the next section, we assume a parametric form for the base-

line cause-specific hazard and estimate the parameters of this hazard, as well as the

coefficients of the covariates, using maximum likelihood and Bayesian methods.
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6.4.2 Maximum Likelihood and Bayesian Estimation

In this section, we estimate the parameters of a fully parametric cause-specific hazard

model with covariates. Based on the results of our homogeneous competing risks

model, we found that the Power Lindley model was the best fit model for group 1

and 3, and was the second best fit model for group 2. For this reason, we will only

consider the estimation of the full model parameters for the Power Lindley risks model.

For the covariates, we will estimate the coefficients of Z1 and Z2 for demonstration

purposes regardless of it being found to significant in Cox’s regression. The MLEs,

the value of the log-likelihood evaluated at the MLEs, and the Bayes estimates can

be found in Table 6.18. The estimates of the parameters and the estimates of the

coefficients from the regression parametric model are consistent with the MLEs and

Bayes estimates found from our homogeneous competing risks model, and with the

coefficient estimates found from the Cox model. The trace plots and ACF plots for

the simulated draws for Group 1 are shown in Figure 6.17 and 6.18, as diagnostic

tests. From these figures, we can see that there is a good mix in the sample and the

draws become more independently quickly. The acceptance rates for the Metropolis-

Hastings algorithm are 30.06% (group 1), 29.52% (group 2) and 30.81% (group 3).
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MLE Bayes Estimate
Cause 1 Cause 2 Cause 1 Cause 2

Group 1
L = −196.531

Group 1

α1 = 0.4595 α2 = 0.4832 α1 = 0.4489 α2 = 0.4892
β1 = 0.0178 β2 = 0.0538 β1 = 0.0183 β2 = 0.0550
γ11 = 0.1399 γ21 = 0.0902 γ11 = 0.1417 γ21 = 0.0868
γ12 = −0.0574 γ22 = −0.0919 γ12 = −0.0582 γ22 = −0.0937

Group 2
L = −206.746

Group 2

α1 = 0.4699 α2 = 0.3998 α1 = 0.5339 α2 = 0.3767
β1 = 0.0654 β2 = 8.635 × 10−3 β1 = 0.0511 β2 = 9.975 × 10−3

γ11 = 0.0136 γ21 = −0.0429 γ11 = −0.0396 γ21 = −0.0214
γ12 = −0.0878 γ22 = 0.1584 γ12 = −0.0434 γ22 = 0.1307

Group 3
L = −270.006

Group 3

α1 = 0.4434 α2 = 0.3827 α1 = 0.4464 α2 = 0.3968
β1 = 0.1026 β2 = 0.1595 β1 = 0.1041 β2 = 0.1477
γ11 = −0.0512 γ21 = −0.0561 γ11 = −0.0496 γ21 = −0.0687
γ12 = 0.0416 γ22 = 0.0265 γ12 = 0.0377 γ22 = 0.0363

Table 6.18: The MLEs and Bayes estimates for the parametric regression model where
the baseline cause-specific hazard is assumed to follow a Power Lindley distribution.

Since the homogeneous model is nested within the regression model, a hypothesis

test using a likelihood ratio test statistic is done to determine the significance of the

covariates. To do so, the following hypotheses are tested:

H0 : γ = 0 and HA : γ 6= 0,

where the null hypothesis is testing the significance of the reduced model (homoge-

neous model), and the alternative is testing the significance of the full model (regres-

sion model). The test statistic is

Λ = (−2LReduced) − (−2LFull) ∼ χ2
b ,

where b is the number of reduced parameters. The values of LFull for group 1, 2 and 3

are -201.859, -214.240 and -271.890, respectively. Using these values, we find the test
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statistic for each group to be

Λ1 = 403.718 − 393.062 = 10.656 ∼ χ2
4,

Λ2 = 428.480 − 413.492 = 14.988 ∼ χ2
4,

Λ3 = 543.780 − 540.002 = 3.786 ∼ χ2
4.

Then, for group 1, 2 and 3, we find the p-value to be 0.0307, 0.0047, and 0.4357,

respectively. Therefore, we reject the null hypothesis for group 1 and 2, and fail to

reject the null hypothesis for group 3 at a significance level of 0.05. These results

are consistent with the results found from the Cox model, which found significant

covariates for group 1 and 2, and no significant covariates for group 3. To further

investigate the significance of the coefficients, a test of hypothesis on the significance

of the true coefficients is performed. Consider the following hypotheses:

H0 : γjp = 0 and HA : γjp 6= 0

for j = 1, 2 and p = 1, 2. Using the 95% asymptotic confidence intervals (Table 6.19),

we reject the null hypothesis if the interval does not contain the hypothesized value

(zero), and conclude the covariate is statistically significant. For group 1, we reject

the claim that γ11 and γ22 are equal to 0. For group 2, we reject the claim that

γ22 is equal to 0. For group 3, all intervals contain 0 so we fail to reject the claim

that the coefficients are equal to 0. Therefore, for group 1, these results suggest that

patient’s age is significant for the relapse hazard model and donor’s age is significant

for the remission hazard model at a 5% significance level. For group 2, it suggest that

the donor’s age is significant for the remission model at a 5% significance level. For

group 3, we find no significant covariates at a 5% significance level. The results of

this hypothesis test are consistent with the results found from the Cox’s cause-specific

hazard model.
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Par. 95% CI Par. 95% CI
Group 1

α1 [0.4298, 0.4913] α2 [0.4509, 0.5178]
β1 [0.0132, 0.0240] β2 [0.0415, 0.0698]
γ11 [0.0268, 0.2530] γ21 [-0.0292, 0.2098]
γ12 [-0.1493, 0.0345] γ22 -0.1794, -0.0044]

Group 2
α1 [0.4362, 0.5062] α2 [0.3784, 0.4225]
β1 [0.0523, 0.0818] β2 [0.0063, 0.0118]
γ11 [-0.1197, 0.1469] γ21 [-0.1233, 0.0375]
γ12 [-0.2283, 0.0525] γ22 [0.0426, 0.2742]

Group 3
α1 [0.4214, 0.4630] α2 [0.3581, 0.4048]
β1 [0.0857, 0.1161] β2 [0.1281, 0.1828]
γ11 [-0.1162, 0.0313] γ21 [-0.1608, 0.0381]
γ12 [-0.0351, 0.1047] γ22 [-0.0576, 0.1257]

Table 6.19: 95% asymptotic confidence intervals for the true parameters and coeffi-
cients of the regression model, where the risks are assumed to follow the Power Lindley
distribution.

78



Figure 6.17: The trace plots for the simulated draws using the Metropolis-Hastings
algorithm for Power Lindley (group 1).
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Figure 6.18: The ACF plots for the simulated draws using the Metropolis-Hastings
algorithm for Power Lindley (group 1), with regression.
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Figure 6.19: The marginal densities for the simulated draws using the Metropolis-
Hastings algorithm for Power Lindley (group 1), with regression.
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Chapter 7

Conclusion

In the thesis, we presented different techniques in analysing the competing risks mod-

els. In this final chapter, we discuss the significant conclusions drawn from the non-

parametric and parametric techniques conducted.

Non-Parametric Estimation

In the non-parametric techniques, we used the complement of the Kaplan-Meier (KM)

and empirical cumulative incidence function (CIF) to estimate the failure probability

of a specific cause. Overall, the complement of the KM estimates the probability of a

specific risk in the absence of all other risks. The CIF estimates the probability of a

specific risk in the presence of all other risks. When these techniques were applied to a

real-life data set that consisted of bone marrow transplant (BMT) patients, we found

that the probabilities of relapse leukemia and death in remission were overestimated

by the KM when compared to the CIF. A test of hypothesis on the CIF found that

the relapse probability were not equal among the three disease groups (ALL, AML-

LR, and AML-HR), where the death in remission probability were equal in the three

disease groups. The results of the CIF allowed us to estimate the relapse, death in

remission, and event-free probabilities at a given time in the range of the observations.

The probabilities found from the CIF, as well as the KM, are only valid for the

range of the observations. Thus, these non-parametric techniques cannot be used for

extrapolation. To overcome this obstacle, we assumed that the risks follow parametric

distributions.
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Parametric Estimation

The thesis presented seven useful risk distributions which all have unique charac-

teristics from one another. We first considered a homogeneous model in which no

covariates are assumed. The methods used to estimate the parameters of these homo-

geneous models were the maximum likelihood method, and Bayesian method using

the Metropolis-Hastings algorithm. The main piece of both estimation techniques

required the use of the likelihood function. The likelihood function presented in this

thesis accounted for right-censored and failure times due to a known cause of failure,

as well as accounting for observations in which the cause of failure is unknown. Pa-

rameter estimation was also conducted on a cause-specific hazard regression model, in

which the unknown parameters of the baseline cause-specific hazard and the unknown

coefficients of the regression needed to be estimated. The parameters of the baseline

cause-specific hazard were estimated using maximum likelihood and Bayesian meth-

ods, where the regression coefficients were estimated using these methods as well as

Cox’s partial likelihood function.

In the data analysis, we found the parameter estimates between the maximum

likelihood and Bayesian methods to be consistent with one another. According to

the AIC and BIC values, the data were best fitted when assuming a Power Lindley

distribution for ALL and AML-HR patients and a Weibull distribution for AML-LR

patients. The CIF that was the most consistent with the empirical CIF was when

assuming a Power Lindley and Weibull distribution. However, the values for the AIC

and BIC for the top three models did not differ significantly among each other, and

thus assuming a Power Lindley, Weibull, or STH-2 can be deemed appropriate. Unlike

the empirical CIF, the parametric CIF can be used to estimate failure probabilities of

a specific cause at any given time. When we incorporated the covariates to the cause-

specific hazard model, we estimated the coefficients of the regression portion by using

a partial likelihood function and left the baseline cause-specific hazard unspecified.

When we considered the fully parametric regression model, the parameters and coeffi-
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cients were estimated using maximum likelihood and Bayesian methods. The results

between all methods were consistent with one another. Testing the significance of

the homogeneous model against the regression model found that the regression model

was significant for group 1 and group 2, and not significant for group 3. Further

testing found that at least one of the covariates, patient’s age and donor’s age, were

significant for patients with ALL and AML-LR, but not for patients with AML-HR.

Limitations

The techniques in the thesis presented some complications. First, the numerical

methods used to maximize the likelihood function requires a specification of a starting

point. Based on the starting point, the method may fail to return the actual maximum

likelihood estimates. This may occur if the starting point is within proximity to the

local maxima rather than the global maxima. Secondly, the local maxima may also

affect the Metropolis-Hastings algorithm. If the chain enters a local maxima, then

the posterior evaluated at this point will have a higher posterior value than the points

nearby, and thus the probability that this point gets accepted will be 1. The problem

just mentioned can be caused by a bad choice of variance for the proposal distribution.

If the variance is very small, then the chain will explore tightly around the initial value

which may be near the local maxima. If the variance is very large, then the proposal

will suggest poor candidate values leading to a low acceptance rate [18].

Future Work

In this thesis, the results were presented by assuming the random variables were

continuous. Therefore, for future work, we will analyse the competing risks model

under the assumption of discrete random variables. A competing risks model where

each risk is assumed to follow a different lifetime distribution will be presented as

well. For future work on the competing risks regression model, the sub-distribution

model derived by Fine and Gray will be investigated [2].
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