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Abstract

DNA sequencing has transformed the discipline of population genetics, which seeks

to assess the level of genetic diversity within species or populations, and infer the

geographic and temporal distributions between members of a population. Restriction-

site associated DNA sequencing (RADSeq) is a Next-generation sequencing (NGS)

technique, which produce data that consists of relatively short (typically 50 to 300

nucleotide) fragments or “reads” of sequenced DNA and enables large-scale analysis

of individuals and populations. In this thesis, we describe computational methods,

which use graph-based structures to represent these short reads obtained and to

capture the relationships among them.

A key challenge in RADSeq analysis is to identify optimal parameter settings for

assignment of reads to loci (singular : Locus), which correspond to specific regions in

the genome. The parameter sweep is computationally intensive, as the entire analysis

needs to be run for each parameter set. We propose a graph-based structure (RAD-

Proc), which provides persistence and eliminates redundancy to enable parameter

sweeps. For 20 green crab samples and 32 different parameter sets, RADProc took

only 2.5 hours while the widely used Stacks software took 78 hours.

Another challenge is to identify paralogs, sequences that are highly similar due to

recent duplication events, but occur in different regions of the genome and should not

to be merged into the same locus. We introduce PMERGE, which identifies paralogs

by clustering the catalog locus consensus sequences based on similarity. PMERGE

is built on the fact that paralogs may be wrongly merged into a single locus in some

but not all samples. PMERGE identified 62%-87% of paralogs in the Atlantic salmon

and green crab datasets.

Gene flow is the movement of alleles, specific sequence variants at a given locus,

between populations and is an important indicator of population mixing that changes

genetic diversity within the populations. We use the RADProc graph to infer gene

flow among populations using allele frequency differences in exclusively shared alleles

in each pair of populations. The method successfully inferred gene flow patterns in

simulated datasets and provided insights into reasons for observed hybridization at

two locations in a green crab dataset.
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single-end sequencing Illumina sequencing of only one end of each DNA

fragment
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Chapter 1

Introduction

DNA sequencing is the process of determining the sequence of nucleotide bases (As,

Ts, Cs, and Gs) in DNA fragments. DNA sequencing has many applications in dif-

ferent areas such as forensics, medicine and agriculture. One of its important appli-

cations is in the field of population genetics. The evolutionary processes of mutation,

migration, genetic drift, and natural selection shape patterns of genetic variation

among individuals, populations, and species, and they can do so differentially across

genomes. Therefore, in population genetics these mechanisms and their interactions

and evolutionary consequences are investigated by building mathematical models,

developing statistical methods for inferring parameters of ancestral processes, and

testing hypotheses based on the analysis of real data [19]. Population genetics in-

volves studying changes in the frequencies of genetic variation in populations to infer

population structure or population subdivision in space and time (e.g. [16]).

Genetic variations are the differences in homologous DNA segments or genes or

loci (singular: locus) between individuals within and among populations and each

variation of a gene is called an allele (Figure 1.1a). Homologous genes or loci are two

or more genes that descend from a common ancestry and have high levels of sequence

similarity. Genetic variations could be found in orthologous loci and paralogous loci.

Orthologous locus represent homologous sequences that descended from the same

ancestral sequence and separated by speciation event. Paralogous locus represent

homologous sequences that are separated by a duplication event. Duplication can

occur in any region of a genome, and the resulting duplicated genes can be retained

1



2

or lost in the population during evolution. Genetic variations can arise as a result of

mutation, random mating, random fertilization or recombination events. Mutations

are considered as the original source of genetic variation, which results in permanent

alteration of DNA sequences due to different events such as substitution, insertion,

deletion and duplication [73]. A genetic variation is usually considered as DNA poly-

morphism if it appears with a 1% or higher frequency in a population [15, 62] and can

be a single base or thousands of bases found throughout the genome and may or may

not have phenotypic effects. DNA polymorphism with single nucleotide difference in

a DNA sequence (Figure 1.1a) that occurs in a significant proportion in a population

is known as Single Nucleotide Polymorphism (SNP).The abundance of SNPs and the

ease with which they can be measured make these genetic variations significant.

Reconstructing orthologous loci from the short reads is a necessary step in the in-

ference of SNPs. Orthologous loci can be built from the short reads by aligning (map-

ping) them to a reference genome that serves as a representative sequence database

for a species. Numerous tools and algorithms are available to perform sequence align-

ments to a reference genome (e.g., Burrows-Wheeler Alignment [67], Bowtie [65]).

But not all organisms have high-quality reference genomes readily available, such as

non-model organisms that are not usually studied extensively because they are hard

to investigate. In such cases, we have to rely on identifying loci and alleles de novo.

In the de novo-based methods, DNA sequences with a minimum threshold level of

similarity are identified and grouped as presumed alternative alleles of an ortholo-

gous locus [102]. Identification of orthologous loci and true SNPs from short-read

sequences remains especially challenging for species with a duplicated genome due

to the difficulties in distinguishing between duplicated genes. The single nucleotide

differences between duplicated loci in the genome are known as Paralogous Sequence

Variants (PSV) (Figure 1.1b) [49]. Since the quality of the identified SNPs can impact

the downstream population genetic analysis, it is important to differentiate SNPs and
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Figure 1.1: SNP versus PSV. a.) A Single Nucleotide Polymorphism (C/A) represent-
ing two alleles of locus b.) Two duplications with a variant (C/A). The duplicated
loci may be erroneously clustered as a single SNP.
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PSVs. However, given the large number of short-read DNA sequences often examined

per individual, assembling the sequences into orthologous loci is a crucial and often

challenging step in analyzing these genomic datasets.

1.1 Restriction site Associated DNA sequencing (RADSeq)

Population-genomic studies survey hundreds to thousands of genetic variations or ge-

netic markers to describe genome-wide variation and make population-wide inferences

[50, 9, 14]. Obtaining whole genome sequences from a large number of individuals is

expensive and not necessary in many cases [87]. The development of Next-Generation

Sequencing (NGS) [94] technologies has provided an alternative to whole genome se-

quencing by examining a small percentage of the target genome. NGS technologies

have led to an increase in the size and number of population-genomic studies even

in non-model organisms for which few or no genomic resources presently exist [16].

There are several short-read next-generation DNA sequencing methods [25], which

rely on reduced-representation sequencing approaches (e.g. [5, 54, 93]). Reduced rep-

resentation sequencing is a cost-effective method for sequencing a large number of

genome-wide loci across multiple individuals.

Restriction site Associated DNA sequencing (RADSeq) [7] is a reduced-representation

sequencing approach that can be applied to both model and non-model species. RAD-

Seq is a next-generation DNA sequencing-based genotyping method (e.g. [43]), which

allows sampling the genomes of multiple individuals in a population and identifying

and genotyping SNPs simultaneously. RADSeq involves the cutting of a template

genome with a specific enzyme called a restriction endonuclease, followed by mechan-

ical shearing and molecular biological processing steps. The resulting libraries are

then sequenced using a next-generation DNA sequencing platform. RADSeq is in-

creasingly being used in evolutionary and quantitative genomic analyses [60] including

genome-wide association [89], phylogenetic [105], and landscape genetic studies [3].
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...TAGCCTGCAGGCTACACGCTGAAAGACTGC...
...ATCGGACGTCCGATGTGCGACTTTCTGACG...

GGCTACACGCTGAAAGACTGC...
ACGTCCGATGTGCGACTTTCTGACG...

CGATATGCAGGCTACACGCTGAAAGACTGC...
GCTATACGTCCGATGTGCGACTTTCTGACG...

SbfI (Restriction Enzyme)

Genomic DNA 

Restriction Site

Overhang

MID (Barcode)

Figure 1.2: Restriction-Site Associated DNA sequencing (RADSeq) using restriction
enzyme SbfI, which has a recognition site (CCTGCAGG). The restriction site is
identified and the flanking DNA sequences (Red region) are sheared, which results in
cut site overhang.The barcode or molecular identifier (MID; CGATA) is then attached
to the overhang, following which the DNA is sequenced using a DNA sequencing
platform. Restriction enzyme image accessed from https://daily.jstor.org/ on 2019-
10-02.
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RADSeq (Figure 1.2) focuses on the flanking DNA sequences around each re-

striction site known as RAD-tags, to generate a reduced representative library [25].

The technique involves cutting the target genome with a particular restriction en-

zyme (e.g., SbfI), and as each restriction enzyme has a specific recognition site (e.g.,

the DNA motif CCTGCAGG for SbfI) the frequency of this site across the genome

determines the number of RAD-tags obtained [79]. In practice, the RAD-tags are

attached to a molecular identifier (Molecular Identifier (MID)), a short, synthetic

DNA sequence frequently referred to as a “barcode”, which allows the simultaneous

sequencing of different DNA samples [51]. The obtained sequences are then assigned

back to their corresponding samples using the same set of barcodes used during se-

quencing (demultiplexing) (Figure 1.3). RADSeq methods can differ in the details of

the experimental procedure used [6] (e.g., 2bRAD [104, 44] ,Genotype By Sequencing

(GBS) [36], CRoPS [103], ddRAD [84], ezRAD [101]).

Sample 1

Sample 2

Sample N

Multiplexing Demultiplexing

Sample 1

Sample 2

Sample N

Sequence file

Barcodes file

Figure 1.3: Representation of multiplexing and demultiplexing samples using bar-
codes.
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1.2 RADSeq analysis tools/pipelines

Currently there exist many software programs to process RADSeq data such as

Stacks [17], pyRAD [33] and AftrRAD [97]. Stacks is the most widely used soft-

ware package for RADSeq analysis and consists of modules to perform all tasks from

quality filtering, de novo or reference-aligned locus identification, genotyping and

generating population-genetic statistics. pyRAD is designed particularly for phylo-

genetic applications. Like Stacks, pyRAD and AftrRAD also can perform quality

filtering, de novo locus formation and genotyping and can also handle insertion and

deletion variations among alleles. In all these programs, the basic idea is to identify

SNPs by determining unique stacks of reads with a minimum depth of coverage and

aligned as allelic pairs of a candidate locus (de novo locus formation) if they satisfy a

predefined percentage identity or maximum nucleotide distance. The method used to

perform pairwise comparisons among the unique stacks to determine potential allelic

pairs differs in each program. For the purpose of describing the general process of

obtaining population genetics statistics from the raw RADSeq data (Figure 1.4) we

are using the Stacks pipeline.

1.3 De novo locus formation

De novo locus formation is the reconstruction of genomic regions from the raw reads

obtained from each sample/individual. The process involves identifying the reads

that are from a specific genomic region based on certain criteria. The two important

criteria are the minimum coverage depth and the maximum allowed nucleotide dis-

tance, which control the reconstruction of loci from the short reads. Exactly matching

reads with minimum coverage depth m or greater form unique stacks; these stacks

can be thought of as representing alleles, although some of them will represent errors

(Figure 1.5). Any stack that does not meet this depth threshold is kept aside for



8

Demultiplexing and
quality filter

De novo locus
formation

Building catalog of
loci

Filtering catalog of
loci

Population genetics
statistics

Chapter 2 (RADProc)

Chapter 3 (PMERGE)

Chapter 4 (Relative
gene flow network)

Figure 1.4: Typical steps involved in processing RADSeq data, from raw reads to gen-
erate population genetics statistics and the corresponding position of thesis chapters
in the workflow.
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Genomic
DNA

Unique Stack 1 Unique Stack 2 Unique Stack 3

Figure 1.5: Illustration of reads sequenced at a cut site and identification of unique
stacks from the raw reads obtained from sample 1 for minimum coverage depth m=5.
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adding to a locus later in the process and an allele is not formed. The reads that

form a unique stack are termed as primary reads and the ones that are kept aside are

known as secondary reads. If m is set very low, small numbers of reads with identical

sequencing errors may be erroneously labeled as stacks. If m is set very high, then

true alleles may be dropped from forming stacks, as they do not occur frequently

enough in the sequenced DNA. After forming the unique stacks, the next stage is to

merge putative alleles into an orthologous locus.

Unique Stack 1 Unique Stack 2 Unique Stack 3

1 2

3

1

34

Locus 1 Locus 2

Locus 1M = 1 M = 3

Figure 1.6: Determining the unique stacks within a given maximum allowed nucleotide
distance to merge into locus. When M =1, unique stack 1 and unique stack 2 are
merged into locus 1, where as unique stack 3 forms locus 2 with only one allele. But,
when M = 3, all three unique stacks are merged into one locus.

The unique stacks within an allowed nucleotide distance (M ) are then merged to

form the de novo locus (Figure 1.6). The secondary reads can be merged with any
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locus that is within a nucleotide distance higher than M, usually M +2. One important

thing to notice is that the nucleotide distance may be due to polymorphisms or may

be due to sequencing error. When M is set very low, relatively few stacks will be

merged and fewer SNPs will be identified (Figure 1.7a), on the other hand, a very

high value will merge repetitive stacks into large loci [45] (Figure 1.7b). De novo locus

formation is followed by identifying SNPs either using maximum likelihood [51] or

Bayesian approaches [81, 39].

TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

Unique
Stack 2

Unique
Stack 1

TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

SNP

TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

SNP

Unique
Stack 2

Unique
Stack 1

TGCAGAAAAACATCGGAGGTAAAAGAGTAAACCGGCACCTGTTGACGCAACTCACTCCAACACTGCAAGTA
Unique
Stack 3

TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTTAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

SNP SNPSNP

TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

TGCAGAAAAACATCGGAGGTAAAAGAGTAAACCGGCACCTGTTGACGCAACTCACTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAGGTAAAAGAGTAAACCGGCACCTGTTGACGCAACTCACTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAGGTAAAAGAGTAAACCGGCACCTGTTGACGCAACTCACTCCAACACTGCAAGTA
TGCAGAAAAACATCGGAGGTAAAAGAGTAAACCGGCACCTGTTGACGCAACTCACTCCAACACTGCAAGTA

a.)

b.)

TGCAGAAAAACATCGGAAGTAAAAGAGTAAACCGGCACCTGTTGATGCAACTCAGTCCAACACTGCAAGTA

Figure 1.7: a.) De novo locus formed from unique stack 1 and unique stack 2. One
single nucleotide polymorphism (SNP) is identified with alleles T and A. b.) De novo
locus formed from unique stack 1, unique stack 2 and unique stack 3. Four SNPs are
identified with alleles A/G, T/A, T/C, and G/C.
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1.4 Building catalog of loci

Once the de novo locus formation is complete and SNPs are identified, loci from all

the samples are added to a catalog along with the SNPs and alleles detected. The

catalog contains all the loci and alleles identified from all the samples in the dataset

(Figure 1.8). During catalog formation, the loci that are from different samples and

within a specified nucleotide distance threshold (n) are merged into one locus. This is

to consider differently fixed versions of the same locus as alleles rather than separate

loci. Two loci are merged into one catalog locus if they have one or more alleles within

the specified nucleotide distance threshold. The process can become complex and time

consuming as the number of samples increases, since the catalog keeps growing as loci

from new samples are processed and added to the catalog. The catalog of loci is then

filtered based on different criteria, for example, a locus may be required to be present

in at least a specified percentage of individuals in each population or in a minimum

number of populations or the frequency of the minor allele (the second-most-frequent

allele at a given locus) must be higher than a given threshold. From the retained

catalog loci, population genetics statistics like the FST [107], FIS, nucleotide diversity

etc., are generated.

1.5 Need for efficient methods to process RADSeq data

One limitation with the existing programs is the uncertainty in the minimum coverage

depth (m) and the maximum nucleotide distance (M ) to be satisfied to determine

potential allelic pairs, and the maximum catalog nucleotide distance (n). The number

of loci formed in each sample, the quality and quantity of the SNPs identified, and the

catalog built all depend on these parameters. Many recent publications [56] [75, 66, 91]

have emphasized how the parameter settings during de novo assembly and identifying

SNPs can significantly affect the number of loci obtained, genotyping error rate and
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Sample 1 Loci

Sample 2 Loci

Sample N Loci

Catalog locus 1

Catalog locus 2

Catalog locus 3

Catalog locus M

Figure 1.8: Building catalog of loci from all the loci identified from the samples 1 to
N. The resulting catalog has M number of loci.

population genetic inferences. Comparing the results for different sets of parameter

values requires repeating the de novo locus formation and catalog building. RADSeq

studies often require processing hundreds of samples collected from many different

locations [30, 114] and as such it is often a computationally demanding task to explore

different parameter sets. In order to enable parameter sweep on the de novo locus

formation and catalog building processes and compare their downstream effects, we

need faster and efficient RADSeq data processing methods.

1.6 Need to identify paralogs

Alignment methods can fail if too-stringent cut-offs for M exclude pairs of orthologs

with high levels of divergence, whereas paralogs with lower levels of divergence might

be mistaken for alleles of the same locus, leading to high rates of false positives [21].

Paralogs can be erroneously merged into a single locus, leading to the conflation of

allelic variation with differences among closely related gene family members [31]. As-

sembling paralogs as single loci increases false heterozygous genotype calls and can
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also confound genetic differentiation among individuals and populations, complicat-

ing genomic studies [26, 1]. The identification of variants due to genome duplica-

tions complicates population genomic inferences and remains an ongoing challenge

in species lacking reference genomes or a reference database of DNA sequences rep-

resenting the genes of a species. Extensive exploration of assembly parameters and

downstream analysis and pruning of putative paralogous loci is a necessary quality

control measure in RADSeq studies.

1.7 Directional relative gene flow among populations

Gene flow (migration) is the movement of alleles from one population to another.

Gene flow from source population to recipient population introduces new alleles in to

the recipient population and changes the corresponding allele frequencies (proportion

of individuals in which the allele is present) in the populations (Figure 1.9). One

of the primary applications of RADSeq in population studies is to understand pop-

ulation structure [91] using measures of genetic differentiation. The level of genetic

differentiation can be estimated using measures like FST [112, 52] and Nei’s GST [80]

using allele frequency data. The pairwise genetic differentiation between populations

can be estimated using the allele frequency data and used as a distance metric to

cluster the populations and infer the population structure.These genetic differentia-

tion measures assume gene flow among populations to be symmetric (same migration

rates in both directions), which is not always the case. If the gene flow is asymmetric,

the rate of gene flow is not same in both directions and may lead to skewed genetic

differentiation estimates among the populations [29]. Hence it is important to un-

derstand the gene flow patterns and the processes leading to genetic structuring of

populations (e.g., [86]).
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ariving

leaving

Figure 1.9: Alleles arriving and leaving in a population as a result of gene flow.

1.8 Computational methods developed

Graph theory and graph-based structures have a wide range of applications in the field

of computational biology, such as genome assembly, genome alignment, population

genetics, landscape genetics, biomedical informatics etc. A graph G consists of a

set of vertices V and a set of edges E. Two vertices are linked if there exists an

edge connecting them. A graph can be directed, which means the edges are directed

from one vertex to another, or undirected where there is no direction associated with

the edge. The ease of representing biological data into graph-based structures, to

study them and make new inferences makes graph theory more applicable in this

discipline. For example, Population Graphs [32] uses a graph theoretic framework to

estimate population genetic statistics. In whole-genome shotgun NGS sequencing, a

De Bruijn graph representing the connections among the reads is commonly used for

de novo assembly of reads into longer continuous contig and scaffolds (e.g., Edena [48],
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Velvet [115], ABySS [95], ALLPATHS-LG [42]).

In chapter 2, we introduce RADProc, a software package that uses a graph data

structure to represent all sequence reads and their similarity relationships. RADProc

builds a graph from the unique stacks identified from all the samples in the dataset

(Figure 1.10). Each vertex represents a unique stack and all relevant information

about the unique stack required for de novo locus formation and catalog building.

This includes coverage depth, the samples/individuals containing the unique stack,

the population in which the unique stack is present. This is not a fully connected

graph because there is a maximum nucleotide distance threshold used to build the

graph. The graph built is similar to the one built during de novo locus formation by

Stacks, except that in Stacks the graph is built from unique stacks identified from

each sample separately, whereas in RADProc the unique stacks from all the samples

are used to build the graph. While Stacks builds the graph at individual/sample

level, RADProc builds the graph at the entire dataset level.

Unique Stack 1

Unique Stack 2

Unique Stack 3

Unique Stack X

Figure 1.10: Unique stacks transformed into a network with stacks connected based
on maximum nucleotide distance threshold. The nodes represent the unique stack
(putative allele) sequences and the edge weights represent the nucleotide distance
between the unique stacks.
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For de novo locus formation from RADSeq data, we use a graph-based structure

built from unique stacks of reads and the similarity among them as edge weights to

merge them into putative loci with each unique stack representing a putative allele

in the locus. Storing sequence-comparison results in a graph eliminates unneces-

sary and redundant sequence-similarity calculations. De novo locus formation for a

given parameter set can be performed on the pre-computed graph, making param-

eter sweeps far more efficient. RADProc also uses a clustering based approach for

faster nucleotide-distance calculation. Since the RADProc graph structure contains

population level information of the unique stack similarity relationships, it can also

accelerate the catalog building process. The catalog locus is nothing but a subgraph,

which consist of all the unique stacks representing the locus alleles that are at least

one edge within a specified nucleotide distance threshold.

Catalog locus 1

Catalog locus 2

Catalog locus 3

Catalog locus L

Figure 1.11: Catalog loci transformed into a network with loci connected based on
similarity threshold. The nodes represent the catalog loci sequences and the edge
weights equal to the sequence similarity.

In chapter 3, we describe PMERGE, a novel method that identifies candidate par-

alogs or duplicated loci in the catalog of loci built from the RADSeq data. PMERGE



18

works by building networks of catalog loci that share high levels of consensus se-

quence similarity and flagging highly similar sequences as potential paralogs. To

identify paralogs, PMERGE builds a network of catalog loci based on a nucleotide

distance threshold value (Figure 1.11). The network obtained is not fully connected

since two catalog loci are connected by an edge only if they satisfy the nucleotide

distance threshold value. Unlike the RADProc network, in which the network nodes

are the unique stacks, in PMERGE the network nodes are the catalog loci. By em-

bedding PMERGE in the analysis pipeline of the widely used Stacks software [17],

it is straightforward to apply it as an additional filter in population-genomic studies

using RADSeq data and can also be used in addition to other existing approaches.

In chapter 4, we propose an approach to determine relative gene flow among pop-

ulations using allele frequency data. The method identifies exclusively shared alleles

between each pair of populations and uses the distribution of differences in the allele

frequencies of such exclusively shared alleles to determine the direction and relative

migration between pairs of populations. The proposed method is an extension to the

RADProc graph structure application. The information such as the alleles that are

exclusively shared between a pair of populations and their allele frequency data for

any given set of M, m and n can be easily extracted from the RADProc graph. Based

on the extracted information, we calculate a proposed measure W, which represents

the relative gene flow between each pair of populations. Once we obtain the W values

between each pair of populations, then we can build a network of populations with

W being the edge weights to visualize the gene flow patterns (Figure 1.12). The

network represents the relative gene flow in both the directions between all pairs of

populations.
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U1 U2

U6

U4U3 U5

U8

U9U10U7

P1 P2

P3

P5 P6

P4

Figure 1.12: Populations network built from RADProc graph based on the proposed
measure W to visualize relative gene flow among the populations P1 - P6.
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Chapter 2

RADProc: A computationally efficient de novo locus

assembler for population studies using RADSeq data

2.1 Introduction

RADProc is an algorithm and software package that streamlines and accelerates de

novo locus formation and catalog building from RADSeq data by eliminating re-

dundancies and using a highly efficient method for nucleotide distance calculation.

RADProc can efficiently sweep through different sets of parameters for de novo lo-

cus formation and catalog building. Although RADProc is an alternative method

for de novo locus formation and catalog building from RADSeq data, the output

files generated by RADProc are completely compatible with the Stacks pipeline. We

use the same parameters defined in Stacks for de novo locus formation and catalog

building. In Stacks, the parameter m represents the minimum sequence depth cri-

terion and the parameter M determines the maximum nucleotide distance allowed

between stacks that are to be merged into a locus. The unique stacks with coverage

depth less than m (secondary stacks) are merged with the already formed locus if

they uniquely match to a locus with nucleotide distance less than or equal to M +2.

The secondary stacks that match multiple primary stacks are discarded from the

analysis. Once the de novo locus formation from RADSeq data for a given sample

is completed, the single nucleotide polymorphisms (SNPs) in each locus are identi-

fied, with a maximum-likelihood approach to distinguish true variants from probable

sequencing errors. During the catalog-building step, loci from different individuals

21
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that are within a specified nucleotide distance n are merged into a single catalog locus.

RADProc can be used in two modes; one is to sweep through the different pa-

rameter values for m, M, and n to compare and identify optimal parameter settings

and the other is to directly use one set of known parameter values for m, M, and n.

Although there is no strict definition of optimal parameters, as suggested in [82] the

combination of M and m parameter values that give the highest number of polymor-

phic loci in 80% of individuals in each population could be considered as an optimal

parameter set. The idea is to use a subset of population samples to identify the opti-

mal parameters and then apply them to the larger dataset. Since RADProc is faster

in de novo locus formation and catalog building, the user can also try the parameter

sweep on larger datasets. We demonstrate and discuss the RADProc modes using

small and large datasets in the sections below.

2.2 Methods

2.2.1 RADProc graph data structure

The core of RADProc is the graph structure (Figure 2.1) used to store all unique stacks

with a coverage depth of at least two reads, omitting singleton reads that would be

eliminated by any reasonable value of m. The RADProc graph structure encapsulates

the principle of connecting unique stacks within a given nucleotide distance (i.e.,

parameter M in Stacks), but is tailored to avoid redundancy in two important ways.

First, all samples are processed and stored in a single graph data structure that

incrementally adds unique stacks from all samples. Since most stacks will be present

in more than one sample, this approach eliminates a great deal of redundancy in the

storing of data and removes the need for repeated comparisons of the same unique

stacks during locus construction. Second, the graph connects stacks that differ up
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to a relatively large nucleotide-distance threshold MG, which allows de novo locus

assembly for all M ε 1, . . . , MG - 2 directly from the graph, since we need to allow a

more lenient nucleotide distance of M + 2 for unique stacks with coverage depth less

than m to be merged with the already formed loci if they uniquely match to a locus.

So, if we want try M values up to 6, we will have to set MG = M + 2 = 6 + 2 = 8. For

example, if the graph is built with MG = 6, then de novo assembly can be performed

efficiently for all values of M from 1 to 4 and M +2 from 3 to 6. In the absence of the

graph data structure, the program must perform sequence comparisons each time a

new value of M is used in a parameter sweep, whereas the graph structure performs

sequence comparisons only once, with locus construction based directly on distance

values stored in the graph. Since the minimum coverage depth m required forming

a node in the graph structure is two (i.e., a unique stacks), we can also try different

values of m without the need to identify unique stacks each time.

Formally, RADProc is a graph structure G = (N,E), where N and E are node

and edge set, respectively, defined by

N = u1, u2, u3, u4, u5, . . . , un where ui represents a unique stack

E = (u, v) ∈ N × N: u 6= v, τ (u, v) ≤ MG where τ (u, v) is the nucleotide

distance between the unique stack sequences.

Each node in N contains information about a unique stack, and edges in E connect

all pairs of nodes where the nucleotide distance between the corresponding sequences

is less than or equal to the threshold value MG. The unique stack represents a

putative allele of a putative locus; since RADSeq is typically applied to samples from

the same species, many unique stacks are likely to be present in most or all of the

samples. Minimal overlap among samples will generate an impractically large graph

for datasets with hundreds of samples. To simplify graphs constructed from large

datasets, we use a filter to remove unique stacks that are not present in a minimum
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Figure 2.1: Sample RADProc graph structure. The graph represents connected
unique stacks in two different samples. The nodes are connected only if they are
within the nucleotide distance threshold MG; in this example, MG=10.



25

Figure 2.2: De novo assembly and catalog building. The proposed graph structure
built from the samples is processed, de novo loci for each individual are assembled,
and the catalog is constructed from the graph.

number of samples S and the minimum average coverage depth across samples D.

This approach ensures that unique stacks are present in at least S% of the samples,

while still retaining the potential to keep “private” alleles that are restricted to a

single population. Once the graph has been constructed, de novo locus formation

requires only lookup operations and extraction of the unique stack nodes that need

to be merged; since this process requires no sequence comparisons, it can be performed

quickly for all desired parameter combinations (Figure 2.2).

2.2.2 Nucleotide distance calculation

Nucleotide distance is the number of mismatches between a pair of sequences. In the

de novo assembly process, calculating the nucleotide distance between DNA sequences

is generally the rate-limiting step, depending on the number of unique reads in each

sample and the total number of samples. We evaluate the basic pairwise sequence
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comparison and k-mer counting method used by Stacks and a proposed clustering

based nucleotide distance calculation method.

Pairwise sequence comparison

Pairwise sequence comparison or string comparison is the basic method where two

sequences are compared character by character and every mismatch increments the

nucleotide distance by 1 unit. If we have to identify the pairwise nucleotide distance

between ‘n’ sequences then n ∗ (n− 1)/2 sequence comparisons need to be performed

and the time complexity would be O(n2). Let ‘l’ be the length of the sequences, then

the time complexity for nucleotide comparisons would be O(n2 ∗ l). If we stop the

comparison process for a given sequence pair once we reach the maximum mismatches

allowed, then the runtime varies based on the maximum mismatches allowed. In the

worst case scenario all the l characters need to be compared.

K-mer Counting

The word k-mer refers to all the possible substrings of length k in a string. For a

string of length l, there can be l − k + 1 k-mers (Figure 2.3). The method works by

breaking all the sequence strings into k-mers of length k and counting the occurrences

of query sequence k-mers in each of the subject sequence. Depending on the k-mer

length, the total number of sequences and the maximum nucleotide distance threshold,

the method can be computationally expensive and time consuming. There are many

efficient algorithms for counting k-mers like Bloom filter [78] based approach, Hashing-

based approach (JELLYFISH [72]) and Suffix array based approach (Tallymer [64]).

Stacks implements a Hashing-based approach to perform k-mer counting.

Identifying the nucleotide distances between a set of sequences using Hashing-

based k-mer counting involves the following steps,
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Figure 2.3: Identifying k-mers in query and target sequences. Matching 3-mers (k-mer
of length 3) between the query and target sequences are shown.

i. Determine the length of the k-mers to be used in the comparison, based on

the maximum nucleotide distance and the sequence length. For a given maximum

nucleotide distance, calculate the span from equation 2.1 starting with a default k-

mer length and increase the k-mer length until the span value is greater then the

sequence length. From equation 2.1, k-mer length is inversely proportional to max-

imum nucleotide distance, hence increasing maximum nucleotide distance would de-

crease the k-mer length.

span = (k −mer length ∗ (maximum nucleotide distance+ 1))− 1 (2.1)

ii. Break all the sequences in the set into k-mers using the value of k determined in

the previous step.

iii. Determine the minimum number of matching k-mers in the query and subject

sequences using equation 2.2 to consider for a full sequence comparison.

minimum matches = sequence length− span (2.2)

iv. All the subject sequences, which have the required minimum number of matching

k-mers with the query sequence are considered for full sequence comparison with the

query sequence.
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If n is the total number of k-mers, then the space complexity would be O(n). Let

j be the average number of k-mers generated per sequence, then the time complexity

for identifying matching k-mers would be O(j) per sequence (hash table look up is

O(1)). For i number of sequences the time complexity would be O(ij). Increasing the

value of M, reduces the length of the k-mer, as a result the total number of k-mers

generated increases and the minimum number of matching k-mers required for full

sequence comparison decreases. Consequently, the memory required to store the k-

mers and the runtime increase as the value of M increases. In the worst-case scenario,

most of the subject sequences would be selected for full sequence comparison; hence,

the time taken for k-mer generation and identifying matching k-mers, and the memory

occupied by the generated k-mers create overhead without any gain.

RADProc Nucleotide Distance Calculation

Figure 2.4: Cluster with 8 member sequences and a seed sequence. The variable MG

represents the radius of the cluster or the maximum distance between the seed and
the member sequences.
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Rather than performing an all-versus-all comparison of sequences, RADProc uses

a heuristic approach similar to UCLUST [35] to cluster similar sequences according

to MG and then performs pairwise comparisons only between sequences within these

clusters for the purpose of graph construction (Figure 2.4). The clusters are built by

iterating through the list of sequences and identifying “seed sequences” that define

their corresponding clusters. Each sequence is compared against the existing set of

cluster seeds: If the nucleotide distance between the cluster seeds and the new se-

quence is greater than MG, then the new sequence becomes a seed sequence of a new

cluster. The nucleotide distances between incoming sequence and the seed sequences

are calculated by pairwise sequence comparison only if the sequences have a mini-

mum number of matching k-mers. Once the matching seed sequence is identified,

the incoming sequence is added to that cluster. As a result, all the sequences are

grouped into clusters in which all constituent sequences are within a maximum nu-

cleotide distance from the seed sequence. RADProc also performs pairwise sequence

comparisons between sequences from two different clusters if the nucleotide distance

between their seed sequences is less than 2 × MG, because the initial clustering of

sequences depends highly on the order of incoming sequences, so similar sequences

(within MG) could end up in different clusters (Figure 2.5). Using 3 × MG as the

nucleotide distance threshold between the seed sequences covers all the clusters with

sequences less than MG apart, but increases the run time as more clusters are com-

pared than using 2 × MG. If we have to make sure that all the sequences within the

maximum nucleotide distance are identified then using 3 ×MG would be appropriate.

2.2.3 Validation datasets

Evaluation of RADProc was performed using RADSeq data extracted from two differ-

ent studies. The first dataset comprised green crab (Carcinus maenas) samples, which

were first used to study their population structure in the Northwest Atlantic [58]. A
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Figure 2.5: Comparing two clusters. If the identity between seed sequences of two
clusters is less than or equal to 2 × MG, then all the sequences in the two clusters
are compared.

smaller dataset comprising 20 samples from four different sites, and a larger dataset

consisting of 242 samples from 11 different sites were used to test the performance of

RADProc on datasets of different sizes. Each library consisted of 22 samples iden-

tified by variable-length in-line barcodes ranging from 5 to 9 bp. The libraries were

sequenced on a HiSeq 2000 (Illumina) as 100 bp paired end sequences. Each sample

comprised approximately 2.5 million RAD-tags. We have also used another dataset

of 16 brown trout (Salmo trutta L.) samples [82] from southwest England occupying

clean (8 samples) and metal-impacted (8 samples) sites. The reads from the trout

samples were 95 bp in length with an average of 2.9 million RAD-tags per sample.

The run-time of the RADProc nucleotide distance calculation method was com-

pared with the traditional pairwise string comparison and k-mer counting methods.

The comparisons were made using 10,000 and 50,000-sequence datasets and for M val-

ues 2, 4, 6 and 8 to compare the run-times when the number of sequences increases

as well as M increases.

As was done in [82], we tested M values from 1 to 8, m from 3 to 6 and n =

1 (the default setting in the ”cstacks” catalog-building program in Stacks) using

Stacks and RADProc and the run-times were compared. The samples were processed
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using the process radtags module in the Stacks pipeline. The de novo assembly and

catalog building were then done using the ustacks and cstacks modules, respectively.

RADProc was executed using S = 0.10, D = 2, MG = 10 and m = 6 to perform de

novo locus formation and catalog building for all the combinations of M and m. The

analysis was performed using the smaller dataset of 20 samples in order to try all 32

different combinations of the M and m parameter values described above. We also

compared the run times of Stacks and RADProc for the full dataset of 242 samples.

The maximum graph distance MG was set to 8 to try values 2 to 6 for M and m

from 3 to 6. The runtime evaluation was done using a Macintosh laptop (Mac OS

10.13) with Intel Corei5-4260U CPU @ 1.40GHz processor that can support 4 parallel

threads and 8 GB 1600KHz DDR3 RAM. The program was implemented using C++

11 and used OpenMP 4.0 for parallelization.

To compare the de novo loci formed, and catalog built using Stacks and RADProc,

we used the full dataset of 242 samples and the default Stacks parameter settings

M = 2, m = 3 and n = 1 for de novo locus formation and catalog building. We

used consensus sequences to identify de novo and catalog loci that were inferred

by both methods. The catalog locus sequences built by Stacks and RADProc were

then aligned to the green crab reference genome (Hleap et al., in preparation) using

BLASTN version 2.2.28 [4] with a minimum of 90% sequence identity and a maximum

E-value of 1e-20 to identify the number of uniquely mapping loci in both the Stacks

and RADProc catalogs. We also compared the results generated by the populations

program in Stacks using the de novo loci formed and catalog built using Stacks and

RADProc. All the catalog loci may not be well represented within and among the

populations and such catalog loci will be filtered out. The populations program was

run with filtering settings: percent samples limit per population (r) = 0.75, which

requires that a locus be present in at least the specified percentage of individuals in a

population; locus population limit (p) = 11, the minimum number of populations in
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which a locus must be present; and minor allele frequency cutoff (min maf ) = 0.05,

which sets a minimum threshold for the frequency of the minor allele (the second-

most-frequent allele at a given locus) for each SNP in a locus.

We compared the pairwise FST [107, 52] values among the populations from the

retained catalog loci for both Stacks and RADProc. The FST value is a measure

of population substructure and is most useful for examining the overall genetic di-

vergence among subpopulations. FST values up to 0.05 indicate negligible genetic

differentiation whereas FST > 0.25 means very great genetic differentiation among

the populations analyzed.

For the trout dataset, we compared the run-time performance of Stacks and RAD-

Proc for de novo locus formation and catalog construction for 32 parameter sets, from

M = 1 to 8 and m = 3 to 6 by setting MG =10. We also compared the de novo loci

formed and catalog of loci built by Stacks and RADProc from each sample for each

of the 32 different parameter sets (M and m). The locus consensus sequences were

compared and the proportion of common loci between Stacks and RADProc was

identified.

2.3 Results

After processing the raw RADSeq data from the smaller green crab dataset comprising

20 samples from four different sites using process radtags, they were provided as input

to RADProc. Approximately 70,000 unique stacks were identified per sample (Figure

2.6). 129,743 of the total 409,864 unique stacks identified were shared by at least

two samples, with the remaining 280,121 found in one sample only (Figure 2.7). We

eliminated unique stacks that did not satisfy S = 0.10 and D = 2, which left 135,309

unique stacks for further analysis.

The process was repeated with the large green crab dataset consisting of 242

samples from 11 different sites. There were 3,090,130 unique stacks loaded into the
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Figure 2.6: Total stacks (black bars) and unique stacks (gray bars) for each sample
in the small green-crab dataset.

Figure 2.7: Distribution of unique stacks across samples in the 20-sample green-crab
dataset. 280,121 stacks are present in one sample only, while 14,378 stacks are present
in all 20 samples.
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10000 Sequences

M Pairwise String Comparison K-mer Counting
RADProc Nucleotide
Distance Calculation

2 0m56.124s 0m6.486s 0m3.087s
4 0m59.856s 0m24.701s 0m2.565s
6 1m3.197s 0m42.916s 0m3.240s
8 1m7.251s 3m21.764s 0m3.982s

50000 Sequences
2 25m45.530s 0m20.727s 0m48.643s
4 27m33.725s 1m5.604s 0m57.342s
6 33m38.622s 2m15.783s 0m59.241s
8 35m10.312s 76m46.063s 1m5.485s

Table 2.1: Run-time evaluation of the RADProc nucleotide distance calculation ,
pairwise string comparison, and k-mer counting methods for different values of M
using datasets comprising 10,000 and 50,000 sequences.

RADProc graph data structure. As above, the unique stacks were formed from RAD-

tags with coverage depth of at least two reads. After filtering out unique stacks that

were not present in at least 22 samples and average coverage depth D <= 2, a total

of 426,260 unique stacks were retained. RADProc took 50 minutes to load RADSeq

data from all the 242 samples, calculate nucleotide distances with threshold MG, and

build the graph. The time taken to perform de novo locus formation and catalog

building for one set of parameter values was 275 minutes. In total, to try all the 20

different parameter settings, RADProc took 92 hours 30 minutes (approximately four

days). The large dataset was also processed using Stacks, which took 398 hours 40

minutes (approximately 17 days) for de novo locus formation and catalog building

for the 20 different values of M and m.

Table 2.1 shows the run-time comparisons for the RADProc nucleotide distance

calculation method and the pairwise sequence comparison and k-mer counting meth-

ods. For both the 10,000 and 50,000-sequence test datasets, the RADProc nucleotide

distance calculation was faster than the pairwise string comparison and k-mer count-

ing methods. Table 2.2 lists the run-time for the Stacks modules ustacks and cstacks
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Figure 2.8: Runtime for values of M = 1 to 8 during a.) de novo locus formation and
b.) catalog building.
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Table 2.2: Run-time evaluation of ustacks and cstacks for different values of M and
m. Total runtime of Stacks across all parameter sets was 78 hours, versus 2 hours 40
minutes for RADProc.
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Figure 2.9: Comparisons using different parameter values for M and m. The mini-
mum, average and maximum number of de novo loci formed, number of polymorphic
loci, and SNPs identified for different values for M and m for the 20 samples are
shown.
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for all 32 different tested combinations of M and m. For de novo locus formation, the

runtime increased as the M value increased, and for the catalog building the runtime

decreased as the M value increased (Figure 2.8). Stacks took approximately 78 hours

in total, while RADProc took just 2 hours 40 minutes to perform the same analysis.

RADProc took 5 minutes in total to load RADSeq data from all 20 samples, perform

nucleotide-distance calculation with threshold MG and build the graph structure, and

approximately 5 minutes for de novo locus formation and catalog building for each

set of parameters. Figure 2.9 compares the total number of loci, polymorphic loci,

and SNPs identified for the 32 different combinations of values for M from 1 to 8

and m from 3 to 6. In this example, the number of total loci formed and number

of polymorphic loci identified plateaus after M = 4 but the number of SNPs identi-

fied keeps increasing as M increases suggesting that there could be loci with a high

density of SNPs [82]. On average, approximately 97% to 98% of the loci formed by

RADProc were identical to the ones formed by ustacks, and on average RADProc

produced approximately 3% fewer de novo loci than ustacks for different values of

M and m. Similarly, we also compared the consensus sequences of the catalogs of

loci generated by RADProc and cstacks for the default Stacks settings i.e., M = 2,

m = 3 and n = 1. The catalog generated by RADProc contained 91,825 loci and

the cstacks program in Stacks built a catalog of 105,424 loci. Out of the 105,424 loci

in the catalog built by Stacks and 91,825 loci in RADProc catalog, 86,375 loci were

common between the two methods. Aligning the catalog locus consensus sequences

from Stacks and RADProc to the green crab reference genome, 75,431 loci (71.5%)

from the Stacks catalog and 68,125 loci (74.2%) from the RADProc catalog uniquely

mapped to the reference genome.

The populations program filtered the catalog loci according to the parameter set-

tings defined on Page 31 and retained 14,898 and 12,267 loci from the RADProc and

Stacks catalogs respectively. RADProc had 22% more catalog loci that passed the
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stringent population filters than Stacks. Comparing the pairwise Fst values between

the 11 sites (Table 2.3), the Fst values obtained by RADProc differed from Stacks

by 0.82% on average, with a minimum and maximum of 0.04% and 3.14% respec-

tively. Out of the 14,898 retained RADProc catalog loci, 2919 were private alleles,

while 1942 out of 12,267 Stacks catalog loci were private alleles. Figure 2.10 shows

the distribution of the private alleles in each of the 11 populations for RADProc and

Stacks.

For the RADSeq data from the brown trout dataset of 16 samples, RADProc

identified 364,611 unique stacks. We eliminated unique stacks that did not satisfy S

= 0.10 and D = 2, which left 227,796 unique stacks for further analysis. From the run-

times recorded for the 32 different parameter-value combinations of M and m (Table

2.2) using the Stacks modules ustacks and cstacks. processing all 16 samples for 32

parameter sets ustacks took approximately 252 hours and cstacks took approximately

11 hours, so in total Stacks required 263 hours. On the other hand, RADProc required

only 23 hours to perform de novo locus formation and catalog building for all 32

parameter sets. Comparing the de novo loci formed by RADProc and Stacks, on

average approximately 96% of the loci formed were common between RADProc and

ustacks and RADProc produced approximately 7% fewer de novo loci on average

than ustacks across all the parameter combinations of different values of M and m.

We have also compared the consensus sequences of the catalogs of loci generated by

RADProc and cstacks for the default Stacks settings i.e., M = 2, m = 3 and n = 1.

The catalog generated by RADProc contained 149,381 loci and the cstacks program

in Stacks built a catalog of 175,242 loci. Out of the 175,242 loci in the catalog built

by Stacks and 149,381 loci in RADProc catalog, 124,045 loci were common between

the two methods.
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Figure 2.10: Private alleles retained by Stacks vs RADProc. The number of private
alleles retained by the populations program using the de novo loci formed (M = 2
and m = 3) and catalog built (n = 1) for the 242-sample dataset using RADProc
(black) and Stacks (grey) are plotted.

2.4 Discussion

RADSeq has enabled simultaneously examining tens of thousands of genetic loci

for hundreds of individuals for a variety of ecological and evolutionary applications.

Available tools for processing RADSeq data are useful in de novo loci assembly of

the RAD-tags and genotyping those loci for evolutionary analysis. However, the

parameter settings during de novo formation can significantly affect the analytical

results [74]. The uncertainty in choosing the optimal minimum sequence depth re-

quired to consider the reads as potential alleles and the maximum distance allowed

between such reads to be merged into candidate loci requires running the program

multiple times and comparing the results to determine the optimal values for these

parameters. The optimal values are determined based on the number of loci formed

and the number of SNPs identified per sample (Figure 2.9). In practice, this could

be achieved by using a smaller dataset to sweep through the parameter values. But

as shown in the run-time comparisons above, trying different parameters could be
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BDB BRN CBI CLH KJI MBO NWH PLB SGB SYH TKT
BDB 0.02 0.05 0.01 0.02 0.01 0.05 0.03 0.01 0.01 0.05
BRN 0.02 0.05 0.02 0.02 0.02 0.06 0.03 0.02 0.02 0.05
CBI 0.05 0.05 0.05 0.04 0.05 0.01 0.03 0.06 0.06 0.01
CLH 0.01 0.02 0.05 0.02 0.01 0.05 0.03 0.01 0.01 0.05
KJI 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.02 0.04
MBO 0.01 0.02 0.05 0.01 0.02 0.05 0.03 0.01 0.01 0.05
NWH 0.05 0.06 0.01 0.06 0.04 0.05 0.03 0.06 0.06 0.01
PLB 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03
SGB 0.01 0.02 0.06 0.01 0.02 0.01 0.06 0.03 0.01 0.06
SYH 0.01 0.02 0.06 0.01 0.02 0.02 0.06 0.03 0.01 0.06
TKT 0.05 0.05 0.01 0.05 0.04 0.05 0.01 0.03 0.06 0.06

Table 2.3: Pairwise FST values between the 11 sites generated by the populations
program using the de novo loci formed (M = 2 and m = 3) and catalog built (n =
1) for 242 green crab samples dataset using RADProc (above black diagonal) and
Stacks (below black diagonal).

extremely time-consuming for even a small dataset of 20 samples. RADProc reduces

the number of unique reads per sample by retaining only the unique reads that are

present in a minimum number of samples and also have an average minimum coverage

depth across all the samples in which it is present. RADProc accelerates the process

by eliminating redundant calculations and using a faster nucleotide distance calcu-

lation method. The acceleration is observed across the two tested datasets, which

suggests that it will work similarly well for other datasets too.

RADProc was able to calculate the nucleotide distances for increasing values of

M in similar run-times (ranging from 48 seconds to 1 minute for 50,000 sequences).

By contrast, the run-times for pairwise sequence comparison and k-mer counting

methods increased as the value of M increased. The proposed method out-performed

the other methods as the number of sequences increased as well. The graph data

structure stores all the unique reads across all samples in the dataset and connects

them if they are within a maximum nucleotide distance threshold, thus eliminating

the need for reformation of unique reads when the value of m changes and the need

for recalculating the nucleotide distance when M changes and reducing the run-time.
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The constant time required for each parameter combination after building the graph

with RADProc contrasts with run-time for Stacks, which increases as the value of M

increases.

Although RADProc is efficient in processing the RADSeq data and decreases the

run-time manyfold in comparison to Stacks, RADProc also depends on reducing the

number of unique stacks using the abundance (S ) and average coverage depth (D)

based filtering of unique stacks. In our evaluation, even with the S and D based

filtering of unique stacks there was a large proportion of common loci between the

two methods. More lenient values of S and D, could increase the proportion of

common loci between the two methods, as RADProc would be filtering more number

of unique stacks, which are retained by Stacks.

2.5 Summary

RADProc is a RADSeq data processing software package that can be used for de

novo locus formation and genotyping the formed loci. RADProc is different from

other RADSeq tools by providing options to sweep different parameter set values for

de novo locus formation and catalog building. By accelerating nucleotide distance

calculations and separating distance calculation from locus inference and catalog con-

struction, RADProc can efficiently process large RADSeq datasets containing several

hundred samples or more. This is highly advantageous considering the uncertainty in

choosing the parameter values for de novo locus formation and the need to process

large datasets for population studies. By accelerating locus formation and catalog

building, RADProc allows rapid processing of large RADSeq datasets, and efficient

evaluation of different parameter combinations to identify suitable values for analysis.



Chapter 3

PMERGE: Computational filtering of paralogous sequences

from RADSeq data

3.1 Introduction

Duplication events at the gene, chromosome or genome level [53] can create two or

more paralogous DNA sequences from a single ancestral sequence and complicate

genome assemblies and estimation of genetic variations [27]. The identification of loci

and true SNPs from short sequences remains especially challenging for species with

a duplicated genome because the duplicated sequences can be wrongly merged into a

single locus, causing difficulty in identifying true allelic variations [50]. A well-known

example is that of the salmonid fishes, which underwent a whole-genome duplica-

tion event approximately 80 Million Years Ago (MYA) [71, 68]. In the absence of a

reference genome, there are several methods available to filter paralogous loci from

the genome data. Some approaches augment the genetic data with other informa-

tion, such as linkage mapping based on pedigrees [106], and removing heterozygous

SNPs from double-haploid individuals [69]. Computational filtering approaches rely

solely on the DNA sequence data, and can be done either during assembly and geno-

typing [31, 33] or on the assembled data, for example, by retaining only those loci

with the expected number of alleles and by retaining only those putative loci whose

inferred genotype frequencies conform to Hardy-Weinberg equilibrium (HWE) expec-

tations [50, 17]. For populations in HWE, the expected heterozygosity can never

be more than 0.50 at any bi-allelic locus. HDplot [76] uses read depths and excess

43
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heterozygosity to identify putative paralogs. HDplot works by plotting the relative

proportion of heterozygotes in a population (H) and the deviation of allele-specific

reads of each locus from a 1:1 ratio (D). One more approach is haplotyping [109],

which relies on the fact that closely linked SNPs can constitute haplotypes of which

a diploid individual can have no more than two.

An important challenge in distinguishing paralogs is the choice of percent identity

used to delineate loci; typically, a value of 98-99% among reads is used (e.g., [18, 70]).

However, a stringent similarity threshold carries the risk of splitting divergent alleles

into separate loci (“over-splitting”) if the orthologs differ by an amount greater than

the similarity threshold, whereas lower similarity thresholds can allow paralogous

sequences to be incorrectly merged into one orthologous locus (“under-splitting”) [45,

91]. Stacks identifies the erroneously merged sequences and tries to break them into

multiple loci using a deleveraging algorithm, which calculates a minimum-spanning

tree out of the graph representing the locus, using the stacks from the locus as nodes

and the distance between them as edge weights. A minimum-spanning tree requires

that there is only one path between each pair of nodes in the graph (no cycles) and

that all edges in the graph are of minimal weight. The graph is traversed and the edge

weights are recorded and ordered. The graph is sheared at all edges with weight equal

or greater than the second smallest edge weight. However, if the erroneous locus is

formed from only 2 or 3 paralogous stacks, it will not be considered an over-merged

locus.

Given the potentially confounding effects of paralogous loci, new methods are

needed to identify them and allow removal prior to the inference of population-level

statistics. Here we describe PMERGE, a new method that identifies candidate par-

alogs or duplicated loci in the catalog loci built by the Stacks program. PMERGE

works by building networks of catalog loci that share high levels of nucleotide sim-

ilarity and flagging highly similar sequences as potential paralogs. Our approach is
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able to successfully identify the majority of paralogous loci generated from a RADSeq

analysis of two species, first 150 sampled Atlantic salmon (Salmo salar); and second

242 green crab (Carcinus maenas) samples. By embedding PMERGE in the analysis

pipeline of the widely used Stacks software [17], it is straightforward to apply it as

an additional filter in population-genomic studies using RADSeq data and can also

be used in addition to other existing approaches.

3.2 Methods

3.2.1 Identification of putative paralogs using PMERGE

The PMERGE software (Figure 3.1) is run after sstacks and before populations to

generate a “whitelist” of loci from the catalog based on population-level filtering

conditions and our new paralog-detection method. The populations program then

uses only the whitelisted loci to generate population-genetic statistics. Apart from

the paralog filter, PMERGE includes the following filters that are also used by the

populations program: percent samples limit per population (r), which requires that

a locus be present in at least the specified percentage of individuals in a population;

locus population limit (p), the minimum number of populations in which a locus must

be present; minor allele frequency cutoff (a), which sets a minimum threshold for the

frequency of the minor allele (the second-most-frequent allele at a given locus) for

each SNP in a locus; maximum observed heterozygosity (q) for each SNP in a locus;

and minimum stack depth (m) at a given locus.

Paralogous sequences that have arisen from recent duplication events will exhibit

high similarity with more than one region in the genome. The catalog built from

the de novo loci formed from each individual gives us a pool of loci from all the

individuals in the population, and our hypothesis is that highly similar groups within

the pool of de novo loci have a high probability of being derived from multiple sites
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Figure 3.1: Use of PMERGE in the Stacks workflow to generate whitelisted (WL) loci.
(A) The modified Stacks pipeline with PMERGE invoked immediately after sstacks
is used to search loci against the reference catalog. The populations program can use
the whitelist file generated by the PMERGE module to include only those whitelisted
loci. (B) The PMERGE module reads the catalog, tags, SNP, and match files, applies
user-defined filters and performs clustering to identify and eliminate paralogs. The
retained loci are then written to a whitelist file.

in the reference genome. PMERGE is applied to the catalog of loci and not to the de

novo loci formed in each sample separately: the paralogs may be merged into a single

locus in some but not all samples, allowing us to cluster them and identify based

on similarity. PMERGE flags the polymorphic (heterozygous) catalog loci that are

clustered with at least one other catalog locus.

To identify probable paralogs, we construct a graph or network where each node

corresponds to a locus, which is represented by its consensus sequence. The consensus

sequence represents the sequence of major allele nucleotides at each position in the

locus sequence. For efficiency, we represent all sequences of a given locus with a

consensus sequence, which greatly simplifies the network; in practice this reduction

has minimal impact on the inference of paralogs. Using the consensus sequences

can allow us to capture the cumulative mismatches of all the sequences in the locus.

PMERGE uses a more-lenient similarity threshold than M for clustering the catalog
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locus consensus sequences, which allows us to identify loci that are less similar than

their constituent stacks but similar enough to be flagged as duplicates.

A cluster similarity threshold parameter C is set (default value 90%), and all

pairs of loci whose representative sequences that are C % similar are connected with

an edge. Sets of loci that are connected by at least one path in the network define

connected components; each of these components is interpreted as a putative set of

paralogous sequences. These sequences can then be removed from the dataset prior

to calculation of population parameters, or set aside for further analysis.

PMERGE subdivides catalog loci into probable paralogs by (i) determining the

consensus sequences from the catalog loci, (ii) buliding a network that connects the

consensus sequences within a similarity threshold C, and (iii) flagging all catalog loci

with consensus sequences clustered with at least one other consensus sequence as

probable paralogs.

3.2.2 Validation of the proposed method

We validated the performance of PMERGE on an Atlantic salmon data set (see [13])and

a green crab data set (see [58]). For reference comparisons, polymorphic catalog loci

consensus sequences were aligned to version ICSASG v2 of the Atlantic salmon ref-

erence genome [68] and the Green crab reference (Hleap et al., in preparation) using

BLASTN version 2.2.28 [4] with a minimum of 90% sequence identity and a maximum

E-value of 1e− 20.

The Atlantic salmon data set contained RADSeq data obtained from 150 individ-

uals from 15 different locations along the south coast of Newfoundland, Canada. The

dataset comprised samples with approximately 2,500,000 to 14,000,000 RAD-tags per

individual trimmed to 80bp. The genomic DNA was digested using restriction en-

zyme SbfI, and the resulting fragments were sequenced. Individually barcoded RAD
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samples were jointly sequenced on the Illumina GAIIx platform with single-end se-

quencing 100-bp chemistry. The Atlantic salmon genome underwent a whole genome

duplication (WGD) event 80 million years ago and is in the process of reverting to

diploid state (Ohno et al. 1968; Allendorf and Thorgaard 1984; Macqueen and John-

ston 2014; Lien et al. 2016). As such, salmon is a good choice for validation of our

proposed method, as there is a reference genome available that allows us to verify the

majority of our predictions by mapping loci back to the genome. We evaluated the

number of paralogs identified by PMERGE with the Stacks de novo assembly similar-

ity parameter M set to 2 and 4 in separate runs. The parameter C was varied from

90% to 50% in intervals of 10%, to compare the number of paralogs identified. [56]

recommended an M value of 2 to reduce the merging of putative paralogs into one

locus. De novo locus formation with M = 4 was also done to demonstrate the effect of

over-merging in identifying the paralogs using the proposed approach. The catalog of

loci was built using cstacks with the maximum nucleotide distance allowed between

catalog loci to merge n = 1. The resulting catalog of assembled de novo loci was

passed to our filtering software, with parameter settings a = 0.05, p = 12 and r =

0.75.

The validation involved identifying the efficiency of PMERGE in correctly identi-

fying and removing the paralogs in both data sets by aligning the identified paralogs

to their corresponding reference genomes. Firstly, all the polymorphic catalog loci

were aligned to their reference genome and the loci with multiple hits to the ref-

erence genome flagged as candidate paralogs. Secondly, constituent alleles of each

polymorphic catalog locus were aligned to the reference genome and alleles map-

ping to different regions in the reference genome were identified to flag the wrongly

merged paralogs in the catalog. By comparing the polymorphic catalog loci flagged

as paralogs by PMERGE with the candidate paralogs and the candidate PSVs the

proportion of duplicated loci and PSVs identified by PMERGE was determined.
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The impact of the parameter M on the results was also examined. The number of

paralogous loci and PSVs identified by PMERGE was also compared with HDplot and

filtering by deviations from H-W expectations. The populations program in Stacks

generates a VCF format output that was used as input for HDplot. The deviations

from H-W equilibrium were analysed using VCFtools, which can use the VCF format

output from Stacks. Loci that significantly deviate from HWE (p = 0.001) were

flagged as paralogs. A combination of PMERGE and the two approaches was also

performed to evaluate the possibility of improvement in the proportion of paralogs

detected.

The error rates for different values of C were calculated by determining the number

of paralogs (polymorphic loci with multiple hits to the reference genome) correctly

identified in the clustered loci, and the number of non-paralogous sequences that were

rejected in the analysis (false positives); the error rate for a given C was calculated

as the ratio of the number of false positives to the total number of clustered loci. We

used ROC (Receiver Operating Characteristic) curves to assess the performance of

PMERGE in filtering paralogs. In a ROC curve, the true-positive rates (in our case,

detected paralogous loci) are plotted against the corresponding false-positive rates

(single-locus alleles incorrectly classified by PMERGE as paralogous) for different

values of a parameter, in our case C. The area under the resulting ROC curve (AUC)

gives a measure of how well the method can distinguish between paralogous and

non-paralogous loci.

One of the statistics calculated by the populations program in Stacks is pairwise

FST values between all pairs of populations under study. Since paralogs can affect

population divergence estimates [109], we compared the pairwise FST before and after

paralog filtering by PMERGE on pairwise FST. Dendrograms were generated from

the pairwise FST distance matrices obtained with and without application of the pro-

posed filter for M =2 and C =90%. The generated pairwise FST distance matrices were
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clustered using the “hclust” function in the R package “stats” [88], which uses an

agglomerative hierarchical clustering approach to construct relationships among dif-

ferent populations. In this analysis, the pairwise FST distance between populations

was used as the distance metric, with clusters constructed based on the average-

linkage criterion, where the distance between two clusters of populations is defined

as the average pairwise FST distance between each of their populations. The dendro-

grams created were mapped to the actual geographical locations using GenGIS [83].

Differences in the topologies of the dendrograms created before and after PMERGE

filtering were evaluated by calculating the Robinson-Foulds distance (RF: [90]), as im-

plemented in T-REX [11] and the rooted subtree prune-and-regraft (rSPR: [47, 108])

distances. The RF distance is the measure of number of bipartitions in one tree that

are absent in the other tree. Migration of a single branch to a different part of the tree

can affect many bipartitions, which inflates the RF distance and may overemphasize

the distance between the two corresponding trees. An SPR operation cuts a subtree

from the rest of the tree and reattaches it in a different location. The rSPR distance

between two trees is equal to the minimum number of SPR operations required to

reconcile two rooted trees, and is influenced less strongly by single branch migrations.

RF and SPR therefore provide two contrasting views of tree similarity.

We also tested the ability of PMERGE to detect paralogs in a species that has

no historical genome duplication. The green crab (Carcinus maenas) dataset con-

sists of RADSeq data extracted from 242 individuals from 11 locations in eastern

North America. Each library consists of 22 samples identified by variable length in-

line barcodes ranging from 5 to 9 bases. The libraries were sequenced on a HiSeq

2000 (Illumina) as 100 bp paired end sequences. The dataset comprises samples with

approximately 3,000,000 RAD-tags per individual trimmed to 80bp. The RADSeq

data from each individual sample were cleaned, demultiplexed and de novo assem-

bled using the default Stacks parameters M = 2 and m = 3. The catalog of loci was
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built using cstacks with maximum nucleotide distance allowed between catalog loci to

merge n = 1. The resulting catalog of loci was then filtered using PMERGE with the

parameter settings a = 0.05, p = 11 and r = 0.75. In separate runs, the parameter

C was varied from 90% to 40% with intervals of 10%, to compare the number of

paralogs identified. Contrasting the Atlantic salmon genome, the absence of recent

whole-genome duplication in green crab lowers expectations of the prevalence of par-

alogs. The inclusion and comparison of both species allows the utility of PMERGE

to resolve paralogs under two very different contexts to be evaluated.

3.3 Results

We examined the effectiveness of PMERGE on data sets from two different species

with distinct evolutionary histories. Both species have reference genomes available,

which allow validation of paralogs predicted by PMERGE. First, we examined a set

of RADSeq data from Atlantic salmon (Salmo salar), which has a recent (80 MYA)

whole-genome duplication and consequently a large proportion of expected paralogs.

The analyses included identifying the impact of filtering paralogs on the inferred

population structure and random subsampling of loci to show that the differences in

population structure after filtering the paralogs is not random. We also examined the

removal of paralogs from a European green crab (Carcinus maenas) dataset, which

was first used to study their population structure in Northwest Atlantic [58] and has

no known historical genome duplication.

3.3.1 Atlantic salmon analysis

For M = 2, after applying the filters (see methods), 25,209 polymorphic catalog loci

were retained and alignment of the locus consensus sequences to the Atlantic salmon
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reference genome using BLASTN revealed that 13,510 of these 25,209 were putative

paralogs and mapped to multiple locations in the genome. Similarly, aligning the con-

stituent allele sequences from the 13,510 catalog loci revealed that 4,852 loci (36%)

had their allele sequences mapped to multiple regions in the reference genome. Out of

the 13,510 putative paralogs, 5447 (40%) were unplaced and 8063 were chromosome-

positioned (Figure 3.2). Approximately 36% of the 8063 loci mapped to the home-

ologous blocks with high similarity ( >90%) and 52% of the 8063 loci are from the

other homeologous blocks specified in [68].

Figure 3.2: Distribution of putative paralogs (chromosome-positioned) with respect
to the chromosome regions. The putative paralogs are flagged from the catalog formed
from Atlantic salmon data set with de novo locus formation using M = 2 by aligning
to the reference genome.

As Figure 3.3 shows, at C = 90%, out of the 25,209 loci, 8,226 (32.63%) were clus-

tered by PMERGE (i.e., potential paralogs) and 16,983 loci remained non-clustered.
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Of the 8,226 clustered loci, 8,214 (99.85%) mapped to multiple locations in the ref-

erence genome. Reducing C to 80% increased the number of loci clustered to 10,667

with 10,268 (96.26%) loci mapping to multiple locations in the genome. The cluster

similarity threshold C was varied between 50% and 90% at intervals of 10% and the

error rates recorded. Approximately 81% and 85% of the total putative paralogs were

identified by C = 70% and C = 60%, respectively. From C = 90% to C = 60%,

the error rates varied from 0.01 to 0.10. At C = 50%, all the 25,209 polymorphic

loci were flagged as paralogs by PMERGE. On the other hand, using the HDplot ap-

proach, loci with the proportion of heterozygous individuals (H) > 0.6 and read-ratio

deviation (D) between −7 and 7 were flagged as paralogous. The HDplot approach

identified 1996 loci as paralogs, out of which 167 loci uniquely mapped to the reference

genome (false positives). The HWE filter identified 2,499 loci as paralogs, in which

566 loci were false positives. Approximately 36% and 45% of paralogs flagged by

HDplot and deviations from HWE overlapped with paralogs identified by PMERGE

(C = 60%), respectively. PMERGE identified 1938 loci with wrongly merged PSVs

at C = 90%, and the proportion increased as the similarity threshold C decreased.

PMERGE identified a maximum of approximately 60% of the 4,852 merged PSVs at

C = 60%. HDplot identified 31% and deviation from HWE identified 30% of the loci

with wrongly merged PSVs.

When C = 90%, out of the 4573 chromosome-positioned loci, 1211 (26.5%) were

from high-similarity duplicated regions and 2649 (58%) were from other duplicated

regions. Reducing C to 80%, out of the 5667 chromosome-positioned loci, 1494

(26.4%) mapped to high-similarity duplicated regions and 3340 (59%) mapped to

other duplicated regions. At C = 60%, a similar trend was observed, with 1943

(28%) and 4111 (59%) of the 6981 chromosome-positioned loci from high-similarity

duplicated regions and other duplicated regions respectively. From C = 90% to C

= 60%, approximately 12% to 16% of the loci were unplaced in the chromosome.
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Figure 3.3: Comparing the effectiveness of the HDplot, HW approach and PMERGE
for Atlantic salmon data set with de novo locus formation using M = 2. Showing the
number of putative paralogs identified, false positives and true paralogs identified by
the HDplot, HW approach and PMERGE with different settings of cluster similarity
C.

Approximately 60% of the 8226 loci that clustered at C = 90% mapped to exactly

two locations in the reference genome. Figure 3.4 shows the distribution of the loci

mapped exactly to two locations with respect to the number of mismatches, including

gaps. About 43% of the clustered loci that mapped exactly to two locations in the

reference genome are part of clusters of size 2, and 71% of the loci with exactly two

hits belong to clusters of size from 2 to 20. This illustrates the correlation between

the size of the clusters and the number of matching locations in the genome.

Combining PMERGE with HDPlot or deviation from HWE methods increased the

proportion of paralogs and loci with wrongly merged PSVs identified (Figure 3.5).

We observed an approximately 8% to 10% increase in the putative paralogs identified

(Figure 3.5A) and a 22% to 26% increase in the loci with merged PSVs detected

(Figure 3.5B). At C = 60%, using only PMERGE we were able to identify 85% of the

putative paralogs and 60% of loci with merged PSVs, whereas combining PMERGE



55

Figure 3.4: Distribution of filtered loci when C = 90% that mapped exactly to two
locations in the reference genome based on number of mismatches and on cluster size.

with HDPlot or HWE approaches we were able to detect 93% of the putative paralogs

and 81% of loci with merged PSVs.

When M = 4, 25,775 polymorphic loci were retained in the catalog for further

analysis after applying filters. 12,473 loci out of the 25,775 mapped to multiple

locations in the reference genome. Aligning the constituent alleles from the 12,473

loci revealed 4,316 loci (35%) had allele sequences that mapped to different regions

in the genome. At C = 90%, out of the 25,775 loci, 5254 (20.38%) were clustered

by PMERGE (i.e., potential paralogs) and 16,983 loci remained non-clustered. Of

the 5254 clustered loci, 5239 (99.71%) mapped to multiple locations in the reference

genome. Reducing C to 80% increased the number of loci clustered to 7963 with

7548 (94.79%) loci mapping to multiple locations in the genome. The error rates

ranged from 0.01 to 0.13 for C = 90% to C = 60%, identifying 42% to 72% of the

total paralogs respectively. Using the HDplot approach, loci with the proportion of
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Figure 3.5: Paralogous loci identified by using only PMERGE and in combination
with HDPlot and HWE approaches using Atlantic salmon data set with de novo locus
formation using M =2. A. Putative paralogs idenitified. B. Loci with merged paralogs
detected.

heterozygous individuals (H) > 0.6 and read-ratio deviation (D) between −7 and 7

were flagged as paralogous. The HDplot approach identified 1880 loci as paralogs, out

of which 124 loci uniquely mapped to the reference genome. The HWE filter identified

3,143 loci as paralogs, out of which 862 loci were false positives. Approximately

32% and 36% of paralogs flagged by HDplot and deviations from HWE overlapped

with paralogs identified by PMERGE (C = 60%), respectively. Approximately 22%

and 32% of paralogs flagged by HDplot and deviations from HWE overlapped with

paralogs identified by PMERGE (C = 60%), respectively. PMERGE identified a

maximum of approximately 50% of the 5,444 loci with merged PSVs at C = 60%.

Both HDplot and deviation from HWE identified 28% of the loci with merged PSVs.

The ROC curve obtained using different values of C for M = 2 (Figure 3.6A),

the AUC was 0.92, which means PMERGE is good at separating paralogous loci

from non-paralogous loci (Zweig & Campbell, 1993). Reducing the value of C below

a certain limit leads to clustering of non-paralogous sequences (i.e., false positives).

This is likely to happen because of short length of these sequences and the reduced

amount of similarity required to cluster them. Also, the proposed method works based

on only the similarity among the catalog of loci assembled from the set of samples,
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Figure 3.6: Identification of paralogous sequences by PMERGE. ROC curve gener-
ated using A. Atlantic salmon data set with de novo locus formation using M = 2,
B. Atlantic salmon data set with de novo locus formation using M = 4 The ROC
curves are generated from the observed true positives (paralogs), true negatives (non-
paralogs), false positives and false negatives. The percentage labels on the curves are
the similarity thresholds C used. The area under the ROC curve demonstrates the
accuracy of the proposed method.
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hence the number of paralogs identified is highly influenced by the proportion of

similar loci available in the catalog. For M = 4 (Figure 3.6B), the AUC reduced to

0.82, indicating the accuracy of PMERGE in separating paralogous loci from non-

paralogous loci reduces as the value of M increases.

3.3.2 Impact of paralog filtering on population structure

Figure 3.7: Dendrograms constructed from pairwise FST values between sites, before
(top) and after (bottom) paralog filtering, with dendrogram leaves assigned to the
sampled geographical locations along the Southern coast of Newfoundland. The C
parameter was set to 90% and there were 40,618 loci before paralog filtering and
32,392 loci after paralog filtering.

Pairwise FST values after applying the paralog filtering generally increased between

the populations. For the site “NPR” the pairwise FST values with other sites generally

decreased after applying the paralog filtering, except with the sites “BSB”, “LSR”,

“RKR” and “SPR” where the pairwise FST values increased. While the percentage

difference in the pairwise FST values after applying PMERGE filtering were as low
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as 0.96% between “NPR” and “LSR”, it was as high as 28.95% between “SLR” and

“BSB”. Dendrograms obtained from the pairwise FST values generated between all

pairs of populations under study before and after applying the PMERGE filter differed

in topology. Figure 3.7 shows variations in subpopulation structures between the

unfiltered and PMERGE-filtered trees: one notable pattern is the increased genetic

differentiation between the east and west coast populations with the paralog-filtered

data. In the paralog-filtered dendrogram, there are two major clusters separating the

east and west coast populations, and the five populations “SPR”, “SLR”, “RKR”,

“NPR” and “LSR” from the Avalon Peninsula in the east are grouped into one cluster.

However, with the unfiltered data one of those five east coast populations (“NPR”)

is an outlier in the generated dendrogram. The clustering of “NPR” with the rest

of the populations from the Avalon peninsula is a result of the differences in their

pairwise FST values after applying the PMERGE paralog filter, as opposed to using

FST values obtained from the unfiltered data.

Figure 3.8: Distribution of rSPR (A) and RF (B) distances between trees constructed
from randomly subsampled loci, and trees obtained from pairwise FST values before
(white bars) and after (grey bars) PMERGE filtering. The RF distance is the measure
of number of bipartition in one tree that are absent in the other tree and rSPR distance
is minimum number of SPR operations required to reconcile two rooted trees.

RF and rSPR distances (Figure 3.8) calculated to compare the topology of the
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dendrograms were 10 and 4, respectively, indicating differences between the dendro-

grams. Since the PMERGE-filtered dendrogram was based on fewer loci than the

unfiltered tree, we assessed the impact of choosing random subsamples of 32,392 loci

from the unfiltered tree. Fifty replicate trees based on random subsamples of loci

were constructed. If the effect of paralog filtering is greater than that of random

subsampling, we expect that the paralog-filtered tree should differ more from the ref-

erence tree than do the dendrograms obtained from random subsamples. The rSPR

distances between the unfiltered FST dendrogram and the dendrograms constructed

from randomly subsampled loci were between 0 and 1, whereas the corresponding

distances for the filtered FST dendrogram ranged between 3 and 5 (Figure 3.8A). The

RF distances showed a similar trend but with distance values of 0 to 2 for unfiltered

FST dendrogram and 5 to 9 for filteredFST dendrogram (Figure 3.8B).

3.3.3 Green crab analysis

In contrast with the Atlantic salmon genome, the green crab has no evidence of ances-

tral genome duplication; consequently, far fewer paralogs are expected. Assembling

these RAD-tags using ustacks yielded approximately 25,000 loci per individual. The

complete catalog contained 156,272 unique loci, which decreased to 12,435 by apply-

ing the locus filters as described in the Methods section. Of these 12,435 loci, 6,695

were polymorphic and alignment to the green crab reference (Hleap et al., in prepa-

ration) genome using BLASTN revealed that 913 of these 6,695 mapped to multiple

locations in the genome (putative paralogs) and 360 loci with alleles that mapped to

different locations in the genome (loci with merged PSVs). We have also compared

the effectiveness of PMERGE with other approaches and performed ROC curve anal-

ysis (Figure 3.9). At C = 90%, out of the 12,435 loci, 330 (32.63%) were clustered by

PMERGE (i.e., potential paralogs) and 12,105 loci remained non-clustered. Of the

330 clustered loci, 307 (93%) mapped to multiple locations in the reference genome
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(Figure 3.9A). Reducing C to 80% increased the number of loci clustered to 546 with

426 (78%) loci mapping to multiple locations in the genome. PMERGE identified a

maximum of 62% of total paralogs and 37% of total loci with merged PSVs at C =

60%. The error rates ranged from 0.07 to 0.40 for C = 90% to C = 60%. The HDplot

approach flagged 153 loci with proportion of heterozygous individuals (H) > 0.6 and

read-ratio deviation (D) between −10 and 10 as paralogous. 50 out of the 153 loci

mapped uniquely to the reference genome and 40 loci were PSVs (11% of the 360

loci). Using the HWE method, 963 loci were flagged as paralogs in which, 782 loci

were false positives and 75 were merged PSVs (21% of the 360 loci). The AUC for

the ROC curve obtained using different values of C was 0.71 (Figure 3.9B)

3.4 Discussion

The splitting of paralogous loci depends on the choice of maximum nucleotide distance

parameter (M in the Stacks software); as M increases, paralogous loci are merged

together [45, 91]. The putative paralogs flagged by PMERGE are the catalog loci

with high sequence similarity. PMERGE identifies the wrongly merged PSVs by con-

sidering the entire catalog of loci constructed from all samples, rather than focusing

on one sample at a time. If paralogs are merged into a single locus in one or more

samples and not in others, the resulting pattern is used by PMERGE to properly

subdivide loci.

Using the Atlantic salmon dataset we were able to assess the extent to which par-

alogs identified by PMERGE mapped to two or more genomic regions. When M =

2, 36% of the putative paralogs that mapped to chromosomes were situated in home-

ologous blocks with high similarity (>90%), and an additional 52% mapped to other

homeologous blocks specified in [68]. Mapping the paralogs flagged by PMERGE for

different values of C revealed that approximately 26% to 28% of the chromosome-

positioned loci were from the high-similarity regions. Around 58% to 59% of the
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Figure 3.9: Paralog filtering in green crab data set using HDplot, HW approach and
PMERGE. A. Comparing effectiveness of PMERGE and other methods. B. ROC
curve generated using the observed true positives (paralogs), true negatives (non-
paralogs), false positives and false negatives.
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loci mapped to the less similar duplicated regions. Since the sequences used in the

analysis are as short as 80 bp, we see high similarity among them even though they

are from less similarity duplicated regions and wrongly merged into a locus.

Comparing the paralogs identified by HDplot, deviations from HWE and PMERGE

with different values of C, it is evident that PMERGE identifies more paralogs and

merged PSVs than the other two methods. HDplot and deviations from HWE focus

on identifying the merged PSVs by analysing individual polymorphic loci, whereas

PMERGE identifies paralogous loci in the catalog using their similarity. While HD-

Plot and HWE tests are applied to the VCF format output generated by the popula-

tions program in Stacks, PMERGE is applied to the catalog loci before the populations

program even processes them. Most of the PMERGE flagged loci with merged PSVs

were unique to PMERGE. Combining PMERGE with the other two approaches in-

creased the proportion of paralogs detected. Approximately 7% of the paralogous

loci and 19% of the wrongly merged PSVs were not detected by any of the three ap-

proaches. Since PMERGE cannot subdivide loci that are merged across all samples,

the best use case, explored above and worthy of further development, is to com-

bine the PMERGE approach with other methods such as HDplot which can examine

distributional patterns within loci from even a single sample.

By observing the number of loci clustered for different values of C, we can identify

an optimal cut-off value for this parameter, depending on the species and dataset.

The accuracy of PMERGE analysed using AUC obtained from ROC curves suggests

that PMERGE can best perform when the species has more duplicated regions and

the M value used in Stacks is low. The AUC obtained for the Atlantic salmon data at

M = 2 was 0.92 and for M = 4 it was 0.82, whereas we obtained an AUC of 0.71 for

the green crab dataset. Unlike the Atlantic salmon, the green crab does not have large

proportions of highly similar regions in the genome. Hence the accuracy of PMERGE

in separating paralogous loci from non-paralogous loci is less than salmon data. For
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large values of M and species with less duplicates, set the similarity threshold C to

high values (more than 80%) and for smaller values of M and species with genome

duplication, set C as low as 60% .

Applying PMERGE with a C value as high as 90% eliminated at least 61% of

paralogous loci and 40% of the loci with wrongly merged paralogs. The resulting

population structure is more consistent with the previous study by [13] involving

microsatellites, SNP arrays and RADSeq data from southern Newfoundland, that

also showed strong evidence of subdivision of salmon populations into eastern and

western groups. In the RADSeq data used for their analysis the PSVs were eliminated

by removal of SNPs with three or more alleles as well as SNPs that mapped to multiple

locations in the reference genome [27]. As expected, the populations were clustered

into two large east-west groups. Analyzing the dendrogram obtained without applying

PMERGE filtering, the “NPR” population was unusually distinct, contradicting the

results obtained in previous studies. The RF and rSPR distance comparisons between

the paralog-filtered dendrogram, the dendrogram obtained without applying paralog

filtering and the dendrograms obtained from the random subsample showed that

paralog filtering applied using PMERGE has a significant non-random effect on the

topology of the pairwise FST dendrogram.

3.5 Conclusion

We have demonstrated the effectiveness of PMERGE in filtering paralogous loci from

two species with different genome structures. Depending on the species under study

and the expected proportion of paralogs, different values of C may be examined for

an optimal value based on the proportion of detected paralogs. Also, for non-model

species we will not know the expected proportion of paralogs and in that case the

best option will be to set high values for C. The results from the Atlantic salmon and

green crab datasets show that we can detect large number of paralogs even with high
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values of C using PMERGE.



Chapter 4

A novel method to infer relative gene flow among

populations using exclusively shared alleles.

4.1 Introduction

Gene flow (often used synonymously with “effective migration”) between populations

can introduce new alleles into either or both populations and change their respective

allele frequencies. Gene flow is the result of both dispersal of individuals in space

and the successful reproduction of the migrants [99]. Gene flow can be restricted

by physical barriers separating the populations and also by incompatible reproduc-

tive behaviours between the individuals of the populations [20]. Gene flow between

genetically dissimilar populations can reduce the genetic difference between the pop-

ulations by increasing homogeneity and reducing the degree of genetic differentia-

tion [12]. Gene flow may lead to interbreeding between individuals from genetically

differentiated populations (hybridization) and incorporation of new alleles into ex-

isting lineages (admixture) [92].Gene flow can also rescue populations experiencing

demographic decline and high rates of inbreeding. Hence it is important to understand

the gene flow patterns and how they shape population structure.

One of the primary applications of RADSeq in population studies is to infer popu-

lation structure [91]. The population structure and the level of genetic differentiation

can be estimated using measures like FST [107, 52], Nei’s GST [80], G'ST [46] and

D [61] using allele frequency data. The pairwise FST values between populations can

66
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be calculated from allele frequencies and used as a distance metric to cluster the popu-

lations and infer their structure. Gene flow has traditionally been estimated using ge-

netic differentiation measures, which rely on the fact that gene flow reduces divergence

and inbreeding in populations. Assuming an island model of migration and symmet-

ric migration rates, migration can be estimated using these measures [111, 113]. Gene

flow is symmetric between populations when the rate of gene flow is same in both

the directions. In nature, gene flow can also be asymmetric if the rate of gene flow is

not same in both directions. Asymmetric gene flow is common in systems influenced

by physical processes like wind or water currents (e.g., [86]) and competition-driven

directional dispersal. In such cases, genetic differentiation estimates between the

populations can be significantly skewed [29]. Hence it is important to understand the

gene flow patterns and the processes that lead to genetic structuring of populations.

Gene flow patterns have been estimated from mathematical models using maximum-

likelihood or Bayesian approaches (e.g., [110, 8]), which involve different assumptions

and require the estimation of large numbers of parameters. More recently a simpler

approach to estimate relative gene flow between pairs of populations was introduced

in divMigrate [98] from the diversity package [63]. The method defines a hypothet-

ical pool of migrants for a given pair of populations, and estimates the directional

components of genetic differentiation between each of the two populations and the

hypothetical pool using measures of genetic differentiation such as multilocus D [23],

multilocus GST [80] or Nm (effective number of migrants; [2]). Relative migration

levels are estimated from the directional genetic differentiation, where the population

with a larger relative migration value is considered the source of gene flow and the

one with the smaller value as recipient [98] .

Though methods like Migrate [8] and BayesAss [110] can be used to estimate gene

flow patterns in asymmetric systems, they are computationally expensive and have a

large number of parameters and options that need to be adjusted to the data set under
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consideration [98]. Mis-specification of parameters can lead to misleading results with

high associated confidence scores [38]. Some studies have also mentioned issues with

convergence and repeatability of results using Migrate and BayesAss [57, 37, 77] and

they are also computationally demanding sometimes requiring impractical amounts

of time to run [98]. On the other hand, estimating gene flow pattern using symmetric

measures of genetic differentiation such as FST, GST and D could generate mislead-

ing results in asymmetric systems. The method introduced in divMigrate overcomes

the highlighted issues in the above listed tools and methods, specifically identifying

relative gene flows in asymmetric systems and also being less computationally de-

manding [98] . Although divMigrate is relatively simple and used by many different

studies [59, 22, 85], the method is not validated for scenarios such as varied popula-

tion sizes or recent common ancestry. Recent common ancestry will lead to low level

of genetic differentiation between the populations and may cause divMigrate to gen-

erate misleading results as the method is based on genetic differentiation measures.

The original paper describing the method [98] does not provide any guidelines on

how the relative gene-flow network looks when applied to a system with absence of

gene flow, i.e., when the genetic structuring is shaped only by genetic drift or natural

selection.

All these methods rely on the genetic differentiation measures to identify gene flow

patterns among populations. We explore the possibility of obtaining the relative gene

flow patterns using the distribution of differences in the allele frequencies between

pairs of populations. Using alleles present in only one population (“private alleles”)

is a common strategy to estimate gene flow, as the logarithmic average frequency of

private alleles is approximately linearly related to the logarithm of Nm [96]. In the

proposed method we use frequencies of alleles that are present only in the (”exclusive

to the”) two populations for which the relative gene flow is estimated. RADProc uses

the graph components to perform de novo locus formation for each sample/individual
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and then builds a catalog of loci from all the samples/individuals. Each catalog locus

represents all the alleles that are identified for that locus from all individuals and

populations in the dataset. Further, the catalog can also serve as the input to the

proposed method, as each catalog locus contains information like the populations in

which the alleles are present and their corresponding allele frequencies.

4.2 Methods

Figure 4.1: Population structure used to simulate the smaller datasets of 3 popula-
tions, where populations A and B are closely related and population C diverged from
them at an earlier point in time. Different gene flow scenarios, varying number of loci
and number of samples were simulated using this population tree.

When individuals migrate from one population to another, different scenarios can

arise. The frequencies of existing alleles can increase or decrease based on whether the

population is a source or a sink of gene flow and new alleles may be introduced into re-

cipient populations. Let us consider three populations A, B and C with an underlying

branching structure (Figure 4.1). Alleles in the resulting catalog can be categorized

based on their presence in these three populations, such as “private alleles” (alleles

that are present only in one population e.g., {A}-{B ∪ C}) “common alleles” (alleles

that are present at least in two populations e.g., {A ∩ B}) and “exclusive alleles”
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(alleles that are present only in two of the populations and not present in any other

population e.g., {A ∩ B}-{C}) (Figure 4.2). By this definition, all exclusive alleles

are common alleles, but the reverse is not true. In the absence of gene flow, we can

expect a pair of populations with low genetic differentiation to have a larger number

of exclusive alleles. In the presence of gene flow, the pair of populations with high

gene flow relative to other populations is expected to have more exclusive alleles.

Figure 4.2: Venn diagram representing the private, common and exclusive alleles
among the three populations.

Figure 4.3 illustrates the expected impacts of gene flow from population A to
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Figure 4.3: Venn diagram representing the private, common and exclusive alleles
among the three populations in the presence of gene flow from A to C.

population C. In this case, the number of common alleles between the two populations

is increased compared to the no gene flow scenario (Figure 4.2). But the gene flow

from A to C also increases the number of common alleles between populations B

and C. Since populations A and B are genetically similar due to recent divergence,

they have more alleles in common, and the gene flow from A to C introduces common

alleles into C. For this reason using common alleles between populations to understand

the gene flow pattern and genetic differentiation will be misleading. Because of the

confounding impact of gene flow on common alleles, our proposed method focuses on

the exclusive alleles that are shared between pairs of populations. In our example of

three populations in the presence of gene flow from A to C, although the number of

common alleles between population B and C increased, the number of alleles exclusive

to B and C is not expected to increase. This is because the gene flow from A to C

has no influence on the number of exclusive alleles between populations B and C. In
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this chapter we propose a method using such exclusive alleles between populations to

identify the direction and relative rates of gene flow.

4.2.1 Proposed method

The proposed method uses exclusive alleles between a given pair of populations to

detect gene flow direction and the relative magnitude with respect to the other popu-

lations. Since the exclusive alleles are only present in the pair of populations, it could

be either because of less genetic differentiation between the populations or due to gene

flow. Hence, only using the proportion of exclusive alleles between populations is not

enough to distinguish between populations with low level of genetic differentiation

and the ones with gene flow; we consequently focus on the frequencies of exclusive

alleles. We can also expect that in case of low level of genetic differentiation be-

tween the populations, the exclusive alleles between them would have similar allele

frequencies [52]. Whereas exclusive alleles that arise due to gene flow will likely have

frequencies that are more dissimilar. If the populations are homogenized due to high

gene flow rates, the proposed method might fail to detect gene flow since the alleles

are expected to have similar frequencies. In the three-populations scenario illustrated

in Figure 1, populations A and B have less genetic differentiation compared to pop-

ulation C due to more-recent divergence, but gene flow between population A and C

increases their degree of similarity. This gene flow can be unidirectional (A to C or C

to A) or bidirectional (A to C and C to A), and in the latter case migration rates can

be symmetric or asymmetric. For simplicity and clarity gene flow between a pair of

populations is expressed using the notation γ[source][destination] = m. For example, [γAC

= m,γCA = 0] indicates a unidirectional gene flow from A to C, [γAC = 3m/4,γCA

= m/4] represents asymmetric bidirectional gene flow between populations A and C,

with migration rate from A to C greater than migration rate from C to A, and [γAC

= γCA = m/2] represents symmetric bidirectional gene flow between populations A
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and C.

In general, we can expect that the frequencies of the newly introduced exclusive

alleles in the recipient population will be much lower than their corresponding fre-

quencies in the source population. However, in the extreme case, migration rates

could be so high as to homogenize the allele frequencies in the two populations, mak-

ing them one effective population and erasing any historical signal in the data. We

calculate the differences in allele frequencies by combining the allele frequencies for

each exclusive allele between a given pair of populations and estimate the ratio r,

the frequency of the exclusive allele in a population to the combined allele frequency.

Since the combined allele frequency function is arithmetic mean, the r values will

range between 0 and 2.

rA =
fA

( fA+fB
2

)
(4.1)

rB =
fB

( fA+fB
2

)
(4.2)

Where,

fA = Frequency of allele ‘a’ in population ‘A’

fB = Frequency of allele ‘a’ in population ‘B’

rA = Ratio of fA to the combined allele frequency

rB = Ratio of fB to the combined allele frequency

The ratios are calculated for all exclusive alleles in a given pair of populations

using equations 4.1 and 4.2. Alleles with equal frequencies in both populations will

have rA = rB = 1. Alleles with a higher frequency in population A than in population

B will have rA > 1 and rB < 1, and vice versa. In the absence of gene flow we can

expect that most of the exclusive alleles would be concentrated around 1 and in the

presence of gene flow they are more concentrated on the lower and upper ends of
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the r values. In the case of low and medium level migration rates, the frequency

distributions of exclusive alleles should be influenced by the rates of gene flow. For

each pair of populations we can plot the distribution of r values across the entire set

of exclusive alleles, with rA and rB reflections of each other at the line r = 1. We can

express our expectations under different scenarios:

No gene flow (γ**=0). In the absence of gene flow between a pair of populations,

we can expect most of the exclusive alleles to be concentrated around r = 1.

Unidirectional gene flow from A to C (γAC > 0, γCA=0). In the unidirectional

case, we can expect population C to have a relatively high number of exclusive alleles

with frequencies less than the corresponding allele frequencies in population A. The

r -value distribution for population C would have more exclusive alleles on the r < 1

side than r > 1 and the other way round for population A.

Asymmetric bidirectional gene flow between A and C (γAC > γCA). Here

the gene flow is in both directions, so we can expect the r -value distribution for

population A also to have more number of exclusive alleles on the r < 1 side than

r > 1. The proportion of exclusive alleles on the r < 1 side would be greater for

population C than A, since the relative migration rate is higher from A to C than C

to A.

Symmetric bidirectional gene flow between A and C (γAC = γCA). We would

expect both populations A and C to have similar a proportion alleles with frequencies

less than the corresponding allele frequencies in the other population. Hence the r -

value distribution for both A and C would have almost same number of alleles on the

r < 1 side.

4.2.2 Estimating gene flow direction and relative migration

The allele frequencies are estimated using the catalog loci and for each locus the

frequencies of alleles add up to 1. The presence of gene flow, the direction of gene
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flow and the relative migration can be predicted from the distribution of the r values

obtained from the exclusive alleles for each pair of populations. Since we are using

the arithmetic mean as the function to combine the allele frequencies, 0 and 2 bound

the range of proportions. To predict gene flow from population i to j, we need to

see if the percentage of alleles with r = 1 is less than the percentage of alleles with

r < 1. We define a p x p matrix D, where p is the total number of populations and

each value Xi,j represents the relative gene flow value from population i to j obtained

from the r -value distributions between j and i. The diagonal in D corresponds to

comparisons between identical populations is set to 0.

D =


X1,1 · · · X1,p

...
. . .

...

Xp,1 · · · Xp,p

 (4.3)

Xi,j = (% of alleles with r < 0.9 in population j ) – (% of alleles with 0.9 ≤ r ≤ 1

in population i)

If two populations share very few exclusive alleles, their distribution of r values

may be unstable due to the small sample size. To overcome this, we scale every entry

in D with a value S, where S is the proportion of exclusive alleles between a pair of

populations out of the number of common alleles between them.

Sij = Eij/Cij (4.4)

Where,

Eij = Number of exclusive alleles between i and j.

Cij = Number of common alleles between i and j.

For visualizing the gene flow patterns, we build an adjacency matrix G that is

the product of D and S obtained from equation 4.4. In the adjacency matrix, the
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cell G [i,j] contains the value for gene flow from population i to j and the cell G [j,i]

contains the value for gene flow from population j to i. The adjacency matrix is then

used to build a network of populations to visualize the gene flow patterns.

G =


X1,1 ∗ S1,1 · · · X1,p ∗ S1,p

...
. . .

...

Xp,1 ∗ Sp,1 · · · Xp,p ∗ Sp,p

 (4.5)

In the case of bidirectional gene flows, for [γAC > γCA] the cell G [A,C] would have

higher value than G [C,A] and for γAC = γCA both G [A,C] and G [C,A] would have

similar values. Unidirectional gene flow from A to C is a special case of asymmetric

gene flow with γAC =m and γCA = 0. In this case, we can expect G [A,C] value to

be much higher than G [C,A], where G [C,A] can be zero or negative, depending on

the percentage of exclusive alleles between A and C with similar frequencies (defined

here as 0.9 ≤ r ≤ ). In general, we can differentiate [γAC > 0, γCA=0] and [γAC >

γCA] by the magnitude of G[C,A] value relative to G[A,C]. Even though we cannot

define any strict threshold on the value of G[C,A], it can still provide insights into

possible gene flow pattern. For example, if G [C,A] = 0.2 ∗ G [A,C], then we can say

the probability of gene flow from C to A is very low compared to G [C,A] = 0.7 ∗

G [A,C]. In the network the vertices V represent the populations and edge weights W

are assigned the corresponding values in G.

Confidence intervals are computed for all entries in G (and the corresponding edge

weights) using a bootstrapping procedure. For each pair of populations, a distribution

is estimated by resampling with replacement the catalog of loci 100 times. For each

of the resampled data sets, a new G is calculated by identifying the exclusive alleles

in the resampled data set. 95% confidence intervals (lower = 0.025, upper = 0.975)

are constructed in both directions of gene flow between each pair of populations.

The matrix G can be normalized by the largest value in the matrix, so that



77

W ranges from 0 to 1. But in case of systems with absence of gene flow between

any of the populations, W can be negative or positive (almost zero) values. The

normalization would increase the magnitude of the positive values leading to wrong

interpretations of the relative gene flow network. To avoid this the matrix G is

normalized by the largest value only when there is at least one positive value in G

with a 95% confidence intervals that does not include 0. We might also not want to

normalize the edge weights when there are some positive edges and their values are

near zero.

4.2.3 Simulated datasets

The performance of the proposed method was first assessed using simulations. The

simulations were performed using the coalescent simulator simul provided by EggLib

[28] and the simrrls [33] Python module for RADSeq-like data. The egglib.simul.

CoalesceParamSet class was used to specify the parameters like migration rates

(M ), the relative size of all populations (N ) and to provide the input tree structure.

The migration rate M is expressed as 4Nm, where N is the effective population

size and m is the probability that a given individual migrates from the source to

recipient population. For all the simulations the per site mutation rate was fixed at

1× 10−9 (default in simrrls) and the base population size fixed at N = 100,000. The

coalescent model for the most recent common ancestor of A and B was set to 0.5∗4N

generations ago, A and B with C to 1 ∗ 4N generations ago and the root to 1.5 ∗ 4N

generations ago, providing the topology(Figure 4.1). Three different migration levels

are used: 1 migrant per 10 generations (‘low’, m = 1e−06), 1 migrant per generation

(‘medium’, m = 1e− 05) and 10 migrants per generation (‘high’, m = 1e− 04) [34].

Datasets were simulated with gene flow under three regimes: unidirectional [γAC

> m, γCA=0], bidirectional asymmetric [γAC = 3m/4, γCA = m/4], and bidirectional

symmetric [γAC = m/2, γCA = m/2], for different migration levels, number of loci (L),
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number of samples (n) and population sizes (N ). To evaluate the impact of sample

size, each migration level and gene flow type combination was simulated with sample

size n = 20, 30, and 40 with the number of loci L set to 5,000. To evaluate the impact

of sample size, each migration level and gene flow type combination was simulated

L=10k, 20k, and 30k with n set to 10. Datasets were simulated by varying population

size (Ne) for population C to evaluate the impact of differences in population sizes of

source and recipient. The Ne value for population C was set to , , and the population

size of A ( i.e., 100,000). A larger dataset of 12 populations (Figure 4.4) was also

simulated, each with 15 samples and 15,000 loci per sample. Population ‘A’ was set

as the recipient and all other 11 populations as source of gene flow [γA* =0, γ*A = m]

with m set to 1e− 05 (medium level).

Figure 4.4: Population structure used to simulate the larger dataset of 12 populations.
In the simulation the gene flow is unidirectional from all other populations to A.

4.2.4 Empirical dataset

Evaluation of the proposed method was also performed using RADSeq data extracted

from green crab (Carcinus maenas) samples, which were first used to study population

structure in the Northwest Atlantic [58](Figure 4.5). The dataset consists of 242
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Figure 4.5: The 11 sampling locations in the eastern North America in USA and
Canada for the green crab dataset. The map was accessed from [58].

samples from 11 different sites (Table 2.1). Each library consisted of 22 samples

identified by variable length in-line barcodes ranging from 5 to 9 bp. The libraries

were sequenced on a HiSeq 2000 (Illumina) as 100 bp paired-end sequences sequences.

Each sample comprised approximately 2.5 million RAD-tags. Using this dataset,

previous studies have observed two population groups: locations TKT, NWH and CBI

constitute southern populations, while CLH, BRN, MBO, SYH, BDB and SGB are

identified as northern populations. The two locations KJI and PLB were intermediate

between the northern and southern groups with possible hybridization and admixture.

4.2.5 Evaluation

Multiple datasets were simulated to evaluate the impact of sample size, number of loci

and population sizes. The simulations were done using the 3 populations and input

tree structure (Figure 4.1). The gene flow patterns predicted from the simulated
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Location code Location name
SGB St. George’s Bay, NL
PLB Placentia Bay, NL
BDB Baie de Bassin, QC
SYH Sydney Harbour, NS
MBO Mabou, NS
BRN Brudenell River, PE
CLH Cole Harbour, NS
KJI Kejimkujik, NS
CBI Campobello Island, NB
NWH New Hampshire
TKT Tuckerton, NJ

Table 4.1: Location codes and their names for the 11 different sampling sites.

datasets for different gene flow scenarios with m = 1e− 05 were resampled 100 times

and the 95% confidence intervals were determined to evaluate the significance of the

gene flow patterns. The gene flow patterns predicted by the proposed method were

compared with the ones obtained using divMigrate. Although there are other methods

to infer gene flow patterns as listed in the introduction, divMigrate is more relevant to

compare with the proposed method, as both are non-parametric approaches to infer

relative gene flow in asymmetric systems. The ability of the two methods to correctly

identify underlying gene flow patterns by comparing the relative gene flow values

generated by them. We also compared the relative gene flow networks obtained for

the no gene flow scenario, to evaluate how the two methods worked when the genetic

structuring among the populations is not influenced by gene flow.

The divMigrate tool is also hosted as a web application and requires a ‘genepop’

format input file. To obtain the genepop format file, the simulated and green crab

datasets were processed using the Stacks pipeline (Stacks v1.42). The RADSeq data

from each individual sample were cleaned, demultiplexed and de novo assembled using

the default ustacks parameters M = 2 and m = 3. The catalog of loci was built using

cstacks with maximum nucleotide distance allowed between catalog loci to merge

n = 1. The ustacks and cstacks files are then passed to the populations program
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Population pairs Common Alleles Exclusive Alleles
AB 9749 2821
AC 7524 596
BC 7519 591

Table 4.2: Number of common alleles and exclusive alleles between different pairs of
populations in the absence of gene flow.

to obtain the required genepop format output file. The genepop format file was

then input to divMigrate-online and the relative migration networks were obtained.

divMigrate-online provides options to choose a migration statistic from a list of three

different genetic differentiation measures such as multilocus D, multilocus GST or Nm

as migration statistic. In our study we used multilocus GST as the migration statistic,

because it performed better than the other measures in evaluations done by [98].

Similarly, the relative gene flow networks obtained from the green crab dataset was

also compared with those obtained from divMigrate. The gene flow network obtained

from the proposed method is also visualized using the GenGIS software [83].

4.3 Results

4.3.1 Simulated datasets

No gene flow

In the first scenario, no gene flow was allowed in the simulated RADSeq dataset.

The dataset contained 30 individuals from the three populations with 10,000 loci per

individual. After de novo locus formation and catalog building, the catalog contained

11,356 loci; of these, 9885 loci were present in at least two of the populations and

retained for the analysis. These loci were represented by 32,827 alleles in total.

Table 4.2 shows the number of common alleles between each pair of populations and

the corresponding number of exclusive alleles. Due to their more recent divergence,

population pair AB had more common and exclusive alleles than population pairs
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Figure 4.6: Allele distribution for values of r when γ** = 0 for all three pairs of
populations (AB, AC and BC). The blue line represents the first population and red
line represents second population in each pair of populations.
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AC and BC.

Figure 4.7: The values of W for all gene flow directions in the absence of gene flow
between all pair of populations (γ** = 0).

Using equations 4.1 & 4.2, the values of ratio r for all the pairs of populations

was derived and their distribution was recorded. Figure 4.6 shows the plots obtained

from the distributions for the pairs of populations. Since there was no gene flow, as

expected all the pairs of population had balanced distributions and the majority of

the alleles had a frequency ratio ∼ 1. From the adjacency matrix G, the plots of W

and the 95% confidence intervals were obtained. In all cases, W ≤ 0, which indicates

that most exclusive alleles have similar allele frequencies in both populations. Figure

4.7 shows that W ranged from -0.03 to 0, suggesting no gene flow between any of the

pairs of populations.
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Population pairs Common Alleles Exclusive Alleles
AB 9718 123
AC 13672 4077
BC 10244 649

Table 4.3: Number of common and exclusive alleles between different pairs of popu-
lations simulated with [γAC = 0.00001,γCA = 0].

Unidirectional gene flow

In the simulated case of unidirectional gene flow [γAC =0.00001,γCA =0], the gene

flow happens only from population A to C. The dataset contained 30 individuals from

the three populations with 10,000 loci per individual. After de novo locus formation

and catalog building, the final catalog had 10,851 loci that were present in at least

two of the populations. There were 31,739 alleles in total; Table 4.3 shows the number

of common alleles between each pair of populations and the corresponding number of

exclusive alleles. Unlike in the no-gene-flow scenario, population pair AC had more

common and exclusive alleles than the population pairs AB and BC, because of the

gene flow from population A to C. We can also observe that the number of common

alleles and exclusive alleles between populations B and C is higher than between

populations A and B. This pattern arises because populations A and B are more

closely related due to recent common ancestry, and gene flow from A to C increases

the number of common alleles between populations B and C. The frequencies of the

exclusive alleles were obtained and the values of ratio r for all the pair of populations

were calculated and their distribution was recorded.

Figure 4.8 shows the imbalances in the distributions of values of r for populations

A and C. In population A, the proportion of exclusive alleles on r < 1 is less than r

> 1, whereas in population C the proportion of exclusive alleles on r < 1 is greater

than r > 1. From the W -plot (Figure 4.9) the values of WAC and WCA were 0.10 and

0.25 respectively, and WAC was approximately four times higher than WCA suggesting

unidirectional gene flow from A to C.
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Figure 4.8: Allele distribution for values of r, in case of [γAC = 1e−05,γCA = 0]. The
blue line represents population A and the red line represents population C.

Figure 4.9: The values of W for different pairs of populations in case of [γAC =
1e − 05,γCA = 0]. The high value for WAC than others indicates that gene flow is
only in the A to C direction.
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Population pairs Common Alleles Exclusive Alleles
AB 10108 470
AC 16810 5885
BC 10246 657

Table 4.4: Number of common alleles and exclusive alleles between different pairs of
populations in case of [γAC = 3m/4,γCA = m/4].

Asymmetric bidirectional gene flow

In the case of asymmetric bidirectional gene flow, the gene flow happens in both

directions but with higher migration rates in one of the directions. In our simulated

dataset the migration rate m was set to 1e − 05 (medium level), with 3m/4 from

population A to C and m/4 from C to A. The catalog contained 10,342 loci that

were present in at least two of the populations and consisted of 33,273 alleles in total.

From Table 4.4, we observed that similar to the unidirectional gene flow from A to C,

population pair AC had more common and exclusive alleles than population pairs AB

and BC, because of the gene flow between populations A and C. The frequencies of

the exclusive alleles were obtained and the combined allele frequencies for the alleles

were calculated for each pair of populations.

Figure 4.10: Allele distribution for values of r, in case of [γAC = 3m/4,γCA = m/4].
The blue line represents population A and the red line represents population C.
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Figure 4.11: The values of W for different pairs of populations in case of [γAC =
3m/4,γCA = m/4]. The high values for WAC and WCA indicate bidirectional gene
flow between A and C. WAC > WCA denotes that gene flow from A to C is higher
than C to A.

Figure 4.12: Allele distribution for values of r, in case of [γAC = m/4, γCA = 3m/4].
The blue line represents population A and the red line represents population C.



88

Figure 4.10 shows the plots obtained from the distributions of alleles for the pairs

of populations. The plot for AC showed imbalances in the distribution of the alleles

with respect to the values of r. Unlike the unidirectional gene flow scenario, the

imbalance is seen in the plots for populations C and A, indicating a bidirectional

gene flow between A and C. From the W -plot (Figure 4.11), gene flow is observed

from A to C and also from C to A. The values indicate that the migration rate from

A to C (WAC = 0.08) is higher than the migration rate from C to A (WCA = 0.06).

When γAC > γCA > 0, the r-plot (Figure 4.12) and W-plot (Figure 4.13) reflected

that the migration rate is relatively higher from C to A (WCA = 0.08) than from

A to C (WAC = 0.06). The proposed method was able to capture the asymmetric

bidirectional gene flow in both cases.

Figure 4.13: The values of W for different pairs of populations in case of [γAC =
m/4,γCA = 3m/4]. The high values for WAC and WCA indicate bidirectional gene
flow between A and C. WAC < WCA denotes that gene flow from C to A is higher
than A to C.
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Population pairs Common Alleles Exclusive Alleles
AB 10185 363
AC 16005 6183
BC 10151 329

Table 4.5: Number of common alleles and exclusive alleles between different pairs of
populations in case of [γAC = m/2,γCA = m/2].

Symmetric bidirectional gene flow

When the gene flow is symmetric, migration rate is same in both directions between a

pair of populations. In our simulated dataset the migration rate m was set to 1e− 05

(medium level) with m/2 from population A to C and from C to A. We obtained

33,793 alleles in total from the 10,393 retained catalog loci.The observations from the

number of common alleles and exclusive alleles (Table 4.5) were similar to the other

gene-flow scenarios , i.e., population pair AC had more common and exclusive alleles

than population pairs AB and BC.

Similar to the asymmetric bidirectional gene flow plots (Figure 4.14), the plots

here too indicated gene flow in both directions between populations A and C. From

the W -plot (Figure 4.15), gene flow is observed from A to C (WAC = 0.081) and from

C to A (WCA = 0.083). The values indicate that the migration rate is nearly equal

in both directions.

Low and high level migration rates

Figure 4.16 shows the W -plot obtained for different gene flow patterns when the mi-

gration rates are set low (m = 1e− 06) and high (m = 1e− 04). For low value of m,

when [γAC = m,γCA = 0], the WAC and WCA values were 0.16 and 0.02 respectively

(Figure 4.16a) and WAC was eight times higher than WCA, indicating unidirectional

gene flow from A to C. Similarly, when [γAC = 3m/4,γCA = m/4], WAC and WCA

values were 0.13 and 0.09 respectively (Figure 4.16b) and when [γAC = m/2,γCA

= m/2], both WAC and WCA were approximately equal to 0.14 (Figure 4.16c).
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Figure 4.14: Allele distribution for values of r, in case of [γAC = m/2,γCA = m/2].
The blue line represents population A and the red line represents population C.

Figure 4.15: The values of W for different pairs of populations in case of [γAC =
m/2,γCA = m/2]. The high values for WAC and WCA indicate bidirectional gene
flow between A and C, and the almost similar values for WAC and WCA indicates
symmetric migration rates.
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Figure 4.16: The values of W for different pairs of populations in case of m = 1e−06
(low) and m = 1e− 04 for (a) [γAC = m,γCA = 0] (b) [γAC = 3m/4,γCA = m/4] and
(c) [γAC = m/2,γCA= m/2].
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The results show that the method was able to correctly identify the gene flow pat-

terns, even in case of low migration rates. In case of high migration rate, for both [γAC

= m,γCA= 0] (Figure 16a) and [γAC = 3m/4,γCA = m/4] (Figure 4.16b) the WAC

and WCA values reflected the asymmetry in the migration rate. But for [γAC= m,γCA

= 0] the WAC was only 1.7 times higher than WCA, making it look like bidirectional

gene flow, likely due to the homogenization of the populations due to high gene flow.

when [γAC = m/2,γCA = m/2], both WAC and WCA were approximately equal to 0.07

(Figure 4.16c), indicating symmetric gene flow.

Comparisons with divMigrate

We generated network visualizations for the simulated three-population datasets using

both divMigrate and the proposed method. Figure 4.17a displays the relative migra-

tion network obtained for [γAC = 0,γCA = 0]. Although there is no gene flow among

the populations, the relative migration network obtained using divMigrate suggested

the existence of gene flow between A and B. This could be because the populations

A and B are less differentiated due to their relatively recent divergence. When [γAC

= m, γCA = 0] (Figure 4.17b), although divMigrate correctly identified the gene flow

from A to C (1), the network also suggested a lesser amount of gene flow from C to A

(0.32). In unidirectional gene flow (Figure 4.17b) and bidirectional asymmetric gene

flow [γAC = 3m/4,γCA = m/4] (Figure 4.17c) the network indicated gene flow from

C to A, 0.32 and 0.49 respectively. Thus making the results ambiguous and hard to

distinguish between unidirectional gene flow and bidirectional asymmetric gene flow.

In the case of bidirectional symmetric gene flow [γAC = m/2,γCA = m/2](Figure

17d) almost similar values were observed in both directions, A to C (1) and C to

A (0.96). Interestingly the method generated similar networks for the no-gene-flow
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Figure 4.17: Relative gene flow network obtained using divMigrate for the 3 popu-
lations dataset with varying gene flow patterns at medium level migration rate. (a)
[γAC = 0,γCA = 0] (b) [γAC = m,γCA = 0] (c) [γAC = 3m/4,γCA = m/4] and (d) [γAC

= m/2,γCA= m/2].
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(Figure 4.17a) and bidirectional symmetric gene flow (Figure 17d) scenarios. The

edges with high edge weights even in the absence of gene flow (Figure 4.17a) makes

it difficult to differentiate between presence and absence of gene flow.

Figure 4.18: Relative gene flow network obtained using the proposed method for the
three-population dataset with varying gene flow patterns when alleles with r ≥ 0.9
is considered to have similar frequencies. (a) [γAC = 0,γCA = 0] (b) [γAC = m,γCA =
0] (c) [γAC = 3m/4,γCA = m/4] and (d) [γAC = m/2,γCA = m/2].

The network visualization obtained using the proposed method (Figure 4.18) the

edges are not normalized by largest value for no gene flow scenario (Figure 4.18a)
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Figure 4.19: Relative gene flow network obtained using the proposed method for the
three-population dataset with varying gene flow patterns when alleles with r ≥ 0.8
is considered to have similar frequencies. (a) [γAC = 0,γCA = 0] (b) [γAC = m,γCA =
0] (c) [γAC = 3m/4,γCA= m/4] and (d) [γAC = m/2,γCA= m/2].
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and normalized by largest value for other three scenarios. The W values were calcu-

lated using r < 0.9 for dissimilar allele frequencies and 0.9 ≤ r ≤ for similar allele

frequencies. In the case of no gene flow, the W values for all pair of populations

were either negative or the confidence intervals included zero (Figure 4.7), hence the

edge weights are not normalized by largest value.The gene flow network was also able

to detect no gene flow scenario (Figure 4.18a) correctly unlike the network obtained

using divMigrate. The relative gene flow network clearly distinguishes unidirectional

gene flow and bidirectional asymmetric gene flow (Figures 4.18b and 4.18c). But

there were few edges with W values substantially higher than zero even for non-gene

flow making it ambiguous to differentiate between presence and absence of gene flow.

When the W values were calculated using r < 0.8 for dissimilar allele frequencies and

0.8 ≤ r ≤ for similar allele frequencies, the W values were almost zero for no gene

flow edges (Figure 4.19). Thus implying, adjusting the r thresholds while calculating

W can help to differentiate between presence and absence of gene flow.

Evaluation by varying number of samples and number of loci

To demonstrate the robustness of the proposed method, the method was applied to

differing numbers of loci and samples simulated. The number of samples was set to

10, when the number of loci was varied and the number of loci was set to 10,000,

when the number of samples was varied. The migration rate was set to medium

(m = 1e− 05) for the different gene flow patterns. In case of [γAC = m, γCA = 0], for

increasing values of L, the WAC values ranged from 0.096 to 0.10 and WCA ranged

from 0.025 to 0.030 (Figure 4.20a). The values for WAC were at least three times

higher than that of WCA, indicating unidirectional gene flow from A to C. On the

other hand, the W values increased as the n values increased, and the values of WAC

ranged from 0.14 to 0.17 and WCA ranged from 0.035 to 0.045 (Figure 4.20b). But

the WAC values were still at least three times higher than that of WCA.
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Figure 4.20: Plots using W values when [γAC = m,γCA = 0] for different (a) Number
of Loci and (b) Number of samples.
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a.)

b.)

Figure 4.21: Plots using W values when [γAC = 3m/4,γCA = m/4] for different (a)
Number of Loci and (b) Number of samples.
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For asymmetric gene flow [γAC = 3m/4,γCA = m/4] (Figure 4.21) we obtained

higher values of W in the direction of A to C (migration rate = 3m/4) and lower

values in the direction of C to A (migration rate = m/4). Unlike [γAC = m, γCA = 0],

WAC values were only 1.5 times higher than WCA, differentiating the unidirectional

and bidirectional gene flow scenarios. For different values of L and n, the method was

able to detect the asymmetric bidirectional gene flow between A and C, with higher

migration rates in the direction of A to C.

In the case of symmetric gene flow [γAC = m/2,γCA = m/2] (Figure 4.22), the

values of W were almost similar in both directions indicating symmetric migration

rates. For increasing values of L, the values of WAC were around 0.1 and the values of

WCA were around 0.095. For varying values of n, the values of WAC ranged from 0.12

to 0.15 and the values of WCA ranged from 0.14 to 0.15. As the value of n increased,

the WAC and WCA values became more similar, in fact when n = 40, WAC = WCA,

suggesting that high number of samples results in more accurate predictions.

Evaluation by varying population size of C

Here we evaluated the impact of population size on the values of W, by varying the

effective population size Ne for population C. The values of Ne were set to ¼, ½, and

¾ the population size of A. The gene flow scenarios were simulated for [γAC = m,

γCA = 0] and [γAC = 0, γCA = m] to examine the ability of the method to detect

unidirectional gene flow from relatively small to relatively large populations and vice

versa. In case of [γAC = m, γCA = 0] (Figure 4.23a) the plot indicated unidirectional

gene flow from A to C for all the different population sizes of C. On the other hand,

for [γAC = 0, γCA = m] (Figure 4.23b) the plot indicated unidirectional gene flow

from C to A. In both the cases, the range of range of W in the no-gene-flow direction

was considerably lower than the one with gene flow. The method correctly identified

the unidirectional gene flow direction irrespective of the population size of the source
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a.)

b.)

Figure 4.22: Plots using W values when [γAC = m/2,γCA = m/2] for different (a)
Number of Loci and (b) Number of samples.
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Figure 4.23: Plots using W values for varying population sizes for C when (a) [γAC

= m, γCA = 0] and (b) [γAC = 0, γCA = m].
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and recipient populations.

In the case of [γAC = 3m/4,γCA = m/4], where the gene flow is bidirectional

and the migration rate from the smaller population C is much lower than the larger

population A (Figure 24a), the method correctly identified the asymmetric gene flow

for Ne(C) = 0.75 ∗ Ne(A), and Ne(C) = 0.5 ∗ Ne(A). When Ne(C) is further lowered

to 0.25 ∗ Ne(A), the method mislabeled the gene flow direction with higher migration

rate. This could be because the higher gene flow from the larger population could

increase the allele frequencies in the smaller population. When [γAC = m/4,γCA

= 3m/4], the W plot correctly labeled the gene flow direction with higher migration

rate irrespective of the population sizes, but the range of W values decreased with

decreasing population size of C (Figure 4.24b). Similarly, for [γAC = m/2,γCA = m/2]

the values of W reflected the gene flow correctly, and the values decreased as the size

of population C decreased (Figure 4.25).

Twelve-population dataset

In the dataset comprising twelve populations, the gene flow rate was set to γ*A =

0.00001, with all other rates set to zero. In the full network connecting all the

populations, W ranged from -0.04 to 1. By setting a threshold for W > 0, the edges

with W ≤ 0 were filtered out. Figure 4.26 shows that the proposed method was

able to capture this gene flow pattern. The migration rates used for the simulation

were exactly same, but the W values did not reflect that, because the proportion of

exclusive alleles between each pair of populations also influences the W values. The

results demonstrate that the proposed method works even for datasets with large

number of populations.
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Figure 4.24: Plots using W values for varying population sizes for C when (a) [γAC

= 3m/4,γCA = m/4] and (b) [γAC = m/4,γCA = 3m/4].
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Figure 4.25: Plots using W values for varying population sizes for C when [γAC

= m/2,γCA = m/2].

Figure 4.26: Relative gene flow network for the larger dataset with 12 populations
(greater than zero edges). The network displays only the edges with W > 0; all other
edges in the complete graph had W ≤ 0
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4.3.2 Green crab dataset

The green crab dataset was processed using RADProc with default parameter set-

tings (M = 2, m = 3 and n = 1) and de novo locus formation and catalog building

was performed. The catalog contained a total of 38,435 loci across the 11 populations

and only loci that were present in at least 50% of individuals in each population and

present in at least 6 populations were retained, to make sure only loci represented

in good number of individuals and populations were used for the analysis. Previous

studies on the dataset had revealed that two locations (PLB and KJI) intermediate

between the northern and southern clusters of populations showed strong evidence of

admixture and hybridization [24, 100]. Introduction of a previously admixed popu-

lation from the Scotian Shelf into PLB due to heavy shipping traffic is likely being

maintained [10]. KJI represents a secondary contact region, where the two invasions

(north and south) are coming into contact [24].

The relative migration network obtained using divMigrate (Figure 4.27) shows

two distinct groups (northern and southern populations) as observed in [58]. Apart

from these genetic structuring patterns, the network visualization did not show any

significant gene flow to populations KJI and PLB as suggested by the length, shading,

and thickness of the edges to KJI and PLB from other populations. The edge weights

from other populations to KJI ranged from 0.06 to 0.31 and the edge weights to PLB

ranged from 0.05 to 0.16. Whereas, the edges among the northern populations and

southern populations have high edge weights with most of the edges with weights

above 0.5.

On the other hand, the proposed method was able to identify gene flow within the

northern and southern population (Figure 4.28) and gene flow from the southern and

northern populations to KJI and PLB. The gene flow network indicated gene flow from

the southern and northern populations to KJI, given it is geographically intermediate
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Figure 4.27: Relative gene flow network obtained using divMigrate from the green
crab dataset.
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Figure 4.28: Population network generated using GenGIS, showing 11 population
sites connected by edges with W greater than 0.3.
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Figure 4.29: Relative gene flow network obtained using the proposed method from
the green crab dataset. The W threshold set to 0.3 and only edges to and from KJI
and PLB were retained. Orange and blue coloured vertices represent the northern
and southern populations respectively.
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to the northern and southern populations and also consistent with secondary contact

at the region [59]. The gene flow network also revealed gene flow from the southern

and northern populations to PLB. Out of the 11 sites in the dataset, the KJI and

PLB locations have shown a high level of introgression in a study done by [59]. Figure

4.29 shows the relative gene flow with respect to KJI and PLB, in case of KJI the

W values indicate higher level of gene flow from KJI to the souther populations

compared to the opposite direction. In case of PLB, we can observe unidirectional

gene flow from the southern populations. The relative migration network generated

by the proposed method reflects the observations from previous studies and provides

additional information about relative rate of gene flow among the populations.

4.4 Discussion

We have demonstrated the possibility of extending the RADProc graph components to

estimate relative gene flow among populations. The idea is based on the expectation

that if there are alleles present in only a given pair of populations or exclusively

shared alleles in a system of populations, then the distribution of allele frequencies

of such alleles could be different in the absence and presence of gene flow. The

idea can be easily applied to the catalog of loci built using the RADProc graph

structure, since the catalog stores all the alleles in all the populations, importantly

the populations, in which an allele is present and their corresponding allele frequencies

in those populations.

The use of allele frequency data to estimate gene flow can be affected by under-

estimating alleles present at low frequencies due to sampling effects [41, 40]. The

proposed method overcomes this by using exclusive alleles between pairs of popu-

lations. The use of exclusive alleles guarantees that underestimating low-frequency

alleles would not affect the results as the method uses the allele-frequency differences
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and their proportions among the exclusive alleles instead of any estimated genetic-

differentiation measures such as FST, GST, and D.

The method was tested on simulated datasets with different gene flow patterns,

migration rates, sample sizes, numbers of loci and population sizes. The tests demon-

strate the ability of the proposed method to successfully detect underlying gene flow

patterns. The method was able to correctly identify the relative gene flow in case of

low (m = 1e − 06) and medium (m = 1e − 05) level migration rates. The proposed

approach did not work well in case of high migration rate (m = 1e−04), likely due to

the homogenizing effect of high gene flow, which results in low genetic differentiation

between the populations. Though the method was able to correctly find the simu-

lated gene flow for all the different sample sizes, the results showed upward trend in

the values of W, because of the improved accuracy in the allele frequency estimations

as the sample sizes increased. Unlike varying sample sizes, increasing the number

of loci had only minimal impact on the magnitude of W. Applying the method to

simulated datasets with uneven population sizes, we observed that the population

size impacted the values of W and in some cases the directionality of the gene flow.

It will be interesting to see if the results improve by weighing the allele frequencies

of populations proportionally to local size [55].

Applying the proposed method to the green-crab dataset, we were able to estimate

the relative gene flow among the populations and especially the gene flow to KJI and

PLB. Previous studies have observed KJI and PLB to be intermediate between the

northern and southern population clusters. The locations KJI and PLB has shown

high levels of introgression [59], and the relative gene flow network generated by the

proposed method identified asymmetry in the gene flow rates between KJI, PLB and

the southern populations.

Though methods such as Migrate [8] and BayesAss [110] can provide estimates

of relative gene flow, they are difficult to use correctly, issues with convergence and
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repeatability of results and these programs are also computationally demanding. Al-

though divMigrate could overcome these drawbacks, scenarios such as recent common

ancestry could be difficult to resolve using divMigrate. The results generated by the

proposed method were also compared with the results obtained from divMigrate. Un-

like divMigrate, the proposed method was able to unambiguously distinguish between

presence and absence of gene flow and identify relative gene flow in case of both

unidirectional and bidirectional gene flow scenarios.

In conclusion, the concept of using exclusively shared alleles between each pair of

populations provides a simple and tangible way to estimate relative gene flow among

populations. Though the simulations used here do not cover all scenarios in nature,

can act as a good tool for evaluating the usefulness of proposed method. The proposed

method proves to be a simple and effective tool to understand the gene flow patterns.

It would be interesting to examine the effectiveness of the method in the presence

of founder effects and when the populations are not in equilibrium. Computing a

statistical test to compare the observed allele distributions for r to a theoretical allele

distribution predicted under no gene flow could be a possible future work.



Chapter 5

Conclusions

RADSeq is an efficient and cost-effective next-generation sequencing technology for

SNP discovery and genotyping and gaining new insights into ecological, evolutionary

and conservation-related questions. In order to fully utilize the power of RADSeq

techniques, it is important to develop computational methods to efficiently process

and extract information from the RADSeq datasets. In this thesis, we have devel-

oped graph-based methods to improve data analysis and inference using genome-wide

SNP data based on RADSeq short reads. Graphs have been used in biological se-

quence analysis for a long time, especially in genome assembly and genome alignment

for their ability to compactly represent a group of sequences. In this thesis, we

have demonstrated different possible uses of representing the short-read data in an

undirected graph structure. The methods developed complement different stages of

RADSeq data analysis such as de novo locus formation, catalog building, and catalog

filtering and population statistics. Specifically, graph-based methods were well-suited

to addressing key challenges like distinguishing paralogous sequence variants (PSVs)

from true single-nucleotide polymorphisms (SNPs) and accelerating the de novo locus

formation process to enable parameter sweeps.

Chapter 2

In Chapter 2, we described the RADProc software package, which can accelerate the

de novo locus formation and catalog building processes. Restriction-site associated

DNA sequencing (RADSeq) is a powerful tool for genotyping of individuals, but the

112



113

identification of loci and assignment of sequence reads is a crucial and often challeng-

ing step. The optimal parameter settings for a given de novo RADSeq assembly varies

between datasets and can be difficult and computationally expensive to determine.

RADProc focuses on the key bottlenecks in accelerating the de novo locus formation

and catalog-building processes such as redundant and slower sequence-similarity cal-

culations, and processing less abundant and less coverage sequences. RADProc uses a

graph data structure to represent all sequence reads and their similarity relationships.

Storing sequence-comparison results in a graph eliminated unnecessary and redundant

sequence similarity calculations. De novo locus formation and catalog building for a

given parameter set can be performed on the pre-computed graph, making param-

eter sweeps far more efficient. RADProc implemented a clustering-based approach

for faster sequence similarity calculations. The runtime comparisons using the test

datasets showed that RADProc could achieve speeds 10 to 30 times faster than the

widely used Stacks software. Comparisons of the de novo loci formed, and catalog

built using both the methods demonstrate that RADProc managed to produce 97%

to 98% of loci formed by Stacks.

Chapter 3

Chapter 3 (PMERGE) addressed the challenge in differentiating paralogous sequence

variants (PSVs) from true single-nucleotide polymorphisms (SNPs) during de novo

locus formation. Due to high similarity between paralogous sequences, they can

be wrongly merged into a single locus, causing difficulty in identifying true allelic

variations. PMERGE is a simple and effective tool, which builds a network of catalog

loci based on their consensus sequence similarity and clusters the loci based on a

threshold similarity. PMERGE is applied to the catalog of loci rather than the de

novo loci formed in each sample separately because the paralogs may be merged into

a single locus in some but not all samples, allowing us to cluster them based on
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similarity. Catalog loci that are clustered with at least one other catalog locus are

flagged as potential paralogs. Results from the Atlantic salmon (Salmo salar) and

green crab (Carcinus maenas) data sets show that PMERGE was able to identify

and remove the majority of paralogous loci.

Chapter 4

In chapter 4, we introduced a novel approach to infer gene flow patterns among

populations. The method was able to detect relative gene flow even in asymmetric

systems and build networks to reflect underlying gene flow patterns. The ability of the

method to differentiate genetic structuring from gene flow patterns was demonstrated

using both simulated datasets and an empirical dataset from green crab (Carcinus

maenas). The results from the simulated datasets showed that the method can work

even in the case of recent common ancestry. The approach is based on using the

allele frequency differences between exclusively shared alleles between each pair of

populations in a given group of populations. Using exclusive alleles can eliminate

the confounding effects of shared alleles on the gene flow detection and issues of

underestimating low frequency alleles.

The large-scale data generated by next-generation sequencing data enables under-

standing complex genomic structures and making population level inferences. Graph-

based structures are a straightforward way to represent these data and the relation-

ship between them in terms of sequence similarity. The graph structures also provide

the flexibility of representing different types of sequences and the level of informa-

tion contained in the graph. By understanding the underlying relationship among

the population level short-read data and representing them in well-designed graph

structure can help develop sophisticated and effective computational methods to pro-

cess these data and make new inferences. In RADProc, we used a graph structure

where each vertex contained all relevant information about a unique stack and the
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edges represented the nucleotide distances between unique stacks. By contrast, in

the PMERGE graph structure, the vertices were relatively simple and just contained

the catalog loci id and the edges represented the nucleotide distances between the

catalog loci. In chapter 4, we made use of the population-level information contained

in the RADProc graph structure to infer gene flow patterns and relative gene flow

rates among the populations.

Future Work

RADProc supports the processing of single-end sequence data from different RAD-

Seq protocols and performs parameter sweeps for de novo locus formation and catalog

building. In single-end sequencing only the one end of the DNA fragment is sequenced,

but to obtain longer contigs from the DNA fragments paired-end sequencing is used,

which perform sequencing from both the ends of the DNA fragment. A useful ex-

tension to the RADProc software package would be to enable paired-end sequence

processing.

In chapter 4, an important enhancement would be computing a statistical test

to compare the observed allele distributions for r to a theoretical gene distribution

predicted under no gene flow. In this thesis, the method was applied only to the major

gene flow patterns; applying the method to other empirical datasets and simulations

can provide more insights into the ability and limitations of the method.

Using the RADProc graph structure we were able to accelerate the de novo loci

formation and enable parameter searches in realistic time. We were also successfully

able to extend RADProc to estimate relative gene flow rates among populations.

Since the RADProc graph stores all the putative alleles and their relationships such

as the similarity between the alleles, populations sharing a given allele, coverage depth

and their abundance in each population it is worth exploring other applications of

the RADProc graph.
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Rochette, Rémy, and Bernatchez, Louis. Rad genotyping reveals fine-scale ge-
netic structuring and provides powerful population assignment in a widely dis-
tributed marine species, the american lobster (homarus americanus). Molecular
Ecology, 24(13):3299–3315, 2015.

[10] Blakeslee, April M. H., McKenzie, Cynthia H., Darling, John A., Byers,
James E., Pringle, James M., and Roman, Joe. A hitchhiker’s guide to the mar-
itimes: anthropogenic transport facilitates long-distance dispersal of an invasive
marine crab to newfoundland. Diversity and Distributions, 16(6):879–891, 2010.

116



117

[11] Boc, Alix, Diallo, Alpha Boubacar, and Makarenkov, Vladimir. T-rex: a
web server for inferring, validating and visualizing phylogenetic trees and
networks. Nucleic acids research, 40(Web Server issue):W573–W579, 2012.
22675075[pmid].

[12] Bolnick, Daniel I. and Nosil, Patrik. Natural selection in populations subject
to a migration load. Evolution, 61(9):2229–2243, 2007.

[13] Bradbury, Ian R., Hamilton, Lorraine C., Dempson, Brian, Robertson,
Martha J., Bourret, Vincent, Bernatchez, Louis, and Verspoor, Eric. Transat-
lantic secondary contact in atlantic salmon, comparing microsatellites, a single
nucleotide polymorphism array and restriction-site associated dna sequencing
for the resolution of complex spatial structure. Molecular Ecology, 24(20):5130–
5144, 2015.

[14] Bradbury, Ian R., Hamilton, Lorraine C., Sheehan, Timothy F., Chaput, Ger-
ald, Robertson, Martha J., Dempson, J. Brian, Reddin, David, Morris, Vicki,
King, Timothy, and Bernatchez, Louis. Genetic mixed-stock analysis disen-
tangles spatial and temporal variation in composition of the West Greenland
Atlantic Salmon fishery. ICES Journal of Marine Science, 73(9):2311–2321,
2016.

[15] Brookes, Anthony J. The essence of snps. Gene, 234(2):177–186, 1999.

[16] Catchen, Julian, Bassham, Susan, Wilson, Taylor, Currey, Mark, O’Brien,
Conor, Yeates, Quick, and Cresko, William A. The population structure and
recent colonization history of oregon threespine stickleback determined using
restriction-site associated dna-sequencing. Molecular Ecology, 22(11):2864–
2883, 2013.

[17] Catchen, Julian, Hohenlohe, Paul A., Bassham, Susan, Amores, Angel, and
Cresko, William A. Stacks: an analysis tool set for population genomics. Molec-
ular Ecology, 22(11):3124–3140, 2013.

[18] Catchen, Julian M., Amores, Angel, Hohenlohe, Paul, Cresko, William, and
Postlethwait, John H. Stacks: building and genotyping loci de novo from short-
read sequences. G3 (Bethesda, Md.), 1(3):171–182, 2011. 22384329[pmid].

[19] Chen, Hua. Population genetic studies in the genomic sequencing era. Dong
wu xue yan jiu = Zoological research, 36(4):223–232, 2015. 26228473[pmid].

[20] Choudhuri, Supratim. Bioinformatics for beginners : genes, genomes, molecular
evolution, databases and analytical tools. London, London, 2014.

[21] Christensen, Kris A., Brunelli, Joseph P., Lambert, Matthew J., DeKoning,
Jenefer, Phillips, Ruth B., and Thorgaard, Gary H. Identification of single
nucleotide polymorphisms from the transcriptome of an organism with a whole
genome duplication. BMC bioinformatics, 14:325–325, 2013. 24237905[pmid].



118
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