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Cancer is one of the leading causes of death in North America. For this reason, research into novel 
therapies to combat tumour growth is an area of intense investigation. Traditional treatment 
modalities for cancer patients, such as radiation and chemotherapy, have enjoyed only moderate 

success, partially because these treatments non-specifically target dividing cells and consequently are 
highly toxic to the patient, and also because some cancers are refractory to such measures. Recently, 
efforts have been focused towards enhancing the patient's immune response to the tumour. These "im-
munotherapy" strategies direct the specific recognition of neoplastic tissues, which confers protection 
from remaining or recurring tumour cells. Most cancer immunotherapy protocols presently under study 
are aimed towards enhancing type 1 T helper (Th 1) immunity. Eosinophilia, traditionally associated with 
type 2 (Th2) immune responses, has been described in certain tumours and during cancer immuno-
therapy. Interestingly, correlations have been drawn between good prognosis for recovery and localized 
eosinophilia in the area of primary tumour. To date; these findings are controversial, as no in vivo evi-
dence has demonstrated a direct role for eosinophils in mediating tumour damage. This review will first 
describe various proinflammatory and cytotoxic molecules produced by eosinophils, and suggest possi-
ble mechanisms of inducing anti-cancer immunity. Secondly, evidence suggesting the capacity of 
eosinophils to kill tumour cells will be provided. Although molecules involved in recruiting and activat-
ing eosinophils at the site of tumour growth are largely unknown, candidate molecules will be discussed. 
Furthermore, recent findings in our laboratory will be described which support the concept that eosi-
nophil-activating cancer immunotherapy merits further investigation. 
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The eosinophil acquired its name in 

1879 because of its affinity for the acidic dye 
eosin (] ). Soon after their initial characteri-
zation, eosinophils were recognized in asso~ 
ciation with cutaneous disorders, parasite in-
fection,. asthma, allergy, and some cancers (2-
4 ). Even to date, the majority of the literature 
describing the in vivo role of eosinophils per-
tains to parasitic infection or allergic asthma 
(reviewed in 5 & 6). Eosinophils are non-
dividing granulocytes derived from myeloid 
precursors in the bone marrow. Eosinophils 
predominantly reside in tissues, particularly 
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near mucosal areas, and typically make up less 
than 4% of the circulating leukocyte popula-
tion. Eosinophils are normally only abundant 
in tissues during parasite infection or.inflam-
matory disorders. For example, eosinophils 
are the major effector cells in mediating tis-
sue damage in pathological conditions such 
as inflammatory bowel disease (reviewed in 
7), cutaneous disorders, and late phase lung 
epithelial damage in asthma (reviewed in 6). 
Because parasite infection is a minor concern 
in most of North America, most recent eosi-
nophil studies have focused on inhibiting eosi-
nophil activity. Furthermore, Thl activity 
normally downregulates type 2 immune re-
sponses, including eosinophilia. In that most 
anti-cancer immunotherapy is directed to-
wards Thl induction, a competing arm of an-
ticancer immunity may be negated under Th I -
promoting therapies. 

In the past two decades, a greater ap-



preciation for the pluripotent function of eosinophils has been 
attained. Although different environments may produce dis-
tinct functional activity in the eosinophil, it is neccesary to 
introduce some basic eosinophil-associated molecules before 
a case can be made for the eosinophil's role in anti-cancer 
immunity. 

- Eosinophils produce various inflammatory mediators 
and cytotoxic molecules which are capable of indirectly (by 
recruiting/activating other cell populations) or directly induc-
ing cell damage. Although some are more well characterized 
than others, possible roles-in tumour cell damage will be dis-
cussed. 

Leukotrienes 
During activation of several types of leukocytes, in-

cluding eosinophils, arachadonic acid metabolism can occur 
via the cyclooxygenase or the lipoxygenase pathways. The 
latter pathway can yield four different leukotrienes (LT; known 
as LTB4, LTC4, LTD4, and LTE4) which induce smooth 
muscle contraction/bronchoconstriction, mucus production, 
and increased vascular permeability, some of the manifesta-
tions of the acute asthmatic response. Increased production 
of LTC4, the predominant LT produced by eosinophils (8-
10), is a measure of increased eosinophil activity (11-12). 
Also, IgE- or IgG-induced degranulation by eosinophils en-
hances their production of LTC4 (13). Consistent with this 
observation is that increased levels of LTC4 are produced by 
eosinophils from asthmatic patients (14-16) and in vitro acti-
vated human eosinophils (9, 17), implicating a role for acti-
vated eosinophils in asthma. 

LTs have also been shown to be stimulatory for other 
cells. For example, LTB4 has been shown to enhance hydro-
gen peroxide, interleukin (IL)-1, and tumour necrosis factor-
a (TNF-a) production by macrophages (18). In addition, in-
hibitors of the 5' lipoxygenase pathway reduce nitric oxide 
production, TNF-a secretion, and tumour cytotoxic activity 
ofthioglycollate-elicited mouse peritoneal macrophages (19) , 
demonstrating a requirement for LT for these effector func-
tions. LTB4 has also been described for its chemotactic ac-
tivity for human monocytes and guinea pig eosinophils (20-
21), cytotoxicity enhancing activity for human neutrophils 
against complement opsonized schistosomula of Schistosoma 
mansoni (22), and in vitro guinea pig eosinophil antibody-
dependent cell-mediated cytotoxicity (ADCC)(23). Further-
more, inhibitors of the lipoxygenase pathway were shown to 
reduce rat natural killer cell (NK) activity in a 5 lcr-release 
cytotoxicity assay of tumouricidal function (24). The addi-
tion of either LTB4 or LTC4 was able to reverse the inhibi-
tory effect of lipoxygenase pathway blockade in this study, 
demonstrating the specificity of tumouricidal activation to 
these LTs. Consistent with this observation, human NK cyto-
lytic activity against the NK-sensitive human tumour cell line 
K562 was significantly enhanced by addition of exogenous 
LTB4 (25), and lipoxygenase pathway inhibitors could re-

duce human NK and Lymphokine Activated Killer (LAK) 
cytotoxicity towards K562 cells in a manner reversible by 
addition of exogenous LTB4 (26). It is conceivable, there-
fore, that eosinophils accumulating around areas of tumour 
growth may not only enhance localized inflammation, but also 
increase anti-tumour activity of leukocyte populations infil-
trating into the tumour mass through the release of LTs. 

Major Basic Protein 
The eosinophil major basic protein (MBP) is the ma-

jor component of eosinophil granules, accounting for more 
than half of the granular protein (27) and approximately 25% 
of the total cellular protein (28). This suggests an important 
biological role for MBP in eosinophil function. Although 
enzymatic functions of MBP have not been described, MBP 
is highly cationic and basic in nature, and is thought to induce 
cellular damage through membrane disruption and cell lysis 
by interacting with anionic lipid membranes (29). 

MBP has been shown to be cytotoxic to S. mansoni 
(30), Trichinella spiralis newborn larvae (31 ), splenocytes, 
monocytes, epidermal and tracheal epithelial cells (32), murine 
ascites tumour cells (30), and Staphylococcus aureus and Es-
cherichia coli (33). In support of in vivo MBP toxicity, corre-
lations have been noted between deposited MBP and tissue 
damage in lymph nodes of Hodgkin's disease patients (34), 
patients with bronchial asthma (35, reviewed in 4 ), and pa-
tients undergoing episodic kidney or liver allograft rejection 
(36-37). 

In addition to the cytotoxic properties ofMBP, the pro-
tein has also been shown to induce human eosinophil degranu-
lation, LTC4 and IL-8 production (38), basophil and mast cell 
histamine release (39-40), neutrophil surface protein expres-
sion (41) and degranulation (42), release of platelet inflam-
matory mediators (43), and alternative complement pathway 
activation (44). Tumour-associated release of MBP by 
eosinophils could thereby not only directly, but also indirectly 
enhance localized recognition and destruction of tumour cells 
through recruitment and activation of other inflammatory cells. 

Eosinophil cationic protein 
Like MBP, eosinophil cationic protein (ECP) is highly 

cationic in nature. ECP forms transmembrane pores structur-
ally similar to both perforin and C9 (45), which polymerize . 
in cell membrane to induce cytolysis. ECP has been described 
for its ability to exert cytolytic activity on red blood cells, 
chicken embryo myotubules, and P388, CTLL-Al 1, and 1774 
cell lines (45). In addition, ECP demonstrates ribonuclease 
(RNase) activity (46). Ribonuclease activity is apparently 
not required for cytotoxic activity, as shown using S. aureus 
targets (47). ECP is at least as potent as MBP on a molar 
basis for schistosomula cytotoxicity ( 48-49), and has also been 
shown to be toxic for T. spiralis (50) and tracheal epithelial 
cells (51). High levels of ECP detected in sputum (52-54), 
lung (55-56), and blood (55,57) in asthmatic patients have 
implicated the involvement ofECP in in vivo airway damage. 
In addition, ECP deposition correlates with the rejection proc-
ess of transplanted livers in humans (58). These studies sug-
gest that ECP production by eosinophils at the site of tumour 
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growth could contribute to tumour cell destruction. How-
ever, this possibility has yet to be addressed in the literature. 

Eosinophil-derived neurotoxin 
Eosinophil-derived neurotoxin (EDN) demonstrates 

approximately 50-100 times more potent RNase activity than 
ECP (46, 59). EDN is only weakly cytotoxic for parasites 
and mammalian cells (60, 50-51), but is noted for its neuro-
toxicity when injected into CNS of experimental animals (re-
ferred to as the Gordon phenomenon). Sorrentino (61) has 
shown that although RNase activity of EDN is required, it is 
not sufficient for induction of the Gordon phenomenon, sug-
gesting another undefined biological activity of the enzyme. 
It is of interest to note that onconase, a RNase which belongs 
to the same RNase A superfamily as EDN, is also capable of 
causing the Gordon phenomenon (62). Onconase, obtained 
from oocytes and early embryos of the frog Rana pipiens (71 ), 
is noted for its anti-tumour properties both in vitro (63) and 
in vivo (64-65), and is currently undergoing phase III clinical 
trials for cancer treatment (66). Preliminary studies in which 
chimeric molecules of EDN and onconase were produced 
using recombinant technology reveal~d that a chimera with 
enzymatic activity and antigenic identity more characteristic 
of EDN was more cytotoxic to tumour cell lines than 
recombinant onconase (67). Furthermore, onconase RNase 
activity correlates with the protein's ability to induce the 
Gordon phenomenon, and EDN is orders of magnitude more 
enzymatically active than onconase (62). Wu and colleagues 
(68) have suggested that RNase activity is required for 
onconase tumouricidal activity (68). In this report, alkylated 
onconase with dramatically reduced RNase activity was more 
than 100 times less efficient in preventing protein translation 
in glioma cells. Onconase-induced cytotoxicity has been pro-
posed to involve disruption of 28S and 18S ribosomal en-
zymes (68) or tRNA degradation (69). It is tempting to specu-
late that EDN may have anti-tumour activity similar to 
onconase. Although no study has yet addressed this possibil-
ity, EDN may require additional factors to acquire this cyto-
toxic property, as has been demonstrated with other members 
of the RNase A superfamily (70). Presently, a direct role for 
EON-mediated tumour cell cytotoxicity has not been pre-
sented. Given its similarity to onconase, however, it is sug-
gested that EDN merits further attention. 

Eosinophil peroxidase 
Eosinophil peroxidase (EPO) is another highly cati-

onic enzyme present within eosinophil granules. In addition 
to charge, EPO has a high mannose content (71). These bio-
chemical properties of EPO have led to two hypotheses re-
garding EPO binding to target cells. The first model pro-
poses the attraction of EPO towards anionic phospholipid in 
cell membrane (72). Alternatively, mannose receptor ligation 
may facilitate EPO deposition onto target cells (73). Although 
EPO alone is cytotoxic to various tumour cell lines, includ-
ing human K562 and HL-60 cell lines, and murine P815 and 
FO tumours (74), its combination with H2O2 and halide dra-
matically enhances EPO toxicity (75-76). EPO can kill 
schistosomula (77), bacteria (78-79), respiratory endothelium 

(51), and mammalian tumour cells (74, 80). EPO also en-
hances eosinophil degranulation (38) and macrophage pro-
duction ofH2O2 and the tumouricidal cytokine TNF-a (81). 
By enhancing macrophage activity and directly mediating 
cytotoxicity, EPO released in areas of tumour mass could re-
strict tumour progression. Whether this process occurs in vivo 
remains to be determined. 

CD30 ligand 
CD30 ligand (CD30L), a member of the TNF 

superfamily (reviewed in 82), has recently been shown to be 
expressed on human eosinophils (83). The role of CD30L-
signalling in tumour pathogenesis has enjoyed considerable 
attention of late. However, no clear model of CD30 signal-
ling exists which would classify CD30L as beneficial or det-
rimental to tumour growth. For example, depending on the 
CD30+ target, CD30-CD30L interactions can either enhance 
(83-84) or inhibit (84-85) tumour cell proliferation and vi-
ability. Of particular interest, however, is that the Hodgkin's 
disease cell line HDLM-2 demonstrates a different pattern of 
protein tyrosine phosphorylation than other lymphoma cell 
lines following CD30L signalling (86). Similarly, the Hodg-
kin's cell line H-RS appears to receive CD30 signals as an 
activation signal for cytokine production (87) and prolifera-
tion (83). This renders much of the expanding literature on 
CD30L-mediated signalling in tumours difficult to interpret, 
since the most recent work has been performed in the above 
cell lines. Although it would be interesting to further investi-
gate the role of CD30L in eosinophil-mediated damage of 
different tumours, CD30 signalling remains too poorly char-
acterized at present for a generalized model of its involve-
ment in neoplastic pathology. 

Other inflammatory weaponry 
Eosinophils have been described for their ability to 

act as antigen presenting cells (APC) for T cells (88-89), sug-
gesting that eosinophils localized to the area of tumour growth 
might assist in T cell activation towards tumour targets. 
Eosinophils also express various proinflammatory molecules, 
including (but not restricted to) IL-I (88, 90), IL-2 (91), IL-3 
(92), IL-4 (93), IL-5 (94-95), IL-6 (96), IL-8 (97), IL-10 (98), 
interferon-y (IFN-y) (98), TNF-a (99), macrophage inflam-
matory protein 1-a (MIP-1 a) (99), granulocyte-macrophage 
colony stimulating factor (GM-CSF)(94), regulated upon ac-
tivation normal T cell expressed and secreted protein 
(RANTES)(I00) and inducible nitric oxide synthase 
(iNOS)(lOl). These inflammatory molecules are well char-
acterized for their immunomodulatory and inflammatory en-
hancing activity, thus demonstrating the capacity of 
eosinophils to dramatically influence a developing immune 
response. More recently, human eosinophils have been shown 
to express CD95L (FasL )( 102-103 ), while mouse eosinophils 
have been shown in our laboratory to express mRNA tran-
scripts for FasL, granzyme B, and perforin by RT-PCR (manu-
script in preparation). FasL, granzyme B, and perforin are 
classical components of cytotoxic T lymphocyte (CTL) and 
NK cell cytolytic machinery involved in the destruction of 
tumour and virally-infected cells. These recent observations 
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suggest that eosinophils may be capable of inducing apoptosis 
in tumour cells in a CTL- or NK-like manner. 

Although the potential for these diverse molecules to 
operate in an inhibitory fashion to regulate tumour progres-
sion has been implicated (Figure 1 ), few studies have directly 
investigated the involvement of these products released by 
eosinophils in reducing tumour bur.den. Several reports do 
suggest, however, that eosinophils may be operative in medi-
ating tumour cell damage or restricting neoplastic growth. 
Some of these studies are described below. 

I if M iitU Iii i Si iiiiiiti IM 
Many clinical reports describe localized eosinophilia 

in association with certain types of tumours. However, the 
role of eosinophils in tumour pathology remains obscure due 
to conflicting reports. Some studies have indicated good prog-
nosis for recovery in tumours associated with eosinophilia, 
including gastric, colonic, cervical, and lung cancers (104-
109) and pleural malignancies (110). Furthermore, EPO depo-
sition has been described in association with certain lymphoid 
malignancies, and has been suggested as a "tumour-associ-
ated enzyme" in need of exploitation (111). The prognostic 
value of tumour-associated eosinophilia was later contested, 
however, by two studies demonstrating that favourable prog-
nosis with localized eosinophilia failed to reach significance 

when tumour specimens were separated based on stage (112-
113). It is interesting to note, however, that eosinophil number 
was strongly associated with lower Duke's stage in the former 
study. This latter observation may in itself suggest that 
eosinophils negatively influence development of tumour into 
more a aggressive neoplasm, although more evidence is re-
quired to support this hypothesis. One possible explanation 
of these conflicting reports, suggested by Lowe and colleagues 
(114), is that tumours with tissue eosinophilia only are in-
dicative of active anti-tumour inflammatory reaction associ-
ated with favourable prognosis for survival, while concomi-
tant tumour-associated blood eosinophilia indicates metastatic 
spreading of the cancer with a decreased likelihood of sur-
vival. 

While the role of the eosinophil remains unclear in 
cancer patients, recent findings suggest that cytokine manipu-
lation of the immune system may enhance both eosinophil 
activity and tumour regression. Work initiated by Rosenberg 
and colleagues identified a mechanism whereby tumour-re-
active T cells could be expanded in vitro by the exogenous 
addition of IL-2 (115-116). Adoptive immunotherapy strate-
gies in which these LAK cells were injected alone or in com-
bination with systemic IL-2 treatment severely impaired tu-
mour growth and metastasis in vivo (reviewed in 117). Based 
on these studies, various clinical trials using IL-2 therapy were 
initiated. Several of these studies reported both eosinophilia 

Figure I: Direct and indirect mechanisms of 
eosinophil-mediated reduction in tumor growth 
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and enhanced eosinophil activation. Although eosinophils bear 
the IL-2 receptor (118-119), IL-2-induced eosinophilia ap-
pears to be mediated by endogenous production of the eosi-
nophil reactive cytokine IL-5 (120-124). 

Of particular interest was the observation that 
eosinophils isolated from IL-2-treated human cancer patients 
demonstrated enhanced cytotoxic activity against different 
tumour targets both in the presence and absence of tumour-
specific antibody (125). This indicated that eosinophils might 
be operative in slowing tumour progression in vivo during 
IL-2 therapy. Furthermore, eosinophils isolated following IL-
2 therapy showed characteristics of hypodense (HD) 
eosinophils (120, 122, 125-126). HD eosinophils are acti-
vated eosinophils well characterized for their enhanced cyto-
toxic potential. This suggests that normodense-hypodense 
transition may be instrumental in eosinophil acquisition of 
tumouricidal activity. 

In an effort to further characterize which effector cells 
are required for IL-2 enhanced destruction of tumours, IL-2-
transfected human tumour cells were injected into T cell de-
ficient nude mice and monitored for growth and cellular in-
filtrate (127). This study demonstrated that T cells were not 
required for the IL-2-induced anti-tumour response, and that 
substantial macrophage infiltration, followed by neutrophils, 
mast cells, and eosinophils, correlated with destruction of the 
tumour. Cooperation between eosinophils and macrophages 
leading to enhanced cytotoxic activity is well documented 
(81, 128-130). Combined with the observation that mouse 
macrophages (131) and eosinophils (132-133) alone do little 
in terms of inhibition of tumour growth in some cytokine-
transfected tumour cell lines, it is possible that successful 
eradication of tumour cells depends on active participation of 
both cell populations. 

The promising findings of enhanced anti-tumour cy-
totoxicity during IL-2 therapy stimulated interest in geneti-
cally modifying tumour cells to secrete specific cytokines 
localized to the tumour microenvironment. An expanding 
literature describes the varying capacity of cytokines to pro-
duce a tumour-specific inflammatory response, including lo-
calized eosinophilia ( 132, 134-135). Of particular interest 
was a study by Leder' s group in which various IL-4-
transfected mouse tumour cell lines were reported to be rap-
idly rejected in a T cell-independent manner (136). Histo-
logical analysis of tumour lesions revealed substantial eosi-
nophil and macrophage infiltration, while lymphocytes were 
notably absent. In a subsequent publication, the same group 
reported that neutralizing antibody to IL-5 could partially re-
store the tumourigenicity of IL-4-secreting tumours (137). 
Consistent with this finding was a significant reduction in 
eosinophils infiltrating the tumour mass. Furthermore, IL-4-
transfected J558L plasmacytoma or B 16 melanoma cells failed 
to grow in nu/nu (T cell deficient), bglbg (NK cell deficient), 
bg/nulxid (NK, T, and B cell deficient), scid (T and B cell 
deficient), or w/wV (mast cell deficient) mice . This 
demonstratred that NK, B, T, or mast cells are not involved in 
the IL-4-mediated tumour regression. On the contrary, 
monoclonal anti-granulocyte antibody RB6-8C5, which ob-
literates eosinophils and neutrophils from mice, restored 

growth of IL-4-transfected tumours, implicating either 
granulocyte in the rejection process. Histological analysis 
failed to reveal a substantial neutrophil accumulation, while 
eosinophils were the predominant inflammatory recruit. Fur-
thermore, although macrophages were also found to infiltrate 
the tumour mass, this occurred later than eosinophil accumu-
lation, and tumour destruction correlated with times of ag-
gressive eosinophil influx. Inasmuch as macrophage accu-
mulation persisted during treatment with RB6-8C5, it appeared 
as if macrophages alone were not sufficient for tumour rejec-
tion. Although a cooperative role for macrophages and 
eosinophils in tumour cytotoxicity cannot be ruled out by this 
study, overwhelming circumstantial evidence points towards 
the eosinophil as being the principle effector cell in the ob-
served anti-tumour response. 

Because IL-4 has pleiotropic effects on the immune 
system, the above evidence demonstrating eosinophil recruit-
ment to site of tumour and subsequent destruction of the tu-
mour failed to describe whether IL-4 acts directly or indi-
rectly to induce eosinophil cytotoxic activity. It has been re-
ported that IL-4 fails to enhance slgA-induced eosinophil 
degranulation (138), while 16h incubation with human rIL-4 
reduced IgG-induced degranulation by up to 65%, and sup-
pressed antibody dependent cell-mediated cytotoxicity of S. 
mansoni schistosomula by up to 39% ( 139), suggesting that 
IL-4 might, if anything, directly downregulate eosinophil ac-
tivity. Furthermore, mRNA transcripts for CD16 (FcyRIII) 
and CDw32 (FcyRII) are downregulated following 24h incu-
bation with IL-4 (140). However, IL-4 has been demonstrated 
to upregulate mRNA, but not protein, expression of the high 
affinity lgE receptor Fe RI in eosinophils (141). Indirectly, 
IL-4 acts to upregulate VCAM-1 expression on human en-
dothelial cells, which enhances eosinophil adhesion and trans-
migration (142-144). In addition, indirect effects ofIL-4 on 
eosinophils involve the production of the potent eosinophil 
C-C chemokine eotaxin by endothelial cells (145), which 
stimulates eosinophil adhesion to human endothelial cells 
(146), respiratory burst (147), Ca2+ flux (148), oxygen radi-
cal production, Mac-1 expression, and actin reorganization 
(149), all indicative of eosinophil activation. 

Furthermore, IL-4 has been shown to bias developing 
Th0 cells towards a Th2 pattern of cytokine secretion (150-
154). IL-5, a Th2 cytokine, is well characterized for its activ-
ity on eosinophils, including enhancing eosinophil granule 
release (155-156), survival in culture (157-159), mobiliza-
tion of eosinophils from bone marrow (160-161) , and chemo-
taxis/homing of eosinophils into inflamed tissues (160, 162-
163). These observations, combined with the finding by 
Tepper's group that neutralizing antibody to IL-5 partially 
abolishes eosinophil recruitment and restores tumourigenicity 
ofIL-4-transfected tumours (137), encouraged another group 
to investigate the potential ofIL-5-transfected tumours to in-
duce an eosinophil-mediated anti-tumour response (133). In 
this report, it was shown that despite the prominent eosinophil 
and macrophage inflammatory response, tumour fate was 
unaltered, suggesting that additional signals that are induced 
by IL-4, but not IL-5, are required for eosinophil-mediated 
tumour cell destruction. Although one recent report suggests 
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that eotaxin might activate eosin0phil tumouricidal activity 
(145), little evidence further defines the signals involved. 
Transfection of tumour cells with eotaxin also does not con-
fer protection from tumor growth in animal studies (Jack 
Gauldie, personal communication). Of particular interest was 
the finding that liposome-encapsulated glucose oxidase, a 
H2O2-generating compound, eradicated 46% of IL-5-
transfected tumours (164). This suggests that EPO from 
eosinophils and locally produced H2O2 might cooperate to 
damage tumours under some conditions. Because eosinophil-
stimulated macrophages can be a source of H2O2 (81), and 
eosinophils and macrophages are both abundant during lo-
calized production of IL-4 by tumour cells, it is interesting to 
speculate that macrophage-eosinophil interplay induces tu-
mour cell cytotoxicity through the production of these mol-
ecules. 

The factor(s) required for eosinophil infiltration into 
the site of primary tumour remains to be elucidated. Although 
IL-5 and eotaxin might be likely candidates, an investigation 
of the expression of these factors in areas of tumour growth 
in individuals demonstrating tumour-associated eosinophilia 
has not been performed. At present, the best information avail-
able in terms of eosinophil attracting molecules at the site of 
tumour growth comes from the mouse models of immuno-
therapy. The relevance of these studies to actual in vivo con-
ditions of tumour growth in humans remains unclear at present. 

In addition to the evidence in the literature, it has been 
shown in our laboratory that rat eosinophils prevent Go-S 
phase transition in rapidly dividing colon carcinoma cells in 
vitro (manuscript in preparation). In addition, infection of 
rats with the helminth parasite Nippostrongylus brasiliensis, 
a powerful inducer ofTh2 activity, including IL-4 production 
(165), significantly depresses tumour growth of subcutane-
ously injected mammary carcinoma cells. Consistent with 
this reduction in growth rate, histologic sections revealed an 
extensive eosinophilic infiltrate in N. brasiliensis-infected 
animals (manuscript in preparation), implicating eosinophils 
in the tumour inhibitory response. 

These findings, together with those by Tepper and col-
leagues, prompted us to further investigate tumouricidal ca-
pacity of eosinophils in vitro. Presently, we have shown that 
eosinophils isolated from mice infected intraperitoneally with 
the tapeworm Mesocestoides corti, can kill syngeneic A20 B 
cell lymphoma cells in 18h JAM test, an assay of DNA frag-
mentation indicative of cellular apoptosis (166). Furthermore, 
hypodense eosinophils are substantially more effective in their 
tumouricidal capacity than their normodense counterparts, and 
macrophages isolated from the same animals increase eosi-
nophil tumouricidal activity in an additive manner (manu-
script in preparation). In an attempt to characterize the mecha-
nisms involved in eosinophil-mediated tumour cell cytotox-
icity, we have shown that eosinophils do not induce substan-
tial cytolysis of A20 targets in 51Cr-release cytotoxicity as-
says, suggesting that apoptosis rather than cytolysis is the prin-
ciple means by which eosinophils damage tumour cells. This 
was a surprising finding, as we anticipated that eosinophil 
granule proteins would be more likely to disrupt target cell 
membrane integrity than induce apoptosis. We therefore 

elected to investigate mRNA expression in eosinophils for 
classical CTL/NK proteins characterized for their ability to 
induce apoptosis in tumour targets. We have recently shown 
that eosinophils from M. corti-infected animals transcribe 
messages for perforin, granzyme B, and, to a lesser extent, 
FasL. Furthermore, we have also shown in preliminary stud-
ies that a competitive substrate for granzyme B decreases 
tumouricidal activity of hypodense eosinophils, a novel find-
ing which should help to shed some light on the mechanisms 
involved in eosinophil mediated tumouricidal activity. 

iilMdPtfi 
Although the eosinophil has classically been described 

in "unwanted" immune responses in North America, its preva-
lence in certain diseases and pathologies, including cancer, 
suggests that it may have a more important function in im-
mune surveillance than has been previously thought. Tre-
mendous circumstantial evidence suggests a role for 
eosinophils in mediating tumour cell damage. Eosinophils 
not only possess several proinflammatory and cytotoxic me-
diators capable of directly and indirectly enhancing anti-tu-
mour immunity, but they also have been observed both clini-
cally and experimentally in association with a reduction in 
tumour growth. At present, the factors involved in recruiting 
eosinophils into tumour tissue and signals required for their 
activation, secretion, and degranulation are largely unknown. 
Recent evidence in our laboratory demonstrates that mouse 
eosinophils induce apoptosis, but not cytolysis in syngeneic 
tumour cells. Induction of tumour damage does not appear to 
require degranulation, but may involve the secretion of 
granzyme B and perforin. Although FasL is likely not opera-
tive in our system, we have yet to rule out this possibility. 
Despite the fact that much research is still required, we be-
lieve that immunotherapeutic strategies which enhance eosi-
nophil cytotoxic activity may lead to more effective cancer 
treatments. 
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