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Abstract 
Rhizobacteria are present in large numbers on the root surface, where plant 

exudates and lysates provide nutrients. Selected strains of beneficial, plant growth 
promoting rhizobacteria (PGPR) trigger a plant-mediated induced systemic resistance 
(JSR) response that is effective against a broad spectrum of plant pathogens. To study 
the molecular basis of ISR, an Arabidopsis thaliana-based model was developed, 
using PGPR strain Pseudomonas fluorescens WCS417r as the inducing agent. Genetic 
dissection of the JSR signalling pathway revealed that ISR is regulated by a defence 
pathway in which the phytohormones jasmonic acid and ethylene play key roles. 
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Interestingly, the state of JSR is not associated with major changes in gene 
expression. Instead, JSR-expressing plants are primed to activate specific sets of 
defense-related genes faster or to a higher level upon pathogen attack. Here we 
review the current state of knowledge of the signal transduction steps involved in 
the JSR pathway in Arabidopsis that leads from recognition of the rhizobacteria by 
the roots to systemic expression of broad-spectrum disease resistance in above 
ground foliar tissues. 

Keywords: Arabidopsis, ethylene, jasmonic acid, induced plant defence, Pseudomonas 
[iuorescens 

1. Introduction 

Selected strains of non-pathogenic, rhizosphere-colonising bacteria are 
referred to as plant growth-promoting rhizobacteria (PGPR), because they can 
stimulate growth of the plant (Kloepper et al., 1980). Growth promotion results 
mainly from suppressing soil-borne pathogens and other deleterious micro 
organisms (Schippers et al., 1987), but also direct effects on plant growth have 
been reported (Lynch, 1976; Van Peer and Schippers, 1989). Fluorescent 
Pseudomonas spp. are among the most effective PGPR and have been shown to 
be responsible for the reduction of soil-borne diseases in natural disease 
suppressive soils (Raaijmakers and Weller, 1998). The biological control 
activity of selected Pseudomonas spp. strains are effective under field 
conditions (Tuzun and Kloepper, 1995; Wei et al., 1996) and in commercial 
greenhouses (Leeman et al., 1995b), and can be the result of competition for 
nutrients, siderophore-mediated competition for iron, or antibiosis (Bakker et 
al., 1991). 

Apart from a direct antagonistic effect on soil-borne pathogens, some PGPR 
strains are also able to reduce disease in above-ground plant parts through a 
plant-mediated mechanism called induced systemic resistance (JSR) (Van Loon 
et al., 1998). PGPR-mediated JSR has been demonstrated in many plant species, 
e.g. bean, carnation, cucumber, radish, tobacco, tomato and the model plant 
Arabidopsis thaliana, and is effective against a broad spectrum of plant 
pathogens, including fungi, bacteria and viruses (Van Loon et al., 1998). 
Phenotypically, PGPR-mediated JSR resembles classic pathogen-induced 
resistance, in which non-infected parts of previously pathogen-infected plants 
become more resistant to further infection. This latter form of induced resistance 
is often referred to as systemic acquired resistance (SAR) (Ross, 1961). 
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2. Rhizobacteria-Mediated ISR in Arabidopsis 

To study rhizobacteria-mediated ISR, an Arabidopsis-based model system 
was developed. In this model system, the non-pathogenic rhizobacterial strain 
Pseudomonas fluorescens WCS417r is used as the inducing agent (Pieterse et al., 
1996). WCS417r has been shown to trigger ISR in several plant species, e.g. 
carnation, radish, tomato, and bean (Pieterse et al., 2001b), and promotes plant 
growth in Arabidopsis in the absence of a pathogen (Pieterse and Van Loon, 
1999). Colonisation of Arabidopsis roots by !SR-inducing WCS417r bacteria 
protects the plants against different types of pathogens, including the bacterial 
leaf pathogens Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and 
Xanthomonas campestris pv. armoraciae, the fungal root pathogen Fusarium 
oxysporum f. sp. raphani, the fungal leaf pathogen Alternaria brassicicola and 
the oomycete leaf pathogen Peronospora parasitica (Pieterse et al., 1996; Ton et 
al., 2002b; Van Wees et al., 1997). Protection against these pathogens is 
typically manifested as both a reduction in disease symptoms and inhibition of 
pathogen growth. Since the rhizobacteria remain localised on the roots and 
thereby spatially separated from the challenging pathogen, it was concluded 
that the mode of action of disease suppression is through the activation of ISR 
in the plant. 

The ability to develop ISR in response to selected strains of rhizosphere 
bacteria has been documented for many different plant species (Van Loon et al., 
1998) and appears to depend on the host/rhizobacterium combination. For 
instance, Pseudomonas putida WCS358r and P. fluorescens WCS374r perform 
differently on different plant species: Arabidopsis is responsive to WCS358r, 
whereas radish and carnation are not (Leeman et al., 1995a; Van Peer et al., 
1991; Van Peer and Schippers, 1992; Van Wees et al., 1997). Conversely, radish 
is responsive to WCS374r, whereas Arabidopsis is not (Leeman et al., 1995a; 
Van Wees et al., 1997). Also differential induction of ISR occurs between 
Arabidopsis ecotypes. Most ecotypes, e.g. Columbia and Landsberg erecta, are 
responsive to treatment with WCS417r, whereas ecotypes RLD and 
Wassilewskija are not (Ton et al., 1999; Van Wees et al., 1997). This suggests 
that specific recognition between the plant and the !SR-inducing 
rhizobacterium is required for the induction of ISR, and that rhizobacteria 
mediated ISR is genetically determined. 

3. Differential Effectiveness of ISR and SAR 

One of the parallels between rhizobacteria-mediated ISR and pathogen 
induced SAR is that both types of induced resistance are effective against a 
broad spectrum of plant pathogens (Kuc, 1982; Van Loon et al., 1998). To 
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compare the spectrum of effectiveness of ISR and SAR, a range of viral, 
bacterial, fungal and oomycete pathogens of Arabidopsis were tested. Both 
WCS417r-mediated ISR and SAR induced by an avirulent strain of the 
pathogen Pst DC3000 appeared to be effective against bacterial speck and 
black rot disease caused by the bacterial pathogens Pst DC3000 and X. 
campestris pv. armoraciae, respectively (Pieterse et al., 1996; Ton et al., 2002b). 
Also fusarium wilt disease caused by the fungus F. oxysporum f.sp. raphani was 
equally affected by defence responses expressed during ISR and SAR (Pieterse et 
al., 1996; Van Wees et al., 1997). Moreover, disease caused by the downey 
mildew pathogen P. parasitica was inhibited in both cases, although SAR was 
significantly more effective than ISR (Ton et al., 2002b ). Besides these 
similarities in effectiveness, there are also clear differences. For instance, ISR 
expressing plants show enhanced resistance against infection by the fungus A. 
brassicicola, whereas SAR is not effective against this pathogen. Conversely, 
expression of SAR inhibits multiplication of turnip crinkle virus and strongly 
reduces disease symptoms caused by this virus, whereas ISR has no effect at all 
(Ton et al., 2002b). Thus, the spectrum of effectiveness of ISR and SAR partly 
overlaps but is clearly also divergent, suggesting that the defence responses 
activated during both types of induced resistance are, at least partly, 
dissimilar. 

4. ISR and SAR are Regulated by Distinct Signalling Pathways 

Early research on molecular mechanisms involved in pathogen-induced SAR 
showed that the onset of SAR is accompanied by a local and systemic increase 
in the endogenous levels of SA (Malamy et al., 1990; Metraux et al., 1990) and 
the concomitant up-regulation of a large set of genes (Ward et al., 1991), 
including ones encoding pathogenesis-related (PR) proteins (Van Loon and Van 
Strien, 1999). Several PR proteins possess antimicrobial activity and are 
thought to contribute to the state of resistance attained. Conversely, transgenic 
NahG plants expressing the bacterial salicylate hydroxylase gene nahG, are 
unable to accumulate SA and are compromised in SAR (Gaffney et al., 1993), 
demonstrating that SA is both necessary and sufficient for induction of SAR 
(Ryals et al., 1996). Genetic screens for SAR compromised Arabidopsis mutants 
revealed a series of mutants that all appeared to be affected in the same gene 
(Cao et al., 1994; Delaney et al., 1995). This gene was designated nprl (for non 
expresser of PR genes), or nim I (for no immunity). Mutant nprl plants 
accumulate normal levels of SA after pathogen infection but are impaired in 
their ability to express PR genes and to mount a SAR response, indicating that 
NPRl functions downstream of SA in the SAR pathway. The NPRl gene encodes 
a protein with ankyrin-Iike repeats, which are known to mediate protein- 
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Figure 1. Schematic model describing the pathogen-induced SAR and the rhizobacteria 
mediated ISR signal transduction pathways in Arabidopsis (see text for details). 

protein interactions and are present in proteins with diverse functions (Cao et 
al., 1997; Ryals et al., 1997). Recently, evidence was provided demonstrating 
that, upon induction of SAR, NPRl is translocated to the nucleus, where it 
activates PR gene expression by physically interacting with a subclass of basic 
leucine zipper protein transcription factors that bind to promoter sequences 
required for SA-inducible PR gene expression (Kinkema et al., 2000; 
Subramaniam et al., 2001; Zhang et al., 1999). In Fig. 1 the main characteristics 
of the SAR signalling pathway are depicted. 

Research on the molecular mechanism of rhizobacteria-mediated ISR was 
initially focussed on the role of PR-proteins, as the accumulation of these 
proteins was considered to be strictly correlated with induced disease 
resistance. However, radish plants of which the roots were treated with ISR 
inducing WCS417r did not accumulate PR proteins, although these plants 
clearly showed enhanced resistance against fusarium wilt disease (Hoffland et 
al., 1995). Similarly, Arabidopsis plants expressing WCS417r-mediated ISR 
showed enhanced resistance against F. oxysporum f.sp. raphani and P st 
DC3000, but this did not coincide with the activation of the SAR marker genes 
PR-1, PR-2, and PR-5 (Pieterse et al., 1996; Van Wees et al., 1997). 
Determination of SA levels in !SR-expressing Arabidopsis plants revealed that 
ISR is not associated with increased accumulation of SA (Pieterse et al., 2000). 
Moreover, WCS417r-mediated ISR was normally expressed in SA- 
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nonaccumulating Arabidopsis NahG plants (Pieterse et al., 1996; Van Wees et 
al., 1997). This led to the conclusion that WCS417r-mediated ISR is a SA 
independent resistance response, and that rhizobacteria-mediated ISR and 
pathogen-induced SAR are regulated by distinct signalling pathways. 

Apart from WCS417r, strain WCS358r has also been demonstrated to induce 
the SA-independent ISR pathway in Arabidopsis (Van Wees et al., 1997). In 
addition, the biological control strain Serratia marcescens 90-166 has been 
shown to induce protection in both wild-type and transgenic NahG tobacco 
plants against Pseudomonas syringae pv. tabaci (Press et al., 1997). In wild 
type and NahG tomato plants, a similar SA-independent resistance was 
observed against Phytophthora infestans after treatment of the roots with the 
PGPR strains Bacillus pumilus SE34 and Pseudomonas fl.uorescens 89B61 (Yan et 
al., 2002). All together, this indicates that the ability to trigger an SA 
independent pathway controlling systemic resistance is not uncommon among 
!SR-inducing rhizobacteria. However, not all resistance-inducing rhizobacteria 
trigger a SA-independent resistance. For instance, an SA-overproducing mutant 
of Pseudomonas aeruginosa 7NSK2 and a genetically modified, SA 
overproducing P. fl.uorescens P3 strain have been shown to trigger the SA 
dependent SAR pathway by producing SA at the root surface (De Meyer and 
Hofte, 1997; Maurhofer et al., 1998). 

5. Genetic Dissection of the ISR Signalling Pathway 

Besides SA, the plant growth regulators jasmonic acid (JA) and ethylene (ET) 
have repeatedly been implicated in the regulation of primary resistance 
responses in plants (Pieterse and Van Loon, 1999; Pieterse et al., 2001a). In many 
cases, infection by microbial pathogens and attack by herbivorous insects is 
associated with enhanced production of these hormones and a concomitant 
activation of distinct sets of defence-related genes. Moreover, exogenous 
application of these compounds often results in an enhanced level of resistance. 
To investigate the role of JA and ET in rhizobacteria-mediated ISR, the 
Arabidopsis JA-response mutant jarl-I and the ET-response mutant etr I-L were 
tested on their ability to express ISR. Both mutants were unable to mount 
resistance against Pst DC3000 after colonisation of the roots by P. fiuorescens 
WCS417r (Pieterse et al., 1998), indicating that ISR requires responsiveness to 
both JA and ET. In addition to etrl-1, a set of other well-characterised 
Arabidopsis mutants that are affected at different steps in the ET-signalling 
pathway were tested for their ability to express ISR. None of the mutants 
developed ISR against Pst DC3000 (Knoester et al., 1999), indicating that an 
intact ET-signalling pathway is required for the expression of ISR. 
To elucidate the sequence of the signalling events, the resistance-inducing 
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ability of methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylate 
(ACC), the natural precursor of ET, was tested in wild-type, NahG, jarl-1 and 
etrl-1 plants. Like WCS417r, MeJA and ACC were effective in inducing 
resistance against Pst DC3000 in SA-nonaccumulating NahG plants, suggesting 
that both inducers activate the SA-independent ISR pathway. Moreover, 
MeJA-induced protection was blocked in both jarl-1 and eirl-L, whereas ACC 
induced protection was affected in etrl-1, but not in jarl-1 plants. Hence, it was 
postulated that WCS417r-mediated ISR follows a signalling pathway in 
which components from the JA and ET response are successively engaged 
(Pieterse et al., 1998). 
NPRl has been shown to be an important regulatory factor in the SA 

dependent SAR response (Cao et al., 1994). To investigate whether NPRl is 
involved in the SA-independent ISR response as well, Arabidopsis mutant nprl 
was tested. Surprisingly, mutant nprl plants were blocked in their ability to 
express WCS417r-mediated ISR, indicating that, like pathogen-induced SAR, 
rhizobacteria-mediated ISR is an NPRl-dependent defence response (Pieterse 
et al., 1998). Elucidation of the sequence of !SR-signalling events revealed that 
NPRl functions downstream of JA and ET in the ISR signalling pathway. 
Evidently, NPRl is not only required for the SA-dependent expression of PR 
genes that are activated during SAR, but also for the JA- and ET-dependent 
activation of defence responses resulting from rhizobacteria-mediated ISR. 
This suggests that NPRl is able to differentially regulate defence gene 
expression, depending on the signalling pathway that is activated upstream of 
it. In Fig. 1 the main characteristics of the ISR signalling pathway are 
depicted. 

6. Identification of the Arabidopsis ISR1 Locus 

In a genetic approach to identify novel components from the ISR signalling 
pathway, 10 Arabidopsis ecotypes were screened for their potential to express 
ISR against Pst DC3000 (Ton et al., 1999). Of the 10 ecotypes tested, RLD and 
Wassilewskija did not develop ISR after treatment of the roots with WCS417r. 
The WCS417r-nonresponsive phenotype was associated with a relatively high 
susceptibility to Pst DC3000, which was apparent as both a greater 
proliferation of the pathogen in the leaves and the development of more severe 
disease symptoms. Genetic analysis of the progeny of a cross between the 
WCS417r-responsive ecotype Columbia and the WCS417r-nonresponsive 
ecotype RLD, revealed that both the potential to express ISR and the 
relatively high level of basal resistance against Pst DC3000 are monogenic, 
dominant traits that are genetically linked. The corresponding locus, 
designated ISRl, was mapped on chromosome III (Ton et al., 1999) and was 
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shown to be required for ISR against different pathogens (Ton et al., 2002c). 
Interestingly, mutants jarl-1 and etrl-1, that are affected in their response to 

JA and ET, respectively, showed the same phenotype as ecotypes RLD and 
Wassilewskija in that they were both unable to express WCS417r-mediated 
ISR and showed enhanced susceptibility to infection by Pst DC3000 (Pieterse et 
al., 1998). Analysis of the ET-responsiveness of RLD and Wassilewskija 
revealed that both ecotypes have a reduced sensitivity to ET, that co 
segregates with the recessive alleles of the JSRl locus (Ton et al., 2001). 
Therefore, it was proposed that the Arabidopsis ISRl locus encodes a novel 
component of the ET-response pathway that plays an important role in disease 
resistance signalling. Currently, we are in the process of identifying the ISRl 
gene by positional cloning. 

7. The Role of Jasmonic Acid and Ethylene in ISR 

In Arabidopsis, both JA and ET activate specific sets of defence-related genes 
and when applied exogenously they confer resistance against Pst DC3000 
(Pieterse et al., 1998; Van Wees et al., 1999). To investigate whether ISR is 
associated with changes in }A/ET-responsive gene expression, Van Wees et al. 
(1999) monitored the expression of a set of well-characterised JA- and/ or ET 
responsive genes (i.e. LOXl, LOX2, VSP, PDFl.2, HEL, CHI-B, and PALl) in 
Arabidopsis plants expressing WCS417r-mediated ISR. None of the genes 
tested were up-regulated in induced plants, neither locally in the roots, nor 
systemically in the leaves. This suggests that the resistance attained was not 
associated with major changes in the levels of either JA or ET. Indeed, analysis 
of local and systemic levels of JA and ET revealed that WCS417r-mediated ISR 
is not associated with changes in the production of these signal molecules 
(Pieterse et al., 2000). This suggests that the JA and ET dependency of ISR is 
based on enhanced sensitivity to these hormones, rather than on an increase in 
their production. 
If the JA and ET dependency of JSR is based on enhanced sensitivity to these 

signal molecules, JSR-expressing plants would be expected to react faster or 
more strongly to JA and ET produced after pathogen infection. This hypothesis 
is supported by the finding that the expression of the }A-inducible gene VSP of 
Arabidopsis was significantly enhanced in JSR-expressing leaves after 
challenge with Pst DC3000 compared to inoculated control plants (Van Wees et 
al., 1999). In the same study, several other }A-responsive genes were tested as 
well, but these failed to show an enhancement of the pathogen-induced 
expression level in JSR-expressing leaves, suggesting that ISR in Arabidopsis is 
associated with priming of a specific set of }A-responsive genes. Priming of 
defence-related genes, leading to a faster and/ or higher level of expression 
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after challenge inoculation, emerged as a common feature of different types of 
induced resistance (Conrath et al., 2002). It can explain, on the one hand, the 
apparent lack of changes in gene expression in induced tissues in the absence of a 
challenging pathogen, while on the other hand, the plant is able to react more 
efficiently to an invading pathogen. The molecular basis of priming is still 
unknown but is one of the challenges for future research. 

8. Induced Resistance is Expressed as an Enhancement of Basal 
Resistance 

Apart from their role in systemically induced resistance, the defence signal 
molecules SA, JA and ET have repeatedly been implicated in the regulation of 
primary resistance responses. Compelling evidence for the role of SA, JA and ET 
in basal resistance came from recent genetic analyses of Arabidopsis mutants 
and transgenics that are affected in the biosynthesis or perception of these 
compounds. In many cases genotypes affected in SA, JA or ET signalling show 
enhanced susceptibility to pathogen or insect attack (Dong, 1998; Glazebrook, 
2001). SA, JA and ET are involved to different extents in basal resistance 
against specific pathogens. For instance, basal resistance in Arabidopsis 
against the oomycete P. parasitica and turnip crinkle virus seems to be 
controlled predominantly by a SA-dependent pathway. Only SA 
nonaccumulating NahG plants exhibit enhanced disease susceptibility to these 
pathogens (Delaney et al., 1994; Kachroo et al., 2000), whereas mutants 
affected in JA or ET signalling do not (Kachroo et al., 2000; Thomma et al., 
1998). In contrast, basal resistance against· the fungal pathogens A brassicicola 
and B. cinerea is reduced only in JA- and ET-insensitive mutants, and not in 
NahG plants (Thomma et al., 1998; Thomma et al., 1999). Interestingly, basal 
resistance against the bacterial pathogens Pst DC3000 and X. campestris pv. 
armoraciae was found to be affected in both NahG plants and in JA- and ET 
response mutants (Pieterse etal., 1998; Ton et al., 2002b ), suggesting that basal 
resistance against these pathogens is controlled by a combined action of SA, JA 
and ET. Comparison of the effectiveness of SA-dependent SAR and JA/ET 
dependent JSR against these different Arabidopsis pathogens, revealed that 
SAR is predominantly effective against pathogens that in non-induced plants 
are resistant through SA-dependent basal resistance mechanisms, whereas JSR 
is predominantly effective against pathogens that in non-induced plants are 
resistant through JA/ ET-dependent basal resistance responses (Ton et al., 
2002b). Thus, SAR seems to constitute an enhancement of SA-dependent 
defences, whereas JSR seems to be based on an enhancement of JA- and ET 
dependent defences. 
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9. Analysis of Enhanced Disease Susceptibility Mutants 

Because of the association between induced resistance and basal resistance, 
we made use of a collection of Arabidopsis eds mutants with enhanced disease 
susceptibility (= reduced basal resistance) to pathogenic P. syringae bacteria to 
identify putative novel players in the ISR signalling pathway. Therefore, 11 
eds mutants were screened for their potential to express ISR against Pst DC3000. 
Out of 11 eds mutants tested, eds4-1, edsB-1, and eds10-1 were non-responsive to 
induction of ISR by WCS417r (Ton et al., 2002a). Further analysis of the ISR 
impaired eds mutants revealed that they are insensitive to induction of 
resistance by MeJA (eds4-1, edsB-1, and eds10-1) or ACC (eds4-1 and edsl0-1). 
Moreover, eds4-1 and edsB-1 showed reduced sensitivity to either ET (eds4-1), 
or MeJA (edsB-1). Although blocked in rhizobacteria-, MeJA-, and ACC 
induced protection, mutant edsl0-1 showed normal responsiveness to both MeJA 
and ACC, suggesting that this mutant is affected downstream of JA and ET in 
the ISR signalling pathway. Together, these results demonstrated that EDS4, 
EDS8 and EDSlO are required for ISR and act in either the JA response (EDS8), 
the ET response (EDS4), or downstream of the JA and ET response (EDSlO) in the 
ISR signalling pathway (Ton et al., 2002a). Future research should reveal the 
exact role of these signalling components in the expression of ISR. 

10. The Hunt for JSR-Related Genes 

Over the past years, several approaches have been initiated to identify 
!SR-related .gene expression. In one of the approaches, we screened a large 
collection of Arabidopsis lines containing enhancer-trap Ds transposons and the 
~-glucuronidase (GUS) reporter gene with minimal promoter (Vroemen et al., 
1998). One enhancer-trap line showed local GUS activity in the roots upon 
colonization with WCS417r. This local GUS expression was not observed after 
treatment of the roots with Escherichia coli, indicating that the induction was 
Pseudomonas specific (Leon-Kloosterziel et al., 2002). Interestingly, a similar 
expression pattern was observed after treatment of the roots with the ET 
precursor ACC, indicating that this line contains a transposon insertion in the 
vicinity of an ET-inducible gene that is up-regulated upon colonization with 
WCS417r. There are several candidate genes in the vicinity of the enhancer 
trap Ds transposon, one of which encodes a thaumatin-like protein. Gene 
expression analyses confirmed that this thaumatin-like gene is up-regulated in 
response to treatment of the roots with WCS417r or ACC. Analysis of the role of 
the thaumatin-like gene in ISR might provide more insight into the molecular 
mechanisms involved in rhizobacteria-mediated ISR. 

In another approach, the expression pattern of a large set of known, well- 
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characterised defence-related _genes of Arabidopsis was analysed upon 
induction of ISR by WCS417r. This set of genes consisted of the SA-inducible 
genes PR-1, PR-2, and PR-5, and the ET- and/or JA-inducible genes HEL, CHI-B, 
PDFl.2, AtVSP, LOXl, LOX2, and PALl. However, none of the genes tested 
were found to be up-regulated in plants expressing ISR, neither locally in the 
roots, nor systemically in the leaves (Van Wees et al., 1999). Currently, we are 
analysing transcript profiles of over 8000 Arabidopsis genes using Affymetrix 
GeneChip Arabidopsis Genome Arrays. Preliminary data confirm that the 
onset of ISR is not associated with major changes in gene expression (Verhagen 
et al., 2001). This is clearly in contrast to the onset of pathogen-induced SAR, in 
which PR-gene products accumulated systemically to levels from 0.3 to 1 % of 
the total mRNA and protein content (Lawton et al., 1995). Nevertheless, ISR 
expressing plants are clearly more resistant to different types of pathogens. 
Therefore, plants must possess as yet undiscovered defence mechanisms that 
contribute to broad-spectrum disease resistance. As mentioned above, priming of 
defence-related gene expression might explain, on the one hand, the apparent 
lack of changes in gene expression in induced tissues in the absence of a 
challenging pathogen, while on the other hand, the plant is able to react more 
efficiently to an invading pathogen. The role of priming in the expression of 
rhizobacteria-mediated ISR is currently under investigation. 

11. Combining ISR and SAR to Improve Biocontrol of Plant Diseases 

Induced disease resistance is an attractive form of plant protection, as it is 
based on the activation of extant resistance mechanisms in the plant and is 
effective against a broad spectrum of plant pathogens (Van Loon et al., 1998). 
Therefore, detailed knowledge on the molecular mechanisms underlying 
induced disease resistance will be instrumental in developing biologically 
based, environmentally-friendly, and durable crop protection. Previously, we 
demonstrated that simultaneous activation of the ISR and the SAR pathway 
results in an enhanced level of induced protection against Pst DC3000 (Van 
Wees et al., 2000). This indicates that the JA/ET-dependent ISR pathway and 
the SA-dependent SAR pathway act independently and additively on the 
level of protection against this pathogen. Moreover, we provided evidence that 
ISR and SAR confer differential protection against different types of pathogens 
(Ton et al., 2002b). Thus, combining both types of induced resistance can protect 
the plant against a complementary spectrum of pathogens, and can even result 
in an additive level of induced protection against pathogens that are resisted 
through both the JA/ET- and the SA-dependent pathways. Therefore, 
integrating both forms of induced resistance has great potential for future 
agricultural practices. 
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