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Abstract

Activities and properties of malate dehydrogenase (MDH, EC 1.1.1.37),
glutamate dehydrogenase (GDH, EC 1.4.1.4), and glucose-6-phosphate
dehydrogenase (G6PDH, EC 1.1.1.49), enzymes involved in primary metabolism
of lichen-derived cultures of Cetraria and Umbilicaria were determined. Effects
of pH, temperature, carbon and nitrogen sources on these enzymes and on
growth of lichen-derived cultures were also examined. The mycobiont of Cetraria
islandica, a lichen occurring in nature on weakly acidic humus in the subalpine
zone, grew well in 20° C cultures at pH 4.0 and, like Usnea longissima, grew
better on mannitol and L-glutamine than on glucose or glycine. The growth
of lichen-derived cultures could be correlated to specific conditions of their
natural environments. The activities of GDH, MDH, and G6PDH did not differ
significantly between the cultured mycobiont and photobiont of C. islandica,
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and mycobionts of Umbilicaria caroliniana and U. pensylvanica. Properties
of enzymes from C. islandica did not reflect the habitat and locality of the
lichen and were almost the same as those from non-lichens. Sugars and sugar
alcohols gave no significant effects on the activity of the enzymes in the cultured
C. islandica mycobiont. Among the amino acids tested, only L-glutamine
inhibited GDH.

Keywords: lichen-derived culture, Umbilicaria, Cetraria, Cladonia, culture pH,
carbon source, nitrogen source, culture temperature, enzyme activity,
glutamate dehydrogenase, malate dehydrogenase, glucose-6-phosphate
dehydrogenase

1. Introduction

Lichens are symbiotic associations of fungal (mycobiont) and algal
(photobiont) partners. They grow slowly and can adapt to extreme
environments. We considered whether these interesting characteristics of
lichens were reflected in the properties and dynamics of their enzymes involved
in primary metabolism.

Physiological studies of lichens, growth and adaptation, were summarized
by Hale (1973), Kappen (1973), and Ahmadjian (1993). Carbon (Galun, 1988)
and nitrogen metabolism (Rai, 1988), and the enzymology of lichens (Vicente
and Legaz, 1988) were reviewed recently. However, enzymes involved in growth
and adaptation of lichens have not been studied in detail.

We have successfully cultured lichen tissues and to date have accumulated
approximately 700 lichen-derived cultures, as well as mycobiont and photobiont
cultures derived from thallus fragments (Yamamoto and Yoshimura, 1992). To
use these cultures for biological and chemical experiments is advantageous,
because of their availability for successive experiments. In addition, the
separation of symbionts may provide some indication of the contribution each
symbiont makes to primary metabolism. The factors influencing growth of
lichen-derived cultures have not been well investigated: only two earlier reports
(Ahmadjian, 1961 and 1964) are available on growth factors of mycobiont
cultures, while there is no previous report on the activities and properties
of enzymes of primary metabolic pathways from lichen-derived cultures. We
have previously investigated the growth of tissue cultures (Yamamoto et
al., 1987 and Yoshimura et al., 1987) and in this paper, our objective
was to further study factors affecting growth and to determine activities
and properties of three enzymes involved in the primary metabolism, i.e.,
malate dehydrogenase (MDH, EC 1.1.1.37), glutamate dehydrogenase (GDH,
EC 1.4.1.4), and glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49)
obtained from lichen-derived cultures.
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2. Materials and Methods
Materials

We used the following cultures derived from thallus fragments by
the Yamamoto method (1985): mycobiont and photobiont cultures of
Cetraria islandica (L.) Ach. var. orientalis Asah. from tissue culture (strain
no. CEIS0346-01C) from thallus (specimen no. E803-02) collected at Hokkaido
Pref., mycobiont culture of Umbilicaria caroliniana Tuck. from tissue culture
(Yoshimura et al., 1989), and mycobiont culture of U. pensylvanica Hoffm.
from tissue culture (Yoshimura et al., 1989). Natural thalli for the enzyme
investigations were collected at Nagano Pref. in 1992 and stored at —80° C
for 6 months. The effect of temperature and pH on growth in cultures and
enzymes was studied in C. islandica and other aspects of the investigations
involved all three species.

Subculture methods

Lichen-derived cultures were cut into segments and each segment was
transferred to an agar-plate of Lilly-Barnett (LB) (1951) or malt-yeast extract
(MY) (Ahmadjian, 1961) in Petri dishes (9 cm in diam.). These were
cultured for three to four weeks under various conditions. Growth ratios (final
fresh weight/initial fresh weight) were calculated. LB medium consisted of
1% (w/v) glucose, 0.2% (w/v) L-asparagine, 0.01% (w/v) K,HPO,, 0.005%
(w/v) MgSO,4-TH,0, 0.2 ppm Fe(NO3)3), 0.2 ppm ZnSO,, 100 ppb thiamine
hydrochloride, 5 ppb biotin, and 2% (w/v) agar. Subculturing was also
done onto LB medium modified as follows: a sugar or sugar alcohol (sucrose,
mannitol, ribitol, glucose, or fructose) at 4% (w/v) instead of 1% (w/v) glucose;
amino acid (D- or L-asparagine, L-glutamine, L-alanine, or glycine) at 0.2%
(w/v) instead of 0.2% (w/v) L-asparagine. The pH of liquid LB medium was
adjusted by NaOH or HCl. Liquid media with differing pHs were filtered
through a membrane filter with a pore size of 0.22 ym without autoclaving. In
the case of solid cultures autoclaved agar was added to liquid media, dissolved,
and inoculated. Cultures on these media were maintained at 10, 15, 20, or

25°C.

Preparation of the enzyme extracts

About 1 g of fresh weight (FW) of each lichen-derived culture and 1 g of
quartz sand were ground with a mortar and a pestle in 4 ml of 100 mM Tris-HCl
buffer (pH 8.0) containing 1 mM EDTA, 0.1 mM phenylmethylsulfonylfluoride
and 0.025% 2-mercaptoethanol. The homogenate was sonicated for 5 min and
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then centrifuged at 8000 g for 10 min. The supernatant was used as an enzyme
solution. Enzyme extractions from natural thalli were done without sonication.
All steps in the enzyme preparation were carried out at 4° C.

Assays of the enzyme activities

The activity of malate dehydrogenase (MDH) was measured in 1 ml of a
reaction mixture containing 40 mM potassium phosphate buffer (pH 7.5),
1 mM oxaloacetic acid, 0.16 mM NADH and 100 gl of each enzyme solution.
The reaction mixture without oxaloacetic acid was pre-incubated at 30° C for
2 min, and the reaction was started by adding oxaloacetic acid. The activity
of MDH was determined by measuring the decrease of absorbance at 340 nm
after 10 sec. Experiments to determine the effects of pH or temperature
on MDH activity were carried out at pH 5.5 to 8.5 and at 10° to 40°C.
The relative activity (%) [(specific activity/specific activity under optimum
conditions)x 100} was calculated.

The activity of glutamate dehydrogenase (GDH) was measured in 1 ml of
reaction mixture containing 200 mM Tris-HCI buffer (pH 8.0), 260 mM NH,CI,
10 mM 2-oxoglutaric acid, 0.16 mM NADPH, 1 mM CaCl; and 100 ul of each
enzyme solution. After preincubation at 30° C for 2 min the reaction was
started by adding 2-oxoglutaric acid and after 10 sec the decrease of absorbance
at 340 nm was measured. Experiments to determine the effects of pH or
temperature on GDH activity were carried out at pH 7.0 to 9.5 and at 15° to
70° C.

The activity of glucose-6-phosphate dehydrogenase (G6PDH) was measured
in 1 ml of reaction mixture containing 120 mM Tris-HCl buffer (pH 7.5),
3 mM glucose-6-phosphate, 0.3 mM NADP*, 20 mM MgCl, and 100 ul of
each enzyme solution. After preincubation at 25° C for 2 min the reaction
was started by adding glucose-6-phosphate and after 10 sec the increase of
absorbance at 340 nm was measured. Experiments to determine the effects of
pH or temperature on G6PDH activity were carried out at pH 6.0 to 9.5 and
at 15° to 55° C.

Measurement of protein content
The amount of protein in each enzyme solution was determined by the
method of Bradford (1976) using a Bio-Rad protein assay kit.

Measurement of Km values

The activities of MDH, GDH, and G6PDH were measured using the
following substrates and conditions: MDH, pH 7.5, 30° C, oxaloacetic acid
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(0.02-1 mM) and NADH (0.02-0.32 mM); GDH, pH 8.0, 30° C, 2-oxoglutaric
acid (2.5-50 mM) and NADPH (0.04-0.32 mM); G6PDH, pH 7.5, 25°C,
glucose-6-phosphate (0.1-10 mM) and NADP* (0.02-1 mM). The Km values
for above substrates of MDH, GDH and G6PDH in crude extracts were
graphically calculated from Lineweaver-Burk plots.

3. Results and Discussion
Effects of culture conditions on growth

We suggested in our previous paper (Yamamoto et al., 1987) that the
optimum growth temperatures of lichen tissue cultures reflected the conditions
of their natural habitats. Similarly, we found that a cultured Cetraria islandica
mycobiont isolated from a thallus collected at the subalpine zone grew well at
low temperatures, i.e., 15° to 20° C (Fig. 1).
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Figure 1. Effect of temperature on growth of cultured mycobiont of Cetraria islandica. The
culture was maintained on 20 ml LB agar medium supplemented with 4% mannitol

instead of glucose at 10°, 15°, 20°, or 25° C in the dark for 4 weeks. Means are
SE of 2 replicates.

Natural Cladonia vulcani can grow on strong acidic soil near hot springs,
and Yoshimura et al. (1987) reported that growth of cultured C. wvulcani
tissues was best at pH 4. Natural Cetraria islandica grows on weak acidic
humus, and we found that growth of the C. islandica mycobiont was fastest at
pH 4.0 (Fig. 2). This suggests that the cultured mycobionts, C. vulcani and
C. islandica, reflected the acidic nature of their habitats.

Mannitol and glucose occupy significant positions in carbohydrate
metabolism. Richardson and Smith (1968), Komiya and Shibata (1971),
and Honegger et al. (1993) reported that some lichen mycobionts cultured
in glucose-containing media accumulate mainly mannitol. In Peltigera, the
carbon fixed by photosynthesis in photobionts is released as glucose to
mycobionts, and there is converted to mannitol for storage (Smith and Douglas,
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Figure 2. Effect of pH on growth of cultured mycobiont of Cetraria islandica. The solid
culture (M) was maintained on 20 ml LB agar medium supplemented with 4%
mannitol instead of glucose at various pHs at 15° C in the dark for 3 weeks. The
liquid culture (A) was maintained in 40 ml LB liquid medium supplemented with
4% mannitol instead of glucose at various pHs at 15° C in the dark for 4 weeks.

1987). Both mannitol (via mannitol-1-phosphate or fructose) and glucose (via
glucose-6-phosphate) can be metabolized to fructose-6-phosphate (Vicente and
Legaz, 1988). We proposed previously that lichen tissue cultures of species
belonging to the same genus may differ with regard to their preference for
either mannitol or glucose as a carbon source (Yamamoto et al., 1987). In this
paper, we found that the C. islandica mycobiont was a mannitol-type that
could utilize fructose better than glucose (Fig. 3).

Growth Ratio

R M G F S

Figure 3. Effect of sugar and sugar alcohol on growth of cultured mycobiont of Cetraria
islandica. The culture was maintained on 20 ml LB agar medium containing 4%
ribitol (R), mannitol (M), glucose (G), fructose (F), or sucrose (S) instead of 1%
glucose at 15° C in the dark for 3 weeks. Means are SE of 2 replicates.

No one has demonstrated which amino acids are essential for lichens or
how they are metabolized. We proposed previously that lichen tissue cultures
belonging to the same genus were grouped into three types based on their
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relative performances in glycine and L-glutamine (Yamamoto et al., 1987). In
this study, it was observed that the C. islandica mycobiont was an L-glutamine
type and that cultures of its mycobiont thrived not only on L-glutamine
but also on L-alanine (Fig. 4). Ahmadjian (1964) reported that L-alanine
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Figure 4. Effect of amino acid on growth of cultured mycobiont of Cetraria islandica. The
culture was maintained on 20 ml LB agar medium with 0.2% L-alanine (L-Ala),
L-asparagine (L-Asn), D-asparagine (D-Asn), L-glutamine (L-Gln), or glycine
(Gly) instead of 0.2% L-asparagine at 15°C in the dark for 3 weeks. Means
are SE of 2 replicates.

promoted growth of the two mycobiont cultures of Cladonia cristatella and
Acarospora fuscata. Therefore, it is possible that these cultures belonged to
the L-glutamine type.

Activities and properties of primary metabolic enzymes

Lichens grow very slowly as compared with other organisms. When the
enzyme activity in cells is lower, turnover rate of metabolites may be low
and consequently cell growth could also be slow. Low enzyme activity of the
primary metabolisms in lichens could be the cause of slow growth.

Since lichens can grow in more extreme environments than many other
organisms, two mechanisms of adaptation are possible: one concerns the
regulation in the incorporation of substrates into cell walls and membranes, and
the other concerns the adaptation of enzymes involved in primary metabolism.

The total MDH activity of the cultured C. islandica photobiont was 10 times
higher than that in the natural thallus and cultured mycobiont, while relative
activities of MDH in cultured bionts were 10 times higher than that of the
natural thallus (Table 1). We found that the specific activity and coenzyme
of GDH in natural thalli of Peltigera aphthosa (Rai et al., 1980 and 1981),
P. canina (Rai et al., 1983), and Pseudevernia furfuracea (Jager and Weigel,
1978) and its properties in natural Lobaria laetevirens (Bernard and Goas,
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1979) are similar to those of the natural C. islandica thallus (Table 1). We
also found no significant difference between the GDH total activities of cultured
Cetraria and Umbilicaria mycobionts and those of natural thalli and cultured
photobiont. However, the specific activities of mycobionts were 10 times those
of photobionts and thalli (Table 1). The GDH activities in lichens were similar
to those of other organisms, and NADPH-type GDH was commonly found not
only in lichens, but also in other organisms (Table 1). We found that the
G6PDH specific activity in the natural C. islandica thallus was much lower
than in lichen-derived cultures or other organisms (Table 1). This result may
indicate that the relative importance of alternative pathways of carbohydrate
metabolism(s) differs in natural lichens.

Optimum pH and temperature of individual enzymes shown in Figs. 5 and
6 are not the same as optimal pH and temperature for growth of the cuttured
C. islandica mycobiont. Optimum and Km values of these lichen enzymes
shown in Tables 2 and 3 were almost the same as those in other organisms,

100 |- ‘ 100 f
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g 0 NpH B il MDH
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5 E
$ 50t & 50}
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s 0 S 100 |
gmr e g
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Figure 5. Effect of pH on the specific Figure 6. Effect of temperature on the
activities of malate dehy- specific activities of malate
drogenase (MDH), glutamate dehydrogenase (MDH), gluta-
dehydrogenase (GDH), and mate dehydrogenase (GDH),
glucose-6-phosphate-6-dehyd- and glucose-6-phosphate-6-de-
rogenase (G6PDH) from cul- hydrogenase (G6PDH) from
tured mycobiont of Cetraria cultured mycobiont of Ce-

islandica. traria islandica.
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but this does not prove that MDH, GDH, and G6PDH are the same in all

lichens or in lichens and other organisms.

Different sugars or sugar alcohols in the culture medium did not significantly
affect the activities of MDH, GDH, and G6PDH in cultured C. islandica
mycobiont (Table 4). Of amino acids tested so far, only L-glutamine inhibited
GDH activity in the cultured mycobiont of C. islandica (Table 5).

The growth of lichen-derived cultures was definitely affected by their natural
conditions, habitat (pH) and locality (temperature), whereas properties of
MDH, GDH, and G6PDH were similar to those of other organisms, with no
apparent property that might enable them to grow slowly and to adapt to more
extreme environments. Lichens are unique organisms ecologically, but little is
known of their primary metabolism. Lichens have metabolic adaptations that
are not found in other organisms, and approaches using lichen-derived cultures
may help to elucidate these.
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