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Abstract

Predictive genetics is a promising field of research, particularly in medical sci-

ence where the ability to identify disease or treatment response could provide

novel methods of mitigating their negative effects. Machine learning repre-

sents the most obvious tool that can be used to this end, however a notable

property of genetic data that proves difficult for machine learning is a signifi-

cant imbalance between samples and features, indicating the need for feature

selection. The dataset we used was collected from multiple international cen-

tres and includes subjects with bipolar disorder, some of whom respond to

the drug lithium and some who do not. We first select the features that were

measured jointly by each data collection centre and show that above chance

classification is possible with these data, despite significant overfitting which

indicated the need for further feature space reduction. We then introduce a

novel method capable of reducing the number of features even further so as

to be bounded by the number of subjects. This method uses the hierarchical

structure of genetic data to select feature subsets and evaluate their fitness

individually before including the best ones in the final feature set. We show

that our method improves on the first method while maintaining biological

interpretability.
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Chapter 1

Introduction

1.1 Motivation

The ability to predict disease and treatment response in advance could al-

low novel ways of managing or eradicating their negative effects. Given that

many phenotypes of interest have a genetic underpinning, using genetic data

has been a growing topic of interest. This has been spurred both by falling

costs of sequencing and a growing list of discoveries [33]. A common method

of measuring genetic data is known as a SNP micro-array, which measures

individual genetic deviants that are commonly referred to as single nucleotide

polymorphisms (SNP, pronounced ‘snip’). This technique can yield hundreds

of thousands or even millions of measurements across the genome for each

individual.

The current standard method of analyzing micro-array data utilizes a tech-

nique called logistic regression analysis (LRA) and is most often referred to as

a genome-wide association study (GWAS). LRA seeks to determine the degree

of statistical association between each individual SNP and the phenotype in

question. This method is limited in that it cannot capture multivariate effects

between SNPs and the phenotype since it applies a classifier to many features

individually. Interactions between variants are of considerable interest how-

ever given that many complex disease phenotypes are polygenic in nature.

Moreover, interactions between variants and complex phenotypes cannot be

1
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meaningfully modeled using individual features with small effect sizes. In con-

trast to LRA, many other supervised machine learning (ML) techniques are

capable of modeling multivariate interactions between features and a depen-

dent variable, thus making more advanced ML an attractive alternative.

A common attribute of micro-array data that is relevant from a ML per-

spective is the imbalance between the number of features and the number of

samples. The number of features can be on the order of millions whereas the

number of samples, in the largest of studies, is only on the order of several

tens of thousands [27]. Moreover, effect sizes of individual SNPs are small

which affects the statistical power of the analysis. In addition, other strong

signals such as population structure (genetic variations between populations

that are unrelated to the phenotype) may obscure the effect being studied.

These properties of SNP micro-array data thus make a naive application of

ML techniques, where we use the entire genome as a feature vector, computa-

tionally intractable.

We have so far outlined two possible methods of analyzing micro-array data

that exist at two extremes: analyzing variants one at a time by applying LRA,

and all variants at once by applying an ML classifier to all features naively.

Both of these methods have properties that make them undesirable. Fortu-

nately, there exists a hierarchical organization of genetic structures that range

in between these two extremes, which is digitally captured by tools such as

Gene Ontology [2] that can be used for data analysis. Using such tools, we may

organize the individual variants into chromosomes, genes or functional classes

that are involved in certain biological processes. In this work, we propose a

framework with which it is possible to both take advantage of multivariate

interactions between SNPs and avoid the intractability of analyzing the en-

tire genome at once by using these semantic structures. We argue that this
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technique is capable of providing competitive classification results while still

maintaining biological interpretability.

1.2 Overview

In this work we used machine learning (ML) in an attempt to predict whether

or not subjects with bipolar disorder responded to lithium as a mood stabilizer.

To do this, we used a SNP micro-array dataset that was collected from different

international centres. On top of the large sample/feature imbalance that is

typical of SNP micro-array data, the international nature of this dataset posed

additional challenges. Namely, the labeling of the phenotype is not perfectly

consistent between sites, and some sites use different data collection platforms

that do not measure exactly the same features and so an imputation method

was applied to fill in the spaces.

Given that this dataset was initially untouched by ML, we first took an

approach to reducing the feature space that eschewed the use of sophisticated

feature selection or biological hypotheses. Instead, we simply relied on the

fact that complete data is better than imputed data and selected all features

that were measured in common by each platform. This process so happened

to leave us with a feature space that, while large, was within the realm of

computational tractability. With this so-called “non-imputed” dataset, we

attempted to determine if a) any detectable signal related to lithium response

could be found and b) if so, to what degree is this signal affected by data

collection site.

The experiment using the non-imputed dataset showed that prediction is

not possible on the entire aggregated dataset, but that it may be possible to

predict response slightly above chance for a subset of the sites. This above
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chance performance was first evinced by comparing the Cohen’s kappa statis-

tic to that which would be expected by a null classifier. Later, we further

back up this claim by showing that the SNPs deemed most important by the

trained classifier are over-represented in genes that have been previously and

independently associated with bipolar disorder. Finally, we show with this

experiment that each classifier we train perfectly (or near perfectly) overfits

the training set, indicating the need for a more significant reduction in the size

of the feature space.

Directed by the previous experiment, we next looked to apply feature selec-

tion to the entire imputed dataset. For this task we required a feature selection

method must balance effectiveness, tractability, and intepretability, but found

existing methods that have been applied to this form of data lacking. We

therefore introduce a novel method of feature selection for SNP micro-array

data that we call gene-wise feature selection. Our proposed method utilizes

the hierarchical structure of genetic data to identify biologically relevant fea-

ture subsets, and analyzes the predictive capacity of each in order to aggregate

useful signal into a final feature set.

With this feature selection method, we performed the same classification

analyses as in the previous experiment. Similarly, we found that it was not

possible to predict response when the sample was combined. Also, we showed

that slightly above chance prediction was possible in one of the two sites that

contained a large enough sample for gene-wise selection work. Fortunately, a

subset of samples from this site overlapped with a dataset of clinical features

which a separate work has used to identify a group of more easily predictable

subjects. We wished to see if the difference in the ability to predict these

subjects with clinical data extended to genetic data, and so we applied our
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method to these subjects separately. This analysis showed a significantly im-

proved ability to genetically predict the more clinically predictable subjects.

Finally, we conclude that there is indeed some genetic signal involved with

this phenotype and that this signal is stronger in at least one subset of samples

from one of the sites. We argue that our gene-wise feature selection method

could be of use for other datasets in that it has been shown to be effective, it

is computationally tractable, all while maintaining biological interpretability,

but also that there are possible improvements. We also suggest that any

future genetic study of lithium response in bipolar disorder be coupled with

the collection of ancillary clinical data.

1.3 Thesis Outline

This document is organized as follows. Chapter 2 details relevant background

material including the representation of SNP micro-array data, the standard

method of GWAS, discussion of the need for and limitations of various feature

selection methods, and the details of the dataset that we use in this work.

Chapter 3 outlines exploratory work we have done using a subset of the feature

space which guides our future work. In Chapter 4 we detail a novel method

of constructing a genetic feature set that is tractable for ML methods and

present the results of applying this method to our dataset. In Chapter 5

we summarize the results of Chapters 3 and 4 and discuss potential future

directions this research could take.



Chapter 2

Background

2.1 Representation of Genetic Variation

Genetic variation influences traits such as hair color, height, and even various

diseases. The commonly used quantum of genetic variation is known as a Single

Nucleotide Polymorphism (SNP, pronounced “snip”). As its name suggests, a

SNP represents a single nucleotide (A, C, T, G) in a strand of deoxyribonucleic

acid (DNA) that differs with respect to that same location on the DNA of other

members of the given species. For each location that is measured, we refer to

the more common variant as ‘major’ and the less common as ‘minor’. Micro-

array data are thus represented as the integer number of minor alleles at each

locus. This count can have a value of 0 (homozygous major), 1 (heterozygous)

or 2 (homozygous minor) since there are two copies of each chromosome. A

feature set X = (xij)
j=1..ng

i=1..ns
consisting of ns subjects and ng SNPs is therefore

a set of binomial counts xij ∈ {0, 1, 2}. The target variable for a binary

phenotype is simply represented as a binary vector, y = (yi)i=1..ns ∈ {0, 1}ns .

In this work we make frequent reference to hierarchically organized struc-

tures in the genome, and we provide a visual representation for this hierarchy

in Figure 2.1. As described above, SNPs represent the smallest quantum of

genetic variation and as such exist at the bottom of the hierarchy. A SNP

may lie in an area of the genome known as a gene which, as a unit, encodes

the information necessary to create a protein. SNPs that are part of genes are

6
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SNPs

Genes

Pathways

Figure 2.1: A simplified representation of the hierarchical organization of ge-
netic structures. At the bottom, SNPs signify the fundamental quanta of
genetic variation. Some SNPs are associated with blocks of the genome called
genes (lighter colored) which encode information necessary for creating pro-
teins, whereas others are not (darker colored). Genes may be part of higher
level pathways which, for example, are involved in certain activities of the cell
or other biological processes.

referred to as intragenic whereas SNPs outside of genes are intergenic. Pro-

teins that are encoded by separate genes may interact in ways that give rise to

higher order biological processes. When one or more genes are involved with

such a process, we group these genes into structures known as pathways.

2.2 Standard Association Analysis for Micro-Array Studies

The standard method for studying SNP micro-array data focuses on logis-

tic regression analysis of each SNP. In the case of a binary phenotype, each

SNP is entered into a logistic regression model along with other covariates

that may correlate with the phenotype. Upon fitting of the logistic model,
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a degree of association is calculated by way of a p-value that represents the

probability that the given result would be observed from the null distribu-

tion by random chance. A value of 0.05 is widely accepted threshold for

significance in many statistical studies, however it is insufficiently strict in

the regime where hundreds of thousands, if not millions, of such statistical

tests are being performed. For this reason, a Bonferroni corrected signifi-

cance threshold is typically adopted in GWA studies thus resulting in a widely

used significance threshold of 5e−8 [7]. This method has the ability to iden-

tify genotype-phenotype associations involving single SNPs that are unlikely

to arise by chance, but fails to account for any SNP-SNP interactions. For a

more detailed description of logistic regression analysis please see the following

section (2.3.3).

Most notable among the covariates that GWA study practitioners com-

monly include are the first several principal components (PC) of the ns by

ng feature array. Price et al. suggest that the inclusion of PCs in the logis-

tic model reduce the rate of false positives as population structure, which is

captured by these first few principal components, can account for some of the

variance in phenotype [25]. In studies that collect data using multiple different

genotyping platforms, the platform is sometimes also included as a covariate

as it can be a confounding factor that is unrelated to the underlying biology.

2.3 Classification Models

2.3.1 Logistic Regression

The logistic regression classifier is a linear method used for estimating the

probability of a binary variable, ŷ, given some observed data, x. This estimate

is represented as,
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ŷ = p(y|x, β) = 1

1 + exp(β⊺x)
, (2.1)

where β is a parameter vector with length equal to the number of measure-

ments for each sample. Let the function L(β,x) represent the likelihood of

seeing parameters β given some measurements, x. The optimal parameters of

the logistic model are those that maximize the likelihood function (or equiva-

lently its logarithm), L. For the logistic model, the log-likelihood function is

represented as,

logL =
n∑
i

yi log ŷ + (1− yi) log(1− ŷ), (2.2)

where ŷ represents the logistic model.

In this work, we use the scikit-learn implementation of the LR classifier

[24]. For minimizing the loss function, we use the limited-memory Broy-

den–Fletcher–Goldfarb–Shanno (l-BFGS) optimization algorithm. This algo-

rithm is a second order gradient method that approximates the Hessian of the

function it is optimizing, a process which runs more efficiently when the fea-

ture space is large. We otherwise use the default parameters, which includes

an l2 penalty on the loss function.

One of the benefits of a linear model comes from its interpretability. For

the logistic model, the magnitude of each coefficient, βj, informs us of the size

of the effect that the corresponding feature has on the prediction. We note

also that each coefficient carries a sign, which in our case tells which class the

presence of minor alleles affects.
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2.3.2 Extreme Gradient Boosting

XGBoost (Extreme Gradient Boosting, XGB) is a widely used gradient tree

boosting algorithm that can be applied to both classification and regression

problems [3]. While similar to other tree ensemble methods such as random

forests in that multiple weak models with high variance are combined in order

to create a single stronger model, the way that a gradient boosted tree model

combines weak learners differs. Namely, the gradient boosting method trains

models sequentially and combines them additively such that the kth model is

represented by,

Fk(x) = Fk−1(x) + hk(x), (2.3)

where hk(x) is the model that is trained at the kth iteration. The gradient

boosting model gets its name from the fact that it treats the addition of new

models as a gradient based optimization,

Fk(x) = Fk−1(x) + α
∂L(x, F (x))

∂F (x)

⏐⏐⏐
F (x)=Fk−1(x)

, (2.4)

where α is a learning rate, and L is a loss function. For simplicity we assume

a regression problem here and use the mean squared error as the loss function,

though we note that the process is analogous for classification but with a

different loss function. The loss is therefore given by,

L(x, F (x)) ∝ (y − F (x))2. (2.5)

Differentiating with respect to F (rather than the model parameters), we ob-

tain,
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∂L(x, F (x))

∂F (x)
∝ y − F (x). (2.6)

Thus at each iteration the new model, hk(x), is trained to predict the mis-

takes that the previous model has made and is scaled by the learning rate for

stability. The final model can be represented as,

F (x) =
K∑
k

hk(x). (2.7)

The gradient boosted tree model provides a feature importance metric for

each individual feature. For an individual tree, the number of splits for which

a given feature causes an improvement is counted and weighted by the number

of observations that split is responsible for. This is then and normalized by

the number of features,such that the sum of all feature importances is one, and

then averaged over all trees in the ensemble. We note that a key difference

between the feature importances of this model and of the logistic model is that

this metric carries no sign.

The XGBoost algorithm uses the same model as outlined above, but makes

several modifications to the training algorithm in comparison to the original

gradient boosting method that improve both classification performance and

scalability. Namely, XGB implements regularization that penalizes model com-

plexity and prevent overfitting, as well as novel data structures that reduce

memory utilization and improve parallelization in training.

2.3.3 Logistic Regression Analysis

Logistic regression analysis (LRA) uses the same model and cost function

(equations 2.1 and 2.2 respectively) as the LR classifier, however with a differ-

ent end goal. Rather than performing predictions, LRA seeks to determine the
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degree of statistical association between a measured feature and a dependent

variable.

In the context of a GWA study the measurement, x, corresponds to a SNP

as well as any other covariates that may be of importance (i.e. population

structure). The objective of association analysis with logistic regression is to

test the following null hypothesis: the SNP in question is unrelated to the

phenotype. With this hypothesis, we also assume that the coefficient in the

logistic model that corresponds to the SNP variable, βSNP , is drawn from a

normal distribution centered at zero. To reject the null hypothesis and say

that it is likely that a SNP is indeed associated with the phenotype, we must

observe a value of βSNP that is far enough from zero that it is unlikely to be

due to random chance.

To calculate the probability that we may reject the null hypothesis we

calculate the t-statistic,

tSNP =
βSNP

σSNP

, (2.8)

where σSNP is the standard error of the normal distribution from which we

assume βSNP was drawn. We then square the t-statistic and measure its

probability using the Chi-squared distribution. For this computation we use

the newton-raphson python package [23].

2.4 Lithium Response in Bipolar Disorder

Bipolar Disorder (BD) is a neuropsychiatric illness characterized by recurring

episodes of mania and depression separated by periods of partial or even full

recovery. While it is possible to provide effective treatment, illness course can

differ significantly between patients and it can take up to ten years to find an
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appropriate medication [8]. Given that BD is also associated with significantly

increased risk of death by suicide, particularly in the early course of the illness,

reducing the time taken to achieve an effective intervention is an important

endeavour [17].

The procedure for finding the optimal medication course is effectively trial

and error. A contributing factor to the delay in treatment is the number of

trial medications given to a patient before finding the optimal drug. A poten-

tial avenue for reducing the time delay in treatment is to predict treatment

response in advance.

Lithium is a commonly used medication for treating BD, though only ap-

proximately 30% will be good responders [29]. Response to lithium as a mood

stabilizer among patients with BD has been shown to aggregate within families,

thus indicating lithium response may have a genetic factor [11]. To this end

the International Consortium on Lithium Genetics has collected the largest

micro-array dataset on lithium response to date [13]. With this dataset, it is

possible to perform the first ever predictive analyses on the lithium response

phenotype using genetic data.

2.5 Dataset

The International Consortium on Lithium Genetics (ConLiGen) is an organi-

zation spanning multiple institutions and is dedicated to studying the genetic

origins of lithium response among patients with BD [30]. ConLiGen is re-

sponsible for constructing the largest ever data set of lithium responders/non-

responders. Genotype and phenotype data were collected from subjects living

in Europe, the Americas, Asia, and Australia in the interval between 2008 and

2013. The genotype data were collected on several different brands of micro-

array platforms. More details on data collection can be found in Hou et al.



14

[13].

Lithium response, the target variable in this study, was rated on a scale

from 0-10 commonly referred to as the Alda Scale [16]. Unless otherwise stated,

we define a lithium responder as a subject with a score ≥7. In the aggregated

sample from all sites, 29% of subjects are classed as responders and the rest

non-responders. Each site individually differs in it’s proportions of responders

and non-responders, and these distributions are summarized in Table 2.1.

Institution Responders Non-Responders
University of Cagliari, Italy 55 (28%) 141 (72%)
Dalhousie University, Canada 159 (45%) 194 (55%)
University of NSW, Australia 13 (20%) 50 (80%)

Poznan University of Medical Sciences, Poland 47 (48%) 50 (52%)
UC San Diego, USA 23 (11%) 192 (89%)

RIKEN Brain Institute, Japan 31 (24%) 97 (76%)
Mayo Clinic, USA 22 (23%) 72 (77%)

University of Würzburg, Germany 30 (17%) 145 (83%)
Karolinska Institutet, Sweden 138 (45%) 166 (55%)

National Taiwan University, Taiwan 13 (14%) 79 (86%)
Obregia Hospital, Romania 32 (21%) 120 (79%)

University of Geneva, Switzerland 13 (23%) 44 (77%)
University of Barcelona, Spain 20 (27%) 54 (73%)

INSERM, France 38 (18%) 172 (82%)
ALL 634 (29%) 1576 (71%)

Table 2.1: The distribution of lithium responders and non-responders by each
of the 14 sites.

In consortium level genomic studies, it is not uncommon for different data

collection centers to genotype subjects on different micro-array platforms,

which sometimes assay different sets of SNPs. Figure 2.2 shows a simpli-

fied representation of this for three different platforms and five SNPs. In such

cases, it is also not uncommon for researchers to perform a statistical imputa-

tion that fills in areas of the genome that are not measured for some platforms

using a set of densely sampled reference genomes. Hou et al. performed such

an imputation to create a larger set of SNPs that are common to all subjects

which we refer to as the imputed data set. Across all platforms there were
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Figure 2.2: A simplified representation of the overlap in SNP measurements
between three different platforms. Darker squares signify that the given SNP
on the given platform was measured, whereas lighter colored squares indicate
that it was not. In this diagram the non-imputed dataset would contain SNPs
2 and 5. To construct an imputed dataset, certain SNPs would have to be
imputed for all of the subjects on each platform (e.g. SNP 4 would have to be
imputed for all subjects genotyped using Platform 1).

a number of directly genotyped SNPs in common. We refer to the overlapping

set of directly genotyped SNPs as the non-imputed data set.

Upon receiving the imputed dataset from ConLiGen, it was represented as

categorical probabilities for the locus being homozygous on the major allele

(p0, zero minor alleles), and the probability of the locus being heterozygous (p1,

one minor allele). For each SNP in the dataset, we calculated the probability

of the locus being homozygous on the minor allele (two minor alleles) as p2 =

1− p0 − p1. In order to represent the dataset in terms of minor allele counts,

we simply took the max probability value at each loci for each subject and

assumed the corresponding zygostity.

Hou et al. [13] imposed quality control measures that are typical for GWA

studies for retaining both SNPs and subjects. These included: per subject

genotype missingness, control for autosomal heterozygosity rate, minor allele
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frequency pruning, Hardy-Weinberg equilibrium pruning, and linkage disequi-

librium pruning using PLINK v1.07 [26]. This set of quality control procedures

is typical of genome-wide association studies [18]. On top of the original qual-

ity control, we also removed sites that had fewer than 50 total samples or fewer

than ten lithium responders. We removed these sites as they would give rise

to sample size problems in some of the analyses per perform (namely, the site-

level analysis outlined in Section 3.2.2 ). The imputed data set contained 2210

subjects and 5,795,772 SNPs after quality control, whereas the non-imputed

set contained the same number of subjects and 47,465 SNPs. Further details

regarding quality control and imputation can be found in [13].

2.6 Feature Selection

Modern micro-array platforms are capable of measuring over a million SNPs

for each subject, whereas even the most notable studies that have used micro-

array data contain only on the order of several tens of thousands of samples

[33]. Moreover, modern genetic studies are typically international efforts car-

ried out by consortia of data collection centres that do not always use the same

platforms. These platforms may only measure some SNPs in common, leav-

ing significant missingness in a platform-correlated pattern. In such studies,

researchers are likely to perform a statistical imputation in order to maximize

the coverage of SNPs over the genome which results in an even larger number

of features for each sample.

End-to-end learning defines a process in which a model is used to learn

the relationship between an entire unmodified feature space and a dependent

variable. Usage of this technique has been a prominent trend in machine

learning research in recent years which has mainly been facilitated by wide-

spread access to “big data”. Two notable areas of end-to-end learning success
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are computer vision (CV) and natural language processing (NLP). The data

in each of these areas exist in very large feature spaces, but large numbers of

samples are also available, which is not true for micro-array data. Moreover,

both image and language data are highly strucutred in that individual features

(pixels, words, etc.) are not positionally invariant within the feature vector.

Data that lack positional invariance allow for the application of models such as

convolutional and recurrent neural networks which efficiently share parameters

across input features. In contrast, micro-array data are positionally invariant

and thus it is not obvious that they will benefit from such parameter sharing

models.

The properties of micro-array data discussed above clearly indicate the

need for feature selection. At a high level, we place feature selection techniques

into three categories: online methods, embedding methods, and input variable

selection (IVS) methods.

2.6.1 Online Feature Selection

Online methods can incorporate feature selection into the learning algorithm

itself. An example of this is penalized regression, wherein an extra constraint

is added to the original model’s cost function. This constraint serves to force

model weights associated with useless features towards zero. One commonly

used penalty method is known as the least absolute shrinkage and selection

operator (LASSO) penalty [32]. With this method, we represent the cost

function as follows,

J(β,X) = L(β,X) + λ||β||1, (2.9)
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where β represents model weights, X represents training data, L is the un-

modified cost function, and λ is a parameter that dictates the strength of the

penalty. Other penalty methods work in a similar fashion but with different

terms. For example, ridge regression uses the square of the weights rather

than the absolute value as in the LASSO penalty, and elastic net regression

combines both the LASSO and ridge regression penalty terms [12, 37].

Kohannim et al. propose a method for out of sample prediction of a phe-

notype with micro-array data using Elastic net regression [14]. They apply

this technique to predict temporal lobe volume and are able to recover previ-

ously identified genetic relationships to the phenotype by finding which SNPs

consistently had the largest regression coefficients. Their method however also

uses an IVS feature selection technique before using Elastic net. More specifi-

cally, they apply LRA to each SNP and retain only those that obtain a p-value

below some threshold for the next phase of their analysis.

2.6.2 Embedding Methods

Embedding methods seek to construct an alternative representation of the

data in a lower dimensional space. A deep learning technique for creating

an embedded data representation is an autoencoder. While there are several

variations on autoencoding networks (most notably denoising and variational

autoencoders), they can generally be broken down into two modules: an en-

coder and a decoder. The encoding module seeks to compress a feature vector

into a smaller space, while the decoder learns to reconstruct the encoded fea-

ture vector into its original form.

Romero et al. make use of a denoising autoencoder in order to predict

the parameters of a secondary neural network which they train to classify

ancestry in the 1000 genomes dataset [28, 6]. This had the effect of reducing the
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number of trainable parameters in the classification network by a factor of 600.

However, the signal related to ancestry in genetic data is notoriously strong

and so their model architecture may not generalize to more subtle genetic

signals (we were also unable to independently reproduce their findings).

Fergus et al. and Abdulaimma et al. both use stacked autoencoders to

create compressed representations of genetic data for the purposes of predicting

preterm birth and type-2 diabetes respectively [9, 1]. Each of these works,

however, does not solely rely upon embedding method. Instead, they apply

LRA in much the same fashion as Kohannim et al. [14] as discussed above.

This was likely done in order to remove large signals in the genome, such as

population structure, which an autoencoder could learn to rely on more heavily

than the smaller signal from the target phenotype.

In each of the above cases, the application of embedding methods came

with assumptions: a) the phenotype signal is very strong, and b) the em-

bedding method was applied on top of another feature selection method. We

therefore conclude that it is not immediately obvious that we can rely solely on

embedding methods to solve the problem of the sample and feature imbalance.

2.6.3 Input Variable Selection

Input variable selection (IVS) methods select features before training the final

model. We can further break IVS down into model based and model free

methods. Model based methods use a preliminary model that can measure

the relative importance of each feature and retain only the best. Alternatively,

model free methods rely on statistical measurements or heuristic knowledge of

the features in order to pre-select useful features.

An example of a model based method uses LRA to measure a p-value for

each feature and retain only the features with p-values beneath some threshold.
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Several recent works have used this technique for feature selection on micro-

array data with various phenotypes. Fergus et al. and Abdulaimma et al.

select features before employing an embedding method to further constrain

the feature space before applying a multi-layer perceptron (MLP) to perform

classification [9, 1]. Montanez et al. follow feature selection directly using

an MLP to classify obesity and Maciukiewicz et al. similarly follow feature

selection using both decision trees and support vector machines to classify

response to duloxetine in subjects with major depressive disorder [21, 15].

There are several points worth noting about these four works. Each study

used datasets that were collected using a single platform, meaning that the

feature sets were not as large as can be expected in a consortia level study.

The scalability of this technique as far as we are aware has not been addressed.

Also, the initial feature selection is purely based upon an associative analysis of

single SNPs, thus disallowing the possibility of capturing SNPs with epistatic

interactions that don’t have significant enough individual associations from the

outset. Most importantly is the issue of out of sample feature selection. Three

of the four works discussed above ([9, 1, 21]) do not make it explicitly clear that

they performed LRA only in their training sets. To highlight the importance

of cross-validation in feature selection, we perform a simple experiment using

a small subset of our data which can be found in Section 2.6.5.

Another example of model based IVS, called a “wrapper method”, uses a

predictive model to iteratively train and evaluate subsets of the total feature

set to determine if features within each subset should be retained. Pahikkala et

al. introduce a method they call “Greedy Regularized Least-Squares (RLS)”

and claim that it is the first application of a wrapper based feature selection

method to SNP micro-array data. They begin with an empty feature set, train

separate models for each feature, add the best performing feature according
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to area under the receiver operator curve, and repeat this procedure until

a predefined quota of features has been filled. The main drawbacks of this

method however are that it is only tractable for selecting small sets of SNPs

from relatively small datasets, and that it is intractable when using more

complicated models.

Yin et al. attempt to predict amyotrophic lateral sclerosis using micro-

array data [34]. In an initial phase of feature selection on their data, they use

heuristic knowledge of the phenotype to pre-select SNPs. More specifically,

they extract fixed size groups of SNPs that fall within the promoter regions

(regions that dictate the degree to which the corresponding genes are tran-

scribed) of each gene in their dataset. The authors then use a deep learning

classifier to determine the importance of each promoter region, and combine

the most important regions into a final dataset.

2.6.4 Our Proposed Method

In our proposed feature selection technique, we combine several of the above

mentioned IVS methods. We start by using independently discovered heuris-

tic knowledge and pre-select SNPs that are within a biological pathway that

is associated with lithium response. We next apply a “biologically informed”

wrapper method by grouping SNPs according to gene and measuring the im-

portance of each gene by its out of sample classification performance. Finally,

we use feature importance metrics from the gene-wise classifiers to determine

the most important SNPs in each selected gene and combine these SNPs to

form the final feature set.
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2.6.5 Proper Cross-Validation with Logistic Regression Analysis

To highlight the importance of proper cross validation when applying feature

selection, we performed a simple experiment using the Halifax sample, the

non-imputed dataset and the logistic regression classifier. We performed LRA

both with and without proper five fold stratified cross validation and set vary-

ing p-value thresholds to create datasets. The results of this experiment are

shown in Figure 2.3. Here we see a stark difference between the different fea-

ture selection protocols, with the improperly cross validated method achieving

perfect performance at the largest threshold. This is a clear demonstration of

the importance of proper cross validation when performing feature selection.
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Figure 2.3: p-value inclusion threshold vs. Cohen’s kappa for the case where
feature selection is done out of sample (blue) and within sample (orange). In
each case, the logistic regression classifier (with the same default parameters
as in all other experiments) was used to perform the final prediction. Error
bars represent the standard deviation across the five cross-validation folds.



Chapter 3

Platform Overlap Feature Selection

3.1 Motivation

The ConLiGen dataset is the largest micro-array dataset in existence that

addresses lithium response in subjects with BD. To the best of our knowledge,

no out of sample predictive analyses have been performed on these data. We

therefore take a simplistic approach to this problem so that the results of this

chapter may serve as a benchmark for future studies.

In this chapter we perform a basic multi-site classification study where we

aim to determine the degree to which we can predict lithium response, and the

degree to which the site of data collection confounds these results. For the sake

of simplicity, we eschew the use of any feature selection techniques or biological

hypotheses about the phenotype and use the non-imputed dataset. In a post-

hoc analysis we analyze the biological relevance of the features deemed by the

classifiers to be most important by means of gene set analysis.

3.2 Methods

3.2.1 Dataset

In these analyses we use the non-imputed dataset, which includes 2210 sub-

jects from 14 different centers where each subject has a total of 47,465 directly

genotyped SNPs. We used the non-imputed dataset for two main reasons: the

imputed dataset would be intractable without using some method of feature

24
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Figure 3.1: Proportions of both the imputed and non-imputed datasets that
belong to each chromosome. The most significant imbalance is on chromosome
4 where the non-imputed dataset has around 2% less coverage.

selection and the non-imputed dataset contains only complete genotype infor-

mation. For more details on data collection and quality control see Section

2.5.

Figure 3.1 compares the proportions of both the imputed and non-imputed

datasets that come from each chromosome. The non-imputed dataset provides

relatively similar coverage across the genome as the imputed dataset.

3.2.2 Classification Analyses

We performed four sets of classification analyses. These are: i) aggregate

analysis, ii) site-level analysis, iii) leave one site out analysis, and iv) predict

one site out analysis. The aggregate analysis is performed using all subjects

at once and aims to measure the overall classification accuracy that can be

achieved on the whole sample, whereas the site-level analysis is performed on
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each site separately. The leave one site out analysis is performed using all

of the data at once save for one site, and is repeated consecutively for each

site. This aims to determine the effect that each site has on the aggregate

performance. In the predict one site out analysis we train a classifier on all

but one site and test on the left out site, with the goal of determining how

much signal from the remainder of the sample can generalize to the left out

site.

3.2.3 Classifiers

In each analysis we used two classifiers: logistic regression (LR) and XGBoost

(XGB). We chose these classifiers for several reasons, namely they are rela-

tively simple and do not require significant hyperparameter optimization, and

because we wish to compare a linear classifier (LR) to a non-linear classifier

(XGB). For more detailed descriptions of each classifier, see Section 2.3.

3.2.4 Model Criticism

We assessed classification performance using: accuracy, sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV) and Cohen’s

kappa. We viewed Cohen’s kappa as a particularly strong metric in this work as

it is typically the most conservative under class imbalance, and applied a sim-

ulation technique to determine a probability, p, that a trivial classifier (biased

coin toss) would produce a better result. This was done by using the number

of samples, ns, in the dataset and the class proportion, α = 1
ns

∑ns

i I[yi = 1],

to model simulated sensitivities, β and specificities, γ, using Beta distribu-

tions. Then, representing kappa as a function of these parameters, κ(α, β, γ),

M trials are performed and the p-value is estimated as the proportion of trials

for which the simulated kappa exceed the observed value,
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p =
1

M

M∑
j

I[κsim > κobs] (3.1)

We deem results with p < 0.01 to be statistically significant. We used the

criticism package to run this procedure, which can be found at (along with a

more detailed description) https://www.github.com/abrahamnunes/criticism.

Due to the sensitive and high risk nature of relying on a genetic prediction

of a disease phenotype in a clinical setting, we stress the importance of out

of sample testing. To address this concern, we perform all experiments using

five fold cross-validation. Because of the class imbalance in this dataset, we

specifically apply stratified cross-validation such that both the training and

testing sets have the same proportions of positive and negative classes. This

process yields a set of five estimates of the true classification performance.

3.2.5 Feature Importance and Gene Set Analysis

Both the LR and XGB classifiers provide feature importance metrics that can

be used to interpret which dimensions of the feature space the classifier is most

focusing on to make its prediction. By determining the SNPs that contribute

most to an above chance prediction, we may gain biological insight into the

phenotype.

For the LR classifier trained on a single site, we generate a set of the most

important features (hereafter referred to as an effect set) by first extracting

those for which the sign is the same across all five folds. We then rank these

coefficients according to the median of their absolute value, and select the

upper quartile. Similarly for the feature importances from the XGB classifier,

we determine the set of SNPs which have non-zero feature importance across

all folds and again rank them according to their median. To create an effect
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set for models trained separately on different sites, we take the SNPs for which

the signs (or non-zero importances) agree across all folds for both models.

For the method of analyzing biological importance of features we wish to

use, we must represent the effect set in terms of genes as opposed to SNPs (for

a visual representation of this distinction, see Figure 2.1). To do this, we use

the biopython package to annotate each SNP as being part of a gene, omitting

those that are intergenic and counting each gene only once [4]. We refer to the

entire set of genes covered by our dataset as the reference gene set, and the

genes covered by the effect set of SNPs the effect gene set.

The PANTHER gene ontology (GO) database organizes genes according

to larger scale functional pathways, such as individual cell components or

protein pathways [19]. PANTHER also offers a tool for comparing a reference

and effect set of genes that determines whether or not any functional pathways

are statistically over-represented in the effect set with respect to the reference

set. To do this, PANTHER annotates each gene with an ontology label and

measures the proportions of each that appear in the reference set. Given

these proportions and the size of the effect set, it then computes the expected

number of genes that would appear in a randomly sampled effect set. It

then compares the observed number of genes that appears in the effect gene

set for each ontology label against the expected number. To determine the

significance of the result, PANTHER generates a p-value using Fisher’s exact

test, and a false discovery rate (FDR) using the Benjamini-Hochberg correction

for multiple comparisons. Results are deemed significant where the FDR falls

below 0.05.
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3.3 Results

3.3.1 Classification Analyses

Table 3.1 shows results for the analysis on the aggregate sample using both

the LR and XGB classifiers. Neither the LR classifier (Kappa 0.02 (-0.01,

0.04), p = 0.2) nor the XGB classifier (Kappa 0.0 (-0.02, 0.01), p = 0.4) was

able to discriminate response above random chance. We also note that in each

case the classifiers were able to discriminate either perfectly or near perfectly

between responders and non-responders within the training sets.

Table 3.1 also shows the most notable results for the site level analysis (see

Appendix A.1 for the full set of site level results). The LR classifier applied

to the Halifax and Würzburg samples showed Cohen’s kappa of 0.15 (95% CI

(0.07, 0.21), p = 0.0019) and 0.2 (95% CI (0.1,0.3), p = 0.0006) respectively.

Once again we note that both the LR and XGB classifiers achieve perfect

discrimination of lithium response in the training sets.

Table 3.2 displays the subset of the results for the leave one site out analysis

using the LR classifier. These were the results for which the simulated p-value

for kappa fell below the preset bound for statistical significance, indicating

that exclusion of these sites brought classification to an above chance level.

This occurred for Barcelona (Kappa 0.05, (0.04, 0.06), p = 0.007), Romania

(Kappa 0.05 (0.02, 0.09), p = 0.003), San Diego (Kappa 0.06 (0.04, 0.08),

p = 0.002), and Würzburg (Kappa 0.05 (0.04, 0.07), p = 0.003).

We found no notable results for the predict one site out analysis. For the

full set of results for this analysis, see Table A.3.
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ü
rz
b
u
rg

T
es
t

0.
85

(0
.8
4,

0.
86
)

0.
6
(0
.5
1,

0.
69
)

0.
13

(0
.0
7,

0.
2)

1
(1
,
1)

0.
8
(0
.4
1,

1)
0.
85

(0
.8
4,

0.
86
)

0.
2
(0
.1
,
0.
3)

L
R

W
ü
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3.3.2 Gene Set Analyses

We performed gene set analysis using the effect sets obtained from the site

level analysis of Halifax and Würzburg separately, as well as the effect set

for these two sites combined. Table 3.3 shows a list of the over-represented

cellular component classes using the combination of Halifax and Würzburg

feature importances. We see here that the postsynaptic membrane class is

over-represented by a factor of 1.71 with an FDR of 8.14e−3, which meets the

bounds of statistical significance. Table A.4 shows a list of all 97 genes that

are a part of the postsynaptic membrane class that were in the effect set.

Functional Class NRef NObs NExp Factor p-value FDR
postsynaptic membrane (GO:0045211) 190 97 56.79 1.71 2.40E-05 8.14E-03
synaptic membrane (GO:0097060) 252 124 75.32 1.65 6.28E-06 3.55E-03

synapse (GO:0045202) 618 253 184.72 1.37 1.61E-05 6.83E-03
synapse part (GO:0044456) 494 201 147.66 1.36 1.78E-04 3.78E-02
cell junction (GO:0030054) 634 254 189.5 1.34 4.84E-05 1.17E-02
neuron part (GO:0097458) 871 335 260.34 1.29 3.56E-05 1.01E-02

cell projection (GO:0042995) 1055 387 315.34 1.23 2.47E-04 4.65E-02
cell periphery (GO:0071944) 2461 866 735.59 1.18 4.15E-07 7.04E-04

plasma membrane (GO:0005886) 2407 843 719.45 1.17 1.34E-06 1.14E-03

Table 3.3: Set of PANTHER functional classes that were found to have a sta-
tistically significant over-representation when comparing the effect set of genes
generated from the Halifax and Würzburg samples to the overall reference set.
NRef signifies the number of genes with the given ontology label in the refer-
ence set, NObs signifies the number of genes in the effect set, and NExp signifies
the number of genes expected to be in the effect set if it were randomly sam-
pled from the reference set. The Factor is the ratio of NObs to NExp, p-value
is the outcome of Fisher’s exact test, and the FDR is the outcome from the
Benjamini-Hochberg correction.

3.4 Discussion

This study is, to the best of our knowledge, the first that attempts to perform

out of sample classification of lithium response using only genetic data. We

found that it was possible to classify response with above random chance



33

performance only on a subset of the 14 sites, namely Halifax and Würzburg,

but that classification on the aggregated sample was trivial. The ability to

predict response in only a small subset of the sites suggests a strong degree

of between site heterogeneity. While this heterogeneity could stem from many

sources, one clear source in this case is the differences in the number of samples

and class balances between sites. We also observed a slight, but non-trivial,

increase in performance when we left certain sites out of the aggregate sample.

Overall, we found that above chance classification of lithium response using

genetic data is indeed possible, though significant challenges remain.

We performed a gene set analysis using the SNPs that we found to be

most informative between the Halifax and Würzburg samples in the site level

analysis. This analysis showed a statistical over-representation of several bio-

logical pathways. Some genes in the over-represented pathways (Table A.4),

such as ANK3, have been previously and independently associated with BD

[10, 22, 31]. We have shown that classification methods are indeed able to

recover biologically relevant aspects of the feature space despite the fact that

the classification performance is relatively poor.

In each experiment we saw perfect (or near perfect) discriminability in

the training sets. In other words, this indicates that a linear decision surface

can always be found in this feature space that perfectly separates responders

from non-responders, regardless of whether or not the classifier achieves any

generalizability. We suspect that this is a result of the dimensionality of the

feature space; given so many degrees of freedom, there is always a way for even

a linear classifier to overfit the training set without identifying a generalizable

decision rule. This suggests that a) cross validation is a very important practice

in predictive genetics, and b) future work on these data should aim to reduce

the size of the feature space even further.
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In this chapter we have performed a set of exploratory experiments on

the non-imputed lithium response dataset from ConLiGen. We have shown

that it is possible to predict lithium response non-trivially on two subsets of

the data from that come from the Halifax and Würzburg sites. Also, using a

combination of the most important features from the two classifiable sites, we

have shown that even despite relatively poor classification performance it is

possible to recover biological information that has been previously associated

with the phenotype. This is further evidence that our classification results are

not random noise. Given these results along with the clearly demonstrated

issue of overfitting, this work provides a suitable benchmark with which we

can compare future experiments.



Chapter 4

Gene-Wise Selection of G-Protein Coupled Receptor

SNPs

4.1 Motivation

In Chapter 3 we used a small subset of the total dataset to predict lithium

response. We showed that it is possible to achieve above chance classification

with the non-imputed dataset, and that the most relevant features could be

used to identify biological pathways that have previously been associated with

BD. The above chance classification, however, was localized to only two of the

14 sites and in both cases left ample room for improvement.

Selecting input features according to the measurement overlap between

genotyping platforms, while mildly effective in this case, is a method that

may not be appropriate for all GWA datasets. For example, if the overlap is

significantly larger and thus intractable, or is not representative of the entire

genome. We are interested in finding a more general way to select features

that will: a) make use of the entire (imputed) dataset, b) can be applied to

any dataset regardless of the mixture of genotyping platforms, c) will result in

an even more significant reduction in the size of the feature space compared to

the benchmark and d) maintains a high degree of biological interpretability.

In this chapter we employ two feature selection methods simultaneously.

First, we use heuristic information about the phenotype in our dataset to

preselect SNPs that come from a specific biological pathway that has been

35
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previously shown to be related to BD and lithium response. Next, we introduce

a novel two tiered feature selection method inspired by the biological structure

of the data that we call ‘gene-wise’ feature selection. The gene-wise method

first identifies informative sets of features at the level of genes, and then further

selects the most important SNPs within the most relevant genes. We argue

that this method is not only advantageous for selecting important feature sets

that result in improved classification accuracy, but is also capable of identifying

biologically relevant information about the phenotype.

4.2 Methods

4.2.1 Dataset

In this set of experiments we used the imputed dataset, which consisted of

2210 subjects each consisting of 5,795,772 SNPs. For more information on the

imputed dataset, see Section 2.5.

4.2.2 Classifiers

For these analyses we again used the logistic regression (LR) and XGBoost

(XGB) classifiers. For more information on these classifiers, see Section 2.3.

4.2.3 A Priori Selection of Genes Related to G-Protein Coupled

Receptors

G-protein coupled receptors (GPCR) are a class of proteins that exist on the

membranes of cells and serve to transmit chemical signals from molecules that

bind to the outside of the cell to the inside of the cell. Previous work by other

researchers (using separate data) has provided substantial evidence linking

parts of the GPCR pathway to lithium response [5, 20, 35]. We limit our
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analysis to SNPs contained within genes that are associated to the GPCR

pathway. While our gene-wise feature selection method can in theory scale

to analyze every gene within dataset, we focus on features related to GPCR

related genes due to the clinical interests surrounding them.

4.3 Model Criticism

We use the same set of performance metrics as outlined in Section 3.2.4. Sim-

ilarly to the work of Chapter 3, we use cross validation stratified by lithium

response in order to prevent overfitting. However, as discussed further in

Section 4.3.1, we must take further steps in to prevent overfitting by also per-

forming cross validation in the feature selection step. We therefore employ

a “nested” cross validation technique in this chapter where we divide each

“outer” training fold into sets of “inner” training and testing folds (also strat-

ified by lithium response). For the outer cross validation procedure we use ten

folds, whereas for the inner cross validation we use five. Lastly, we also use the

simulation procedure exactly as it was described in Chapter 3 for generating

p-values for the kappa statistic.

4.3.1 Gene-Wise Feature Selection

At a high level, our proposed gene-wise feature selection method first filters

out only the most predictive genes, and then selects only the best SNPs from

within each. We do this under cross-validation in order to prevent overfitting

during the feature selection step. This general process is outlined in Algorithm

4.1.

To construct the GPCR gene-wise dataset, we first queried a list of 814

GPCR related genes from the AmiGO database [2]. We next used pyensembl
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to determine the start and end locations for each of the 814 genes, and se-

lected SNPs that were within 50,000 base pairs of the start or end of the gene

[36]. In total, this process produced a total of 297,178 SNPs with some genes

accounting for as few as two SNPs while others as many as 2,767.

To measure the “fitness” of each gene we wish to consider both it’s classifi-

cation performance and the reliability of this performance. For each gene, we

train a model (either LR or XGB) to predict the phenotype under stratified

five fold cross validation. We select Cohen’s kappa to be the primary measure

of classification performance, and define a metric we call the representativeness

that is a function of the kappa values across folds to measure the reliability.

The representativeness is based on the exponential of the Shannon entropy,

r = exp

(
−

nfold∑
i

pi log pi

)
, (4.1)

where nfold is the number of inner folds, p is the normalized set of rectified

kappa values across folds (κ+ = max(κ, 0)), and r ∈ [1, nfold]. We standardize

the representativeness to the interval [0, 1] such that deviations in the values

of kappa across folds will push the standardized representativeness, r̃, towards

zero whereas perfect agreement in kappa scores across folds will result in r̃ = 1.

Finally, we combine the representativeness and the maximum value of kappa

across folds to create a metric we call the “gene-wise exemplar score” given

by,

E =
r̃ +max(κ)

2
, (4.2)

which is also defined on the interval [0, 1]. We refer to genes with a gene-wise

exemplar score above a pre-defined threshold as exemplary genes.
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Within each exemplary gene we do a further selection of the most infor-

mative SNPs. To create an importance ranking we first extract all SNPs for

which the regression coefficients have the same sign across folds (or all feature

importances being non-zero for the XGB classifier). We then order the re-

maining features according to the absolute value of their median across folds.

In each of the classification analyses, we wish to select a number of features

that does not exceed the number of samples in the training set minus one,

nf = ntrain − 1. We preferentially select SNPs from the genes with higher

scores by computing a softmax distribution over the exemplar scores, and

then taking ni = ⌊softmax(ei) · nf⌋ SNPs from the ith gene. Lastly, we use

this feature set to train the inference model, which we use to report the final

results.

Algorithm 4.1 Pseudocode outlining our gene-wise feature selection method
experiment. D represents the dataset, whereas T represents the exemplar
score threshold above which a gene is considered to be exemplary. The main
loop is over the outer cross validation folds, whereas the inner cross vali-
dation loops over each gene (on the outer loop training sets) occur in the
“train genes with CV” function. There is one “outer results” variable created
per outer fold.

1: procedure Experiment(D, T )
2: for Dtrain, Dtest in Outer CV do
3: nf = len(Dtrain) - 1
4: gene results, gene importances = genewise testing with CV(Dtrain)
5: gene scores = measure genewise exemplar scores(gene results)
6: exemplar genes = select and sort(gene scores, T )
7: softmax dist = softmax(gene scores[exemplar genes])
8: SPNs = [ ]
9: for gene in exemplar genes do
10: importance mtx = gene importances[gene]
11: nsnps = ⌊softmax dist[gene] · nf⌋
12: best features = get best features(importance mtx, nsnps)
13: SNPs.append(best features)

14: Dtrain = extract features(Dtrain, SNPs)
15: Dtest = extract features(Dtest, SNPs)
16: outer results = train and test(Dtrain, Dtest)
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4.3.2 Classification Analyses

Similar to Chapter 3, we perform aggregate, site level, leave one site out, and

predict one site out analyses. In Section 4.3.1 we outline our feature selection

method which involves performing a nested cross-validation procedure. This

technique is data intensive and is impractical to perform on some sites that

contain small numbers of subjects and responders. We therefore only perform

site level analyses on the Halifax and Swedish samples, and we perform a

secondary aggregate analysis by combining samples from these two sites.

In these experiments, we use an exemplar threshold of 0.51 to define ex-

emplary genes. We use this threshold as it is only just above the expected

score of one of two trivial classifiers. That is, each of the following scenarios

would achieve a gene-wise exemplar score of 0.5: a) the gene was perfectly

even across folds but with a maximum kappa score of zero, or b) the gene

was maximally imbalanced with all folds achieving a kappa score of zero save

for one which achieves a perfect kappa score. As well, when computing the

softmax distribution across exemplar scores we use an inverse temperature of

five. We selected this value due to the fact that any smaller value failed to

produce significant unevenness in the softmax distribution.

4.3.3 Subject-Wise Exemplar Score

The gene-wise exemplar score is inspired by the exemplar scoring technique

introduced by Nunes et al. (work awaiting publication). This work was per-

formed on a dataset that was collected from multiple sites and had the same

phenotype as our dataset, but contained clinical data as features as opposed

to genetic data. The exemplar scoring technique was designed to measure the

accuracy and consistency with which clinical variables could classify a subject
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independent of the site from which their data was collected. That is, a higher

score indicates that a subject is more “exemplary” of their phenotype given

that they are robustly classifiable regardless of which site the a classifier was

trained on. Conversely, subjects with lower scores exhibit clinical features that

are less consistent across sites and cannot be as easily classified. This analysis

showed that the Halifax site had a disproportionately high number of strong

exemplars in comparison to other sites in the dataset. We seek to determine

whether the limitations in response prediction might be related to between

site differences in clinical features.

A set of 320 subjects from the Halifax site overlapped between the clini-

cal and genetic datasets. This was the only portion of the two datasets that

overlapped. We performed an experiment to assess the difference in genetic

classifiability between subjects with lower and higher “subject-wise” exemplar

scores. To do this, we separated the 320 subjects for whom subject-wise ex-

emplar scores were available into two datasets: the bottom 50th percentile and

top 50th percentile. We then applied our feature selection method to each

dataset separately.

In this experiment, we use a gene-wise exemplar threshold of 0.7. Due to

the fact that the sample size is smaller, lower thresholds can lead to feature

sets much larger than the sample size. As well, for simplicity, we select only the

best SNP from each exemplar gene instead of using the softmax distribution

method used for the previous experiments.
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4.4 Results

4.4.1 Classification Analyses

Table 4.1 displays the results for both the total aggregate analysis and the

aggregated Halifax and Swedish samples using each of the four combinations

of LR and XGB as feature selection model and inference model. The best

performance on the total aggregate sample in terms of Cohen’s kappa came

from the combination of feature selection with LR and inference with LR

achieving median kappa 0.07 (lower/upper decile (0.00, 0.17)). We also note

that in both feature selection with LR and with XGB there were some of the

ten cross-validation folds for which no genes were found to be exemplary and

thus classification performance for these folds was not defined.

For the combined Halifax and Swedish samples we see that the combination

of models that achieves the highest median value of kappa is XGB/XGB (kappa

0.17 (0.05, 0.27)), and that the median value is in excess of 0.1 for each other

combination. The only selection/inference combination for which the lower

bound of kappa fell below zero was LR/XGB (kappa 0.1 (-0.04, 0.29)). We

note as well that there were no folds for which exemplary genes were not found

for either feature selection method.

Table 4.1 shows the results for the site level analysis on both Halifax and

Sweden. The maximum value of kappa for the Halifax sample was achieved

using XGB for both inference and feature selection (0.26 (0.08, 0.41)) whereas

the median value of kappa remained near zero in each scenario for the Swedish

sample. We note however that the bounds on kappa for the Swedish sample

span a wide range, and in all cases intersect with zero which indicates large

disagreement between folds.

In Figure 4.1 we highlight both the differences in performance between
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Figure 4.1: Bar plots showing the classification performance in terms of Co-
hen’s kappa for the Halifax and Sweden sites. Each bar represents the kappa
value for one fold, and bars are sorted in increasing order. Titles for each
pane represent “selection model / inference model”. Abbreviations: logistic
regression (LR), XGBoost (XGB).

the Halifax and Swedish samples, and the differences each site has internally

between folds. While we see notable imbalance in kappa across folds for the

Halifax site, this imbalance is far more pronounced for Sweden where, under

each combination of selection and inference model, at least half of the folds

have negative kappa values.

In Table 4.2 we show the results of the leave one site out analysis for which

at least one exemplary gene was found in the feature selection step. That

is, all other combinations of site, selection, and inference models that are not

shown failed to find a single exemplar gene in one or more folds. Only the
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removal of the San Diego site’s data in concert with LR feature selection and

an LR inference model achieved above chance classification performance, with

kappa 0.07 (0.02, 0.14) and a simulated p-value of p = 0.0005.

Table 4.3 shows the results for the predict one site out analysis for which

the feature selection method did not fail to find any exemplar genes. Using

LR for both feature selection and inference we see that a model trained on

all sites but Geneva was able to predict the Geneva sample with kappa 0.4

(p = 0.0002) and sensitivity 0.62. This suggests the performance was not

solely due to predicting non-response. Similarly, using XGB for both models,

the classifier achieved kappa 0.19 (p = 0.003). In this case, however, the

specificity (0.95) more significantly outweighed the sensitivity (0.2). Lastly,

we note that every experiment for which the data from Barcelona, Halifax, or

Poznan were omitted yielded no exemplary genes.

4.4.2 Exemplary Subject Analyses

Figure 4.2 shows the kappa values for each fold sorted in increasing order for

each model combination for both the top and bottom 50% of samples according

to their subject-wise (clinical) exemplar score. Both datasets achieved max-

imal classification accuracy when using XGB for both feature selection and

inference with kappa 0.62 (0.28, 0.73) for the top 50% of exemplars and 0.23

(-0.07, 0.37) for the bottom 50%. In the case of feature selection with the LR

classifier, there were four folds for which no genes met the exemplar thresh-

old in the bottom 50% dataset. For the full set of results for this experiment

including the remaining metrics, see Table B.2.
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Table 4.3: Results for the predict one site out analysis which did not fail to
find any exemplar genes in the feature selection step. Abbreviations : area
under the curve (AUC) positive predictive value (PPV) negative predictive
value (NPV).
Classifier Site Accuracy AUC Sensitivity Specificity PPV NPV Kappa

Feature Selection with LR
LR Cagliari 0.63 0.59 0.20 0.80 0.28 0.72 0.00
XGB Cagliari 0.66 0.52 0.05 0.90 0.18 0.71 -0.06
LR Geneva 0.77 0.63 0.62 0.82 0.50 0.88 0.40
XGB Geneva 0.75 0.42 0.00 0.98 0.00 0.77 -0.03
LR Japan 0.66 0.58 0.23 0.80 0.27 0.76 0.03
XGB Japan 0.76 0.43 0.00 1.00 0.00 0.76 0.00
LR Mayo 0.69 0.52 0.23 0.83 0.29 0.78 0.07
XGB Mayo 0.77 0.55 0.00 1.00 0.00 0.77 0.00
LR Paris 0.62 0.45 0.18 0.72 0.13 0.80 -0.08
XGB Paris 0.82 0.47 0.03 0.99 0.50 0.82 0.03
LR Romania 0.73 0.54 0.19 0.88 0.29 0.80 0.07
XGB Romania 0.78 0.48 0.03 0.98 0.33 0.79 0.02
LR San Diego 0.60 0.51 0.30 0.64 0.09 0.88 -0.03
XGB San Diego 0.74 0.50 0.17 0.81 0.10 0.89 -0.01
LR Sweden 0.53 0.53 0.07 0.92 0.39 0.54 -0.02
XGB Sweden 0.55 0.52 0.01 1.00 1.00 0.55 0.01
LR Sydney 0.78 0.55 0.08 0.96 0.33 0.80 0.05
XGB Sydney 0.81 0.62 0.08 1.00 1.00 0.81 0.12
LR Taiwan 0.80 0.61 0.15 0.91 0.22 0.87 0.07
XGB Taiwan 0.86 0.39 0.00 1.00 0.00 0.86 0.00

Feature Selection with XGB
LR Cagliari 0.69 0.54 0.16 0.90 0.39 0.73 0.08
XGB Cagliari 0.74 0.56 0.20 0.95 0.61 0.75 0.19
LR Japan 0.77 0.54 0.06 0.99 0.67 0.77 0.08
XGB Japan 0.75 0.48 0.00 0.99 0.00 0.76 -0.02
LR Mayo 0.77 0.52 0.00 1.00 0.00 0.77 0.00
XGB Mayo 0.74 0.57 0.00 0.97 0.00 0.76 -0.04
LR Paris 0.81 0.53 0.00 0.99 0.00 0.82 -0.01
XGB Paris 0.79 0.52 0.03 0.95 0.11 0.82 -0.03
LR San Diego 0.58 0.46 0.30 0.61 0.09 0.88 -0.04
XGB San Diego 0.68 0.52 0.30 0.73 0.12 0.90 0.02
LR Sydney 0.79 0.49 0.00 1.00 0.00 0.79 0.00
XGB Sydney 0.78 0.38 0.00 0.98 0.00 0.79 -0.03
LR Taiwan 0.84 0.63 0.00 0.97 0.00 0.86 -0.04
XGB Taiwan 0.86 0.62 0.00 1.00 0.00 0.86 0.00
LR wuerzburg 0.81 0.51 0.00 0.97 0.00 0.82 -0.04
XGB wuerzburg 0.79 0.41 0.03 0.95 0.13 0.83 -0.02
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Figure 4.2: Bar plots showing the classification performance in terms of Co-
hen’s kappa for the top 50th percentile along with the bottom 50th percentile
of subjects by (subject-wise) exemplar score from the Halifax site. Each bar
represents the kappa value for one fold, and bars are sorted in increasing order.
Titles for each pane represent “selection model / inference model”. Abbrevi-
ations: logistic regression (LR), XGBoost (XGB).
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4.5 Discussion

Driven by the limitations of the naive feature selection method observed in

Chapter 3, we have created a novel method of feature selection that is capable

of reducing the feature space so that the number of subjects and features

are roughly equivalent. Our method is roughly the equivalent of a wrapper

method, but uses the inherent biological structure of genetic data in order to

create candidate feature sets which can be tested individually. This has the

advantage of being computationally tractable, biologically interpretable, and

also accounts for multi-variate effects. In this section we discuss the results

of a basic classification study that uses this method, the importance of how

our method performs on both more and less clinically exemplary subjects, and

some of the benefits and limitations of the method.

In our basic classification study we found no meaningful prediction of

lithium response in the aggregate sample. While in one case the median value

of kappa was above zero along with a notable increase in sensitivity, selecting

features with both LR and XGB on the aggregate sample had some cross val-

idation folds for which no genes exceeded the gene-wise exemplar threshold.

In cases where no exemplar genes are identified, we argue that classification

performance is undefined, as this scenario is notably different than a classifier

that simply predicts each sample incorrectly. We therefore cannot say that

our method generalized in this case given that there were folds for which it

failed to produce a feature set.

We found it was possible to classify subjects in the Halifax sample above

random chance although there was some imbalance in performance across folds.

When all folds were taken into account, the classification performance on the

Swedish sample was trivial. However, upon closer inspection of the Swedish
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sample results, we saw an even more extreme imbalance in performance across

folds with some achieving a kappa score as high as 0.45 while many others

obtained negative scores. This effect may be due to within site heterogeneity,

with some samples being more easily classifiable than others.

Only the omission of one site (San Diego) caused there to be a statistically

significant prediction of lithium response in the leave one site out analysis.

However, we see what may be a meaningful pattern by looking at which sites

for which our method always or never fails. The omission of San Diego never

affects the ability of either classifier to find exemplar genes in the remaining

data, regardless of which feature selection model is used. Conversely, when

the Geneva, Mayo Clinic, Cagliari, Swedish, and Sydney samples are omitted

we are never able to find exemplar genes in all ten cross validation folds. This

could be an indication that certain sites are particularly rich in signal, whereas

others have a particularly detrimental effect when added to the sample.

In the predict one site out analysis, there were only two sites (Geneva and

Cagliari) whose signal could be identified using the rest of the data above

random chance. Similarly to the leave one site out analysis however, there

are patterns in the inability to discover exemplar genes. Specifically, under no

combination of models was our method able to discover exemplar genes in the

remaining data when the samples from Barcelona, Halifax, or Poznan were

omitted.

Nunes et al. proposed a method by which a sample could be rated by

the degree to which it’s clinical features are representative of it’s phenotype

across different data collection sites. Their metric showed the existence of sub-

jects that are both more and less “exemplary” of their phenotype, and that

more exemplary subjects are over-represented within the Halifax site. Using
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samples that overlapped between the clinical and genetic datasets, we sepa-

rated subjects into two equally sized groups with lower and higher exemplar

scores and applied our feature selection method to each. This analysis showed

a significantly stronger ability to genetically classify subjects that were more

clinically exemplary. This result provides strong evidence that limitations in

genetic classification performance could be related to heterogeneity in clini-

cal features. Moreover, the presence of a significantly more classifiable group

in the Halifax sample explains the improved accuracy we have observed in

comparison to other groups.

One benefit of our method comes from the fact that, provided there are

genes with predictive power present, the exemplar gene threshold and upper

bound on the number of features provides fine control over the feature space

dimension in an interpretable way. Also, our method maintains a degree of

biological interpretability that other techniques, such as embedding methods,

lack. For example, even if we were to use a gene selection model that lacks an

interpretable feature importance metric (e.g. multi-layer perceptron) we can

still see which genes have been selected and whether or not their selection is

consistent across folds. Lastly, our method has a clear advantage over the most

common feature selection method in genomics, logistic regression analysis, in

that we are able to take into account multi-variate effects between SNPs.

A notable limitation of the gene-wise selection method is that, due to the

necessity of nested cross validation, it requires there to be a relatively large

number of subjects. As well, our method largely ignores intergenic SNPs that

are not within 50,000 base pairs of a gene. Lastly, our method may be missing

some gene-gene interactions due to the fact that we are only selecting the

(relatively few) SNPs from each gene with the largest feature importances. It

is conceivable that there are cases in which SNPs that are not among the most
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important in two separate genes could interact with each other in a stronger

way.



Chapter 5

Discussion and Future Work

Genetic prediction of complex phenotypes is an important area of research as

it could lead to novel methods of treatment or pharmaceutical intervention for

various diseases. The application of machine learning is a fast growing trend

in this field, however effective feature selection is a significant barrier to robust

and interpretable phenotype classification. In Chapter 3 we show that above

chance classification of lithium response in subjects with bipolar disorder is

possible using the largest micro-array dataset in existence that addresses this

phenotype. We then introduce a novel method that we call gene-wise feature

selection in Chapter 4 and demonstrate its benefits. These results are notable

because this is the first work in which lithium response has been predicted

with genetic data alone, and our gene-wise selection method addresses many

concerns that are present with other techniques that are commonly applied to

micro-array data.

In this section we discuss the moderate success of the naive feature selection

method applied in Chapter 3, how our gene-wise selection method addresses

the drawbacks of other feature selection methods, and how we have shown a

significant difference in the predictability of more and less clinically exemplary

subjects.

In Chapter 3 we attempted to predict lithium response using both logistic

regression (LR) and XGBoost (XGB) classifiers on the non-imputed dataset.

The non-imputed dataset consisted of features that were measured in common

53
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by every data collection centre, and represented a relatively even sampling of

SNPs across all chromosomes. This analysis showed that, while prediction

was not possible on the entire sample, the classifiers we able to predict lithium

response above random chance on the samples that came from the Halifax and

Würzburg sites. To back up these analyses, we used the feature importance

metrics of the classifiers trained on Halifax and Würzburg to extract the most

informative SNPs and used these in a gene-set analysis using the PANTHER

gene ontology tool [19]. This analysis showed that the set of most important

SNPs were statistically over-represented in genes that have previously (and

independently) been associated with bipolar disorder, which further confirms

that our prediction was indeed not random.

Although above chance prediction was found to be possible in Chapter 3,

we also found that both the LR and XGB classifiers achieved perfect (or near

perfect) accuracy when applied to the training sets. This indicated the need

for further feature selection. However, as outlined in Chapter 2, methods of

feature selection that are commonly applied to micro-array data have signifi-

cant drawbacks. In Chapter 4 we detail our gene-wise feature selection method

which addresses these drawbacks, and apply it to the lithium response dataset.

We show that, by first filtering out genes that lack reliable predictive capac-

ity, we are able to obtain feature sets of the desired size by taking only the

most important SNPs from the selected genes. Moreover, the selected feature

sets are able to classify lithium response in the Halifax dataset with higher

accuracy than with the non-imputed dataset.

The work of Chapter 4 also identified a significantly more classifiable sub-

set of samples from the Halifax site. These samples are those for which Nunes

et al. have shown are more clinically representative of their phenotypes (both

response and non-response). We note that, while the work of Nunes et al
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included some of the same subjects as are in the genetic dataset, the mea-

surement of the “exemplaryness” of these subjects was done using entirely

non-genetic features. As the clinical dataset only shared overlap with the Hal-

ifax sample from the genetic dataset, we were unable to perform this analysis

on any other subjects. However, a general finding in the work of Nunes et al.

was that Halifax contained significantly more exemplars than other sites. The

genetic classifiability of clinical exemplars may therefore be responsible for the

improved performance in the Halifax dataset in comparison to other sites.

A main limitation that we observed in applying the gene-wise feature selec-

tion method in this work was the requirement that there be enough samples

to perform nested cross-validation. With increased access and incentive for

micro-array studies however, this sample requirement will not always be a

limiting factor for other datasets. Another limitation is the fact that we select

a relatively sparse set of SNPs from each exemplar gene, and thus potentially

left out important interactions. This could be solved however with a more

sophisticated method of SNP selection, for example we could apply an embed-

ding method such as an autoencoder to learn a fixed size representation for

every exemplary gene that would include information for all SNPs within the

gene.

In this work we have provided a background on the problem genetic predic-

tion of phenotypes using machine learning, including the drawbacks of some

commonly used methods. We also showed that classification of lithium re-

sponse in subjects with bipolar disorder is possible with genetic data. Inspired

by the hierarchical nature of genetic data, we have introduced a gene-wise

feature selection method capable of significantly reducing the genetic feature

space in a biologically interpretable way. We note several limitations of the
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gene-wise feature selection method, however we believe the more serious limi-

tations are not unsolvable. Namely, we suggest that the adoption of gene-wise

embeddings, which would capture information from every SNP within a gene,

could alleviate the problem that comes from the sparse coverage of each exem-

plar gene. We also note that we have only applied our method to the subset

of our dataset that is in the GPCR pathway for reasons of clinical interest. In

future work it would be possible to apply the method to the entire dataset.

Lastly, we have shown that heterogeneity in clinical variables can be strongly

correlated with genetic classification performance, and thus suggest that fu-

ture genetic data collection for the lithium response phenotype be coupled

with collection of clinical data.



Appendix A

Supplementary Materials: Naive Approach Paper

Table A.4: The list of genes contained within the combined

Halifax-Würzburg effect set that are over-represented in the

postsynaptic membrane functional class along with their as-

sociated PANTHER protein class.

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

LRFN2 ANK3

RGS9 PTPRT protein phos-

phatase

(PC00195); re-

ceptor(PC00197)

DLG1 transmembrane

receptor regula-

tory/adaptor pro-

tein (PC00226)

ADCY8

CTNNA2 cell adhe-

sion molecule

(PC00069); non-

motor actin

binding protein

(PC00165)

SEMA4F membrane-

bound signal-

ing molecule

(PC00152)

57
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

GRIK1 GABRR1 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

CADPS2 calcium-

binding protein

(PC00060)

LRRC4C

GRIP2 SLC6A11 cation trans-

porter (PC00068)

NTRK3 ADGRB1 G-protein cou-

pled receptor

(PC00021);

antibacterial re-

sponse protein

(PC00051); pro-

tease (PC00190)

DCC SHISA6

CDH9 SLC8A3

CHRM3 G-protein cou-

pled receptor

(PC00021)

KCNH1
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

LRRC7 GABRB1 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

SYNDIG1 GRIK2

NEURL1 ubiquitin-protein

ligase (PC00234)

SLC8A1

ANKS1B transmembrane

receptor regula-

tory/adaptor pro-

tein (PC00226)

ATAD1

SLC6A6 cation trans-

porter (PC00068)

SORCS3 receptor

(PC00197);

transporter

(PC00227)

KCNB1 GABRG2 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

DGKI kinase (PC00137) GRID1

IGSF21 HOMER1

DISC1 BAALC

CNTN1 ANK1
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

GABRR2 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

FARP1

LIN7A cell adhe-

sion molecule

(PC00069); cell

junction protein

(PC00070)

GRIA1

GRIN2B CPEB4 mRNA

polyadenylation

factor (PC00146)

ACTN2 GABRB2 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

DRD3 G-protein cou-

pled receptor

(PC00021)

PSD3
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

TENM2 DNM3 hydrolase

(PC00121); mi-

crotubule family

cytoskeletal pro-

tein (PC00157);

small GTPase

(PC00208)

NRP1 GABRG3 GABA recep-

tor (PC00023);

acetylcholine re-

ceptor (PC00037)

CDH10 GABBR2

RGS7BP GRIK2

KCNC2 GRIN2A

EPHA4 PTPRO

NRCAM CLSTN2 calcium-

binding protein

(PC00060); cell

adhesion molecule

(PC00069)

GRM5 G-protein cou-

pled receptor

(PC00021)

GRIK4
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

GSG1L cytoskeletal pro-

tein (PC00085)

ARHGAP32

GRID2 GRIP1

ADRA1A G-protein cou-

pled receptor

(PC00021)

LRRC4B

LZTS1 DLG2 transmembrane

receptor regula-

tory/adaptor pro-

tein (PC00226)

KCNMA1 SHANK2

SRGAP2 G-protein modu-

lator (PC00022)

SYNE1

DLGAP1 transmembrane

receptor regula-

tory/adaptor pro-

tein (PC00226)

CACNG4 voltage-gated

calcium channel

(PC00240)

SHISA9 GRM7 G-protein cou-

pled receptor

(PC00021)

ANK2 TMEM108
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Continuation of Table A.4

Gene ID PANTHER

Protein Class

Gene ID PANTHER

Protein Class

NRG1 growth factor

(PC00112)

DLGAP2 transmembrane

receptor regula-

tory/adaptor pro-

tein (PC00226)

CACNA1C NRP2

OPRM1 G-protein cou-

pled receptor

(PC00021)

TIAM1

LRFN5 GPHN

OPRD1 G-protein cou-

pled receptor

(PC00021)

ATP2B2 cation trans-

porter

(PC00068);

hydrolase

(PC00121);

ion channel

(PC00133)

ERBB4

End of Table
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ü
rz
b
u
rg

0.
7
(0
.6
9,

0.
7)

0.
57

(0
.5
3,

0.
6)

0.
04

(0
.0
2,

0.
05
)

0.
97

(0
.9
7,

0.
98
)

0.
71

(0
.7
,
0.
71
)

0.
39

(0
.2
7,

0.
5)

0.
02

(-
0.
01
,
0.
04
)



66

Table A.3: Results for the predict one site out analysis for both the LR and
XGB classifiers. Abbreviations : area under the curve (AUC) positive predictive
value (PPV) negative predictive value (NPV).
Centre Accuracy AUC Sensitivity Specificity NPV PPV Kappa

XGBoost
Barcelona 0.73 0.56 0 1 0.73 0 0
Cagliari 0.72 0.6 0 1 0.72 0 0
Geneva 0.77 0.53 0.08 0.98 0.78 0.5 0.08
Halifax 0.55 0.56 0.01 0.99 0.55 0.5 0
Japan 0.76 0.52 0 1 0.76 0 0
Mayo 0.79 0.58 0.09 1 0.78 1 0.13
Paris 0.82 0.5 0.03 1 0.82 1 0.04
Poznan 0.52 0.59 0.02 0.98 0.52 0.5 0
Romania 0.78 0.53 0.06 0.97 0.8 0.4 0.05
San Diego 0.87 0.5 0 0.97 0.89 0 -0.05
Sweden 0.57 0.57 0.04 1 0.56 1 0.05
Sydney 0.79 0.41 0 1 0.79 0 0
Taiwan 0.86 0.35 0 1 0.86 0 0
Würzburg 0.79 0.44 0.03 0.95 0.83 0.12 -0.02

XGBoost
Barcelona 0.73 0.56 0 1 0.73 0 0
Cagliari 0.71 0.42 0 0.99 0.72 0 -0.01
Geneva 0.74 0.53 0 0.95 0.76 0 -0.06
Halifax 0.55 0.49 0.01 1 0.55 1 0.01
Japan 0.76 0.6 0 1 0.76 0 0
Mayo 0.76 0.51 0 0.99 0.76 0 -0.02
Paris 0.83 0.5 0.08 1 0.83 1 0.12
Poznan 0.49 0.49 0.02 0.94 0.51 0.25 -0.04
Romania 0.78 0.51 0.06 0.97 0.79 0.33 0.04
San Diego 0.87 0.5 0.04 0.96 0.89 0.12 0.01
Sweden 0.55 0.5 0.01 0.99 0.55 0.67 0.01
Sydney 0.78 0.43 0 0.98 0.79 0 -0.03
Taiwan 0.85 0.46 0 0.99 0.86 0 -0.02
Würzburg 0.83 0.54 0.07 0.99 0.84 0.5 0.08
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Table B.1:
Classifier Site Accuracy AUC Sensitivity Specificity PPV NPV Kappa

Feature Selection with LR
LR Cagliari 0.63 0.59 0.20 0.80 0.28 0.72 0.00
XGB Cagliari 0.66 0.52 0.05 0.90 0.18 0.71 -0.06
LR Geneva 0.77 0.63 0.62 0.82 0.50 0.88 0.40
XGB Geneva 0.75 0.42 0.00 0.98 0.00 0.77 -0.03
LR Japan 0.66 0.58 0.23 0.80 0.27 0.76 0.03
XGB Japan 0.76 0.43 0.00 1.00 0.00 0.76 0.00
LR Mayo 0.69 0.52 0.23 0.83 0.29 0.78 0.07
XGB Mayo 0.77 0.55 0.00 1.00 0.00 0.77 0.00
LR Paris 0.62 0.45 0.18 0.72 0.13 0.80 -0.08
XGB Paris 0.82 0.47 0.03 0.99 0.50 0.82 0.03
LR Romania 0.73 0.54 0.19 0.88 0.29 0.80 0.07
XGB Romania 0.78 0.48 0.03 0.98 0.33 0.79 0.02
LR San Diego 0.60 0.51 0.30 0.64 0.09 0.88 -0.03
XGB San Diego 0.74 0.50 0.17 0.81 0.10 0.89 -0.01
LR Sweden 0.53 0.53 0.07 0.92 0.39 0.54 -0.02
XGB Sweden 0.55 0.52 0.01 1.00 1.00 0.55 0.01
LR Sydney 0.78 0.55 0.08 0.96 0.33 0.80 0.05
XGB Sydney 0.81 0.62 0.08 1.00 1.00 0.81 0.12
LR Taiwan 0.80 0.61 0.15 0.91 0.22 0.87 0.07
XGB Taiwan 0.86 0.39 0.00 1.00 0.00 0.86 0.00

Feature Selection with XGB
LR Cagliari 0.69 0.54 0.16 0.90 0.39 0.73 0.08
XGB Cagliari 0.74 0.56 0.20 0.95 0.61 0.75 0.19
LR Japan 0.77 0.54 0.06 0.99 0.67 0.77 0.08
XGB Japan 0.75 0.48 0.00 0.99 0.00 0.76 -0.02
LR Mayo 0.77 0.52 0.00 1.00 0.00 0.77 0.00
XGB Mayo 0.74 0.57 0.00 0.97 0.00 0.76 -0.04
LR Paris 0.81 0.53 0.00 0.99 0.00 0.82 -0.01
XGB Paris 0.79 0.52 0.03 0.95 0.11 0.82 -0.03
LR San Diego 0.58 0.46 0.30 0.61 0.09 0.88 -0.04
XGB San Diego 0.68 0.52 0.30 0.73 0.12 0.90 0.02
LR Sydney 0.79 0.49 0.00 1.00 0.00 0.79 0.00
XGB Sydney 0.78 0.38 0.00 0.98 0.00 0.79 -0.03
LR Taiwan 0.84 0.63 0.00 0.97 0.00 0.86 -0.04
XGB Taiwan 0.86 0.62 0.00 1.00 0.00 0.86 0.00
LR wuerzburg 0.81 0.51 0.00 0.97 0.00 0.82 -0.04
XGB wuerzburg 0.79 0.41 0.03 0.95 0.13 0.83 -0.02
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