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ABSTRACT 

Canadian hospitals experience downstream capacity resources, which reduces the total 

quality of care. The Master Surgical Schedule (MSS) is a primary driver of these 

downstream resources, including inpatients beds. This literature addresses this concern by 

utilizing a mathematical model to develop a MSS to minimize excess capacity in a series 

of nearby hospitals that share resources and governing bodies. The objective of this 

research is to develop a Mixed Integer Programming (MIP) model to generate MSSs in 

conjunction with a simulation model to quantify and illustrate the resulting changes. A 

two-step iterative approach was applied to the MIP and simulation where the historical 

inpatient LOS for each surgeon for the MIP is adjusted by adding the historical standard 

deviation multiplied by the ratio of excess capacity used in the simulation versus the 

MIP. A stopping criterion was established and the approach was followed until 

convergence, or a suboptimal loop was found.  

 

The simulation model demonstrated statistically significant reductions using a student t-

test for α=0.05, up to 47% in total excess capacity using the MSSs developed by the MIP. 

The iterative approach did not initially converge using the initial adjustment formula, 

getting caught in a suboptimal loop. To overcome this, a range of predetermined 

adjustment factors was considered for the MIPs inpatient LOS data set to fully evaluate 

the solution set. By making these adjustments, the data sets were able to converge for 

(0.225, 0.25) standard deviations. The case study demonstrates the benefits of pooling 

principles for nearby hospitals, and provides a unique iterative approach to dealing with 

variability within a MIP model. 
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Chapter 1. Introduction 

Canada’s healthcare demands and costs are rising with Canada’s aging population [1, 2]. 

Simultaneously, as healthcare demands have grown, Canadian’s expectations for their 

healthcare services have grown with it. Today Canadians expect shorter wait times and 

improved services [3].  

The surgical scheduling problem has historically been a point of interest for healthcare 

providers, pursuing improvements for wait times, patient throughput, resource utilization 

and capacity constraints [4] [5]. Surgical scheduling is of significant interest because it is 

a key factor in determining the size of waitlists, hospital occupancy levels, and equipment 

processing. The surgeries performed in the operating room (OR) from the surgical 

schedule account for 70% of hospital admits and are a main determinant of many 

downstream hospital processes [6]. Producing an effective surgical schedule is a very 

complicated task. To produce a schedule many factors must be considered. Some factors 

are known and easy to determine, such as the availability of surgeons and equipment. 

Other factors, including the number of surgeries that will be performed in an OR block or 

how much time each patient will require in an inpatient ward are highly variable and 

difficult to predict [7]. When producing a surgical schedule it is important to not only 

consider patient throughput, but the effects on downstream resources such as inpatient 

wards. Improper planning of post procedural resources can have adverse effects including 

cancelled surgeries, inadequate care, patient delays and transfers. 
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Hospitals located in close proximity to one another provide an opportunity to potentially 

improve efficiencies by pooling their resources. Pooling resources has shown the ability 

to improve operational efficiencies and reduce costs [8] [9].  

Pooling in healthcare examples include surgeons pooling their patient lists and the use of 

a central intake [10]. Comparing the effects of pooling between multiple hospitals is a 

relatively new research subject [11]. The objective of this thesis is to evaluate the 

efficiency of jointly developing surgical schedules between multiple sites in an attempt to 

reduce the variance and stress placed on inpatient wards. 

The remainder of this thesis is broken into nine chapters. Chapter 2 introduces Eastern 

Health and background information relevant to the project. Chapters 3 and 4 present the 

problem and the purpose of this study. Chapter 5 reviews previous optimization 

techniques in healthcare as they relate to this thesis. The methods and formulations of the 

mixed integer program (MIP) and simulation models used are discussed in Chapter 6. In 

Chapters 7 and 8 the data analysis and results are discussed. Chapter 9 contains relevant 

discussions about the results and model limitations. Finally Chapter 10 summarizes the 

thesis and its findings.
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Chapter 2. Background 

This chapter examines the surgical process and how surgical schedules are developed. It 

provides an overview of the state of Canadian healthcare and its future direction. An 

overview of Eastern Health and the surgery department is also provided. 

2.1 Surgical Process  

When developing a surgical schedule it is important to understand patient flow 

throughout the operating department and hospital. Within most hospitals, patients follow 

a similar pattern. After the decision that surgery is required, but prior to their surgery, 

patients will be first booked on a waiting list and contacted when their operation date, 

time and location is known. Once the patient arrives at the facility, a hospital staff 

member will usually lead them through a series of laboratory tests, to ensure that it is safe 

to operate. The patient is then dressed for the operation.  Once ready, the patient is 

transferred to the OR and placed on a table to be anesthetized and monitored. After the 

operation, the patient is transferred to the post-anaesthesia care unit (PACU) for further 

monitoring. Once the patient sufficiently recovers, they are moved to a bed in an inpatient 

ward or discharged [5] in the case of minor (day) surgery. 

2.2 The Surgical Scheduling Problem 

Surgical scheduling is the selecting and sequencing of surgical procedures within the 

designated time period [5]. The surgical scheduling problem is typically divided into 

three phases [4], [12]. The first phase is the case-mix planning, case-mix planning is the 

process of assigning how much OR time each surgical specialty will receive. The second 

phase is the development of the surgical schedule or the master surgical schedule (MSS). 
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Developing a MSS consists of identifying which specialty will use what operating rooms 

on what day. The final phase of the process is developing the patient mix. This phase is 

the assignment of patients and surgeons to an OR block with an operation date [4].  

The MSS is a key component of a hospital’s aggregate production plan [13]. It is a 

critical factor in determining pre-operative and post-operative resource requirements. A 

MSS assigns blocks of OR time to different surgical groups. Usually the MSS is constant 

from week to week for a period of time, but OR blocks may be split in half or have slight 

deviations between weeks to accommodate surgical groups that require less OR time. A 

sample MSS is presented in Figure 1. In this MSS there are 5 ORs each is used Monday 

through Friday. It is common practice for a MSS to designate both the surgeon’s 

specialty and name as shown in rooms 1 and 2. 

 

Figure 1 A Master Surgical Schedule 

The process of developing a MSS is complex task because of the numerous objectives, 

stakeholders and resources involved [14]. A MSS must determine how much time to 

Room Monday Tuesday Wednesday Thursday Friday

1
General                                 

Dr. Smith
General

Plastics                             

Dr. A Smith

Vascular                      

Dr. Black
ENT Rotating

2
 Vascular                      

Dr. Brown

Vascular                      

Dr. Black

General                        

Dr. Smith

Vascular                       

Dr. Brown

General                        

Dr. Walker

3 Urology Urology Urology Urology Urology

Ent/Dentals

General                            

Dr. Casey

5 ENT General ENT ENT Thoracics

4 Cardiovascular Cardiovascular Cardiovascular Cardiovascular
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allocate to each specialty and what the demands are on the pre and post-operative 

resources. Variance is inherent in the scheduling problem. Emergency cases and 

uncertainty surrounding the exact nature of the required procedures for a given patient 

contribute to this variance [5]. A good surgical schedule needs to balance both the needs 

of surgeons and hospital resources. It should be consistent week to week and respect the 

bounds and constraints of the hospital [4].  Developing a MSS has many considerations 

including: 

1. The Operating Room’s capabilities- An OR’s capabilities are used to determine if 

a surgery can be scheduled in a block. The OR needs to have the necessary 

equipment required for the surgery.  

2. The number of available beds- The number of available beds is a determinant of 

the number of surgeries that can be performed in an OR block. After the 

operation, there needs to be a place for the patient to go. If there are no available 

beds, that patient is forced to remain in a recovery area, which is not generally 

designed to hold patients for extended periods. 

3. The number of operations a physician will perform in an OR block- Historical 

data is often used to predict how many operations a surgeon will perform in an 

OR block.  

4. The Length of stay (LOS) for a given physician and surgery type - Historical data 

is often used to predict how long a patient will stay in hospital after a specific 

surgery type.  
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2.3 The State of Canada’s Healthcare 

Wait times and the state of Canadian healthcare continues to be a concern of Canadians. 

Waitlists continue to grow and at the same time Canadian’s expectations for healthcare 

demands continue to increase. Addressing the increasing size of waitlists is a priority of 

the Canadian government. Provincial and territorial healthcare systems have begun 

actively monitoring patient wait times, making the data publically available. Provincial 

governments continue to develop policies and strategies to address these issues. These 

plans and policies often are based on research directly tied to surgical resources and 

Master Surgical Schedules (MSSs). 

To reduce wait times, hospitals must service patients faster to reduce the quantity of 

patients on its waitlist. Patients are removed upon completion of their surgery or if their 

assessment changes and they no longer require the operation. A by-product of pushing 

wait list improvements is more patients in hospitals and higher utilization of hospital 

resources. If poorly managed higher utilization rates lead to capacity issues and a lower 

level of care. The focal point of this thesis is addressing the MSS to account for patient 

demand to reduce congestion within a multi-hospital network. 

2.4 Eastern Health 

Eastern Health (EH) is Newfoundland’s largest health board extending from St. John’s to 

Port Blandford and includes all communities within the Avalon, Burin and Bonavista 

Peninsulas. Eastern Health’s span of coverage is shown in Figure 2. 
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Figure 2 Eastern Health's Territory 

EH serves a population of over 300,000, comprised of over 13,000 employees and 5 

hospitals: 

1. Health Science Center (HSC) 

2. St. Clare’s Mercy Hospital (SCM) 

3. Carbonear General Hospital 

4. Dr. G. B. Cross Memorial Hospital 

5. Burin Peninsula Healthcare Center 

Beyond its main population, EH is also the tertiary healthcare provider for all of 

Newfoundland. The majority of EH’s surgical operations occur within its two city 

hospitals: SCM and The Health Science Center HSC.  HSC is an academic hospital and is 

Newfoundland’s primary tertiary hospital. HSC has 45 OR blocks and 103 designated 

surgery beds. SCM is the older of the two hospitals, having 35 OR blocks and 113 

designated surgery beds. The two hospitals are located within close proximity and have 
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an existing relationship where certain surgical staff and equipment are shared between the 

two sites. In 2013 Easter Health was recognized for its Orthopedic Central Intake, which 

greatly reduced patient wait times and demonstrated its commitment to realizing the 

benefits of pooling resources. 

The research of this thesis examines HSC and SCM as a network of hospitals. The other 

hospitals within Eastern Health were excluded from this network because their 

geographic locations do not allow for easy resource sharing. As mentioned earlier, 

pooling resources like surgeons and surgical equipment increases complexity, but it also 

provides opportunities for improved efficiencies [8].  

When developing surgical schedules for a network of hospitals, it is important to consider 

the current state and how easily transferring services will be. Within this small hospital 

network, some level of resource sharing already exists. The two hospitals share laundry 

facilities and a common medical device reprocessing area. Beyond these, there are three 

groups of surgical specialties, orthopaedics, general and plastic surgery that are 

commonly performed at both sites. 

At the two hospitals there are 10 physicians that operate each week at both sites and 18 

physicians that perform surgeries within one of the three shared groups of surgical 

specialties. Moving other surgical groups between the two sites is possible, but it would 

incur a high cost. The process would require a large initial investment to modify the OR 

and purchase new equipment or incur the costs of frequently transporting expensive 

devices between the two sites. 
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The focus of this project is to optimize the MSS to level the bed capacity between sites 

and inpatient wards. A key objective is minimizing the amount of overcapacity bed days 

used. For the purpose of this research, an overcapacity bed is defined as anything serving 

as a bed that is not included in the hospital’s main bed board. 

There are two other projects ongoing that may affect the results of this project. A Real 

Time Demand Capacity initiative is focused on improving the discharge process for 

nurses in the hospital wards. This project’s goal is to discharge patients earlier in the day, 

by proactively managing their discharge requirements. If successful, this project will free 

up ward resources including beds and nurses earlier in the day. It is important to free up 

hospital beds as efficiently as possible to have them ready for the new batch of patients 

that will require them post-surgery. Freeing up beds will allow new patients from the OR 

to be transferred into the wards.  The second project that could affect the results is a 

Clinical Utilization Review. This review is examining each of the physician’s usage of 

their OR time. The Clinical Utilization Review is considering elimination of half OR 

blocks. The results of the review will lead to changes in the amount of OR time assigned 

to each physician and specialty. Changes to the amount of OR time designated to each 

surgical specialty will alter the designation of blocks within the MSS. 

2.5 Surgery Department Description 

This section will describe the surgery departments at the HSC and SCM hospitals. It will 

describe the types of surgeries that are performed and patients that are seen, and how 

patients flow throughout. It will describe how patients are classified and the resources 

that they use. 
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2.5.1 Patient Types  

This research includes both elective and non-elective patients from all surgical groups at 

the HSC and SCM hospitals. Between the two sites there are 12 primary surgical groups 

that use the ORs: 

1. Cardiovascular Surgery 

2. Dental/ Oral Surgery 

3. General Surgery 

4. Gynecology 

5. Ear Nose and Throat (ENT) 

6. Neurosurgery 

7. Ophthalmology 

8. Orthopaedic Surgery 

9. Plastic Surgery 

10. Thoracic Surgery 

11. Urology 

12. Vascular Surgery 

Some cancer treatment is also scheduled within the surgical ORs. Only general surgery, 

orthopaedic surgery and plastic surgery are performed at both sites. Surgery types 

performed at both site is a significant optimization constraint, EH has specified that they 

do not have the budget at this time to adjust the hospitals to accommodate a new surgical 

group. This limits the potential shifting of surgeons to surgeons that perform one of the 

above mentioned surgeries.  
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2.5.2 Patient Flow 

All surgery types follow the same general flow. The patient is selected from the 

surgeon’s wait list and enters the hospital that the surgeon is operating in, on that day. 

The patient waits until the required surgeon and equipment are ready before entering the 

operating room for pre-surgery care. Once the patient is prepped the operation begins. 

Following the operation patients can be either discharged (outpatients) or admitted 

(inpatients). Admitted patients will occupy a bed resource for their entire LOS. Non-

elective emergency patients enter the stream from referrals from the ED or another 

hospital service. Their arrivals are less predictable. Once they enter the operating room 

they follow the same procedure as elective patients. Occasionally non-surgery patients 

will enter and use surgical resources, usually because they do not have enough resources 

within their department. Figure 3 demonstrates the flow of surgery patients through 

surgical resources. Within Figure 3, the green line represents emergency cases that 

resulted in surgery and the purple dashed line between the two hospitals inpatient wards 

represents transferring of patients between sites. Transfers are done either because one 

hospital currently does not have the required resources or the patient requires treatments 

that can only be provided at the other site or in anticipation of future demand to balance 

the demands between sites. 
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Figure 3 Patient Flow through Surgical Resources 

2.5.3 Facilities and Resources 

Surgeons determine which patients to operate on based on how long they have been on 

the waitlist and the urgency of their case. Once a patient enters the hospital they will 

require an OR and the surgeon during their procedure. Following the procedure patients 

will typically use a PACU until they are ready to be discharged or admitted. Admitted 

patients will use designated surgery beds in an inpatient ward as well as members of the 

nursing staff to assist in their care. 

2.5.4 Diagnosis Classification 

Prior to surgery, patients are assigned a diagnosis. The surgeon and hospital staff use this 

diagnosis and information about the patient’s overall health to estimate their required 

operating room time (OPT) and LOS. The patients are broken down by their case 

procedure (i.e. general surgery) and then further by their case mix group. Between 2012 

and 2015 there were over 790 different case mixes assigned to patients. 
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Chapter 3. Problem Statement 

Eastern Health’s HSC frequently experiences capacity issues. These issues have resulted 

in short-term solutions, which often have adverse effects including: patients residing in 

hallways, patients residing in the PACU for lengthy periods of time, patients being 

transferred to other sites, surgery cancellations, overtime and frustration for those 

involved. One of EH’s identified problems is that on average patients LOS exceeds their 

estimated LOS (ELOS) by 14%. Longer LOS increase the total bed day used and 

heighten capacity issues. Through interviews with managers and key stakeholders, 

including Eastern Health’s COO, the surgical chiefs for HSC and SCM, the regional 

director for clinical efficiency and the process improvement manager several theories for 

the higher LOS were identified: 

1. Incorrectly categorizing patients prior to their surgery 

2. Inefficiently discharging patients, not clearing bed resource in time for new 

patients 

3. Alternative Level of Care (ALC) patients occupying surgery resources 

4. Non-surgery patients occupying surgery resources 

5. The MSS 

To better understand the problem, historical bed usage was examined at both of the sites. 

The daily results between 2011 and 2012 were mapped against the number of available 

beds in Figure 4 and Figure 5. The chart shows the total quantity of bed days for each day 

as the sum of cumulative bed days excluding July and August for elective patients, 
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patients that have been diagnosed as alternative level of care (ALCDays) and patients 

from other departments (OffServiceDays).  

 

Figure 4 SCM Surgical Bed Usage 

 

Figure 5 HSC Surgical Bed Usage  
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Figures 4 and 5 indicate that there is significantly more capacity at SCM than HSC which 

is regularly above its bed capacity and during busy periods by a significant amount. In 

fact surgical bed usage at HSC is at capacity on 83.4% of the sampled days, compared to 

just 2.1% at SCM. Bed distribution by the day of the week can also be used as an 

indicator of how hospitals are managing their capacity. Figure 6 and Figure 7 plot the 

average quantity of surgery patients in surgical beds by day of week (Bed Days).  

 

Figure 6 Surgery Patient Daily Bed Days SCM 
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Figure 7 Surgery Patients Daily HSC 

Both data sets have an upward trend towards Thursday and Friday; although there is no 

significant differences at HSC between Tuesday and Friday. Intuitively this makes sense, 

elective surgeries are completed on weekdays which typically results in a net gain of 

inpatients. Weekends typically result in a net loss of inpatients because, without 

scheduled elective surgeries, there are more discharges than admissions. Examining the 

data, it is clear that there is more variability between the days in the quantity of patients at 

the SCM compared to HSC. One hypothesis for this proposed by management is that 

HSC has less variability because it is more often at maximum capacity. When HSC is at 

maximum capacity, it is forced to transfer patients or cancel surgeries, which keeps the 

bed utilization more stable, near its maximum capacity throughout the week. 

The combination of surplus bed capacity at SCM and the imbalance of bed utilization 

throughout the week indicate that potential improvements in balancing bed demand could 
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be achieved by pooling the resources and redesigning the MSSs for the two sites. To 

highlight some of the potential gains, Figure 8 illustrates the total combined surgical bed 

usage for HSC and SCM. 

 

Figure 8 Combined Bed Usage 

The historical data is summarized in Table 1, displaying the average, and quartile data. 

Together Figure 8 and Table 1 indicate that significant improvements could be made if 

the hospitals were able to pool perfectly.      

 HSC SCM Combined 
Beds 

Available 

Average 103.0 89.2 192.1 216 

1st Quartile 98 83 181 216 

Med 103 91 194 216 

3rd Quartile 109 97 206 216 

Max 130 116 246 216 
Table 1Historical Bed Statistics 

  

0

50

100

150

200

250

300

1 2 3 4 5 6 10 11 12 1 2 3 4 5 6

B
ed

s

Month

Combined HSC and SCM Bed Census

Beds Occupied

AvailBeds



 

18 

 

23 

Chapter 4. Purpose of Study 

Based on historical data it is possible to estimate the number of patients, the type of 

patients and patient’s lengths of stay that will enter the hospital from a surgeon utilizing 

an OR block. Using these estimates it is possible to influence MSSs and reduce problems 

related to inpatient congestion. The purpose of this paper is to demonstrate whether a 

two-step iterative approach using both a MIP and simulation can be used to approximate 

an optimal solution to better level bed capacity between a series of nearby hospitals. The 

mathematical model will be used to develop solutions sets and the simulation model to 

validate and quantify any improvements.   
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Chapter 5. Literature Review 

Appointment planning and scheduling in healthcare has widely been studied. Gupta and 

Denton provide an in-depth review of current research and opportunities [14]. This thesis 

builds on the literature on the benefits of pooling resources and literature on surgical 

scheduling to minimize capacity constraints. This approach of pooling hospitals and 

using mathematical modelling to optimize their joint function is relatively new. The 

following chapter will discuss related literature. 

Since its initial application to healthcare, Operations Research techniques have become a 

critical component in the efficient delivery of healthcare services [15]. These techniques 

target improvement measures and cost reductions. Citizens have high expectations for the 

delivery of their healthcare services. These high expectations strain healthcare’s 

resources. To keep up with these demands and not exceed their budget; healthcare 

providers depend on Operations research techniques, including integer programming (IP) 

methods. IP techniques have been applied commonly across many healthcare sectors 

including optimal appointment scheduling [14], the delivery of homecare, surge capacity 

planning, and the focus of this paper, surgical scheduling [15].  

Historically, the assignment of surgical specialties was developed by an administrator 

who had to consider all of the vast objectives. Recently, operations research techniques 

have been applied to the surgical scheduling problem with improved results. In the 

literature, the majority of research has focused on maximizing operations research 

utilization or similar functions such as minimizing staffing costs and reducing uncertainty 

[16], [17], [18], [19].  A body of research is dedicated towards a two-step approach to 



 

20 

 

23 

optimization. This research generally uses a MIP model to find solutions and simulation 

models to predict what implications the solution has and to perform a sensitivity analysis 

[20]. One such study uses a simulation model coupled with a TABU search method to 

optimize the MSS. It was too computationally expensive to optimize using only a 

simulation model, so (Qing et al) applied a TABU search to reduce computing time and 

generate a good approximation [21]. Blake and Carter [4] developed a MIP and further 

heuristics at Mt. Sinai Hospital to assist administration staff in modify their MSS to 

account for changes in funding total OR time.  

A growing body of research is being developed for leveling bed capacity and managing 

post-operative resources [22]. VanBerkel et al. [7] improved the levelness of bed ward 

capacity through a combination of an operations research model and input from 

knowledgeable physicians and stakeholders. A two-phase model was developed that saw 

improvements to ward congestion. This system consisted of a Surgical Schedule 

Organization and an IP model designed to reduce surgical ward capacity. The results of 

the IP model were then tested in a bed utilization simulator, an implementation of a 

Monte Carlo simulation [23].  

At the time of this writing, only [24]  has been identified in literature as considering bed 

smoothing across a network of hospitals. Bed smoothing involves leveling the amount of 

bed usage across the different hospitals, so that demand is balanced.  The Fraser Health 

Authority uses an IP to determine the optimal MSS across regions of hospitals, grouping 

hospitals together that are in close proximity. In their model, resources like surgeons and 

surgical equipment are shared between the hospitals. Their research showed that by 

pooling resources, Fraser Health was able to reduce bed congestion. EH has already seen 
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some benefits of pooling resources with the implementation of a central intake for hip 

and knee surgery assessments [25]. Future research will be able to build on the research 

performed at the Fraser Health Authority. Belien and Demeulemeester [22] developed 

several MIP models to level bed capacity. Several of their models accounted for variance 

and uncertainty in a surgeon’s patient mix and patient LOS. Although they do not 

account for a system of hospitals, its concepts for considering variance can be applied to 

further research.  
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Chapter 6. Methodology 

Chapter 2 identifies the close proximity of Eastern Health’s HSC and SCM hospitals as a 

natural research opportunity to study the unique effects of pooling resources between two 

hospital sites. The goal of this research is to alleviate capacity problems experienced at 

HSC through balancing the bed demand. This research intends to accomplish this goal by 

optimizing the two hospitals MSSs to minimize capacity issues. The solution space is 

explored using a two-step iterative method that consists of a MIP and a simulation model. 

The MIP uses a mathematical formulation to optimize the MSSs to minimize variation in 

resource utilization. The outputted MSSs are then inputted into the simulation model to 

reaffirm the MIP models results and better quantify improvements. The bed statistics are 

compared between the simulation and MIP models. The results from the simulation 

model are used to adjust an adjustment factor for patient LOS within the MIP. This 

process is repeated until the results converge (no statistical difference for α = 0.05). An 

alternative method that could have used is the Sample Average Approximation (SAA) 

method, which could have utilized the same stopping criteria. This chapter will describe 

the iterative process used to optimize the MSSs as well as the methods used in 

developing the MIP and the simulation model. 

6.1 Iterative Process 

Solutions based solely on historical averages risk not providing the right solution to fit 

demand when the underlying system is highly variable. This research uses a two-step 

iterative approach to take variability into account. Specifically, the LOS parameters in the 

MIP are increased by a fraction of the standard deviation.  The first step in this approach 
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is the MIP (described in Section 6.2); in the MIP the historical LOS averages and 

standard deviations for each surgeon are used to determine the MIP LOS. The historical 

LOS standard deviations are multiplied by an adjustment Factor F to increase the 

historical average LOS for each surgeon as shown in Equation 1. This adjustment is done 

to synchronize the results between the MIP and simulation. F is initially arbitrarily 

selected and then adjusted by Equation 2 as additional simulations are run. The MIP then 

explores the solution set using the resulting LOS and historical average quantity of daily 

operations to minimize the quantity of overcapacity bed days to produce new MSSs.  

[1] LOSS = µLOSS + F*σLOSS for each surgeon S 

The second step (described in Section 6.3) is a simulation, which produces more 

descriptive bed statistics. The simulation is run using the MSSs generated by the MIP in 

step 1. In the initial iteration, the adjustment factor is arbitrarily chosen, after subsequent 

iterations the adjustment factor is refined by the ratio of overcapacity bed days from the 

simulation divided by the overcapacity bed days from the MIP (as shown in Equation 2). 

After completing the simulation run and comparing the bed statistics, F is used to adjust 

the LOS for each surgeon in the MIP and the MIP rerun with the new parameters to 

generate new MSSs to be used in the simulation model. This process is repeated until the 

difference in overcapacity bed days converges and is statistically insignificant for α = 

0.05. The general algorithm process is described in detail below: 

Step 1. Start 

Step 2. Arbitrarily select adjustment factor F  

Step 3. Run the MIP model, generate MSSs and determine the total number of 

overcapacity bed days 
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Step 4. Run the simulation model using the MSSs from the MIP and determine the 

total number of overcapacity bed days 

Step 5. Check if the difference between the two sets of results are statistically 

significant for α = 0.05? 

If No then 

Exit and record results  

Else 

Adjust adjustment factor 

[2] 𝐹𝑖 = 𝐹𝑖−1 ∗
𝑂𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑒𝑑 𝐷𝑎𝑦𝑠 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑂𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑒𝑑 𝐷𝑎𝑦𝑠 𝑀𝐼𝑃
  for each i > 1. 

And return to step 2. 

Step 6. Finish 

Figure 9 illustrates the flow chart for the general algorithm.
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 Figure 9 Two-Phase Approach Algorithm 
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6.2 Mixed Integer Program  

This project develops a MIP to generate MSSs for a set of hospitals. The goal of the MIP is to 

generate a set of MSSs that minimize capacity issues experienced within HSC and SCM. The 

formulation considers the hospitals as a network of hospitals. Jointly considering the two 

hospitals allows the MIP to take advantage of gains from pooling resources to level the daily and 

overall demand occupancy. The following subsections will discuss the model requirements, 

design and its formulation. 

6.2.1 Model Requirements 

Working closely with key stakeholders, including Eastern Health’s COO, the surgical chief for 

HSC and SCM, the regional director for clinical efficiency and the process improvement 

manager it was determined that the MIP should focus on the second phase of surgical scheduling, 

designating surgeons and specialties to OR blocks, with the goal to balance bed demands. The 

MIP needed to address the congestion problems experienced at HSC and attempt to improve the 

uneven bed demand between sites and throughout the week. To accomplish this, the MIP needed 

to first accurately model the current situation. The MIP uses historical data to determine the 

patient mix and LOS for each surgeon. It has been shown that deterministic models using 

historical averages does not guarantee an optimal solution and underestimate capacity issues 

[20]. Acknowledging this underestimate, a multiple of the standard deviation was added to the 

average patient LOS for each surgeon. An adjustment factor linearly revises the standard 

deviation multiple after each iteration in an attempt to pair the MIP and simulations results. The 

function was applied to each surgeon separately to produce more realistic results. For example, it 

would not be representative to increase the average patient LOS for a surgeon who performed 
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only day surgeries by the same amount as a physician that performed complex surgeries with 

varying recovery times. Results from the MIP include a daily bed census and MSSs for both 

HSC and SCM. The outputted MSSs identify the operating specialty and surgeon for each OR 

block. Management at EH required the MIP to maintain current surgical volumes and OR 

relationships for each surgical specialty and surgeon. This means that a surgeon cannot be 

assigned less OR time than they currently have and they cannot operate in operating rooms not 

equipped for their specialty. The MIP also attempts to incorporate changes requested by EH 

staff. Requests included eliminating days where a surgeon operates a partial block at each site 

and where possible eliminating partial block assignments entirely. 

6.2.2 Mixed Integer Programming Model Description 

A mathematical formulation was used to evaluate a solution set of MSSs and determine the bed 

usage at HSC and SCM using constant values for surgeon operations and patient LOS based on 

surgeons historical data for LOS and quantity of daily operations. The objective function is to 

minimize the number of overcapacity bed days. The model considers any bed in excess of the 

typical ward layout (113 and 103 at SCM and HSC respectively) to be an overcapacity bed. Each 

hospital is equipped with a set number of physical beds in their inpatient wards but has 

designated overcapacity beds and overflow areas to accommodate additional demand. To 

minimize the number of overcapacity beds, the formulation manipulates the MSS to find an 

optimal configuration of assigned surgeons to ORs. Constraints are used to control the operating 

rooms that surgeons can operate in and ensure that each surgeon receives their minimum OR 

time. This section will describe the methods that were used in developing the formulation. 
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The model consists of two hospitals and 72 surgeons. At HSC and SCM there are only 65 

surgeons, but an additional 7 surgeons were created to schedule oddities. For the purpose of this 

paper an oddity is considered to be an OR block not assigned to a specific surgeon. For instance 

if an OR block was designated to an entire specialty such as General Surgery (a rotation of 

general  surgeons) then a surgeon was created for the model using cumulative historical data 

from all surgeons that operate in that OR block. The MIP uses a two week planning horizon 

instead. Expanding the planning horizon to two weeks from one allows the model to assign 

rotating blocks instead of partial blocks to surgeons. For instance, instead of surgeon A operating 

in the morning and surgeon B in the afternoon, surgeon A would operate every odd week and 

surgeon B every even week. The model’s objective is to minimize the sum of each hospital’s 

demand above its set capacity computed over a 36 week period. The 36 week period was 

selected to represent the regular schedule used by the two sites. Both hospitals use three 

schedules throughout the year: a regular schedule (36 weeks), a summer schedule (14 weeks) and 

a Christmas schedule (2 weeks) over the holiday break.  

The MIP was developed using GLPK within Gusek and then Gurobi was used to read and 

optimize the MIP. The model sets the current amount of operating time and OR blocks 

assigned to each surgeon as a constraint. This limits the model to schedules that move 

surgeons OR blocks, but does not affect their allotted OR time. The MIP repeats the same 

schedule, patient mix and patient LOS every two weeks. The historical patient mix and average 

LOS underestimate the demand and represents an idealistic scenario. An adjustment factor F 

(described in Section 6.1) is used to better reflect reality and synchronize the MIP results with 

the simulation results. After each iteration the ratio of bed usage between the simulation and MIP 

is used to adjust F. For example if the simulation model had 100 overcapacity bed days and the 
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MIP had 90 overcapacity bed days then F would be increased by 10/9. This process is repeated 

after each iteration until the difference between the two models is no longer statistically 

significant for α = 0.05.  

6.2.2.1 Mixed Integer Programming Model Formulation 

The model breaks down critical components by sets. These sets are used to define variables, 

parameters and constraints. The formulation is comprised of 6 sets: 

1. D is the set of days indexed by d.  

2. P is the set of physicians indexed by p 

3. H is the set of hospitals indexed by h 

4. O is the set of operating rooms indexed by o. Where 𝑂 = {𝑂1 ∪ 𝑂2} 

i. O1 is the set of operating rooms in hospital 1 

ii. O2 is the set of operating rooms in hospital 2 

5. B is the set of operating room blocks indexed by b 

6. I is the set of beds indexed by i 

Using days as the MIP model’s time period restricts the addition and removal of patients to the 

start of each day.  

The model uses parameters to input values into the models constraints. For instance a 

parameter (Surgeon Site) is used to designate whether physician p can operate in hospital h. 

If the physician can operate at the site the parameter is designated a value of 1, if they cannot 

operate at that site the parameter is assigned a value of 0. The model consists of seven 

parameters: 

1. SBp is the number of OR blocks assigned to surgeon p 

2. SHph is binary 1 if surgeon p can operate at hospital h, 0 otherwise 

3. SOpo is binary 1 if physician p can operating in OR o, 0 otherwise 
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4. NPp is the expected number of patients that will be admitted when surgeon p is 

assigned an OR block 

5. LOSp is the expected length of stay for patients operated on by surgeon p 

6. LOSDp is the LOS standard deviation for patients operated on by surgeon p 

7. LOSAdjp is the adjusted LOS for physician p accounting for the surgeon’s variance 

using the adjustment factor F, which relates the bed statistics between the 

simulation and MIP. It is determined by the following equation:  

𝐿𝑂𝑆𝐴𝑑𝑗𝑝 =  𝐿𝑂𝑆𝑝 + 𝐹 ∗ LOSDp  

Where F is determined by the relationship between the bed statistics of the 

simulation and the MIP as described in Section 6.1 

8. BEDh is the number of beds assigned to each hospital h. 

The model decision variable is: 

𝑥𝑝𝑑𝑜 {
1 𝑖𝑓 𝑠𝑢𝑟𝑔𝑒𝑜𝑛 𝑝 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑑 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑟𝑜𝑜𝑚 𝑜

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∀p ∈  P, ∀d ∈ D, ∀o ∈ O 

The other model variables include: 

𝑃𝐻𝑑ℎ  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑠𝑒𝑛𝑑 ℎ𝑜𝑚𝑒 𝑜𝑛 𝑑𝑎𝑦 𝑑 𝑓𝑟𝑜𝑚 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ℎ 

∀d ∈ D, ∀h ∈ H, >= 0, integer 

𝑃𝐴𝑑ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑎𝑑𝑚𝑖𝑡 𝑜𝑛 𝑑𝑎𝑦 𝑑 𝑓𝑟𝑜𝑚 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ℎ 

∀d ∈ D, ∀h ∈ H, >= 0, integer 

𝑂𝐵𝑑ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑜𝑛 𝑑𝑎𝑦 𝑑 𝑖𝑛 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ℎ 

∀d ∈ D, ∀h ∈ H, >= 0, integer 

𝑂𝐹𝐵𝑑ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑏𝑒𝑑𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑜𝑛 𝑑𝑎𝑦 𝑑 𝑖𝑛 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ℎ 

∀d ∈ D, ∀h ∈ H, >= 0, integer 
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Overflow beds are used to track the number of extra beds used. The model does not place a 

maximum on the number of overflow beds. By not placing a maximum does not need to cancel 

surgeries and can better quantify how much extra demand there actually is. There is no 

maximum placed on this variable, therefore it captures the entire excess demand and surgeries 

are not cancelled. 

Using these variables and parameters the model can be stated formally as follows: 

 

Objective:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑏𝑗: ∑ ∑ 𝑂𝐹𝐵𝑑ℎ

𝐻

ℎ

𝐷

𝑑

 

 

Subject to 

[1]∑ ∑ 𝑥𝑝𝑑𝑜 = 0,      ∀d ∈  6. .7, ∀d ∈  13. .14𝑂
𝑜

𝑃
𝑝   No Saturday or Sundays 

[2]𝑥𝑝𝑑𝑜 ≤ 𝑆𝐻𝑝1       ∀ p ∈  P, ∀ d ∈  D, ∀ o ∈  𝑂1 }  Do not assign surgeon to hospital they 

cannot operate at 

[3]𝑥𝑝𝑑𝑜 ≤ 𝑆𝐻𝑝2       ∀ p ∈  P, ∀ d ∈  D, ∀ o ∈  𝑂2  } Do not assign surgeon to hospital 

they cannot operate at 

[3]𝑥𝑝𝑑𝑜 ≤ 𝑆𝑂𝑝1       ∀ p ∈  P, ∀ d ∈  D, ∀ o ∈  𝑂1  } Do not assign surgeon to an OR in OR set 

1 that is not properly equipped 
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[3]𝑥𝑝𝑑𝑜 ≤ 𝑆𝑂𝑝2       ∀ p ∈  P, ∀ d ∈  D, ∀ o ∈  𝑂2  } Do not assign surgeon to an OR in OR set 

2 that is not properly equipped 

[4] ∑ ∑ 𝑥𝑝𝑑𝑜  𝑂
𝑜

𝐷
𝑑 ≥  𝑆𝐵𝑝  ∀ p ∈  P     Every surgeon gets at least SBp slots 

[5]𝑃𝐴𝑑1 =  ∑ ∑ 𝑥𝑝𝑑𝑜
𝐷
𝑑

𝑂1
𝑜 ∗ 𝑁𝑃𝑝   ∀ d ∈  D   Patients added to hospital 1 each day 

[6]𝑃𝐴𝑑2 =  ∑ ∑ 𝑥𝑝𝑑𝑜
𝐷
𝑑

𝑂2
𝑜 ∗ 𝑁𝑃𝑝   ∀ d ∈  D   Patients added to hospital 2 each day 

[7]𝑃𝐻𝑑1 =  ∑ ∑ ∑ 𝑥𝑝𝑑𝑜
𝐷
𝑑1

𝑂1
𝑜

𝑃
𝑝 ∗ 𝑁𝑃𝑝 ∀ d ∈  D ∩ 1 Discharges at hospital 1 each day 

[8]𝑃𝐻𝑑2 =  ∑ ∑ ∑ 𝑥𝑝𝑑𝑜
𝐷
𝑑1

𝑂2
𝑜

𝑃
𝑝 ∗ 𝑁𝑃𝑝  ∀ d ∈  D ∩ 1 Discharges at hospital 2 each day 

[9]𝑂𝐵𝑑ℎ =  𝑂𝐵𝑑−1,ℎ + 𝑃𝐴𝑑ℎ − 𝑃𝐻𝑑ℎ  ∀ d ∈ 2. . D,   h ∈ H  

Bed Census 

[10]𝑂𝐵𝑑ℎ ≤  𝐵𝑒𝑑𝑠ℎ +  𝑂𝐹𝐵𝑑ℎ ∀ d ∈ 2. .14,   h ∈ H Cannot exceed quantity of overflow beds 

[11]𝑥𝑝𝑑𝑜 =  𝑥𝑝𝑑−14,𝑜       ∀ p ∈ P, ∀ d ∈ 15. .129,   o ∈ O Surgical schedule repeats every two        

weeks.  

[12] ∑ 𝑥𝑝𝑑𝑜 ≤ 1𝑃
𝑝      ∀ d ∈ D, ∀ o ∈ O Only 1 physician can operate per day 

per OR block 

[13] ∑ 𝑥𝑝𝑑𝑜 ≤ 1𝑂
𝑜      ∀ p ∈ P, ∀ d ∈ D Only 1 hospital can be operated per 

day per surgeon 

Constraint 11 defines the length of the MSS in the model. In this case the MSS is set to two 

weeks repeating schedule.   
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6.3 Simulation 

The complexity and variance in resource availability, patient mixes and patient LOS makes it 

difficult to apply queuing theory to surgical scheduling and OR planning. In place of queuing 

theory, surgical scheduling problems often utilize computer simulations as a planning aid [26]. 

This paper takes an iterative approach to this problem using both a MIP and a simulation model. 

Mathematical formulations are great tools to optimize complex problems, but are limited in their 

ability to use distributions and variance of patient mixes, LOS and operation lengths. Simulation 

models allow users to fit historical data into distributions and use the distributions to determine 

the mix of patients, their operating times and their LOS. Simulations can be easily visualized and 

broken into small components, which allows the modeller to dissect each component and 

validate that it works as intended. The main objective of the simulation model in this research is 

quantifying the effects of changes made to the MSSs and providing feedback to the MIP. The 

following subsections will discuss the model requirements, design. They will also describe the 

model, its resources, entities and flow of patients. 

6.3.1 Simulation Requirements 

The simulation model provides an inexpensive opportunity to detect potential problems 

caused by a new MSS before system changes are implemented. As such the model must be 

accurate and repeatable. To ensure its accuracy and effectiveness the model must be validated 

and verified through system checks and comparing results to historical outputs. For this paper 

repeatability means that the model is able to apply the same data set independent of the MSS. 

Finally the model needs to be relevant. In order for successful change management to occur the 

organization has to believe in the concepts and the importance of the solutions.  
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6.3.2 Simulation Design  

The conceptual model was formulated through a process review with key staff members familiar 

with the process including the surgical chief for SCM and HSC and the regional director for 

clinical efficiency and the nursing staff, and examining previous literature. The model was 

developed using Rockwell’s Arena software and utilizes historical data from Eastern Health’s 

databases. The entire surgical process and its many complexities were considered during 

development. The model was set-up to evaluate and compare the effects of changes made to the 

MSSs. The model was validated by a series of tests and statistical analysis. This models process 

was verified through quantitative analysis and a review with people with an understanding of 

patient flow throughout EH’s surgery departments. 

The simulation was designed to capture all patients that utilize surgical resources. The simulation 

captures two patient streams, elective and non-elective patients. Elective patients arrive in the 

system on the day they are scheduled for surgery as sourced by the MSS. Non-elective patients 

typically enter the system through the Emergency Department (ED) when the ED doctor requests 

consultation that results in surgery. The model captures the flow of the patients from their arrival 

until they are discharged.  

6.3.3 Simulation Model Description 

The model uses a database to determine model inputs and process times. These inputs include the 

MSS, patient LOS in days and operation length in minutes. The model utilizes four phases to 

model patient flow. Phase one initializes the model inputs key parameters from the database. 

This phase assigns a patient list to each physician, where each patient is assigned attributes (i.e. 

operation time and LOS) based on the physician’s historical patient mix. Phase two models the 
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arrival of patients into the hospital. Emergency patients arrive randomly according to historical 

arrival rates. For the purpose of this model, arrivals are based on when a patient is selected for 

surgery and prepared for the OR. Elective patient arrivals are determined from the MSS and a 

function that selects patients from the operating physician’s patient list. Phase three processes the 

patients from their arrival until they are discharged. Processing includes pre-surgery preparation, 

surgery, post-surgery recovery any inpatient stay and discharge. Finally the fourth phase rebuilds 

the surgeon’s waitlist. The completion of each day signals a function to rebuild physicians 

operating list. Rebuilding physician waitlists at the end of each day ensures a waitlist of constant 

length. The choice of modelling waitlist at first seems impractical since waitlists are dynamic, 

but in doing so it allows the model to pull from historical patient mixes and use historical 

cancellation rates to determine the daily operation list. In EH’s case where current waitlist data is 

opaque this method reduces modelling time and limits model assumptions, instead utilizing 
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historical data. Figure 10 graphically presents the four phases on the simulation model.

  

Figure 11 Simulation Model Phases 

6.3.4 Modelled Resources 

The simulation models three primary resources at both the HSC and SCM. The modelled 

resources include surgeons, operating rooms and the post-operation bed resources. This section 

will discuss in detail how surgeon schedules are modelled, how operating rooms are utilized and 

the use of bed resources. 
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6.3.4.1 Surgeon’s Schedules 

Surgeons are an essential hospital resource and surgeon schedules are a main driver of patient 

flow and bed utilization. In the model the assignment of surgeons to patients is determined by the 

MSS. A sample schedule is shown in Figure 11. In the sample schedule surgeons are assigned an 

entire OR block except for the highlighted “difficult cells”. These OR blocks represent the case 

when the OR block is not assigned to one surgeon. Instances include when the block is split into 

morning and afternoon slots or when it rotates between multiple surgeons or when it is assigned 

to an entire surgical designation. When these instances occur the model proportionally selects a 

surgeon from a group of surgeons who have previously operated during that OR block based on 

historical usage rates for that OR block. When a surgeon is assigned an OR block a daily list of 

patients is selected from the waitlist. On days when an OR block is split into half blocks the 

model reduces the patient list accordingly. Each surgeon is responsible for selecting which 

patients to operate on based on severity and urgency. The simulation model selects patient type 

proportional to each surgeon’s historical patient mix. A selection algorithm determines which 

patients and what quantity of patients will be operated on each day. The modelled patients are 

initially selected first in first in first out based on their place on the waiting list and. The 

selection algorithm looks to find a patient mix whose expected operation length fits within a 

confidence interval of historical daily operation times, if the patient mix exceeds this time, a 

patient is randomly selected to be not booked for that day. The selection algorithm is described 

in detail in section 6.3.5.  
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Figure 12 sample input schedule 

On days when a surgeon is not scheduled it is still possible for them to operate. This occurs when 

a surgeon is on call and is required for a non-electing emergency surgery. The model determines 

on-call surgeons by proportionally selecting a surgeon from each designation according to their 

historical emergency usage. Surgeons who are already scheduled for elective cases are exempt 

from being selected. 

6.3.4.2 Operating Rooms 

The model consists of 8 ORs at SCM and 11 at the HSC. The distribution of the operating 

rooms to surgeons is assigned to by EH administration to meet EH’s needs. The utilization 

of operating rooms is controlled by the surgeons and therefore is tied closely to the schedule. 

In the model, operating rooms are assigned to patients when they enter the model according to 

the surgeon’s OR block assignment. When the patient is ready for their operation they seize the 

OR until the operation is complete. The selection of which OR is controlled by the MSS which 

has restricted which rooms surgeons can operate in.  

 

MSS Hospital A 

Day 1 2 3 4 5 6 7 

OR 1 Surgeon A Surgeon B Surgeon C Surgeon D Surgeon E     

OR 2 Difficult Surgeon F Surgeon G Surgeon F Surgeon B     

OR 3 Surgeon H Surgeon I Difficult Surgeon J Difficult     

OR 4 Surgeon K Surgeon L Surgeon M Surgeon N Surgeon O     

OR 5 Surgeon N Surgeon P Surgeon Q Surgeon R Surgeon S     

OR 6 Surgeon T Surgeon U Surgeon V Surgeon U Surgeon V     

OR 7 Surgeon W Surgeon X Surgeon Y Surgeon Z Surgeon Z     
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6.3.4.3 Recovery Beds 

Post-surgery, recovery beds are seized by patients. The patients hold their bed resource until they 

are discharged. There are 103 beds at the HSC and 113 beds at SCM. If the capacity exceeds the 

number of available beds the two hospitals can temporarily alleviate the demand by using 

overcapacity beds. HSC and SCM are equipped with 60 and 27 overcapacity beds respectively. 

The overcapacity beds are designed for emergency cases and normal conditions are not designed 

to accommodate this level of patients. The simulation model examined two cases, one where the 

quantity of overcapacity beds were set to HSC and SCM levels and the second where the 

quantity was set to an artificially high number, as done in the MIP. The artificially high case is 

used to compare the results to the MIP and the actual rates to quantify the results. 

6.3.4.4 Model Entities  

Arena uses entities to control the flow of the model. Entities move between modules performing 

assigned commands. Commands include assigning attributes to the entity (i.e. patient’s LOS), 

updating variables, assigning a route for the entity to follow and assigning which resources 

will be used for processing. The simulation uses five different types of entities.  

The first type of entity is an initializing entity. An initializing entity is used to determine 

patient waitlists for each surgeon, for each surgeon that operates on that day, an initializing entity 

is created to refill that surgeon’s patient waitlist. The second type of entity is a schedule reading 

entity. Schedule reading entities are created daily for each OR. The schedule reading entities 

schedule the model to read the schedule from the external database and assign patient entities 

their LOS, operation length, OR assignment and surgeon assignment. The third and fourth types 



 

40 

 

23 

of entities are the two patient types, elective and non-elective. These entities act as patients and 

flow throughout the model as described in sections 2.5.1 and 2.5.2 the final entity type is a 

statistic entity. Statistic entities are created daily to capture bed census data. The bed census 

statistics are critical because they are used to validate the model, compare results between the 

MIP and simulation and determine the impacts of the new MSS. 

6.3.5 Model Flow 

The model is broken into four phases: 

1. Initialize 

2. Creating the daily list of events (Inputting the MSS)  

3. Patient Processing 

4. Updating patient waitlists 

The model uses Visual Basic to input data from an external database into the model. The 

Initialize phase creates patient waitlists. To do this an initializing entity is created for each 

surgeon to generate a patient waitlist for that surgeon. Surgeon waitlists are fluid with patients 

continuously being added from clinical assessments and being removed because they are 

unfit, no longer require the surgery or after the operation is completed. Blake (2005) outlines 

many of the historical difficulties with modelling data from current patient waitlists [27]. 

Acknowledging the difficulty in trying to replicate patient waitlists, each surgeon’s patient 

waitlist is instead based on the each surgeon’s historical patient mix. Historical patient mixes 

were determined by analyzing two years of historical data on the types of surgery, the 

frequencies of those surgery types, the associated lengths of operations and LOS.  
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The second phase of the model is inputting the MSS. In this phase a schedule reading entity is 

created for each OR in the system daily. The entity reads the MSS which is stored in the database 

and assigns which surgeons are going to operate and what patients they are going to operate on. 

In the model a selection algorithm is used to determine which patients the surgeon will select to 

operate on that day. A target daily operating interval was created for each surgeon based on their 

historical usage of their ORs. This allows the model to account for surgeons that tend to exceed 

the standard OR hours. The selection algorithm uses the average operation length and the 

average time between patients to fit the operations within the target daily operating interval. The 

selection algorithm begins by adding the first patient on the patient waitlist to the daily operation 

list. If the total expected operating time is less than the minimum target time than an additional 

patient is added. If the total expected operating time exceeds the maximum value of the target 

operating interval then the function randomly assigns a patient to leave the daily queue. The 

patient leaving the daily operating list is placed at the front of the surgeon’s waitlist, but will not 

be selected again that day. By choosing a random patient to leave it eliminates the need to 

attempt to replicate a surgeon’s logic and allows historical data to represent the surgeon’s patient 

case mix. At each iteration the function checks the stopping criteria (whether the total daily OR 

time is within the target times). This process is repeated until the stopping criterion has been 

met. The last step in this phase signals for the days’ expected patients to be removed from 

the waitlist and to enter the hospital. The selection algorithm is illustrated below: 

Step 1 Total OR time = 0 

Step 2 Select patient in position 1 from waitlist and add to selected list.  

a. Total OR time = Total OR time + operating groups average OR time  

Step 3 Is the total OR Time within the target values 
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a. Yes go to Step 8 

b. No go to Step 4 

Step 4 Check if total time is less than minimum target 

a. Yes go to step 5 

b. No go to step 6 

Step 5 Select patient in position 1 unless they have already been selected from waitlist 

and add to selected list.  

a. Total OR time = Total OR time + operating groups average OR time  + average 

time between patients 

b. Return to step 3 

Step 6 Remove random patient from daily operation list  

Step 7 Return to step 3 

Step 8 End 

A given patient can only be removed from the daily operating list three times before the model 

forces that patient to be selected. 

The third phase of the model is processing patients. This phase consists of both inpatients 

and outpatients and includes pre-surgery, surgery and post-operative care. Elective patients 

are determined as described in the second phase. Non-elective patients enter the model 

according to their historical arrival rates into the OR. These patients are assigned a surgery type, 

a physician, a length of operation (OPT) group and a LOS group. From this point all patients 

follow the same process. They are delayed for pre-operative care. Once a patient is ready for 

surgery they seize a surgeon and an OR until their operation is complete. Once the patient exits 

the OR, the model will delay the next patient from entering based on the historical times between 
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patients exiting and entering the OR for a given surgical specialty. Once this time elapses, the 

next patient will enter the OR and the process continues until one of the following conditions is 

met:  

1. The surgeon has no more patients to operate on 

2. The operating time has exceeded the allowable limit and the model decides to cancel the 

surgeon’s remaining surgeries 

3. The patient is an inpatient and there are no more bed resources available for the patient 

post-surgery. 

Following the operation the patient proceeds to post-operative care. After post-operative care 

patients can either be discharged (outpatients) or they will occupy a bed resource at their 

designated hospital. Patients occupy their bed resource until they have exceeded their LOS. After 

surgery patients are assigned a probability of requiring additional add-on surgeries. If the patient 

requires additional surgeries they may go immediately back to the OR for a follow-up surgery or 

to an inpatient ward until a surgeon is available or they are ready for the surgery. At the end of 

their LOS all patients are discharged at 8:00 am freeing up their bed resource. The discharge 

process is complex with multiple nurses working together, to complete the discharges on top 

of their other responsibilities. Actual discharges are spread throughout the day and 

dependant on nursing teams and families to coordinate, because of this complexity a 

decision was made to have all discharges occur at 8:00 am. By discharging all the patients 

simultaneously the model ignores the discharge procedure and is able to isolate the impacts of 

the MSS from the discharge procedure. Any time of day prior to the end of the day could have 

been selected since the cumulative patient bed days are only being analyzed at the end of each 
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day. This assumption has an additional benefit of providing a more direct comparison to the MIP 

results. 

The final phase of the process is the rebuilding surgeon’s patient waitlists. At the end of each 

day, an initializing entity is generate for each surgeon that operated and the model simply refills 

the waitlist by randomly generating patients from the surgeon’s historical case mixes. This 

process functions similar to Phase 1. 

6.4 Comparing the Simulation and MIP 

The MIP is used to evaluate MSSs to find the optimal set of MSSs to minimize overcapacity 

beds. The simulation model quantifies the results of the selected MSSs. The results between the 

two models are compared to adjust patient LOS in the MIP to synchronize the models outputs to 

account for underestimates that come from using historical averages. This section provides Table 

2, which summarizes the differences between the two models.   
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Table 2 Comparing Model Characteristics between the Simulation and the MIP 

  

Model Characteristic Simulation MIP

Daily Operations

The quantity of operations for each surgeon is calculated each 

time a surgeon has an assigned an OR block and determined 

based on selection algorithm described in Section 6.3.5

Constant quantity for each surgeon based on their 

historical average of operations per day

Emergency Patients Arrivals

Arrive according to historical arrival rates into the surgery 

department.

The total quantity of MIP beds is reduced by the 

historical daily average of Emergency patients 

occupying beds

Hospitals SCM and HSC modelled as Hospital 1 and Hospital 2 SCM and HSC modelled as Hospital 1 and Hospital 2

LOS

Randomly determined from a distribution fitted to historical 

date for each surgeon as described in Section 7.4.4

For each surgeon (S), LOS determined by:

LOSS = µLOSS + F*σLOSS. Where F is an adjustment 

factor used to synchronize the results between the 

two models.

Fi = Fi-1*(overcapacity bed days Sim/ overcapacity bed 

days MIP) for each i>1

Overcapacity Bed Quantity

Run for two scenarios:

1. ꝏ for direct comparison with the MIP

2. 60 for HSC and 27 for SCM to quantify results

ꝏ to capture the total quantity of overcapacity beds 

generated from the MSSs being evaluated

Patient Discharge

All patients are discharged at 8am each day. A patient is 

ready to be discharged if their quantity of days in the hospital 

is greater than their assigned LOS and they do not required 

additional surgeries

All patients are discharged on day D if the quantity of 

days they have been in the hospital is greater than 

their assigned LOS

Patient Selection

Patients are selected by selection algorithm described in 

Section 6.3.5

Each surgeon only produces one patient, which is 

repeated for each of their daily operations

Quantity of ORs 

Hospital 1: 7

Hospital 2: 11

Hospital 1: 7

Hospital 2: 11

Schedule Utilizes MSSs generated by the MIP

Evaluates many possible MSSs, limited by model 

constraints

Statistic time Period Statistics collected as a snapshot at the end of each day. Days

Time in OR

Random selection from historical case mix for each surgeon 

as described in Section 7.4.3 OR Time is not considered
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Chapter 7.  Data 

The data for this project was collected from three main databases: Meditech, PICIS OR system 

(PICIS) and the Discharge Abstract Database (DAD). Data was examined over a two year period 

starting in September 2012. The following subsections will discuss the data sources, how the 

data was analyzed and how it was inputted into the model. 

7.1 Data Sources 

Meditech is Eastern Health’s central database for employees; containing information ranging 

from wages to patient records and bed utilization. Within Meditech is a bed board for each 

hospital that provides an instantaneous snapshot of the beds available and gives EH staff an 

indication when a demand issues may arise. Meditech was used to collect information on 

historical bed utilization, to provide information on the problem and to assist in validating the 

results of the simulation. 

PICIS is Eastern Health’s main database for OR visits. PICIS captures the operating hospital, 

OR, when the patient enters and exits the OR as well as descriptive information about the 

surgery. A summary of information exported from PICIS for this project is provided in 

Table 3.  
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Table 3 PICIS Database Data Summary 

The DAD is used to collect information about patient visits and provide data to national 

organizations. The DAD is used across Canada at hospitals to provide standards and give 

hospitals’ performance data to governing bodies and hospital management on how their hospitals 

compare to similar hospitals. The DAD was used to collect data on the patients LOS, ELOS, 

Case Mix Group and discharge statistics. The summary of data exported from the DAD for this 

project is provided in Table 4.  

Identifier Description

Visit Identifier A unique ID assigned for each visit

Hospital Site The hospital at which the patient was initially treated

Procedure Date and TimeA time stamp recording the date and time of the operation

OR The operating room the patient was operated on

No. of Surgeries

The quantity of surgeries the patient received during their 

visit

Case Status

A classification of whether the surgery was elective, non-

elective or an Add on

Case Procedure CategoryA high level classification of surgery type i.e. Orthopedic

Case Procedure

A detailed classification of the surgery procedure i.e. ACL 

reconstruction

Case Surgeon The operating surgeon

Enter Room Time A time stamp recording when the patient entered the OR

Anesthesia Start Time

A time stamp recording when the anesthesiologist started 

treating the patient

Surgical Start Time A time stamp recording when the operation began

Surgical End Time A time stamp recording when the operation ended

Exit OR Time A time stamp recording when the patient left the OR
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Table 4 DAD Data Summary 

Both PICIS and the DAD capture critical data to the MIP and simulation models. The data from 

the databases was analyzed by joining the two databases by Visit Identifier. The new data Table 

was analyzed and aggregated to determine Case Groups and historical distributions for lengths of 

operations and LOS. 

7.2 Case Groups 

For both the simulation model and the MIP Case Groups were used to aggregate the data. The 

data set had many individual points and Case Mix Groups and it was determined to be 

cumbersome and inefficient with so much stratification to input each of surgical Case Mix 

Groups. Instead the data was aggregated into Case Groups which could represent a subset of 

these patients and be fitted to a distribution. The number of Case Groups was determined through 

discussions with the Regional Director of Clinical Efficiency on which operations had similar 

characteristics and analyzing the data to determine similarities and a good fit to a theoretical 

distribution. The quantity of the Case Groups assigned to each surgical group is shown in Table 

5. 

Identifier Description

Visit Identifier A unique ID assigned for each visit

Hospital Site The hospital at which the patient was initially treated

Program Type

A high level classification of treatment. i.e. Surgery or 

Cardiac Care

Main Patient Service

A classification of the primary service provided i.e. 

Orthopedic Surgery

Case Mix Group

A detailed classification of the surgery procedure i.e. ACL 

reconstruction

Provider Service im

Provider The operating surgeon

LOS 

The quantity of days the patient was in the hospital, 

including the day of their operation

ELOS

The estimated quantity of days the patient would be in the 

hospital including the day of their operation

Discharge Disposition

A classification of how the patient was discharged i.e. sent 

home or transferred to ALC treatment
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Table 5 Case Mix Groups by surgery group 

 

The MIP uses historical averages and standard deviations for each surgeon to determine the 

number of operations they will perform in each block and patient’s LOS. ARENA Input 

Analyzer was used to fit Case Group to theoretical distribution. The aggregation resulted in 84 

groups for operating time and 90 groups for LOS. In the simulation the operating time group is 

determined from the surgeon’s historical case mix and subsequently randomly select the patients 

LOS group. 

7.3 MIP Data Set 

The MIP was constructed using historical averages for constant parameters. The choice to 

use a deterministic model with a simulation model was made because in practice simulation 

allow stakeholders to clearly visualize what is happening in the model thus validating the model 

more easily. The MIP uses days as its time period; therefore it is assumed that all surgeries and 

discharges are completed at the same time. Instead of using the operating time to determine how 

many patients will be seen in a day the MIP uses the historical average for each physician. For 

Specialty 
No Of Case Mix 

Groups 

Cardiovascular 28 

Oral/ Dentist 8 

ENT 99 

General 164 

Gynecology 91 

Neurosurgery 57 

Ophthalmology 5 

Orthopedics 101 

Plastics 79 

Thoracic 49 

Urology 52 

Vascular 57 



 

50 

 

23 

cases where a surgical block was not designated to a single surgeon (i.e. Urology rotating or 

more than two surgeons rotating a block) a replica surgeon was created to represent each unique 

case. The values for the replica surgeon are based on the historical data set for that OR block. 

Similarly average values were used for patient LOS parameters. Average values have been 

shown to underrepresent capacity issues, which was demonstrated using the simulation model. 

7.4 Simulation Data 

The simulation uses a centralized data source to determine each patients operating time, LOS, 

their physician and OR. Simulation can represent random data in three ways. The first is to 

simply reproduce existing data within the simulation. This method is less preferred since it can 

only provide results for one specific case. The second way is to use the data to generate empirical 

distribution functions for each random variable. The third and most preferred method is to use 

the data to generate a theoretical distribution and use hypothesis tests to determine if it is a good 

fit. For the simulation datasets theoretical distributions were used if a theoretical distribution was 

determined a good fit for the historical data. In instances when a good fit did not exist then an 

empirical distribution was used. 

7.4.1 Fitting Distributions 

Data was joined from PICIS and the DAD and aggregated into Case Groups based on similar 

characteristics for both operating time and LOS. Each Case Group was tested for a good fit of a 

theoretical distribution. Before testing distributions against the historical data set, the data was 

compared between surgeons and operating sites to see if there were statistical differences. If no 

statistical differences existed, then one distribution could be fitted for the group. In cases where 

there were statistical differences then a unique distribution was fitted for each exception. Fitting 
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the groups to distributions was done using Arena’s input analyzer. The data was first plotted into 

a histogram similar to Figure 12 to generate an initial hypothesis to what distribution would 

might fit the data.  

 

Figure 13 A sample of Input Analyzer's plotted histogram 

 

Input analyzer then applied K-S and Chi-goodness of fit tests. Input analyzer reports acceptance 

probability uniquely, a minimum probability of 0.05 in is considered to be a good fit by Rossetti 

[28]. If more than one distribution met the requirements than the one with the best fit was 

selected. If no distributions had a minimum probability greater than 0.05 then an empirical 

distribution was used. This method was applied to operating time, LOS, arrival rates and the 

time between surgeries.  

7.4.2 Operating Room Time  

The operating room time was examined and fitted to a distribution for each Case Group. The 

time spent in the operating room was determined by subtracting the time the patient entered the 

OR from the time they exited, thus capturing their entire duration. For surgical groups that 

operated at both sites including general, orthopedic and plastic each Case Group data was 
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separated by hospital site. For case groups operating at both sites, a Z test was completed for α = 

0.05 and it was determined that five case groups had statistical differences. For these groups a 

different distribution was used at each site and for all other Case Groups the data. For non-

elective surgeries the data was similarly aggregated and fitted into distributions. 

7.4.3 Daily Operation Time 

The daily operation time was likewise examined for each of the surgical specialties. The number 

of patients selected by each surgeon was determined by fitting the average operating times of the 

patients in the waitlists within target operation times for the surgical group. The surgical group’s 

target times were based off of historical data of their daily operation times. The average 

operating time, standard deviation and quartile data for each surgical specialty is shown in Table 

6. 
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Case Procedure Category 

Average 
1ST 

QUARTILE 
3rd 

QUARTILE Max 
Standard 
Deviation 

CARDIOVASCULAR SURGERY 451.2 304.5 593.0 824.0 163.1 

GENERAL SURGERY 337.8 222.0 448.0 914.0 145.7 

GYNECOLOGY SURGERY 126.2 32.3 216.8 282.0 89.7 

HEAD AND NECK SURGERY 356.1 253.0 452.0 909.0 144.5 

NEUROSURGERY 352.8 286.0 437.0 632.0 116.2 

ORAL SURGERY 359.9 304.0 440.0 573.0 110.9 

ORTHOPEDIC SURGERY 353.1 283.0 448.0 937.0 128.4 

PLASTIC AND RECONSTRUCTIVE SURGERY 340.6 262.0 427.0 663.0 121.3 

THORACIC SURGERY 327.1 241.3 415.0 600.0 120.8 

UROLOGY SURGERY 360.7 316 435 891 122.7 

VASCULAR SURGERY 313.9 224.3 415.1 578.0 120.9 
Table 6 Daily Operation Time Summary (Minutes) 

7.4.4 Patient LOS 

For patient LOS, data analyzed and fitted to a distribution for each Case Group. For the surgical 

groups that operated at both sites, the data was separated and analyzed in the same way as 

described in Section 7.4.2 for Operating Room Time. Three Case Groups were determined to 

have statistically significant differences. For these Case Groups two separate distributions were 

used for each site. The process was repeated for non-elective surgeries. 

7.4.5 Time Between patients 

Analyzing the data set, it was apparent that there is commonly a period of time between 

when one patient exits the OR and the next patient enters. This time between patients is 

critical to replicating the quantity of operations that a surgeon can be expected to complete. The 

time between patients is not directly captured by the data set, but could be extracted by analyzing 

subsequent operations for surgeons. To do this patients were sorted by OR, date of their 

operation time and the time they entered the OR. The time between patients data set was used in 

the simulation in two ways. The first, uses the median time between the patients for each 
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specialty in determining the total expected daily operation time. The total expected daily 

operating time needs to fit in between the set operating targets to be an accepted daily list patient 

list. The second uses the distribution for each surgical specialty in the model to delay the next 

patient from entering the OR. The time between patient’s data is summarized in Table 7. 

Surgery Type 
Cases 

Examined 
Median Time Between 

Patients (minutes) 

CARDIOVASCULAR SURGERY 103 28 

HEAD AND NECK SURGERY 210 21 

GENERAL SURGERY 250 26 

GYNECOLOGY SURGERY 27 20 

NEUROSURGERY 175 11 

ORTHOPEDIC SURGERY 532 25 

PLASTIC AND 
RECONSTRUCTIVE SURGERY 85 28 

THORACIC SURGERY 64 34 

UROLOGY SURGERY 248 27 

VASCULAR SURGERY 101 27 
Table 7 Time between Patients Data Summary 

7.4.6 Arrivals 

Historical information was used to model patient arrivals. Both elective and non-elective patient 

arrivals were modeled. The next two subsections will describe how the arrival process was 

modelled. 

7.4.6.1 Elective Patients 

The rate of arrivals for elective patients is determined by which surgeons are operating and the 

number of patients they select to perform surgeries on. The modelled surgeons are assigned an 

initial patient waitlist of 30 patients which are created based on their historical patient mix. This 

means that if a surgeon historically perform 60% knee replacements than the make-up of the 

surgeon’s waitlist overtime will accurately reflect this. Each day when a surgeon is assigned an 
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OR block, a selection algorithm as described in section 6.3.5 is used to determine the surgeons 

list of patients. The algorithm was written in Visual Basic and used average operating times and 

times between surgeries to determine the number of patients that they would select. The 

objective of the algorithm is to find a mix of patients that fits within the surgeons target times for 

operation length. If the subset of patients did not fit the algorithms requirements than a random 

patient was removed and a new one added. This process was repeated until a patient mix fit the 

requirements. The removed patient would be placed at the head of the surgeon’s queue and the 

model recorded the amount of times that a patient was removed. After a set number of removals 

the patient was forced into the schedule and could not be removed.  

7.4.6.2 Non-elective arrivals 

Non-elective patients arrive after being referred by a doctor working in the Emergency 

Department or from another service in the hospital such as Medicine. For the purpose of this 

research, non-elective patients are only captured at the time they enter the OR. This means that 

patients that arrive in emergency, but do not have a resulting surgery during their visit are not 

considered. Historical OR data shows that the arrival of non-elective patients is varied 

throughout the day. The average quantity of non-elective surgery patient arrivals at HSC and 

SCM between September 2009 and January 2015 is shown in Figure 13. 
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Figure 14 Arrival Rates of Non-Elective Patients into the OR by Hour of Day 

It is evident from examining this figure that arrival rates vary by time of day. The arrivals were 

split into four time periods: 00:00 - 07:00, 07:00 - 16:00, 16:00 - 21:00 and 21:00 - 00:00. The 

data was fitted to a distribution by arrival rates or the time until the next patient arrives. The 

model reflects the historical breakdown between facilities where historically 39% of emergency 

patients arrive at SCM and 61% at HSC. The percentage of arrivals by surgical group is 

summarized in Table 8.  

Surgical Group Percentage of Emergency Arrivals 

CARDIOVASCULAR SURGERY 2.5% 

GENERAL SURGERY 41.9% 

GYNECOLOGY SURGERY 2.6% 

HEAD AND NECK SURGERY 2.4% 

NEUROSURGERY 3.5% 

ORTHOPEDIC SURGERY 31.9% 

PLASTIC AND RECONSTRUCTIVE SURGERY 3.4% 

THORACIC SURGERY 0.9% 

UROLOGY SURGERY 4.9% 

VASCULAR SURGERY 6.0% 
Table 8 Percentage of Emergency Arrivals by Specialty 
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7.5 Initializing the System 

Both HSC and SCM use three different MSS throughout the course of the year, each using 

regular, Christmas and summer schedules. The regular schedule which is the focus of this 

research is used from September 17th through June 15th excluding the three week Christmas 

schedule which operates between December 17th and January 4th. The summer schedule is used 

between the end and start of the regular schedule each year, which is used from September 4th 

through June 30th. In the past the ORs have been utilized less during the summer schedule 

resulting in less bed demand. The average bed utilization for each month at both sites is plotted 

in Figure 14.  

 

Figure 15 Average Bed Days 

Figure 14 demonstrates fewer average bed days in June, July, August and December with the 

demand increasing again in September, October and January. Figure 15 shows the bed 
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requirements from the beginning of July through the middle of October at the SCM in 2013. It 

indicates that when the regular schedule starts at the beginning of September that it takes the 

system a period of time before it approaches steady state.  

 

Figure 16 SCM Bed requirements August - October 

EH is primarily concerned with the utilization throughout the regular MSS to effectively 

examine its impacts, the system must include a warm-up period where the model bed statistics 

approach the historical bed statistics at the beginning of the regular schedule, including the 

period prior to reaching steady-state.  

To determine the appropriate warm-up period Welch’s method of graphing the results was 

used. The number of beds used each day was exported to Excel for ten replications. The 

average between the ten replications was plotted and compared to Eastern Health’s bed usage for 

the time period leading up to the regular schedule. Using Welch’s method the bed statistics were 

determined to best approach historical statistics at the beginning of the MSS after a 43 day 

warm-up period. Each replication began on August 5, 43 days prior to the start of the regular 

schedule. 
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7.6 Validation  

An effective simulation must accurately represent the system it is modelling. To demonstrate 

this, the results it produces must be shown to be in line with and reflect the system it is 

modelling. In this case, the simulation model was validated using Naylor and Fingers (1967) 

three step approach. Their three step approach is based on: 

1. Building a model that has high face validity 

2. Validating Model Assumptions 

3. Comparing the model input-output transformations to corresponding input-output 

transformations for the real system. 

High face validity equates to properly demonstrating the flow of patients throughout hospital 

operations and that operations are completed similar to the system being modeled. The flow of 

patients throughout the hospital was understood from past literature and discussions with EH’s 

experienced staff. To validate the model flow, Arena’s animation tool was used in conjunction 

with Visual Basic’s debugging tool to step into the model step by step. Initially the model was 

broken down into subsections so that each component could be validated individually and then 

collectively as an entire system. 

Validating model assumptions requires that the assumptions made that differed from the real 

system did not impact the results. Key model assumptions that needed to be validated include: 

1. Discharges occurring at the same time of day 

2. The determining of the on-call surgeons 

3. Structuring the waitlists to always contain 30 patients. 

4. Excluding overflow medicine patients 
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Discharging all patients at the same time of day removes the complexities of the discharge 

process from the model. To confirm that this assumption did not impact model results the 

volume of beds in use at the end of each day was selected as the metric. By examining bed 

utilization only at the end of each day, temporary excess in the data set caused by late discharges 

is removed.  

On-call surgeon selection was based on the daily historical utilization of each surgeon. The 

historical data was used in conjunction to build a selection process. The quantities of on call 

surgeon selections in the model was compared to the historical rate for each surgeon. Using a t-

test for α = 0.05 there were no statistically significant difference between the two data sets.   

Instead of using variable waitlists, the simulation model used a constant sized waitlist where 

patients are randomly created based on historical case mixes. Removing the waitlist and surgery 

selection logic from the model was done to reduce complexity while maintaining a patient mix 

built upon historical case mixes. To validate this assumption, patient LOS and operation lengths 

were compared using a t-test for α = 0.05. There were no statistically significant differences in 

patient mixes shown using this approach. 

The final decision to exclude the medicine departments overflow patients was made since 

these patients are not directly impacted from the MSS. These patients were simply removed 

from the historical bed statistics to compare the model’s results. 

The final validation step is comparing the model input-output transformations to corresponding 

input-output transformations of the real system. This was done through a series of t-tests where 

the two data sets were compared for α = 0.05 and if necessary for α = 0.1. The process was 

completed for each surgical group. Figure 16 shows the 95th percent confidence intervals for 
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each group for LOS. For each group, the confidence intervals overlap, indicating that there are 

no statistically significant differences for α = 0.05. 

 

Figure 17 LOS Confidence Intervals 

Similarly Table 9 shows the quantity of patients seen by each surgical group. At the 95th 

percentile this t-test does not demonstrate significant differences for all groups except for 

Vascular Surgery. Expanding the confidence interval for the Vascular Surgery Group shows 

that there is no statistically significant difference for α = 0.10. 
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Specialty 
2013-2014 

Data 
Model 
Data Model CI High Model CI Low 

CARDIOVASCULAR SURGERY 260 248.5 260.16 236.84 

GENERAL SURGERY 672 690.25 720.67 659.83 

GYNECOLOGY SURGERY 24 28.5 33.09 23.91 

HEAD AND NECK SURGERY 369 366.5 386.05 346.95 

NEUROSURGERY 324 325.75 339.34 312.16 

ORTHOPEDIC SURGERY 1006 999.25 1041.15 957.35 

PLASTIC AND RECONSTRUCTIVE 
SURGERY 232 242 253.13 230.87 

THORACIC SURGERY 121 119 123.5 114.5 

UROLOGY SURGERY 501 512.5 557.85 467.15 

VASCULAR SURGERY 222 252 270.2 233.8 
Table 9 Patients Seen 95% Confidence Interval 

The quantity of Emergency Patients that visited the hospitals is shown in Figure 17. The results 

do not demonstrate statistically significant differences for α = 0.05. 

 

Figure 18 Emergency Arrival Validation 
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The final measure of validating the model is through examination of bed utilization. A t-test was 

completed and 95th percentile confidence intervals constructed for both sites. The results are 

compared in Figure 19. 

 

Figure 19 Daily Patients Seen 

For HSC and SCM, no statistical significance was shown for α=0.05 and 0.10 respectively. 

Based on the quantities of patients seen for each surgical group, patient LOS and emergency 

arrivals all being in line with historical values the slight discrepancy between the average daily 

modelled SCM patients and historical SCM patients is surprising. This discrepancy could be 

the result of many small differences in the two systems or potentially the result of something 

not captured in the data set.   
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Chapter 8. Results  

This chapter presents the results from using the iterative approach described in Section 6.1 based 

on a MIP and simulation model applied as a case study to EH’s St. John’s hospitals. The MIP 

and simulation bed statistics were compared after each iteration and the MIP LOS adjusted as 

described in Section 6.1 until the differences in overcapacity beds were no longer statistically 

significant or the data sets stopped converging. Statistical significance was measured using the 

student’s t-test for α = 0.05. This chapter presents the differences between the two data sets and 

compares the EH’s existing MSS with the various proposed MSSs from the MIP model.  

The iterative approach was applied to three separate starting nodes. The starting nodes for the 

adjusted LOS in the MIP were arbitrarily selected as: 

1.  µ + 0.5σ 

2.  µ + 0.75σ 

3. µ + σ 

In each of these cases the data sets never converged, getting caught in a suboptimal loop where 

the adjustment factor F went back and forth between approximately 0.1 and 1.4. An example 

using 1σ as the starting node is shown in Table 10: 
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Table 10 A Sample of Iterative Approach 

After not converging the data sets with multiple starting points, the MIP and simulations were 

run for many scenarios exploring the solution set to determine what F values in  

 [1] LOSS = µLOSS + F*σLOSS for each surgeon S 

would the two data sets converge and to evaluate if varying F could provide better MSSs as 

measured by the simulation. The results for the MIP and Simulation Results, varying the 

Adjustment Factor in µ + Fσ from 0 to 1 are shown in Figures 19 and 20: 

 

Figure 20 MIP Results 

Iteration

Standard Deviations 

Added to Average MIP Simulation Adjustment

0 1.000 4070 407 0.100

1 0.100 32 458 14.313

2 1.431 5378 406 0.075

3 0.108 35 452 12.914

4 1.395 5348 408 0.076

5 0.106 35 452 12.914

6 1.375 5330 448 0.084
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Figure 21 Simulation Results 

The MIP results increase almost linearly by account for more of the historical standard deviation, 

where the simulation results appear to trend downwards. The increase in the MIP overcapacity 

bed days intuitively makes sense because the longer a patient stays the more patient bed days. 

In the case given the data sets provide converging results between 0.225 and 0.25 standard 

deviations. The simulation results seem to indicate that the more standard deviations accounted 

for, the better the resulting MSS, although the results are statistically insignificant for α = 0.05. 

This trend appears to level off after 1σ. 

For comparative purposes, the resulting MSS from the MIP using 1σ was selected to 

compare the results between the EH’s existing MSS and the proposed MSS. The contrasting 

MSSs are shown in Figures 21 and 22. 
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Figure 22 MIP Generated Schedule Standard Dev = 1 

 

Figure 23 Original MSS 

The average quantity of patients at each facility is shown in Figure 23. 

OR Mon Tue Wed Thu Fri
Sa

t

Su

n
Mon Tue Wed Thu Fri

Sa

t

Su

n

1 Felix Thava Cluett Fitzpatrick Drover C. Felix Dentist Cluett Tibbo Drover C.

2 ENT / Dentals Browne Smith C. Browne Thava Cluett Full Browne Smith C. Browne Thava

3 Melvin V Cox Heneghan/ MelvinVHeneghan Heneghan/ MelvinV Browne Cox Pace/Boone/Smith CHeneghan Heneghan/ MelvinV

4 Rockwood Batten Au Tibbo Stone Rockwood Batten Au Dentist Stone

5 ODea Martin Moores C. Squire Hogan G. ODea Martin Moores C. Squire Hogan G.

6 Gardiner Pollett Mann Pollett Mann Gardiner Pollett Gardiner Pollett Mann

7 Smith T. Mathieson Savoury Burrage Burrage Smith T. Redmond Lee Burrage Burrage

OR Mon Tue Wed Thu Fri
Sa

t

Su

n
Mon Tue Wed Thu Fri

Sa

t

Su

n

8 Oleary McEachren McNicholas Murphy Willams Oleary McEachren McNicholas Murphy Willams

9 Jacman Whelan Dunphy Whelan Pace/Boone/Smith C Jacman Whelan Dunphy Whelan Cluett Full

10 Fitzpatrick Rideout Seal Jewer Cluett Fitzpatrick Rideout Seal Jewer Jewer

11 Bohacek Bohacek Wells Hogan M. Pace Gynecology Bohacek Wells Hogan M. Pace

12 Au ODea Stone Martin Johnston Au ODea Stone Martin Johnston

13 Cluett SDC Hogan M. Boone Mathieson Opthamology Radiation OncologyHogan M. Mathieson Boone Wells

14 Hogan G. Furey Rockwood Furey Squire Hogan G. Furey Rockwood Furey Squire

15 Duffy Hewitt Drover D. French Gynecology Duffy Hewitt Drover D. French General

16 Avery Maroun Englebrecht Maroun Murray Avery Murray Englebrecht Maroun Murray

17 Lodge Mong Lodge Melvin C Melvin C Lodge Mong Lodge Melvin C Melvin C

18 Urology Harvey Mong Fitzpatrick SDC Fitzpatrick Full Urology Harvey Mong Cardiovadcular Browne

St. Clare's Mercy Hospital

Health Science Center

OR Mon Tue Wed Thu Fri

S

a

t

S

u

n

Mon Tue Wed Thu Fri

S

a

t

S

u

n

1 Stone Dentist Burrage Tibbo ENT / Dentals Stone Dentist Burrage Tibbo Thava

2 Heneghan/ MelvinV Stone Drover C. Au Boone Savoury Stone Drover C. Au Boone

3 Gardiner Burrage Melvin V Heneghan/ MelvinV Mann Lee Burrage Melvin V Gardiner Gardiner

4 Rockwood Squire Pollett Furey ODea Rockwood Squire Pollett Furey ODea

5 Squire Rockwood Martin ODea Redmond Squire Rockwood Martin ODea Heneghan/ MelvinV

6 Mann Furey Browne Pollett Hogan M. Mann Furey Browne Pollett Hogan M.

7 Heneghan Smith T. Batten Martin Au Heneghan Smith T. Batten Martin Au

OR Mon Tue Wed Thu Fri

S

a

t

S

u

n

Mon Tue Wed Thu Fri

S

a

t

S

u

n

8 Jacman Willams McEachren Whelan McNicholas Jacman Willams McEachren Whelan McNicholas

9 Oleary Dunphy Murphy Opthamology Whelan Oleary Dunphy Murphy Opthamology Whelan

10 Cluett SDC Seal Fitzpatrick SDC Rideout Jewer Jewer Seal Fitzpatrick SDC Rideout Jewer

11 Cox Harvey Gynecology Murray Drover D. Cox Harvey Gynecology Wells Drover D.

12 Browne Wells Hogan G. Smith C. Avery Browne Wells Hogan G. Smith C. Avery

13 Maroun Maroun General Cluett Full Bohacek Maroun Mathieson Bohacek Cluett Full Bohacek

14 Hogan M. Thava Moores C. Pace/Boone/Smith C Felix Hogan M. Radiation Oncology Moores C. Pace/Boone/Smith C Felix

15 Hewitt Hogan G. Duffy Urology French Hewitt Hogan G. Duffy Urology French

16 Englebrecht Fitzpatrick Full Pace Johnston Mathieson Englebrecht Thava Pace Johnston Mathieson

17 Melvin C Browne Melvin C Lodge Mong Melvin C Browne Melvin C Lodge Mong

18 Mong Murray Lodge Urology Mong Murray Lodge Cardiovadcular Urology

St. Clare's Mercy Hospital

Health Science Center
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Figure 24 Simulation Average Quantity of Patients 

For α = 0.05, the Proposed MSS results in statistically fewer patients at HSC and more at SCM. 

This results demonstrates improved bed balancing between the two sites. Figure 24 illustrates the 

quantity of overcapacity patients in the simulation model for both the Current and Proposed 

MSSs.  

 

Figure 25 Quantity of Patients Served in Overcapacity Beds 
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The Proposed MSS need on average 47.7% fewer overcapacity beds. Table 10 summarizes the 

quantity of operations and patient data from the Simulations. 

  Current  New 

  Value 
Half 
Width Value 

Half 
Width 

Add On Surgeries 300.2 19.84 309.2 18.06 

Emergency Surgeries 1445.6 22.2 1443.33 10.92 

Day Surgeries 3151 99.57 2968.27 69.6 

HSC Total LOS 30456 683 28086.4 820.81 

HSC Inpatients 1990 33.6 1766 45.23 

SCM Total LOS 23229.3 762 25899.25 754.27 

SCM Inpatients 1412 21.38 1859.25 25.27 

Average Patients HSC 101.07 1.43 92.65 6.54 

Average Patients SCM 76.51 2.41 85.33 5.22 

Average Total Patients 177.58 2.95 177.98 2.56 

Patients served beyond capacity (including excess) 852.8 109.92 407.27 132.96 
Table 11 Simulation Results for the Proposed and Current MSS 

Additionally Figures 26 and 27 illustrate better bed balancing between days at both sites. The 

new schedule produces the same trend as the historical data set, but significantly less variation 

between days. For the new MSSs both hospitals did not demonstrate statistically significant 

differences between day of the week for α = 0.05.  
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Figure 26 - Interval Plot of Surgery Bed Days at SCM by Day of Week 

 

Figure 27 - Interval Plot of Surgery Bed Days at HSC by Day of Week 
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Chapter 9. Discussion 

The purpose of this study was to demonstrate whether a two-step iterative approach using both a 

MIP and simulation could be used to approximate an optimal solution to better level bed capacity 

between a series of nearby hospitals. After each iteration the bed statistics are compared between 

the two models and MIP patient LOS updated for each surgeon by linearly adjusting the standard 

deviation multiple based on the differences in the two model outputs. Linearly adjusting surgeon 

LOS in the MIP this way resulted in a suboptimal loop. To fully explore the solution set the 

adjustment factor was instead manually incremented by 0.1 standard deviations and then fine-

tuned as the approximations grew closer. The research was able to demonstrate the convergent 

results are possible using this method. Figure 20 shows a reduction in overcapacity bed days 

required, although not statistically significant for α =0.05, by increasing the patient LOS in the 

MIP to account for more variance. This could be because when the MIP is forced to account for 

more variance it must work harder to strategically place surgeons with more variability and thus 

find a solution for worse case scenarios.  

Since the MIP results are strongly correlated to the adjusted patient LOS, where the simulation 

model LOS remains unchanged. As a result of this, the MIP results change significantly 

based on the adjustment factor and the simulation results are only impacted by the resulting 

MSS. An alternative to linearly adjusting could have been to reduce the size of the 

adjustment by scaling the adjustment factor down. An example is shown in the equation below: 

[3] 𝐹𝑖 = 𝐹𝑖−1 ∗ 0.1 ∗ (
𝑂𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑒𝑑 𝐷𝑎𝑦𝑠 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑂𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑒𝑑 𝐷𝑎𝑦𝑠 𝑀𝐼𝑃
)  for each i > 1. 

This change would account for the directional difference between the MIP and simulation, but 

reduced the significance of the adjustment on the MIP results. 
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This research was able to demonstrate that not accounting for variance in a MIP can result in 

suboptimal results and that in the case in minimizing overcapacity problems, accounting for 

more variance may even produce better results. This inherently makes sense since it is the worst 

case days that are the prime driver of overcapacity issues. The research was able to demonstrate 

that in a network of hospital pooling resources to develop a MSS can help reduce overcapacity 

issues. 

The method of applying a MIP and simulation model in an iterative approach is consistent with 

past literature [20] and the results of this paper are similar to VanBerkel et al. (2011) which 

demonstrated improved bed levelness between wards using an OR Model [7] and Chow et. al 

(2005) who applied a Monte Carlo simulator to quantify the results of their IP generate schedule 

[26]. The results of this case study agree with research completed by the Fraser Health authority 

where bed demand between facilities was better balanced by pooling surgical resources [24] and 

with Belien and Demeulemeester (2007) who demonstrated the significance in accounting for 

variance when developing a MIP to level bed demand [22].  

To solve the MIP several simplifications needed to be made. The following list identifies these 

limitations and explain why they were made and what impacts they had 

1. The model used days as its time period. By using days as the time period the model 

ignores the timing of admissions and discharges. This will reduce congestion during 

periods when new patients are being admitted quicker than exiting patients are being 

discharged. The impacts of this process are critical to capacity issues, but are more 

significantly influenced by discharge procedures than the MSS.  

2. The model focuses only on scheduled surgeries. This means that that the model does not 

account for emergency patients or patients that use surgery resources from a different 
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unit. This decision was made because although these other types of patients influence bed 

capacity it is difficult to predict and are not controlled by the MSS. 

3. The model uses a two week planning horizon, by extending the planning horizon by a 

week half OR blocks can be changed to full blocks that surgeons operate every other 

week. 

4. The MIP assumes the same patient mix for each surgeon each OR block they operate in. 

MIPs are not simulations and are limited to how they can reflect variance in a dataset. 

5. In the MIP it is assumed that no surgeries are cancelled. The number of patients that a 

surgeon produces is identical in each OR block. By making this assumption the MIP 

excludes instance when a surgeon or patient need to cancel their appointment. 

6. The model assumes there are infinite overcapacity beds. This allows the model to exclude 

potential overcapacity cancellations from its dataset and evaluate the impacts of the MSS. 

In practice there is only a finite quantity of overcapacity beds to accommodate patients. 

Patient transfers occur when one site is experiencing excess capacity and there is a patient in 

stable condition who can be transferred with minimal risk. This practice is ignored in this model 

as and something EH expressed a need to move away from. Patient transfers are not captured 

in the data sets for this project because only the operating room and operating hospital are 

described for each hospital identifier. Patient transfers are not recorded in either the PICIS or 

DAD, as such it is speculated that the lack of patient transfers in the model contributed to the 

differences in the SCM bed utilization statistics. 

The results of this research have been received by positively by EH, but with only a couple of 

months left in Calendar Year 2019 the resulting MSSs have not been implemented. Further 

discussions with key personnel will determine whether this methodology will be incorporated 
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into generating future MSSs. The methodology used in this research does not give consideration 

to surgeon’s clinical days or other scheduling constraints that surgeons may have. To 

successfully implement, surgeons need to commit to reshuffling their clinical days to 

accommodate the proposed MSS. Additional case studies investigating this method with 

practical results from real life implementations considering clinical significance are required to 

fully vet this methodology before it can be implemented at scale.   
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Chapter 10. Conclusion 

The aim of this study was to apply a mathematical model to minimize inpatient congestions 

within a series of nearby hospitals. The methodology consisted of an iterative approach using 

both a MIP and simulation. The MIP used a multiple of patient LOS standard deviation for each 

surgeon to try and address MIP tendencies to underrepresent capacity requirements. After each 

iteration the MIP and simulation bed statistics were compared and a linear adjustment factor was 

applied to the MIP patient LOS for each surgeon based on the ratio of overcapacity bed days 

within each system. Although the results did not converge a manual adjustment was applied to 

get the data to converge. The resulting MSSs were all compared using the simulation and there 

was no statistical differences between them, but a trend indicated that up to 1 standard deviation 

that accounting for variance produced a better MSS. The resulting MSSs significantly reduced 

the requirement for overcapacity beds and provided improved balancing between the two 

hospitals.  

This study presents a unique process to level bed demand between a series of hospitals to reduce 

inpatient congestion. The process is one of the first in the significant surgical scheduling problem 

literature that: 

1. Examines nearby hospitals as a network that can pool resources 

2. Accounts for variance through patient LOS standard deviation for each surgeon in a MSS 

optimization models. 

3. Uses an iterative approach to converge results between MIP and simulation bed statistics 

by adjusting the quantity of patient LOS variance accounted for in the MIP. 
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Additionally the paper presents a unique patient selection algorithm to model daily patient mixes 

within a simulation model.  

This research provides results for a case study. The extension of these methods to other hospital 

systems is required to better quantify its effectiveness. This research focused on surgical bed 

resources on hospital level, future research may want to consider on surgical bed resources for 

bed wards. This research has not considered several hospital resources including patient 

discharges, nurses, anaesthetists, clinical schedules or surgical equipment. An extension of this 

research would be to follow-up on the practical impacts of implementing the proposed MSS at 

EH to understand the full practical impacts of the recommend MSS. Making changes to a MSS 

has many practical considerations that need to be addressed including impacts to clinical 

schedules and surgeon preferences. Additionally research could be used to investigate the 

impacts of non-elective surgery arrivals in conjunction with MSS optimization and transfer 

between hospitals. 
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